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Overview 1
The Intel® Math Kernel Library (Intel® MKL) provides Fortran routines and functions that 
perform a wide variety of operations on vectors and matrices including sparse matrices. The 
library also includes discrete Fourier transform routines, as well as vector mathematical and vector 
statistical functions with Fortran and C interfaces. 

The version of the library named Intel® Cluster MKL is a superset of Intel MKL and includes also  
ScaLAPACK software for solving linear algebra problems on distributed-memory parallel 
computers.

The Intel MKL enhances performance of the application programs that use it because the library 
has been optimized for latest generations of Intel® processors.
This chapter introduces the Intel Math Kernel Library and provides information about the 
organization of this manual.

About This Software
The Intel Math Kernel Library includes the following groups of routines: 

• Basic Linear Algebra Subprograms (BLAS):
− vector operations
− matrix-vector operations
− matrix-matrix operations

• Sparse BLAS (basic vector operations on sparse vectors)

• LAPACK routines for solving systems of linear equations

• LAPACK routines for solving least-squares problems, eigenvalue and singular value 
problems, and Sylvester’s equations

• Auxiliary and utility LAPACK routines
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• ScaLAPACK computational, driver and auxiliary routines (for Intel Cluster MKL only)

• Direct Sparse Solver routines

• Vector Mathematical Library (VML) functions for computing core mathematical functions on 
vector arguments (with Fortran and C interfaces) 

• Vector Statistical Library (VSL) functions for generating vectors of pseudorandom numbers 
with different types of statistical distributions

• General Discrete Fourier Transform Functions (DFT) and a subset of Fast Fourier transform 
routines (FFT) with Fortran and C interfaces.

For specific issues on using the library, please refer to the MKL Release Notes.

Technical Support

Intel MKL provides a product web site that offers timely and comprehensive product information, 
including product features, white papers, and technical articles. For the latest information, check: 
http://developer.intel.com/software/products/

Intel also provides a support web site that contains a rich repository of self help information, 
including getting started tips, known product issues, product errata, license information, user 
forums, and more (visit http://support.intel.com/support/ ). 

Registering your product entitles you to one year of technical support and product updates through 
Intel® Premier Support. Intel Premier Support is an interactive issue management and 
communication web site providing these services:

• Submit issues and review their status.

• Download product updates anytime of the day. 

To register your product, contact Intel, or seek product support, please visit: 
http://www.intel.com/software/products/support 

BLAS Routines

BLAS routines and functions are divided into the following groups according to the operations 
they perform:

• BLAS Level 1 Routines and Functions perform operations of both addition and reduction on 
vectors of data. Typical operations include scaling and dot products.

• BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector 
multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.

http://developer.intel.com/software/products/perflib/index.htm
http://support.intel.com/support/performancetools/libraries/mkl
http://developer.intel.com/software/products/support
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• BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix 
multiplication, rank-k update, and solution of triangular systems.

Sparse BLAS Routines

Sparse BLAS Routines and Functions operate on sparse vectors (that is, vectors in which most of 
the elements are zeros). These routines perform vector operations similar to BLAS Level 1 
routines. Sparse BLAS routines take advantage of vectors’ sparsity: they allow you to store only 
non-zero elements of vectors.

LAPACK Routines

The Intel Math Kernel Library covers the full set of the LAPACK computational, driver,  auxiliary 
and utility routines. 

The original versions of LAPACK from which that part of Intel MKL was derived can be obtained 
from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai, 
C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. 
McKenney, and D. Sorensen.

The LAPACK routines can be divided into the following groups according to the operations they 
perform:

• Routines for solving systems of linear equations, factoring and inverting matrices, and 
estimating condition numbers (see Chapter 3).

• Routines for solving least-squares problems, eigenvalue and singular value problems, and 
Sylvester’s equations (see Chapter 4).

• Auxiliary and utility routines used to perform certain subtasks, common low-level 
computation or related tasks (see Chapter 5).

ScaLAPACK Routines

ScaLAPACK package (included with Intel Cluster MKL only, see Chapter 6 and Chapter 7) runs 
on distributed-memory architectures and includes routines for solving systems of linear equations,  
solving linear least-squares problems, eigenvalue and singular value problems, as well as 
performing a number of related computational tasks. 

http://www.netlib.org/lapack/index.html
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The original versions of ScaLAPACK from which that part of Intel Cluster MKL was derived can 
be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are 
L. Blackford, J. Choi, A.Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,  S. 
Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley.

Intel Cluster MKL version of ScaLAPACK is optimized for Intel processors and uses MPICH 
version of MPI.

Sparse Solver Routines

Direct sparse solver routines  in Intel MKL (see Chapter 8) solve symmetric and 
symmetrically-structured sparse matrices with real or complex coefficients. For symmetric 
matrices, these Intel MKL subroutines can solve both positive definite and indefinite systems. 
Intel MKL includes the PARDISO* sparse solver interface as well as an alternative set of user 
callable direct sparse solver routines.

VML Functions

Vector Mathematical Library (VML) functions (see Chapter 9) include a set of highly optimized 
implementations of certain computationally expensive core mathematical functions (power, 
trigonometric, exponential, hyperbolic etc.) that operate on real vector arguments.

VSL Functions

Vector Statistical Library (VSL) functions (see Chapter 10) include a set of pseudo- and 
quasi-random number generator subroutines implementing basic continuous and discrete 
distributions. To provide best performance, VSL subroutines use calls to highly optimized Basic 
Random Number Generators and the library of vector mathematical functions, VML.

DFT and FFT Functions

The Intel MKL multidimensional Discrete Fourier Transform functions with mixed radix support 
(see Chapter 11) provide uniformity of DFT computation and combine functionality with ease of 
use. Both Fortran and C interface specification are given. 

For compatibility with previous versions, Intel MKL provides also a set of simplified  one- and 
two-dimensional Fast Fourier Transform functions (see Chapter 12) that support powers of 2 
transform size. 

http://www.netlib.org/scalapack/index.html
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Performance Enhancements

The Intel Math Kernel Library has been optimized by exploiting both processor and system 
features and capabilities. Special care has been given to those routines that most profit from 
cache-management techniques. These especially include matrix-matrix operation routines such as 
dgemm().

In addition, code optimization techniques have been applied to minimize dependencies of 
scheduling integer and floating-point units on the results within the processor.

The major optimization techniques used throughout the library include:

• Loop unrolling to minimize loop management costs.

• Blocking of data to improve data reuse opportunities.

• Copying to reduce chances of data eviction from cache.

• Data prefetching to help hide memory latency.

• Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls due 
to arithmetic unit pipelines.

• Use of hardware features such as the SIMD arithmetic units, where appropriate.

These are techniques from which the arithmetic code benefits the most.

Parallelism

In addition to the performance enhancements discussed above, the Intel MKL offers performance 
gains through parallelism provided by the symmetric multiprocessing performance (SMP) feature. 
You can obtain improvements from SMP in the following ways: 

• One way is based on user-managed threads in the program and further distribution of the 
operations over the threads based on data decomposition, domain decomposition, control 
decomposition, or some other parallelizing technique. Each thread can use any of the Intel 
MKL functions because the library has been designed to be thread-safe.
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• Another method is to use the FFT and BLAS level 3 routines. They have been parallelized and 
require no alterations of your application to gain the performance enhancements of 
multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent 
scaling. Since the threads are called and managed within the library, the application does not 
need to be recompiled thread-safe (see also BLAS Level 3 Routines in Chapter 2). 

• Yet another method is to use tuned LAPACK routines. Currently these include the single- and 
double precision flavors of routines for QR factorization of general matrices, triangular 
factorization of general and symmetric positive-definite matrices, solving systems of 
equations with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS level 3 and LAPACK 
routines, see the Intel MKL Technical User Notes.

Platforms Supported

The Intel Math Kernel Library includes Fortran routines and functions optimized for Intel® 
processor-based computers running operating systems that support multiprocessing. In addition to 
the Fortran interface, the Intel MKL includes a C-language interface for the Discrete Fourier 
transform functions, as well as for the Vector Mathematical Library and Vector Statistical Library 
functions. 
For hardware and software requirements to use Inlel MKL, see  MKL Release Notes.

About This Manual
This manual describes the routines and functions of the Intel MKL and Intel Cluster MKL. 
Each reference section describes a routine group typically consisting of routines used with four 
basic data types: single-precision real, double-precision real, single-precision complex, and 
double-precision complex.

Each routine group is introduced by its name, a short description of its purpose, and the calling 
sequence, or syntax, for each type of data with which each routine of the group is used. The 
following sections are also included:

Description Describes the operation performed by routines of the group based on one 
or more equations. The data types of the arguments are defined in 
general terms for the group.

Input Parameters Defines the data type for each parameter on entry, for example:

a REAL for saxpy
DOUBLE PRECISION for daxpy
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Output Parameters Lists resultant parameters on exit.

Audience for This Manual

The manual addresses programmers proficient in computational mathematics and assumes a 
working knowledge of the principles and vocabulary of linear algebra, mathematical statistics, and 
Fourier transforms.

Manual Organization

The manual contains the following chapters and appendixes:

Chapter 1 Overview. Introduces the Intel Math Kernel Library software, provides 
information on manual organization, and explains notational conventions.

Chapter 2 BLAS and Sparse BLAS Routines. Provides descriptions of BLAS and Sparse 
BLAS functions and routines. 

Chapter 3 LAPACK Routines: Linear Equations. Provides descriptions of LAPACK 
routines for solving systems of linear equations and performing a number of 
related computational tasks: triangular factorization, matrix inversion, 
estimating the condition number of matrices.

Chapter 4 LAPACK Routines: Least Squares and Eigenvalue Problems. Provides 
descriptions of LAPACK routines for solving least-squares problems, standard 
and generalized eigenvalue problems, singular value problems, and Sylvester’s 
equations.

Chapter 5 LAPACK Auxiliary and Utility Routines. Describes auxiliary and utility 
LAPACK routines that perform certain subtasks or common low-level 
computation. 

Chapter 6 ScaLAPACK Routines. Describes ScaLAPACK computational and driver 
routines (software included with Intel Cluster MKL only). 

Chapter 7 ScaLAPACK Auxiliary and Utility Routines. Describes ScaLAPACK auxiliary 
routines (software included with Intel Cluster MKL only). 

Chapter 8 Sparse Solver Routines. Describes direct sparse solver routines that solve 
symmetric and symmetrically-structured sparse matrices. 

Chapter 9 Vector Mathematical Functions. Provides descriptions of VML functions for 
computing elementary mathematical functions on vector arguments.
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Chapter 10 Vector Generators of Statistical Distributions. Provides descriptions of VSL 
functions for generating vectors of pseudorandom numbers.

Chapter 11 Discrete Fourier Transform Functions. Describes multidimensional functions 
for computing the Discrete Fourier Transform.

Chapter 12 Fast Fourier Transforms. Provides descriptions of a simplified fast Fourier 
transform (FFT) routines.

Appendix A Linear Solvers Basics. Briefly describes the basic definitions and approaches 
used in linear algebra for solving systems of linear equations.

Appendix B Routine and Function Arguments. Describes the major arguments of the BLAS 
routines and VML functions: vector and matrix arguments.

Appendix C Code Examples. Provides code examples of calling various Intel MKL  
functions and routines (BLAS, Sparse Solver, DFT).

Appendix D CBLAS Interface to the BLAS. Provides the C interface to the BLAS.

The manual also includes a Bibliography, Glossary and an Index.

Notational Conventions   

This manual uses the following notational conventions:

• Routine name shorthand (?ungqr instead of cungqr/zungqr).

• Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, character codes are represented by a question mark “?” in names of routine groups. 
The question mark is used to indicate any or all possible varieties of a function; for example:

?swap Refers to all four data types of the vector-vector ?swap routine: sswap, 
dswap, cswap, and zswap.

Font Conventions

The following font conventions are used:

UPPERCASE COURIER Data type used in the discussion of input and output parameters 
for Fortran interface. For example, CHARACTER*1.
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lowercase courier Code examples:
a(k+i,j) = matrix(i,j)

and data types for C interface, for example, const float*  

lowercase courier italic Variables in arguments and parameters discussion. For example, 
incx.

* Used as a multiplication symbol in code examples and 
equations and where required by the Fortran syntax.

lowercase courier mixed

with UpperCase courier

Function names for C interface,
for example, vmlSetMode
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BLAS and Sparse BLAS
Routines 2

This chapter contains descriptions of the BLAS and Sparse BLAS routines of the Intel® Math 
Kernel Library. The routine descriptions are arranged in four sections according to the BLAS level 
of operation: 

• “BLAS Level 1 Routines and Functions” (vector-vector operations)

• BLAS Level 2 Routines (matrix-vector operations)

• BLAS Level 3 Routines (matrix-matrix operations)

• Sparse BLAS Routines and Functions.

Each section presents the routine and function group descriptions in alphabetical order by routine 
or function group name; for example, the ?asum group, the ?axpy group. The question mark in 
the group name corresponds to different character codes indicating the data type (s, d, c, and z or 
their combination); see Routine Naming Conventions on the next page. 

When BLAS routines encounter an error, they call the error reporting routine  xerbla. To be able 
to view error reports, you must include xerbla in your code. A copy of the source code for 
xerbla is included in the library.

In BLAS Level 1 groups i?amax and i?amin, an “i” is placed before the character code and 
corresponds to the index of an element in the vector.  These groups are placed in the end of the 
BLAS Level 1 section.
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Routine Naming Conventions       
BLAS routine names have the following structure:

<character code> <name> <mod> ( )

The <character code> is a character that indicates the data type:

s real, single precision c complex, single precision

d real, double precision z complex, double precision

Some routines and functions can have combined character codes, such as 
sc or dz. For example, the function scasum uses a complex input array and returns a real value.

The <name> field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1 
routines ?dot, ?rot, ?swap compute a vector dot product, vector rotation, and vector swap, 
respectively.

In BLAS level 2 and 3, <name> reflects the matrix argument type:

ge general matrix
gb general band matrix
sy symmetric matrix
sp symmetric matrix (packed storage)
sb symmetric band matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb Hermitian band matrix
tr triangular matrix
tp triangular matrix (packed storage)
tb triangular band matrix.

The <mod> field, if present, provides additional details of the operation.
BLAS level 1 names can have the following characters in the <mod> field:

c conjugated vector
u unconjugated vector
g Givens rotation. 

BLAS level 2 names can have the following characters in the <mod> field:
mv matrix-vector product 
sv solving a system of linear equations with matrix-vector operations 
r rank-1 update of a matrix
r2 rank-2 update of a matrix.
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BLAS level 3 names can have the following characters in the <mod> field:
mm matrix-matrix product
sm solving a system of linear equations with matrix-matrix operations
rk rank-k update of a matrix
r2k rank-2k update of a matrix.

The examples below illustrate how to interpret BLAS routine names:

<d> <dot> ddot: double-precision real vector-vector dot product

<c> <dot> <c> cdotc: complex vector-vector dot product, conjugated

<sc> <asum> scasum: sum of magnitudes of vector elements, single precision real output 
and single precision complex input

<c> <dot> <u> cdotu: vector-vector dot product, unconjugated, complex

<s> <ge> <mv> sgemv: matrix-vector product, general matrix, single precision

<z> <tr> <mm> ztrmm: matrix-matrix product, triangular matrix, double-precision complex.

Sparse BLAS naming conventions are similar to those of BLAS level 1. 
For more information, see “Naming Conventions in Sparse BLAS”.

Matrix Storage Schemes
Matrix arguments of BLAS routines can use the following storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element aij 
stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more 
compactly: the upper or lower triangle of the matrix is packed by columns in a 
one-dimensional array.

• Band storage: a band matrix is stored compactly in a two-dimensional array: columns of the 
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are 
stored in rows of the array.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.
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BLAS Level 1 Routines and Functions
BLAS Level 1 includes routines and functions, which perform vector-vector operations.  Table 2-1 
lists the BLAS Level 1 routine and function groups and the data types associated with them.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

Routine or 
Function 
Group Data Types Description

?asum s, d, sc, dz Sum of vector magnitudes (functions)

?axpy s, d, c, z Scalar-vector product (routines)

?copy s, d, c, z Copy vector (routines)

?dot s, d Dot product (functions)

?sdot sd, d Dot product with extended precision 
(functions)

?dotc c, z Dot product conjugated (functions)

?dotu c, z Dot product unconjugated (functions)

?nrm2 s, d, sc, dz Vector 2-norm (Euclidean norm) a normal 
or null vector (functions)

?rot s, d, cs, zd Plane rotation of points (routines)

?rotg s, d, c, z Givens rotation of points (routines)

?rotm s, d Modified plane rotation of points

?rotmg s, d Givens modified plane rotation of points

?scal s, d, c, z, cs, zd Vector scaling (routines)

?swap s, d, c, z Vector-vector swap (routines)

i?amax s, d, c, z Vector maximum value, absolute largest 
element of a vector where i is an index to 
this value in the vector array (functions)

i?amin s, d, c, z Vector minimum value, absolute smallest 
element of a vector where i is an index to 
this value in the vector array (functions)
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?asum          
Computes the sum of magnitudes of the vector elements.

Syntax
res = sasum ( n, x, incx )

res = scasum ( n, x, incx )

res = dasum ( n, x, incx )

res = dzasum ( n, x, incx )

Description

Given a vector x, ?asum functions compute the sum of the magnitudes of its elements or, for 
complex vectors, the sum of magnitudes of the elements’ real parts plus magnitudes of their 
imaginary parts:

res = |Rex(1)| + |Imx(1)| + |Rex(2)| + |Imx(2)|+ ... + |Rex(n)| + |Imx(n)|

where x is a vector of order n.

Input Parameters

n INTEGER.  Specifies the order of vector x. 

x REAL for sasum
DOUBLE PRECISION for dasum
COMPLEX for scasum
DOUBLE COMPLEX for dzasum

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER.  Specifies the increment for the elements of x.

Output Parameters

res REAL for sasum
DOUBLE PRECISION for dasum
REAL for scasum
DOUBLE PRECISION for dzasum

Contains the sum of magnitudes of all elements’ real parts plus magnitudes of 
their imaginary parts.
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?axpy                  
Computes a vector-scalar product and adds the result 
to a vector.

Syntax
call saxpy ( n, a, x, incx, y, incy )

call daxpy ( n, a, x, incx, y, incy )

call caxpy ( n, a, x, incx, y, incy )

call zaxpy ( n, a, x, incx, y, incy )

Description

The ?axpy routines perform a vector-vector operation defined as

y := a*x + y

where:

a is a scalar

x and y are vectors of order n.

Input Parameters 

n INTEGER.  Specifies the order of vectors x and y. 

a REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Specifies the scalar a.

x REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER.  Specifies the increment for the elements of x. 
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y REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incy)). 

incy INTEGER.  Specifies the increment for the elements of y. 

Output Parameters

y Contains the updated vector y. 

?copy           
Copies vector to another vector. 

Syntax
call scopy ( n, x, incx, y, incy )

call dcopy ( n, x, incx, y, incy )

call ccopy ( n, x, incx, y, incy )

call zcopy ( n, x, incx, y, incy )

Description

The ?copy routines perform a vector-vector operation defined as

y = x

where x and y are vectors.

Input Parameters

n INTEGER.  Specifies the order of vectors x and y. 

x REAL for scopy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).
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incx INTEGER.  Specifies the increment for the elements of x. 

y REAL for scopy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER.  Specifies the increment for the elements of y. 

Output Parameters

y Contains a copy of the vector x if n is positive.  Otherwise, parameters are 
unaltered.

?dot           
Computes a vector-vector dot product.

Syntax
res = sdot ( n, x, incx, y, incy )

res = ddot ( n, x, incx, y, incy )

Description

The ?dot functions perform a vector-vector reduction operation defined as

, 

where x and y are vectors.

Input Parameters

n INTEGER.  Specifies the order of vectors x and y. 

x REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+(n-1)*abs(incx)).

incx INTEGER.  Specifies the increment for the elements of x.

res x∗ y( )�=
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y REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+(n-1)*abs(incy)). 

incy INTEGER.  Specifies the increment for the elements of y. 

Output Parameters

res REAL for sdot
DOUBLE PRECISION for ddot

Contains the result of the dot product of x and y, if n is positive.  Otherwise, 
res contains 0.

?sdot           
Computes a vector-vector dot product with extended 
precision.

Syntax
res = sdsdot ( n, sb, sx, incx, sy, incy )

res = dsdot ( n, sx, incx, sy, incy )

Description

The ?sdot functions compute the inner product of two vectors with extended precision. Both 
functions use extended precision accumulation of the intermediate results, but the function 
sdsdot outputs the final result in single precision, whereas the function dsdot outputs the 
double precision result. The function sdsdot also adds scalar value sb to the inner product.

Input Parameters

n INTEGER.  Specifies the number of elements in the input vectors sx and sy. 

sb REAL. Single precision scalar to be added to inner product (for the function 
sdsdot only). 

sx, sy REAL. Arrays, DIMENSION at least (1+(n-1)*abs(incx)) and 
(1+(n-1)*abs(incy)), respectively. Contain the input single precision 
vectors.
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incx INTEGER.  Specifies the increment for the elements 
of sx.

incy INTEGER.  Specifies the increment for the elements 
of sy. 

Output Parameters

res REAL for sdsdot
DOUBLE PRECISION for dsdot

Contains the result of the dot product of sx and sy (with sb added for 
sdsdot), if n is positive.  Otherwise, res contains sb for sdsdot and  0 for 
dsdot.

?dotc               
Computes a dot product of a conjugated vector with 
another vector.

Syntax
res = cdotc ( n, x, incx, y, incy )

res = zdotc ( n, x, incx, y, incy )

Description

The ?dotc functions perform a vector-vector operation defined as

, 

where x and y are n-element vectors.

Input Parameters

 n INTEGER.  Specifies the order of vectors x and y. 

 x COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER.  Specifies the increment for the elements of x.

res conjg x( )∗ y( )�=
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 y COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

 incy INTEGER.  Specifies the increment for the elements of y. 

Output Parameters

res COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Contains the result of the dot product of the conjugated x and unconjugated y, 
if n is positive.  Otherwise, res contains 0.

?dotu               
Computes a vector-vector dot product.

Syntax
res = cdotu ( n, x, incx, y, incy )

res = zdotu ( n, x, incx, y, incy )

Description

The ?dotu functions perform a vector-vector reduction operation defined as ,

where x and y are n-element complex vectors.

Input Parameters

n INTEGER.  Specifies the order of vectors x and y. 

x COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER.  Specifies the increment for the elements of x. 

y COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

res x∗ y( )�=
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Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER.  Specifies the increment for the elements of y.

Output Parameters

res COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Contains the result of the dot product of x and y, if n is positive.  Otherwise, 
res contains 0.

?nrm2           
Computes the Euclidean norm of a vector.

Syntax
res = snrm2 ( n, x, incx )

res = dnrm2 ( n, x, incx )

res = scnrm2 ( n, x, incx )

res = dznrm2 ( n, x, incx )

Description

The ?nrm2 functions perform a vector reduction operation defined as

res = ||x||,

where: 

x is a vector

res is a value containing the Euclidean norm of the elements of x.
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Input Parameters

 n INTEGER.  Specifies the order of vector x.

 x REAL for snrm2
DOUBLE PRECISION for dnrm2
COMPLEX for scnrm2
DOUBLE COMPLEX for dznrm2 

Array, DIMENSION at least (1 + (n-1)*abs (incx)).

 incx INTEGER.  Specifies the increment for the elements of x.

Output Parameters

res REAL for snrm2
DOUBLE PRECISION for dnrm2
REAL for scnrm2
DOUBLE PRECISION for dznrm2

Contains the Euclidean norm of the vector x.

?rot          
Performs rotation of points in the plane.

Syntax
call srot ( n, x, incx, y, incy, c, s )

call drot ( n, x, incx, y, incy, c, s )

call csrot ( n, x, incx, y, incy, c, s )

call zdrot ( n, x, incx, y, incy, c, s )

Description

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:

x(i) = c*x(i) + s*y(i)

y(i) = c*y(i) - s*x(i)
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Input Parameters

n INTEGER.  Specifies the order of vectors x and y. 

x REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1)*abs(incx)). 

incx INTEGER.  Specifies the increment for the elements of x. 

y REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1)*abs(incy)). 

incy INTEGER.  Specifies the increment for the elements of y.

c REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot

A scalar.

s REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot

A scalar.

Output Parameters

x Each element is replaced by c*x + s*y.

y Each element is replaced by c*y - s*x.
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?rotg              
Computes the parameters for a Givens rotation.

Syntax
call srotg ( a, b, c, s )

call drotg ( a, b, c, s )

call crotg ( a, b, c, s )

call zrotg ( a, b, c, s )

Description

Given the cartesian coordinates (a, b) of a point p, these routines return the parameters a, b, c, 
and s associated with the Givens rotation that zeros the y-coordinate of the point.

Input Parameters

a REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the x-coordinate of the point p.

b REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the y-coordinate of the point p. 

Output Parameters

a Contains the parameter r associated with the Givens rotation.

b Contains the parameter z associated with the Givens rotation.

c REAL for srotg
DOUBLE PRECISION for drotg
REAL for crotg
DOUBLE PRECISION for zrotg
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Contains the parameter c associated with the Givens rotation.

s REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Contains the parameter s associated with the Givens rotation.

?rotm             
Performs rotation of points in the modified plane.

Syntax
call srotm ( n, x, incx, y, incy, param )

call drotm ( n, x, incx, y, incy, param )

Description

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:

x(i) = H*x(i) + H*y(i)

y(i) = H*y(i) - H*x(i)

where:

 H is a modified Givens transformation matrix whose values are stored in the param(2) through 
param(5) array. See discussion on the param argument.

Input Parameters

n INTEGER.  Specifies the order of vectors x and y. 

x REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n-1)*abs(incx)). 

incx INTEGER.  Specifies the increment for the elements of x. 

y REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n-1)*abs(incy)). 
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incy INTEGER.  Specifies the increment for the elements of y.

param REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION 5.

The elements of the param array are:

param(1) contains a switch, flag. 
param(2-5) contain h11, h21, h12, and h22, respectively, the components of 
the array H.

Depending on the values of flag, the components of H are set as follows:

flag = -1.:  H =

flag = 0.:  H = 

flag = 1.:  H = 

flag = -2.: H =

In the above cases, the matrix entries of 1., -1., and 0.  are assumed based on 
the last three values of flag and are not actually loaded into the param vector.

Output Parameters

x Each element is replaced by h11*x + h12*y.

y Each element is replaced by h21*x + h22*y.

H Givens transformation matrix updated.

h11 h12

h21 h22

1. h12

h21 1.

h11 1.

1.– h22

1. 0.

0. 1.
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?rotmg               
Computes the modified parameters for a Givens 
rotation.

Syntax
call srotmg ( d1, d2, x1, y1, param )

call drotmg ( d1, d2, x1, y1, param )

Description

Given cartesian coordinates (x1, y1) of an input vector, these routines compute the components of 
a modified Givens transformation matrix H  that zeros the y-component of the resulting vector:

Input Parameters

d1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the x-coordinate of the input vector 
(sqrt(d1)x1).

d2 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the y-coordinate of the input vector 
(sqrt(d2)y1).

x1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the x-coordinate of the input vector.

y1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the y-coordinate of the input vector. 

x

0
H x1

y1
=
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Output Parameters

param REAL for srotmg
DOUBLE PRECISION for drotmg
Array, DIMENSION 5.

The elementsof the param array are:

param(1) contains a switch, flag. 
param(2-5) contain h11, h21, h12, and h22, respectively, the components of 
the array H.

Depending on the values of flag, the components of H are set as follows:

flag = -1.:  H =

flag = 0.:  H = 

flag = 1.:  H = 

flag = -2.:  H =

In the above cases, the matrix entries of 1., -1., and 0. are assumed based on the 
last three values of flag and are not actually loaded into the param vector.

?scal           
Computes a vector by a scalar product.

Syntax
call sscal ( n, a, x, incx )

call dscal ( n, a, x, incx )

call cscal ( n, a, x, incx )

call zscal ( n, a, x, incx )

call csscal ( n, a, x, incx )

h11 h12

h21 h22

1. h12

h21 1.

h11 1.

1.– h22

1. 0.

0. 1.
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call zdscal ( n, a, x, incx )

Description

 The ?scal routines perform a vector-vector operation defined as

x = a*x

where: 

a is a scalar, x is an n-element vector.

Input Parameters

n INTEGER.  Specifies the order of vector x.

a REAL for sscal and csscal
DOUBLE PRECISION for dscal and zdscal
COMPLEX for cscal
DOUBLE COMPLEX for zscal

Specifies the scalar a.

x REAL for sscal
DOUBLE PRECISION for dscal
COMPLEX for cscal and csscal
DOUBLE COMPLEX for zscal and csscal

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER.  Specifies the increment for the elements of x.

Output Parameters

x Overwritten by the updated vector x.

?swap          
Swaps a vector with another vector.

Syntax
call sswap ( n, x, incx, y, incy )

call dswap ( n, x, incx, y, incy )
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call cswap ( n, x, incx, y, incy )

call zswap ( n, x, incx, y, incy )

Description

Given the two complex vectors x and y, the ?swap routines return vectors y and x swapped, each 
replacing the other.

Input Parameters

n INTEGER.  Specifies the order of vectors x and y. 

x REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER.  Specifies the increment for the elements of x.

y REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap

Array, DIMENSION at least (1 + (n-1)*abs(incy)). 

incy INTEGER.  Specifies the increment for the elements of y.

Output Parameters

x Contains the resultant vector x.

y Contains the resultant vector y.

i?amax              
Finds the element of a vector that has the largest 
absolute value.

Syntax
index = isamax ( n, x, incx )
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index = idamax ( n, x, incx )

index = icamax ( n, x, incx )

index = izamax ( n, x, incx )

Description

Given a vector x, the i?amax functions return the position of the vector element x(i) that has the 
largest absolute value or, for complex flavors, the position of the element with the largest sum
 |Re x(i)| + |Im x(i)|. 

If n is not positive, 0 is returned. 

If more than one vector element is found with the same largest absolute value, the index of the first 
one encountered is returned.

Input Parameters

n INTEGER.  Specifies the order of the vector x. 

x REAL for isamax
DOUBLE PRECISION for idamax
COMPLEX for icamax
DOUBLE COMPLEX for izamax

Array, DIMENSION at least (1+(n-1)*abs(incx)). 

incx INTEGER.  Specifies the increment for the elements of x.

Output Parameters

index INTEGER.  Contains the position of vector element x that has the largest 
absolute value.

i?amin                  
Finds the element of a vector that has the smallest 
absolute value.

Syntax
index = isamin ( n, x, incx )

index = idamin ( n, x, incx )
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index = icamin ( n, x, incx )

index = izamin ( n, x, incx )

Description

Given a vector x, the i?amin functions return the position of the vector element x(i) that has the 
smallest absolute value or, for complex flavors, the position of the element with the smallest sum 
|Rex(i)| + |Imx(i)|.

If n is not positive, 0 is returned. 

If more than one vector element is found with the same smallest absolute value, the index of the 
first one encountered is returned.

Input Parameters

n INTEGER.  On entry, n specifies the order of the vector x.

x REAL for isamin
DOUBLE PRECISION for idamin
COMPLEX for icamin
DOUBLE COMPLEX for izamin

Array, DIMENSION at least (1+(n-1)*abs(incx)). 

incx INTEGER.  Specifies the increment for the elements of x.

Output Parameters

index INTEGER.  Contains the position of vector element x that has the smallest 
absolute value.
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BLAS Level 2 Routines
This section describes BLAS Level 2 routines, which perform matrix-vector operations. Table 2-2 
lists the BLAS Level 2 routine groups and the data types associated with them.

