
PHYS 410: Computational Physics Fall 2022
Project 1—Charges on a Sphere (The Thomson Problem)

Due: Wednesday, October 19, 11:59 PM
PLEASE report all bugs, comments, gripes etc. to Matt: choptuik@physics.ubc.ca

1. OVERVIEW

Important! Read this document carefully and completely before you start the project.

In this project we consider collections of N identical charges which are confined to the surface of a sphere, but which
are able to move over that surface under the influence of their mutual electrostatic interactions. The goal of your
study will be to determine equilibrium configurations of the charges for any given value of N ; i.e. configurations
in which all electrostatic forces on any charge balance (so that the component of the net force which is tangential
to the sphere vanishes for any charge), and which are stable to small perturbations. You will find these equilibria
dynamically, by direct finite-difference solution of the full equations of motion (EOM). You will add a velocity-
dependent retarding force to the EOM so that, with luck, any initial distribution of charges will eventually reach
some equilibrium configuration. Your primary interest will be to catalogue these equilibria, and to attempt to
characterize their symmetry in a way that will be described below.

2. EQUATIONS OF MOTION

Consider a collection of N identical point charges, with charges qi and identical masses mi. Without loss of generality
we can set both the masses and charges equal to 1:

mi ≡ 1 , i = 1, 2, . . . N , (1)

qi ≡ 1 , i = 1, 2, . . . N . (2)

Although it may not seem obvious at first glance (due to the spherical geometry of the setup), it is most convenient
to solve the problem in (x, y, z) (Cartesian) coordinates. We set the radius of the sphere to 1, and centre it at the
origin, (0, 0, 0).

Associated with any charge qi is a position vector ri(t)

ri(t) ≡ [xi(t), yi(t), zi(t)] , i = 1, 2, . . . N ,

and because every charge is confined to the surface of the unit-radius sphere we have

ri ≡ |ri| ≡
√

x2
i + y2i + z2i = 1 , i = 1, 2, . . . N .

Here and in the following, |w| denotes the magnitude of a 3-vector:

|w| ≡
√

w2
x + w2

y + w2
z . (3)

In computing the electrostatic interaction between the charges we will need separation vectors rij given by

rij = rj − ri ,

with magnitudes
rij = |rj − ri| ,

and associated unit vectors, r̂ij :

r̂ij ≡
rj − ri
rij

=
rij
rij

. (4)

We can now write down the equations of motion for the charges. We have

miai = mi

d2ri
dt2

= −ke

N
∑

j=1,j 6=i

qiqj
rij2

r̂ij − γvi , i = 1, 2, . . . N , 0 ≤ t ≤ tmax ,
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where ai ≡ d2ri/dt
2 and vi ≡ dri/dt are the acceleration and velocity of the i-th particle, respectively, ke is the

Coulomb constant, γ is an adjustable parameter that controls the magnitude of the velocity-dependent dissipative
force, −γvi, and tmax is the final time of the evolution. Note that the sum in this equation accounts for the fact that
every charge experiences an electrostatic force from every other charge, so that there are a total of O(N2) pairwise
forces. Using (1) and (2) and also setting ke = 1, the above becomes

d2ri
dt2

= −

N
∑

j=1,j 6=i

r̂ij
rij2

− γ
dri
dt

, i = 1, 2, . . . N , 0 ≤ t ≤ tmax .

For calculational purposes, it is convenient to use (4) in the above to get

d2ri
dt2

= −

N
∑

j=1,j 6=i

rij
rij3

− γ
dri
dt

, i = 1, 2, . . . N , 0 ≤ t ≤ tmax . (5)

These are our desired equations of motion that we will solve using FDAs.

A useful diagnostic quantity for our simulation of charges on a sphere is the total potential energy, V (t), for the
collection of charges. Given (2) and our choice ke = 1, this is given by

V (t) =

N
∑

i=2

i−1
∑

j=1

1

rij
. (6)

For a stable equilibrium solution, limt→∞ V (t) will be a minimum. This minimum may be either local or global
depending on the number of charges and the initial conditions.

3. FINITE DIFFERENCING

To solve (5) via finite differencing we replace the continuum values of t, 0 ≤ t ≤ tmax, with a temporal mesh that we
will define using an integer-valued level parameter, ℓ. Specifically, we take

nt = 2ℓ + 1 ,

∆t =
tmax

nt − 1
= 2−ℓtmax ,

tn = (n− 1)∆t, n = 1, 2, . . . nt ,

and introduce the usual finite difference notation for a grid function, rni :

rni ≡ ri (t
n) .

