Null Quasi-Spherical Einstein characteristic code

Robert A. Bartnik (robert.bartnik@sci.monash.edu.au)

Andrew H. Norton (andrew.norton@uts.edu.au)

1

[1] website: http://relativity.ise.canberra.edu.au

[2] Numerical methods for the Einstein equations in NQS coordinates, SIAM J. Sci. Comp. 22 (2000), pp917-950.

The Null Quasi-Spherical ansatz

The NQS coordinates $(z, r, \vartheta, \varphi)$ satisfy:

- The 3-surfaces z = const. are null,
- The 2-surfaces (z, r) = const. are isometric to standard
 2-spheres of radius r,
- The coordinates (ϑ, φ) are standard spherical polars

General NQS metric:

$$ds^2 = -2u \, dz \, (dr + v \, dz) + 2|r\Theta + \overline{\beta} dr + \overline{\gamma} dz|^2$$

where
$$\Theta = \frac{1}{\sqrt{2}} (d\vartheta + i \sin \vartheta \, d\varphi)$$
 and $\beta = \frac{1}{\sqrt{2}} (\beta^1 - i \beta^2)$
 $\gamma = \frac{1}{\sqrt{2}} (\gamma^1 - i \gamma^2).$

NQS tetrad

$$\ell = \frac{\partial}{\partial r} - r^{-1} (\overline{\beta} D_v - \beta D_{\overline{v}}) =: \mathcal{D}_r$$

$$n = u^{-1} \left(\mathcal{D}_z - v \mathcal{D}_r \right)$$

$$m = \frac{1}{\sqrt{2}r} \left(\frac{\partial}{\partial \vartheta} - \frac{\mathrm{i}}{\sin \vartheta} \frac{\partial}{\partial \varphi} \right)$$

The S^2 derivative operator \eth (edth) acts on a spin-s field

$$\eth \eta = \frac{1}{\sqrt{2}} \sin^s \vartheta \left(\frac{\partial}{\partial \vartheta} - \frac{i}{\sin \vartheta} \frac{\partial}{\partial \varphi} \right) \left(\sin^{-s} \vartheta \eta \right),$$

div $\beta = \eth \overline{\beta} + \eth \beta$ is the divergence of a vector field on S^2 , and $r\mathcal{D}_r = r\partial_r - \nabla_\beta = r\partial_r - (\beta \eth + \overline{\beta} \eth),$ $r\mathcal{D}_z = r\partial_z - \nabla_\gamma = r\partial_z - (\gamma \eth + \overline{\gamma} \eth)$ are S^2 -covariant operators. Define the auxiliary variables H, J, K, Q, Q^{\pm} in terms of the metric parameters:

$$H = u^{-1}(2 - \operatorname{div} \beta)$$
$$J = v(2 - \operatorname{div} \beta) + \operatorname{div} \gamma$$
$$K = v \eth \beta - \eth \gamma$$
$$Q = r \mathcal{D}_z \beta - r \mathcal{D}_r \gamma + \gamma$$
$$Q^{\pm} = u^{-1}(Q \pm \eth u)$$

Hypersurface Equations

The Einstein tensor components $G_{\ell\ell}$, $G_{\ell m}$, $G_{\ell n}$ and G_{mm} give equations involving only derivatives tangent to the null hypersurfaces:

$$r\mathcal{D}_r H = \left(\frac{1}{2}\operatorname{div}\beta - \frac{2|\eth\beta|^2 + r^2 G_{\ell\ell}}{2 - \operatorname{div}\beta}\right) H$$

$$r\mathcal{D}_rQ^- = (\eth\bar{\beta} - uH)Q^- + \bar{Q}^-\eth\beta + 2\bar{\eth}\eth\beta + u\eth H - H\eth u + 2r^2G_{\ell m}$$

$$r\mathcal{D}_r J = -(1 - \operatorname{div}\beta)J + u - \frac{1}{2}u|Q^+|^2 - \frac{1}{2}u\operatorname{div}(Q^+) - ur^2 G_{\ell n}$$

$$r\mathcal{D}_r K = \left(\frac{1}{2}\operatorname{div}\beta + \operatorname{i}\operatorname{curl}\beta\right)K - \frac{1}{2}\eth\beta J + \frac{1}{2}u\eth Q^+ + \frac{1}{4}u(Q^+)^2 + \frac{1}{2}ur^2G_{mm}$$

The NQS evolution algorithm

Begin with the primary field β on a null hypersurface $z = z_0$, and progressively solve the hypersurface constraint equations, viewed as radial ODE's for the metric parameters:

