
PHYS 410: Computational Physics

Finite Difference Solution of the Gravitational N-Body Problem

1. THE GRAVITATIONAL N-BODY PROBLEM

1.1 Physical & Mathematical Formulation

• Consider N point particles, labelled by an index i, with masses mi

mi, i = 1, 2, . . . N

and position vectors, ri(t)

ri(t) ≡ [xi(t), yi(t), zi(t)] , i = 1, 2, . . . N

where we have established a standard set of Cartesian coordinates (x, y, z) with some arbitrarily
chosen origin. (In practice, however, it may be most convenient to choose the origin at the center of
mass of the system.)

• We wish to study the dynamics of the system due to the (attractive) Newtonian gravitational force
exerted by each particle on every other particle.

• Combining Newton’s second law, as well as the law of gravitation, we have the basic equations of
motion in vector form

mi ai = G

N
∑

j=1, j 6=i

mimj

r2ij
r̂ij , i = 1, 2, . . . N , 0 ≤ t ≤ tmax (1)

where

– ai = ai(t) is the acceleration of the i-th particle

– G is Newton’s gravitational constant

– rij is the magnitude of the separation vector rij between particles i and j:

rij ≡ rj − ri

rij ≡ |rj − ri|
and we recall that the magnitude of any vector, w = [wx, wy, wz], is given by:

w ≡ |w| =
√

w2
x + w2

y + w2
z

– r̂ij is the unit vector in the direction from particle i to particle j (i.e. in the direction of the
separation vector:)

r̂ij ≡
rj − ri

rij
(2)

– Important: From now on, for brevity of notation we will use

N
∑

j=1, j 6=i

→
∑

j

and i = 1, 2, . . . , N and 0 ≤ t ≤ tmax will be implied.

1



• For the purposes of computation, it turns out to be more convenient to use (2) in (1) to get

mi ai = G
∑

j

mimj

r3ij
rij (3)

where we note that

r3ij =
[

(xj − xi)
2 + (yj − yi)

2 + (zj − zi)
2
]3/2

• It is also convenient to non-dimensionalize the system of equations, which in this case means choosing
units in which G = 1, which we will hereafter do

• We have

ai(t) =
d2r(t)

dt2

so (3) becomes (with G = 1)

mi ai = mi
d2ri

dt2
=

∑

j

mimj

r3ij
rij

and then dividing both sides of the above equation by mi, we have

d2ri

dt2
=

∑

j

mj

r3ij
rij (4)

• Equation (4) is a system of second-order-in time differential equations for the vector quantities, ri(t)

• We note that using a form of the equations of motion in which we have divided by mi allows us to
integrate the equations for the case that some of the particles are massless

• In order to compute a specific solution, we must supply initial conditions, which in this case are the
initial positions and initial velocities of the particles, i.e.

ri(0) = r0i i = 1, 2, . . . , N (5)

vi(0) ≡
dr

dt
(0) = v0i i = 1, 2, . . . , N (6)

where r0i and v0i, i = 1, . . . , N are specified vectors (total of 6N numbers)

1.2 Solution via Finite Difference Approximation

1.2.1 Discretization: Step 1—Finite Difference Grid

• Continuum domain is
0 ≤ t ≤ tmax

• We will assume that we can proceed using a uniform time mesh (i.e. constant time step) as usual:
may not be a good assumption, particularly if particles start “clumping”

• For the purposes of development and convergence testing it is convenient to specify the mesh via
level parameter, ℓ

nt = 2ℓ + 1

∆t =
tmax

nt − 1
= 2−ℓtmax

tn = (n− 1)∆t, n = 1, 2, . . . , nt

For production runs, however, it is certainly acceptable to fix the set of discrete times by giving, for
example, tmax and ∆t.

2



1.2.2 Discretization: Steps 2 and 3—Derivation and Solution of the FDAs

• Continuum equations → discrete equations

• FD notation
rni ≡ ri(t

n)

where we use a superscript, rather than subscript, n, since we are using a superscript to enumerate
the particles.

• Need approximation for second time derivative, use usual second order centred formula

d2r(t)

dt2

∣

∣

∣

∣

∣

t=tn

≈ rn+1 − 2rn + rn−1

∆t2

• Substituting in (4), we have

rn+1

i − 2rni + rn−1

i

∆t2
=

∑

j

mj
(

rnij

)3

(

rnj − rni

)

, n+ 1 = 3, 4, . . . , nt (7)

• We view this as an equation for the advanced-time values, rn+1

i , assuming that the values rni and
rn−1

i are known

• We can solve (7) explicitly for rn+1

i , and will leave that to the reader

• As usual for a problem in dynamics, we need to deal with the initial conditions and, since we are
using a three-time-level scheme, we thus need to determine values for r1i = ri(0) and r2i = ri(∆t)

• This can be done in a manner that precisely parallels the analogous calculation for the nonlinear
pendulum. This computation will also be left to the reader.

1.3. Energy Quantities and Energy Conservation

• For the gravitational N -body problem we have the following (again with G = 1)

• Total kinetic energy

T (t) =
N
∑

i=1

1

2
mi vi

2 (8)

• Total potential energy

V (t) = −
N
∑

i=1

i−1
∑

j=1

mimj

rij
(9)

• Important: Note the the second summation in the above is limited to values of j that are strictly
less than i

If we summed over all values of j—i.e. so that the upper limit of the sum was N—we would “double
count” the potential energy contributions (think, e.g., of the two-particle case where there is only
one contribution)

• Total conserved energy
E(t) = T (t) + V (t) (10)

• We can compute discrete versions of these quantities, and especially for small numbers of particles,
a test for convergence of

dE(t) = E(t)− E(0)

is one way of establishing code correctness

3



1.4. MATLAB Implementation Suggestions

• Use multi-dimensional arrays to store discrete positions

• Ideally, store entire solution (i.e. all time steps) as we did with pendulum example

• For example, create and “zero” 3-dimensional array r via

r = zeros(N, 3, nt);

% N: number of particles

% nt: total number of time steps

• Then would have the following
r(i, 1, n) ≡ xni

r(i, 2, n) ≡ yni

r(i, 3, n) ≡ zni

• Consider writing an acceleration-computing function with a header such as

function [a] = nbodyaccn(m, r)

% m: Vector of length N containing the particle masses

% r: N x 3 array containing the particle positions

% a: N x 3 array containing the computed particle accelerations

4



1.5. Suggested test case

• A good, non-trivial configuration that you can use to develop and test your implementation describes
two particles with arbitrary masses in mutual circular orbit about their center of mass, and in the
x-y plane.

• EXERCISE: Let the particle masses be m1 and m2, respectively, and let the particles be separated
by a distance r. Let the initial position and velocity vectors be

r1(0) = (r1, 0, 0)

r2(0) = (−r2, 0, 0)

v1(0) = (0, v1, 0)

v2(0) = (0,−v2, 0)

where r1, r2, v1 and v2 are all positive quantities, so that the particle separation is given by r = r1+r2.

Show that if

r1 =
m2

m
r

r2 =
m1

m
r

v1 =

√
m2r1

r

v2 =

√
m1r2

r

where m = m1 + m2 is the total mass of the system, then the particles will execute circular orbits
about the center of mass. (Once more, recall that G = 1.)

• NOTE: If you do use this configuration to develop/test your code, I expect that you will include the
verification (or derivation) of the above results in your writeup.

5


