
PHYS 210: Introduction to Computational Physics Octave/MATLAB Exercises 1

1. Problems from Gilat, Ch. 1.10

Open a terminal window, change to directory ∼/octave, and using your text editor, create the file probs1.m that
contains octave commands to perform calculations as enumerated below.

As you type the commands to answer each problem, execute the commands (in the entire file) by typing probs1 at
the octave prompt:

octave:1> probs1

Note: Recall that the output from octave is piped through more as necessary (i.e. if the output will not fit within
your terminal window). The more prompt in this case is a colon at the bottom left edge of the screen: as usual type
’space’ to advance, ’b’ to back up, and ’q’ to quit.

1.2 a) Calculate

23

(

−8 +

√
607

3

)

+

(

40

8
+ 4.72

)2

1.4 a) Calculate

cos

(

5π

6

)

sin2

(

7π

8

)

+
tan

(

π

6
ln 8
)

√
7 + 2

1.6 a) Define the variables x and z as x = 5.3, and z = 7.8, then evaluate:

xz

(x/z)
2

+ 14x2 − 0.8z2

1.10 a) The following is a trignonometric identity:

sin (3x) = 3 sin x − 4 sin3 x

Verify that the identity is correct by calculating each side of the equation, substituting x = 7π/20.

1.16) The distance d from a point (x0, y0) to a line Ax + By + C = 0 is given by:

d =
|Ax0 + By0 + C|√

A2 + B2

Determine the distance of the point (−3, 4) from the line 2x− 7y − 10 = 0. First define the variables A, B, C,
x0 and y0, and then calculate d. (Use the abs and sqrt functions).

1

2. Problems from Gilat, Ch. 2.11

Again, working in your ∼/octave directory, and using your text editor, create the file probs2.m that contains octave
commands to perform calculations as enumerated below.

Once more, as you type the commands to answer each problem, execute the commands (in the entire file) by typing
probs2 at the octave prompt:

octave:1> probs2

2.1 Create a row vector that has the elements 6, 8 · 3, 81, e2.5,
√

65, sin(π/3) and 23.05.

2.2 Create a column vector that has the elements 44, 9, ln(51), 23, 0.1 and 5 tan(25◦).

2.4 Create a column vector in which the first element is 18, the elements decrease with increments of −4, and the
last element is −22. (Recall that a column vector can be created by the transpose of a row vector.)

2.8 Create a vector, name it Afirst, that has 13 elements in which the first is 3, the increment is 4 and the last
element is 51. Then, using the colon symbol, create a new vector, call it Asecond, that has seven elements.
The first four elements are the the first four elements of the vector Afirst, and the last three are the last three
elements of the vector Afirst.

2.9 Create the matrix shown below by using the vector notation for creating vectors with constant spacing and/or
the linspace command when entering the rows.

B =

0 4 8 12 16 20 24 28
69 68 67 66 65 64 63 62
1.4 1.1 0.8 0.5 0.2 −0.1 −0.4 −0.7

2.10 Using the colon symbol, create a 3× 5 matrix (assign to a variable named msame) in which all of the elements
are the number 7.

2.14 Create the following matrix, A:

A =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

Usee the matrix A to:

a) Create a five-element row vector named va that contains the elements of the first row of A.

b) Create a three-element row vector named vb that contains the elements of the third column of A.

c) Create an eight-element row vector names vc that contains the elements of the second row of A and the
fourth column of A.

d) Create a six-element row vector named vd that contains the elements of the first and fifth columns of A.

2.18 Using the zeros, ones and eye commands, create the following arrays:

a)
[

0 0 0 1 1 1
0 0 0 1 1 1

]

b)

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0

c)

1 1
0 0
0 0
1 1

2

3. Writing basic octave functions and scripts

All of the following functions and scripts should be prepared in .m files within your ∼/octave directory.

3a) hello:

Write a octave function as follows and save in a file called hello.m.

function [] = hello()

printf(’Hello world!\n’);

end

Execute the function within octave by typing

octave> hello

and you should see the output

Hello world!

If you don’t see output as above, then ensure that

1. You have typed the definition of hello precisely as given above.

2. You have saved the definition in the file ∼/octave/hello.m and that you are running octave in the directory
∼/octave.

3

3b) threeoutargs:

Create a octave function threeoutargs which has two input arguments, x and y, and which returns three output
arguments which are x + y, x − y and (x + y)/2, respectively. Ensure that you save the definition of your function
as the file threeoutargs.m.

To check your implementation of threeoutargs, create a octave script in the file t threeoutargs.m, with contents
as follows

[a b c] = threeoutargs(1.0, 6.0)

[val1 val2 val3] = threeoutargs(-1.0, pi)

Execute the script as follows

octave> t_threeoutargs

and ensure that you get the output

a = 7

b = -5

c = 3.5000

val1 = 2.1416

val2 = -4.1416

val3 = 1.0708

4

3c) sintaylor (may be challenging!):

The Taylor series expansion for sinx is given by

sin x =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1 = x − x3

3!
+

x5

5!
− · · ·

Create a octave function sintaylor with a header as follows

function res = sintaylor(x,nmax,epsi)

and which computes an approximation of sin(x) using the following truncated version of the series

sinx =

nmax
∑

n=0

(−1)n

(2n + 1)!
x2n+1

sintaylor should return as soon as either one of the conditions have been met

• All of the terms in the truncated series have been evaluated.

• An individual term in the series has an absolute value that is ≤ epsi (but include that term in the sum)

Save your code in the file sintaylor.m

Hint: Recall that you can use the break statement to exit a for or while loop immediately.

Write a test script t sintaylor in the file t sintaylor.m with the contents

format long

epsi = 1.0e-12

for x = [0.1 0.5]

x

exact = sin(x)

for nmax = 1:10

nmax

approx = sintaylor(x,nmax,epsi)

end

end

Execute the script using

octave> t_sintaylor

and verify that you get output as follows

epsi = 1.00000000000000e-12

x = 0.100000000000000

exact = 0.0998334166468282

nmax = 1

approx = 0.0998333333333333

nmax = 2

approx = 0.0998334166666667

nmax = 3

approx = 0.0998334166468254

nmax = 4

5

approx = 0.0998334166468282

nmax = 5

approx = 0.0998334166468282

nmax = 6

approx = 0.0998334166468282

nmax = 7

approx = 0.0998334166468282

nmax = 8

approx = 0.0998334166468282

nmax = 9

approx = 0.0998334166468282

nmax = 10

approx = 0.0998334166468282

x = 0.500000000000000

exact = 0.479425538604203

nmax = 1

approx = 0.479166666666667

nmax = 2

approx = 0.479427083333333

nmax = 3

approx = 0.479425533234127

nmax = 4

approx = 0.479425538616416

nmax = 5

approx = 0.479425538604183

nmax = 6

approx = 0.479425538604203

nmax = 7

approx = 0.479425538604203

nmax = 8

approx = 0.479425538604203

nmax = 9

approx = 0.479425538604203

nmax = 10

approx = 0.479425538604203

6

