The BKL proposal and cosmic censorship Lars Andersson University of Miami and Albert Einstein Institute (joint work with Henk van Elst, Claes Uggla and Woei-Chet Lim) References: Gowdy phenomenology in scale-invariant variables, CQG 21 (2004) S29-S57; gr-qc/0310127 Asymptotic silence of generic cosmological singularities, Phys. Rev. Lett. 94 (2005) 051101; gr-qc/0402051 file: banff

- 1 -

Spacetimes, singularities, censorship

- Consider spacetimes $(V, g_{\alpha\beta})$, signature $+ + \cdots +$.
- $R_{\alpha\beta} \frac{1}{2}Rg_{\alpha\beta} = T_{\alpha\beta}$
- assume $(V, g_{\alpha\beta})$ maximal, globally hyperbolic, energy conditions
- Singularity theorems ⇒ generic spacetimes are causally geodesically incomplete (singular), but give no information about the nature of the singularities.
- The strong *Cosmic Censorship Conjecture* states that generic maximal globally hyperbolic spacetimes are inextendible.

BKL proposal

- 3 -

- Belinskii, Khalatnikov and Lifshitz (BKL) proposal: heuristic scenario for generic cosmological singularities
- The singularity is *spacelike*: observers near the singularity can't have communicated in the past; *silence* holds particle horizons shrink to zero.
- The singularity is *local*: spatial derivatives are dynamically insignificant near the singularity

BKL proposal - cont.

- 4 -

- non-stiff matter is dynamically insignificant near the singularity
- The singularity is oscillatory in case matter is non-stiff and D < 11 and non-oscillatory otherwise.
- non-oscillatory AVTD asymptotically Kasner along generic timelines
- oscillatory Kasner epochs interspersed with bounces which change the Kasner parameters according to BKL map.

Dynamical systems approach

- 6 -

Use scale invariant (Hubble normalized) frame variables:

- first order form of evolution equations
- classify fixed point sets, attractors etc.
- natural formulation of BKL proposal
- asymptotic dynamical system (silent boundary system)
- Consider G_2 case on T^3 with nonzero twist.
- Use RNPL to study evolution numerically.
- The silent boundary system governs the evolution for generic timelines.

Example: Kasner

- 7 -

- $ds^2 = -dt^2 + t^{2p}dx^2 + t^{2q}dy^2 + t^{2r}dz^2$
- Vacuum $(R_{\alpha\beta} = 0)$ implies the Kasner relations: p + q + r = 1, $p^2 + q^2 + r^2 = 1 \Rightarrow$ sphere intersected by plane \Rightarrow unit circle in Σ_+, Σ_- plane, $\Sigma_+ = \frac{3}{2}(q+r) - 1$, $\Sigma_- = \frac{\sqrt{3}}{2}(q-r)$.
- Permutations of $p, q, r \Leftrightarrow 2\pi/3$ rotations of Σ -plane.
- Flat Kasner solutions correspond to (p,q,r) = (1,0,0) and permutations thereof \Leftrightarrow special points T_1, T_2, T_3 in the Kasner circle, $(-1,0), (\frac{1}{2}, \pm \frac{\sqrt{3}}{2}).$

<u>Kasner – cont.</u>

- 8 -

Rescaled Weyl tensor components

$$\mathcal{E}_{+} = \frac{1}{3} \left(\left(1 + \Sigma_{+} \right) \Sigma_{+} - \Sigma_{-}^{2} \right), \qquad \mathcal{E}_{-} = \frac{1}{3} \left(1 - 2\Sigma_{+} \right) \Sigma_{-}$$

Weyl scalar $\mathcal{I}_1 = 48(\mathcal{E}_+^2 + \mathcal{E}_-^2)$

Kretschmann scalar $R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta} \sim t^{-4}\mathcal{I}_1$ blows up as $t \searrow 0 \Rightarrow$ nonflat Kasners are inextendible.