We then discretize (5) by replacing the first and second time derivatives that appear with our usual O(∆t2) accurate
FDAs:

dri
dt

∣

∣

∣

∣

t=tn

→
rn+1

i − rn−1

i

2∆t
,

d2ri
dt2

∣

∣

∣

∣

t=tn

→
rn+1

i − 2rni + rn−1

i

∆t2
.

Important: Here and below it is to be understood that definitions, equations etc. with a “free” subscript i hold for
all charges, i.e. all values of i (so that the range specification i = 1, 2, . . . , N is suppressed).

Substituting these last expressions in (5), we can then solve for the advanced-time value, rn+1

i explicitly. This I will
leave for you to do. Then, provided that we know r1i and r2i—and these will come from the initial conditions—we
can use the result that you get to determine the values rni , n = 3, 4, . . . nt.
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3.1 Normalization of positions

For all time steps we will require that the positions of the charges are properly normalized so that all charges are
on the surface of the unit sphere. After application of the discrete version of (5) at any time step you will find that
the charges are not on the sphere (there’s nothing in the equation of motion that constrains them to remain on the
surface). One straightforward way of dealing with this issue is to project the charges along the radial lines that
connect their positions with the origin of the coordinate system. Specifically, let the provisional position of the i-th
charge after a finite difference update be denoted r̃n+1

i :

r̃n+1

i =
[

x̃n+1

i , ỹn+1

i , z̃n+1

i

]

.

We then project the charge by taking

r̃n+1

i →
r̃n+1

i

|r̃n+1

i |
=

[

x̃n+1

i , ỹn+1

i , z̃n+1
]

√

(

x̃n+1

i

)2
+
(

ỹn+1

i

)2
+
(

z̃n+1

i

)2
. (7)

3.2 Initial data

Given the goal of determining an (approximate) equilibrium configuration for any given number of charges, a natural
way of assigning initial conditions is to let the positions of the charges be distributed randomly on the surface of the
sphere. This can be done in many ways. The recommended approach assigns values of x, y and z drawn randomly
from the range [−1, 1], followed by a renormalization (projection) as discussed above. This will set the values r1i .
The values r2i can be initialized using r2i = r1i , which has the interpretation that the velocities of the charges vanish
at the initial time. In the convergence test discussed below you will use a convergence analysis to deduce the actual
accuracy of this procedure.

4. EQUIVALENCE CLASSES OF CHARGES

We can partially characterize the symmetry of the equilibrium configurations that we generate by considering the
pairwise distances between charges at the final time, tnt . Here, for simplicity of notation let ri denote the final
positions of the charges and then define

dij = |rj − ri| i, j = 1, 2, . . . , N ,

where you are reminded that the magnitude, |w| of any 3-vector w is given by (3). In MATLAB it is natural to store
the values dij as a two-dimensional array (matrix).

Now define d̄i i = 1, 2, . . . , N to be the values of dij sorted in ascending order: that is, for any i—or row of the
matrix storing dij—d̄i is the vector of values resulting from sorting that row in ascending order. The sort is readily
accomplished using MATLAB’s sort function.

We will say that two charges, labelled by i and i′, respectively, are in the same equivalence class if

d̄i = d̄i′

where the equality is to hold element-wise and for all elements of the two vectors of sorted lengths. In practice we
will only require equality up to a tolerance ǫec, i.e. so that

|d̄i − d̄i′ | ≤ ǫec ,

where again the inequality is to be understood to apply to all elements of the vector of distance differences, d̄i − d̄i′ .

We will assert without proof that if two charges are in the same equivalence class then they are indistinguishable in
the equilibrium configuration.

Your solution of the project must include code that analyzes dij to determine a vector vec that defines the number
of charges in each equivalence class that you identify. For example, for the case N = 13 you might find

vec = 4 2 2 2 2 1 ,
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which means there are 4 charges in the first class, 2 charges in each of the second through fifth classes and 1 charge
in the sixth class. The ordering of the counts is arbitrary, but I have chosen to sort the values of vec in descending
order. You should do the same.

Important: Writing the code to determine the equivalence classes may be the most challenging part of the project

for you. If you find yourself unduly stuck, don’t be afraid to ask for hints.