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types

Routine 
Groups

Data 
Types Description

?gbmv s, d, c, z Matrix-vector product using a general band 
matrix

?gemv s, d, c, z Matrix-vector product using a general matrix

?ger s, d Rank-1 update of a general matrix

?gerc c, z Rank-1 update of a conjugated general matrix

?geru c, z Rank-1 update of a general matrix, 
unconjugated

?hbmv c, z Matrix-vector product using a Hermitian band 
matrix

?hemv c, z Matrix-vector product using a Hermitian matrix

?her c, z Rank-1 update of a Hermitian matrix

?her2 c, z Rank-2 update of a Hermitian matrix

?hpmv c, z Matrix-vector product using a Hermitian packed 
matrix

?hpr c, z Rank-1 update of a Hermitian packed matrix

?hpr2 c, z Rank-2 update of a Hermitian packed matrix

?sbmv s, d Matrix-vector product using symmetric band 
matrix

?spmv s, d Matrix-vector product using a symmetric packed 
matrix

?spr s, d Rank-1 update of a symmetric packed matrix

?spr2 s, d Rank-2 update of a symmetric packed matrix

?symv s, d Matrix-vector product using a symmetric matrix

?syr s, d Rank-1 update of a symmetric matrix

?syr2 s, d Rank-2 update of a symmetric matrix

?tbmv s, d, c, z Matrix-vector product using a triangular band 
matrix

?tbsv s, d, c, z Linear solution of a triangular band matrix
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?gbmv                
Computes a matrix-vector product using 
a general band matrix

Syntax
call sgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, inxc, beta, y, incy )

call dgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy )

call cgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy )

call zgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy )

Description

The ?gbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y

or

y := alpha*a'*x + beta*y,

or

y := alpha*conjg(a')*x + beta*y,

where: 

alpha and beta are scalars 

x and y are vectors 

a is an m by n band matrix, with kl sub-diagonals and ku super-diagonals.

?tpmv s, d, c, z Matrix-vector product using a triangular packed 
matrix

?tpsv s, d, c, z Linear solution of a triangular packed matrix

?trmv s, d, c, z Matrix-vector product using a triangular matrix

?trsv s, d, c, z Linear solution of a triangular matrix

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types (continued)

Routine 
Groups

Data 
Types Description
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Input Parameters

trans CHARACTER*1. Specifies the operation to be performed, as follows:

m INTEGER. Specifies the number of rows of the matrix a. The value of m must 
be at least zero. 

n INTEGER. Specifies the number of columns of the matrix a. The value of n 
must be at least zero.

kl INTEGER. Specifies the number of sub-diagonals of the matrix a. The value of 
kl must satisfy 0 ≤ kl. 

ku INTEGER. Specifies the number of super-diagonals of the matrix a. The value 
of ku must satisfy 0 ≤ ku.

alpha REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Specifies the scalar alpha. 

a REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Array, DIMENSION (lda, n). Before entry, the leading (kl + ku + 1) by n 
part of the array a must contain the matrix of coefficients. This matrix must be 
supplied column-by-column, with the leading diagonal of the matrix in row 
(ku + 1) of the array, the first super-diagonal starting at position 2 in row ku, 
the first sub-diagonal starting at position 1 in row (ku + 2), and so on. 
Elements in the array a that do not correspond to elements in the band matrix 
(such as the top left ku by ku triangle) are not referenced. 

The following program segment transfers a band matrix from conventional full 
matrix storage to band storage:

trans value Operation to be Performed

N or n y:= alpha*a*x + beta*y

T or t y:= alpha*a'*x + beta*y

C or c y:= alpha*conjg(a')*x +beta*y
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do 20, j = 1, n
k = ku + 1 - j

do 10, i = max(1, j-ku), min(m, j+kl)
a(k+i, j) = matrix(i,j)

10 continue
20 continue

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least (kl + ku + 1). 

x REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)) when trans = 'N' or 
'n' and at least (1 + (m - 1)*abs(incx)) otherwise. Before entry, the 
incremented array x must contain the vector x. 

incx INTEGER. Specifies the increment for the elements of x. incx must not be 
zero. 

beta REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Specifies the scalar beta. When beta is supplied as zero, then y need not be set 
on input.

y REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (m - 1)*abs(incy)) when trans = 'N' or 
'n' and at least
(1 + (n - 1)*abs(incy)) otherwise. Before entry, the incremented array y 
must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

Output Parameters

y Overwritten by the updated vector y.
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?gemv                
Computes a matrix-vector product 
using a general matrix

Syntax
call sgemv ( trans, m, n, alpha, a, lda, x, incx, beta, y, incy )

call dgemv ( trans, m, n, alpha, a, lda, x, incx, beta, y, incy )

call cgemv ( trans, m, n, alpha, a, lda, x, incx, beta, y, incy )

call zgemv ( trans, m, n, alpha, a, lda, x, incx, beta, y, incy )

Description

The ?gemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

or

y := alpha*a'*x + beta*y,

or

y := alpha*conjg(a')*x + beta*y,

where: 

alpha and beta are scalars

x and y are vectors

a is an m by n matrix.

Input Parameters

trans CHARACTER*1. Specifies the operation to be performed, as follows:

trans value Operation to be Performed

N or n y:= alpha*a*x + beta*y

T or t y:= alpha*a'*x + beta*y

C or c y:= alpha*conjg(a')*x +beta*y
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 m INTEGER. Specifies the number of rows of the matrix a. m must be at least 
zero.

 n INTEGER. Specifies the number of columns of the matrix a. The value of n 
must be at least zero.

alpha REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Specifies the scalar alpha.

a REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Array, DIMENSION (lda, n). Before entry, the leading m by n part of the array 
a must contain the matrix of coefficients.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1, m).

x REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1+(n-1)*abs(incx)) when trans = 'N' or 
'n' and at least (1+(m - 1)*abs(incx)) otherwise. Before entry, the 
incremented array x must contain the vector x.

 incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

beta REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Specifies the scalar beta. When beta is supplied as zero, then y need not be 
set on input.
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 y REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1 + (m - 1)*abs(incy)) when trans = 'N' or 
'n' and at least (1 + (n - 1)*abs(incy)) otherwise. Before entry with 
beta non-zero, the incremented array y must contain the vector y. 

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero. 

Output Parameters

y Overwritten by the updated vector y.

?ger                
Performs a rank-1 update of a general matrix.

Syntax
call sger ( m, n, alpha, x, incx, y, incy, a, lda )

call dger ( m, n, alpha, x, incx, y, incy, a, lda )

Description

The ?ger routines perform a matrix-vector operation defined as

a := alpha*x*y' + a,

where:

alpha is a scalar

x is an m-element vector

y is an n-element vector

a is an m by n matrix.
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Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must 
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n 
must be at least zero. 

alpha REAL for sger
DOUBLE PRECISION for dger

Specifies the scalar alpha. 

x REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION at least (1 + (m - 1)*abs(incx)). Before entry, the 
incremented array x must contain the m-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

y REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y. 

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

a REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION (lda, n). Before entry, the leading m by n part of the array 
a must contain the matrix of coefficients.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1, m).

Output Parameters

a Overwritten by the updated matrix.
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?gerc                  
Performs a rank-1 update (conjugated) 
of a general matrix.

Syntax
call cgerc ( m, n, alpha, x, incx, y, incy, a, lda )

call zgerc ( m, n, alpha, x, incx, y, incy, a, lda )

Description

The ?gerc routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + a,

where: 

alpha is a scalar

x is an m-element vector

y is an n-element vector

a is an m by n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must 
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n 
must be at least zero.

alpha SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Specifies the scalar alpha.

x SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Array, DIMENSION at least (1 + (m - 1)*abs(incx)). Before entry, the 
incremented array x must contain the m-element vector x.
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incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

y COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y  must contain the n-element vector y. 

incy INTEGER. Specifies the increment for the elements of y. The value of incy  
must not be zero.

a COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION (lda, n). Before entry, the leading m by n part of the array 
a must contain the matrix of coefficients. 

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1, m).

Output Parameters

a Overwritten by the updated matrix.

?geru                 
Performs a rank-1 update (unconjugated) of a general 
matrix.

Syntax
call cgeru ( m, n, alpha, x, incx, y, incy, a, lda )

call zgeru ( m, n, alpha, x, incx, y, incy, a, lda )

Description

The ?geru routines perform a matrix-vector operation defined as

a:= alpha*x*y' + a,

where:

alpha is a scalar
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x is an m-element vector

y is an n-element vector

a is an m by n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must 
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n 
must be at least zero. 

alpha COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Specifies the scalar alpha.

x COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (m - 1)*abs(incx)). Before entry, the 
incremented array x  must contain the m-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx  
must not be zero.

y COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y  must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

a COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION (lda, n). Before entry, the leading m by n part of the array 
a must contain the matrix of coefficients. 

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1, m).

Output Parameters

a Overwritten by the updated matrix.
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?hbmv                
Computes a matrix-vector product using a Hermitian 
band matrix.

Syntax
call chbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y, incy )

call zhbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y, incy )

Description

The ?hbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where: 

alpha and beta are scalars

x and y are n-element vectors

a is an n by n Hermitian band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
band matrix a is being supplied, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

k INTEGER. Specifies the number of super-diagonals of the matrix a. The value 
of k must satisfy 0 ≤ k.

alpha COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is being 
supplied.

L or l The lower triangular part of matrix a is being 
supplied.
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Specifies the scalar alpha.

a COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION (lda, n). Before entry with 
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain 
the upper triangular band part of the Hermitian matrix. The matrix must be 
supplied column-by-column, with the leading diagonal of the matrix in row (k 
+ 1) of the array, the first super-diagonal starting at position 2 in row k, and so 
on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a 
Hermitian band matrix from conventional full matrix storage to band storage:

do 20, j = 1, n
m = k + 1 - j
do 10, i = max(1, j - k), j
a(m + i, j) = matrix(i, j)
10 continue

20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower triangular band part of 
the Hermitian matrix, supplied column-by-column, with the leading diagonal 
of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 
in row 2, and so on. The bottom right k by k triangle of the array a is not 
referenced.

The following program segment transfers the lower triangular part of a 
Hermitian band matrix from conventional full matrix storage to band storage:

do 20, j = 1, n
m = 1 - j
do 10, i = j, min( n, j + k )
a( m + i, j ) = matrix( i, j )
10 continue

20 continue

The imaginary parts of the diagonal elements need not be set and are assumed 
to be zero.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least (k + 1).

x COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
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Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

beta COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Specifies the scalar beta.

y COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?hemv                
Computes a matrix-vector product 
using a Hermitian matrix.

Syntax
call chemv ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )

call zhemv ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )

Description

The ?hemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where: 

alpha and beta are scalars
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x and y are n-element vectors

a is an n by n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar alpha. 

a COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular part of the array a  
must contain the upper triangular part of the Hermitian matrix and the strictly 
lower triangular part of a is not referenced. Before entry with
uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must 
contain the lower triangular part of the Hermitian matrix and the strictly upper 
triangular part of a is not referenced. 

The imaginary parts of the diagonal elements need not be set and are assumed 
to be zero. 

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1, n). 

x COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x. 

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be 
referenced.

L or l The lower triangular part of array a is to be 
referenced.
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incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

beta COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar beta. When beta is supplied as zero then y need not be 
set on input. 

y COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y. 

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero. 

Output Parameters

y Overwritten by the updated vector y.

?her                   
Performs a rank-1 update of a Hermitian matrix.

Syntax
call cher ( uplo, n, alpha, x, incx, a, lda )

call zher ( uplo, n, alpha, x, incx, a, lda )

Description

The ?her routines perform a matrix-vector operation defined as

a := alpha*x*conjg(x') + a,

where: 

alpha is a real scalar

x is an n-element vector

a is an n by n Hermitian matrix.



2-40

2 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n  must be at least 
zero. 

alpha REAL for cher
DOUBLE PRECISION for zher

Specifies the scalar alpha.

x COMPLEX for cher
DOUBLE COMPLEX for zher

Array, dimension at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx  
must not be zero.

a COMPLEX for cher
DOUBLE COMPLEX for zher

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must 
contain the upper triangular part of the Hermitian matrix and the strictly lower 
triangular part of a is not referenced. 

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part 
of the array a must contain the lower triangular part of the Hermitian matrix 
and the strictly upper triangular part of a is not referenced. 

The imaginary parts of the diagonal elements need not be set and are assumed 
to be zero.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1, n). 

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be 
referenced.

L or l The lower triangular part of array a is to be 
referenced.
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Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten 
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten 
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

?her2                 
Performs a rank-2 update of a Hermitian matrix.

Syntax
call cher2 ( uplo, n, alpha, x, incx, y, incy, a, lda )

call zher2 ( uplo, n, alpha, x, incx, y, incy, a, lda )

Description

The ?her2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,

where: 

alpha is a scalar

x and y are n-element vectors

a is an n by n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be 
referenced.

L or l The lower triangular part of array a is to be 
referenced.
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n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha COMPLEX for cher2
DOUBLE COMPLEX for zher2

Specifies the scalar alpha. 

x COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

y COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

a COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must 
contain the upper triangular part of the Hermitian matrix and the strictly lower 
triangular part of a is not referenced. 

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part 
of the array a must contain the lower triangular part of the Hermitian matrix 
and the strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed 
to be zero.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1, n).

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten 
by the upper triangular part of the updated matrix.
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With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten 
by the lower triangular part of the updated matrix. 

The imaginary parts of the diagonal elements are set to zero.

?hpmv                
Computes a matrix-vector product using a Hermitian 
packed matrix.

Syntax
call chpmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )

call zhpmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )

Description

The ?hpmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in 
ap.

L or l The lower triangular part of matrix a is supplied in 
ap.
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alpha COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Specifies the scalar alpha.

ap COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U' 
or 'u', the array ap must contain the upper triangular part of the Hermitian 
matrix packed sequentially, column-by-column, so that ap(1) contains a(1, 
1), ap(2) and ap(3) contain a(1, 2) and a(2, 2) respectively, and so on. 
Before entry with uplo = 'L' or 'l', the array ap must contain the lower 
triangular part of the Hermitian matrix packed sequentially, 
column-by-column, so that ap(1) contains a(1, 1), ap(2) and ap(3) 
contain a(2, 1) and a(3, 1) respectively, and so on. 

The imaginary parts of the diagonal elements need not be set and are assumed 
to be zero.

x COMPLEX for chpmv
DOUBLE PRECISION COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x. 

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

beta COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Specifies the scalar beta. When beta is supplied as zero then y need not be 
set on input.

y COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

Output Parameters

y Overwritten by the updated vector y
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?hpr                   
Performs a rank-1 update of a Hermitian packed 
matrix.

Syntax
call chpr ( uplo, n, alpha, x, incx, ap )

call zhpr ( uplo, n, alpha, x, incx, ap )

Description

The?hpr routines perform a matrix-vector operation defined as

a := alpha*x*conjg(x') + a,

where:

alpha is a real scalar

x is an n-element vector

a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
matrix a is supplied in the packed array ap, as follows:

 n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha REAL for chpr
DOUBLE PRECISION for zhpr

Specifies the scalar alpha.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in 
ap.

L or l The lower triangular part of matrix a is supplied in 
ap.
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x COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x. 

incx INTEGER. Specifies the increment for the elements of x. incx must not be 
zero.

ap COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U' 
or 'u', the array ap must contain the upper triangular part of the Hermitian 
matrix packed sequentially, column-by-column, so that ap(1) contains a(1, 
1), ap(2) and ap(3) contain a(1, 2) and a(2, 2) respectively, and so on. 

Before entry with uplo = 'L' or 'l', the array ap must contain the lower 
triangular part of the Hermitian matrix packed sequentially, 
column-by-column, so that ap(1) contains a(1, 1), ap(2) and ap(3) 
contain a(2, 1) and a(3, 1) respectively, and so on. 

The imaginary parts of the diagonal elements need not be set and are assumed 
to be zero. 

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the 
updated matrix. 

With uplo = 'L' or 'l', overwritten by the lower triangular part of the 
updated matrix. 

The imaginary parts of the diagonal elements are set to zero.

?hpr2                 
Performs a rank-2 update of a Hermitian packed 
matrix.

Syntax
call chpr2 ( uplo, n, alpha, x, incx, y, incy, ap )
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call zhpr2 ( uplo, n, alpha, x, incx, y, incy, ap )

Description

The?hpr2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,

where:

alpha is a scalar

x and y are n-element vectors

a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
matrix a is supplied in the packed array ap, as follows

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Specifies the scalar alpha.

x COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, dimension at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

y COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in 
ap.

L or l The lower triangular part of matrix a is supplied in 
ap.
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Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

ap COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U' 
or 'u', the array ap must contain the upper triangular part of the Hermitian 
matrix packed sequentially, column-by-column, so that ap(1) contains a(1, 
1), ap(2) and ap(3) contain a(1, 2) and a(2, 2) respectively, and so on. 

Before entry with uplo = 'L' or 'l', the array ap must contain the lower 
triangular part of the Hermitian matrix packed sequentially, 
column-by-column, so that ap(1) contains a(1, 1), ap(2) and ap(3) 
contain a(2, 1) and a(3, 1) respectively, and so on. 

The imaginary parts of the diagonal elements need not be set and are assumed 
to be zero.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the 
updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the 
updated matrix. 

The imaginary parts of the diagonal elements need are set to zero.

?sbmv                
Computes a matrix-vector product using a symmetric 
band matrix.

Syntax
call ssbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y, incy )

call dsbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y, incy )
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Description

The ?sbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n symmetric band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
band matrix a is being supplied, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

k INTEGER. Specifies the number of super-diagonals of the matrix a. The value 
of k must satisfy 0 ≤ k.

alpha REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar alpha. 

a REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain 
the upper triangular band part of the symmetric matrix, supplied 
column-by-column, with the leading diagonal of the matrix in row (k + 1) of 
the array, the first super-diagonal starting at position 2 in row k, and so on. The 
top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a 
symmetric band matrix from conventional full matrix storage to band storage:

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied.

L or l The lower triangular part of matrix a is supplied.



2-50

2 Intel® Math Kernel Library Reference Manual

do 20, j = 1, n
m = k + 1 - j
do 10, i = max( 1, j - k ), j
a( m + i, j ) = matrix( i, j )
10 continue

20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower triangular band part of 
the symmetric matrix, supplied column-by-column, with the leading diagonal 
of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 
in row 2, and so on. The bottom right k by k triangle of the array a is not 
referenced.

The following program segment transfers the lower triangular part of a 
symmetric band matrix from conventional full matrix storage to band storage:

do 20, j = 1, n
m = 1 - j
do 10, i = j, min( n, j + k )
a( m + i, j ) = matrix( i, j )
10 continue

20 continue

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least (k + 1).

x REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

beta REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar beta. 

y REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the vector y. 
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incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?spmv       
Computes a matrix-vector product 
using a symmetric packed matrix.

Syntax
call sspmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )

call dspmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )

Description

The ?spmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
matrix a is supplied in the packed array ap, as follows:

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in 
ap.

L or l The lower triangular part of matrix a is supplied in 
ap.
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n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar alpha. 

ap REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U' 
or 'u', the array ap must contain the upper triangular part of the symmetric 
matrix packed sequentially, column-by-column, so that ap(1) contains a(1, 
1), ap(2) and ap(3) contain a(1, 2) and a(2, 2) respectively, and so on. 
Before entry with uplo = 'L' or 'l', the array ap must contain the lower 
triangular part of the symmetric matrix packed sequentially, 
column-by-column, so that ap(1) contains a(1, 1), ap(2) and ap(3) 
contain a(2, 1) and a(3, 1) respectively, and so on.

x REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

beta REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar beta. When beta is supplied as zero, then y need not be 
set on input.

y REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

Output Parameters

y Overwritten by the updated vector y.
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?spr       
Performs a rank-1 update 
of a symmetric packed matrix.

Syntax
call sspr( uplo, n, alpha, x, incx, ap )

call dspr( uplo, n, alpha, x, incx, ap )

Description

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*x' + a,

where:

alpha is a real scalar

x is an n-element vector

a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
matrix a is supplied in the packed array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha REAL for sspr
DOUBLE PRECISION for dspr

Specifies the scalar alpha.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in 
ap.

L or l The lower triangular part of matrix a is supplied in 
ap.
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x REAL for sspr
DOUBLE PRECISION for dspr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

ap REAL for sspr
DOUBLE PRECISION for dspr

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U' 
or 'u', the array ap must contain the upper triangular part of the symmetric 
matrix packed sequentially, column-by-column, so that ap(1) contains 
a(1,1), ap(2) and ap(3) contain a(1, 2) and a(2,2) respectively, and so 
on. 

Before entry with uplo = 'L' or 'l', the array ap must contain the lower 
triangular part of the symmetric matrix packed sequentially, 
column-by-column, so that ap(1) contains a(1,1), ap(2)and 
ap(3)contain a(2,1) and a(3,1) respectively, and so on. 

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the 
updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the 
updated matrix.

?spr2                 
Performs a rank-2 update 
of a symmetric packed matrix.

Syntax
call sspr2( uplo, n, alpha, x, incx, y, incy, ap )

call dspr2( uplo, n, alpha, x, incx, y, incy, ap )
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Description

The ?spr2 routines perform a matrix-vector operation defined as

a:= alpha*x*y' + alpha*y*x' + a,

where:

alpha is a scalar

x and y are n-element vectors

a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha REAL for sspr2
DOUBLE PRECISION for dspr2

Specifies the scalar alpha.

x REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

y REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in 
ap.

L or l The lower triangular part of matrix a is supplied in 
ap.
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incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

ap REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U' 
or 'u', the array ap must contain the upper triangular part of the symmetric 
matrix packed sequentially, column-by-column, so that ap(1) contains 
a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2) respectively, and so 
on. 

Before entry with uplo = 'L' or 'l', the array ap must contain the lower 
triangular part of the symmetric matrix packed sequentially, 
column-by-column, so that ap(1) contains a(1,1), ap(2) and ap(3) 
contain a(2,1) and a(3,1) respectively, and so on. 

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the 
updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the 
updated matrix.

?symv                
Computes a matrix-vector product 
for a symmetric matrix.

Syntax
call ssymv ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )

call dsymv ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )

Description

The ?symv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:
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alpha and beta are scalars

x and y are n-element vectors

a is an n by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha REAL for ssymv
DOUBLE PRECISION for dsymv

Specifies the scalar alpha.

a REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION (lda, n). Before entry with 
uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must 
contain the upper triangular part of the symmetric matrix and the strictly lower 
triangular part of a is not referenced. Before entry with 
uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must 
contain the lower triangular part of the symmetric matrix and the strictly upper 
triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1,n).

x REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x  must contain the n-element vector x.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be 
referenced.

L or l The lower triangular part of array a is to be 
referenced.
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incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

beta REAL for ssymv
DOUBLE PRECISION for dsymv

Specifies the scalar beta. When beta is supplied as zero, then y need not be 
set on input.

y REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y. 

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?syr                   
Performs a rank-1 update of a symmetric matrix.

Syntax
call ssyr( uplo, n, alpha, x, incx, a, lda )

call dsyr( uplo, n, alpha, x, incx, a, lda )

Description

The ?syr routines perform a matrix-vector operation defined as

a := alpha*x*x' + a,

where:

alpha is a real scalar

x is an n-element vector

a is an n by n symmetric matrix.
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Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha REAL for ssyr
DOUBLE PRECISION for dsyr

Specifies the scalar alpha.

x REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

a REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION (lda, n). Before entry with 
uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must 
contain the upper triangular part of the symmetric matrix and the strictly lower 
triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part 
of the array a must contain the lower triangular part of the symmetric matrix 
and the strictly upper triangular part of a is not referenced. 

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1,n).

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be 
referenced.

L or l The lower triangular part of array a is to be 
referenced.
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Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten 
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten 
by the lower triangular part of the updated matrix.

?syr2                 
Performs a rank-2 update of symmetric matrix.

Syntax
call ssyr2( uplo, n, alpha, x, incx, y, incy, a, lda )

call dsyr2( uplo, n, alpha, x, incx, y, incy, a, lda )

Description

The ?syr2 routines perform a matrix-vector operation defined as

a := alpha*x*y' + alpha*y*x' + a,

where:

alpha is a scalar

x and y are n-element vectors

a is an n by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be 
referenced.

L or l The lower triangular part of array a is to be 
referenced.
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n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha REAL for ssyr2
DOUBLE PRECISION for dsyr2

Specifies the scalar alpha. 

x REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

y REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

a REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION (lda, n). Before entry with 
uplo = 'U' or 'u', the leading n by n upper triangular part of the array a
must contain the upper triangular part of the symmetric matrix and the strictly 
lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part 
of the array a must contain the lower triangular part of the symmetric matrix 
and the strictly upper triangular part of a is not referenced. 

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1,n).
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Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten 
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten 
by the lower triangular part of the updated matrix.

?tbmv                
Computes a matrix-vector product 
using a triangular band matrix.

Syntax
call stbmv ( uplo, trans, diag, n, k, a, lda, x, incx )

call dtbmv ( uplo, trans, diag, n, k, a, lda, x, incx )

call ctbmv ( uplo, trans, diag, n, k, a, lda, x, incx )

call ztbmv ( uplo, trans, diag, n, k, a, lda, x, incx )

Description

The ?tbmv routines perform one of the matrix-vector operations defined as

x := a*x, or x := a'*x, or x := conjg(a')*x,

where:

x is an n-element vector

a is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:
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trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

k INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of 
super-diagonals of the matrix a. On entry with uplo = 'L' or 'l', k specifies 
the number of sub-diagonals of the matrix a. The value of k must satisfy 0 ≤ k. 

a REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain 
the upper triangular band part of the matrix of coefficients, supplied 
column-by-column, with the leading diagonal of the matrix in row (k + 1) of 
the array, the first super-diagonal starting at position 2 in row k, and so on. The 
top left k by k triangle of the array a is not referenced. The following program 
segment transfers an upper triangular band matrix from conventional full 
matrix storage to band storage:

do 20, j = 1, n
m = k + 1 - j

do 10, i = max(1, j - k), j

uplo value Matrix a 

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation to be Performed

N or n x := a*x

T or t x := a'*x

C or c x := conjg(a')*x

diag value Matrix a 

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.
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a(m + i, j) = matrix(i, j)
10 continue
20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower triangular band part of 
the matrix of coefficients, supplied column-by-column, with the leading 
diagonal of the matrix in row1 of the array, the first sub-diagonal starting at 
position 1 in row 2, and so on. The bottom right k by k triangle of the array a is 
not referenced. The following program segment transfers a lower triangular 
band matrix from conventional full matrix storage to band storage:

                do 20, j = 1, n
m = 1 - j
do 10, i = j, min(n, j + k)
a(m + i, j) = matrix (i, j)

10 continue
20 continue

          Note that when diag = 'U' or 'u', the elements of the array a corresponding 
to the diagonal elements of the matrix are not referenced, but are assumed to be 
unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least (k + 1). 

x REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv

Array, DIMENSION at least  (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x. 

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

Output Parameters

x Overwritten with the transformed vector x.
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?tbsv            
Solves a system of linear equations whose coefficients 
are in a triangular band matrix.

Syntax
call stbsv ( uplo, trans, diag, n, k, a, lda, x, incx )

call dtbsv ( uplo, trans, diag, n, k, a, lda, x, incx )

call ctbsv ( uplo, trans, diag, n, k, a, lda, x, incx )

call ztbsv ( uplo, trans, diag, n, k, a, lda, x, incx )

Description

The ?tbsv routines solve one of the following systems of equations:

a*x = b, or a'*x = b, or conjg(a')*x = b,

where:

b and x are n-element vectors

a is an n by n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals.

The routine does not test for singularity or near-singularity. Such tests must be performed before 
calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed, as follows:

uplo value Matrix a 

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation to be Performed

N or n a*x = b
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diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

k INTEGER. On entry with uplo  = 'U' or 'u', k specifies the number of 
super-diagonals of the matrix a. On entry with uplo = 'L' or 'l', k specifies 
the number of sub-diagonals of the matrix a. The value of k must satisfy 0 ≤ k. 

a REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv

Array,  DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain 
the upper triangular band part of the matrix of coefficients, supplied 
column-by-column, with the leading diagonal of the matrix in row (k + 1) of 
the array, the first super-diagonal starting at position 2 in row k, and so on. The 
top left k by k triangle of the array a is not referenced.

The following program segment transfers an upper triangular band matrix from 
conventional full matrix storage to band storage:

do 20, j = 1, n
m = k + 1 - j
do 10, i = max(1, j - k), j
a(m + i, j) = matrix (i, j)

10 continue
20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower triangular band part of 
the matrix of coefficients, supplied column-by-column, with the leading 

T or t a'*x = b

C or c conjg(a')*x = b

diag value Matrix a 

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

trans value Operation to be Performed
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diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at 
position 1 in row 2, and so on. The bottom right k by k triangle of the array a is 
not referenced.

The following program segment transfers a lower triangular band matrix from 
conventional full matrix storage to band storage:

do 20, j = 1, n
m = 1 - j
do 10, i = j, min(n, j + k)
a(m + i, j) = matrix (i, j)

10 continue
20 continue

When diag  = 'U' or 'u', the elements of the array a corresponding to the 
diagonal elements of the matrix are not referenced, but are assumed to be unity. 

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least (k + 1).

x REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element right-hand side vector b. 

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

Output Parameters

x Overwritten with the solution vector x.

?tpmv       
Computes a matrix-vector product 
using a triangular packed matrix.

Syntax
call stpmv ( uplo, trans, diag, n, ap, x, incx )
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call dtpmv ( uplo, trans, diag, n, ap, x, incx )

call ctpmv ( uplo, trans, diag, n, ap, x, incx )

call ztpmv ( uplo, trans, diag, n, ap, x, incx )

Description

The ?tpmv routines perform one of the matrix-vector operations defined as

x := a*x, or x := a'*x, or x := conjg(a')*x,

where:

x is an n-element vector

a is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

uplo value Matrix a 

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n x := a*x

T or t x := a'*x

C or c x := conjg(a')*x

diag value Matrix a 

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.
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ap REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U' 
or 'u', the array ap must contain the upper triangular matrix packed 
sequentially, column-by-column, so that ap(1) contains a(1,1), ap(2) and 
ap(3) contain a(1,2) and a(2,2) respectively, and so on. Before entry with 
uplo = 'L' or 'l', the array ap must contain the lower triangular matrix 
packed sequentially, column-by-column, so that ap(1) contains a(1,1), 
ap(2) and ap(3) contain a(2,1) and a(3,1) respectively, and so on. When 
diag = 'U' or 'u', the diagonal elements of a are not referenced, but are 
assumed to be unity.

x REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

Output Parameters

x Overwritten with the transformed vector x.

?tpsv            
Solves a system of linear equations whose coefficients 
are in a triangular packed matrix.

Syntax
call stpsv ( uplo, trans, diag, n, ap, x, incx )

call dtpsv ( uplo, trans, diag, n, ap, x, incx )

call ctpsv ( uplo, trans, diag, n, ap, x, incx )

call ztpsv ( uplo, trans, diag, n, ap, x, incx )
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Description

The ?tpsv routines solve one of the following systems of equations

a*x = b, or a'*x = b, or conjg(a')*x = b,

where:

b and x are n-element vectors

a is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

This routine does not test for singularity or near-singularity. Such tests must be performed before 
calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

uplo value Matrix a 

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n a*x = b

T or t a'*x = b

C or c conjg(a')*x = b

diag value Matrix a 

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.
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ap REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U' 
or 'u', the array ap must contain the upper triangular matrix packed 
sequentially, column-by-column, so that ap(1) contains a(1, 1), ap(2) and 
ap(3) contain a(1, 2) and a(2, 2) respectively, and so on. Before entry 
with uplo = 'L' or 'l', the array ap must contain the lower triangular matrix 
packed sequentially, column-by-column, so that ap(1) contains a(1, 1), 
ap(2) and ap(3) contain a(2, 1) and a(3, 1) respectively, and so on. When 
diag = 'U' or 'u', the diagonal elements of a are not referenced, but are 
assumed to be unity.

x REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element right-hand side vector b.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

Output Parameters

x Overwritten with the solution vector x.