Example: Bianchi

- spatially homogenous models \Rightarrow Einstein equations become ODE's.
- Classify according to isometry group
- "generic" Bianchi models have oscillatory singularity

BKL map

- 13 -

$$p = \frac{1+u}{1+u+u^2}$$
$$q = \frac{-u}{1+u+u^2}$$
$$r = \frac{u+u^2}{1+u+u^2}$$

BKL observed that the (chaotic!) map

$$u \mapsto \begin{cases} u-1 & u > 1\\ 1/u & 0 < u < 1 \end{cases}$$

is a good model for the asymptotic dynamics of the Kasner exponents in the case of Bianchi IX.

Hierarchy of cosmological models

orbit dimension	system	type
3	Bianchi or K-S	ODE
2	Surface symmetry or G_2	1+1 PDE
1	G_1	2+1 PDE
0	G_0	3+1 PDE

Example: Gowdy

- 16 -

- Generic Gowdy spacetimes have AVTD singularity, cosmic censorship holds (Ringström, 2004).
- AVTD solutions for Gowdy

$$P(t,x) = k(x)t + \phi(x) + e^{-\epsilon t}u(t,x)$$
$$Q(t,x) = q(x) + e^{-2k(x)t}[\psi(x) + w(t,x)]$$

where $\epsilon > 0$, $u, w \to 0$ as $t \to \infty$ and 0 < k < 1.

• spikes form in generic Gowdy (Berger and Garfinkle, 1998)

Chaos in superstring cosmology

- 17 -

(Damour and Henneaux, 2001; Damour et al., 2003)

- The singular (BKL) limit of *D*-dimensional gravity, including dilaton and form fields can be represented as a geodesic billiard in hyperbolic space, cf. Misner-Chitre model for Mixmaster.
- The billiard table is the Weyl chamber of a Lorentzian Kac-Moody algebra.
- Low-energy bosonic sector of superstring/M-theory models gives D = 11 dimensional gravity coupled to dilaton and p-form fields.
- The billiards corresponding to the D = 10 string theories (M, IIA, IIB, I, HO, HE) are of arithmetical type.

Dynamical systems approach: connection variables

Introduce a group-invariant orthonormal frame $\{e_a\}_{a=0,1,2,3}$, with e_0 timelike, align e_2 with one of the Killing fields.

The nonzero connection variables for G_2 are:

- Θ , the volume expansion rate, $H := \frac{1}{3}\Theta$,
- $\sigma_+, \sigma_-, \sigma_\times, \sigma_2$; shear
- n_{-} and n_{\times} , commutation functions, giving the spatial connection on \mathbb{T}^3 ,
- \dot{u}_1 , the acceleration of the integral curves of e_0 ,
- q,r; deceleration parameter and logarithmic spatial Hubble gradient,
- $N^{-1}\partial_t$ and $e_1^{-1}\partial_x$ are nontrivial derivatives on coordinate scalars.

Hubble normalized variables

- 22 -

$$(\mathcal{N}^{-1}, E_1^{1}) := (N^{-1}, e_1^{1})/H$$

 $(\Sigma_{\dots}, N_{\dots}, \dot{U}) := (\sigma_{\dots}, n_{\dots}, \dot{u}_1)/H$.

State vector:

$$\boldsymbol{X} = (E_1^{\ 1}, \Sigma_+, \Sigma_-, \Sigma_\times, \Sigma_2, N_\times, N_-)^T = (E_1^{\ 1}) \otimes \boldsymbol{Y}$$

To write evolution equations, need deceleration parameter q and logarithmic spatial Hubble gradient r,

$$(q+1) := -\mathcal{N}^{-1} \partial_t \ln(H) ,$$
$$r := -E_1^{-1} \partial_x \ln(H) ,$$

where q and r satisfy the integrability condition

$$\mathcal{N}^{-1} \partial_t r - E_1{}^1 \partial_x q = (q + 2\Sigma_+) r - (r - \dot{U}) (q + 1) .$$

