Null Quasi-Spherical Einstein characteristic code

Robert A. Bartnik (robert.bartnik@sci.monash.edu.au)
Andrew H. Norton (andrew.norton@uts.edu.au)
[1] website: http://relativity.ise.canberra.edu.au
[2] Numerical methods for the Einstein equations in NQS coordinates, SIAM J. Sci. Comp. 22 (2000), pp917-950.

The Null Quasi-Spherical ansatz

The NQS coordinates $(z, r, \vartheta, \varphi)$ satisfy:

- The 3 -surfaces $z=$ const. are null,
- The 2-surfaces $(z, r)=$ const. are isometric to standard 2 -spheres of radius r,
- The coordinates (ϑ, φ) are standard spherical polars

General NQS metric:

$$
d s^{2}=-2 u d z(d r+v d z)+2|r \Theta+\bar{\beta} d r+\bar{\gamma} d z|^{2}
$$

where $\Theta=\frac{1}{\sqrt{2}}(d \vartheta+\mathrm{i} \sin \vartheta d \varphi)$ and $\beta=\frac{1}{\sqrt{2}}\left(\beta^{1}-\mathrm{i} \beta^{2}\right)$
$\gamma=\frac{1}{\sqrt{2}}\left(\gamma^{1}-\mathrm{i} \gamma^{2}\right)$.

NQS tetrad

$$
\begin{aligned}
\ell & =\frac{\partial}{\partial r}-r^{-1}\left(\bar{\beta} D_{v}-\beta D_{\bar{v}}\right)=: \mathcal{D}_{r} \\
n & =u^{-1}\left(\mathcal{D}_{z}-v \mathcal{D}_{r}\right) \\
m & =\frac{1}{\sqrt{2} r}\left(\frac{\partial}{\partial \vartheta}-\frac{i}{\sin \vartheta} \frac{\partial}{\partial \varphi}\right)
\end{aligned}
$$

The S^{2} derivative operator ∂ (edth) acts on a spin- s field

$$
\partial \eta=\frac{1}{\sqrt{2}} \sin ^{s} \vartheta\left(\frac{\partial}{\partial \vartheta}-\frac{i}{\sin \vartheta} \frac{\partial}{\partial \varphi}\right)\left(\sin ^{-s} \vartheta \eta\right)
$$

$\operatorname{div} \beta=\varnothing \bar{\beta}+\overline{\mathrm{\delta}} \beta$ is the divergence of a vector field on S^{2}, and $r \mathcal{D}_{r}=r \partial_{r}-\nabla_{\beta}=r \partial_{r}-(\beta \overline{\check{\delta}}+\bar{\beta} \check{\delta})$,
$r \mathcal{D}_{z}=r \partial_{z}-\nabla_{\gamma}=r \partial_{z}-(\gamma \overline{\mathrm{\delta}}+\bar{\gamma} \varnothing)$ are S^{2}-covariant operators.

Define the auxiliary variables $H, J, K, Q, Q^{ \pm}$in terms of the metric parameters:

$$
\begin{aligned}
H & =u^{-1}(2-\operatorname{div} \beta) \\
J & =v(2-\operatorname{div} \beta)+\operatorname{div} \gamma \\
K & =v ð \beta-\varnothing \gamma \\
Q & =r \mathcal{D}_{z} \beta-r \mathcal{D}_{r} \gamma+\gamma \\
Q^{ \pm} & =u^{-1}(Q \pm ð u)
\end{aligned}
$$

Hypersurface Equations

The Einstein tensor components $G_{\ell \ell}, G_{\ell m}, G_{\ell n}$ and $G_{m m}$ give equations involving only derivatives tangent to the null hypersurfaces:

$$
\begin{aligned}
& r \mathcal{D}_{r} H=\left(\frac{1}{2} \operatorname{div} \beta-\frac{2|\mathrm{\partial} \beta|^{2}+r^{2} G_{\ell \ell}}{2-\operatorname{div} \beta}\right) H
\end{aligned}
$$

$$
\begin{aligned}
& r \mathcal{D}_{r} J=-(1-\operatorname{div} \beta) J+u-\frac{1}{2} u\left|Q^{+}\right|^{2}-\frac{1}{2} u \operatorname{div}\left(Q^{+}\right)-u r^{2} G_{\ell n} \\
& r \mathcal{D}_{r} K=\left(\frac{1}{2} \operatorname{div} \beta+\mathrm{i} \operatorname{curl} \beta\right) K-\frac{1}{2} \precsim \beta J+\frac{1}{2} u \precsim Q^{+}+\frac{1}{4} u\left(Q^{+}\right)^{2} \\
& +\frac{1}{2} u r^{2} G_{m m}
\end{aligned}
$$

The NQS evolution algorithm

Begin with the primary field β on a null hypersurface $z=z_{0}$, and progressively solve the hypersurface constraint equations, viewed as radial ODE's for the metric parameters:

1. $G_{\ell \ell}$ gives H, and thus $u=(2-\operatorname{div} \beta) / H$
2. $G_{\ell m}$ gives Q^{-}, and thus Q and Q^{+}
3. $G_{\ell n}$ gives J
4. $G_{m m}$ gives K
5. Solving an elliptic system on S^{2} determines γ, v from J, K
6. Determine $\frac{\partial \beta}{\partial z}$ from Q, β, γ
7. Evolve β to the next null hypersurface

Eliminating v from the definitions of J and K gives an elliptic system for the vector field γ restricted to the 2 -sphere $(z, r)=$ const.

$$
\partial \gamma+\frac{\partial \beta}{2-\operatorname{div} \beta} \operatorname{div} \gamma=J \frac{\partial \beta}{2-\operatorname{div} \beta}-K
$$

The right hand side is known from solving the hypersurface constraint equations, so we have an elliptic system for γ. The remaining metric parameter v is then determined, by

$$
v=\frac{J-\operatorname{div} \gamma}{2-\operatorname{div} \beta}
$$

The primary field β is evolved using Q :

$$
r \frac{\partial \beta}{\partial z}=Q+r \frac{\partial \gamma}{\partial r}+\nabla_{\gamma} \beta-\nabla_{\beta} \gamma-\gamma
$$

The Bianchi II (conservation law) identity $F_{a b}{ }^{; b}=0$ for a symmetric tensor $F_{a b}$ gives equations for the components $F_{m \bar{m}}, F_{n m}, F_{n n}$ (in NP notation with $\kappa=0$)

$$
\begin{aligned}
0= & \operatorname{Re} \rho F_{m \bar{m}}, \\
D_{\ell}\left(F_{n m}\right)= & (2 \rho+\bar{\rho}-2 \bar{\varepsilon}) F_{n m}+\sigma F_{n \bar{m}} \\
& +D_{\bar{m}} F_{m \bar{m}}+(\bar{\pi}-\tau) F_{m \bar{m}}, \\
D_{\ell}\left(F_{n n}\right)= & 2 \operatorname{Re}(\rho-2 \varepsilon) F_{n n}-\operatorname{Re} \mu F_{m \bar{m}} \\
& +D_{m} F_{n \bar{m}}+D_{\bar{m}} F_{n m}+\operatorname{Re}\left((2 \beta+2 \bar{\pi}-\tau) F_{n \bar{m})}\right) .
\end{aligned}
$$

If $\rho \neq 0$ and $F_{n m}=F_{n n}=0$ on a boundary surface transverse to the null hypersurface, then $F_{m \bar{m}}=F_{n m}=F_{n n}=0$ everywhere on the null hypersurface. Thus the constraint (subsidiary) equations are propagated by the evolution.

Boundary (Subsidiary) Equations

The Einstein components $G_{n n}, G_{n m}$ yield the evolution $\left(\frac{\partial}{\partial z}\right)$ relations:

$$
\begin{aligned}
& r \mathcal{D}_{z}(J / u)=v^{2} r \mathcal{D}_{r}(J /(u v))+\left(\frac{1}{2} J-v\right) J / u \\
& +2 u^{-1}|K|^{2}-\nabla_{Q^{+}} v-\Delta v+u r^{2} G_{n n} \\
& r \mathcal{D}_{z} Q^{+}=\left(v r \mathcal{D}_{r}+J+\partial \bar{\gamma}-v \precsim \bar{\beta}\right) Q^{+}-K \bar{Q}^{+} \\
& +2 u^{-1} r \mathcal{D}_{r}(u \text { ठ } v)-(2+\mathrm{i} \operatorname{curl} \beta) \text { ð } v \\
& +2 \overline{\mathrm{\gamma}} K+\text { ð } J-2 u^{-1} \text { б } u J-2 u r^{2} G_{n m}
\end{aligned}
$$

These equations constrain the boundary conditions for the fields J / u and Q^{+}. At non-boundary points they provide compatibility conditions on the z-derivatives.

Free Boundary Data

- The Hypersurface Equations require boundary data (initial conditions) for H, Q^{-}, J, K.
- The Boundary Equations constrain the z-evolution of the boundary data for J / u and Q^{+}.
- The z-evolution of β is determined everwhere from Q.
- Consequently, the boundary data for u, K are unconstrained (free).
- u determines the starting sphere for the "next" null hypersurface, hence u represents gauge freedom.
- K describes the outgoing radiation (ingoing shear) and is free geometric data.

Aspects of the Numerical Methods

- 8th order Runge-Kutta for the radial integration of the null hypersurface constraint ODEs, with 256 radial steps, rescaled to reach \mathcal{I}^{+}.
- FFT and projection to spin-weighted spherical harmonics used to minimise polar problems and to compute angular derivatives. Resolution is $L=7,15$ or 31 .
- Preconditioned conjugate gradient method to solve the elliptic system on S^{2} for γ.
- 4th order Runge-Kutta for the time evolution with timestep $\Delta z=0.05$.

