On constraint preservation in numerical simulations of Yang-Mills equations

Snorre H. Christiansen

CMA, University of Oslo

Joint work with Ragnar Winther.

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Motivation

Maxwell's equations

Lie algebra valued forms

The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations

Lagrangian formalism Discretization Numerics

Divergence preservation

Two analogues Proofs of Gauss law Numerics

Constraint imposition

Saddlepoint formulation Numerics

UNIVERSITETET LOSTO

Mathematics for

Constraint preservation in Yang-Mills equations

S. H. Christiansen

The Lie algebra SU2 Lie algebra functions

Einstein – Yang-Mills

- Discussion IMA "Hot Topics" June 2002: Douglas Arnold, Alan Rendall and Ragnar Winther.
- Level of difficulty of simulating Yang-Mills between Einstein and (linear) Maxwell.
- Flow preserves non-linear differential constraints.
- Transfer knowledge from charge conservation properties of variational finite element discretization of Maxwell to Einstein.

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

fang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Constraint not preserved

covdivergence, step 299 Contour Fill of component 2.

Mathematics for Applications

GID

component 2 0.21836 0.17181 0.12526 0.078706 0.032154 -0.014398 -0.060949 -0.1075 -0.15405 -0.2006

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

The Lie algebra SU2

Maxwell's equations

Evolution equation (vacuum):

$$\partial_t E = \operatorname{curl} H,$$

 $\partial_t H = -\operatorname{curl} E$

Preserved constraints :

$$div E = 0,$$

$$div H = 0.$$

Magnetic potential (temporal gauge):

 $H = \operatorname{curl} A, \qquad (5)$ $E = -\partial_t A. \qquad (6)$

S. H. Christiansen

Motivation

(1)

(2)

(3) (4)

Centre of

Applications

Mathematics for

Maxwell's equations

- Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature
- Yang-Mills equations Lagrangian formalism Discretization Numerics
- Divergence preservation Two analogues Proofs of Gauss law Numerics

Lagrangian formalism

Second order formulation:

$$\partial_t^2 A = -\operatorname{curl}\operatorname{curl} A.$$

Lagrangian (Kinetic - Potential energy):

$$\mathcal{L}(A,\dot{A}) = (1/2) \|\dot{A}\|_{\mathrm{L}^2}^2 - (1/2) \|\operatorname{curl} A\|_{\mathrm{L}^2}^2.$$
(8)

Stationary points for action:

$$\int_0^T \mathcal{L}(A(t), \partial_t A(t)) \mathrm{d}t.$$

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

(7)

(9)

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Constraint imposition Saddlepoint formulation Numerics

□
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

Lie algebras and SU2

► A Lie algebra g with a compatible scalar product:

$$[u, v] + [v, u] = 0, (10)$$

$$[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0, (11)$$

$$([u, v]|w) + (v|[u, w]) = 0. (12)$$

► SU2:

skew-hermitian, trace-free 2×2 complex matrices. Choice of basis ($i \times$ Pauli matrices):

$$\left(\begin{array}{cc}i&0\\0&-i\end{array}\right)\quad \left(\begin{array}{cc}0&1\\-1&0\end{array}\right)\quad \left(\begin{array}{cc}0&i\\i&0\end{array}\right) \quad (13)$$

Orthogonal and we have:

$$[e_0, e_1] = e_0 e_1 - e_1 e_0 = 2e_2.$$
(14)

Constraint preservation in Yang-Mills equations

S. H. Christiansen

The Lie algebra SU2 Lie algebra functions

Lie algebra valued functions

• Functions
$$P : \mathbb{R}^n \to \mathfrak{g}$$
.

Choose *n*-tuple A = (A₁, · · · , A_n) of such functions. "Gauge potential" (↔ Christoffel symbols).

• Differential operators on $P : \mathbb{R}^n \to \mathfrak{g}$:

$$\partial_{i,A}P = \partial_i P + [A_i, P].$$
 (15)

► Compound operators grad_A, curl_A, div_A, i.e. :

$$grad_{A}P = (\partial_{1,A}P, \cdots, \partial_{n,A}P), \quad (16)$$
$$(curl_{A}E)_{ij} = \partial_{i,A}E_{j} - \partial_{j,A}E_{i}, \quad (17)$$
$$div_{A}E = \sum_{i} \partial_{i,A}E_{i}. \quad (18)$$

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

fang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Curvature of gauge potentials

- A gauge potential $A = (A_1, \dots, A_n)$ on \mathbb{R}^n representing a Lie algebra valued one-form.
- Curvature of A is the Lie algebra valued two-form (Cartan's formula):

$$C(A) = \operatorname{curl} A + (1/2)[A, A].$$
 (19)

More explicitely (\leftrightarrow Riemannian curvature tensor):

$$\mathcal{C}(A)_{ij} = \partial_i A_j - \partial_j A_i + [A_i, A_j].$$
(20)

Then.

$$\operatorname{curl}_{A}\operatorname{grad}_{A}P = [\mathcal{C}(A), P], \qquad (21)$$

or more explicitely:

$$(\operatorname{curl}_A \operatorname{grad}_A P)_{ij} = [\mathcal{C}(A)_{ij}, P].$$
 (22)

