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Abstract

A finite cellular automaton model of forest fires is designed in
python and its behaviour is analyzed. Two seperate models are cre-
ated to analyzc the cffects that the initial distribution of trees has
on the spread of a forest fire, and the evolution of the system due to
a probability that a tree will ignite spontaneously and a probability
that a new tree will grow. The former model is shown to produce a
critical density over which fires spread very easily. The latter model is
shown to determine that there is a correlation between the ratio of the
probabilities of spontaneous combustion to spontaneous growth and
the evolution of the system. Upon further analysis of the lightning-
strike model, we find a set of initial probabilities for which the system

is close to being critically self-organizing.



1 Overview

1.1 Introduction

A finite cellular automaton model of firest fires was designed and developed
in python for the testing described in this report. In this report two models
will be described. The density model takes an initial density probability Pp
and, begins with all trees on the leftmost side of the forest burned. The

system then evolves until the fire stops.

Figure 1: Visualization of Density Model with the Pygame Library

The lightning-strike model takes the probability of a tree spontaneously
burning Ps and the probability that an empty cell will grow a new tree Pg.
The initial probability density Pp is arbitrary in this model as over time, the
only factors in the system’s behaviour are Ps and Pg. Moreover, it is shown

that there is a correlation with the behaviour of the ratio of Ps to Pg.



Figure 2: Visualization of Lightning-Strike Model with the Pygame Library

1.2 Mathematical Formulation

We start with an M x A/ dimensional lattice where each cell has both a
state and an address. A cell state S; ;) € {Empty, Tree, Burning} is one
of Empty, Tree, or Burning. A cell address is a set of integer coordinates
(i,7) such that i = 1,2,...,M and j = 1,2,..., M. We then define the state
of each cell at iteration n to be S&j) € {Empty, Tree, Burning}. Each cell
has a neighbourhood N7} ;) C {Sfi_1 ), St j—1)» Sty Sti,g+1)} consisting of
the cells directly above, below to the right, or to the left of it. A cell can
only be added to a neighbourhood if it is burning, and it must exist within
the lattice.

We then define a transition function f : SG ;) X Sy ;) = 58";)1 that will
determine the next state of the cell at address (i,j). This transition func-
tion is dependent on pseudorandom numbers generated by python’s random
module and the respective probabilities that each model depends on. The

details of this transition function is provided in the numerical approach of

each model.



1.3 Techniques and Algorithms

The finite cellular automaton makes use of python’s built-in list data struc-
ture. We make use of multidimensional lists to create a model of a square
grid. The grid is defined as a python class, and one instance of a grid is
created in the program. A cell class is then defined that contains cell-specific
information such as state and address. Cells are instantiated when a grid is
created, and there are exactly CELLx x CELLy cells to fill up the grid. We
then make use of a main class that will take all the parameters we change at
the top of the program and run the loop.

While the original plan was to use numpy arrays to create the grid and
unsigned integers to represent states, I was unable to provide a working
implementation using these data structures. Instead I used the much slower
approach of iterating over each cell in the grid. The main class has an update
method that iterates over all the cells in the grid and performs a cell method
on each cell depending on its state. It then updates the cell states. There
is also a write state method that records the densities at each iteration. All
these operations are run in the main method of the main class, which stops
when either we have gone through our specified number of iterations nsteps,
or when we want to terminate it prematurely, we set the class variable in
main terminate to True. A the end of the program a plot is made and saved

to the same directory that forestfire.py is in.



1.4 Discussion of Computations

The computations done differed depending on the model being analyzed. For
the density model, we modified the control parameter Pp, the initial density
of the distribution of trees. Multiple simulations were run using the same
value of Pp and the results were averaged. This was necessary since these
numbers are inherently random, so there is no "correct” value.

For the lightning-strike model, we focused on analyzing the trends of the
system over long periods of time after setting the control parameters Ps and
P;. The intent was to find what set of parameters threw the system into

non-constant behaviour.

2 The Density Model

2.1 Numerical Approach

Consider the transition function previously defined by f : 57 ; x Sy —
SZJ;)I In the density model, f is defined by the following cases (where rand €

R,0 < rand < 1, rand is uniformly distributed):
o If St ;) = Empty then Si%) = Empty
o If S{, ;y = Tree then for each Sy; ) = Burning:

— If rand < Py then SELI“LJI) = Burning, else no change

o If Sf; ;) = Burning then SZ;J;; = Empty
Note that Py = 1 always in this particular analysis of the finite cellular

automaton.



2.2  Analysis

The overall time that the fire spread was measured for Pp with increments of
0.1. Each result was averaged over 10 simulations and rounded to the nearest
integer as a precautionary measure towards anomalous data. The simulation

was run with a lattice dimension of 150 x 150.

Pp 01]02103{04|0.5(|0.6

n iterations | 4 8 11 |17 | 34 | 357

Table 1: Averaged n iterations took for fire to stop spreading at different Pp

We notice that the fire starts to spread somewhere between Pp = 0.5 and
Pp = 0.6. The same procedure is then used for increments in Pp of 0.01

between these two values.

