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Hydrodynamics in GR

the stress-energy tensor and mass flux of an ideal fluid is
" = (p+ P)utu” 4+ Pgh”
JH = pout

the total energy density
p=po(l+e

equations of motion of the fluid are derived from the conservation laws

additional equation — equation of state

P = P(po,€) = (I' = 1)poe



HYDRODYNAMICS IN GR

e for ultrarelativistic fluid the internal energy dominates ¢ > 1 = p =~ pge

P=P(p)=T—-1)p



Hydrodynamics in Sperical Symmetry

we use spherical polar coordinates for the metric

ds® = —al(t,r)?dt* + a(t,r)*dr? + r?dQ?

primitive variables
u = (p,v)
— (Sv E)

relation between them
= (p+ P)W?v
= (p+PW?*—-P

the velocity v and the Lorentz factor W are defined as



HYDRODYNAMICS IN SPERICAL SYMMETRY

e equations of motion for the fluid

S+r_12 [TQ%(SU +P)}/ =3

. 1 /
T

a

e the (elliptic) equations for the metric functions a, «
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HYDRODYNAMICS IN SPERICAL SYMMETRY

e the mass function is defined as

i) =3 (1 ) a(t?r)?)

e in calculations we use new set of conservative variables



Type Il Critical Phenomena for Ultrarelativistic Fluids

discovered by Choptuik (93) in scalar field collapse, for fluid collapse
investigated by Evans etal , Koike etal, Neilsen etal, Noble etal

dynamical system with two possible outcomes - BH or empty ST
initial data are controlled by one tunable parameter p

end state of evoluton

e forp > p* BH
e for p < p* empty ST (matter disperses to infinity)

scaling relation for values of p “close” to the critical value p*
Mgy =|p — p*|"

the scaling exponent is universal



Continuously Self-Similar Solutions

the critical solutions happen to be continuously self-similar

self-similar coordinates

r = log (—%) s = —log (—t)

self-similar variables

w = 4drria®p

V="
if we assume CSS solutions then EOM depend only on x = set of ODEs

M(y)y' = f(y)

with Yy = (NSS(ZC), Ass(aj)a wss(x)v /USS(:C))T



Continuously Self-Similar Solutions

e the ODEs can be solved subject to regularity condition at sonic point (z = 0)

det(M(x =0)) =0

e the solution is then characterized by a single value v(0)

e v(0) is tuned so that v(x) remains bounded as * — —oo
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Perturbations of the CSS Solutions

the scaling exponent can be calculated using perturbation theory
the ansatz is (H is one of {log(N),log(A),log(w),v})

H(x,s) = Hgs() + €hyar(x, s)

we choose the eigenmodes of the form

hyar(, ) = hp(x)e"? keC

x is not arbitrary — we require that v, does not blow up as * — —oo

the scaling exponent ~ is related to the largest «

v ==
KR



Limiting CSS Solutions and their Perturbations (I' — 1)

e as I' — 1 we observe the following behaviour (kK = /I' — 1)

wes () = w(x) K
vss(x) = v(x) k
e for the perturbations we have
N, =N,
Ap = Ay
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LIMITING CSS SOLUTIONS AND THEIR PERTURBATIONS (I" — 1)

e we also observe the following dependence

k =k + O(k?)

e we can substitute the above expressions into the ODEs and calculate all
the limiting (“barred”) quantities

e the equations for the limiting CSS solution are the equations of a
Newtonian theory

e In particular we can calculate

k= lim k(k)

e this in turn allows us to calculate the limiting value of the scaling exponent

S| =

7 = lim y(k) =
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LIMITING CSS SOLUTIONS AND THEIR PERTURBATIONS (I" — 1)

Results of the critical exponents calculations

k2 K Yes Vet error(%)
1072 | 8.748687152 | 0.1143028643 | 0.1148 0.4
1073 | 9.386603219 | 0.1065348110 | 0.1071 0.5
10~4 | 9.455924881 | 0.1057538012 | 0.1062 0.4
107° | 9.462917038 | 0.1056756596 | 0.1062 0.5
107% | 9.463616859 | 0.1056678451 | 0.1064 0.7

0 | 9.463694624 | 0.1056669768

14



LIMITING CSS SOLUTIONS AND THEIR PERTURBATIONS (I' — 1)

Limiting CSS solutions
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LIMITING CSS SOLUTIONS AND THEIR PERTURBATIONS (I' — 1)

Perturbations of the limiting CSS solutions
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Results of Numerical Calculations

main features:

e high resolution shock capturing method used

e adaptive mesh refinment (AMR) necessary to capture dynamics on
continuously decreasing length scales

e quadruple precision used to tune p up to 30 significant digits

e no “floor” in vacuum regions

initial data — Gaussian with p = p(0)
simulations performed for k2 = 1072,1073,107%,107°,107¢
critical exponent calculated from subcritical runs

the order parameter is the maximum of 7#, = 3P — p

max(T",) = |p —p*|~*
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RESULTS OF NUMERICAL CALCULATIONS

Fitted data for k2 = 0.01
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RESULTS OF NUMERICAL CALCULATIONS
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RESULTS OF NUMERICAL CALCULATIONS

Windowed fits of data for k2 = 0.01
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RESULTS OF NUMERICAL CALCULATIONS

Evolution of the density profile p
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RESULTS OF NUMERICAL CALCULATIONS

Evolution of the a® — 1 and grid hierarchy in self-similar coordinates
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RESULTS OF NUMERICAL CALCULATIONS

Evolution of the velocity profile v
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RESULTS OF NUMERICAL CALCULATIONS

Evolution of w
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Supercritical collapse

Harada and Maeda (PRD 63, 2001) suggested that the universal attractor
for collapse of an ultrarelativistic fluid with small I" — 1 is not a black hole but
a general relativistic Larson-Penston solution (GRLP)

GRLP is a “pure collapse” self-similar solution (not asymptotically flat)

Ori and Piran (PRD 42, 1990) showed that the GRLP exists only for
[' — 1 < 0.036 £ 0.002 and contains naked singularity for I' — 1 < 0.0105

the critical exponents were calculated from subcritical solutions because no
signs of black hole formation were observed

the AMR code with quadruple precision is an ideal tool to test the
hypothesis

tests were performed forI' =1 =0.01landI' — 1 = 10~

generic initial data were taken (no fine tuning)
25



SUPERCRITICAL COLLAPSE

o forT' — 1 = 107° the refinment level reached 100 and the central density
reached 10°* (Ar = 10732)

o forI' — 1 = 107° the refinment level reached 65 and the central density
reached 10%® (Ar = 1072?)

e control supercritical run was performed for I' — 1 = 0.02 and we observed
2m/r approaching 1, i.e. the formation of a black hole
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SUPERCRITICAL COLLAPSE
Comparison of the supercritical numerical solution and the GRLP solution forI' — 1 = 0.01
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SUPERCRITICAL COLLAPSE

Comparison of the supercritical numerical solution and the GRLP solution for ' — 1 = 10~°
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Summary

we obtained the critical solutions and critical exponents for small values of
I' — 1 both analytically and numerically

the numerical solutions agree very well with the analytical calculations

we calculated the CSS limiting solution (which is the Newtonian limit) and
its perturbations

we found the limiting value of the scaling exponent

lim ~(k) = 0.1056669768

our calculations seem to confirm the hypothesis of the formation of generic
naked singularities in the collape of matter with the equation of state
P=(—1)pforvaluesof I' — 1 <0.01
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