
'

&

$

%

Null Quasi-Spherical

Einstein characteristic code

Robert A. Bartnik (robert.bartnik@sci.monash.edu.au)

Andrew H. Norton (andrew.norton@uts.edu.au)

[1] website: http://relativity.ise.canberra.edu.au

[2] Numerical methods for the Einstein equations in NQS
coordinates, SIAM J. Sci. Comp. 22 (2000), pp917-950.

1



'

&

$

%

The Null Quasi-Spherical ansatz

The NQS coordinates (z, r, ϑ, ϕ) satisfy:

• The 3-surfaces z = const. are null,

• The 2-surfaces (z, r) = const. are isometric to standard
2-spheres of radius r,

• The coordinates (ϑ, ϕ) are standard spherical polars

General NQS metric:

ds2 = − 2u dz (dr + v dz) + 2|rΘ + βdr + γdz|2

where Θ = 1√
2

(dϑ + i sinϑ dϕ) and β = 1√
2

(
β1 − iβ2

)
γ = 1√

2

(
γ1 − i γ2

)
.
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NQS tetrad

` =
∂

∂r
− r−1(β Dv − β Dv) =: Dr

n = u−1 (Dz − vDr)

m = 1√
2r

(
∂

∂ϑ −
i

sin ϑ
∂

∂ϕ

)
The S2 derivative operator ð (edth) acts on a spin-s field

ðη =
1√
2

sins ϑ

(
∂

∂ϑ
− i

sinϑ

∂

∂ϕ

) (
sin−s ϑ η

)
,

div β = ðβ + ð̄β is the divergence of a vector field on S2, and
rDr = r∂r −∇β = r∂r − (βð̄ + β̄ð),
rDz = r∂z −∇γ = r∂z − (γð̄ + γ̄ð) are S2-covariant operators.
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Define the auxiliary variables H, J, K, Q, Q± in terms of the
metric parameters:

H = u−1(2− div β)

J = v(2− div β) + div γ

K = vðβ − ðγ

Q = rDzβ − rDrγ + γ

Q± = u−1(Q± ðu)
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Hypersurface Equations

The Einstein tensor components G``, G`m, G`n and Gmm give
equations involving only derivatives tangent to the null
hypersurfaces:

rDrH =
(

1
2 div β − 2|ðβ|2 + r2G``

2− div β

)
H

rDrQ
− = (ðβ̄ − uH)Q− + Q̄−ðβ + 2ð̄ðβ + uðH −Hðu + 2r2G`m

rDrJ = −(1− div β)J + u− 1
2u|Q+|2 − 1

2u div(Q+)− ur2G`n

rDrK =
(

1
2 div β + i curlβ

)
K − 1

2ðβJ + 1
2uðQ+ + 1

4u(Q+)2

+ 1
2ur2Gmm
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The NQS evolution algorithm

Begin with the primary field β on a null hypersurface z = z0, and
progressively solve the hypersurface constraint equations, viewed as
radial ODE’s for the metric parameters:

1. G`` gives H, and thus u = (2− div β)/H

2. G`m gives Q−, and thus Q and Q+

3. G`n gives J

4. Gmm gives K

5. Solving an elliptic system on S2 determines γ, v from J,K

6. Determine ∂β
∂z from Q, β, γ

7. Evolve β to the next null hypersurface
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Eliminating v from the definitions of J and K gives an elliptic
system for the vector field γ restricted to the 2-sphere
(z, r) = const.

ðγ +
ðβ

2− div β
div γ = J

ðβ

2− div β
−K .

The right hand side is known from solving the hypersurface
constraint equations, so we have an elliptic system for γ. The
remaining metric parameter v is then determined, by

v =
J − divγ

2− divβ
.

The primary field β is evolved using Q:

r
∂β

∂z
= Q + r

∂γ

∂r
+∇γβ −∇βγ − γ .
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The Bianchi II (conservation law) identity F ;b
ab = 0 for a

symmetric tensor Fab gives equations for the components
Fmm̄, Fnm, Fnn (in NP notation with κ = 0)

0 = Re ρ Fmm̄,

D`(Fnm) = (2ρ + ρ̄− 2ε̄) Fnm + σ Fnm̄

+ Dm̄Fmm̄ + (π̄ − τ) Fmm̄,

D`(Fnn) = 2Re(ρ− 2ε) Fnn − Re µFmm

+ DmFnm̄ + Dm̄Fnm + Re((2β + 2π̄ − τ) Fnm).

If ρ 6= 0 and Fnm = Fnn = 0 on a boundary surface transverse to
the null hypersurface, then Fmm̄ = Fnm = Fnn = 0 everywhere on
the null hypersurface. Thus the constraint (subsidiary) equations
are propagated by the evolution.
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Boundary (Subsidiary) Equations

The Einstein components Gnn, Gnm yield the evolution ( ∂
∂z )

relations:

rDz (J/u) = v2 rDr (J/(uv)) + ( 1
2J − v)J/u

+ 2u−1|K|2 −∇Q+v −∆v + ur2Gnn

rDzQ
+ =

(
v rDr + J + ðγ̄ − vðβ̄

)
Q+ −KQ̄+

+ 2u−1rDr(uðv)− (2 + i curlβ)ðv

+ 2ð̄K + ðJ − 2u−1ðu J − 2ur2Gnm

These equations constrain the boundary conditions for the fields
J/u and Q+. At non-boundary points they provide compatibility
conditions on the z-derivatives.
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Free Boundary Data

• The Hypersurface Equations require boundary data (initial
conditions) for H,Q−,J,K.