Hubble normalized system of equations for G_2

- 24 -

Constraints:

$$(r - \dot{U}) = E_1^{\ 1} \partial_x \ln(1 + \Sigma_+)$$

$$1 = \Sigma_+^2 + \Sigma_2^2 + \Sigma_-^2 + N_\times^2 + \Sigma_\times^2 + N_-^2$$

$$(1 + \Sigma_+) \dot{U} = -3(N_{\times} \Sigma_- - N_- \Sigma_{\times})$$

$$0 = (E_1^{\ 1} \partial_x - r + \sqrt{3}N_{\times}) \Sigma_2 .$$

Hubble normalized evolution equations for G_2

 $C^{-1}(1 + \Sigma_{+}) \partial_{t} E_{1}^{1} = (q + 2\Sigma_{+}) E_{1}^{1}$ $C^{-1}(1 + \Sigma_{+}) \partial_{t}(1 + \Sigma_{+}) = (q - 2)(1 + \Sigma_{+}) + 3\Sigma_{2}^{2}$ $C^{-1}(1+\Sigma_{+})\partial_{t}\Sigma_{2} = (q-2-3\Sigma_{+}+\sqrt{3}\Sigma_{-})\Sigma_{2}$ $C^{-1}(1 + \Sigma_{+}) \partial_{t} \Sigma_{-} + E_{1}^{1} \partial_{x} N_{\times} = (q - 2) \Sigma_{-} + (r - \dot{U}) N_{\times} + 2\sqrt{3} \Sigma_{\times}^{2}$ $-2\sqrt{3}N^2-\sqrt{3}\Sigma_2^2$ $C^{-1}(1+\Sigma_{+})\partial_{t}N_{\times} + E_{1}^{1}\partial_{x}\Sigma_{-} = (q+2\Sigma_{+})N_{\times} + (r-\dot{U})\Sigma_{-}$ $C^{-1}(1+\Sigma_{+})\partial_{t}\Sigma_{\times} - E_{1}^{1}\partial_{x}N_{-} = (q-2-2\sqrt{3}\Sigma_{-})\Sigma_{\times}$ $-(r-\dot{U}+2\sqrt{3}N_{\star})N_{-}$ $C^{-1}(1 + \Sigma_{+}) \partial_{t} N_{-} - E_{1}^{1} \partial_{x} \Sigma_{\times} = (q + 2\Sigma_{+} + 2\sqrt{3}\Sigma_{-}) N_{-}$ $-(r-\dot{U}-2\sqrt{3}N_{\times})\Sigma_{\times}$, where $q := 2(\Sigma_{+}^{2} + \Sigma_{-}^{2} + \Sigma_{\times}^{2} + \Sigma_{2}^{2}) - \frac{1}{2} (E_{1}^{1} \partial_{x} - r + \dot{U}) \dot{U}$.

The silent boundary

- 27 -

- Observe numerically that $E_1^1 \to 0$ exponentially as $t \to \infty$.
- The unphysical boundary of the phase space with $E_1^{1} = 0$ is called the *silent boundary*. The spatial derivative in the Hubble normalized system is of the form $E_1^{1}\partial_x$. Therefore going to the silent boundary corresponds to collapse of the light cones.
- The dynamics on the silent boundary gives an *asymptotic* dynamical system, the SB system.
- The SB system is equivalent to a *spatially self-similar* model.

$Gowdy-non-oscillatory\ singularity$

- 29 -

- Setting $\Sigma_2 = 0$ gives the Gowdy subcase.
- The solution approaches stable arc, except for the spike timelines.

