Building the series_op Procedure Interactively

First define the series as in Abramowitz & Stegun

Define a set of unknowns (the coeffs. of s3)

```
> unknowns := {c[1],c[2],c[3]}; 
 unknowns := \{c_1, c_2, c_3\}
```

Define a 'shorthand' procedure for converting an expression to a polynomial

```
ho > P := proc(x) convert(x,polynom) end;

P := \mathbf{proc}(x) \operatorname{convert}(x, polynom) \mathbf{end}
```

Define a specific series to re-express

> series_in := 1 / s[1];

$$series_in := \frac{1}{1 + a_1 x + a_2 x^2 + a_3 x^3}$$

Perform a series expansion to high enough order

> series(%, x=0, 4);
$$1 - a_1 x + (-a_2 + a_1^2) x^2 + (-a_3 + a_1 a_2 + (a_2 - a_1^2) a_1) x^3 + O(x^4)$$

Convert the power series to a polynomial

Subtract the converted series and s[3] (equivalent to equating the series)

> s[3] - p1;

$$c_1 x + c_2 x^2 + c_3 x^3 + a_1 x - (-a_2 + a_1^2) x^2$$

 $-(-a_3 + a_1 a_2 + (a_2 - a_1^2) a_1) x^3$

Extract the coefficients with respect to x

Covert the coefficient sequence to a set. Order by order, the coefficients must vanish, and Maple assumes "= 0" is there is no "=" in an equation

Solve the set of equations for c[1], c[2], c[3]

Now read the series_op procedure from a plain-text file, and display the procedure definition.

```
| > read series4;
| > op(series_op);
| proc(series_in::anything)
| solve({coeffs(P(s[3]) - P(series(series_in, x = 0, 5)), x)},
| unknowns)
| end
```

series_op returns a SET of equations which define the coefficients c[1], c[2], ... etc. in terms of the a[i] and b[i]. To extract the value of a specific coefficient, use the subs command.

Here's an example showing how to extract the coefficient c[4] for the case s[3] := 1 / s[1]

```
> s[1] := 1 + a[1]*x + a[2]*x^2 + a[3]*x^3 + a[4]*x^4; 

s_1 := 1 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4

> subs( series_op( 1 / s[1]), c[4]); 

-a_4 + 2 a_1 a_3 + a_2^2 - 3 a_2 a_1^2 + a_1^4
```