?trmv                
Computes a matrix-vector product 
using a triangular matrix.

Syntax
call strmv ( uplo, trans, diag, n, a, lda, x, incx )

call dtrmv ( uplo, trans, diag, n, a, lda, x, incx )

call ctrmv ( uplo, trans, diag, n, a, lda, x, incx )

call ztrmv ( uplo, trans, diag, n, a, lda, x, incx )
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Description

The ?trmv routines perform one of the following matrix-vector operations defined as

x := a*x or x := a'*x or x := conjg(a')*x,

where:

x is an n-element vector

a is an n by n unit, or non-unit, upper or lower triangular matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

a REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv

uplo value Matrix a 

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n x := a*x

T or t x := a'*x

C or c x := conjg(a')*x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.
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 Array, DIMENSION (lda,n). Before entry with 
uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must 
contain the upper triangular matrix and the strictly lower triangular part of a is 
not referenced. Before entry with uplo = 'L' or 'l', the leading n by n lower 
triangular part of the array a must contain the lower triangular matrix and the 
strictly upper triangular part of a is not referenced. When 
diag = 'U' or 'u', the diagonal elements of a are not referenced either, but 
are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1, n).

x REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x. 

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

Output Parameters

x Overwritten with the transformed vector x.

?trsv            
Solves a system of linear equations whose coefficients 
are in a triangular matrix.

Syntax
call strsv ( uplo, trans, diag, n, a, lda, x, incx )

call dtrsv ( uplo, trans, diag, n, a, lda, x, incx )

call ctrsv ( uplo, trans, diag, n, a, lda, x, incx )

call ztrsv ( uplo, trans, diag, n, a, lda, x, incx )
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Description

The?trsv routines solve one of the systems of equations:

a*x = b or a'*x = b, or conjg(a')*x = b,

where:

b and x are n-element vectors

a is an n by n unit, or non-unit, upper or lower triangular matrix.

The routine does not test for singularity or near-singularity. Such tests must be performed before 
calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

uplo value Matrix a 

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n a*x = b

T or t a'*x = b

C or c conjg(a')*x = b

diag value Matrix a 

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.
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a REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv

Array, DIMENSION (lda,n). Before entry with 
uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must 
contain the upper triangular matrix and the strictly lower triangular part of a is 
not referenced. Before entry with uplo = 'L' or 'l', the leading n by n lower 
triangular part of the array a must contain the lower triangular matrix and the 
strictly upper triangular part of a is not referenced. When diag = 'U' or 'u', 
the diagonal elements of a are not referenced either, but are assumed to be 
unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1, n).

x REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element right-hand side vector b. 

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

Output Parameters

x Overwritten with the solution vector x.
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BLAS Level 3 Routines
BLAS Level 3 routines perform matrix-matrix operations. Table 2-3 lists the BLAS Level 3 
routine groups and the data types associated with them.

Symmetric Multiprocessing Version of Intel® MKL

Many applications spend considerable time for executing BLAS level 3 routines. This time can be 
scaled by the number of processors available on the system through using the symmetric 
multiprocessing (SMP) feature built into the Intel MKL Library. The performance enhancements 
based on the parallel use of the processors are available without any programming effort on your 
part.

To enhance performance, the library uses the following methods:

• The operation of BLAS level 3 matrix-matrix functions permits to restructure the code in a 
way which increases the localization of data reference, enhances cache memory use, and 
reduces the dependency on the memory bus.

• Once the code has been effectively blocked as described above, one of the matrices is 
distributed across the processors to be multiplied by the second matrix. Such distribution 
ensures effective cache management which reduces the dependency on the memory bus 
performance and brings good scaling results.

Table 2-3 BLAS Level 3 Routine Groups and Their Data Types

Routine 
Group

Data 
Types Description

?gemm s, d, c, z Matrix-matrix product of general matrices

?hemm c, z Matrix-matrix product of Hermitian matrices

?herk c, z Rank-k update of Hermitian matrices

?her2k c, z Rank-2k update of Hermitian matrices

?symm s, d, c, z Matrix-matrix product of symmetric matrices

?syrk s, d, c, z Rank-k update of symmetric matrices

?syr2k s, d, c, z Rank-2k update of symmetric matrices

?trmm s, d, c, z Matrix-matrix product of triangular matrices

?trsm s, d, c, z Linear matrix-matrix solution for triangular 
matrices
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?gemm                     
Computes a scalar-matrix-matrix product and adds the 
result to a scalar-matrix product.

Syntax
call sgemm (transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call dgemm (transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call cgemm (transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call zgemm (transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

Description

The ?gemm routines perform a matrix-matrix operation with general matrices. The operation is 
defined as

c := alpha*op(a)*op(b) + beta*c,

where:

op(x) is one of op(x) = x or op(x) = x' or op(x) = conjg(x'),

alpha and beta are scalars

a, b and c are matrices:

op(a) is an m by k matrix

op(b) is a k by n matrix

c is an m by n matrix.

Input Parameters

transa CHARACTER*1. Specifies the form of op(a) to be used in the matrix 
multiplication as follows:

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')
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transb CHARACTER*1. Specifies the form of op(b) to be used in the matrix 
multiplication as follows:

m INTEGER. Specifies the number of rows of the matrix op(a) and of the matrix 
c. The value of m must be at least zero. 

n INTEGER. Specifies the number of columns of the matrix op(b) and the 
number of columns of the matrix c. The value of n must be at least zero.

k INTEGER. Specifies the number of columns of the matrix op(a) and the 
number of rows of the matrix op(b). The value of k must be at least zero.

alpha REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Specifies the scalar alpha.

a REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Array, DIMENSION (lda, ka), where ka is k when transa = 'N' or 'n', 
and is m otherwise. Before entry with transa = 'N' or 'n', the leading m by k
part of the array a must contain the matrix a, otherwise the leading k by m part 
of the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. When transa = 'N' or 'n', then lda must be at least max(1, 
m), otherwise lda must be at least max(1, k).

b REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

transb value Form of op(b)

N or n op(b) = b

T or t op(b) = b'

C or c op(b) = conjg(b')
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Array, DIMENSION (ldb, kb), where kb is n when transb = 'N' or 'n', 
and is k otherwise. Before entry with transb = 'N' or 'n', the leading k by n 
part of the array b must contain the matrix b, otherwise the leading n by k part 
of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling 
(sub)program. When transb = 'N' or 'n', then ldb must be at least max(1, 
k), otherwise ldb must be at least max(1, n).

beta REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Specifies the scalar beta. When beta is supplied as zero, then c need not be 
set on input.

c REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Array, DIMENSION (ldc, n). Before entry, the leading m by n part of the array 
c must contain the matrix c, except when beta is zero, in which case c need 
not be set on entry.

ldc INTEGER. Specifies the first dimension of c as declared in the calling 
(sub)program. The value of ldc must be at least max(1, m). 

Output Parameters

c Overwritten by the m by n matrix (alpha*op(a)*op(b) + beta*c).

?hemm                        
Computes a scalar-matrix-matrix product (either one of 
the matrices is Hermitian) and adds the result to 
scalar-matrix product.

Syntax
call chemm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc )
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call zhemm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc )

Description

The ?hemm routines perform a matrix-matrix operation using Hermitian matrices. The operation is 
defined as

c := alpha*a*b + beta*c

or

c := alpha*b*a + beta*c,

where:

alpha and beta are scalars

a is an Hermitian matrix

b and c are m by n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the Hermitian matrix a appears on the left or 
right in the operation as follows:

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
Hermitian matrix a is to be referenced as follows:

m INTEGER. Specifies the number of rows of the matrix c. The value of m must 
be at least zero.

n INTEGER. Specifies the number of columns of the matrix c. The value of n 
must be at least zero.

side value Operation To Be Performed

L or l c := alpha*a*b + beta*c

R or r c := alpha*b*a + beta*c

uplo value Part of Matrix a To Be Referenced

U or u Only the upper triangular part of the Hermitian 
matrix is to be referenced.

L or l Only the lower triangular part of the Hermitian 
matrix is to be referenced.
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alpha COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar alpha.

a COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (lda,ka), where ka is m when side = 'L' or 'l' and is 
n otherwise. Before entry with side = 'L' or 'l', the m by m part of the array 
a must contain the Hermitian matrix, such that when
uplo = 'U' or 'u', the leading m by m upper triangular part of the array a must 
contain the upper triangular part of the Hermitian matrix and the strictly lower 
triangular part of a is not referenced, and when uplo = 'L' or 'l', the leading 
m by m lower triangular part of the array a must contain the lower triangular 
part of the Hermitian matrix, and the strictly upper triangular part of a is not 
referenced. Before entry with side = 'R' or 'r', the n by n part of the array a 
must contain the Hermitian matrix, such that when uplo = 'U' or 'u', the 
leading n by n upper triangular part of the array a must contain the upper 
triangular part of the Hermitian matrix and the strictly lower triangular part of 
a is not referenced, and when uplo = 'L' or 'l', the leading n by n lower 
triangular part of the array a must contain the lower triangular part of the 
Hermitian matrix, and the strictly upper triangular part of a is not referenced. 
The imaginary parts of the diagonal elements need not be set, they are assumed 
to be zero.

lda INTEGER. Specifies the first dimension of a as declared in the calling (sub) 
program. When side = 'L' or 'l' then lda must be at least max(1, m), 
otherwise lda must be at least max(1,n).

b COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (ldb,n). Before entry, the leading m by n part of the array 
b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling 
(sub)program. The value of ldb must be at least max(1, m).
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beta COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar beta. When beta is supplied as zero, then c need not be 
set on input.

c COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (c, n). Before entry, the leading m by n part of the array c
must contain the matrix c, except when beta is zero, in which case c need not 
be set on entry.

ldc INTEGER. Specifies the first dimension of c as declared in the calling 
(sub)program. The value of ldc must be at least max(1,m).

Output Parameters

c Overwritten by the m by n updated matrix.

?herk                   
Performs a rank-n update of a Hermitian matrix.

Syntax
call cherk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc )

call zherk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc )

Description

The ?herk routines perform a matrix-matrix operation using Hermitian matrices. The operation is 
defined as

c := alpha*a*conjg(a') + beta*c,

or

c := alpha*conjg(a')*a + beta*c,

where:

alpha and beta are real scalars

c is an n by n Hermitian matrix
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a is an n by k matrix in the first case and a k by n matrix in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
array c is to be referenced as follows:

trans CHARACTER*1. Specifies the operation to be performed as follows:

n INTEGER. Specifies the order of the matrix c. The value of n must be at least 
zero.

k INTEGER. With trans = 'N' or 'n', k specifies the number of columns of the 
matrix a, and with
trans = 'C' or 'c', k specifies the number of rows of the matrix a. The value 
of k must be at least zero.

alpha REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar alpha.

a COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and 
is n otherwise. Before entry with trans = 'N' or 'n', the leading n by k part 
of the array a must contain the matrix a, otherwise the leading k by n part of 
the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. When trans = 'N' or 'n', then lda must be at least max(1, 
n), otherwise lda must be at least max(1, k).

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of C is to be 
referenced.

L or l Only the lower triangular part of C is to be 
referenced.

trans value Operation to be Performed

N or n c:= alpha*a*conjg(a')+beta*c

C or c c:= alpha*conjg(a')*a+beta*c
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beta REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar beta.

c COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular part of the array c must 
contain the upper triangular part of the Hermitian matrix and the strictly lower 
triangular part of c is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part 
of the array c must contain the lower triangular part of the Hermitian matrix 
and the strictly upper triangular part of c is not referenced. 

The imaginary parts of the diagonal elements need not be set, they are assumed 
to be zero.

ldc INTEGER. Specifies the first dimension of c as declared in the calling 
(sub)program. The value of ldc must be at least max(1, n).

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the array c is overwritten 
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array c is overwritten 
by the lower triangular part of the updated matrix. 

The imaginary parts of the diagonal elements are set to zero.

?her2k                 
Performs a rank-2k update of a Hermitian matrix.

Syntax
call cher2k ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc )

call zher2k ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc )
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Description

The ?her2k routines perform a rank-2k matrix-matrix operation using Hermitian matrices. The 
operation is defined as

c := alpha*a*conjg(b') + conjg(alpha)*b*conjg(a') + beta*c,

or

c := alpha*conjg(b')*a + conjg(alpha)*conjg(a')*b + beta*c,

where:

alpha is a scalar and beta is a real scalar

c is an n by n Hermitian matrix

a and b are n by k matrices in the first case and k by n matrices in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
array c is to be referenced as follows:

trans CHARACTER*1. Specifies the operation to be performed as follows:

n INTEGER. Specifies the order of the matrix c. The value of n must be at least 
zero.

k INTEGER. With trans = 'N' or 'n', k specifies the number of columns of the 
matrix a, and with
trans = 'C' or 'c', k specifies the number of rows of the matrix a. The value 
of k must be at least zero.

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of C is to be 
referenced.

L or l Only the lower triangular part of C is to be 
referenced.

trans value Operation to be Performed

N or n c:=alpha*a*conjg(b')
+alpha*b*conjg(a') +beta*c

C or c c:=alpha*conjg(a')*b
+alpha*conjg(b')*a+beta*c
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alpha COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Specifies the scalar alpha.

a COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and 
is n otherwise. Before entry with trans = 'N' or 'n', the leading n by k part 
of the array a must contain the matrix a, otherwise the leading k by n part of 
the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. When trans = 'N' or 'n', then lda must be at least max(1, 
n), otherwise lda must be at least max(1, k).

beta REAL for cher2k
DOUBLE PRECISION for zher2k

Specifies the scalar beta.

b COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (ldb, kb), where kb is k when trans = 'N' or 'n', and 
is n otherwise. Before entry with trans = 'N' or 'n', the leading n by k part 
of the array b must contain the matrix b, otherwise the leading k by n part of 
the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling 
(sub)program. When trans = 'N' or 'n', then ldb must be at least max(1, 
n), otherwise ldb must be at least max(1, k).

c COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular part of the array c must 
contain the upper triangular part of the Hermitian matrix and the strictly lower 
triangular part of c is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part 
of the array c must contain the lower triangular part of the Hermitian matrix 
and the strictly upper triangular part of c is not referenced. 
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The imaginary parts of the diagonal elements need not be set, they are assumed 
to be zero.

ldc INTEGER. Specifies the first dimension of c as declared in the calling 
(sub)program. The value of ldc must be at least max(1, n).

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the array c is overwritten 
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array c is overwritten 
by the lower triangular part of the updated matrix. 

The imaginary parts of the diagonal elements are set to zero.

?symm                    
Performs a scalar-matrix-matrix product (one matrix 
operand is symmetric) and adds the result to a 
scalar-matrix product.

Syntax
call ssymm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc )

call dsymm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc )

call csymm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc )

call zsymm ( side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc )

Description

The ?symm routines perform a matrix-matrix operation using symmetric matrices. The operation is 
defined as

c := alpha*a*b + beta*c,

or

c := alpha*b*a + beta*c,

where:

alpha and beta are scalars
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a is a symmetric matrix

b and c are m by n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the symmetric matrix a appears on the left 
or right in the operation as follows:

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
symmetric matrix a is to be referenced as follows:

m INTEGER. Specifies the number of rows of the matrix c. The value of m must 
be at least zero.

n INTEGER. Specifies the number of columns of the matrix c. The value of n 
must be at least zero.

alpha REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Specifies the scalar alpha.

a REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (lda, ka), where ka is m when side = 'L' or 'l' and is 
n otherwise. Before entry with side = 'L' or 'l', the m by m part of the array 
a must contain the symmetric matrix, such that when uplo = 'U' or 'u', the 

side value Operation to be Performed

L or l c := alpha*a*b + beta*c

R or r c := alpha*b*a + beta*c

uplo value Part of Array a To Be Referenced

U or u Only the upper triangular part of the symmetric 
matrix is to be referenced.

L or l Only the lower triangular part of the symmetric 
matrix is to be referenced.
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leading m by m upper triangular part of the array a must contain the upper 
triangular part of the symmetric matrix and the strictly lower triangular part of 
a is not referenced, and when uplo = 'L' or 'l', the leading m by m lower 
triangular part of the array a must contain the lower triangular part of the 
symmetric matrix and the strictly upper triangular part of a is not referenced.

Before entry with side = 'R' or 'r', the n by n part of the array a must 
contain the symmetric matrix, such that when uplo = 'U' or 'u', the leading 
n by n upper triangular part of the array a must contain the upper triangular 
part of the symmetric matrix and the strictly lower triangular part of a is not 
referenced, and when uplo = 'L' or 'l', the leading n by n lower triangular 
part of the array a must contain the lower triangular part of the symmetric 
matrix and the strictly upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. When side = 'L' or 'l' then lda must be at least max(1, m), 
otherwise lda must be at least max(1, n).

b REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (ldb,n). Before entry, the leading m by n part of the array 
b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling 
(sub)program. The value of ldb must be at least max(1, m).

beta REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Specifies the scalar beta. When beta is supplied as zero, then c need not be 
set on input.

 c REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (ldc,n). Before entry, the leading m by n part of the 
array c must contain the matrix c, except when beta is zero, in which case c 
need not be set on entry.
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ldc INTEGER. Specifies the first dimension of c as declared in the calling 
(sub)program. The value of ldc must be at least max(1, m).

Output Parameters

c Overwritten by the m by n updated matrix.

?syrk                  
Performs a rank-n update of a symmetric matrix.

Syntax
call ssyrk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc )

call dsyrk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc )

call csyrk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc )

call zsyrk ( uplo, trans, n, k, alpha, a, lda, beta, c, ldc )

Description

The ?syrk routines perform a matrix-matrix operation using symmetric matrices. The operation is 
defined as

c := alpha*a*a' + beta*c,

or

c := alpha*a'*a + beta*c,

where:

alpha and beta are scalars

c is an n by n symmetric matrix

a is an n by k matrix in the first case and a k by n matrix in the second case.
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Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
array c is to be referenced as follows:

trans CHARACTER*1. Specifies the operation to be performed as follows:

n INTEGER. Specifies the order of the matrix c. The value of n must be at least 
zero.

k INTEGER. On entry with trans = 'N' or 'n', k specifies the number of 
columns of the matrix a, and on entry with trans = 'T' or 't' or 'C' or 'c', 
k specifies the number of rows of the matrix a. The value of k must be at least 
zero. 

alpha REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Specifies the scalar alpha. 

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of c is to be 
referenced.

L or l Only the lower triangular part of c is to be 
referenced.

trans value Operation to be Performed

N or n c:= alpha*a*a' + beta*c

T or t c:= alpha*a'*a + beta*c

C or c c:= alpha*a'*a + beta*c
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a REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Array, DIMENSION (lda,ka), where ka is k when trans = 'N' or 'n', and 
is n otherwise. Before entry with trans = 'N' or 'n', the leading n by k part 
of the array a must contain the matrix a, otherwise the leading k by n part of 
the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. When trans = 'N' or 'n', then lda must be at least 
max(1,n), otherwise lda must be at least max(1, k).

beta REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Specifies the scalar beta.

c REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Array, DIMENSION (ldc,n). Before entry with 
uplo = 'U' or 'u', the leading n by n upper triangular part of the array c
must contain the upper triangular part of the symmetric matrix and the strictly 
lower triangular part of c is not referenced. 

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part 
of the array c must contain the lower triangular part of the symmetric matrix 
and the strictly upper triangular part of c is not referenced.

ldc INTEGER. Specifies the first dimension of c as declared in the calling 
(sub)program. The value of ldc must be at least max(1, n). 

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the array c is overwritten 
by the upper triangular part of the updated matrix. 

With uplo = 'L' or 'l', the lower triangular part of the array c is overwritten 
by the lower triangular part of the updated matrix.
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?syr2k       
Performs a rank-2k update of a symmetric matrix.

Syntax
call ssyr2k ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc )

call dsyr2k ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc )

call csyr2k ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc )

call zsyr2k ( uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc )

Description

The ?syr2k routines perform a rank-2k matrix-matrix operation using symmetric matrices. The 
operation is defined as

c := alpha*a*b' + alpha*b*a' + beta*c,

or

c := alpha*a'*b + alpha*b'*a + beta*c,

where:

alpha and beta are scalars

c is an n by n symmetric matrix

a and b are n by k matrices in the first case and k by n matrices in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of c is to be 
referenced.

L or l Only the lower triangular part of c is to be 
referenced.
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trans CHARACTER*1. Specifies the operation to be performed as follows:

n INTEGER. Specifies the order of the matrix c. The value of n must be at least 
zero.

k INTEGER. On entry with trans = 'N' or 'n', k specifies the number of 
columns of the matrices a and b, and on entry with trans = 'T' or 't' or 
'C' or 'c', k specifies the number of rows of the matrices a and b. The value 
of k must be at least zero. 

alpha REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Specifies the scalar alpha. 

a REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (lda,ka), where ka is k when trans = 'N' or 'n', and 
is n otherwise. Before entry with trans = 'N' or 'n', the leading n by k part 
of the array a must contain the matrix a, otherwise the leading k by n part of 
the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. When trans = 'N' or 'n', then lda must be at least 
max(1,n), otherwise lda must be at least max(1, k).

b REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

trans value Operation to be Performed

N or n c:= alpha*a*b'+alpha*b*a'+beta*c

T or t c:= alpha*a'*b+alpha*b'*a+beta*c

C or c c:= alpha*a'*b+alpha*b'*a+beta*c
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Array, DIMENSION (ldb, kb) where kb is k when trans = 'N' or 'n' and 
is 'n' otherwise. Before entry with trans = 'N' or 'n', the leading n by k 
part of the array b must contain the matrix b, otherwise the leading k by n part 
of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. When trans = 'N' or 'n', then ldb must be at least 
max(1,n), otherwise ldb must be at least max(1, k).

beta REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Specifies the scalar beta.

c REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (ldc,n). Before entry with 
uplo = 'U' or 'u', the leading n by n upper triangular part of the array c
must contain the upper triangular part of the symmetric matrix and the strictly 
lower triangular part of c is not referenced. 

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part 
of the array c must contain the lower triangular part of the symmetric matrix 
and the strictly upper triangular part of c is not referenced.

ldc INTEGER. Specifies the first dimension of c as declared in the calling 
(sub)program. The value of ldc must be at least max(1, n). 

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the array c is overwritten 
by the upper triangular part of the updated matrix. 

With uplo = 'L' or 'l', the lower triangular part of the array c is overwritten 
by the lower triangular part of the updated matrix.
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?trmm                   
Computes a scalar-matrix-matrix product (one matrix 
operand is triangular).

Syntax
call strmm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )

call dtrmm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )

call ctrmm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )

call ztrmm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )

Description

The ?trmm routines perform a matrix-matrix operation using triangular matrices. The operation is 
defined as

b := alpha*op(a)*b

or

b := alpha*b*op(a)

where:

alpha is a scalar

b is an m by n matrix

a is a unit, or non-unit, upper or lower triangular matrix

op(a) is one of op(a) = a or op(a) = a' or op(a) = conjg(a').

Input Parameters

side CHARACTER*1. Specifies whether op(a) multiplies b from the left or right in 
the operation as follows:

side value Operation To Be Performed

L or l b := alpha*op(a)*b

R or r b := alpha*b*op(a)
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uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular 
matrix as follows:

transa CHARACTER*1. Specifies the form of op(a) to be used in the matrix 
multiplication as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular as follows:

m INTEGER. Specifies the number of rows of b. The value of m must be at least 
zero.

n INTEGER. Specifies the number of columns of b. The value of n must be at 
least zero.

alpha REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm

Specifies the scalar alpha. When alpha is zero, then a is not referenced and b 
need not be set before entry.

a REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm

uplo value Matrix a

U or u Matrix a is an upper triangular matrix.

L or l Matrix a is a lower triangular matrix.

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.
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Array, DIMENSION (lda,k), where k is m when 
side = 'L' or 'l' and is n when side = 'R' or 'r'. Before entry with uplo 
= 'U' or 'u', the leading 
k by k upper triangular part of the array a must contain the upper triangular 
matrix and the strictly lower triangular part of a is not referenced. 

Before entry with uplo = 'L' or 'l', the leading k by k lower triangular part 
of the array a must contain the lower triangular matrix and the strictly upper 
triangular part of a is not referenced. When diag = 'U' or 'u', the diagonal 
elements of a are not referenced either, but are assumed to be unity.

 lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. When side = 'L' or 'l', then lda must be at least max(1, 
m), when side = 'R' or 'r', then lda must be at least max(1, n).

b REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm

Array, DIMENSION (ldb,n). Before entry, the leading
m by n part of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling 
(sub)program. The value of ldb must be at least max(1, m).

Output Parameters

b Overwritten by the transformed matrix.

?trsm          
Solves a matrix equation (one matrix operand is 
triangular).

Syntax
call strsm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )

call dtrsm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )

call ctrsm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )

call ztrsm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb )
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Description

The ?trsm routines solve one of the following matrix equations:

op(a)*x = alpha*b,

or

x*op(a) = alpha*b,

where:

alpha is a scalar

x and b are m by n matrices

a is a unit, or non-unit, upper or lower triangular matrix

op(a) is one of op(a) = a or op(a) = a' or 
op(a) = conjg(a').

The matrix x is overwritten on b.

Input Parameters

side CHARACTER*1. Specifies whether op(a) appears on the left or right of x for 
the operation to be performed as follows:

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular 
matrix as follows:

transa CHARACTER*1. Specifies the form of op(a) to be used in the matrix 
multiplication as follows:

side value Operation To Be Performed

L or l op(a)*x = alpha*b

R or r x*op(a) = alpha*b

uplo value Matrix a

U or u Matrix a is an upper triangular matrix.

L or l Matrix a is a lower triangular matrix.

transa value Form of op(a)

N or n op(a) = a
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diag CHARACTER*1. Specifies whether or not a is unit triangular as follows:

m INTEGER. Specifies the number of rows of b. The value of m must be at least 
zero.

n INTEGER. Specifies the number of columns of b. The value of n must be at 
least zero.

alpha REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Specifies the scalar alpha. When alpha is zero, then a is not referenced and b 
need not be set before entry.

a REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Array, DIMENSION (lda, k), where k is m when 
side = 'L' or 'l' and is n when side = 'R' or 'r'. Before entry with uplo 
= 'U' or 'u', the leading k by k upper triangular part of the array a must 
contain the upper triangular matrix and the strictly lower triangular part of a is 
not referenced. 

Before entry with uplo = 'L' or 'l', the leading k by k lower triangular part 
of the array a must contain the lower triangular matrix and the strictly upper 
triangular part of a is not referenced. When diag = 'U' or 'u', the diagonal 
elements of a are not referenced either, but are assumed to be unity. 

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. When side = 'L' or 'l', then lda must be at least max(1, 
m), when side = 'R' or 'r', then lda must be at least max(1, n).

T or t op(a) = a'

C or c op(a) = conjg(a')

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

transa value Form of op(a)
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b REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Array, DIMENSION (ldb,n). Before entry, the leading m by n part of the array 
b must contain the right-hand side matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling 
(sub)program. The value of ldb must be at least max(1, m).

Output Parameters

b Overwritten by the solution matrix x.
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Sparse BLAS Routines and Functions        
This section describes Sparse BLAS, an extension of BLAS Level 1 included in Intel® Math 
Kernel Library beginning with Intel MKL release 2.1. Sparse BLAS is a group of routines and 
functions that perform a number of common vector operations on sparse vectors stored in 
compressed form.

Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines and 
functions are specially implemented to take advantage of vector sparsity. This allows you to 
achieve large savings in computer time and memory. If nz is the number of non-zero vector 
elements, the computer time taken by Sparse BLAS operations will be O(nz). 

Vector Arguments in Sparse BLAS             

Compressed sparse vectors. Let a be a vector stored in an array, and assume that the only 
non-zero elements of a are the following:

   a(k1), a(k2), a(k3) . . . a(knz), 

where nz is the total number of non-zero elements in a. 

In Sparse BLAS, this vector can be represented in compressed form by two FORTRAN arrays, x 
(values) and indx (indices). Each array has nz   elements:

   x(1)=a(k1), x(2)=a(k2),  . . . x(nz)=a(knz), 

   indx(1)=k1, indx(2)=k2,  . . . indx(nz)=knz. 

Thus, a sparse vector is fully determined by the triple (nz, x, indx). If you pass a negative or zero 
value of nz to Sparse BLAS, the subroutines do not modify any arrays or variables.

Full-storage vectors.  Sparse BLAS routines can also use a vector argument fully stored in a 
single FORTRAN array (a full-storage vector). If y is a full-storage vector, its elements must be 
stored contiguously: the first element in y(1), the second in y(2), and so on. This corresponds to 
an increment incy = 1 in BLAS Level 1. No increment value for full-storage vectors is passed as 
an argument to Sparse BLAS routines or functions.

Naming Conventions in Sparse BLAS            

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data 
type involved: s and d for single- and double- precision real; c and z for single- and 
double-precision complex.
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If a Sparse BLAS routine is an extension of a “dense” one, the subprogram name is formed by 
appending the suffix i (standing for indexed) to the name of the corresponding “dense” 
subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine 
saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

Routines and Data Types in Sparse BLAS             

Routines and data types supported in the Intel MKL implementation of Sparse BLAS are listed in 
Table 2-4.

Table 2-4 Sparse BLAS Routines and Their Data Types

Routine/
Function

Data 
Types Description

?axpyi s, d, c, z Scalar-vector product plus vector (routines)   

?doti s, d Dot product (functions)

?dotci c, z Complex dot product conjugated (functions) 

?dotui c, z Complex dot product unconjugated (functions) 

?gthr s, d, c, z Gathering a full-storage sparse vector into 
compressed form: nz, x, indx (routines) 

?gthrz s, d, c, z Gathering a full-storage sparse vector into 
compressed form and assigning zeros to 
gathered elements in the full-storage vector 
(routines)

?roti s, d Givens rotation (routines) 

?sctr s, d, c, z Scattering a vector from compressed form to 
full-storage form (routines) 
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BLAS Routines That Can Work With Sparse Vectors          

The following BLAS Level 1 routines will give correct results when you pass to them a 
compressed-form array x (with the increment incx = 1):

?asum sum of absolute values of vector elements
?copy copying a vector
?nrm2 Euclidean norm of a vector
?scal scaling a vector
i?amax index of the element with the largest absolute value or,

for complex flavors, the largest sum |Rex(i)| + |Imx(i)|.
i?amin index of the element with the smallest absolute value or,

for complex flavors, the smallest sum |Rex(i)| + |Imx(i)|.
The result i returned by i?amax and i?amin should be interpreted as index in the 
compressed-form array, so that the largest (smallest) value is x(i); the corresponding index in 
full-storage array is indx(i).

You can also call ?rotg to compute the parameters of Givens rotation and then pass these 
parameters to the Sparse BLAS routines ?roti.

?axpyi                   
Adds a scalar multiple of compressed sparse vector to a 
full-storage vector.

Syntax
call saxpyi ( nz, a, x, indx, y )

call daxpyi ( nz, a, x, indx, y )

call caxpyi ( nz, a, x, indx, y )

call zaxpyi ( nz, a, x, indx, y )

Description

The ?axpyi routines perform a vector-vector operation defined as

y := a*x + y

where:

a is a scalar
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(nz, x, indx) is a sparse vector stored in compressed form

y is a vector in full storage form.

The ?axpyi routines reference or modify only the elements of y whose indices are listed in the 
array indx.  The values in indx must be distinct.

Input Parameters

nz INTEGER.  The number of elements in x and indx .

a REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Specifies the scalar a.

x REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least nz.

indx INTEGER.  Specifies the indices for the elements of x.

Array, DIMENSION at least nz.

y REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Array, DIMENSION at least maxi (indx(i)).

