
PHYS 410: Computational Physics Fall 2022

Homework 2

Due: Friday, November 4, 11:59 PM

PLEASE report all bugs, comments, gripes etc. to Matt: choptuik@physics.ubc.ca

Problem 1

Code a MATLAB function with the header

function yout = rk4step(fcn, t0, dt, y0)

that takes a single fourth-order Runge-Kutta step. The input and output arguments are defined as follows:

% Inputs

% fcn: Function handle for right hand sides of ODEs (returns

% length-n column vector).

% t0: Initial value of independent variable.

% dt: Time step.

% y0: Initial values (length-n column vector).

%

% Output

% yout: Final values (length-n column vector)

Using a system of ODEs of your own choosing that has a known solution, verify that the local (per step) error
incurred by using rk4step is O(∆t5). Document your findings in your writeup, and ensure that your results can be
reproduced by running a script called trk4step.

Problem 2

Use your implementation of rk4step to code another function with header:

function [tout yout] = rk4(fcn, tspan, y0)

Let nout be the length of the vector tspan, whose elements can be assumed to be in strictly increasing order. Then
rk4 integrates the system of ODEs defined by fcn and outputs the approximate values of the unknowns at the nout

values of tspan. The input and output arguments to rk4 are defined as follows:

% Inputs

% fcn: Function handle for right hand sides of ODEs (returns

% length-n column vector)

% tspan: Vector of output times (length nout).

% y0: Initial values (length-n column vector).

%

% Outputs

% tout: Vector of output times.

% yout: Output values (nout x n array. The ith column of yout

% contains the nout values of the ith dependent variable).

The step sizes that rk4 is to use in the integration are given by the differences between the adjacent elements of
tspan. That is, rk4 is not to take any substeps to times that are not defined in tspan.
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Use your implementation of rk4 to solve the simple harmonic motion system:

d2x(t)

dt2
= −x(t)

x(0) = 0

dx

dt
(0) = 1

on the domain 0 ≤ t ≤ 3π and with ∆t corresponding to levels ℓ = 6, 7 and 8. Plot the scaled errors, with scaling
factors corresponding to the anticipated reduction in error relative to level 6, on a single plot which is to be included
in your write up. Ensure that the calculations and plotting can be reproduced by running a script called trk4 sho.

Now use rk4 to integrate the equations for the unforced Van der Pol oscillator (see Tutorial 4) with a = 5 on the
domain 0 ≤ t ≤ 100 at level 12 with initial conditions

x(0) = 1

dx

dt
(0) = −6

Make plots of (1) the oscillator’s position and (2) the phase-space evolution and include them in your write up.
Ensure that the calculations and plotting can be reproduced by running a script called trk4 vdp.

Problem 3

In this problem you will implement an adaptive RK4 integrator—that is, your function will vary the step size in
response to the estimated local solution error.

Error estimation

You will base the error estimation on the following analysis. (Do not implement the adaptive stepping using some
approach of your own invention. Ask for help if you do not understand what follows.)

Let t0 be the current value of the independent variable during an integration, and let ∆t be the current step size.
Then for our fourth order Runge-Kutta method we have (C denotes “coarse”)

yC(t0 +∆t) ≈ yexact(t0 +∆t) + k(t0)∆t5

where k(t) is some function of time. Note that we deduce from this that the local error, eC = yC − yexact, is
≈ k(t0)∆t5. Now consider advancing from t0 to t0 +∆t using two time steps of size ∆t/2. After the first time step
we have (F denotes “fine”)

yF (t0 +∆t/2) ≈ yexact(t0 +∆t/2) + k(t0)(∆t/2)5

Because the error is additive for a small number of steps (why?), after the second step we will have

yF (t0 +∆t) ≈ yexact(t0 +∆t) + k(t0)(∆t/2)5 + k(t0 +∆t/2)(∆t/2)5

≈ yexact(t0 +∆t) + 2k(t0)(∆t/2)5

where the last step follows from the fact that k(t0 +∆t/2) = k(t0) +O(∆t). Therefore, if we subtract yC and yF at
the advanced time, we get

yC(t0 +∆t)− yF (t0 +∆t) ≈
15

16
k(t0)∆t5 ≈

15

16
eC .

In summary, by taking one step of size ∆t, and then, starting from the same initial condition, two steps of size
∆t/2, a subtraction of the resulting values will yield an estimate of the local solution error (up to the constant factor
15/16).
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Implementation

Implement an adaptive RK4 integrator as a MATLAB function with header

function [tout yout] = rk4ad(fcn, tspan, reltol, y0)

The inputs and outputs for the function are defined by

% Inputs

% fcn: Function handle for right hand sides of ODEs (returns

% length-n column vector)

% tspan: Vector of output times (length nout vector).

% reltol: Relative tolerance parameter.

% y0: Initial values (length-n column vector).

%

% Outputs

% tout: Output times (length-nout column vector, elements

% identical to tspan).

% yout: Output values (nout x n array. The ith column of yout

% contains the nout values of the ith dependent variable).

As previously, the elements of tspan can be assumed to be in strictly increasing order.

rk4ad should integrate the set of ODEs defined by fcn using the error estimation procedure described above. That
is, when taking any step of size ∆t, the function should also take two steps of size ∆t/2, compute the error estimate,
then adjust the step size accordingly so that the tolerance given by reltol is achieved. It is up to you to figure out
precisely how the step size will be changed, and note that ∆t can either decrease, increase or stay the same at any
given step.

You must also ensure that the function calculates approximate solution values at precisely those times defined by
the tspan array. In general, this will necessitate some additional adjustments of ∆t, and in this regard, note that it
doesn’t matter if a particular step size turns out to be less than it strictly needs to be to achieve the error tolerance.

Your implementation of rk4ad must “self-initialize”: that is you cannot assume that a particular value of ∆t will be
sufficient to meet the error criteria at the initial time. Rather, your function must compute an appropriate ∆t so
that the relative error tolerance is achieved initially.

Additionally, implement a “floor” of 1.0e-4 for the time step: do not allow your integrator to use a step size which
is less than this.

Hint: If it is not obvious, rk4step should be used here as well.

Results

Once you are satisfied that your implementation of rk4ad is working, use it to integrate the simple harmonic oscillator
system given in Problem 2 using tspan defined by

tspan = linspace(0.0, 3.0 * pi, 65);

and values for reltol of

1.0e-5, 1.0e-7, 1.0e-9, 1.0e-11

Make plots of the resulting errors from the four calculations and include them in your writeup. Ensure that the
calculations and plotting can be reproduced by running a script called trk4ad sho.

Finally, use rk4ad to integrate the unforced Van der Pol equation with a = 5.0, tspan defined by

tspan = linspace(0.0, 100, 4097);

reltol = 1.0e-10, and the same initial conditions as in Problem 2. Make plots of the oscillator displacement and
the phase space evolution and include them in your writeup. Ensure that the calculations and plotting can be
reproduced by running a script called trk4ad vdp.
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