Pp 0.51 | 0.52 { 0.53 | 0.54 | 0.55 | 0.56 | 0.57 | 0.58 | 0.59

n iterations | 43 | 50 53 |92 71 112 | 137 | 148 | 296

Table 2: Averaged n iterations took for fire to stop spreading at different Pp
between 0.5 and 0.6

It is evident that for densities of Pp > 0.58 that the fire begins to spread
for much longer. So we have found that there does indeed exists a critical
density at which the fire will spread over a large area of forest. This can
be seen in the following plots of 2 discrete simulations at Pp = 0.58 and

Pp =0.59.
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Figure 3: Comparison in the fire spread at Pp = 0.58 and Pp = 0.59

We see that for Pp = 0.58 we have that the change in Pp, APp =~ 0.1
while for Pp = 0.59, APp = 3.5 over roughly twice as many iterations. We
then conclude that for a forest emulating this nature, if its tree density Pp
is greater than the critical density 0.58 then if a fire were to start, it will
spread much more than for Pp < 0.58 (if we consider only increments in Pp
of 0.01). It would then be beneficial to consider that logging companies not
let the densities of the forests they are harvesting increase to over 0.58 as
a precautionary measure so that fires will not spread so easily, thus safely

maximizing the amount of trees per unit area.

3 The Lightning-Strike Model

3.1 Numerical Approach

Consider the transition function previously defined by f : SZ;Y].) X le(i,j) —
SE;J;)I In the lightning-strike model, f is defined by the following cases (where

rand € R,0 < rand < 1, rand is uniformly distributed):



e If Sf; ;) = Empty then:
— If rand < Pg then S(’:t)l = T'ree, else no change

o If 53 jy = Tree then for each S}, ;, = Burning:

~ If rand < Ps then S(’:J;)l = Burning, else:

* If rand < Py then S(T;)l = Burning, else no change

o If 5(; ; = Burning then S(’z*;)l = Empty

Note that Py = 1 always in this particular analysis of the finite cellular

automaton.

3.2 Analysis

First the tendencies of the systems were measured over long period of time
(over 5000 iterations) so that we can be sure that system is indeed converging
into a certain trend. First the case where Pg = Py was examined with the

following values:
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Figure 4: System tendency at Ps = Pg = 0.001,0.01
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Figure 5: System tendency at Pg = Pz = 0.1,0.5

We can conclude that we know the system converges to a preferred state
when Ps = Pg. We have also found that if the amount of trees burning is
negligable, then the density of cells in the Tree state becomes roughly 0.2
whilst the density of cells in the Empty state becomes 0.8. As Ps and FPg
are increased, then the amount of trees burning at a single time is increased,
and the amount of noise in the converging density values increases. So rather
than converging to a single discrete value, we get that densities of states have

a range of values at which they converge to. This behaviour is demonstrated
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in the above figures. It is notable, however, that for the forest to be burning
at a significant percentage all the time is unrealistic, and thus such results
are hypothetical in nature. We then explore ratios of Ps to P at different
orders of magnitude over long periods of time (5000 iterations). The following

plots were produced:
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Figure 6: System tendency at Ps0.001, P = 0.1 and Ps = 0.01, Pz = 0.1
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Figure 7: System tendency at Ps = 0.1, Pz = 0.01 and Pg = 0.1, P; = 0.001

It is observed that for B¢ > Py the system is less dynamic than for




Since we are looking for a self-organizing critical state, we will focus on the
case where Pz > Pg. In particular, we are looking for the values which do
not seem to converge to a single point, such as the ones above. We begin by

decreasing the scale of Ps and Pg by 2 orders of magnitude.
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Figure 8: System tendency at Ps = 0.00001, P¢ = 0.001

Now despite the fact that fluctuations are decreasing over time, we are
much closer to a self of self-organization. The densities fluctuate in a very
unpredictable manner. We will now look to increase and decrease the ratio
of Pg/Ps to find a critical attractor. The simulation was run with Pg =

0.00001, Pz = 0.005 and Ps = 0.00001, Pz = 0.0005.
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Figure 9: Tendency of simulation at Ps = 0.00001, Pz = 0.005 and Pg =
0.00001, P = 0.0005

While the densities at Ps = 0.00001 and Pg = 0.0005 do not seem to be
converging to something measureable, the fluctuations are much more tame
than those of the densities at Ps = 0.00001 and Py = 0.005. Notice that
on the left figure in Figure 9 that at iteration n ~ 1600 the fluctuations
wane, then wax again. This is a strong indicator that the preferred state of
the system is an evolving one. We can then run the same simulation over a

significant amount of iterations to see this trend developed further.
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conclude that a ratio Ps/Pg in the order of magnitude of 10? (in particular
Ps/Pg = 500) will result in non-constant densities as the forest transitions
from a desert (a forest with few trees) to an overpopulated forest, and then

back to a desert repeatedly, never stopping at a stable middle ground.

4 Summary

4.1 Findings

In the density model it was determined that there is a critical density of
initial tree distribution Pp = 0.58. if Pp > 0.58 then fires are far more likely

to be able to spread across a forest.

In the lightning-strike model it was found that there is a self-organizing crit-
ical state at Pg/Ps in the order of magnitude of 10>. We found specifically

that a ratio of Pg/Ps = 500 will result in a contantly evolving forest.

4.2 Limitations

It is not difficult to see why these models are not accurate representations of
forests. If this experiment were to be extended to more accurately represent
reality, then we would have to modify the transition function to include
weather and geological conditions, among other extranneous circumstances.
This is one of the reasons why this simulation is not feasible, since it is not
the case that if one tree is on fire then a nearby tree must ignite.

Another limitation to the analyzed models is that they assume square
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tions

We see that there is no indication that densities will converge. Then if
the attractor of the system being a critical state is a property of the ratio
Pg/Ps then it should be the case that if we divide both Pz and Ps by 10,

and by 100, that we still see the same type of attractor.
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Figure 11: System tendency at Ps = 0.000001, Pz = 0.0005 and Ps =
0.0000001, Pz = 0.00005 over 50000 iterations

So while this may not be a rigorous proof, this is evidence to suggest that

it is indeed the ratio of Ps/Pg that determines the attractor state. We then
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