- 1. $G_{\ell\ell}$ gives H, and thus $u = (2 \operatorname{div} \beta)/H$
- 2. $G_{\ell m}$ gives Q^- , and thus Q and Q^+
- 3. $G_{\ell n}$ gives J
- 4. G_{mm} gives K
- 5. Solving an elliptic system on S^2 determines γ, v from J, K
- 6. Determine $\frac{\partial \beta}{\partial z}$ from Q, β, γ
- 7. Evolve β to the next null hypersurface

Eliminating v from the definitions of J and K gives an elliptic system for the vector field γ restricted to the 2-sphere (z,r) = const.

$$\partial \gamma + \frac{\partial \beta}{2 - \operatorname{div} \beta} \operatorname{div} \gamma = J \frac{\partial \beta}{2 - \operatorname{div} \beta} - K$$

The right hand side is known from solving the hypersurface constraint equations, so we have an elliptic system for γ . The remaining metric parameter v is then determined, by

$$v = \frac{J - \operatorname{div}\gamma}{2 - \operatorname{div}\beta}$$

The primary field β is evolved using Q:

$$r\frac{\partial\beta}{\partial z} = Q + r\frac{\partial\gamma}{\partial r} + \nabla_{\gamma}\beta - \nabla_{\beta}\gamma - \gamma\,.$$

The Bianchi II (conservation law) identity $F_{ab}^{\ ;b} = 0$ for a symmetric tensor F_{ab} gives equations for the components $F_{m\bar{m}}, F_{nm}, F_{nm}$ (in NP notation with $\kappa = 0$)

 $0 = \operatorname{Re} \rho F_{m\bar{m}},$

 $D_{\ell}(F_{nm}) = (2\rho + \bar{\rho} - 2\bar{\varepsilon}) F_{nm} + \sigma F_{n\bar{m}}$

$$+ D_{\bar{m}}F_{m\bar{m}} + (\bar{\pi} - \tau) F_{m\bar{m}},$$

$$D_{\ell}(F_{nn}) = 2 \operatorname{Re}(\rho - 2\varepsilon) F_{nn} - \operatorname{Re} \mu F_{m\overline{m}}$$

$$+ D_m F_{n\bar{m}} + D_{\bar{m}} F_{nm} + \operatorname{Re}((2\beta + 2\bar{\pi} - \tau) F_{n\bar{m}}).$$

If $\rho \neq 0$ and $F_{nm} = F_{nn} = 0$ on a boundary surface transverse to the null hypersurface, then $F_{m\bar{m}} = F_{nm} = F_{nn} = 0$ everywhere on the null hypersurface. Thus the constraint (subsidiary) equations are propagated by the evolution.

Boundary (Subsidiary) Equations

The Einstein components G_{nn} , G_{nm} yield the evolution $\left(\frac{\partial}{\partial z}\right)$ relations:

$$r \mathcal{D}_z (J/u) = v^2 r \mathcal{D}_r (J/(uv)) + (\frac{1}{2}J - v)J/u$$
$$+ 2u^{-1}|K|^2 - \nabla_{Q^+}v - \Delta v + ur^2 G_{nn}$$

$$r \mathcal{D}_z Q^+ = \left(v r \mathcal{D}_r + J + \eth \bar{\gamma} - v \eth \bar{\beta} \right) Q^+ - K \bar{Q}^+ + 2u^{-1} r \mathcal{D}_r (u \eth v) - (2 + \mathrm{i} \operatorname{curl} \beta) \eth v + 2 \bar{\eth} K + \eth J - 2u^{-1} \eth u J - 2ur^2 G_{nm}$$

These equations constrain the boundary conditions for the fields J/u and Q^+ . At non-boundary points they provide compatibility conditions on the z-derivatives.

Free Boundary Data

- The Hypersurface Equations require boundary data (initial conditions) for H, Q^-, J, K .
- The Boundary Equations constrain the z-evolution of the boundary data for J/u and Q^+ .
- The z-evolution of β is determined everwhere from Q.
- Consequently, the boundary data for u, K are unconstrained (free).
- *u* determines the starting sphere for the "next" null hypersurface, hence *u* represents gauge freedom.
- K describes the outgoing radiation (ingoing shear) and is free geometric data.

Aspects of the Numerical Methods

- 8th order Runge-Kutta for the radial integration of the null hypersurface constraint ODEs, with 256 radial steps, rescaled to reach \mathcal{I}^+ .
- FFT and projection to spin-weighted spherical harmonics used to minimise polar problems and to compute angular derivatives. Resolution is L = 7, 15 or 31.
- Preconditioned conjugate gradient method to solve the elliptic system on S^2 for γ .
- 4th order Runge-Kutta for the time evolution with timestep $\Delta z = 0.05$.

