Outer boundary conditions in General Relativity

Banff International Research Station, 18 April 2005

Olivier Sarbach

Collaborators: M. Tiglio, O. Reula

Outline

- Introduction
- Formulation
- Constraint-preserving boundary conditions
- Determinant condition
- Numerical results
- A related toy model problem in ED

Introduction

Solve Einstein's equations in a domain with timelike boundaries.

Boundary conditions should
(i) be compatible with the constraints (constraint-preserving)
(ii) be physically reasonable (e.g. minimize reflections)
(iii) yield a well posed initial-boundary value formulation

Introduction

- A well posed initial-boundary value formulation was given by in terms of a tetrad-based Einstein-Bianchi formulation.
- Numerical implementation for related formulation is underway
- Less is known for metric-based formulations (although recent progress by Cornell-Caltech group and S \& Tiglio).
- Relevant for: Outer/interface boundary conditions; constraint projection, elliptic gauge conditions,...

Formulation

Evolution equations can be cast into first order quasilinear form:

$$
\begin{aligned}
£_{n} \alpha & =-\alpha K, \\
£_{n} g_{i j} & =-2 K_{i j}, \\
£_{n} K_{i j} & =\frac{1}{2} g^{a b}\left(-\partial_{a} d_{b i j}+2 \partial_{(i} d_{|a b| j)}-\partial_{(i} d_{j) a b}-2 \partial_{(i} A_{j)}\right)+\gamma g_{i j} H+\mathrm{I.C} \\
£_{n} d_{k i j} & =-2 \partial_{k} K_{i j}+\eta g_{k(i} M_{j)}+\chi g_{i j} M_{k}+\mathrm{I} . \mathrm{o} . \\
£_{n} A_{i} & =-K A_{i}-g^{a b} \partial_{i} K_{a b}+\xi M_{i}+\text { I.o. } .
\end{aligned}
$$

with some parameters $\gamma, \eta, \chi \xi$.
Constraints: $H=0, M_{j}=0$ (Hamiltonian and momentum), $d_{k i j}=\partial_{k} g_{i j}, A_{i}=\partial_{i} \alpha / \alpha$.

Formulation

Main evolution system has the form

$$
\partial_{t} u=P^{i}(u) \partial_{i} u+F(u),
$$

where $u=\left(\alpha, g_{i j}, K_{i j}, d_{k i j}, A_{k}\right)$.
The constraint variables $v=\left(H, M_{j}, d_{k i j}-\partial_{k} g_{i j}, A_{i}-\partial_{i} \alpha / \alpha, \ldots\right)$ satisfy the constraint propagation system

$$
\partial_{t} v=Q^{i}(u) \partial_{i} v+B[u] v,
$$

Provided that the parameters $\gamma, \eta, \chi \xi$ satisfy suitable inequalities, these two systems can be brought into strongly hyperbolic form. So in the absence of boundaries we have a well posed formulation.

Formulation

Main evolution system has the form

$$
\partial_{t} u=P^{i}(u) \partial_{i} u+F(u),
$$

where $u=\left(\alpha, g_{i j}, K_{i j}, d_{k i j}, A_{k}\right)$.
The constraint variables $v=\left(H, M_{j}, d_{k i j}-\partial_{k} g_{i j}, A_{i}-\partial_{i} \alpha / \alpha, \ldots\right)$ satisfy the constraint propagation system

$$
\partial_{t} v=Q^{i}(u) \partial_{i} v+B[u] v,
$$

Provided that the parameters $\gamma, \eta, \chi \xi$ satisfy suitable inequalities, these two systems can be brought into strongly hyperbolic form. So in the absence of boundaries we have a well posed formulation.
$\partial_{t} u=P^{i}(u) \partial_{i} u+F(u)$ is called strongly hyperbolic if there exists $K>0$ and a symmetric matrix-valued function $H(u, n)$ which is smooth in u and n such that $K^{-1} \leq H(u, n) \leq K$ and $H(u, n) P^{i}(u) n_{i}$ is symmetric for all $n \in S^{2}$ and all u.

Constraint-preserving b.c.

Solve equations on domain Ω with (smooth) boundary $\partial \Omega$.