Output Parameters

y Contains the updated vector y. 
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?doti                  
Computes the dot product of a compressed sparse real 
vector by a full-storage real vector.

Syntax
res = sdoti ( nz, x, indx, y )

res = ddoti ( nz, x, indx, y )

Description

The ?doti functions return the dot product of x and y defined as

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))

where the triple (nz, x, indx) defines a sparse real vector stored in compressed form, and y is a 
real vector in full storage form. The functions reference only the elements of y whose indices are 
listed in the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER.  The number of elements in x and indx .

x REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least nz.

indx INTEGER.  Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

res REAL for sdoti
DOUBLE PRECISION for ddoti

Contains the dot product of x and y, if nz is positive.  Otherwise, res contains 
0.
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?dotci                 
Computes the conjugated dot product of a compressed 
sparse complex vector with a full-storage complex 
vector.

Syntax
res = cdotci ( nz, x, indx, y )

res = zdotci ( nz, x, indx, y )

Description

The ?dotci functions return the dot product of x and y defined as

conjg(x(1))*y(indx(1)) + ... + conjg(x(nz))*y(indx(nz))

where the triple (nz, x, indx) defines a sparse complex vector stored in compressed form, and y
is a real vector in full storage form. The functions reference only the elements of y whose indices 
are listed in the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER.  The number of elements in x and indx .

x COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least nz.

indx INTEGER.  Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

 y COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

res COMPLEX for cdotci
DOUBLE COMPLEX for zdotci

Contains the conjugated dot product of x and y, 
if nz is positive.  Otherwise, res contains 0.
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?dotui                  
Computes the dot product of a compressed sparse 
complex vector by a full-storage complex vector.

Syntax
res = cdotui ( nz, x, indx, y )

res = zdotui ( nz, x, indx, y )

Description

The ?dotui functions return the dot product of x and y defined as

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz)) 

where the triple (nz, x, indx) defines a sparse complex vector stored in compressed form, and y
is a real vector in full storage form. The functions reference only the elements of y whose indices 
are listed in the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER.  The number of elements in x and indx .

x COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least nz.

indx INTEGER.  Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

res COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Contains the dot product of x and y, if nz is positive.  Otherwise, res
contains 0.
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?gthr                    
Gathers a full-storage sparse vector’s elements into 
compressed form.

Syntax
call sgthr ( nz, y, x, indx )

call dgthr ( nz, y, x, indx )

call cgthr ( nz, y, x, indx )

call zgthr ( nz, y, x, indx )

Description

The ?gthr routines gather the specified elements of a full-storage sparse vector y into 
compressed form (nz, x, indx). The routines reference only the elements of y whose indices are 
listed in the array indx:

x(i) = y(indx(i)),  for i=1,2,...nz.

Input Parameters

nz INTEGER.  The number of elements of y to be gathered.

indx INTEGER.  Specifies indices of elements to be gathered.
Array, DIMENSION at least nz.

y REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

x REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least nz.

Contains the vector converted to the compressed form.
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?gthrz                    
Gathers a sparse vector’s elements into compressed form, 
replacing them by zeros.

Syntax
call sgthrz ( nz, y, x, indx )

call dgthrz ( nz, y, x, indx )

call cgthrz ( nz, y, x, indx )

call zgthrz ( nz, y, x, indx )

Description

The ?gthrz routines gather the elements with indices specified by the array indx from a 
full-storage vector y into compressed form 
(nz, x, indx) and overwrite the gathered elements of y by zeros. 
Other elements of y are not referenced or modified (see also ?gthr).

Input Parameters

nz INTEGER.  The number of elements of y to be gathered.

indx INTEGER.  Specifies indices of elements to be gathered.Array, DIMENSION at 
least nz.

y REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

x REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least nz.
Contains the vector converted to the compressed form.

y The updated vector y.
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?roti                    
Applies Givens rotation to sparse vectors one of which is 
in compressed form.

Syntax
call sroti ( nz, x, indx, y, c, s )

call droti ( nz, x, indx, y, c, s )

Description

The ?roti routines apply the Givens rotation to elements of two real vectors, x (in compressed 
form nz, x, indx) and y (in full storage form):

x(i) = c*x(i) + s*y(indx(i))
y(indx(i)) = c*y(indx(i)) - s*x(i)

The routines reference only the elements of y whose indices are listed in the array indx.  The 
values in indx must be distinct.

Input Parameters

nz INTEGER.  The number of elements in x and indx.

x REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least nz. 

indx INTEGER.  Specifies the indices for the elements of x.
Array, DIMENSION at least nz. 

y REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least maxi (indx(i)). 

c A scalar:  REAL for sroti
DOUBLE PRECISION for droti.

s A scalar:  REAL for sroti
DOUBLE PRECISION for droti.

Output Parameters

x and y The updated arrays.
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?sctr                    
Converts compressed sparse vectors into full storage 
form.

Syntax
call ssctr ( nz, x, indx, y )

call dsctr ( nz, x, indx, y )

call csctr ( nz, x, indx, y )

call zsctr ( nz, x, indx, y )

Description

The ?sctr routines scatter the elements of the compressed sparse vector (nz, x, indx) to a 
full-storage vector y.   The routines modify only the elements of y whose indices are listed in the 
array indx:
y(indx(i)) = x(i),  for i=1,2,...nz.

Input Parameters

nz INTEGER.  The number of elements of x to be scattered.

indx INTEGER.  Specifies indices of elements to be scattered.Array, DIMENSION at 
least nz.

x REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least nz.
Contains the vector to be converted to full-storage form.

Output Parameters

y REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least maxi (indx(i)).
Contains the vector y with updated elements.
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LAPACK Routines:    
Linear Equations 3

This chapter describes the Intel® Math Kernel Library implementation of routines from the 
LAPACK package that are used for solving systems of linear equations and performing a number 
of related computational tasks. The library includes LAPACK routines for both real and complex 
data.
Routines are supported for systems of equations with the following types of matrices:

• general
• banded
• symmetric or Hermitian positive-definite (both full and packed storage)
• symmetric or Hermitian positive-definite banded
• symmetric or Hermitian indefinite (both full and packed storage)
• symmetric or Hermitian indefinite banded
• triangular (both full and packed storage)
• triangular banded
• tridiagonal.

For each of the above matrix types, the library includes routines for performing the following 
computations: factoring the matrix (except for triangular matrices); equilibrating the matrix; 
solving a system of linear equations; estimating the condition number of a matrix; refining the 
solution of linear equations and computing its error bounds; inverting the matrix.
To solve a particular problem, you can either call two or more computational routines or call a 
corresponding driver  routine that combines several tasks in one call, such as ?gesv for factoring 
and solving. Thus, to solve a system of linear equations with a general matrix, you can first call 
?getrf (LU factorization) and then ?getrs (computing the solution). Then, you might wish to 
call ?gerfs to refine the solution and get the error bounds. Alternatively, you can just use the 
driver routine ?gesvx which performs all these tasks in one call.

WARNING.  LAPACK routines expect that input matrices do not contain 
INF or NaN values. When input data is inappropriate for LAPACK, problems 
may arise, including possible hangs.
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Routine Naming Conventions  
For each routine introduced in this chapter, you can use the LAPACK name. 

LAPACK names are listed in Table 3-1 and Table 3-2, and have the structure xyyzzz or
xyyzz, which is described below.

The initial letter x indicates the data type:

s real, single precision c complex, single precision
d real, double precision z complex, double precision

The second and third letters yy indicate the matrix type and storage scheme:
ge general
gb general band
gt general tridiagonal
po symmetric or Hermitian positive-definite
pp symmetric or Hermitian positive-definite (packed storage)
pb symmetric or Hermitian positive-definite band
pt symmetric or Hermitian positive-definite tridiagonal
sy symmetric indefinite
sp symmetric indefinite (packed storage)
he Hermitian indefinite
hp Hermitian indefinite (packed storage)
tr triangular
tp triangular (packed storage)
tb triangular band

For computational routines, the last three letters zzz indicate the computation performed:
trf form a triangular matrix factorization 
trs solve the linear system with a factored matrix
con estimate the matrix condition number
rfs refine the solution and compute error bounds
tri compute the inverse matrix using the factorization
equ equilibrate a matrix.

For example, the routine sgetrf performs the triangular factorization of general real matrices in 
single precision; the corresponding routine for complex matrices is cgetrf.

For driver routines, the names can end either with -sv (meaning a simple driver), or with -svx 
(meaning an expert driver).
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Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element aij 
stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more 
compactly: the upper or lower triangle of the matrix is packed by columns in a 
one-dimensional array.

• Band storage: an m by n band matrix with kl sub-diagonals and ku super-diagonals is stored 
compactly in a two-dimensional array ab with kl+ku+1 rows and n columns. Columns of the 
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are 
stored in rows of the array.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names ending in p; arrays 
with matrices in band storage have names ending in b.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

Mathematical Notation
Descriptions of LAPACK routines use the following notation:

Ax = b A system of linear equations with an n by n matrix A = {aij}, a 
right-hand side vector b = {bi}, and an unknown vector x = {xi}.

AX = B A set of systems with a common matrix A and multiple right-hand sides. 
The columns of B are individual right-hand sides, and the columns of X 
are the corresponding solutions.

|x| the vector with elements |xi| (absolute values of xi).

|A| the matrix with elements |aij| (absolute values of aij).

||x||∞ = maxi |xi| The infinity-norm of the vector x.

||A||∞ = maxi Σj |aij| The infinity-norm of the matrix A.

||A||1 = maxj Σi |aij| The one-norm of the matrix A.  ||A||1 = ||AT||∞ = ||AH||∞ 

κ(A) = ||A|| ||A−1|| The condition number of the matrix A.
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Error Analysis
In practice, most computations are performed with rounding errors. Besides, you often need to 
solve a system Ax = b where the data (the elements of A and b) are not known exactly. Therefore, 
it’s important to understand how the data errors and rounding errors can affect the solution x.

Data perturbations. If x is the exact solution of Ax = b, and x + δx is the exact solution of a 
perturbed problem (A + δA)x = (b + δb), then

.

In other words, relative errors in A or b may be amplified in the solution vector x by a factor κ(A) = 
||A|| ||A−1|| called the condition number of A.

Rounding errors have the same effect as relative perturbations c(n)ε in the original data. Here ε 
is the machine precision, and c(n) is a modest function of the matrix order n. The corresponding 
solution error is 
||δx||/||x|| ≤ c(n)κ(A)ε. (The value of c(n) is seldom greater than 10n.)

Thus, if your matrix A is ill-conditioned (that is, its condition number κ(A) is very large), then the 
error in the solution x is also large; you may even encounter a complete loss of precision. 
LAPACK provides routines that allow you to estimate κ(A) (see Routines for Estimating the 
Condition Number) and also give you a more precise estimate for the actual solution error (see 
Refining the Solution and Estimating Its Error).

δx
x

---------- κ A( ) δA
A

----------- δb
b

-----------+� �
� � , where κ A( )≤ A A 1–=
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Computational Routines
Table 3-1 lists the LAPACK computational routines for factorizing, equilibrating, and inverting 
real matrices, estimating their condition numbers, solving systems of equations with real matrices, 
refining the solution, and estimating its error. 
Table 3-2 lists similar routines for complex matrices. 

In this table ? denotes s (single precision) or d (double precision).

Table 3-1 Computational Routines for Systems of Equations with Real Matrices    

Matrix type, 
storage scheme

Factorize
matrix

Equilibrat
e matrix

Solve 
system

Condition
number

Estimate
error

Invert 
matrix

general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri

general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general 
tridiagonal

?gttrf ?gttrs ?gtcon ?gtrfs

symmetric 
positive-definite

?potrf ?poequ ?potrs ?pocon ?porfs ?potri

symmetric 
positive-definite,
packed storage

?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri

symmetric 
positive-definite,
band

?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

symmetric 
positive-definite,
tridiagonal

?pttrf ?pttrs ?ptcon ?ptrfs

symmetric 
indefinite

?sytrf ?sytrs ?sycon ?syrfs ?sytri

symmetric 
indefinite,
packed storage

?sptrf ?sptrs ?spcon ?sprfs ?sptri

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular,
packed storage

?tptrs ?tpcon ?tprfs ?tptri

triangular band ?tbtrs ?tbcon ?tbrfs
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In this table ? stands for c (single precision complex) or z (double precision complex).

Table 3-2 Computational Routines for Systems of Equations with Complex Matrices

Matrix type, 
storage scheme

Factorize
matrix

Equilibrat
e matrix

Solve 
system

Condition
number

Estimate
error

Invert 
matrix

general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri

general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general 
tridiagonal

?gttrf ?gttrs ?gtcon ?gtrfs

Hermitian 
positive-definite

?potrf ?poequ ?potrs ?pocon ?porfs ?potri

Hermitian 
positive-definite,
packed storage

?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri

Hermitian 
positive-definite,
band

?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

Hermitian 
positive-definite,
tridiagonal

?pttrf ?pttrs ?ptcon ?ptrfs

Hermitian 
indefinite

?hetrf ?hetrs ?hecon ?herfs ?hetri

symmetric 
indefinite

?sytrf ?sytrs ?sycon ?syrfs ?sytri

Hermitian 
indefinite,
packed storage

?hptrf ?hptrs ?hpcon ?hprfs ?hptri

symmetric 
indefinite,
packed storage

?sptrf ?sptrs ?spcon ?sprfs ?sptri

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular,
packed storage

?tptrs ?tpcon ?tprfs ?tptri

triangular band ?tbtrs ?tbcon ?tbrfs



LAPACK Routines: Linear Equations 3

3-7

Routines for Matrix Factorization                

This section describes the LAPACK routines for matrix factorization. The following factorizations 
are supported:

• LU factorization

• Cholesky factorization of real symmetric positive-definite matrices

• Cholesky factorization of Hermitian positive-definite matrices

• Bunch-Kaufman factorization of real and complex symmetric matrices

• Bunch-Kaufman factorization of Hermitian matrices.

You can compute the LU factorization using full and band storage of matrices; the Cholesky 
factorization using full, packed, and band storage; and the Bunch-Kaufman factorization using full 
and packed storage.

?getrf                 
Computes the LU factorization 
of a general m by n matrix.

Syntax
call sgetrf ( m, n, a, lda, ipiv, info )

call dgetrf ( m, n, a, lda, ipiv, info )

call cgetrf ( m, n, a, lda, ipiv, info )

call zgetrf ( m, n, a, lda, ipiv, info )

Description

The routine forms the LU factorization of a general m by n matrix A as

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower 
trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n). Usually A is square (m = 
n), and both L and U are triangular. The routine uses partial pivoting, with row interchanges.

A PLU,=
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Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a REAL for sgetrf 
DOUBLE PRECISION for dgetrf 
COMPLEX for cgetrf 
DOUBLE COMPLEX for zgetrf.
Array, DIMENSION (lda,*). Contains the matrix A. 
The second dimension of a must be at least max(1, n).

lda INTEGER.  The first dimension of a.

Output Parameters

a Overwritten by L and U. The unit diagonal elements of L are not stored. 

ipiv INTEGER. 
Array, DIMENSION at least max(1,min(m,n)). 
The pivot indices: row i was interchanged with row ipiv(i). 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is exactly 
singular. Division by 0 will occur if you use the factor U for solving a system 
of linear equations.

Application Notes

The computed L and U are the exact factors of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

The approximate number of floating-point operations for real flavors is

   (2/3)n3 if m = n,

   (1/3)n2(3m-n) if m > n,

   (1/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

After calling this routine with m = n, you can call the following:

E c min m n,( )( )ε P L U≤
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?getrs to solve AX = B or ATX = B or AHX = B;

?gecon to estimate the condition number of A;

?getri to compute the inverse of A.

?gbtrf                  
Computes the LU factorization 
of a general m by n band matrix.

Syntax
call sgbtrf ( m, n, kl, ku, ab, ldab, ipiv, info )

call dgbtrf ( m, n, kl, ku, ab, ldab, ipiv, info )

call cgbtrf ( m, n, kl, ku, ab, ldab, ipiv, info )

call zgbtrf ( m, n, kl, ku, ab, ldab, ipiv, info )

Description

The routine forms the LU factorization of a general m by n band matrix A with kl non-zero 
sub-diagonals and ku non-zero super-diagonals. Usually A is square (m = n), and then 

where P is a permutation matrix; L is lower triangular with unit diagonal elements and at most kl 
non-zero elements in each column; U is an upper triangular band matrix with kl + ku 
super-diagonals. The routine uses partial pivoting, with row interchanges (which creates the 
additional kl super-diagonals in U).

Input Parameters

m INTEGER.  The number of rows in the matrix A (m ≥ 0). 

n INTEGER.  The number of columns in A  (n ≥ 0). 

kl INTEGER.  The number of sub-diagonals within the band of A (kl ≥ 0). 

ku INTEGER.  The number of super-diagonals within the band of A (ku ≥ 0). 

ab REAL for sgbtrf 
DOUBLE PRECISION for dgbtrf
COMPLEX for cgbtrf

A PLU=
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DOUBLE COMPLEX for zgbtrf.
Array, DIMENSION (ldab,*).
The array ab contains the matrix A in band storage 
(see Matrix Storage Schemes). 
The second dimension of ab must be at least max(1, n).

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ 2kl + ku +1)

Output Parameters

ab Overwritten by L and U.  The diagonal and kl + ku super-diagonals of U are 
stored in the first 1 + kl + ku rows of ab. The multipliers used to form L are 
stored in the next kl rows.

ipiv INTEGER. 
Array, DIMENSION at least max(1,min(m,n)). 
The pivot indices: row i was interchanged with row ipiv(i). 

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is exactly 
singular. Division by 0 will occur if you use the factor U for solving a system 
of linear equations.

Application Notes

The computed L and U are the exact factors of a perturbed matrix A + E, where

c(k) is a modest linear function of k, and ε is the machine precision.

The total number of floating-point operations for real flavors varies between approximately   
2n(ku+1)kl and 2n(kl+ku+1)kl. The number of operations for complex flavors is 4 times 
greater. All these estimates assume that kl and ku are much less than min(m,n).

After calling this routine with m = n, you can call the following:

?gbtrs to solve AX = B or ATX = B or AHX = B;

?gbcon to estimate the condition number of A.

E c kl ku 1+ +( )ε P L U≤
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?gttrf               
Computes the LU factorization of a  tridiagonal matrix.

Syntax
call sgttrf ( n, dl, d, du, du2, ipiv, info )

call dgttrf ( n, dl, d, du, du2, ipiv, info )

call cgttrf ( n, dl, d, du, du2, ipiv, info )

call zgttrf ( n, dl, d, du, du2, ipiv, info )

Description

The routine computes the LU factorization of a real or complex tridiagonal  matrix A in the form 

where P is a permutation matrix; L is lower bidiagonal with unit diagonal elements; and U is an 
upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals. 
The routine uses elimination with partial pivoting and row interchanges .

Input Parameters

n INTEGER.  The order of the matrix A  (n ≥ 0). 

dl, d, du REAL for sgttrf 
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Arrays containing elements of A.
The array dl of dimension (n - 1) contains the sub-diagonal elements of  A. 
The array d of dimension n  contains the diagonal elements of  A. 
The array du of dimension (n - 1) contains the super-diagonal elements of  A.

Output Parameters

dl Overwritten by the (n-1) multipliers that define the matrix L from the LU 
factorization of A. 

d Overwritten by the n diagonal elements of the upper triangular matrix U from 
the LU factorization of A. 

du Overwritten by the (n-1) elements of the first super-diagonal of U. 

A PLU,=
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du2 REAL for sgttrf 
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Array, dimension (n-2). On exit, du2 contains (n-2) elements of the second 
super-diagonal of U. 

ipiv INTEGER. 
Array, dimension (n). 
The pivot indices: row i was interchanged with row ipiv(i). 

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is exactly 
singular. Division by zero will occur if you use the factor U for solving a 
system of linear equations.

Application Notes

?gbtrs to solve AX = B or ATX = B or AHX = B;

?gbcon to estimate the condition number of A.

?potrf                           
Computes the Cholesky factorization of 
a symmetric (Hermitian) positive-definite matrix.

Syntax
call spotrf ( uplo, n, a, lda, info )

call dpotrf ( uplo, n, a, lda, info )

call cpotrf ( uplo, n, a, lda, info )

call zpotrf ( uplo, n, a, lda, info )

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex 
data, Hermitian positive-definite matrix A:

     A = UHU if uplo='U'
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     A = LLH if uplo='L',

where L is a lower triangular matrix and U is upper triangular. 

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and  
A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix A;  A is 
factored as LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 
a REAL for spotrf

DOUBLE PRECISION for dpotrf
COMPLEX for cpotrf
DOUBLE COMPLEX for zpotrf.
Array, DIMENSION (lda,*). 
The array a contains either the upper or the lower triangular part of the matrix 
A (see uplo). 
The second dimension of a must be at least max(1, n).

lda INTEGER.  The first dimension of a.

Output Parameters

a The upper or lower triangular part of a is overwritten by the Cholesky factor U 
or L, as specified by uplo. 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself) is not 
positive-definite, and the factorization could not be completed.  This may 
indicate an error in forming the matrix A.

Application Notes

If uplo = 'U',  the computed factor U is the exact factor of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

E c n( )ε UH U eij c n( )ε aiiajj≤,≤
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The total number of floating-point operations is approximately (1/3)n3 for real flavors or (4/3)n3 
for complex flavors.

After calling this routine, you can call the following:

?potrs to solve AX = B;

?pocon to estimate the condition number of A;

?potri to compute the inverse of A.

?pptrf                            
Computes the Cholesky factorization of 
a symmetric (Hermitian) positive-definite  matrix using 
packed storage.

Syntax
call spptrf ( uplo, n, ap, info )

call dpptrf ( uplo, n, ap, info )

call cpptrf ( uplo, n, ap, info )

call zpptrf ( uplo, n, ap, info )

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex 
data, Hermitian positive-definite packed matrix A:

     A = UHU if uplo='U'

     A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular. 

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is packed in the array 
ap, and how A is factored: 
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If uplo = 'U', the array ap stores the upper triangular part of the matrix A, 
and  A is factored as UHU.
If uplo = 'L', the array ap stores the lower triangular part of the matrix A;  A 
is factored as LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 
ap REAL for spptrf

DOUBLE PRECISION for dpptrf
COMPLEX for cpptrf
DOUBLE COMPLEX for zpptrf.
Array, DIMENSION at least max(1,n(n+1)/2). 
The array ap contains either the upper or the lower triangular part of the matrix 
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

ap The upper or lower triangular part of A in packed storage is overwritten by the 
Cholesky factor U or L, as specified by uplo.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself) is not 
positive-definite, and the factorization could not be completed.  This may 
indicate an error in forming the matrix A.

Application Notes

If uplo = 'U',  the computed factor U is the exact factor of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and (4/3)n3 
for complex flavors.

After calling this routine, you can call the following:

?pptrs to solve AX = B;

?ppcon to estimate the condition number of A;

?pptri to compute the inverse of A.

E c n( )ε UH U eij c n( )ε aiiajj≤,≤
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?pbtrf                           
Computes the Cholesky factorization of 
a symmetric (Hermitian) positive-definite band matrix.

Syntax
call spbtrf ( uplo, n, kd, ab, ldab, info )

call dpbtrf ( uplo, n, kd, ab, ldab, info )

call cpbtrf ( uplo, n, kd, ab, ldab, info )

call zpbtrf ( uplo, n, kd, ab, ldab, info )

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex 
data, Hermitian positive-definite band matrix A:

     A = UHU if uplo='U'

     A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular. 

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored in the array 
ab, and how A is factored: 
If uplo = 'U', the array ab stores the upper triangular part of the matrix A, 
and  A is factored as UHU.
If uplo = 'L', the array ab stores the lower triangular part of the matrix A;  A 
is factored as LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 
kd INTEGER.  The number of super-diagonals or sub-diagonals in the matrix A

(kd ≥ 0). 
ab REAL for spbtrf

DOUBLE PRECISION for dpbtrf
COMPLEX for cpbtrf
DOUBLE COMPLEX for zpbtrf.
Array, DIMENSION (ldab,*).  
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The array ap contains either the upper or the lower triangular part of the matrix 
A (as specified by uplo) in band storage (see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ kd +1)

Output Parameters

ap The upper or lower triangular part of A (in band storage) is overwritten by the 
Cholesky factor U or L, as specified by uplo. 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself) is not 
positive-definite, and the factorization could not be completed.  This may 
indicate an error in forming the matrix A.

Application Notes

If uplo = 'U',  the computed factor U is the exact factor of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations for real flavors is approximately n(kd+1)2. The 
number of operations for complex flavors is 4 times greater. All these estimates assume that kd is 
much less than n.

After calling this routine, you can call the following:

?pbtrs to solve AX = B;

?pbcon to estimate the condition number of A;

E c kd 1+( )ε UH U eij c kd 1+( )ε aiiajj≤,≤
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?pttrf               
Computes the factorization of 
a symmetric (Hermitian) positive-definite tridiagonal 
matrix.

Syntax
call spttrf ( n, d, e, info )

call dpttrf ( n, d, e, info )

call cpttrf ( n, d, e, info )

call zpttrf ( n, d, e, info )

Description

This routine forms the factorization of a symmetric positive-definite or, for complex data, 
Hermitian positive-definite tridiagonal matrix A:

 A = LDLH   , where D is diagonal and L is unit lower bidiagonal. The factorization may also be 
regarded as having the form  A = UHDU , where D is unit upper bidiagonal.

Input Parameters
n INTEGER.  The order of the matrix A (n ≥ 0). 
d REAL for spttrf, cpttrf

DOUBLE PRECISION for dpttrf, zpttrf.
Array, dimension (n). Contains the diagonal elements of  A. 

e REAL for spttrf
DOUBLE PRECISION for dpttrf
COMPLEX for cpttrf
DOUBLE COMPLEX for zpttrf.
Array, dimension (n - 1). Contains the sub-diagonal elements of  A.

Output Parameters

d Overwritten by the n diagonal elements of the diagonal matrix D from the 
LDLH factorization of A. 

e Overwritten by the (n - 1) off-diagonal elements of the unit bidiagonal factor L 
or U from the factorization of A.
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info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself) is not 
positive-definite; if i < n , the factorization could not be completed, while if i 
= n , the factorization was completed, but d (n) = 0 .

?sytrf                  
Computes the Bunch-Kaufman factorization of a 
symmetric matrix.

Syntax
call ssytrf ( uplo, n, a, lda, ipiv, work, lwork, info )

call dsytrf ( uplo, n, a, lda, ipiv, work, lwork, info )

call csytrf ( uplo, n, a, lda, ipiv, work, lwork, info )

call zsytrf ( uplo, n, a, lda, ipiv, work, lwork, info )

Description

This routine forms the Bunch-Kaufman factorization of a symmetric matrix:

     if uplo='U', A = PUDUTPT 

     if uplo='L', A = PLDLTPT 

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular 
matrices with unit diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of 
D. 

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and  
A is factored as PUDUTPT.
If uplo = 'L', the array a stores the lower triangular part of the matrix A;  A is 
factored as PLDLTPT.

n INTEGER.  The order of matrix A (n ≥ 0). 
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a REAL for ssytrf
DOUBLE PRECISION for dsytrf
COMPLEX for csytrf
DOUBLE COMPLEX for zsytrf.
Array, DIMENSION (lda,*). 
The array a contains either the upper or the lower triangular part of the matrix 
A (see uplo). 
The second dimension of a must be at least max(1, n).

lda INTEGER.  The first dimension of a; at least max(1, n).
work Same type as a. Workspace array of dimension lwork 
lwork INTEGER.  The size of the work array (lwork ≥ n)

See Application notes for the suggested value of lwork.

Output Parameters
a The upper or lower triangular part of a is overwritten by details of the 

block-diagonal matrix D and the multipliers used to obtain the factor U (or L). 
work(1) If info=0, on exit work(1) contains the minimum value of lwork required 

for optimum performance. Use this lwork for subsequent runs.
ipiv INTEGER. 

Array, DIMENSION at least max(1,n). 
Contains details of the interchanges and the block structure of D. 
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and column of 
A was interchanged with the kth row and column. 
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is exactly 
singular. Division by 0 will occur if you use D for solving a system of linear 
equations.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. 
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If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The 
remaining elements of U and L are stored in the corresponding columns of the array a, but 
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in 
the corresponding elements of the array a.

If uplo = 'U',  the computed factors U and D are the exact factors of a perturbed matrix A + E, 
where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors or (4/3)n3 
for complex flavors.

After calling this routine, you can call the following:

?sytrs to solve AX = B;

?sycon to estimate the condition number of A;

?sytri to compute the inverse of A.

E c n( )ε P U D UT PT≤
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?hetrf                 
Computes the Bunch-Kaufman factorization of a 
complex Hermitian matrix.

Syntax
call chetrf ( uplo, n, a, lda, ipiv, work, lwork, info )

call zhetrf ( uplo, n, a, lda, ipiv, work, lwork, info )

Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix:

     if uplo='U', A = PUDUHPT 

     if uplo='L', A = PLDLHPT 

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular 
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of 
D.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and  
A is factored as PUDUHPT.
If uplo = 'L', the array a stores the lower triangular part of the matrix A;  A is 
factored as PLDLHPT.

n INTEGER.  The order of matrix A (n ≥ 0). 
a COMPLEX for chetrf

DOUBLE COMPLEX for zhetrf.
Array, DIMENSION (lda,*). 
The array a contains either the upper or the lower triangular part of the matrix 
A (see uplo). 
The second dimension of a must be at least max(1, n).

lda INTEGER.  The first dimension of a; at least max(1, n).
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work Same type as a. Workspace array of dimension lwork 

lwork INTEGER.  The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a The upper or lower triangular part of a is overwritten by details of the 
block-diagonal matrix D and the multipliers used to obtain the factor U (or L). 

work(1) If info=0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
Contains details of the interchanges and the block structure of D. 
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and column of 
A was interchanged with the kth row and column. 

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is exactly 
singular. Division by 0 will occur if you use D for solving a system of linear 
equations.

Application Notes

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If A is in 
fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal blocks 
occur in D.

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. 

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.
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The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The 
remaining elements of U and L are stored in the corresponding columns of the array a, but 
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in 
the corresponding elements of the array a.

If uplo = 'U',  the computed factors U and D are the exact factors of a perturbed matrix A + E, 
where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following:

?hetrs to solve AX = B;

?hecon to estimate the condition number of A;

?hetri to compute the inverse of A.

?sptrf                   
Computes the Bunch-Kaufman factorization of a 
symmetric matrix using packed storage.

Syntax
call ssptrf ( uplo, n, ap, ipiv, info )

call dsptrf ( uplo, n, ap, ipiv, info )

call csptrf ( uplo, n, ap, ipiv, info )

call zsptrf ( uplo, n, ap, ipiv, info )

Description

This routine forms the Bunch-Kaufman factorization of a symmetric matrix A using packed 
storage:

     if uplo='U', A = PUDUTPT 

E c n( )ε P U D UT PT≤
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     if uplo='L', A = PLDLTPT 

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit 
diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U 
and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D. 

Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is packed in the array 
ap and how A is factored: 

If uplo = 'U', the array ap stores the upper triangular part of the matrix A, 
and  A is factored as PUDUTPT.
If uplo = 'L', the array ap stores the lower triangular part of the matrix A;  A 
is factored as PLDLTPT.

n INTEGER.  The order of matrix A (n ≥ 0). 

ap REAL for ssptrf
DOUBLE PRECISION for dsptrf
COMPLEX for csptrf
DOUBLE COMPLEX for zsptrf.
Array, DIMENSION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower triangular part of the matrix 
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

ap The upper or lower triangle of A (as specified by uplo) is overwritten by 
details of the block-diagonal matrix D and the multipliers used to obtain the 
factor U (or L). 

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
Contains details of the interchanges and the block structure of D. 
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and column of 
A was interchanged with the kth row and column. 

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 
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If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is exactly 
singular. Division by 0 will occur if you use D for solving a system of linear 
equations.