Infalling radial coordinate

Use a radial grid variable $n = 0, ..., n_{\infty} = 256$ and the Schwarzschild radius function

$$r = r(z, n) = 2M\phi^{-1}(\exp(-z/4M)\phi(f(n)/2M)),$$

where $\phi(x) := (x-1)e^x$, $x \ge 0$. Then n = const. defines infalling radial curves.

Compactify \mathcal{I}^+ by $n_{\infty} - n = O(r^{-1/2})$, with

$$f(n) = f_1(\nu)/(1-\nu)^2,$$

where $\nu = n/n_{\infty}$, f_1 monotone on [0, 1].

Numerical convergence tests

Refine code parameters:

- radial resolution $n_{\infty} = 128, 256, 512, 1024$, shows 8-th order accuracy in radial integrations;
- angular resolution L = 7, 15, 31;
- timestep $\Delta z = 0.01, 0.05, 0.1$, shows 4-th order accuracy in timestep;

or vary initial field strength $\beta(z=0)$:

- weak field run_150 , with 1% of the total energy as radiation
- intermediate field run_160 , with 20% radiation
- strong field run_170, with 50% radiation

Figure 3: Convergence of β with increasing radial resolution: weak field solutions with $n_{\infty} = 256, 512$ compared to $n_{\infty} = 1024$. The error decreases by approximately a factor of 2^8 on doubling the radial resolution.

Figure 4: Convergence of β with decreasing time step: weak field solutions for $\Delta z = 0.1, 0.05$, compared against $\Delta z = 0.025$. Where the error is not dominated by the radial discretisation error, the curves show a decrease in error which is consistent with 4th order convergence.

Figure 5: Effect of spectral resolution on constraint quantity $|r^2G_{nn}|_{S^2}$ at times z = 10, 20, 30, 40, for strong (top 4 curves), intermediate (middle 4 curves) and weak (bottom 4 curves) fields.

Accuracy Conclusions

For the data studied (pure l = 2 initial β with Gaussian profile centered at r = 20M), the solutions are

- relatively insensitive to the timestep Δz ;
- improved by increasing n_{∞} ;
- fundamentally limited by the spectral resolution: L = 15corresponds to solving the L = 10-truncated Einstein equations.

Geometric consistency tests

- Evaluate the constraint equations
 - $-G_{nn} = G_{nm} = 0$ ("subsidiary" equations)

 $- G_{m\overline{m}}$ ("trivial" equation).

- Test the Trautman-Bondi mass loss formula (for $\frac{d}{dz}m_{Bondi}$).
- Test peeling behaviour $\Psi_k = O(r^{k-5})$ for the Weyl curvature components $\Psi_k, k = 0, \dots, 4$.

Hawking and Bondi Mass

The Hawking mass of the (z, r) = const. 2-spheres is

$$m_H(z,r) = \frac{1}{2}r\left(1 - \frac{1}{8\pi}\oint_{S^2} HJ\right)$$

where the integral is over the unit 2-sphere and

$$\oint_{S^2} HJ = \oint_{S^2} \frac{1}{u} (2 - \operatorname{div} \beta) (\operatorname{div} \gamma - v(2 - \operatorname{div} \beta))$$

The Bondi mass of the null hypersurface is

$$m_B(z) = \lim_{r \to \infty} m_H(r, z)$$

and the Trautman-Bondi mass-loss formula is

$$\frac{d}{dz}m_B(z) = \frac{1}{16\pi} \lim_{r \to \infty} \oint_{S^2(z,r)} H|K|^2.$$

Trautman-Bondi mass decay

run_160: Error in mass decay rate

Figure 6: Difference between $\frac{d}{dz}m_B(z)$ calculated by numerical differentiation, and from the Trautman-Bondi mass-loss formula.

Example: Peeling obstruction

Under generic asymptotic behaviour $(r\beta$ bounded at scri), we find that $\Psi_0 = O(r^{-4})$, not $O(r^{-5})$ as predicted by the peeling hypothesis.

Website demonstrations

- 1. $r\beta$ for run_150, z = 0..55 (a) 2D plot with mpeg; (b) 3D surface plot
- 2. spectral decay for (a) run_150 with l = 0..15, (b) run_170 with l = 0..10, to estimate relative accuracy by |l = 10| : |l = 2|
- 3. Hawking mass for run_170
- 4. dm/dz for run_170
- 5. Weyl spinor $r^5 \Psi_0$ for run_160, run_802