
PHYS 210: Intro. Computational Physics Fall 2009 October 15 Lab Handout Solutions

1. Problems from Gilat, Ch. 1.10

1.2 a) Calculate

23

(

−8 +

√
607

3

)

+

(

40

8
+ 4.72

)2

INPUT

res2a = 23 * (-8 + sqrt(607)/3) + (40/8 + 4.7^2)^2

res2b = nthroot(509,3) - 4.5^2 + log(200)/1.5 + sqrt(75)

OUTPUT

res2a = 738.75

res2b = -0.073190

1.4 a) Calculate

cos

(

5π

6

)

sin2

(

7π

8

)

+
tan

(

π

6
ln 8
)

√
7 + 2

INPUT

res4a = cos(5*pi/6) * sin(7*pi/8)^2 + tan(pi/6*log(8)) / (sqrt(7) + 2)

res4b = cos(3*pi/5)^2 + tan(pi*log(6)/5) / (8*7/2)

OUTPUT

res4a = 0.28462

res4b = 0.17038

1.6 a) Define the variables x and z as x = 5.3, and z = 7.8, then evaluate:

xz

(x/z)2
+ 14x2 − 0.8z2

INPUT

x = 5.3

z = 7.8

res6a = (x*z) / (x/z)^2 + 14*x^2 - 0.8*z^2

res6b = x^2*z - z^2*x + (x/z)^2 - sqrt(z/x)

OUTPUT

x = 5.3000

z = 7.8000

res6a = 434.13

res6b = -104.10

1

1.10 a) The following is a trignonometric identity:

sin (3x) = 3 sinx − 4 sin3 x

Verify that the identity is correct by calculating each side of the equation, substituting x = 7π/20.

INPUT

x = 7*pi/20

lhsa = sin(3*x)

rhsa = 3*sin(x) - 4*sin(x)^3

res10a = lhsa - rhsa

format long

lhsa

rhsa

format short

OUTPUT

x = 1.0996

lhsa = -0.15643

rhsa = -0.15643

res10a = -4.4409e-16

lhsa = -0.156434465040231

rhsa = -0.156434465040230

1.16) The distance d from a point (x0, y0) to a line Ax + By + C = 0 is given by:

d =
|Ax0 + By0 + C|√

A2 + B2

Determine the distance of the point (−3, 4) from the line 2x− 7y − 10 = 0. First define the variables A, B, C,
x0 and y0, and then calculate d. (Use the abs and sqrt functions).

INPUT

A = 2

B = -7

C = -10

x0 = 3

y0 = -4

d = abs(A*x0 + B*y0 + C) / sqrt(A^2 + B^2)

OUTPUT

A = 2

B = -7

C = -10

x0 = 3

y0 = -4

d = 3.2967

2

2. Problems from Gilat, Ch. 2.11

2.1 Create a row vector that has the elements 6, 8 · 3, 81, e2.5,
√

65, sin(π/3) and 23.05.

INPUT

res1 = [6 8*3 81 exp(2.5) sqrt(65) sin(pi/3) 23.05]

OUTPUT

res1 =

6.00000 24.00000 81.00000 12.18249 8.06226 0.86603 23.05000

2.2 Create a column vector that has the elements 44, 9, ln(51), 23, 0.1 and 5 tan(25◦).

INPUT

res2 = [44; 9; log(51); 2^3; 0.1; 5*tand(25)]

OUTPUT

res2 =

44.00000

9.00000

3.93183

8.00000

0.10000

2.33154

2.4 Create a column vector in which the first element is 18, the elements decrease with increments of −4, and the
last element is −22. (Recall that a column vector can be created by the transpose of a row vector.)

INPUT

res4 = [18:-4:-22]’

OUTPUT

res4 =

18

14

10

6

2

-2

-6

-10

-14

-18

-22

3

2.8 Create a vector, name it Afirst, that has 13 elements in which the first is 3, the increment is 4 and the last
element is 51. Then, using the colon symbol, create a new vector, call it Asecond, that has seven elements.
The first four elements are the the first four elements of the vector Afirst, and the last three are the last three
elements of the vector Afirst.

INPUT

Afirst = 3:4:51

Asecond(1:7) = [Afirst(1:4) Afirst(11:13)]

OUTPUT

Afirst =

3 7 11 15 19 23 27 31 35 39 43 47 51

Asecond =

3 7 11 15 43 47 51

2.9 Create the matrix shown below by using the vector notation for creating vectors with constant spacing and/or
the linspace command when entering the rows.