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The 
remaining elements of U and L overwrite elements of the corresponding columns of the matrix A, 
but additional row interchanges are required to recover U or L explicitly (which is seldom 
necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in 
packed form.

If uplo = 'U',  the computed factors U and D are the exact factors of a perturbed matrix A + E, 
where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors or (4/3)n3 
for complex flavors.

After calling this routine, you can call the following:

?sptrs to solve AX = B;

?spcon to estimate the condition number of A;

?sptri to compute the inverse of A.

E c n( )ε P U D UT PT≤
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?hptrf                 
Computes the Bunch-Kaufman factorization of a 
complex Hermitian matrix using packed storage.

Syntax
call chptrf ( uplo, n, ap, ipiv, info )

call zhptrf ( uplo, n, ap, ipiv, info )

Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix using packed storage:

     if uplo='U', A = PUDUHPT 

     if uplo='L', A = PLDLHPT 

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular 
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of 
D.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is packed and how A 
is factored: 

If uplo = 'U', the array ap stores the upper triangular part of the matrix A, 
and  A is factored as PUDUHPT.
If uplo = 'L', the array ap stores the lower triangular part of the matrix A;  A 
is factored as PLDLHPT.

n INTEGER.  The order of matrix A (n ≥ 0). 

ap COMPLEX for chptrf
DOUBLE COMPLEX for zhptrf.
Array, DIMENSION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower triangular part of the matrix 
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).
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Output Parameters

ap The upper or lower triangle of A (as specified by uplo)  is overwritten by 
details of the block-diagonal matrix D and the multipliers used to obtain the 
factor U (or L). 

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
Contains details of the interchanges and the block structure of D. 
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and column of 
A was interchanged with the kth row and column. 

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is exactly 
singular. Division by 0 will occur if you use D for solving a system of linear 
equations.

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The 
remaining elements of U and L are stored in the corresponding columns of the array a, but 
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in 
the corresponding elements of the array a.

If uplo = 'U',  the computed factors U and D are the exact factors of a perturbed matrix A + E, 
where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following:

E c n( )ε P U D UT PT≤
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?hptrs to solve AX = B;

?hpcon to estimate the condition number of A;

?hptri to compute the inverse of A.

Routines for Solving Systems of Linear Equations    

This section describes the LAPACK routines for solving systems of linear equations. Before 
calling most of these routines, you need to factorize the matrix of your system of equations (see 
Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if 
your system of equations has a triangular matrix.

?getrs                 
Solves a system of linear equations with an LU-factored 
square matrix, with multiple right-hand sides.

Syntax
call sgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call dgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call cgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call zgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

Description

This routine solves for X the following systems of linear equations:

AX = B if trans='N', 

ATX = B if trans='T', 

AHX = B if trans='C' (for complex matrices only). 

Before calling this routine, you must call ?getrf to compute the LU factorization of A.

Input Parameters
trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', then AX = B is solved for X.
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If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

n INTEGER. The order of A; the number of rows in B (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0). 

a, b REAL for sgetrs 
DOUBLE PRECISION for dgetrs 
COMPLEX for cgetrs 
DOUBLE COMPLEX for zgetrs.
Arrays: a(lda,*), b(ldb,*). 

The array a contains the matrix A.
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of 
b  at least max(1,nrhs).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?getrf.

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

E c n( )ε P L U≤
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where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH might or 
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n2 for 
real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞  (A), call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

?gbtrs                  
Solves a system of linear equations with an LU-factored 
band matrix, with multiple right-hand sides.

Syntax
call sgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

Description

This routine solves for X the following systems of linear equations:

AX = B if trans='N', 
ATX = B if trans='T', 
AHX = B if trans='C' (for complex matrices only). 

Here A is an LU-factored general band matrix of order n with kl non-zero sub-diagonals and ku 
non-zero super-diagonals. Before calling this routine, you must call ?gbtrf to compute the LU 
factorization of A.

x x0– ∞
x ∞

--------------------- c n( ) cond A x( , )ε≤
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Input Parameters
trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.
n INTEGER. The order of A; the number of rows in B (n ≥ 0). 
kl INTEGER.  The number of sub-diagonals within the band of A (kl ≥ 0). 
ku INTEGER.  The number of super-diagonals within the band of A (ku ≥ 0). 
nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0). 

ab, b REAL for sgbtrs 
DOUBLE PRECISION for dgbtrs
COMPLEX for cgbtrs
DOUBLE COMPLEX for zgbtrs.
Arrays: ab(ldab,*), b(ldb,*).

The array ab contains the matrix A in band storage (see Matrix Storage 
Schemes).

The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b  at least max(1,nrhs).

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ 2kl + ku +1).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?gbtrf.

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b, where

c(k) is a modest linear function of k, and ε is the machine precision.

E c kl ku 1+ +( )ε P L U≤
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If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH might or 
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector is 2n(ku + 
2kl) for real flavors. The number of operations for complex flavors is 4 times greater. All these 
estimates assume that kl and ku are much less than min(m,n).

To estimate the condition number κ∞  (A), call ?gbcon.
To refine the solution and estimate the error, call ?gbrfs.

?gttrs                 
Solves a system of linear equations with a tridiagonal 
matrix using the LU factorization computed by ?gttrf.

Syntax
call sgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call dgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call cgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call zgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

Description

This routine solves for X the following systems of linear equations with multiple right hand sides:

AX = B if trans='N', 

ATX = B if trans='T', 

AHX = B if trans='C' (for complex matrices only). 

Before calling this routine, you must call ?gttrf to compute the LU factorization of A.

x x0– ∞
x ∞

--------------------- c kl ku 1+ +( ) cond A x( , )ε≤
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Input Parameters
trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', then AX = B is solved for X.
If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

n INTEGER. The order of A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides, i.e., the number of columns in B
(nrhs ≥ 0). 

dl,d,du,du2,b REAL for sgttrs 
DOUBLE PRECISION for dgttrs
COMPLEX for cgttrs
DOUBLE COMPLEX for zgttrf.
Arrays: dl(n - 1), d(n ), du(n - 1), du2(n - 2),  b(ldb,nrhs).
The array dl  contains the  (n - 1) multipliers that define the matrix L from the 
LU factorization of  A. 
The array d contains the n diagonal elements of the upper triangular matrix U 
from the LU factorization of  A. 
The array du  contains the  (n - 1) elements of the first super-diagonal of U.
The array du2  contains the  (n - 2) elements of the second super-diagonal of 
U.
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.

ldb INTEGER.  The leading dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION (n). 
The ipiv array, as returned by ?gttrf.

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH might or 
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n2 for 
real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞  (A), call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

?potrs                     
Solves a system of linear equations with a 
Cholesky-factored symmetric (Hermitian) 
positive-definite matrix.

Syntax
call spotrs ( uplo, n, nrhs, a, lda, b, ldb, info )

call dpotrs ( uplo, n, nrhs, a, lda, b, ldb, info )

call cpotrs ( uplo, n, nrhs, a, lda, b, ldb, info )

call zpotrs ( uplo, n, nrhs, a, lda, b, ldb, info )

E c n( )ε P L U≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x( , )ε≤
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Description

This routine solves for X the system of linear equations AX = B with a symmetric positive-definite 
or, for complex data, Hermitian positive-definite matrix A, given the Cholesky factorization of A:

     A = UHU if uplo ='U'

     A = LLH if uplo ='L'

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple 
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?potrf to compute the Cholesky factorization of A.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array a stores the factor U of the Cholesky factorization A = 
UHU.
If uplo = 'L',  the array a stores the factor L of the Cholesky factorization A 
= LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 
nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0).
a, b REAL for spotrs

DOUBLE PRECISION for dpotrs
COMPLEX for cpotrs
DOUBLE COMPLEX for zpotrs.
Arrays: a(lda,*), b(ldb,*). 
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of a must be at least max(1,n), the second dimension of 
b  at least max(1,nrhs).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a 
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for uplo = 'L'.
If x0 is the true solution, the computed solution x satisfies this error bound: 

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞  (A).
The approximate number of floating-point operations for one right-hand side vector b is 2n2 for 
real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞  (A), call ?pocon.
To refine the solution and estimate the error, call ?porfs.

?pptrs                      
Solves a system of linear equations with a packed 
Cholesky-factored symmetric (Hermitian) 
positive-definite matrix.

Syntax
call spptrs ( uplo, n, nrhs, ap, b, ldb, info )

call dpptrs ( uplo, n, nrhs, ap, b, ldb, info )

call cpptrs ( uplo, n, nrhs, ap, b, ldb, info )

call zpptrs ( uplo, n, nrhs, ap, b, ldb, info )

E c n( )ε UH U≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x,( )ε≤
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Description

This routine solves for X the system of linear equations AX = B with a packed symmetric 
positive-definite or, for complex data, Hermitian positive-definite matrix A, given the Cholesky 
factorization of A:

     A = UHU if uplo ='U'

     A = LLH if uplo ='L'

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple 
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of A.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo ='U', the array a stores the packed factor U of the Cholesky 
factorization A = UHU.
If uplo ='L',  the array a stores the packed factor L of the Cholesky 
factorization A = LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 
nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0).
ap, b REAL for spptrs

DOUBLE PRECISION for dpptrs
COMPLEX for cpptrs
DOUBLE COMPLEX for zpptrs.
Arrays: ap(*), b(ldb,*) 
The dimension of ap must be at least max(1,n(n+1)/2). 
The array ap contains the factor U or L, as specified by uplo, in packed 
storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations. The second dimension of b  must be at least 
max(1,nrhs).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a 
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n2 for 
real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?ppcon.
To refine the solution and estimate the error, call ?pprfs.

?pbtrs                      
Solves a system of linear equations with a  
Cholesky-factored symmetric (Hermitian) 
positive-definite band matrix.

Syntax
call spbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

E c n( )ε UH U≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x,( )ε≤
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Description

This routine solves for X the system of linear equations AX = B with a  symmetric positive-definite 
or, for complex data, Hermitian positive-definite band matrix A, given the Cholesky factorization 
of A:

     A = UHU if uplo='U'
     A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple 
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pbtrf to compute the Cholesky factorization of A in 
the band storage form.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array a stores the factor U of the  factorization A = UHU in 
the band storage form.
If uplo = 'L',  the array a stores the factor L of the factorization A = LLH in 
the band storage form.

n INTEGER.  The order of matrix A (n ≥ 0). 
kd INTEGER.  The number of super-diagonals or sub-diagonals in the matrix A

(kd ≥ 0). 
nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0).

ab, b REAL for spbtrs 
DOUBLE PRECISION for dpbtrs
COMPLEX for cpbtrs
DOUBLE COMPLEX for zpbtrs.
Arrays: ab(ldab,*), b(ldb,*).

The array ab contains the Cholesky factor, as returned by the factorization 
routine, in band storage form.

The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b  at least max(1,nrhs).

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ kd +1).
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ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes
For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b, where

c(k) is a modest linear function of k, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A). 

The approximate number of floating-point operations for one right-hand side vector is 4n*kd for 
real flavors and 16n*kd for complex flavors.

To estimate the condition number κ∞  (A), call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

?pttrs                 
Solves a system of linear equations with a symmetric 
(Hermitian) positive-definite tridiagonal matrix using 
the factorization computed by ?pttrf.

Syntax
call spttrs (n, nrhs, d, e, b, ldb, info)

call dpttrs (n, nrhs, d, e, b, ldb, info)

call cpttrs (uplo, n, nrhs, d, e, b, ldb, info)

E c kd 1+( )ε P UH U or E c kd 1+( )ε P LH L≤ ≤

x x0– ∞
x ∞

--------------------- c kd 1+( ) cond A x,( )ε≤
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call zpttrs (uplo, n, nrhs, d, e, b, ldb, info)

Description

This routine solves for X a system of linear equations  AX = B  with a symmetric (Hermitian) 
positive-definite tridiagonal matrix A. 
Before calling this routine, you must call ?pttrf to compute the  LDLH or UHDU  factorization 
of A.

Input Parameters
uplo CHARACTER*1.  Used for cpttrs/zpttrs only.

Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal 
matrix A is stored and how A is factored: 
If uplo = 'U', the array e stores the superdiagonal of A, and  A is factored as 
UHDU;
If uplo = 'L', the array e stores the subdiagonal of A, and  A is factored as 
LDLH.

n INTEGER. The order of A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides, i.e., the number of columns of the 
matrix B (nrhs ≥ 0). 

d REAL for spttrs, cpttrs
DOUBLE PRECISION for dpttrs, zpttrs.
Array, dimension (n). Contains the diagonal elements of the diagonal matrix 
D from the factorization computed by ?pttrf. 

e, b REAL for spttrs
DOUBLE PRECISION for dpttrs
COMPLEX for cpttrs
DOUBLE COMPLEX for zpttrs.
Arrays: e(n - 1), b(ldb,nrhs).
The array e  contains the  (n - 1)  off-diagonal elements of the unit bidiagonal 
factor U or L from the factorization computed by ?pttrf (see  uplo).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.

ldb INTEGER.  The leading dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.
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info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?sytrs               
Solves a system of linear equations with a  UDU- or 
LDL-factored symmetric matrix.

Syntax
call ssytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call dsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call csytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Description

This routine solves for X the system of linear equations AX = B with a  symmetric matrix A, given 
the Bunch-Kaufman factorization of A:

     if uplo='U', A = PUDUTPT 

     if uplo='L', A = PLDLTPT 

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit 
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple 
right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U 
(or L) and the array ipiv returned by the factorization routine ?sytrf.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the 
factorization A = PUDUTPT.
If uplo = 'L', the array a stores the lower triangular factor L of the 
factorization A = PLDLTPT.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0).
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ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?sytrf.

a, b REAL for ssytrs
DOUBLE PRECISION for dsytrs
COMPLEX for csytrs
DOUBLE COMPLEX for zsytrs.
Arrays: a(lda,*), b(ldb,*).  
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for 
the system of equations.

The second dimension of a must be at least max(1,n), the second dimension of 
b  at least max(1,nrhs).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b, where 

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately 2n2 
for real flavors or 8n2 for complex flavors.

E c n( )ε P U D U
T
P
T or E c n( )ε P L D L

T
P
T≤≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x,( )ε≤
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To estimate the condition number κ∞  (A), call ?sycon.
To refine the solution and estimate the error, call ?syrfs.

?hetrs              
Solves a system of linear equations with a  UDU- or 
LDL-factored Hermitian matrix.

Syntax
call chetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zhetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Description

This routine solves for X the system of linear equations AX = B with a  Hermitian matrix A, given 
the Bunch-Kaufman factorization of A:

     if uplo ='U', A = PUDUHPT 

     if uplo ='L', A = PLDLHPT 

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit 
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple 
right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U 
(or L) and the array ipiv returned by the factorization routine ?hetrf.

Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular factor U of the 
factorization A = PUDUHPT.

If uplo = 'L', the array a stores the lower triangular factor L of the 
factorization A = PLDLHPT.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0).



3-46

3 Intel® Math Kernel Library Reference Manual

ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?hetrf.

a, b COMPLEX for chetrs.
DOUBLE COMPLEX for zhetrs.
Arrays: a(lda,*), b(ldb,*).  
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for 
the system of equations.

The second dimension of a must be at least max(1,n), the second dimension of 
b  at least max(1,nrhs).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b, where 

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately 8n2.

To estimate the condition number κ∞  (A), call ?hecon.
To refine the solution and estimate the error, call ?herfs.

E c n( )ε P U D UH PT or E c n( )ε P L D LH PT≤≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x,( )ε≤
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?sptrs               
Solves a system of linear equations with a  UDU- or 
LDL-factored symmetric matrix using packed storage.

Syntax
call ssptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )

call dsptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )

call csptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )

call zsptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )

Description

This routine solves for X the system of linear equations AX = B with a  symmetric matrix A, given 
the Bunch-Kaufman factorization of A:

     if uplo='U', A = PUDUTPT 
     if uplo='L', A = PLDLTPT 

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with unit 
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple 
right-hand sides stored in the columns of the matrix B. You must supply the factor U (or L) and the 
array ipiv returned by the factorization routine ?sptrf.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed factor U of the factorization A = 
PUDUTPT.
If uplo = 'L', the array ap stores the packed factor L of the factorization A = 
PLDLTPT.

n INTEGER.  The order of matrix A (n ≥ 0). 
nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?sptrf.

ap, b REAL for ssptrs
DOUBLE PRECISION for dsptrs
COMPLEX for csptrs
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DOUBLE COMPLEX for zsptrs.
Arrays: ap(*), b(ldb,*) 
The dimension of ap must be at least max(1,n(n+1)/2). 
The array ap contains the factor U or L, as specified by uplo, in packed 
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for 
the system of equations. The second dimension of b  must be at least 
max(1,nrhs).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b, where 

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately 2n2 
for real flavors or 8n2 for complex flavors.

To estimate the condition number κ∞  (A), call ?spcon.
To refine the solution and estimate the error, call ?sprfs.

E c n( )ε P U D UT PT or E c n( )ε P L D LT PT≤≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x,( )ε≤
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?hptrs              
Solves a system of linear equations with a  UDU- or 
LDL-factored Hermitian matrix using packed storage.

Syntax
call chptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )

call zhptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )

Description

This routine solves for X the system of linear equations AX = B with a  Hermitian matrix A, given 
the Bunch-Kaufman factorization of A:

     if uplo='U', A = PUDUHPT 
     if uplo='L', A = PLDLHPT 

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with unit 
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple 
right-hand sides stored in the columns of the matrix B. 

You must supply to this routine the arrays ap  (containing U or L) and ipiv  in the form returned 
by the factorization routine ?hptrf.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed factor U of the factorization A = 
PUDUHPT.
If uplo = 'L', the array ap stores the packed factor L of the factorization A = 
PLDLHPT.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?hptrf.

ap, b COMPLEX for chptrs.
DOUBLE COMPLEX for zhptrs.
Arrays: ap(*), b(ldb,*) 
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The dimension of ap must be at least max(1,n(n+1)/2). 
The array ap contains the factor U or L, as specified by uplo, in packed 
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for 
the system of equations. The second dimension of b  must be at least 
max(1,nrhs).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b, where 

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately 8n2 
for complex flavors.

To estimate the condition number κ∞  (A), call ?hpcon.
To refine the solution and estimate the error, call ?hprfs.

E c n( )ε P U D UH PT or E c n( )ε P L D LH PT≤≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x,( )ε≤
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?trtrs               
Solves a system of linear equations with a triangular 
matrix, with multiple right-hand sides.

Syntax
call strtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

call dtrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

call ctrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

call ztrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

Description

This routine solves for X the following systems of linear equations with a triangular matrix A, with 
multiple right-hand sides stored in B:

AX = B if trans='N', 
ATX = B if trans='T', 
AHX = B if trans='C' (for complex matrices only). 

Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular: 

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.
If trans = 'N', then AX = B is solved for X.
If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

diag CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements of A are assumed to 
be 1 and not referenced in the array a.

n INTEGER. The order of A; the number of rows in B (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0). 
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a, b REAL for strtrs 
DOUBLE PRECISION for dtrtrs 
COMPLEX for ctrtrs 
DOUBLE COMPLEX for ztrtrs.
Arrays: a(lda,*), b(ldb,*). 

The array a contains the matrix A.
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.

The second dimension of a must be at least max(1,n), the second dimension of 
b  at least max(1,nrhs).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.
If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH might or 
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is n2 for real 
flavors and 4n2 for complex flavors.

E c n( )ε A≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x,( )ε, provided c n( ) cond A x,( )ε 1<≤
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To estimate the condition number κ∞  (A), call ?trcon.
To estimate the error in the solution, call ?trrfs.

?tptrs              
Solves a system of linear equations with a packed 
triangular matrix, with multiple right-hand sides.

Syntax
call stptrs (uplo, trans, diag, n, nrhs, ap, b, ldb, info)

call dtptrs (uplo, trans, diag, n, nrhs, ap, b, ldb, info)

call ctptrs (uplo, trans, diag, n, nrhs, ap, b, ldb, info)

call ztptrs (uplo, trans, diag, n, nrhs, ap, b, ldb, info)

Description

This routine solves for X the following systems of linear equations with a packed triangular matrix 
A, with multiple right-hand sides stored in B:

AX = B if trans='N', 
ATX = B if trans='T', 
AHX = B if trans='C' (for complex matrices only). 

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular: 

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.
If trans = 'N', then AX = B is solved for X.
If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

diag CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 
and not referenced in the array ap.
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n INTEGER. The order of A; the number of rows in B (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0). 

ap, b REAL for stptrs 
DOUBLE PRECISION for dtptrs 
COMPLEX for ctptrs 
DOUBLE COMPLEX for ztptrs.
Arrays: ap(*), b(ldb,*) 
The dimension of ap must be at least max(1,n(n+1)/2). 
The array ap contains the matrix A in packed storage 
(see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand sides for 
the system of equations. The second dimension of b  must be at least 
max(1,nrhs).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A, x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A, x) can be much smaller than κ∞(A); the condition number of AT and AH might or 
might not be equal to κ∞(A).

E c n( )ε A≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x,( )ε, provided c n( ) cond A x,( )ε 1<≤
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The approximate number of floating-point operations for one right-hand side vector b is n2 for real 
flavors and 4n2 for complex flavors.

To estimate the condition number κ∞  (A), call ?tpcon.
To estimate the error in the solution, call ?tprfs.

?tbtrs              
Solves a system of linear equations with a band 
triangular matrix, with multiple right-hand sides.

Syntax
call stbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call dtbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ctbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ztbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

Description

This routine solves for X the following systems of linear equations with a band triangular matrix A, 
with multiple right-hand sides stored in B:

AX = B if trans='N', 
ATX = B if trans='T', 
AHX = B if trans='C' (for complex matrices only). 

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular: 

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.
If trans = 'N', then AX = B is solved for X.
If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

diag CHARACTER*1.  Must be 'N' or 'U'.
If diag = 'N', then A is not a unit triangular matrix.
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If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 
and not referenced in the array ab.

n INTEGER. The order of A; the number of rows in B (n ≥ 0). 

kd INTEGER.  The number of super-diagonals or sub-diagonals in the matrix A
(kd ≥ 0). 

nrhs INTEGER.  The number of right-hand sides (nrhs ≥ 0). 

ab, b REAL for stbtrs 
DOUBLE PRECISION for dtbtrs 
COMPLEX for ctbtrs 
DOUBLE COMPLEX for ztbtrs.
Arrays: ab(ldab,*), b(ldb,*).

The array ab contains the matrix A in band storage form.

The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b  at least max(1,nrhs).

ldab INTEGER.  The first dimension of ab;  ldab ≥ kd + 1.

ldb INTEGER.  The first dimension of b;  ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of 
equations (A + E)x = b where    

c(n) is a modest linear function of n, and ε is the machine precision.
If x0 is the true solution, the computed solution x satisfies this error bound:

E c n( )ε A≤

x x0– ∞
x ∞

--------------------- c n( ) cond A x,( )ε, provided c n( ) cond A x,( )ε 1<≤
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where cond(A, x) = || |A-1| |A| |x| ||∞ / ||x||∞  ≤  ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A, x) can be much smaller than κ∞(A); the condition number of AT and AH might or 
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n*kd  
for real flavors and 8n*kd for complex flavors.

To estimate the condition number κ∞  (A), call ?tbcon.
To estimate the error in the solution, call ?tbrfs.

Routines for Estimating the Condition Number

This section describes the LAPACK routines for estimating the condition number of a matrix. The 
condition number is used for analyzing the errors in the solution of a system of linear equations 
(see Error Analysis). Since the condition number may be arbitrarily large when the matrix is 
nearly singular, the routines actually compute the reciprocal condition number.

?gecon              
Estimates the reciprocal of the condition number of a 
general matrix in either the 1-norm or the 
infinity-norm.

Syntax
call sgecon ( norm, n, a, lda, anorm, rcond, work, iwork, info )

call dgecon ( norm, n, a, lda, anorm, rcond, work, iwork, info )

call cgecon ( norm, n, a, lda, anorm, rcond, work, rwork, info )

call zgecon ( norm, n, a, lda, anorm, rcond, work, rwork, info )

Description

This routine estimates the reciprocal of the condition number of a general matrix A in either the 
1-norm or infinity-norm:

          κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH) 
          κ∞ (A) = ||A||∞  ||A−1||∞ = κ1 (AT) = κ1 (AH) .

Before calling this routine:
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• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?getrf to compute the LU factorization of A.

Input Parameters
norm CHARACTER*1.  Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

n INTEGER. The order of the matrix A (n ≥ 0). 

a, work REAL for sgecon 
DOUBLE PRECISION for dgecon 
COMPLEX for cgecon 
DOUBLE COMPLEX for zgecon.
Arrays: a(lda,*), work(*). 

The array a contains the LU-factored matrix A, as returned by ?getrf.
The second dimension of a must be at least max(1,n).
The array work  is a workspace for the routine.

The dimension of work  must be at least max(1, 4*n) for real flavors and 
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Description).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cgecon 
DOUBLE PRECISION for zgecon 
Workspace array, DIMENSION  at least max(1, 2*n). 

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.
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info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems 
of linear equations Ax = b or AHx = b; the number is usually 4 or 5 and never more than 11. Each 
solution requires approximately 2n2 floating-point operations for real flavors and 8n2 for complex 
flavors.

?gbcon              
Estimates the reciprocal of the condition number of a 
band matrix in either the 1-norm or the infinity-norm.

Syntax
call sgbcon (norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)

call dgbcon (norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)

call cgbcon (norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info)

call zgbcon (norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a general band matrix A in either 
the 1-norm or infinity-norm:

          κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH) 
          κ∞ (A) = ||A||∞  ||A−1||∞ = κ1 (AT) = κ1 (AH) .

Before calling this routine:

• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?gbtrf to compute the LU factorization of A.

Input Parameters
norm CHARACTER*1.  Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).
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n INTEGER. The order of the matrix A (n ≥ 0). 
kl INTEGER.  The number of sub-diagonals within the band of A (kl ≥ 0). 
ku INTEGER.  The number of super-diagonals within the band of A (ku ≥ 0).

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ 2kl + ku +1).

ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?gbtrf.

ab, work REAL for sgbcon 
DOUBLE PRECISION for dgbcon
COMPLEX for cgbcon
DOUBLE COMPLEX for zgbcon.

Arrays: ab(ldab,*), work(*).

The array ab contains the factored band matrix A, 
as returned by ?gbtrf.

The second dimension of ab must be at least max(1,n).
The array work  is a workspace for the routine.

The dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cgbcon 
DOUBLE PRECISION for zgbcon 
Workspace array, DIMENSION  at least max(1, 2*n). 

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.
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info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems 
of linear equations Ax = b or AHx = b; the number is usually 4 or 5 and never more than 11. Each 
solution requires approximately 2n(ku + 2kl) floating-point operations for real flavors and 8n(ku 
+ 2kl) for complex flavors.

?gtcon                
Estimates the reciprocal of the condition number of a 
tridiagonal matrix using the factorization computed by 
?gttrf.

Syntax
call sgtcon ( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info )

call dgtcon ( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info )

call cgtcon ( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info )

call zgtcon ( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info )

Description

This routine estimates the reciprocal of the condition number of a real or complex tridiagonal 
matrix A in either the 1-norm or infinity-norm:

          κ1(A) = ||A||1 ||A−1||1 
          κ∞ (A) = ||A||∞  ||A−1||∞ 

An estimate is obtained for ||A−1||, and the reciprocal of the condition number is computed as
rcond = 1 / (||A|| ||A−1||). 

Before calling this routine:

• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?gttrf to compute the LU factorization of A.
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Input Parameters
norm CHARACTER*1.  Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

n INTEGER. The order of the matrix A (n ≥ 0). 
dl,d,du,du2 REAL for sgtcon 

DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon
DOUBLE COMPLEX for zgtcon.
Arrays: dl(n - 1), d(n ), du(n - 1), du2(n - 2).
The array dl  contains the  (n - 1) multipliers that define the matrix L from the 
LU factorization of  A as computed by ?gttrf. 
The array d contains the n diagonal elements of the upper triangular matrix U 
from the LU factorization of  A. 
The array du  contains the  (n - 1) elements of the first super-diagonal of U.
The array du2  contains the  (n - 2) elements of the second super-diagonal of 
U.

ipiv INTEGER. 
Array, DIMENSION (n). 
The array of pivot indices, as returned by ?gttrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Description).

work REAL for sgtcon 
DOUBLE PRECISION for dgtcon 
COMPLEX for cgtcon 
DOUBLE COMPLEX for zgtcon.
Workspace array, DIMENSION (2*n).

iwork INTEGER.
Workspace array, DIMENSION  (n). 
Used for real flavors only.

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 



LAPACK Routines: Linear Equations 3

3-63

precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
2n2 floating-point operations for real flavors and 8n2 for complex flavors.

?pocon                     
Estimates the reciprocal of the condition number of a 
symmetric (Hermitian) positive-definite matrix.

Syntax
call spocon ( uplo, n, a, lda, anorm, rcond, work, iwork, info )

call dpocon ( uplo, n, a, lda, anorm, rcond, work, iwork, info )

call cpocon ( uplo, n, a, lda, anorm, rcond, work, rwork, info )

call zpocon ( uplo, n, a, lda, anorm, rcond, work, rwork, info )

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian) 
positive-definite matrix A:

       κ1(A) = ||A||1 ||A−1||1  (since A is symmetric or Hermitian, κ∞(A) = κ1(A)).
Before calling this routine:
• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?potrf to compute the Cholesky factorization of A.
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Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular factor U of the 
factorization A = UHU.

If uplo = 'L', the array a stores the lower triangular factor L of the 
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0). 

a, work REAL for spocon 
DOUBLE PRECISION for dpocon 
COMPLEX for cpocon 
DOUBLE COMPLEX for zpocon.
Arrays: a(lda,*), work(*). 

The array a contains the factored matrix A, as returned by ?potrf.
The second dimension of a must be at least max(1,n).
The array work  is a workspace for the routine.

The dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cpocon 
DOUBLE PRECISION for zpocon 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 



LAPACK Routines: Linear Equations 3

3-65

precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
2n2 floating-point operations for real flavors and 8n2 for complex flavors.

?ppcon                      
Estimates the reciprocal of the condition number of a 
packed symmetric (Hermitian) positive-definite matrix.

Syntax
call sppcon ( uplo, n, ap, anorm, rcond, work, iwork, info )

call dppcon ( uplo, n, ap, anorm, rcond, work, iwork, info )

call cppcon ( uplo, n, ap, anorm, rcond, work, rwork, info )

call zppcon ( uplo, n, ap, anorm, rcond, work, rwork, info )

Description

This routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian) 
positive-definite matrix A:

       κ1(A) = ||A||1 ||A−1||1  (since A is symmetric or Hermitian, κ∞(A) = κ1(A)).
Before calling this routine:
• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?pptrf to compute the Cholesky factorization of A.
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Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the upper triangular factor U of the 
factorization A = UHU.

If uplo = 'L', the array ap stores the lower triangular factor L of the 
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap, work REAL for sppcon 
DOUBLE PRECISION for dppcon 
COMPLEX for cppcon 
DOUBLE COMPLEX for zppcon.
Arrays: ap(*), work(*). 

The array ap contains the packed factored matrix A, as returned by ?pptrf.
The dimension of ap must be at least max(1,n(n+1)/2). 
The array work  is a workspace for the routine.

The dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cppcon 
DOUBLE PRECISION for zppcon 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
2n2 floating-point operations for real flavors and 8n2 for complex flavors.

?pbcon                      
Estimates the reciprocal of the condition number of a 
symmetric (Hermitian) positive-definite band matrix.

Syntax
call spbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call dpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call cpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

call zpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian) 
positive-definite band matrix A:
       κ1(A) = ||A||1 ||A−1||1  (since A is symmetric or Hermitian, κ∞  (A) = κ1(A)).
Before calling this routine:

• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?pbtrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ab stores the upper triangular factor U of the 
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Cholesky factorization A = UHU.
If uplo = 'L', the array ab stores the lower triangular factor L of the 
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0). 
kd INTEGER.  The number of super-diagonals or sub-diagonals in the matrix A

(kd ≥ 0). 

