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Einstein – Yang-Mills

I Discussion IMA “Hot Topics” June 2002:
Douglas Arnold, Alan Rendall and Ragnar Winther.

I Level of difficulty of simulating Yang-Mills
between Einstein and (linear) Maxwell.

I Flow preserves non-linear differential constraints.

I Transfer knowledge from charge conservation
properties of variational finite element discretization
of Maxwell to Einstein.
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Maxwell’s equations

I Evolution equation (vacuum):

∂tE = curlH, (1)

∂tH = − curlE . (2)

I Preserved constraints :

div E = 0, (3)

div H = 0. (4)

I Magnetic potential (temporal gauge):

H = curlA, (5)

E = −∂tA. (6)
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Lagrangian formalism

I Second order formulation:

∂2
t A = − curl curl A. (7)

I Lagrangian (Kinetic - Potential energy):

L(A, Ȧ) = (1/2)‖Ȧ‖2
L2 − (1/2)‖ curlA‖2

L2 . (8)

I Stationary points for action:∫ T

0
L(A(t), ∂tA(t))dt. (9)
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Lie algebras and SU2

I A Lie algebra g with a compatible scalar product:

[u, v ] + [v , u] = 0, (10)

[u, [v ,w ]] + [v , [w , u]] + [w , [u, v ]] = 0, (11)

([u, v ]|w) + (v |[u,w ]) = 0. (12)

I SU2:
skew-hermitian, trace-free 2× 2 complex matrices.
Choice of basis (i× Pauli matrices):(

i 0
0 −i

) (
0 1
−1 0

) (
0 i
i 0

)
(13)

Orthogonal and we have:

[e0, e1] = e0e1 − e1e0 = 2e2. (14)
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Lie algebra valued functions

I Functions P : Rn → g.

I Choose n-tuple A = (A1, · · · ,An) of such functions.
“Gauge potential” (↔ Christoffel symbols).

I Differential operators on P : Rn → g:

∂i ,AP = ∂iP + [Ai ,P]. (15)

I Compound operators gradA, curlA, divA, i.e. :

gradA P = (∂1,AP, · · · , ∂n,AP), (16)

(curlA E )ij = ∂i ,AEj − ∂j ,AEi , (17)

divA E =
∑

i

∂i ,AEi . (18)
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Curvature of gauge potentials

I A gauge potential A = (A1, · · · ,An) on Rn

representing a Lie algebra valued one-form.
I Curvature of A is the Lie algebra valued two-form

(Cartan’s formula):

C(A) = curl A + (1/2)[A,A]. (19)

More explicitely (↔ Riemannian curvature tensor):

C(A)ij = ∂iAj − ∂jAi + [Ai ,Aj ]. (20)

I Then:
curlA gradA P = [C(A),P], (21)

or more explicitely:

(curlA gradA P)ij = [C(A)ij ,P]. (22)
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Lagrangian, Euler-Lagrange equation

I Lagrangian (Kinetic - Potential energy):

L(A, Ȧ) = (1/2)‖Ȧ‖2
L2 − (1/2)‖C(A)‖2

L2 . (23)

I Stationary points for action:∫ T

0
L(A(t), ∂tA(t))dt. (24)

I Euler-Lagrange equation:

∀A′ 〈∂2
t A(t),A′〉 = −〈C(A(t)),DC(A(t))A′〉. (25)
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Galerkin space of gauge potentials

I Simplicial mesh. Nédélec’s edge elements Xh are
most successful for Maxwell’s equations.

I Yh scalar continuous piecewise affine functions.
Then:

grad : Yh → Xh. (26)

and in trivial topology (exact sequence property):

∀u ∈ Xh curl u = 0 ⇒ ∃v ∈ Yh grad v = u. (27)

I Lie algebra valued forms can be obtained by:

Xh ⊗ g, Yh ⊗ g. (28)

I An element of Xh ⊗ g is specified by one element of
g for each edge of the mesh.
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Semidiscretization

I Stationary point A : R → Xh ⊗ g for action:∫ T

0
L(A(t), ∂tA(t))dt. (29)

I Euler-Lagrange equation (ODE) ∀A′ ∈ Xh ⊗ g:

〈∂2
t A(t),A′〉 = −〈C(A(t)),DC(A(t))A′〉. (30)

I Using:

C(A(t)) = curlA + (1/2)[A,A], (31)

DC(A(t))A′ = curlA A′. (32)
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Numerical result I

I Component 0 of Gauge potential on sphere:
a one-form represented by a vector field.

I Movie

http://folk.uio.no/snorrec/vector0.mpeg
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Numerical result II

I Component 0 of curvature:
a two-form represented by a scalar field.

I Movie

http://folk.uio.no/snorrec/curvature0.mpeg
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Numerical result III

I Component 2 of Gauge potential.
Arizes through non-linear coupling
of component 0 and component 1([e0, e1] = 2e2).
Approximateley ten times smaller than component 1.

