
OVERVIEW OF PROGRAMMING

PHYSICS 210 – Fall 2009

Tuesday, September 22

Programming Paradigms

• Procedural / Imperative (our primary focus in this course)

– Programmer specifies sequence of steps needed to complete

task

– Two key components: Data (Structures) & Algorithms

– Also typically involves decomposition of large program into

smaller modules (procedures, functions)

– Examples: C, Pascal, MATLAB, Fortran, …

• Functional (our secondary focus)

– Treats programming as evaluation of mathematical functions

– Role of data structures downplayed, functions should have no

“side effects”; e.g. shouldn’t change data per se

– Examples: LISP, Scheme, Haskell, …

– Will see some elements of functional programming in Maple,

MATLAB

Programming Paradigms (cont.)

• Object-Oriented (will not use in class / homework, but you can

use it in your term project)

– Uses “objects” which combine data (datafields) and

algorithms/procedures/functions (methods) which operate on the

datafields

– Relative to procedural & functional programming, focus is more

on the data itself, rather than the processes with manipulate the

data

– Has become a very popular mode of programming since the

1990’s, particularly for large projects involving many

programmers

– Examples: C++, Java, Smalltalk, and many others that have

support for objects (Python, Perl, …)

– Arguably less intuitive that procedural programming, and can be

“overkill” for many task in scientific computing

Basic Constructs for Procedural Programs

• Given the notion of a statement in a programming language, which

we will take as an elementary operation (such as assignment of a

value to a variable, or a call to a sub-program / function …), there are

essentially only 3 fundamental constructs that a procedural

programming language need supply (note, in bash a statement is

typically a command).

1. Sequence

2. Selection

3. Iteration

Sequence

• Ability to execute an arbitrary

number of statements, in the

order in which they occur in

the code

• Straightforward in all

procedural languages

• bash example

command 1

command 2

command 3

.

.

.

Statement 1

Statement 2

Statement 3

Selection

• Ability to evaluate logical (i.e.

true/false / binary / boolean)

expressions, and then follow

one of two branches of code

that eventually merge into a

single branch

• bash example:

if logical-expr ; then

commands 1

else

commands 2

fi

Statement

Sequence 2

Statement

Sequence 1

Logical

Expression

TrueFalse

Iteration

• Ability to repeatedly execute

some arbitrary statement

sequence (looping):

1. With some loop

parameter ranging over

specified values

2. While some logical

expression remains true

3. Until some logical

expression becomes true

• bash example (type 1)

for loopvar in values ; do

commands

done

Statement

Sequence

Time to

Exit Loop?

True

False

Case Statement

• Can always be implemented using sufficiently general if statement

(such as that in bash), but often provided in language for

convenience

• Essentially a multi-valued (i.e. non- true/false / binary / boolean)

decision statement

• bash example

case word in

pattern 1) commands 1 ;;

pattern 2) commands 2 ;;

pattern 3) commands 3 ;;

.

.

.

esac

Golden Rules of Programming

1. DESIGN IS IMPORTANT!

– Think carefully about what you need to do, and how you are

going to do it, before you start programming (“coding”)

– Resist the urge to “make it up as you go along” while sitting in

front of the computer (except for very simple programs, or if you

need to experiment)

2. IMPLEMENT INCREMENTALLY

– If possible, adopt a top-down approach, get “skeleton” of

program working, then add to it gradually

– Avoid temptation to write large blocks of code in one go, and

then debug

– Difficulty in debugging tends not to be linear in the number of

bugs (i.e. more than twice as hard to find and fix two bugs than

to find and fix one, etc.)

Golden Rules of Programming

3. MODULARIZE LARGE CODES

– When a code gets lengthy (more than a 100 lines or so), try to

decompose into a set of sub-programs (routines, functions,

procedures), each of which can be tested individually

– Try to identify commonality in sections of code, or important

basic operations that are used repeatedly on your data

(structures) and implement them as functions/procedures …

4. ERROR CHECKING & (EXHAUSTIVE) TESTING ARE VITAL

– Ensure that program does the correct thing with (all) valid input

– Ensure that program handles invalid input gracefully, e.g. exit

with an appropriate error message

• Worst possible situation: invalid input not detected, and

program proceeds to compute something (GIGO principle –

“garbage in, garbage out”)

Golden Rules of Programming

5. LEARN HOW TO DEBUG EFFECTIVELY

– Debugging is a rather unique type of mental activity

• First and foremost, you must accept that you have made a

mistake; especially for novices it is natural/easy to assume

that “the computer” is at fault, but 99.999…% of the time, the

fault will be yours!

– Look at the values of your data as the program proceeds, i.e. by

outputting the data to the terminal (or files if it will be convenient,

e.g., to plot the data) at key points in the code – i.e. use tracing

statements

– Put the tracing statements into your code as you write it; this

adds a little more time to the coding, but, counter-intuitively,

tends to save time in the end

– Code tracing statements so that they can be enabled and

disabled easily (i.e. without; removing / re-inserting /

commenting-out the statements); e.g. put the tracing statements

within if debug-on then tracing-statements end if constructs

–

Golden Rules of Programming

6. DOCUMENT YOUR CODE

– Add comments to your code, but don’t go overboard!

– Do not add comments which explain what one or two lines are

doing, unless the code is tricky; document blocks of code

– Do document purposes of main program and sub-programs

(functions, procedures …) including

• inputs

• outputs

• main data (structures) used