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ kd +1).

ab, work REAL for spbcon 
DOUBLE PRECISION for dpbcon 
COMPLEX for cpbcon 
DOUBLE COMPLEX for zpbcon.

Arrays: ab(ldab,*), work(*). 

The array ab contains the factored matrix A in band  form, as returned by 
?pbtrf.
The second dimension of ab must be at least max(1, n),
The array work  is a workspace for the routine.
The dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cpbcon 
DOUBLE PRECISION for zpbcon.
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.



LAPACK Routines: Linear Equations 3

3-69

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
4n(kd + 1) floating-point operations for real flavors and 16n(kd + 1) for complex flavors.

?ptcon                     
Estimates the reciprocal of the condition number of a 
symmetric (Hermitian) positive-definite tridiagonal 
matrix.

Syntax
call sptcon (n, d, e, anorm, rcond, work, info)

call dptcon (n, d, e, anorm, rcond, work, info)

call cptcon (n, d, e, anorm, rcond, work, info)

call zptcon (n, d, e, anorm, rcond, work, info)

Description

This routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric 
or complex Hermitian positive-definite tridiagonal matrix using the factorization A = LDLH  or  A 
= UHDU computed by ?pttrf :

       κ1(A) = ||A||1 ||A−1||1  (since A is symmetric or Hermitian, κ∞  (A) = κ1(A)).

The norm ||A−1||  is computed by a direct method, and the reciprocal of the condition number is 
computed as rcond = 1 / (||A|| ||A−1||). 
Before calling this routine:
• compute anorm  as  ||A||1 = maxj Σi |aij| 
• call ?pttrf to compute the factorization of A.
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Input Parameters
n INTEGER. The order of the matrix A (n ≥ 0). 
d, work REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.
Arrays, dimension (n).
The array d contains the n diagonal elements of the diagonal matrix D from the 
factorization of A, as computed by ?pttrf ;
work is a workspace array.

e REAL for sptcon
DOUBLE PRECISION for dptcon
COMPLEX for cptcon
DOUBLE COMPLEX for zptcon.
Array,  DIMENSION (n - 1).
Contains off-diagonal elements of the unit bidiagonal factor U or L from the 
factorization computed by ?pttrf .

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The 1- norm of the original matrix A (see Description).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
4n(kd + 1) floating-point operations for real flavors and 16n(kd + 1) for complex flavors.
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?sycon              
Estimates the reciprocal of the condition number of a 
symmetric matrix.

Syntax
call ssycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call dsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call csycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

call zsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a symmetric matrix A:

       κ1(A) = ||A||1 ||A−1||1  (since A is symmetric, κ∞(A) = κ1(A)).

Before calling this routine:
• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?sytrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the 
factorization A = PUDUTPT.
If uplo = 'L', the array a stores the lower triangular factor L of the 
factorization A = PLDLTPT.

n INTEGER.  The order of matrix A (n ≥ 0). 

a, work REAL for ssycon 
DOUBLE PRECISION for dsycon 
COMPLEX for csycon 
DOUBLE COMPLEX for zsycon.
Arrays: a(lda,*), work(*). 

The array a contains the factored matrix A, as returned by ?sytrf.
The second dimension of a must be at least max(1,n).

The array work  is a workspace for the routine.
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The dimension of work  must be at least max(1, 2*n).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The array ipiv, as returned by ?sytrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for csycon 
DOUBLE PRECISION for zsycon.
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
2n2 floating-point operations for real flavors and 8n2 for complex flavors.
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?hecon             
Estimates the reciprocal of the condition number of a 
Hermitian matrix.

Syntax
call checon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

call zhecon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix A:

       κ1(A) = ||A||1 ||A−1||1  (since A is Hermitian, κ∞(A) = κ1(A)).

Before calling this routine:
• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?hetrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular factor U of the 
factorization A = PUDUHPT.

If uplo = 'L', the array a stores the lower triangular factor L of the 
factorization A = PLDLHPT.

n INTEGER.  The order of matrix A (n ≥ 0). 

a, work COMPLEX for checon 
DOUBLE COMPLEX for zhecon.
Arrays: a(lda,*), work(*). 

The array a contains the factored matrix A, as returned by ?hetrf.
The second dimension of a must be at least max(1,n).

The array work  is a workspace for the routine.
The dimension of work  must be at least max(1, 2*n).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).
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ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The array ipiv, as returned by ?hetrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Discussion).

rwork REAL for checon 
DOUBLE PRECISION for zhecon 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 5 and never more than 11. Each solution requires approximately 8n2 
floating-point operations.

?spcon               
Estimates the reciprocal of the condition number of a 
packed symmetric matrix.

Syntax
call sspcon ( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )
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call dspcon ( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )

call cspcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )

call zspcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )

Description

This routine estimates the reciprocal of the condition number of a packed symmetric matrix A:

       κ1(A) = ||A||1 ||A−1||1  (since A is symmetric, κ∞(A) = κ1(A)).

Before calling this routine:
• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?sptrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed upper triangular factor U of the 
factorization A = PUDUTPT.
If uplo = 'L', the array ap stores the packed lower triangular factor L of the 
factorization A = PLDLTPT.

n INTEGER.  The order of matrix A (n ≥ 0). 

ap, work REAL for sspcon 
DOUBLE PRECISION for dspcon 
COMPLEX for cspcon 
DOUBLE COMPLEX for zspcon.
Arrays: ap(*), work(*). 

The array ap contains the packed factored matrix A, as returned by ?sptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

The array work  is a workspace for the routine.

The dimension of work  must be at least max(1, 2*n).

ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The array ipiv, as returned by ?sptrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Discussion).



3-76

3 Intel® Math Kernel Library Reference Manual

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cspcon 
DOUBLE PRECISION for zspcon 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
2n2 floating-point operations for real flavors and 8n2 for complex flavors.

?hpcon                 
Estimates the reciprocal of the condition number of a 
packed Hermitian matrix.

Syntax
call chpcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )

call zhpcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )
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Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix A:

       κ1(A) = ||A||1 ||A−1||1  (since A is Hermitian, κ∞(A) = κ1(A)).

Before calling this routine:
• compute anorm  (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?hptrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the packed upper triangular factor U of the 
factorization A = PUDUTPT.

If uplo = 'L', the array ap stores the packed lower triangular factor L of the 
factorization A = PLDLTPT.

n INTEGER.  The order of matrix A (n ≥ 0). 

ap, work COMPLEX for chpcon 
DOUBLE COMPLEX for zhpcon.
Arrays: ap(*), work(*). 

The array ap contains the packed factored matrix A, as returned by ?hptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

The array work  is a workspace for the routine.
The dimension of work  must be at least max(1, 2*n).

ipiv INTEGER. Array, DIMENSION at least max(1,n). 
The array ipiv, as returned by ?hptrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The norm of the original matrix A (see Discussion).

rwork REAL for chpcon 
DOUBLE PRECISION for zhpcon.
Workspace array, DIMENSION  at least max(1, n). 
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Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 5 and never more than 11. Each solution requires approximately 8n2 
floating-point operations.

?trcon               
Estimates the reciprocal of the condition number of a 
triangular matrix.

Syntax
call strcon (norm, uplo, diag, N, a, lda, rcond, work, iwork, info)

call dtrcon (norm, uplo, diag, N, a, lda, rcond, work, iwork, info)

call ctrcon (norm, uplo, diag, N, a, lda, rcond, work, rwork, info)

call ztrcon (norm, uplo, diag, N, a, lda, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a triangular matrix A in either the 
1-norm or infinity-norm:

          κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH) 
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          κ∞ (A) = ||A||∞  ||A−1||∞ = κ1 (AT) = κ1 (AH) .

Input Parameters
norm CHARACTER*1.  Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:

If uplo = 'U', the array a stores the upper triangle of A, other array elements 
are not referenced.

If uplo = 'L', the array a stores the lower triangle of A, other array elements 
are not referenced.

diag CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 
and not referenced in the array a.

n INTEGER. The order of the matrix A (n ≥ 0). 

a, work REAL for strcon 
DOUBLE PRECISION for dtrcon 
COMPLEX for ctrcon 
DOUBLE COMPLEX for ztrcon.
Arrays: a(lda,*), work(*). 

The array a contains the matrix A.
The second dimension of a must be at least max(1,n).
The array work  is a workspace for the routine.

The dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for ctrcon 
DOUBLE PRECISION for ztrcon.
Workspace array, DIMENSION  at least max(1, n). 
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Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
n2 floating-point operations for real flavors and 4n2 operations for complex flavors.

?tpcon               
Estimates the reciprocal of the condition number of a 
packed triangular matrix.

Syntax
call stpcon (norm, uplo, diag, n, ap, rcond, work, iwork, info)

call dtpcon (norm, uplo, diag, n, ap, rcond, work, iwork, info)

call ctpcon (norm, uplo, diag, n, ap, rcond, work, rwork, info)

call ztpcon (norm, uplo, diag, n, ap, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a packed triangular matrix A in 
either the 1-norm or infinity-norm:

          κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH) 
          κ∞ (A) = ||A||∞  ||A−1||∞ = κ1 (AT) = κ1 (AH) .
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Input Parameters
norm CHARACTER*1.  Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:

If uplo = 'U', the array ap stores the upper triangle of A in packed form.

If uplo = 'L', the array ap stores the lower triangle of A in packed form.

diag CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 
and not referenced in the array ap.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap, work REAL for stpcon 
DOUBLE PRECISION for dtpcon 
COMPLEX for ctpcon 
DOUBLE COMPLEX for ztpcon.
Arrays: ap(*), work(*). 

The array ap contains the packed matrix A.
The dimension of ap must be at least max(1,n(n+1)/2).
The array work  is a workspace for the routine.

The dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for ctpcon 
DOUBLE PRECISION for ztpcon 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 



3-82

3 Intel® Math Kernel Library Reference Manual

precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
n2 floating-point operations for real flavors and 4n2 operations for complex flavors.

?tbcon               
Estimates the reciprocal of the condition number of a 
triangular band matrix.

Syntax
call stbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)

call dtbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)

call ctbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)

call ztbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)

Description

This routine estimates the reciprocal of the condition number of a triangular band matrix A in 
either the 1-norm or infinity-norm:

          κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH) 
          κ∞ (A) = ||A||∞  ||A−1||∞ = κ1 (AT) = κ1 (AH) .

Input Parameters
norm CHARACTER*1.  Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).
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uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', the array ap stores the upper triangle of A in packed form.
If uplo = 'L', the array ap stores the lower triangle of A in packed form.

diag CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 
and not referenced in the array ab.

n INTEGER. The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super-diagonals or sub-diagonals in the matrix A
(kd ≥ 0). 

ab, work REAL for stbcon 
DOUBLE PRECISION for dtbcon 
COMPLEX for ctbcon 
DOUBLE COMPLEX for ztbcon.
Arrays: ab(ldab,*), work(*). 

The array ab contains the band matrix A.
The second dimension of ab must be at least max(1,n)).
The array work  is a workspace for the routine.
The dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ kd +1).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for ctbcon 
DOUBLE PRECISION for ztbcon.
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal of the condition number. The routine sets rcond 
=0 if the estimate underflows; in this case the matrix is singular (to working 
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precision). However, anytime rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in 
practice is nearly always less than 10ρ. A call 
to this routine involves solving a number of systems of linear equations 
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately 
2n(kd + 1) floating-point operations for real flavors and 8n(kd + 1) operations for complex 
flavors.

Refining the Solution and Estimating Its Error

This section describes the LAPACK routines for refining the computed solution of a system of 
linear equations and estimating the solution error. You can call these routines after factorizing the 
matrix of the system of equations and computing the solution (see Routines for Matrix 
Factorization and Routines for Solving Systems of Linear Equations).

?gerfs                
Refines the solution of a system of linear equations with 
a general matrix and estimates its error.

Syntax
call sgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,

ferr, berr, work, iwork, info)

call dgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
ferr, berr, work, iwork, info)

call cgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
ferr, berr, work, rwork, info)

call zgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
ferr, berr, work, rwork, info)
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Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
or ATX = B or AHX = B with a general matrix A, with multiple right-hand sides. For each computed 
solution vector x, the routine computes the component-wise backward error β. This error is the 
smallest relative perturbation in elements of A and b such that x is the exact solution of the 
perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?getrf
• call the solver routine ?getrs.

Input Parameters
trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
If trans = 'C', the system has the form AHX = B.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

a,af,b,x,work REAL for sgerfs 
DOUBLE PRECISION for dgerfs 
COMPLEX for cgerfs 
DOUBLE COMPLEX for zgerfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied 
to ?getrf.

af(ldaf,*) contains the factored matrix A, as returned by ?getrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.
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The second dimension of a and af must be at least max(1,n); the second 
dimension of b and x must be at least max(1,nrhs); the dimension of work  
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex 
flavors.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER.  The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?getrf.

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cgerfs 
DOUBLE PRECISION for zgerfs.
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2 
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition, 
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for 
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error 
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and 
never more than 11. Each solution requires approximately 2n2 floating-point operations for real 
flavors or 8n2 for complex flavors.
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?gbrfs               
Refines the solution of a system of linear equations with 
a general band matrix and estimates its error.

Syntax
call sgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb,

x, ldx, ferr, berr, work, iwork, info)

call dgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb,
x, ldx, ferr, berr, work, iwork, info)

call cgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb,
x, ldx, ferr, berr, work, rwork, info)

call zgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb,
x, ldx, ferr, berr, work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
or ATX = B or AHX = B with a band matrix A, with multiple right-hand sides. For each computed 
solution vector x, the routine computes the component-wise backward error β. This error is the 
smallest relative perturbation in elements of A and b such that x is the exact solution of the 
perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?gbtrf

• call the solver routine ?gbtrs.
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Input Parameters
trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', the system has the form AX = B.

If trans = 'T', the system has the form ATX = B.

If trans = 'C', the system has the form AHX = B.

n INTEGER. The order of the matrix A (n ≥ 0). 

kl INTEGER.  The number of sub-diagonals within the band of A (kl ≥ 0). 
ku INTEGER.  The number of super-diagonals within the band of A (ku ≥ 0). 
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

ab,afb,b,x,work REAL for sgbrfs 
DOUBLE PRECISION for dgbrfs 
COMPLEX for cgbrfs 
DOUBLE COMPLEX for zgbrfs.

Arrays:

ab(ldab,*) contains the original band matrix A, as supplied to ?gbtrf, but 
stored in rows from 1 to kl + ku + 1.

afb(ldafb,*) contains the factored band matrix A, as returned by ?gbtrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least max(1,n); the second 
dimension of b and x must be at least max(1,nrhs); the dimension of work  
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex 
flavors.

ldab INTEGER.  The first dimension of ab.
ldafb INTEGER.  The first dimension of afb .
ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?gbtrf.
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iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cgbrfs 
DOUBLE PRECISION for zgbrfs 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info =0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n(kl + ku) 
floating-point operations (for real flavors) or 16n(kl + ku) operations (for complex flavors). In 
addition, each step of iterative refinement involves 2n(4kl + 3ku) operations (for real flavors) or 
8n(4kl + 3ku) operations (for complex flavors); the number of iterations may range from 1 to 5. 
Estimating the forward error involves solving a number of systems of linear equations Ax = b; the 
number is usually 4 or 5 and never more than 11. Each solution requires approximately 2n2 
floating-point operations for real flavors or 8n2 for complex flavors.

?gtrfs                
Refines the solution of a system of linear equations with 
a tridiagonal matrix and estimates its error.

Syntax
call sgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,

x, ldx, ferr, berr, work, iwork, info)
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call dgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
x, ldx, ferr, berr, work, iwork, info)

call cgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
x, ldx, ferr, berr, work, rwork, info)

call zgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
x, ldx, ferr, berr, work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
or ATX = B or AHX = B with a tridiagonal matrix A, with multiple right-hand sides. For each 
computed solution vector x, the routine computes the component-wise backward error β. This 
error is the smallest relative perturbation in elements of A and b such that x is the exact solution of 
the perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?gttrf
• call the solver routine ?gttrs.

Input Parameters
trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
If trans = 'C', the system has the form AHX = B.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides , i.e., the number of columns of the 
matrix B (nrhs ≥ 0). 

dl,d,du,dlf,df,
duf,du2,b,x,work REAL for sgtrfs 

DOUBLE PRECISION for dgtrfs 
COMPLEX for cgtrfs 
DOUBLE COMPLEX for zgtrfs.

Arrays:
dl, dimension (n - 1), contains the subdiagonal elements of A.



LAPACK Routines: Linear Equations 3

3-91

d, dimension (n ), contains the diagonal elements of A.

du, dimension (n - 1), contains the superdiagonal elements of A.

dlf, dimension (n - 1), contains the  (n - 1) multipliers that define the matrix 
L from the LU factorization of  A as computed by ?gttrf. 

df, dimension (n ), contains the  n diagonal elements of the upper triangular 
matrix U from the LU factorization of  A. 

duf, dimension (n - 1),  contains the  (n - 1) elements of the first 
super-diagonal of U.

du2, dimension (n - 2),  contains the  (n - 2) elements of the second 
super-diagonal of U.

b(ldb,nrhs) contains the right-hand side matrix B.

x(ldx,nrhs) contains the solution matrix X, as computed by ?gttrs.

work (*) is a workspace array; 
 the dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?gttrf.

iwork INTEGER.
Workspace array, DIMENSION  (n). Used for real flavors only.

rwork REAL for cgtrfs 
DOUBLE PRECISION for zgtrfs.
Workspace array, DIMENSION  (n). Used for complex flavors only.

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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?porfs                    
Refines the solution of a system of linear equations with 
a symmetric (Hermitian) positive-definite matrix and 
estimates its error.

Syntax
call sporfs (uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,

work, iwork, info)

call dporfs (uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call cporfs (uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call zporfs (uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
with a symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. For each 
computed solution vector x, the routine computes the component-wise backward error β. This 
error is the smallest relative perturbation in elements of A and b such that x is the exact solution of 
the perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?potrf
• call the solver routine ?potrs.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
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If uplo = 'U', the array af stores the factor U of the Cholesky factorization A 
= UHU.
If uplo = 'L',  the array af stores the factor L of the Cholesky factorization A 
= LLH.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

a,af,b,x,work REAL for sporfs 
DOUBLE PRECISION for dporfs 
COMPLEX for cporfs 
DOUBLE COMPLEX for zporfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied 
to ?potrf.

af(ldaf,*) contains the factored matrix A, as returned by ?potrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second 
dimension of b and x must be at least max(1,nrhs); the dimension of work  
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex 
flavors.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER.  The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cporfs 
DOUBLE PRECISION for zporfs 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
x The refined solution matrix X.
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ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2 
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition, 
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for 
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error 
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and 
never more than 11. Each solution requires approximately 2n2 floating-point operations for real 
flavors or 8n2 for complex flavors.

?pprfs                      
Refines the solution of a system of linear equations with 
a packed symmetric (Hermitian) positive-definite 
matrix and estimates its error.

Syntax
call spprfs (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work,

iwork, info)

call dpprfs (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call cpprfs (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call zpprfs (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work,
rwork, info)
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Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
with a packed symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. 
For each computed solution vector x, the routine computes the component-wise backward error β. 
This error is the smallest relative perturbation in elements of A and b such that x is the exact 
solution of the perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pptrf
• call the solver routine ?pptrs.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array afp stores the packed factor U of the Cholesky 
factorization A = UHU.
If uplo = 'L',  the array afp stores the packed  factor L of the Cholesky 
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

ap,afp,b,x,work REAL for spprfs 
DOUBLE PRECISION for dpprfs 
COMPLEX for cpprfs 
DOUBLE COMPLEX for zpprfs.

Arrays:
ap(*) contains the original packed matrix A, as supplied to ?pptrf.

afp(*) contains the factored packed matrix A, as returned by ?pptrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.
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The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the 
second dimension of b and x must be at least max(1,nrhs); the dimension of 
work  must be at least max(1, 3*n) for real flavors and max(1, 2*n) for 
complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cpprfs 
DOUBLE PRECISION for zpprfs 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2 
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition, 
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for 
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the 
number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately 
2n2 floating-point operations for real flavors or 8n2 for complex flavors.
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?pbrfs                     
Refines the solution of a system of linear equations with 
a band symmetric (Hermitian) positive-definite matrix 
and estimates its error.

Syntax
call spbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx,

ferr, berr, work, iwork, info)

call dpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx,
ferr, berr, work, iwork, info)

call cpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx,
ferr, berr, work, rwork, info)

call zpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx,
ferr, berr, work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
with a symmetric (Hermitian) positive definite band matrix A, with multiple right-hand sides. For 
each computed solution vector x, the routine computes the component-wise backward error β. 
This error is the smallest relative perturbation in elements of A and b such that x is the exact 
solution of the perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pbtrf

• call the solver routine ?pbtrs.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
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If uplo = 'U', the array afb stores the factor U of the Cholesky factorization 
A = UHU.
If uplo = 'L',  the array afb stores the factor L of the Cholesky factorization 
A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super-diagonals or sub-diagonals in the matrix A
(kd ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

ab,afb,b,x,work REAL for spbrfs 
DOUBLE PRECISION for dpbrfs 
COMPLEX for cpbrfs 
DOUBLE COMPLEX for zpbrfs.

Arrays:

ab(ldab,*) contains the original band matrix A, as supplied to ?pbtrf.

afb(ldafb,*) contains the factored band matrix A, as returned by ?pbtrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least max(1,n); the second 
dimension of b and x must be at least max(1,nrhs); the dimension of work  
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex 
flavors.

ldab INTEGER. The first dimension of ab; ldab ≥ kd + 1.

ldafb INTEGER. The first dimension of afb; ldafb ≥ kd + 1.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cpbrfs 
DOUBLE PRECISION for zpbrfs 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
x The refined solution matrix X.
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ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info =0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

For each right-hand side, computation of the backward error involves a minimum of 8n*kd 
floating-point operations (for real flavors) or 32n*kd operations (for complex flavors). In 
addition, each step of iterative refinement involves 12n*kd operations (for real flavors) or 48n*kd 
operations (for complex flavors); the number of iterations may range from 1 to 5. 

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the 
number is usually 4 or 5 and never more than 11. Each solution requires approximately 4n*kd 
floating-point operations for real flavors or 16n*kd for complex flavors.

?ptrfs                    
Refines the solution of a system of linear equations with 
a symmetric (Hermitian) positive-definite tridiagonal 
matrix and estimates its error.

Syntax
call sptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work,

info)

call dptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work,
info)

call cptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call cptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr,
work, rwork, info)
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Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
with a symmetric (Hermitian) positive definite tridiagonal matrix A, with multiple right-hand 
sides. For each computed solution vector x, the routine computes the component-wise backward 
error β. This error is the smallest relative perturbation in elements of A and b such that x is the 
exact solution of the perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pttrf
• call the solver routine ?pttrs.

Input Parameters
uplo CHARACTER*1.  Used for complex flavors only.

Must be 'U' or 'L'.

Specifies whether the superdiagonal or the subdiagonal of the tridiagonal 
matrix A is stored and how A is factored: 
If uplo = 'U', the array e stores the superdiagonal of A, and  A is factored as 
UHDU;
If uplo = 'L', the array e stores the subdiagonal of A, and  A is factored as 
LDLH.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

d,df,rwork REAL for single precision flavors 
DOUBLE PRECISION for double precision flavors
Arrays:  d(n ), df(n ), rwork(n ).
The array d contains the n diagonal elements of the tridiagonal matrix  A. 
The array df  contains the  n diagonal elements of the diagonal matrix D from 
the factorization of  A as computed by ?pttrf. 
The array rwork is a workspace array used for complex flavors only.

e,ef,b,x,work REAL for sptrfs 
DOUBLE PRECISION for dptrfs
COMPLEX for cptrfs
DOUBLE COMPLEX for zptrfs.
Arrays: e(n - 1),  ef(n - 1),  b(ldb,nrhs),  x(ldx,nrhs),  work(*).
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The array e  contains the  (n - 1)  off-diagonal elements of the tridiagonal 
matrix A  (see  uplo).
The array ef  contains the  (n - 1)  off-diagonal elements of the unit bidiagonal 
factor U or L from the factorization computed by ?pttrf (see  uplo).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The array x contains the solution matrix X as computed by ?pttrs.
The array work is a workspace array. The dimension of work must be at least 
2*n  for real flavors, and at least n  for complex flavors.

ldb INTEGER.  The leading dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The leading dimension of x; ldx ≥ max(1, n).

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?syrfs                
Refines the solution of a system of linear equations with 
a symmetric matrix and estimates its error.

Syntax
call ssyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,

berr, work, iwork, info)

call dsyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call csyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

call zsyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)
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Discussion

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
with a symmetric full-storage matrix A, with multiple right-hand sides. For each computed 
solution vector x, the routine computes the component-wise backward error β. This error is the 
smallest relative perturbation in elements of A and b such that x is the exact solution of the 
perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?sytrf
• call the solver routine ?sytrs.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array af stores the Bunch-Kaufman factorization A = 
PUDUTPT.
If uplo = 'L',  the array af stores the Bunch-Kaufman factorization A = 
PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

a,af,b,x,work REAL for ssyrfs 
DOUBLE PRECISION for dsyrfs 
COMPLEX for csyrfs 
DOUBLE COMPLEX for zsyrfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied 
to ?sytrf.

af(ldaf,*) contains the factored matrix A, as returned by ?sytrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.
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The second dimension of a and af must be at least max(1,n); the second 
dimension of b and x must be at least max(1,nrhs); the dimension of work  
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex 
flavors.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER.  The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?sytrf.

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for csyrfs 
DOUBLE PRECISION for zsyrfs.
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2 
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition, 
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for 
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error 
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and 
never more than 11. Each solution requires approximately 2n2 floating-point operations for real 
flavors or 8n2 for complex flavors.
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?herfs               
Refines the solution of a system of linear equations with 
a complex Hermitian matrix and estimates its error.

Syntax
call cherfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,

berr, work, rwork, info)

call zherfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
with a complex Hermitian full-storage matrix A, with multiple right-hand sides. For each 
computed solution vector x, the routine computes the component-wise backward error β. This 
error is the smallest relative perturbation in elements of A and b such that x is the exact solution of 
the perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?hetrf
• call the solver routine ?hetrs.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array af stores the Bunch-Kaufman factorization A = 
PUDUHPT.
If uplo = 'L',  the array af stores the Bunch-Kaufman factorization A = 
PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

a,af,b,x,work COMPLEX for cherfs 
DOUBLE COMPLEX for zherfs.
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Arrays:

a(lda,*) contains the original matrix A, as supplied 
to ?hetrf.

af(ldaf,*) contains the factored matrix A, as returned by ?hetrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second 
dimension of b and x must be at least max(1,nrhs); the dimension of work  
must be at least max(1, 2*n).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER.  The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?hetrf.

rwork REAL for cherfs 
DOUBLE PRECISION for zherfs.
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for cherfs

DOUBLE PRECISION for zherfs. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.
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For each right-hand side, computation of the backward error involves a minimum of 16n2 
operations. In addition, each step of iterative refinement involves 24n2 operations; the number of 
iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the 
number is usually 4 or 5 and never more than 11. Each solution requires approximately 8n2 
floating-point operations.

The real counterpart of this routine is ssyrfs / dsyrfs.

?sprfs                
Refines the solution of a system of linear equations with 
a packed symmetric matrix and estimates the solution 
error.

Syntax
call ssprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,

work, iwork, info)

call dsprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call csprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call zsprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
with a packed symmetric matrix A, with multiple right-hand sides. For each computed solution 
vector x, the routine computes the component-wise backward error β. This error is the smallest 
relative perturbation in elements of A and b such that x is the exact solution of the perturbed 
system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:
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• call the factorization routine ?sptrf
• call the solver routine ?sptrs.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array afp stores the packed Bunch-Kaufman factorization 
A = PUDUTPT.
If uplo = 'L',  the array afp stores the packed Bunch-Kaufman factorization 
A = PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

ap,afp,b,x,work REAL for ssprfs 
DOUBLE PRECISION for dsprfs 
COMPLEX for csprfs 
DOUBLE COMPLEX for zsprfs.

Arrays:
ap(*) contains the original packed matrix A, as supplied to ?sptrf.

afp(*) contains the factored packed matrix A, as returned by ?sptrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the 
second dimension of b and x must be at least max(1,nrhs); the dimension of 
work  must be at least max(1, 3*n) for real flavors and max(1, 2*n) for 
complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?sptrf.

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for csprfs 
DOUBLE PRECISION for zsprfs 
Workspace array, DIMENSION  at least max(1, n). 
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Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2 
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition, 
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for 
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the 
number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately 
2n2 floating-point operations for real flavors or 8n2 for complex flavors.

?hprfs               
Refines the solution of a system of linear equations with 
a packed complex Hermitian matrix and estimates the 
solution error.

Syntax
call chprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,

work, rwork, info)

call zhprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
work, rwork, info)



LAPACK Routines: Linear Equations 3

3-109

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B 
with a packed complex Hermitian matrix A, with multiple right-hand sides. For each computed 
solution vector x, the routine computes the component-wise backward error β. This error is the 
smallest relative perturbation in elements of A and b such that x is the exact solution of the 
perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?hptrf
• call the solver routine ?hptrs.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array afp stores the packed Bunch-Kaufman factorization 
A = PUDUHPT.
If uplo = 'L',  the array afp stores the packed Bunch-Kaufman factorization 
A = PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

ap,afp,b,x,work COMPLEX for chprfs 
DOUBLE COMPLEX for zhprfs.

Arrays:

ap(*) contains the original packed matrix A, as supplied to ?hptrf.

afp(*) contains the factored packed matrix A, as returned by ?hptrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the 
second dimension of b and x must be at least max(1,nrhs); the dimension of 
work  must be at least max(1, 2*n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).
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ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?hptrf.

rwork REAL for chprfs 
DOUBLE PRECISION for zhprfs 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for chprfs.

DOUBLE PRECISION for zhprfs. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

For each right-hand side, computation of the backward error involves a minimum of 16n2 
operations. In addition, each step of iterative refinement involves 24n2 operations; the number of 
iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the 
number is usually 4 or 5 and never more than 11. Each solution requires approximately 8n2 
floating-point operations.

The real counterpart of this routine is ssprfs / dsprfs.
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?trrfs             
Estimates the error in the solution of 
a system of linear equations with a triangular matrix.

Syntax
call strrfs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr,

berr, work, iwork, info)

call dtrrfs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call ctrrfs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

call ztrrfs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or ATX = B 
or AHX = B with a triangular matrix A, with multiple right-hand sides. For each computed solution 
vector x, the routine computes the component-wise backward error β. This error is the smallest 
relative perturbation in elements of A and b such that x is the exact solution of the perturbed 
system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine, call the solver routine ?trtrs.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular: 

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
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If trans = 'C', the system has the form AHX = B.
diag CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements of A are assumed to 
be 1 and not referenced in the array a.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

a, b, x, work REAL for strrfs 
DOUBLE PRECISION for dtrrfs 
COMPLEX for ctrrfs 
DOUBLE COMPLEX for ztrrfs.

Arrays:

a(lda,*) contains the upper or lower triangular matrix A, as specified by 
uplo.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a must be at least max(1,n); the second dimension of 
b and x must be at least max(1,nrhs); the dimension of work  must be at least 
max(1, 3*n) for real flavors and max(1, 2*n) for complex flavors.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for ctrrfs 
DOUBLE PRECISION for ztrrfs 
Workspace array, DIMENSION  at least max(1, n). 



LAPACK Routines: Linear Equations 3

3-113

Output Parameters
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear 
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution 
requires approximately n2 floating-point operations for real flavors or 4n2 for complex flavors.

?tprfs             
Estimates the error in the solution of 
a system of linear equations with a packed triangular 
matrix.

