The following initial instructions only apply if you do not already have a matlab session running from within the directory $\sim /$ matlab

Initial instructions: Open a terminal window, change to the directory $\sim /$ matlab that we previously created, and start matlab in that directory (and in the background). Specifically, execute the following (bash) command sequence
\% cd
\% cd matlab
\% matlab \&
If, for whatever reason, $\sim /$ matlab does not exist, create it with the following commands

```
% cd
% mkdir matlab
```

then execute the first set of commands.

Using your text editor, and again working within $\sim /$ matlab, create a file named ex1.m that contains Matlab commands to perform calculations as enumerated below. Note that ex1.m will be a Matlab script.

IMPORTANT! Be sure that you create/save ex1.m in the directory $\sim /$ matlab.
As you enter commands in ex1.m to answer each problem, save the file, then execute the commands (in the entire file) by typing ex1 at the matlab prompt:

```
>> ex1
```

Correct syntax errors and other gaffes that you detect as you go along, being sure to re-save ex1.m whenever you make a change.

If the above procedure doesn't seem to be working for you, ask for help. In particular, if you see the following error message

```
>> ex1
Undefined function or variable 'ex1'.
```

then it is probable that one or more of the following is true:

- You didn't start matlab from the command line, and from within the directory $\sim /$ matlab
- You didn't name the file that contains the matlab commands ex1.m
- You didn't save ex1.m in the directory $\sim /$ matlab.

Here we go ...

1. Problems from Gilat, Ch. 1.10

1.2a) Calculate

$$
23\left(-8+\frac{\sqrt{607}}{3}\right)+\left(\frac{40}{8}+4.7^{2}\right)^{2}
$$

assigning the value to the variable res2a
1.4a) Calculate

$$
\cos \left(\frac{5 \pi}{6}\right) \sin ^{2}\left(\frac{7 \pi}{8}\right)+\frac{\tan \left(\frac{\pi}{6} \ln 8\right)}{\sqrt{7}+2}
$$

assigning the value to the variable res 4 a
1.6a) Define the variables x and z as $x=5.3$, and $z=7.8$, then evaluate:

$$
\frac{x z}{(x / z)^{2}}+14 x^{2}-0.8 z^{2}
$$

assigning the value to the variable res6a
1.16) The distance d from a point $\left(x_{0}, y_{0}\right)$ to a line $A x+B y+C=0$ is given by:

$$
d=\frac{\left|A x_{0}+B y_{0}+C\right|}{\sqrt{A^{2}+B^{2}}}
$$

Determine the distance of the point $(-3,4)$ from the line $2 x-7 y-10=0$. First define the variables A, B, C, x_{0} and y_{0}, and then calculate d. (Use the abs and sqrt functions).

2. Problems from Gilat, Ch. 2.11

2.1) Create a row vector named res 21 that has the elements $6,8 \cdot 3,81, e^{2.5}, \sqrt{65}, \sin (\pi / 3)$ and 23.05
2.2) Create a column vector named res 22 that has the elements $44,9, \ln (51), 2^{3}, 0.1$ and $5 \tan \left(25^{\circ}\right)$.
2.9) Create the matrix shown below by using the vector (colon) notation for creating vectors with constant spacing and/or the linspace command when entering the rows.

$$
B=\left[\begin{array}{cccccccc}
0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
69 & 68 & 67 & 66 & 65 & 64 & 63 & 62 \\
1.4 & 1.1 & 0.8 & 0.5 & 0.2 & -0.1 & -0.4 & -0.7
\end{array}\right]
$$