5. IMPLEMENTATION REQUIREMENTS, SUGGESTIONS AND NOTES

5.1 Implementation/representation of rni (requirement)

Implement the positions of the charges as a three dimensional array, whose dimensions can be defined by the following
initialization statement:

r = zeros(nc, 3, nt)

where nc is the number of charges (i.e. N) and nt is the number of timesteps. Then we have the following identifi-
cations:

r(i, 1, n) ≡ xn
i ,

r(i, 2, n) ≡ yni ,

r(i, 3, n) ≡ zni ,

and
r(i, :, n) ≡ rni .

Note that in defining r in this fashion the implication is that we store the entire dynamical evolution of the charges.

5.2 Top-level function for simulation (requirement)

For your simulation of the charge dynamics, code a top level function with header

function [t, r, v, v_ec] = charges(r0, tmax, level, gamma, epsec)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% charges: Top-level function for solution of charges-on-a-sphere

% problem.

%

% Input arguments

%

% r0: Initial positions (nc x 3 array, where nc is the number of

% charges)

% tmax: Maximum simulation time

% level: Discretization level

% gamma: Dissipation coefficient

% epsec: Tolerance for equivalence class analysis

%

% Output arguments

%

% t: Vector of simulation times (length nt row vector)

% r: Positions of charges (nc x 3 x nt array)

% v: Potential vector (length nt row vector)

% v_ec: Equivalence class counts (row vector with length determined

% by equivalence class analysis)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Note that the initial conditions are to be supplied as an input, and that the number of charges does not explicitly
appear in the input arguments since it can be determined from the size of r0.

In addition to performing the main simulation, which defines the array r, this function is also responsible for
computing and storing the potential at each time step (the computation can be done in a separate function if you
wish), and for analyzing the charge positions at the final time to determine the equivalence class counts (this can
also be done in a separate function).

5.3 Developing your code

Begin by having charges focus exclusively on the task of simulating the charge dynamics, including the computation
of the potential. Use simulation parameters for a very brief integration of a small number of charges, taking, for
example, nc = 2, tmax = 5, level = 3 and gamma = 1. Use the instructor-supplied function charges plot.m,
available from the course Homework page, or plotting facilities of your own design, to visualize the results of the
simulation. (charges plot should be called at the end of the simulation).

Include tracing statements in your code (use printf) to periodically output the value of the potential.

Remove and restore semi-colons at the end of statements as necessary to trace the flow of your computation.

Once it appears that your simulation is reasonable, compute with tmax = 100 and level = 8 until the final con-
figuration has the two charges located directly opposite one another on the sphere, and the final value of V is
0.5.

At this point you can start (gradually) increasing the number of charges, as well as increasing the final time and
discretization level. In all instances aim to have V equilibrate by the end of the simulation.

Once you are confident that your simulations are working correctly (including the convergence test described below),
implement the equivalence class analysis. I suggest that you use epsec = 10−5, and note that the analysis will be
quite sensitive to how close your final positions are to a true equilibrium. You should find that for some values of N
the equilibrium is quite easy to determine (in terms of tmax), while for others it is more difficult. You will not be
penalized if your analysis does not agree with the key for particularly tricky cases.

5.4 Initializing charge positions randomly

Since the charges lie on a unit-radius, origin-centred sphere, their xi, yi and zi coordinates satisfy

−1 ≤ xi, yi, zi ≤ 1 .

To randomly initialize coordinates in the interval [−1, 1] the following code can be used

r0 = 2*rand(nc,3) - 1;

The coordinates will then need to be normalized using (7).

5.5 A useful Wikipedia page

If you google “Thomson problem” you will find a Wikipedia page that will certainly be of use to you. In particular, in
the section “Configurations of smallest known energy” is a table that lists the value of V (E1 in the page’s notation)
for various values of N . Ideally, you will make minimal reference to this page until you have successfully implemented
your algorithm but, of course, I cannot stop you from “reading ahead”!

Note that, for certain values of N , you may find values of V (tmax) which are in disagreement with the table in the
Wikipedia page. Assuming that your simulation is working correctly this will likely be due to the fact that for those
values of N there is more than one equilibrium configuration and your code has found local minima in V rather than
the global minima quoted in the Wikipedia table. This is fine and not something you need to be concerned with.
However, if you have the time and inclination, you might want to investigate those values of N in more detail, using
a number of different random initial conditions in an attempt to find the global minima.
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5.6 Simulation runtime

For

nc = 60

tmax = 500

level = 12

my implementation of charges takes about 3 seconds on my home PC (a relatively new model). You should expect
comparable runtimes up to a factor of a few or so. If you find that a run with these parameters takes, say, of order
a minute or greater, there are probably one or more inefficiencies that you need to weed out.