Syntax
call stprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr,

work, iwork, info)

call dtprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call ctprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call ztprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr,
work, rwork, info)
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Description

This routine estimates the errors in the solution to a system of linear equations AX = B or ATX = B 
or AHX = B with a packed triangular matrix A, with multiple right-hand sides. For each computed 
solution vector x, the routine computes the component-wise backward error β. This error is the 
smallest relative perturbation in elements of A and b such that x is the exact solution of the 
perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine, call the solver routine ?tptrs.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular: 

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
If trans = 'C', the system has the form AHX = B.

diag CHARACTER*1.  Must be 'N' or 'U'.
If diag = 'N',  A is not a unit triangular matrix.

If diag = 'U',  A is unit triangular: diagonal elements of A are assumed to be 
1 and not referenced in the array ap.

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

ap, b, x, work REAL for strrfs 
DOUBLE PRECISION for dtrrfs 
COMPLEX for ctrrfs 
DOUBLE COMPLEX for ztrrfs.

Arrays:
ap(*) contains the upper or lower triangular matrix A, as specified by uplo.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.
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work (*) is a workspace array.

The dimension of ap must be at least max(1,n(n+1)/2); 
the second dimension of b and x must be at least max(1,nrhs); the dimension 
of work  must be at least max(1, 3*n) for real flavors and max(1, 2*n) for 
complex flavors.

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for ctrrfs 
DOUBLE PRECISION for ztrrfs 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear 
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution 
requires approximately n2 floating-point operations for real flavors or 4n2 for complex flavors.
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?tbrfs              
Estimates the error in the solution of 
a system of linear equations with a triangular band 
matrix.

Syntax
call stbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx,

ferr, berr, work, iwork, info)

call dtbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx,
ferr, berr, work, iwork, info)

call ctbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx,
ferr, berr, work, rwork, info)

call ztbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx,
ferr, berr, work, rwork, info)

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or ATX = B 
or AHX = B with a triangular band matrix A, with multiple right-hand sides. For each computed 
solution vector x, the routine computes the component-wise backward error β. This error is the 
smallest relative perturbation in elements of A and b such that x is the exact solution of the 
perturbed system:

|δaij|/|aij| ≤ β |aij|,  |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the computed solution ||x − 
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine, call the solver routine ?tbtrs.
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Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular: 

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
If trans = 'C', the system has the form AHX = B.

diag CHARACTER*1.  Must be 'N' or 'U'.
If diag = 'N', A is not a unit triangular matrix.

If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 
and not referenced in the array ab.

n INTEGER. The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super-diagonals or sub-diagonals in the matrix A
(kd ≥ 0). 

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0). 

ab, b, x, work REAL for stbrfs 
DOUBLE PRECISION for dtbrfs 
COMPLEX for ctbrfs 
DOUBLE COMPLEX for ztbrfs.

Arrays:

ab(ldab,*) contains the upper or lower triangular matrix A, as specified by 
uplo, in band storage format.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a must be at least max(1,n); 
the second dimension of b and x must be at least max(1,nrhs). 
The dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ kd +1).
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ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for ctbrfs 
DOUBLE PRECISION for ztbrfs 
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the 
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear 
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution 
requires approximately 2n*kd floating-point operations for real flavors or 8n*kd operations for 
complex flavors.
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Routines for Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. 
In particular, do not attempt to solve a system of equations Ax = b by first computing A−1 and then 
forming the matrix-vector product x = A−1b. 
Call a solver routine instead (see Routines for Solving Systems of Linear Equations); this is more 
efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions when an explicit inverse 
matrix is needed.

?getri                   
Computes the inverse of an LU-factored general matrix.

Syntax
call sgetri (n, a, lda, ipiv, work, lwork, info)

call dgetri (n, a, lda, ipiv, work, lwork, info)

call cgetri (n, a, lda, ipiv, work, lwork, info)

call zgetri (n, a, lda, ipiv, work, lwork, info)

Description

This routine computes the inverse (A−1) of a general matrix A.
Before calling this routine, call ?getrf to factorize A.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0). 

a, work REAL for sgetri 
DOUBLE PRECISION for dgetri 
COMPLEX for cgetri 
DOUBLE COMPLEX for zgetri.
Arrays: a(lda,*), work(lwork).
a(lda,*) contains the factorization of the matrix A, as returned by ?getrf: A 
= PLU.
The second dimension of a must be at least max(1,n).

work(lwork) is a workspace array.
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lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?getrf.

lwork INTEGER.  The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the n by n matrix A-1.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. 
Use this lwork for subsequent runs.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the factor U is zero, U is singular, and 
the inversion could not be completed.

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. 

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed inverse X satisfies the following error bound: 

where c(n) is a modest linear function of n; ε is the machine precision; 
I denotes the identity matrix; P, L, and U are the factors of the matrix factorization A = PLU.

The total number of floating-point operations is approximately (4/3)n3 for real flavors and 
(16/3)n3 for complex flavors.

XA I– c n( )ε X P L U≤
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?potri                      
Computes the inverse of a symmetric (Hermitian) 
positive-definite matrix.

Syntax
call spotri (uplo, n, a, lda, info)

call dpotri (uplo, n, a, lda, info)

call cpotri (uplo, n, a, lda, info)

call zpotri (uplo, n, a, lda, info)

Discussion

This routine computes the inverse (A−1) of a symmetric positive definite or, for complex flavors, 
Hermitian positive-definite matrix A.
Before calling this routine, call ?potrf to factorize A.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array a stores the factor U of the Cholesky factorization A = 
UHU.
If uplo = 'L', the array a stores the factor L of the Cholesky factorization A = 
LLH.

n INTEGER. The order of the matrix A (n ≥ 0). 

a REAL for spotri 
DOUBLE PRECISION for dpotri 
COMPLEX for cpotri 
DOUBLE COMPLEX for zpotri.
Array: a(lda,*).

Contains the factorization of the matrix A, as returned by ?potrf.

The second dimension of a must be at least max(1,n).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).
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Output Parameters

a Overwritten by the n by n matrix A-1.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the Cholesky factor (and hence the 
factor itself) is zero, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds: 

where c(n) is a modest linear function of n, and ε is the machine precision; 
I denotes the identity matrix.

The 2-norm ||A||2 of a matrix A is defined by ||A||2 = maxx·x=1(Ax · Ax)1/2, and the condition 
number κ2(A) is defined by κ2(A) = ||A||2 ||A−1||2 .

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3 
for complex flavors.

?pptri                     
Computes the inverse of a packed symmetric 
(Hermitian) positive-definite matrix

Syntax
call spptri (uplo, n, ap, info)

call dpptri (uplo, n, ap, info)

call cpptri (uplo, n, ap, info)

call zpptri (uplo, n, ap, info)

XA I– 2 c n( )εκ2 A( ) AX I– 2 c n( )εκ2 A( )≤,≤
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Description

This routine computes the inverse (A−1) of a symmetric positive definite or, for complex flavors, 
Hermitian positive-definite matrix A in packed form. Before calling this routine, call ?pptrf to 
factorize A.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array ap stores the packed factor U of the Cholesky 
factorization A = UHU.
If uplo = 'L', the array ap stores the packed factor L of the Cholesky 
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap REAL for spptri 
DOUBLE PRECISION for dpptri 
COMPLEX for cpptri 
DOUBLE COMPLEX for zpptri.
Array, DIMENSION at least max(1,n(n+1)/2).

Contains the factorization of the packed matrix A, 
as returned by ?pptrf.

The dimension ap must be at least max(1,n(n+1)/2).

Output Parameters

ap Overwritten by the packed n by n matrix A-1.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the Cholesky factor (and hence the 
factor itself) is zero, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds: 

where c(n) is a modest linear function of n, and ε is the machine precision; 
I denotes the identity matrix.

XA I– 2 c n( )εκ2 A( ) AX I– 2 c n( )εκ2 A( )≤,≤
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The 2-norm ||A||2 of a matrix A is defined by ||A||2 = maxx·x=1(Ax · Ax)1/2, and the condition 
number κ2(A) is defined by κ2(A) = ||A||2 ||A−1||2 .

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3 
for complex flavors.

?sytri               
Computes the inverse of a symmetric  matrix.

Syntax
call ssytri (uplo, n, a, lda, ipiv, work, info)

call dsytri (uplo, n, a, lda, ipiv, work, info)

call csytri (uplo, n, a, lda, ipiv, work, info)

call zsytri (uplo, n, a, lda, ipiv, work, info)

Description

This routine computes the inverse (A−1) of a symmetric matrix A.
Before calling this routine, call ?sytrf to factorize A.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array a stores the Bunch-Kaufman factorization A = 
PUDUTPT.
If uplo = 'L', the array a stores the Bunch-Kaufman factorization A = 
PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0). 

a, work REAL for ssytri 
DOUBLE PRECISION for dsytri 
COMPLEX for csytri 
DOUBLE COMPLEX for zsytri.
Arrays:
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a(lda,*) contains the factorization of the matrix A, 
as returned by ?sytrf.
The second dimension of a must be at least max(1,n).

work(*) is a workspace array.
The dimension of work must be at least max(1,2*n).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?sytrf.

Output Parameters

a Overwritten by the n by n matrix A-1.

info INTEGER. 
If info = 0, the execution is successful.
If info =-i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the 
inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds: 

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I 
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3 
for complex flavors.

DUTPTXPU I– c n( )ε D UT PT X P U D D 1–+( )≤

DLTPTXPL I– c n( )ε D LT PT X P L D D 1–+( )≤
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?hetri               
Computes the inverse of a complex Hermitian matrix.

Syntax
call chetri (uplo, n, a, lda, ipiv, work, info)

call zhetri (uplo, n, a, lda, ipiv, work, info)

Description

This routine computes the inverse (A−1) of a complex Hermitian matrix A.
Before calling this routine, call ?hetrf to factorize A.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array a stores the Bunch-Kaufman factorization A = 
PUDUHPT.
If uplo = 'L', the array a stores the Bunch-Kaufman factorization A = 
PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0). 

a, work COMPLEX for chetri 
DOUBLE COMPLEX for zhetri.
Arrays:

a(lda,*) contains the factorization of the matrix A, 
as returned by ?hetrf.
The second dimension of a must be at least max(1,n).

work(*) is a workspace array.
The dimension of work must be at least max(1,n).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?hetrf.



LAPACK Routines: Linear Equations 3

3-127

Output Parameters

a Overwritten by the n by n matrix A-1.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the 
inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds: 

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I 
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3 
for complex flavors.

The real counterpart of this routine is ?sytri.

?sptri                
Computes the inverse of a symmetric  matrix using 
packed storage.

Syntax
call ssptri (uplo, n, ap, ipiv, work, info)

call dsptri (uplo, n, ap, ipiv, work, info)

call csptri (uplo, n, ap, ipiv, work, info)

call zsptri (uplo, n, ap, ipiv, work, info)

DUHPTXPU I– c n( )ε D UH PT X P U D D 1–+( )≤

DLHPTXPL I– c n( )ε D LH PT X P L D D 1–+( )≤
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Description

This routine computes the inverse (A−1) of a packed symmetric matrix A.
Before calling this routine, call ?sptrf to factorize A.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array ap stores the Bunch-Kaufman factorization A = 
PUDUTPT.
If uplo = 'L', the array ap stores the Bunch-Kaufman factorization A = 
PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap, work REAL for ssptri 
DOUBLE PRECISION for dsptri 
COMPLEX for csptri 
DOUBLE COMPLEX for zsptri.
Arrays:

ap(*) contains the factorization of the matrix A, 
as returned by ?sptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

work(*) is a workspace array.
The dimension of work must be at least max(1,n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?sptrf.

Output Parameters

ap Overwritten by the n by n matrix A-1 in packed form.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the 
inversion could not be completed.
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Application Notes

The computed inverse X satisfies the following error bounds: 

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I 
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3 
for complex flavors.

?hptri               
Computes the inverse of a complex Hermitian matrix 
using packed storage.

Syntax
call chptri (uplo, n, ap, ipiv, work, info)

call zhptri (uplo, n, ap, ipiv, work, info)

Description

This routine computes the inverse (A−1) of a complex Hermitian matrix A using packed storage.
Before calling this routine, call ?hptrf to factorize A.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates how the input matrix A has been factored: 
If uplo = 'U', the array ap stores the packed Bunch-Kaufman factorization A 
= PUDUHPT.
If uplo = 'L', the array ap stores the packed Bunch-Kaufman factorization A 
= PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0). 

DUTPTXPU I– c n( )ε D UT PT X P U D D 1–+( )≤

DLTPTXPL I– c n( )ε D LT PT X P L D D 1–+( )≤
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ap COMPLEX for chptri 
DOUBLE COMPLEX for zhptri.
Arrays:

ap(*) contains the factorization of the matrix A, 
as returned by ?hptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

work(*) is a workspace array.
The dimension of work must be at least max(1,n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The ipiv array, as returned by ?hptrf.

Output Parameters

ap Overwritten by the n by n matrix A-1.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the 
inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds: 

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I 
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3 
for complex flavors.

The real counterpart of this routine is ?sptri.

DUHPTXPU I– c n( )ε D UH PT X P U D D 1–+( )≤

DLHPTXPL I– c n( )ε D LH PT X P L D D 1–+( )≤
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?trtri               
Computes the inverse of a triangular matrix.

Syntax
call strtri (uplo, diag, n, a, lda, info)

call dtrtri (uplo, diag, n, a, lda, info)

call ctrtri (uplo, diag, n, a, lda, info)

call ztrtri (uplo, diag, n, a, lda, info)

Description

This routine computes the inverse (A−1) of a triangular matrix A.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular: 

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

diag CHARACTER*1.  Must be 'N' or 'U'.
If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 
and not referenced in the array a.

n INTEGER. The order of the matrix A (n ≥ 0). 

a REAL for strtri 
DOUBLE PRECISION for dtrtri 
COMPLEX for ctrtri 
DOUBLE COMPLEX for ztrtri.

Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1,n).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).
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Output Parameters

a Overwritten by the n by n matrix A-1.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is zero, A is singular, and the 
inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds: 

where c(n) is a modest linear function of n; ε is the machine precision; 
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and (4/3)n3 
for complex flavors.

?tptri               
Computes the inverse of a triangular matrix using 
packed storage.

Syntax
call stptri (uplo, diag, n, ap, info)

call dtptri (uplo, diag, n, ap, info)

call ctptri (uplo, diag, n, ap, info)

call ztptri (uplo, diag, n, ap, info)

Description

This routine computes the inverse (A−1) of a packed triangular matrix A.

XA I– c n( )ε X A≤

X A 1–– c n( )ε A 1– A X≤
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Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular: 

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

diag CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 
and not referenced in the array ap.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap REAL for stptri 
DOUBLE PRECISION for dtptri 
COMPLEX for ctptri 
DOUBLE COMPLEX for ztptri.

Array: DIMENSION at least max(1,n(n+1)/2).
Contains the packed triangular matrix A.

Output Parameters

ap Overwritten by the packed n by n matrix A-1.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is zero, A is singular, and the 
inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds: 

where c(n) is a modest linear function of n; ε is the machine precision; 
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and (4/3)n3 
for complex flavors.

XA I– c n( )ε X A≤

X A 1–– c n( )ε A 1– A X≤
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Routines for Matrix Equilibration

Routines described in this section are used to compute scaling factors needed to equilibrate a 
matrix. Note that these routines do not actually scale the matrices.

?geequ
Computes row and column scaling factors intended to 
equilibrate a matrix and reduce its condition number.

Syntax
call sgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call dgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call cgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call zgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

Description

This routine computes row and column scalings intended to equilibrate an  m-by-n matrix A and 
reduce its condition number. The output array r returns the row scale factors and the array c the 
column scale factors. These factors are chosen to try to make  the largest element in each row and 
column of the matrix B with  elements bij=r(i)*aij*c(j) have absolute value 1.

Input Parameters
m INTEGER.  The number of rows of the matrix A, m ≥0.

n INTEGER.  The number of columns of the matrix A, 
n ≥0.

a REAL for sgeequ 
DOUBLE PRECISION for dgeequ 
COMPLEX for cgeequ 
DOUBLE COMPLEX for zgeequ.

Array: DIMENSION (lda,*).
Contains the m-by-n matrix A whose equilibration factors are to be computed.
The second dimension of a must be at least max(1,n).

lda INTEGER.  The leading dimension of a; lda ≥ max(1, m).
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Output Parameters

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n). 
If info = 0, or info > m, the array r contains the row scale factors of the 
matrix A. 
If info = 0 , the array c contains the column scale factors of the matrix A.

rowcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > m,  rowcnd contains the ratio of the smallest r(i) to the 
largest r(i).  

colcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0,  colcnd contains the ratio of the smallest c(i) to the largest c(i). 

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i and 

i≤  m, the ith row of A is exactly zero;
               i > m, the (i-m)th column of A is exactly zero.

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number 
and BIGNUM = largest safe number.  Use of these scaling  factors is not guaranteed to reduce the 
condition number of A but works well in practice.

If rowcnd ≥ 0.1 and  amax is neither too large nor too small, it is not worth scaling by r. If 
colcnd ≥ 0.1 , it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.
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?gbequ
Computes row and column scaling factors intended to 
equilibrate a band matrix and reduce its condition 
number.

Syntax
call sgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

call dgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

call cgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

call zgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

Description

This routine computes row and column scalings intended to equilibrate an  m-by-n band matrix A 
and reduce its condition number. The output array r returns the row scale factors and the array c 
the column scale factors. These factors are chosen to try to make  the largest element in each row 
and column of the matrix B with  elements bij=r(i)*aij*c(j) have absolute 
value 1.

Input Parameters
m INTEGER.  The number of rows of the matrix A, m ≥0.

n INTEGER.  The number of columns of the matrix A, 
n ≥0.

kl INTEGER.  The number of sub-diagonals within the band of A (kl ≥ 0). 
ku INTEGER.  The number of super-diagonals within the band of A (ku ≥ 0). 

ab REAL for sgbequ 
DOUBLE PRECISION for dgbequ 
COMPLEX for cgbequ 
DOUBLE COMPLEX for zgbequ.

Array, DIMENSION (ldab,*).
Contains the original band matrix A stored in rows
from 1 to kl + ku + 1.

The second dimension of ab  must be at least max(1,n); 
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ldab INTEGER.  The leading dimension of ab,
ldab ≥ kl+ku+1.

Output Parameters

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n). 
If info = 0, or info > m, the array r contains the row scale factors of the 
matrix A. 
If info = 0 , the array c contains the column scale factors of the matrix A.

rowcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > m,  rowcnd contains the ratio of the smallest r(i) to the 
largest r(i).  

colcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0,  colcnd contains the ratio of the smallest c(i) to the largest c(i). 

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i and 

i≤  m, the ith row of A is exactly zero;
               i > m, the (i-m)th column of A is exactly zero.

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number 
and BIGNUM = largest safe number.  Use of these scaling  factors is not guaranteed to reduce the 
condition number of A but works well in practice.

If rowcnd ≥ 0.1 and  amax is neither too large nor too small, it is not worth scaling by r. If 
colcnd ≥ 0.1 , it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.
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?poequ
Computes row and column scaling factors intended to 
equilibrate a symmetric (Hermitian) positive definite 
matrix and reduce its condition number.

Syntax
call spoequ (n, a, lda, s, scond, amax, info)

call dpoequ (n, a, lda, s, scond, amax, info)

call cpoequ (n, a, lda, s, scond, amax, info)

call zpoequ (n, a, lda, s, scond, amax, info)

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) 
positive definite matrix A and reduce its condition number (with respect to the two-norm). The 
output array s returns  scale factors computed as 

These factors are chosen so that the scaled matrix B with  elements bij=s(i)*aij*s(j) has diagonal 
elements equal to 1.

This choice of s puts the condition number of B within a factor n of the smallest possible 
condition number over all possible diagonal scalings.

Input Parameters
n INTEGER.  The order of the matrix A, n ≥0.

a REAL for spoequ 
DOUBLE PRECISION for dpoequ 
COMPLEX for cpoequ 
DOUBLE COMPLEX for zpoequ.

s i( ) 1

ai i,

---------------=
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Array: DIMENSION (lda,*).
Contains the n-by-n symmetric or Hermitian positive definite matrix A whose 
scaling factors are to be computed. Only diagonal elements of A are 
referenced.
The second dimension of a must be at least max(1,n).

lda INTEGER. The leading dimension of a; lda ≥ max(1, m).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION  (n). 
If info = 0,  the array s contains the scale factors for  A. 

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0,  scond contains the ratio of the smallest s(i) to the largest s(i). 

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is nonpositive.

Application Notes

If scond ≥ 0.1 and  amax is neither too large nor too small, it is not worth scaling by s. 

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.
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?ppequ
Computes row and column scaling factors intended to 
equilibrate a symmetric (Hermitian) positive definite 
matrix in packed storage and reduce its condition 
number.

Syntax
call sppequ (uplo, n, ap, s, scond, amax, info)

call dppequ (uplo, n, ap, s, scond, amax, info)

call cppequ (uplo, n, ap, s, scond, amax, info)

call zppequ (uplo, n, ap, s, scond, amax, info)

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) 
positive definite matrix A in packed storage and reduce its condition number (with respect to the 
two-norm). The output array s returns  scale factors computed as 

These factors are chosen so that the scaled matrix B with  elements bij=s(i)*aij*s(j) has diagonal 
elements equal to 1.

This choice of s puts the condition number of B within a factor n of the smallest possible 
condition number over all possible diagonal scalings.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is packed in the array 
ap: 
If uplo = 'U', the array ap stores the upper triangular part of the matrix A.
If uplo = 'L', the array ap stores the lower triangular part of the matrix A.

n INTEGER.  The order of matrix A (n ≥ 0). 
ap REAL for sppequ

DOUBLE PRECISION for dppequ
COMPLEX for cppequ

s i( ) 1

ai i,

---------------=
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DOUBLE COMPLEX for zppequ.
Array, DIMENSION at least max(1,n(n+1)/2). 
The array ap contains either the upper or the lower triangular part of the matrix 
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION  (n). 
If info = 0,  the array s contains the scale factors for  A. 

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0,  scond contains the ratio of the smallest s(i) to the largest s(i). 

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is nonpositive.

Application Notes

If scond ≥ 0.1 and  amax is neither too large nor too small, it is not worth scaling by s. 

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?pbequ
Computes row and column scaling factors intended to 
equilibrate a symmetric (Hermitian) positive definite 
band matrix and reduce its condition number.

Syntax
call spbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)

call dpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
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call cpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)

call zpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) 
positive definite matrix A in packed storage and reduce its condition number (with respect to the 
two-norm). The output array s returns  scale factors computed as 

These factors are chosen so that the scaled matrix B with  elements bij=s(i)*aij*s(j) has diagonal 
elements equal to 1.
This choice of s puts the condition number of B within a factor n of the smallest possible 
condition number over all possible diagonal scalings.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is packed in the array 
ab: 
If uplo = 'U', the array ab stores the upper triangular part of the matrix A.
If uplo = 'L', the array ab stores the lower triangular part of the matrix A.

n INTEGER.  The order of matrix A (n ≥ 0). 
kd INTEGER.  The number of super-diagonals or sub-diagonals in the matrix A

(kd ≥ 0). 
ab REAL for spbequ

DOUBLE PRECISION for dpbequ
COMPLEX for cpbequ
DOUBLE COMPLEX for zpbequ.
Array, DIMENSION (ldab,*).  
The array ap contains either the upper or the lower triangular part of the matrix 
A (as specified by uplo) in band storage (see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).

ldab INTEGER.  The leading dimension of the array ab. 
(ldab ≥ kd +1).

s i( ) 1

ai i,

---------------=
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Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION  (n). 
If info = 0,  the array s contains the scale factors for  A. 

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0,  scond contains the ratio of the smallest s(i) to the largest s(i). 

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is nonpositive.

Application Notes

If scond ≥ 0.1 and  amax is neither too large nor too small, it is not worth scaling by s. 

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.
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Driver Routines 
Table 3-3 lists the LAPACK driver routines for solving systems of linear equations with real or 
complex matrices. 

In this table ? stands for s (single precision real), d (double precision real), 
c (single precision complex), or z (double precision complex).

Table 3-3 Driver Routines for Solving Systems of Linear Equations

Matrix type, 
storage scheme

Simple Driver Expert Driver

general ?gesv ?gesvx

general band ?gbsv ?gbsvx

general tridiagonal ?gtsv ?gtsvx

symmetric/Hermitian 
positive-definite

?posv ?posvx

symmetric/Hermitian 
positive-definite,
packed storage

?ppsv ?ppsvx

symmetric/Hermitian 
positive-definite,
band

?pbsv ?pbsvx

symmetric/Hermitian 
positive-definite,
tridiagonal

?ptsv ?ptsvx

symmetric/Hermitian 
indefinite

?sysv /?hesv ?sysvx /?hesvx

symmetric/Hermitian 
indefinite,
packed storage

?spsv /?hpsv ?spsvx /?hpsvx

complex symmetric ?sysv ?sysvx

complex symmetric,
packed storage

?spsv ?spsvx
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?gesv
Computes the solution to the system of linear equations 
with a square matrix A and multiple right-hand sides.

Syntax
call sgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

call dgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

call cgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

call zgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

Description

This routine solves for X the system of linear equations  AX = B, where A is an n-by-n matrix, the  
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding 
solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor A as   A = P L 
U,  where P is a permutation matrix, L is unit lower triangular, and U is  upper triangular.  The 
factored form of A is then used to solve the system of equations AX = B.

Input Parameters

n INTEGER. The order of A; the number of rows in B 
(n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

a, b REAL for sgesv 
DOUBLE PRECISION for dgesv 
COMPLEX for cgesv 
DOUBLE COMPLEX for zgesv.
Arrays: a(lda,*), b(ldb,*). 

The array a contains the matrix A.
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of a must be at least max(1,n), the second dimension of 
b  at least max(1,nrhs).
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lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

a Overwritten by the factors L and U from the factorization of A = P L U; the unit 
diagonal elements of L are not stored .

b Overwritten by the solution matrix X.

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The pivot indices that define the permutation matrix P;  row i of the matrix was 
interchanged with row ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, U(i,i) is exactly zero. The factorization has been completed, but 
the factor U is exactly singular, so the solution could not be computed.

?gesvx
Computes the solution to the system of linear equations 
with a square matrix A and multiple right-hand sides, 
and provides error bounds on the solution.

Syntax
call sgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,

b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,
b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,
b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,
b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
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Description

This routine uses the LU factorization to compute the solution to a real or complex system of 
linear equations  AX = B,  where A is an n-by-n matrix, the  columns of matrix B are individual 
right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gesvx performs the following steps:

1. If fact = 'E', real scaling factors r and c are computed to equilibrate
the system:

trans = 'N':    diag(r)*A*diag(c) *diag(c)-1*X = diag(r)*B

trans = 'T':   (diag(r)*A*diag(c))T *diag(r)-1*X = diag(c)*B

trans = 'C':   (diag(r)*A*diag(c))H *diag(r)-1*X = diag(c)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if 
equilibration is used, A is overwritten by diag(r)*A*diag(c) and B by diag(r)*B (if trans='N') or 
diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the  matrix A (after equilibration if 
fact = 'E') as A = P L U, where P is a permutation matrix, L is a unit lower triangular matrix, and 
U is upper triangular.

3. If some Ui,i = 0, so that U is exactly singular, then the routine returns with info = i. 
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If the 
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a 
warning, but the routine still goes on to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans = 'N') or diag(r) (if 
trans = 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry, 
and if not, whether the matrix A should be equilibrated before it is factored.
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If fact = 'F':  on entry, af and ipiv contain the factored form of A. If 
equed is not 'N', the matrix A has been equilibrated with scaling factors given 
by r and c.
a, af, and ipiv are not modified.

If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to af 
and factored.

trans CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form  A X = B  
(No transpose);
If trans = 'T', the system has the form  AT X = B  (Transpose);
If trans = 'C', the system has the form  AH X = B  (Conjugate transpose);

n INTEGER. The number of linear equations;  the order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right hand sides; the number of columns of the 
matrices B and X (nrhs ≥ 0).

a,af,b,work REAL for sgesvx 
DOUBLE PRECISION for dgesvx 
COMPLEX for cgesvx 
DOUBLE COMPLEX for zgesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*). 

The array a contains the matrix A. If fact = 'F' and equed is not 'N', then A 
must have been equilibrated by the scaling factors in r and/or c. The second 
dimension of a must be at least max(1,n).
The array af is an input argument if fact = 'F' . It contains the factored form 
of the matrix A, i.e., the factors L and U from the factorization A = P L U as 
computed by ?getrf. If equed is not 'N', then af is the factored form of the 
equilibrated matrix A. The second dimension of af must be at least max(1,n).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations. The second dimension of b  must be at least 
max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,4*n) for real flavors, and at 
least max(1,2*n) for complex flavors.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).
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ldaf INTEGER.  The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The array ipiv is an input argument if fact = 'F' . 
It contains  the pivot indices from the factorization 
A = P L U as computed by ?getrf;  row i of the matrix was interchanged with 
row ipiv(i).

equed CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = 'F' . It specifies the form of equilibration 
that was done: 
If equed = 'N', no equilibration was done (always 
true if fact = 'N');
If equed = 'R', row equilibration was done and A has been premultiplied by 
diag(r);
If equed = 'C', column equilibration was done and A has been postmultiplied 
by diag(c);
If equed = 'B', both row and column equilibration was done; A has been 
replaced by diag(r)*A*diag(c).

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(n), c(n). 
The array r contains the row scale factors for A, and the array c contains the 
column scale factors for A. These arrays are input arguments if fact = 'F' only; 
otherwise they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by diag(r); if equed = 'N' 
or 'C', r is not accessed.   
If fact = 'F' and equed = 'R' or 'B', each element of r must be positive.

If equed = 'C' or 'B', A is multiplied on the right by diag(c); if equed = 'N' 
or 'R', c is not accessed.   
If fact = 'F' and equed = 'C' or 'B', each element of c must be positive.

ldx INTEGER.  The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.  
Workspace array, DIMENSION  at least max(1, n); used in real flavors only. 
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rwork REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION  at least max(1, 2*n); used in complex flavors 
only. 

Output Parameters

x REAL for sgesvx 
DOUBLE PRECISION for dgesvx 
COMPLEX for cgesvx 
DOUBLE COMPLEX for zgesvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
original system of equations.  Note that A and B are modified on exit if equed 
≠ 'N', and the solution to the equilibrated system is:
diag(c)-1*X,  if trans = 'N' and equed = 'C' or 'B';  diag(r)-1*X,  if 
trans = 'T' or 'C' and equed = 'R' or 'B'.
The second dimension of x  must be at least max(1,nrhs).

a Array a is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and equed 
= 'N'. 
If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R':   A = diag(r)*A
equed = 'C':   A = A*diag(c)
equed = 'B':   A = diag(r)*A*diag(c)

af If fact = 'N' or 'E', then af is an output argument  and on exit returns the 
factors L and U from the factorization A = P L U of the original matrix A(if 
fact = 'N') or of the equilibrated matrix A (if fact = 'E'). See the description 
of a for the form of the equilibrated matrix.

b Overwritten by diag(r)* B  if trans = 'N' and 
equed = 'R' or 'B'; 
overwritten by diag(c)*B if trans = 'T' and equed = 'C' or 'B'; 
not changed  if  equed = 'N'.

r, c These arrays are output arguments if fact ≠ 'F' .
See the description of r, c in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A after 
equilibration (if done). The routine sets rcond =0 if the estimate underflows; 
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in this case the matrix is singular (to working precision). However, anytime 
rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.

ipiv If fact = 'N' or 'E', then ipiv is an output argument  and on exit contains the 
pivot indices from the factorization A = P L U of the original matrix A(if fact 
= 'N') or of the equilibrated matrix A (if fact = 'E'). 