Constraint preservation in Yang-Mills equations

S. H. Christiansen

The Lie algebra SU2 Lie algebra functions Curvature

Lagrangian, Euler-Lagrange equation

Lagrangian (Kinetic - Potential energy):

$$\mathcal{L}(A,\dot{A}) = (1/2) \|\dot{A}\|_{L^2}^2 - (1/2) \|\mathcal{C}(A)\|_{L^2}^2.$$
 (23)

Stationary points for action:

$$\int_0^T \mathcal{L}(A(t), \partial_t A(t)) \mathrm{d}t.$$
 (24)

Euler-Lagrange equation:

$$\forall A' \quad \langle \partial_t^2 A(t), A' \rangle = - \langle \mathcal{C}(A(t)), \mathcal{D}\mathcal{C}(A(t))A' \rangle. \tag{25}$$

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Cang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Constraint imposition Saddlepoint formulation Numerics

↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓</li

Galerkin space of gauge potentials

- Simplicial mesh. Nédélec's edge elements X_h are most successful for Maxwell's equations.
- \triangleright Y_h scalar continuous piecewise affine functions. Then:

$$\operatorname{grad}: Y_h \to X_h. \tag{26}$$

and in trivial topology (exact sequence property):

$$\forall u \in X_h \text{ curl } u = 0 \Rightarrow \exists v \in Y_h \text{ grad } v = u.$$
 (27)

Lie algebra valued forms can be obtained by:

$$X_h \otimes \mathfrak{g}, \quad Y_h \otimes \mathfrak{g}.$$
 (28)

• An element of $X_h \otimes \mathfrak{g}$ is specified by one element of g for each edge of the mesh.

Constraint preservation in Yang-Mills equations

S. H. Christiansen

The Lie algebra SU2 Lie algebra functions

Discretization

Semidiscretization

• Stationary point $A : \mathbb{R} \to X_h \otimes \mathfrak{g}$ for action:

$$\int_0^T \mathcal{L}(A(t), \partial_t A(t)) \mathrm{d}t.$$
 (29)

• Euler-Lagrange equation (ODE) $\forall A' \in X_h \otimes \mathfrak{g}$:

$$\langle \partial_t^2 A(t), A' \rangle = - \langle \mathcal{C}(A(t)), \mathrm{D}\mathcal{C}(A(t))A' \rangle.$$
 (30)

Using:

$$C(A(t)) = \operatorname{curl} A + (1/2)[A, A],$$
 (31)
 $DC(A(t))A' = \operatorname{curl}_A A'.$ (32)

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Numerical result I

- Component 0 of Gauge potential on sphere: a one-form represented by a vector field.
- Movie

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Numerical result II

- Component 0 of curvature: a two-form represented by a scalar field.
- Movie

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Numerical result III

 Component 2 of Gauge potential. Arizes through non-linear coupling of component 0 and component 1([e₀, e₁] = 2e₂). Approximateley ten times smaller than component 1.

Movie

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Numerical result IV

S. H. Christiansen

Constraint preservation

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Divergence preservation

• div H = 0. Analogue is Bianchi identity:

$$d_{\mathcal{A}}\mathcal{C}(\mathcal{A}) = 0. \tag{33}$$

Not a problem because C(A) represented exactly.
▶ div E = 0. Analogue is Gauss law:

$$\operatorname{div}_A \partial_t A = 0. \tag{34}$$

Big problem.

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Two analogues Proofs of Gauss law Numerics

Variational interpretation

Gauss law obtained by testing with A' = grad_A P at each t:

$$\langle \partial_t^2 A, \operatorname{grad}_A P \rangle = -\langle \mathcal{C}(A), \operatorname{curl}_A \operatorname{grad}_A P \rangle. (35) = -\langle \mathcal{C}(A), [\mathcal{C}(A), P] \rangle = 0. (36)$$

Gives the conserved quantity:

$$\langle \partial_t A, \operatorname{grad}_A P \rangle.$$
 (37)

Weak form of $\operatorname{div}_A \partial_t A = 0$.

▶ Problem: grad_A maps Y_h ⊗ g out of X_h ⊗ g. Maxwell: discrete weak divergence preservation. Yang-Mills: grad_A P is not a valid test function.

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Noether interpretation

Gauge transformations. Given Lie group valued function Q : ℝⁿ → G:

$$A \mapsto QAQ^{-1} - (\operatorname{grad} Q)Q^{-1} \tag{38}$$

Group of tranformations that leave Lagrangian invariant.

By Noether's theorem we obtain the Gauss law.

• Galerkin space $X_h \otimes \mathfrak{g}$ is not invariant.