- Start with the constraint propagation system,

$$
\partial_{t} v=Q^{i}(u) \partial_{i} v+B[u] v .
$$

Constraint-preserving b.c.

Solve equations on domain Ω with (smooth) boundary $\partial \Omega$.

- Start with the constraint propagation system,

$$
\partial_{t} v=Q^{i}(u) \partial_{i} v+B[u] v .
$$

- Require this system to be symmetric hyperbolic, i.e. the symmetrizer $H(u)=H(u, n)$ is independent of n.

Constraint-preserving b.c.

Solve equations on domain Ω with (smooth) boundary $\partial \Omega$.

- Start with the constraint propagation system,

$$
\partial_{t} v=Q^{i}(u) \partial_{i} v+B[u] v
$$

- Require this system to be symmetric hyperbolic, i.e. the symmetrizer $H(u)=H(u, n)$ is independent of n.
- Specify maximal dissipative boundary conditions:

$$
\begin{aligned}
& E(t) \equiv \int_{\Omega} v^{T} H v d^{3} x, \quad \frac{d}{d t} E(t) \leq \int_{\partial \Omega} v^{T} H Q(n) v d S+\frac{1}{\tau} E(t) . \\
& v^{T} H Q(n) v=v_{i n}^{T} \Lambda_{+} v_{\text {in }}-v_{o u t}^{T} \Lambda_{-} v_{o u t} \text {. Set } v_{\text {in }}=0(3 \mathrm{~b} . \mathrm{c} .) \text {. } \\
& \text { In this case we have an energy estimate } E(t) \leq e^{t / \tau} E(0) \text {. } \\
& \text { In particular, this implies that } v(t)=0 \text { if } v(0)=0 \text {. }
\end{aligned}
$$

Constraint-preserving b.c.

- Go back to main evolution system, $\partial_{t} u=P^{i}(u) \partial_{i} u+F(u)$.

Constraint-preserving b.c.

- Go back to main evolution system, $\partial_{t} u=P^{i}(u) \partial_{i} u+F(u)$.
- Boundary matrix $H(u, n) P^{i}(u) n_{i}$ has six positive eigenvalues; for high-frequency plane waves propagating towards the boundary: three constraint-violating modes; fields $u_{i n}^{(\text {cons })}$
two physical modes; fields $u_{i n}^{(p h y s)}$
one gauge mode; fields $u_{i n}^{(\text {gauge })}$

Constraint-preserving b.c.

- Go back to main evolution system, $\partial_{t} u=P^{i}(u) \partial_{i} u+F(u)$.
- Boundary matrix $H(u, n) P^{i}(u) n_{i}$ has six positive eigenvalues; for high-frequency plane waves propagating towards the boundary: three constraint-violating modes; fields $u_{i n}^{(\text {cons })}$
two physical modes; fields $u_{i n}^{\text {(phys) }}$
one gauge mode; fields $u_{i n}^{\text {(gauge) }}$
- Notice: $u_{i n}^{(\text {cons })} \neq v_{i n}$! Rather, the three conditions $v_{i n}=0$ yield a differential boundary condition for $u_{i n}^{(\text {cons })}$ at the boundary: $\partial_{t} u_{i n}^{(\text {cons })}=\ldots$

Constraint-preserving b.c.

- Go back to main evolution system, $\partial_{t} u=P^{i}(u) \partial_{i} u+F(u)$.
- Boundary matrix $H(u, n) P^{i}(u) n_{i}$ has six positive eigenvalues; for high-frequency plane waves propagating towards the boundary: three constraint-violating modes; fields $u_{i n}^{(\text {cons })}$
two physical modes; fields $u_{i n}^{(\text {phys })}$
one gauge mode; fields $u_{i n}^{(\text {gauge })}$
- Notice: $u_{i n}^{(\text {cons })} \neq v_{i n}$! Rather, the three conditions $v_{i n}=0$ yield a differential boundary condition for $u_{i n}^{(\text {cons })}$ at the boundary: $\partial_{t} u_{i n}^{(\text {cons })}=\ldots$.
- We can set $u_{i n}^{(\text {phys })}=h$, where h is some a priori given boundary data.

Constraint-preserving b.c.