• The Boundary Equations constrain the z-evolution of the
boundary data for J/u and Q+.

• The z-evolution of β is determined everwhere from Q.

• Consequently, the boundary data for u, K are unconstrained
(free).

• u determines the starting sphere for the “next” null
hypersurface, hence u represents gauge freedom.

• K describes the outgoing radiation (ingoing shear) and is free
geometric data.

10



'

&

$

%

Aspects of the Numerical Methods

• 8th order Runge-Kutta for the radial integration of the null
hypersurface constraint ODEs, with 256 radial steps, rescaled
to reach I+.

• FFT and projection to spin-weighted spherical harmonics used
to minimise polar problems and to compute angular
derivatives. Resolution is L = 7, 15 or 31.

• Preconditioned conjugate gradient method to solve the elliptic
system on S2 for γ.

• 4th order Runge-Kutta for the time evolution with timestep
∆z = 0.05.
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Infalling radial coordinate

Use a radial grid variable n = 0, . . . , n∞ = 256 and the
Schwarzschild radius function

r = r(z, n) = 2Mφ−1(exp(−z/4M)φ(f(n)/2M)),

where φ(x) := (x− 1)ex, x ≥ 0. Then n = const. defines infalling
radial curves.

Compactify I+ by n∞ − n = O(r−1/2), with

f(n) = f1(ν)/(1− ν)2,

where ν = n/n∞, f1 monotone on [0, 1].
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Figure 1: Evolution of rβ for 0 ≤ z ≤ 55. Observe that the in-
falling grid tracks the dynamical evolution. n = 0 is the past horizon
r = 2M , n = 256 is future null infinity I+.
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Figure 2: Schwarzschild spacetime in Kruskal-Szekeres coordinates.
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Numerical convergence tests

Refine code parameters:

• radial resolution n∞ = 128, 256, 512, 1024, shows 8-th order
accuracy in radial integrations;

• angular resolution L = 7, 15, 31;

• timestep ∆z = 0.01, 0.05, 0.1, shows 4-th order accuracy in
timestep;

or vary initial field strength β(z = 0):

• weak field run 150, with 1% of the total energy as radiation

• intermediate field run 160, with 20% radiation

• strong field run 170, with 50% radiation
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Figure 3: Convergence of β with increasing radial resolution: weak
field solutions with n∞ = 256, 512 compared to n∞ = 1024. The
error decreases by approximately a factor of 28 on doubling the radial
resolution.
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Figure 4: Convergence of β with decreasing time step: weak field
solutions for ∆z = 0.1, 0.05, compared against ∆z = 0.025. Where
the error is not dominated by the radial discretisation error, the
curves show a decrease in error which is consistent with 4th order
convergence.
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Figure 5: Effect of spectral resolution on constraint quantity
|r2Gnn|S2 at times z = 10, 20, 30, 40, for strong (top 4 curves), inter-
mediate (middle 4 curves) and weak (bottom 4 curves) fields.
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Accuracy Conclusions

For the data studied (pure l = 2 initial β with Gaussian profile
centered at r = 20M), the solutions are

• relatively insensitive to the timestep ∆z;

• improved by increasing n∞;

• fundamentally limited by the spectral resolution: L = 15
corresponds to solving the L = 10–truncated Einstein
equations.
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Geometric consistency tests

• Evaluate the constraint equations

– Gnn = Gnm = 0 (“subsidiary” equations)

– Gmm (“trivial” equation).

• Test the Trautman-Bondi mass loss formula (for d
dz mBondi).

• Test peeling behaviour Ψk = O(rk−5) for the Weyl curvature
components Ψk, k = 0, . . . , 4.
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Hawking and Bondi Mass

The Hawking mass of the (z, r) = const. 2-spheres is

mH(z, r) = 1
2r

(
1− 1

8π

∮
S2

HJ

)
where the integral is over the unit 2-sphere and∮

S2
HJ =

∮
S2

1
u

(2− div β)(div γ − v(2− div β))

The Bondi mass of the null hypersurface is

mB(z) = lim
r→∞

mH(r, z)

and the Trautman-Bondi mass-loss formula is

d

dz
mB(z) =

1
16π

lim
r→∞

∮
S2(z,r)

H|K|2.
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Trautman-Bondi mass decay

Figure 6: Difference between d
dz mB(z) calculated by numerical dif-

ferentiation, and from the Trautman-Bondi mass-loss formula.
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Example: Peeling obstruction

Under generic asymptotic behaviour (rβ bounded at scri), we find
that Ψ0 = O(r−4), not O(r−5) as predicted by the peeling
hypothesis.

Figure 7: Comparison of r4Ψ0 shows peeling and non-peeling be-
haviour
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Website demonstrations

1. rβ for run 150, z = 0..55 — (a) 2D plot with mpeg; (b) 3D
surface plot

2. spectral decay for (a) run 150 with l = 0..15, (b) run 170 with
l = 0..10, to estimate relative accuracy by |l = 10| : |l = 2|

3. Hawking mass for run 170

4. dm/dz for run 170

5. Weyl spinor r5Ψ0 for run 160, run 802
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