B =





0 4 8 12 16 20 24 28
69 68 67 66 65 64 63 62
1.4 1.1 0.8 0.5 0.2 −0.1 −0.4 −0.7





INPUT

B = [0:4:28; 69:-1:62; linspace(1.4,-0.7,8)]

OUTPUT

B =

Columns 1 through 7:

0.00000 4.00000 8.00000 12.00000 16.00000 20.00000 24.00000

69.00000 68.00000 67.00000 66.00000 65.00000 64.00000 63.00000

1.40000 1.10000 0.80000 0.50000 0.20000 -0.10000 -0.40000

Column 8:

28.00000

62.00000

-0.70000

4

2.10 Using the colon symbol, create a 3× 5 matrix (assign to a variable named msame) in which all of the elements
are the number 7.

INPUT

msame(1:3, 1:5) = 7

OUTPUT

msame =

7 7 7 7 7

7 7 7 7 7

7 7 7 7 7

2.14 Create the following matrix, A:

A =





1 2 3 4 5
6 7 8 9 10
11 12 13 14 15





INPUT

A = reshape(1:15, 5, 3)’

OUTPUT

A =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Use the matrix A to:

a) Create a five-element row vector named va that contains the elements of the first row of A.

INPUT

va = A(1,:)

OUTPUT

va =

1 2 3 4 5

b) Create a three-element row vector named vb that contains the elements of the third column of A.

INPUT

vb = A(:,3)

OUTPUT

vb =

3

8

13

5

c) Create an eight-element row vector names vc that contains the elements of the second row of A and the
fourth column of A.

INPUT

vc = [A(2,:) A(:,4)’]

OUTPUT

vc =

6 7 8 9 10 4 9 14

d) Create a six-element row vector named vd that contains the elements of the first and fifth columns of A.

INPUT

vd = [A(:,1)’ A(:,5)’]

OUTPUT

vd =

1 6 11 5 10 15

2.18 Using the zeros, ones and eye commands, create the following arrays:

a)
[

0 0 0 1 1 1
0 0 0 1 1 1

]

INPUT

a = [zeros(2,3) ones(2,3)]

OUTPUT

a =

0 0 0 1 1 1

0 0 0 1 1 1

b)








1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0









INPUT

b = [ones(4,1) eye(4) zeros(4,1)]

OUTPUT

b =

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

6

c)








1 1
0 0
0 0
1 1









INPUT

c = [ones(1,2); zeros(2,2); ones(1,2)]

OUTPUT

c =

1 1

0 0

0 0

1 1

7

3. Writing simple octave/MATLAB functions and scripts

3b) threeoutargs:

Create a MATLAB function threeoutargs which has two input arguments, x and y, and which returns three output
arguments which are x + y, x − y and (x + y)/2, respectively. Ensure that you save the definition of your function
as the file threeoutargs.m.

Sample implementation

function [res1 res2 res3] = threeoutargs(x, y)

res1 = x + y;

res2 = x - y;

res3 = (x + y) / 2;

end

3c) sintaylor

The Taylor series expansion for sinx is given by

sinx =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1 = x − x3

3!
+

x5

5!
− · · ·

Create a MATLAB function sintaylor with a header as follows

function res = sintaylor(x, nmax, epsi)

and which computes an approximation of sin(x) using the following truncated version of the series

sin x =

nmax
∑

n=0

(−1)n

(2n + 1)!
x2n+1

sintaylor should return as soon as either one of the conditions have been met

• All of the terms in the truncated series have been evaluated.

• An individual term in the series has an absolute value that is ≤ epsi (but include that term in the sum)

Save your code in the file sintaylor.m

Sample implementation

function res = sintaylor(x, nmax, epsi)

%% sintaylor(x, nmax, epsi)

%%

%% Evaluates Taylor series for sin(x) about x=0 using

%% a maximum of nmax + 1 terms, or until the current

%% term in the expansion has an absolute value <= epsi

%%

res = 0;

for n = 0:nmax

term = ((-1)^n/factorial(2*n + 1)) * x^(2*n + 1);

res = res + term;

if abs(term) <= epsi

break;

end

end

end

8