I Movie

http://folk.uio.no/snorrec/vector2.mpeg
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Numerical result IV
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L2, L2 of curl, L2 of bracket, Energy
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Divergence preservation

I div H = 0. Analogue is Bianchi identity:

dAC(A) = 0. (33)

Not a problem because C(A) represented exactly.

I div E = 0. Analogue is Gauss law:

divA ∂tA = 0. (34)

Big problem.
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Variational interpretation

I Gauss law obtained by testing with A′ = gradA P
at each t:

〈∂2
t A, gradA P〉 = −〈C(A), curlA gradA P〉.(35)

= −〈C(A), [C(A),P]〉 = 0.(36)

I Gives the conserved quantity:

〈∂tA, gradA P〉. (37)

Weak form of divA ∂tA = 0.

I Problem: gradA maps Yh ⊗ g out of Xh ⊗ g.
Maxwell: discrete weak divergence preservation.
Yang-Mills: gradA P is not a valid test function.
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Noether interpretation

I Gauge transformations. Given Lie group valued
function Q : Rn → G :

A 7→ QAQ−1 − (gradQ)Q−1 (38)

I Group of tranformations that leave Lagrangian
invariant.
By Noether’s theorem we obtain the Gauss law.

I Galerkin space Xh ⊗ g is not invariant.
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Numerical example A

I Gauss law is violated.

I Component 2 of P such that:

∀P ′ 〈P,P ′〉 = 〈∂tA, gradA P ′〉. (39)

I Movie

http://folk.uio.no/snorrec/covdivergence2.mpeg
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Numerical example B

I Divergence of ∂tA is polluted
(noise is as big as signal).

I Component 2 of P such that:

∀P ′ 〈P,P ′〉 = 〈∂tA, grad P ′〉. (40)

I Movie

http://folk.uio.no/snorrec/divergence2.mpeg
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Numerical example C
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divergence, covariance and difference (all)
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Saddlepoint

I Try to enforce:

〈∂tA, gradA P〉 = 0, (41)

I Reformulate as first order sys (A and E = −∂tA),
incremental form (∂t〈E , gradA P〉 = 0)
and Lagrange multipliers. Use cancellation:

〈∂tA, [∂tA,P]〉 = 0. (42)

Gives:

Ȧ = −E , (43)

〈Ė ,E ′〉+ 〈E ′, gradA P〉 = 〈C(A), curlA E ′〉,(44)

〈Ė , gradA P ′〉 = 0. (45)

I Energy and constraint preserving ODE.
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A Brezzi Inf-Sup condition

I gradA maps Yh ⊗ g out of Xh ⊗ g,
but not orthogonally, for small sets of A.

I Theorem: (3D problems) For each set A of gauge
potentials A which is compact in L3 there is a
constant C > 0 and h̄ such that for all h < h̄, all
A ∈ A:

inf
P∈Yh⊗g

sup
A′∈Xh⊗g

〈A′, gradA P〉
‖A′‖L2‖P‖H1

≥ 1/C . (46)

I Proof: For A = 0 it is trivial, for fixed A ∈ L3

[A, ·] : H1 → L2 is compact by Sobolev injection
theorems and approximation, finally covering
property.

I Interpretation: L3 control of trajectories gives weak
divergence control in addition.
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Time discretization of constraint

I Staggered scheme with saddlepoint:

Ai − Ai−1

τ
= −E i−1/2,

〈F i ,E ′〉+ 〈E ′, gradAi P i 〉 = 〈C(Ai ),DC(Ai )E ′〉,
〈F i , gradAi P ′〉 = 0,

E i+1/2 − E i−1/2

τ
= F i

I Discrete constraint preserving in the following sense:
For any solution of above system the following
quantities are preserved:

〈A
i+1 − Ai−1

2τ
, gradAi P ′〉. (47)
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Numerical results
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Figure: L2 norms squared of divergence (plain) and charge

(dashed) of E i .
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Div-Curl lemma

I Even though divA ∂tA 6= 0 we have Galerkin control
over 〈∂tA, gradA P〉 for large space of functions P
(but finite dimensional).

I A div-curl lemma: (SIAM J. Numer. Anal.)
Edge elements, no time.
Suppose A′h,Ah are weakly converging in L2 to A′

and A, as h → 0.
Suppose A′h is “Galerkin divergence free” and curl Ah

is relatively compact in H−1 (e.g. bounded in L2).
Then A′h · Ah → A′ · A in the sense of distributions:

∀φ ∈ C∞c

∫
(A′h · Ah)φ →

∫
(A′ · A)φ. (48)


	Motivation
	Maxwell's equations
	Lie algebra valued forms
	The Lie algebra SU2
	Lie algebra functions
	Curvature

	Yang-Mills equations
	Lagrangian formalism
	Discretization
	Numerics

	Divergence preservation
	Two analogues
	Proofs of Gauss law
	Numerics

	Constraint imposition
	Saddlepoint formulation
	Numerics