- Go back to main evolution system, $\partial_{t} u=P^{i}(u) \partial_{i} u+F(u)$.
- Boundary matrix $H(u, n) P^{i}(u) n_{i}$ has six positive eigenvalues; for high-frequency plane waves propagating towards the boundary: three constraint-violating modes; fields $u_{i n}^{(\text {cons })}$
two physical modes; fields $u_{i n}^{(\text {phys })}$
one gauge mode; fields $u_{i n}^{(\text {gauge })}$
- Notice: $u_{i n}^{(\text {cons })} \neq v_{i n}$! Rather, the three conditions $v_{i n}=0$ yield a differential boundary condition for $u_{i n}^{(\text {cons })}$ at the boundary: $\partial_{t} u_{i n}^{(\text {cons })}=\ldots$.
- We can set $u_{i n}^{(\text {phys })}=h$, where h is some a priori given boundary data.
- Set $u_{i n}^{(\text {gauge })}=0$.

Constraint-preserving b.c.

A different way of specifying boundary data is through the Weyl scalars Ψ_{0} and Ψ_{4}, constructed from an adapted NP tetrad at the boundary:

$$
\Psi_{0}=c \Psi_{4}^{*}+h .
$$

where $|c|<1$.
Notice:
For linear fluctuations about a Schwarzschild black holes and spherically symmetric outer boundary, Ψ_{0} and Ψ_{4} are gauge-invariant quantities.

Determinant condition

Consider linear hyperbolic system with constant coefficients (high-frequency limit),

$$
\partial_{t} u=\mathcal{A} u, t>0, x>0,
$$

where $\mathcal{A} u \equiv A^{x} \partial_{x} u+A^{y} \partial_{y} u+A^{z} \partial_{z} u$ with differential boundary conditions

$$
M\left(\partial_{x}, \partial_{y}, \partial_{z}\right) u=h(t, y, z) .
$$

Look for solutions of the form $u(t, x, y, z)=e^{s t+i\left(w_{y} y+w_{z} z\right)} f(x)$, where $\operatorname{Re}(s)>0, w_{y}, w_{z}$ real.
Test: If $h=0$ there should be no such solutions. Otherwise the system is ill posed: Because if there is such a solution for some $s, \operatorname{Re}(s)>0$, then there is also a solution u_{α} for $\alpha s, \alpha>0$ and for each fixed t

$$
\left|u_{\alpha}(t, x, y, z)\right| /\left|u_{\alpha}(0, x, y, z)\right|=e^{\alpha \operatorname{Re}(s) t} \rightarrow \infty
$$

(i.e. the operator $s-\mathcal{A}$ is not invertible for all $\operatorname{Re}(s)>0$.)

Determinant condition

Introducing the ansatz $u(t, x, y, z)=e^{s t+i\left(w_{y} y+w_{z} z\right)} f(x)$ into the evolution and boundary equations gives

$$
s f=A^{x} \partial_{x} f+i\left(A^{y} w_{y}+A^{z} w_{z}\right) f, \quad L\left(s, i w_{y}, i w_{z}\right) f=0 .
$$

Solution has the form $f(x)=P e^{M_{-} x^{-}} \sigma_{-}, \operatorname{Re}\left(M_{-}\right)<0$ with $L P \sigma_{-}=0$. Therefore, one has to verify the determinant condition

$$
\operatorname{det}(L P)\left(s, w_{y}, w_{z}\right) \neq 0, \quad \operatorname{Re}(s)>0
$$

One can rule out "candidate" constraint-preserving boundary conditions
Such ill posed solutions can be constraint-violating or gauge modes!

Numerical results

- 3D numerical finite-difference code
- Domain is a cubic box $[-1,1]^{3}$.
- Third order Runge-Kutta time-discretization.
- Second-order accurate finite differencing for spatial operators.
- Some artificial dissipation.