Spike timelines

- 33 -

- $N_-, \Sigma_2, \Sigma_{\times}$ are unstable on \mathcal{K}
- zero crossings of unstable variables \leftrightarrow "spiky features"
- Σ_2 cannot cross zero for generic solution
- Σ_{\times} spikes "false" (gauge) spikes
- N_{-} spikes "true" (physical) spikes

$$E_1{}^1\partial_x N_- \propto \hat{E}_1{}^1 \left[\partial_x \hat{N}_- + t \, \hat{N}_- \, \partial_x k(x) \right] e^{-[2-k(x)]t}$$

where $k(x) = -\sqrt{3}\hat{\Sigma}_-(x)/[1+\hat{\Sigma}_+(x)].$

Weyl tensor

- 35 -

- Timelines (x, t) are non-spike or spike.
- For non-spike timelines $E_1^{\ 1}\partial_x \mathbf{Y} \to 0$
- Each timeline revisits the Kasner circle \mathcal{K} , where $\Sigma_{+}^{2} + \Sigma_{-}^{2} = 1$, $N_{\times} = N_{-} = \Sigma_{\times} = \Sigma_{2} = 0$
- On K only the rescaled Weyl tensor components \$\mathcal{E}_+\$ and \$\mathcal{E}_-\$ are non-vanishing, so the rescaled Kretschmann scalar is
 \$\mathcal{I} = 48(\mathcal{E}_+^2 + \mathcal{E}_-^2)\$.

Weyl tensor cont.

- 36 -

- For spike timelines, get contributions to Weyl tensor from $E_1{}^1\partial_x N_-$ and $E_1{}^1\partial_x \Sigma_{\times}$ in \mathcal{E}_{\times} and \mathcal{H}_- respectively.
- Thus, in addition to \$\mathcal{E}_+\$, \$\mathcal{E}_-\$ we have \$\mathcal{E}_{\times}\$ and \$\mathcal{H}_-\$ active at \$\mathcal{K}\$ (but not simultaneously!).
- Therefore expect the rescaled Kretschmann scalar

 I = 8(*ε*_{αβ}*ε*^{αβ} *H*_{αβ}*H*^{αβ}) be be nonzero for a sequence of times even along spike timelines.
- This supports cosmic censorship for generic G2 spacetimes.

Concluding remarks

- 37 -

- The dynamical systems approach using Hubble normalized variables gives a natural asymptotic dynamical system, the *silent boundary system*, and allows the analysis of the asymptotic dynamics in terms of *attractors*.
- In Bianchi IX, the Bianchi II attractor explains the BKL map (Kasner billiard) oscillatory asymptotic behavior.
- Gowdy has a stable attractor in \mathcal{K} so is AVTD and censorship holds.
- For the G_2 system, the silent boundary system explains the BKL map oscillatory asymptotic behavior.
- The G_2 silent boundary system (and therefore generic timelines of G_2) revisits the Kasner circle infinitely often — censorship holds.

Concluding remarks - cont.

- 38 -

- Next candidate for rigorous proof of censorship: $G2KG = G_2$ with scalar field.
- Construct spike solutions for G2KG.
- Asymptotic expansions near the silent boundary?
- Verify "asymptotic silence" numerically for U(1) and G_0 models?
- Role of "spikes" in stringy gravity?

References

Andersson, L. and Rendall, A. D. (2001). Quiescent cosmological singularities. Comm. Math. Phys., 218(3):479–511.

- 39 -

- Berger, B. K. and Garfinkle, D. (1998). Phenomenology of the Gowdy universe on $T^3 \times R$. Phys. Rev. D, 57:4767–4777.
- Damour, T. and Henneaux, M. (2001). $E_{(10)}$, $BE_{(10)}$ and arithmetical chaos in superstring cosmology. *Phys.Rev.Lett.*, 86:4749–4752.
- Damour, T., Henneaux, M., and Nicolai, H. (2003). Cosmological billiards. Classical Quantum Gravity, 20(9):R145–R200.
- Ringström, H. (2000). Curvature blow up in Bianchi VIII and IX vacuum spacetimes. *Classical Quantum Gravity*, 17(4):713–731.

Ringström, H. (2004). Strong cosmic censorship in T^3 -Gowdy spacetimes.