Infalling radial coordinate

Use a radial grid variable $n=0, \ldots, n_{\infty}=256$ and the Schwarzschild radius function

$$
r=r(z, n)=2 M \phi^{-1}(\exp (-z / 4 M) \phi(f(n) / 2 M))
$$

where $\phi(x):=(x-1) e^{x}, x \geq 0$. Then $n=$ const. defines infalling radial curves.

Compactify \mathcal{I}^{+}by $n_{\infty}-n=O\left(r^{-1 / 2}\right)$, with

$$
f(n)=f_{1}(\nu) /(1-\nu)^{2}
$$

where $\nu=n / n_{\infty}, f_{1}$ monotone on $[0,1]$.

Figure 1: Evolution of $r \beta$ for $0 \leq z \leq 55$. Observe that the infalling grid tracks the dynamical evolution. $n=0$ is the past horizon $r=2 M, n=256$ is future null infinity \mathcal{I}^{+}.

Kruskal-Szekeres coordinates

Figure 2: Schwarzschild spacetime in Kruskal-Szekeres coordinates.

Numerical convergence tests

Refine code parameters:

- radial resolution $n_{\infty}=128,256,512,1024$, shows 8 -th order accuracy in radial integrations;
- angular resolution $L=7,15,31$;
- timestep $\Delta z=0.01,0.05,0.1$, shows 4 -th order accuracy in timestep;
or vary initial field strength $\beta(z=0)$:
- weak field run_150, with 1% of the total energy as radiation
- intermediate field run_160, with 20% radiation
- strong field run_170, with 50% radiation

Figure 3: Convergence of β with increasing radial resolution: weak field solutions with $n_{\infty}=256,512$ compared to $n_{\infty}=1024$. The error decreases by approximately a factor of 2^{8} on doubling the radial resolution.

Figure 4: Convergence of β with decreasing time step: weak field solutions for $\Delta z=0.1,0.05$, compared against $\Delta z=0.025$. Where the error is not dominated by the radial discretisation error, the curves show a decrease in error which is consistent with 4th order convergence.

Figure 5: Effect of spectral resolution on constraint quantity $\left|r^{2} G_{n n}\right|_{S^{2}}$ at times $z=10,20,30,40$, for strong (top 4 curves), intermediate (middle 4 curves) and weak (bottom 4 curves) fields.

Accuracy Conclusions

For the data studied (pure $l=2$ initial β with Gaussian profile centered at $r=20 M$), the solutions are

- relatively insensitive to the timestep Δz;
- improved by increasing n_{∞};
- fundamentally limited by the spectral resolution: $L=15$ corresponds to solving the $L=10$-truncated Einstein equations.

Geometric consistency tests

- Evaluate the constraint equations
- $G_{n n}=G_{n m}=0$ ("subsidiary" equations)
- $G_{m \bar{m}}$ ("trivial" equation).
- Test the Trautman-Bondi mass loss formula (for $\frac{d}{d z} m_{\text {Bondi }}$).
- Test peeling behaviour $\Psi_{k}=O\left(r^{k-5}\right)$ for the Weyl curvature components $\Psi_{k}, k=0, \ldots, 4$.

Hawking and Bondi Mass

The Hawking mass of the $(z, r)=$ const. 2 -spheres is

$$
m_{H}(z, r)=\frac{1}{2} r\left(1-\frac{1}{8 \pi} \oint_{S^{2}} H J\right)
$$

where the integral is over the unit 2 -sphere and

$$
\oint_{S^{2}} H J=\oint_{S^{2}} \frac{1}{u}(2-\operatorname{div} \beta)(\operatorname{div} \gamma-v(2-\operatorname{div} \beta))
$$

The Bondi mass of the null hypersurface is

$$
m_{B}(z)=\lim _{r \rightarrow \infty} m_{H}(r, z)
$$

and the Trautman-Bondi mass-loss formula is

$$
\frac{d}{d z} m_{B}(z)=\frac{1}{16 \pi} \lim _{r \rightarrow \infty} \oint_{S^{2}(z, r)} H|K|^{2}
$$

Trautman-Bondi mass decay

Figure 6: Difference between $\frac{d}{d z} m_{B}(z)$ calculated by numerical differentiation, and from the Trautman-Bondi mass-loss formula.

Example: Peeling obstruction

Under generic asymptotic behaviour ($r \beta$ bounded at scri), we find that $\Psi_{0}=O\left(r^{-4}\right)$, not $O\left(r^{-5}\right)$ as predicted by the peeling hypothesis.

Figure 7: Comparison of $r^{4} \Psi_{0}$ shows peeling and non-peeling behaviour

Website demonstrations

1. $r \beta$ for run_150, $z=0 . .55-$ (a) 2 D plot with mpeg; (b) 3 D surface plot
2. spectral decay for (a) run_150 with $l=0 . .15$, (b) run_170 with $l=0 . .10$, to estimate relative accuracy by $|l=10|:|l=2|$
3. Hawking mass for run_170
4. $d m / d z$ for run_170
5. Weyl spinor $r^{5} \Psi_{0}$ for run_160, run_802