Numerical results

Numerical results

CPBC without Weyl control (determinant condition satisfied)
Random data

Numerical results

CPBC without Weyl control (determinant condition satisfied)
Strong Brill waves

Numerical results

Comparison with non-constraint-preserving boundary conditions

Numerical results

CPBC with Weyl Control (determinant condition satisfied) Random data

A related toy model in ED

Fat Maxwell $\left(A_{i} \leftrightarrow g_{i j}, E_{j} \leftrightarrow K_{i j}, W_{i j} \leftrightarrow d_{k i j}\right)$:

$$
\begin{aligned}
\partial_{t} A_{i} & =E_{i}+\nabla_{i} \phi, \\
\partial_{t} E_{j} & =\nabla^{i}\left(W_{i j}-W_{j i}\right)+\alpha \delta^{i j} C_{k i j}, \\
\partial_{t} W_{i j} & =\nabla_{i} E_{j}+\frac{\beta}{2} \delta_{i j} \rho+\nabla_{i} \nabla_{j} \phi,
\end{aligned}
$$

with the constraints $\rho \equiv \nabla^{k} E_{k}=0, C_{k i j}=\nabla_{k} W_{i j}-\nabla_{i} W_{k j}=0$.
Strongly hyperbolic if $\alpha \beta>0$ (Cauchy problem well posed in L^{2}). If boundaries are present, impose the boundary conditions

$$
\begin{aligned}
\nabla^{k} E_{k}=0 & \text { preserves the constraints } \\
\mathbf{E}_{\| \|}=\left(W_{n \|}-W_{\| n}\right)+h_{\|} & \text {controls normal component of Poynting vecto }
\end{aligned}
$$

A related toy model in ED

Choose the gauge condition $\phi=0$ (temporal gauge \leftrightarrow fixed shift).

- Well posed in $L^{2}\left(u=\left(A_{i}, E_{j}, W_{i j}\right)\right)$?

$$
\|u(t, .)\|_{L^{2}(\Omega)} \leq a e^{b t}\left[\|u(0, .)\|_{L^{2}(\Omega)}+\int_{0}^{t}\|h(s)\|_{L^{2}(\partial \Omega)} d s\right] .
$$

A related toy model in ED

Choose the gauge condition $\phi=0$ (temporal gauge \leftrightarrow fixed shift).

- Well posed in $L^{2}\left(u=\left(A_{i}, E_{j}, W_{i j}\right)\right)$?

$$
\|u(t, .)\|_{L^{2}(\Omega)} \leq a e^{b t}\left[\|u(0, .)\|_{L^{2}(\Omega)}+\int_{0}^{t}\|h(s)\|_{L^{2}(\partial \Omega)} d s\right]
$$

- The system passes the determinant condition for all $\alpha \beta>0$

A related toy model in ED

Choose the gauge condition $\phi=0$ (temporal gauge \leftrightarrow fixed shift).

- Well posed in $L^{2}\left(u=\left(A_{i}, E_{j}, W_{i j}\right)\right)$?

$$
\|u(t, .)\|_{L^{2}(\Omega)} \leq a e^{b t}\left[\|u(0, .)\|_{L^{2}(\Omega)}+\int_{0}^{t}\|h(s)\|_{L^{2}(\partial \Omega)} d s\right]
$$

- The system passes the determinant condition for all $\alpha \beta>0$
- However, consider solutions of the type

$$
A_{i}=t \nabla_{i} f, \quad E_{j}=\nabla_{i} f, \quad W_{i j}=t \nabla_{i} \nabla_{j} f
$$

where f is a smooth, time-independent, harmonic function. Evolution and constraints equations are satisfied. Initial and boundary data only depend on first derivatives of f whereas the solution depends on second derivatives of f.

A related toy model in ED

- This is due to a bad gauge choice at the boundary! (physically one has an electrostatic solution with nontrivial electric charge density at the boundary)
- This motivates the following gauge condition:

$$
\Delta \phi=-\nabla^{k} E_{k}, \quad \text { on boundary: } \partial_{n} \phi=-E_{n} .
$$

Using this gauge condition, one can show that the problem is well posed in a Hilbert space that controls the L^{2} norm of the fields and the constraint variables flux in this space is given by a semigroup.

- Current work with G. Nagy for generalization to Einstein (maximal slicing and minimal strain).

Conclusions

At the end of the day ???
Matching to a characteristic code

Conclusions

At the end of the day ???
Matching to a characteristic code

Conformal field equations