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

fang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Numerical example A

- Gauss law is violated.
- Component 2 of P such that:

$$orall P' \quad \langle P, P'
angle = \langle \partial_t A, \operatorname{grad}_A P'
angle.$$

Movie

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

(39)

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Numerical example B

- Divergence of ∂_tA is polluted (noise is as big as signal).
- Component 2 of P such that:

$$\forall P' \quad \langle P, P' \rangle = \langle \partial_t A, \operatorname{grad} P' \rangle.$$

Movie

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Constraint imposition Saddlepoint formulation Numerics

(40)

Numerical example C

Mathematics for

Constraint preservation in Yang-Mills equations

S. H. Christiansen

The Lie algebra SU2

Numerics

Saddlepoint

Try to enforce:

$$\langle \partial_t A, \operatorname{grad}_A P \rangle = 0,$$
 (41)

• Reformulate as first order sys (A and $E = -\partial_t A$), incremental form $(\partial_t \langle E, \operatorname{grad}_A P \rangle = 0)$ and Lagrange multipliers. Use cancellation:

$$\langle \partial_t A, [\partial_t A, P] \rangle = 0.$$
 (42)

Gives:

$$\dot{A} = -E, \qquad (43)$$

$$\langle \dot{E}, E' \rangle + \langle E', \operatorname{grad}_{A} P \rangle = \langle \mathcal{C}(A), \operatorname{curl}_{A} E' \rangle, (44)$$

$$\langle \dot{E}, \operatorname{grad}_{A} P' \rangle = 0. \qquad (45)$$

Energy and constraint preserving ODE.

Mothematics for

Constraint preservation in Yang-Mills equations

S. H. Christiansen

- The Lie algebra SU2 Lie algebra functions

Saddlepoint formulation

A Brezzi Inf-Sup condition

- grad $_{\Delta}$ maps $Y_h \otimes \mathfrak{g}$ out of $X_h \otimes \mathfrak{g}$, but not orthogonally, for small sets of A.
- Theorem: (3D problems) For each set \mathfrak{A} of gauge potentials A which is compact in L^3 there is a constant C > 0 and \bar{h} such that for all $h < \bar{h}$, all $A \in \mathfrak{A}$:

$$\inf_{P \in Y_h \otimes \mathfrak{g}} \sup_{A' \in X_h \otimes \mathfrak{g}} \frac{\langle A', \operatorname{grad}_A P \rangle}{\|A'\|_{L^2} \|P\|_{H^1}} \ge 1/C.$$
(46)

- Proof: For A = 0 it is trivial. for fixed $A \in L^3$ $[A, \cdot] : \mathrm{H}^1 \to \mathrm{L}^2$ is compact by Sobolev injection theorems and approximation, finally covering property.
- Interpretation: L³ control of trajectories gives weak divergence control in addition.

Constraint preservation in Yang-Mills equations

S. H. Christiansen

- The Lie algebra SU2 Lie algebra functions

Saddlepoint formulation

Time discretization of constraint

Staggered scheme with saddlepoint:

$$\begin{array}{rcl} \displaystyle \frac{A^{i}-A^{i-1}}{\tau} &=& -E^{i-1/2}, \\ \langle F^{i},E'\rangle + \langle E', \operatorname{grad}_{A^{i}}P^{i}\rangle &=& \langle \mathcal{C}(A^{i}), \operatorname{D}\mathcal{C}(A^{i})E'\rangle, \\ & \langle F^{i}, \operatorname{grad}_{A^{i}}P'\rangle &=& 0, \\ & \displaystyle \frac{E^{i+1/2}-E^{i-1/2}}{\tau} &=& F^{i} \end{array}$$

 Discrete constraint preserving in the following sense: For any solution of above system the following quantities are preserved:

$$\langle \frac{A^{i+1} - A^{i-1}}{2\tau}, \operatorname{grad}_{A^i} P' \rangle.$$
 (47)

Constraint preservation in Yang-Mills equations

S. H. Christiansen

Motivation

Maxwell's equations

Lie algebra valued forms The Lie algebra SU2 Lie algebra functions Curvature

Yang-Mills equations Lagrangian formalism Discretization Numerics

Divergence preservation Two analogues Proofs of Gauss law Numerics

Numerical results

Figure: L^2 norms squared of divergence (plain) and charge (dashed) of E^i .

Mathematics for Applications

Constraint preservation in Yang-Mills equations

S. H. Christiansen

The Lie algebra SU2

Numerics

Div-Curl lemma

- Even though div_A $\partial_t A \neq 0$ we have Galerkin control over $\langle \partial_t A, \operatorname{grad}_A P \rangle$ for large space of functions P (but finite dimensional).
- A div-curl lemma: (SIAM J. Numer. Anal.) Edge elements, no time. Suppose A'_h , A_h are weakly converging in L^2 to A'and A. as $h \rightarrow 0$. Suppose A'_{h} is "Galerkin divergence free" and curl A_{h} is relatively compact in H^{-1} (e.g. bounded in L^2). Then $A'_h \cdot A_h \rightarrow A' \cdot A$ in the sense of distributions:

$$\forall \phi \in C_c^{\infty} \quad \int (A'_h \cdot A_h) \phi \to \int (A' \cdot A) \phi.$$
 (48)

Constraint preservation in Yang-Mills equations

S. H. Christiansen

The Lie algebra SU2

Numerics