6. CALCULATIONS TO PERFORM

This section describes the minimum set of calculations that you are to perform and describe in your writeup. You
are free (and encouraged) to go beyond the minimum set and your successful efforts in this regard will be recognized
in the form of a certain number of bonus marks that will applied against any shortcomings in the basic part of your
implementation, results and writeup (but the total mark for the project will be capped at 100%).

6.1 4-level convergence test

Code a script source file, convtest.m, that performs a sequence of 4 calculations with

nc = 4

tmax = 10

gamma = 1

epsec = 1.0e-5

with initial conditions (non-random) given by

r0 = [ [1, 0, 0]; [0, 1, 0]; [0, 0, 1]; (sqrt(3)/3) * [1, 1, 1] ]

and with discretization levels

level = 10, 11, 12, 13

Let the level-ℓ values of the x-coordinate of the first charge be denoted, xl. xl is a vector of length ntl where ntl is
the number of time steps in the level-ℓ calculation.

Now consider the level-to-level differences
δx10 = x11 − x10 ,

δx11 = x12 − x11 ,

δx12 = x13 − x12 ,

where it is to be understood that the subtraction involves that set of the finer grid function values (higher level) that
coincides with the set of coarser grid function times (i.e. every second element of the higher level grid function).

If we graph on a single plot
δx10 , ρ δx11 , ρ2δx12

as a function of t, and where ρ is either 2 or 4, then we should see near-coincidence of the curves for:

1. ρ = 2 if our FDA is first-order accurate,

2. ρ = 4 if our FDA is second-order accurate.
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Make plots for both ρ = 2 and ρ = 4 and include them in your writeup. Discuss what the plots tell you about the

convergence of your FDA and, to the best of your ability, provide some rationale for what you see. The plotting

should be done within the script file, convtest.m.

6.2 Time evolution of potential for 12-charge calculation

Code a script source file, plotv.m, that performs a simulation with

nc = 12

tmax = 10

level = 12

gamma = 1

epsec = 1.0e-5

and random initial positions.

The script file should make a plot of V (t) vs t: include the plot in your writeup.

6.3 Survey of V (tmax; N) and vec(N) for various values of N

Only complete this part of the project when you are confident that your simulations are working properly and with

reasonable efficiency.

Code a script source file, survey.m, that performs a survey for N = 2, 3, . . . , 59, 60. Include tables of V (tmax; N)
and vec(N) in your writeup.

The script should make the tables—two columns of values for V (tmax; N) (N and V ) and varying numbers of columns
of values for vec(N) (N and vec)—as simple text files directly from your MATLAB computations (use fopen, fprintf
and fclose) and include them verbatim in your report (i.e. the formatting doesn’t have to be anything fancy).

Specifically, and to facilitate grading, ensure that your survey results are written to text files named vsurvey.dat and
ecsurvey.dat for the final potential values and equivalence class counts, respectively. For the case of vsurvey.dat,
use a fprintf statement with a format specification precisely as follows:

fprintf(fid_v, ’%3d %16.10f\n’, nc, v(end));

Here nc is the number of charges and v(end) is the final value of the potential.

This formatting should display V (tmax; N) to 10 digits following the decimal place.

For ecsurvey.dat, use the following sequence of fprintf statements:

fprintf(fid_ec, ’%3d ’, nc);

fprintf(fid_ec, ’%d ’, v_ec);

fprintf(fid_ec, ’\n’);

Here v ec is the vector of equivalence class counts. Note that there is a space before the final quote in the first two
fprintf statements.

It is up to you to determine appropriate values for the arguments to charges in order to produce an accurate survey
(but keep in mind that you won’t be penalized for incorrect vec(N) for “troublesome” values of N).

Write a few sentences about what trends you see in vec(N). Also briefly discuss the extent to which your results for

V (tmax; N) do or don’t agree with those listed on the Wikipedia page.

6.4 Video of sample evolution

Make an AVI (or MPEG-4 if you have the codec installed) video of a simulation of your choice. You can use the
instructor-supplied function charges video.m for this purpose. Note that 15 frames (time steps) will produce 1
second of video so adjust the number of time steps in your simulation to generate a video of reasonable length (say
1 minute or less). Feel free to customize charges video.m as you wish.
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