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of 
equilibration that was done (see the description of equed in Input Arguments 
section). 

work, rwork On exit, work(1) for real flavors, or rwork(1) for complex flavors, contains 
the reciprocal pivot growth factor norm(A)/norm(U). The "max absolute 
element" norm is used. If work(1) for real flavors, or rwork(1) for complex 
flavors is much less than 1, then the stability of the LU factorization of the 
(equilibrated) matrix A could be poor. This also means that the solution x, 
condition estimator rcond, and forward error bound ferr could be unreliable. 
If factorization fails with 
0 < info ≤ n, then work(1) for real flavors, or rwork(1) for complex flavors 
contains the reciprocal pivot growth factor for the leading info columns of A.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The factorization has been 
completed, but the factor U is exactly singular, so the solution  and error 
bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.
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?gbsv
Computes the solution to the system of linear equations 
with a band matrix A and multiple right-hand sides.

Syntax
call sgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

Description

This routine solves for X the real or complex system of linear equations 
 AX = B, where A is an n-by-n band matrix with kl subdiagonals and ku superdiagonals, the  
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding 
solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor A as   A =  L U,  
where L is a product of permutation and unit lower triangular matrices with kl subdiagonals, and 
U is upper triangular with kl+ku superdiagonals. The factored form of A is then used to solve the 
system of equations AX = B.

Input Parameters

n INTEGER. The order of A; the number of rows in B 
(n ≥ 0). 

kl INTEGER.  The number of sub-diagonals within the band of A (kl ≥ 0). 
ku INTEGER.  The number of super-diagonals within the band of A (ku ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

ab, b REAL for sgbsv 
DOUBLE PRECISION for dgbsv
COMPLEX for cgbsv
DOUBLE COMPLEX for zgbsv.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the matrix A in band storage 
(see Matrix Storage Schemes). 
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The second dimension of ab must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ 2kl + ku +1)

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

ab Overwritten by L and U.  The diagonal and kl + ku super-diagonals of U are 
stored in the first 1 + kl + ku rows of ab. The multipliers used to form L are 
stored in the next kl rows.

b Overwritten by the solution matrix X.

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The pivot indices: row i was interchanged with row ipiv(i). 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, U(i,i) is exactly zero. The factorization has been completed, but 
the factor U is exactly singular, so the solution could not be computed.

?gbsvx
Computes the solution to the real or complex system of 
linear equations with a band matrix A and multiple 
right-hand sides, and provides error bounds on the 
solution.

call sgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
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call zgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

Description

This routine uses the LU factorization to compute the solution to a real or complex system of 
linear equations  AX = B,  ATX = B, or  AHX = B,  where A is a band matrix of order n with kl 
subdiagonals and ku superdiagonals, the  columns of matrix B are individual right-hand sides, and 
the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gbsvx performs the following steps:

1. If fact = 'E', real scaling factors r and c are computed to equilibrate
the system:

trans = 'N':    diag(r)*A*diag(c) *diag(c)-1*X = diag(r)*B

trans = 'T':   (diag(r)*A*diag(c))T *diag(r)-1*X = diag(c)*B

trans = 'C':   (diag(r)*A*diag(c))H *diag(r)-1*X = diag(c)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if 
equilibration is used, A is overwritten by diag(r)*A*diag(c) and B by diag(r)*B (if trans='N') or 
diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the  matrix A (after equilibration if 
fact = 'E') as A =  L U, where L is a product of permutation and unit lower triangular matrices 
with  kl subdiagonals, and  U  is upper triangular with kl+ku superdiagonals.

3. If some Ui,i = 0, so that U is exactly singular, then the routine returns with info = i. 
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If the 
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a 
warning, but the routine still goes on to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans = 'N') or diag(r) (if 
trans = 'T' or 'C') so that it solves the original system before equilibration.
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Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry, 
and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F':  on entry, afb and ipiv contain the factored form of A. If 
equed is not 'N', the matrix A has been equilibrated with scaling factors given 
by r and c.
ab, afb, and ipiv are not modified.

If fact = 'N', the matrix A will be copied to afb and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to 
afb and factored.

trans CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form  A X = B  
(No transpose);
If trans = 'T', the system has the form  AT X = B  (Transpose);
If trans = 'C', the system has the form  AH X = B  (Conjugate transpose);

n INTEGER. The number of linear equations;  the order of the matrix A (n ≥ 0).

kl INTEGER.  The number of sub-diagonals within the band of A (kl ≥ 0). 
ku INTEGER.  The number of super-diagonals within the band of A (ku ≥ 0). 

nrhs INTEGER. The number of right hand sides; the number of columns of the 
matrices B and X (nrhs ≥ 0).

ab,afb,b,work REAL for sgesvx 
DOUBLE PRECISION for dgesvx 
COMPLEX for cgesvx 
DOUBLE COMPLEX for zgesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*). 

The array ab contains the matrix A in band storage 
(see Matrix Storage Schemes). 
The second dimension of ab must be at least max(1, n).
 If fact = 'F' and equed is not 'N', then A must have been equilibrated by the 
scaling factors in r and/or c.

 The array afb is an input argument if fact = 'F' . 
The second dimension of afb must be at least max(1,n).
It contains the factored form of the matrix A, i.e., the factors L and U from the 
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factorization A =  L U as computed by ?gbtrf. U is stored as an upper triangular 
band matrix with kl + ku super-diagonals  in the first 
1 + kl + ku rows of afb. The multipliers used during the factorization are 
stored in the next kl rows.
If equed is not 'N', then afb is the factored form of the equilibrated matrix A. 

The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations. The second dimension of b  must be at least 
max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and at 
least max(1,2*n) for complex flavors.

ldab INTEGER.  The first dimension of ab; ldab ≥ kl+ku+1.

ldafb INTEGER.  The first dimension of afb; 
ldafb ≥ 2*kl+ku+1.

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The array ipiv is an input argument if fact = 'F' . 
It contains  the pivot indices from the factorization 
A =  L U as computed by ?gbtrf;  row i of the matrix was interchanged with 
row ipiv(i).

equed CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = 'F' . It specifies the form of equilibration 
that was done: 
If equed = 'N', no equilibration was done (always 
true if fact = 'N');
If equed = 'R', row equilibration was done and A has been premultiplied by 
diag(r);
If equed = 'C', column equilibration was done and A has been postmultiplied 
by diag(c);
If equed = 'B', both row and column equilibration was done; A has been 
replaced by diag(r)*A*diag(c).

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(n), c(n). 
The array r contains the row scale factors for A, and the array c contains the 
column scale factors for A. These arrays are input arguments if fact = 'F' only; 
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otherwise they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by diag(r); if equed = 'N' 
or 'C', r is not accessed.   
If fact = 'F' and equed = 'R' or 'B', each element of r must be positive.
If equed = 'C' or 'B', A is multiplied on the right by diag(c); if equed = 'N' 
or 'R', c is not accessed.   
If fact = 'F' and equed = 'C' or 'B', each element of c must be positive.

ldx INTEGER.  The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.  
Workspace array, DIMENSION  at least max(1, n); used in real flavors only. 

rwork REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION  at least max(1, n); used in complex flavors 
only. 

Output Parameters

x REAL for sgbsvx 
DOUBLE PRECISION for dgbsvx 
COMPLEX for cgbsvx 
DOUBLE COMPLEX for zgbsvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
original system of equations.  Note that A and B are modified on exit if equed 
≠ 'N', and the solution to the equilibrated system is:
diag(c)-1*X,  if trans = 'N' and equed = 'C' or 'B';  diag(r)-1*X,  if 
trans = 'T' or 'C' and equed = 'R' or 'B'.
The second dimension of x  must be at least max(1,nrhs).

ab Array ab is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and equed 
= 'N'. 
If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R':   A = diag(r)*A
equed = 'C':   A = A*diag(c)
equed = 'B':   A = diag(r)*A*diag(c)

afb If fact = 'N' or 'E', then afb is an output argument  and on exit returns  
details of the LU factorization of the original matrix A(if fact = 'N') or of the 
equilibrated matrix A (if fact = 'E'). See the description of ab for the form of 
the equilibrated matrix.
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b Overwritten by diag(r)*b  if trans = 'N' and 
equed = 'R' or 'B'; 
overwritten by diag(c)*b if trans = 'T' and equed = 'C' or 'B'; 
not changed  if  equed = 'N'.

r, c These arrays are output arguments if fact ≠ 'F' .
See the description of r, c in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A after 
equilibration (if done). 
If rcond is less than the machine precision (in particular, if rcond = 0), the 
matrix is singular to working precision.  This condition is indicated by a return 
code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.

ipiv If fact = 'N' or 'E', then ipiv is an output argument  and on exit contains the 
pivot indices from the factorization A =  L U of the original matrix A(if fact = 
'N') or of the equilibrated matrix A (if fact = 'E'). 

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of 
equilibration that was done (see the description of equed in Input Arguments 
section). 

work, rwork On exit, work(1) for real flavors, or rwork(1) for complex flavors, contains 
the reciprocal pivot growth factor norm(A)/norm(U). The "max absolute 
element" norm is used. If work(1) for real flavors, or rwork(1) for complex 
flavors is much less than 1, then the stability of the LU factorization of the 
(equilibrated) matrix A could be poor. This also means that the solution x, 
condition estimator rcond, and forward error bound ferr could be unreliable. 
If factorization fails with 
0 < info ≤ n, then work(1) for real flavors, or rwork(1) for complex flavors 
contains the reciprocal pivot growth factor for the leading info columns of A.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The factorization has been 
completed, but the factor U is exactly singular, so the solution  and error 
bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less than 
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machine precision, meaning that the matrix is singular to working precision.  
Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.

?gtsv
Computes the solution to the system of linear equations 
with a tridiagonal matrix A and multiple right-hand 
sides.

Syntax
call sgtsv (n, nrhs, dl, d, du, b, ldb, info)

call dgtsv (n, nrhs, dl, d, du, b, ldb, info)

call cgtsv (n, nrhs, dl, d, du, b, ldb, info)

call zgtsv (n, nrhs, dl, d, du, b, ldb, info)

Description

This routine solves for X the system of linear equations  AX = B, where A is an n-by-n  tridiagonal 
matrix, the  columns of matrix B are individual right-hand sides, and the columns of X are the 
corresponding solutions. 
The routine uses Gaussian elimination with partial pivoting.

Note that the equation  ATX = B  may be solved by interchanging the order of the arguments du and 
dl.

Input Parameters

n INTEGER. The order of A; the number of rows in B 
(n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

dl, d, du, b REAL for sgtsv 
DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv
DOUBLE COMPLEX for zgtsv.
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Arrays: dl(n - 1), d(n ), du(n - 1), b(ldb,*).
The array dl contains the (n - 1) subdiagonal elements of  A. 
The array d  contains the diagonal elements of  A. 
The array du  contains the (n - 1) superdiagonal elements of  A.
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

dl Overwritten by the (n-2) elements of the second superdiagonal of the upper 
triangular matrix U from the LU factorization of A. These elements are stored 
in dl(1), ... , dl(n-2).

d Overwritten by the n diagonal elements of U. 

du Overwritten by the (n-1) elements of the first superdiagonal of U. 

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, U(i,i) is exactly zero, and the solution has not been computed. 
The factorization has not been completed unless i = n.

?gtsvx
Computes the solution to the real or complex system of 
linear equations with a tridiagonal matrix A and 
multiple right-hand sides, and provides error bounds on 
the solution.

Syntax
call sgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,

ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
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call zgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

Description

This routine uses the LU factorization to compute the solution to a real or complex system of 
linear equations  AX = B,  ATX = B, or  AHX = B,  where A is a tridiagonal matrix of order n, the  
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding 
solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gtsvx performs the following steps:

1. If fact = 'N', the LU decomposition is used to factor the matrix A as 
A = LU, where L is a product of permutation and unit lower bidiagonal matrices and U is an upper 
triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.

2. If some Ui,i = 0, so that U is exactly singular, then the routine returns with info = i. 
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If the 
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a 
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been supplied on 
entry.

If fact = 'F':  on entry, dlf, df, duf, du2, and ipiv contain the factored 
form of A; arrays dl, d, du, dlf, df, duf, du2, and ipiv will not be 
modified.

If fact = 'N', the matrix A will be copied to dlf, df, and duf and factored.

trans CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:



3-162

3 Intel® Math Kernel Library Reference Manual

If trans = 'N', the system has the form  A X = B  
(No transpose);
If trans = 'T', the system has the form  AT X = B  (Transpose);
If trans = 'C', the system has the form  AH X = B  (Conjugate transpose);

n INTEGER. The number of linear equations;  the order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right hand sides; the number of columns of the 
matrices B and X (nrhs ≥ 0).

dl,d,du,dlf,df,

duf,du2,b,x,work REAL for sgtsvx 
DOUBLE PRECISION for dgtsvx 
COMPLEX for cgtsvx 
DOUBLE COMPLEX for zgtsvx.
Arrays:
dl, dimension (n - 1), contains the subdiagonal elements of A.

d, dimension (n ), contains the diagonal elements of A.

du, dimension (n - 1), contains the superdiagonal elements of A.

dlf, dimension (n - 1). If fact = 'F' , then dlf is an input argument and on 
entry contains the  (n - 1) multipliers that define the matrix L from the LU 
factorization of  A as computed by ?gttrf. 

df, dimension (n ). If fact = 'F' , then df is an input argument and on entry 
contains the  n diagonal elements of the upper triangular matrix U from the LU 
factorization of  A. 

duf, dimension (n - 1). If fact = 'F' , then duf is an input argument and on 
entry contains the  (n - 1) elements of the first super-diagonal of U.

du2, dimension (n - 2). If fact = 'F' , then du2 is an input argument and on 
entry contains the  (n - 2) elements of the second super-diagonal of U.

b(ldb,*) contains the right-hand side matrix B. The second dimension of b  
must be at least max(1,nrhs).

x(ldx,*) contains the solution matrix X. The second dimension of x  must be 
at least max(1,nrhs).

work (*) is a workspace array; 
 the dimension of work  must be at least max(1, 3*n) for real flavors and 
max(1, 2*n) for complex flavors.

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The first dimension of x; ldx ≥ max(1, n).
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ipiv INTEGER. 
Array, DIMENSION at least max(1,n). If fact = 'F' , then ipiv is an input 
argument and on entry contains the pivot indices, as returned by ?gttrf.

iwork INTEGER.
Workspace array, DIMENSION  (n). Used for real flavors only.

rwork REAL for cgtsvx 
DOUBLE PRECISION for zgtsvx.
Workspace array, DIMENSION  (n). Used for complex flavors only.

Output Parameters

x REAL for sgtsvx 
DOUBLE PRECISION for dgtsvx 
COMPLEX for cgtsvx 
DOUBLE COMPLEX for zgtsvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X. The 
second dimension of x  must be at least max(1,nrhs).

dlf If fact = 'N' , then dlf is an output argument and on exit contains the  (n - 1) 
multipliers that define the matrix L from the LU factorization of  A.

df If fact = 'N' , then df is an output argument and on exit contains the  n 
diagonal elements of the upper triangular matrix U from the LU factorization 
of  A.

duf If fact = 'N' , then duf is an output argument and on exit contains the  (n - 1) 
elements of the first super-diagonal of U.

du2 If fact = 'N' , then du2 is an output argument and on exit contains the  (n - 2) 
elements of the second super-diagonal of U.

ipiv The array ipiv is an output argument if fact = 'N' and, on exit, contains the 
pivot indices from the factorization 
A =  L U ;  row i of the matrix was interchanged with row ipiv(i). The value 
of ipiv(i) will always be either i or i+1; ipiv(i)=i indicates a row 
interchange was not required.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A. 
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If rcond is less than the machine precision (in particular, if rcond = 0), the 
matrix is singular to working precision.  This condition is indicated by a return 
code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and backward errors, respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The factorization has not 
been completed unless i = n, but the factor U is exactly singular, so the 
solution  and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.

?posv
Computes the solution to the system of linear equations 
with a symmetric or Hermitian positive definite matrix 
A and multiple right-hand sides.

Syntax
call sposv (uplo, n, nrhs, a, lda, b, ldb, info)

call dposv (uplo, n, nrhs, a, lda, b, ldb, info)

call cposv (uplo, n, nrhs, a, lda, b, ldb, info)

call zposv (uplo, n, nrhs, a, lda, b, ldb, info)

Description

This routine solves for X the real or complex system of linear equations  
AX = B, where A is an n-by-n  symmetric/Hermitian positive definite matrix, the  columns of 
matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as   A = UHU if uplo ='U'
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 or  A = LLH if uplo ='L', where U is an upper triangular matrix and L is a lower triangular 
matrix.  The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and  
A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix A;  A is 
factored as LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

a, b REAL for sposv
DOUBLE PRECISION for dposv
COMPLEX for cposv
DOUBLE COMPLEX for zposv.
Arrays: a(lda,*),  b(ldb,*).
The array a contains either the upper or the lower triangular part of the matrix 
A (see uplo). 
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of b must be at least max(1,nrhs).

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

a If info=0, the upper or lower triangular part of a is overwritten by the 
Cholesky factor U or L, as specified by uplo. 

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself) is not 
positive definite, so the factorization could not be completed, and the solution 
has not been computed. 



3-166

3 Intel® Math Kernel Library Reference Manual

?posvx
Uses the Cholesky factorization to compute the solution 
to the system of linear equations with a symmetric or 
Hermitian positive definite matrix A, and provides error 
bounds on the solution.

Syntax
call sposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,

ldx, rcond, ferr, berr, work, iwork, info)

call dposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
ldx, rcond, ferr, berr, work, iwork, info)

call cposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
ldx, rcond, ferr, berr, work, rwork, info)

call zposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
ldx, rcond, ferr, berr, work, rwork, info)

Description

This routine uses the Cholesky factorization A=UHU or A=LLH to compute the solution to a real 
or complex system of linear equations  AX = B,  where A is a n-by-n real symmetric/Hermitian 
positive definite matrix, the  columns of matrix B are individual right-hand sides, and the columns 
of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?posvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

  diag(s)*A*diag(s) *diag(s)-1*X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if 
equilibration is used, A is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the  matrix A (after 
equilibration if fact = 'E') as
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A = UH U,  if uplo = ‘U’, or 
A = L LH ,  if uplo = ‘L’,
where U  is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with info 
= i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If 
the reciprocal of the condition number is less than machine precision, info = n + 1 is returned as 
a warning, but the routine still goes on to solve for X and compute error bounds as described 
below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original 
system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry, 
and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F':  on entry, af contains the factored form of A. If equed = 'Y', 
the matrix A has been equilibrated with scaling factors given by s.
a and af will not be modified.

If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to af 
and factored.

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and  
A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix A;  A is 
factored as LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 
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a,af,b,work REAL for sposvx 
DOUBLE PRECISION for dposvx 
COMPLEX for cposvx 
DOUBLE COMPLEX for zposvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*). 

The array a contains the matrix Aas specified by uplo. If fact = 'F' and 
equed = 'Y', then A must have been equilibrated by the scaling factors in s, and 
a must contain the equilibrated matrix diag(s)*A*diag(s). The second 
dimension of a must be at least max(1,n).

The array af is an input argument if fact = 'F' . 
It contains the triangular factor U or L from the Cholesky factorization of A in 
the same storage format as A. If equed is not 'N', then af is the factored form 
of the equilibrated matrix  diag(s)*A*diag(s). The second dimension of af 
must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations. The second dimension of b  must be at least 
max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and at 
least max(1,2*n) for complex flavors.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER.  The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

equed CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies the form of equilibration 
that was done: 
If equed = 'N', no equilibration was done (always 
true if fact = 'N');
If equed = 'Y',  equilibration was done and A has been replaced by 
diag(s)*A*diag(s).

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION  (n). 
The array s contains the scale factors for A. This array is an input argument if 
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fact = 'F' only; otherwise it is an output argument.
If equed = 'N' , s is not accessed.   
If fact = 'F' and equed = 'Y', each element of s must be positive.

ldx INTEGER.  The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.  
Workspace array, DIMENSION  at least max(1, n); used in real flavors only. 

rwork REAL for cposvx;
DOUBLE PRECISION for zposvx.
Workspace array, DIMENSION  at least max(1, n); used in complex flavors 
only. 

Output Parameters

x REAL for sposvx 
DOUBLE PRECISION for dposvx 
COMPLEX for cposvx 
DOUBLE COMPLEX for zposvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
original system of equations.  Note that if equed = 'Y', A and B are modified 
on exit, and the solution to the equilibrated system is diag(s)-1*X.
The second dimension of x  must be at least max(1,nrhs).

a Array a is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and equed 
= 'N'. 
If fact = 'E' and equed = 'Y', A is overwritten by   diag(s)*A*diag(s)

af If fact = 'N' or 'E', then af is an output argument  and on exit returns the 
triangular factor U or L from the Cholesky factorization  A=UHU or A=LLH of 
the original matrix A(if fact = 'N'), or of the equilibrated matrix A (if fact = 
'E'). See the description of a for the form of the equilibrated matrix.

b Overwritten by diag(s)*B , if equed = 'Y'; 
not changed  if  equed = 'N'.

s This array  is an output argument if fact ≠ 'F' .
See the description of s in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A after 
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equilibration (if done). If rcond is less than the machine precision (in 
particular, if rcond = 0), the matrix is singular to working precision.  This 
condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of 
equilibration that was done (see the description of equed in Input Arguments 
section). 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and hence the matrix A 
itself) is not positive definite, so the factorization could not be completed, and 
the solution and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.

?ppsv
Computes the solution to the system of linear equations 
with a symmetric (Hermitian) positive definite packed 
matrix A and multiple right-hand sides.

Syntax
call sppsv (uplo, n, nrhs, ap, b, ldb, info)

call dppsv (uplo, n, nrhs, ap, b, ldb, info)

call cppsv (uplo, n, nrhs, ap, b, ldb, info)

call zppsv (uplo, n, nrhs, ap, b, ldb, info)
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Description

This routine solves for X the real or complex system of linear equations  
AX = B, where A is an n-by-n  real symmetric/Hermitian positive definite matrix stored in packed 
format, the columns of matrix B are individual right-hand sides, and the columns of X are the 
corresponding solutions.

The Cholesky decomposition is used to factor A as   A = UHU if uplo ='U'

 or  A = LLH if uplo ='L', where U is an upper triangular matrix and L is a lower triangular 
matrix.  The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and  
A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix A;  A is 
factored as LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

ap, b REAL for sppsv
DOUBLE PRECISION for dppsv
COMPLEX for cppsv
DOUBLE COMPLEX for zppsv.
Arrays: ap(*),  b(ldb,*).
The array ap contains either the upper or the lower triangular part of the matrix 
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).
The dimension of ap must be at least max(1,n(n+1)/2). 
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

ap If info=0, the upper or lower triangular part of A in packed storage is 
overwritten by the Cholesky factor U or L, as specified by uplo.
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b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself) is not 
positive definite, so the factorization could not be completed, and the solution 
has not been computed.  

?ppsvx
Uses the Cholesky factorization to compute the solution 
to the system of linear equations with a symmetric 
(Hermitian) positive definite packed matrix A, and 
provides error bounds on the solution.

Syntax
call sppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,

rcond, ferr, berr, work, iwork, info)

call dppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call cppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

call zppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

Description

This routine uses the Cholesky factorization A=UHU or A=LLH to compute the solution to a real 
or complex system of linear equations  AX = B,  where A is a n-by-n symmetric or Hermitian 
positive definite matrix stored in packed format, the columns of matrix B are individual right-hand 
sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ppsvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

  diag(s)*A*diag(s) *diag(s)-1*X = diag(s)*B
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Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if 
equilibration is used, A is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the  matrix A (after 
equilibration if fact = 'E') as

A = UH U,  if uplo = ‘U’, or 
A = L LH ,  if uplo = ‘L’,
where U  is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with info 
= i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If 
the reciprocal of the condition number is less than machine precision, info = n + 1 is returned as 
a warning, but the routine still goes on to solve for X and compute error bounds as described 
below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original 
system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry, 
and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F':  on entry, afp contains the factored form of A. If equed = 'Y', 
the matrix A has been equilibrated with scaling factors given by s. 
ap and afp will not be modified.

If fact = 'N', the matrix A will be copied to afp and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to 
afp and factored.

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 



3-174

3 Intel® Math Kernel Library Reference Manual

If uplo = 'U', the array ap stores the upper triangular part of the matrix A, 
and  A is factored as UHU.
If uplo = 'L', the array ap stores the lower triangular part of the matrix A;  A 
is factored as LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

ap,afp,b,work REAL for sppsvx 
DOUBLE PRECISION for dppsvx 
COMPLEX for cppsvx 
DOUBLE COMPLEX for zppsvx.
Arrays: ap(*), afp(*), b(ldb,*), work (*).

The array ap contains the upper or lower triangle of the original 
symmetric/Hermitian matrix A in packed storage (see Matrix Storage 
Schemes). In case when  fact = 'F' and equed = 'Y', ap must contain the 
equilibrated matrix diag(s)*A*diag(s). 

The array afp is an input argument if fact = 'F' and contains the triangular 
factor U or L  from the Cholesky factorization of A in the same storage format 
as A. If equed is not 'N', then afp is the factored form of the equilibrated 
matrix A. 
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the 
second dimension of b  must be at least max(1,nrhs); the dimension of work  
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex 
flavors.

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

equed CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies the form of equilibration 
that was done: 
If equed = 'N', no equilibration was done (always 
true if fact = 'N');
If equed = 'Y',  equilibration was done and A has been replaced by 
diag(s)*A*diag(s).
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s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION  (n). 
The array s contains the scale factors for A. This array is an input argument if 
fact = 'F' only; otherwise it is an output argument.
If equed = 'N' , s is not accessed.   
If fact = 'F' and equed = 'Y', each element of s must be positive.

ldx INTEGER.  The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.  
Workspace array, DIMENSION  at least max(1, n); used in real flavors only. 

rwork REAL for cppsvx;
DOUBLE PRECISION for zppsvx.
Workspace array, DIMENSION  at least max(1, n); used in complex flavors 
only. 

Output Parameters

x REAL for sppsvx 
DOUBLE PRECISION for dppsvx 
COMPLEX for cppsvx 
DOUBLE COMPLEX for zppsvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
original system of equations.  Note that if equed ='Y', A and B are modified 
on exit, and the solution to the equilibrated system is diag(s)-1*X.
The second dimension of x  must be at least max(1,nrhs).

ap Array ap is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and equed 
= 'N'. 
If fact = 'E' and equed = 'Y', A is overwritten by   diag(s)*A*diag(s)

afp If fact = 'N' or 'E', then afp is an output argument  and on exit returns the 
triangular factor U or L from the Cholesky factorization  A=UHU or A=LLH of 
the original matrix A(if fact = 'N'), or of the equilibrated matrix A (if fact = 
'E'). See the description of ap for the form of the equilibrated matrix.

b Overwritten by diag(s)*B , if equed = 'Y'; 
not changed  if  equed = 'N'.

s This array  is an output argument if fact ≠ 'F' .
See the description of s in Input Arguments section.
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rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A after 
equilibration (if done). If rcond is less than the machine precision (in 
particular, if rcond = 0), the matrix is singular to working precision.  This 
condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of 
equilibration that was done (see the description of equed in Input Arguments 
section). 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and hence the matrix A 
itself) is not positive definite, so the factorization could not be completed, and 
the solution and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.

?pbsv
Computes the solution to the system of linear equations 
with a symmetric or Hermitian positive definite band 
matrix A and multiple right-hand sides.

Syntax
call spbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
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Description

This routine solves for X the real or complex system of linear equations  
AX = B, where A is an n-by-n  symmetric/Hermitian positive definite band matrix, the  columns of 
matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as   A = UHU if uplo ='U'

 or  A = LLH if uplo ='L', where U is an upper triangular band matrix and L is a lower triangular 
band matrix, with the same number of superdiagonals or subdiagonals as A.  The factored form of 
A is then used to solve the system of equations AX = B.

Input Parameters
 uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored in the array 
ab, and how A is factored: 
If uplo = 'U', the array ab stores the upper triangular part of the matrix A, 
and  A is factored as UHU.
If uplo = 'L', the array ab stores the lower triangular part of the matrix A;  A 
is factored as LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 
kd INTEGER.  The number of superdiagonals of the 

matrix A if uplo = 'U', or the number of subdiagonals if uplo = 'L'
(kd ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

ab, b REAL for spbsv
DOUBLE PRECISION for dpbsv
COMPLEX for cpbsv
DOUBLE COMPLEX for zpbsv.
Arrays: ab(ldab, *),  b(ldb,*).
The array ab contains either the upper or the lower triangular part of the matrix 
A (as specified by uplo) in band storage (see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n). The array b contains 
the matrix B whose columns are the right-hand sides for the systems of 
equations.
The second dimension of b must be at least max(1,nrhs).

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ kd +1)

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).
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Output Parameters

ab The upper or lower triangular part of A (in band storage) is overwritten by the 
Cholesky factor U or L, as specified by uplo, in the same storage format as A. 

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself) is not 
positive definite, so the factorization could not be completed, and the solution 
has not been computed.  

?pbsvx
Uses the Cholesky factorization to compute the solution 
to the system of linear equations with a symmetric 
(Hermitian) positive definite band matrix A, and 
provides error bounds on the solution.

Syntax
call spbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,

ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call zpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

Description

This routine uses the Cholesky factorization A=UHU or A=LLH to compute the solution to a real 
or complex system of linear equations  AX = B,  where A is a n-by-n symmetric or Hermitian 
positive definite band matrix, the columns of matrix B are individual right-hand sides, and the 
columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?pbsvx performs the following steps:
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1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

  diag(s)*A*diag(s) *diag(s)-1*X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if 
equilibration is used, A is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the  matrix A (after 
equilibration if fact = 'E') as

A = UH U,  if uplo = ‘U’, or 
A = L LH ,  if uplo = ‘L’,
where U  is an upper triangular band matrix and L is a lower triangular band matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with info 
= i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If 
the reciprocal of the condition number is less than machine precision, info = n + 1 is returned as 
a warning, but the routine still goes on to solve for X and compute error bounds as described 
below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original 
system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry, 
and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F':  on entry, afb contains the factored form of A. If equed = 'Y', 
the matrix A has been equilibrated with scaling factors given by s. 
ab and afb will not be modified.

If fact = 'N', the matrix A will be copied to afb and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to 
afb and factored.

uplo CHARACTER*1.  Must be 'U' or 'L'.
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Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array ab stores the upper triangular part of the matrix A, 
and  A is factored as UHU.
If uplo = 'L', the array ab stores the lower triangular part of the matrix A;  A 
is factored as LLH.

n INTEGER.  The order of matrix A (n ≥ 0). 
kd INTEGER.  The number of super-diagonals or sub-diagonals in the matrix A

(kd ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

ab,afb,b,work REAL for spbsvx 
DOUBLE PRECISION for dpbsvx 
COMPLEX for cpbsvx 
DOUBLE COMPLEX for zpbsvx.
Arrays: ab(ldab,*), afb(ldab,*), b(ldb,*), work(*). 

The array ab contains the upper or lower triangle of the matrix A in band 
storage (see Matrix Storage Schemes). 
 If fact = 'F' and equed = 'Y', then ab must contain the equilibrated matrix  
diag(s)*A*diag(s). The second dimension of ab must be at least max(1, n).
 The array afb is an input argument if fact = 'F' . 
It contains the triangular factor U or L  from the Cholesky factorization of the 
band matrix A in the same storage format as  A. If equed = 'Y', then afb is the 
factored form of the equilibrated matrix A. 
 The second dimension of afb must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations. The second dimension of b  must be at least 
max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and at 
least max(1,2*n) for complex flavors.

ldab INTEGER.  The first dimension of ab; ldab ≥ kd+1.

ldafb INTEGER.  The first dimension of afb; ldafb ≥ kd+1.

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).
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equed CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies the form of equilibration 
that was done: 
If equed = 'N', no equilibration was done (always 
true if fact = 'N');
If equed = 'Y',  equilibration was done and A has been replaced by 
diag(s)*A*diag(s).

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION  (n). 
The array s contains the scale factors for A. This array is an input argument if 
fact = 'F' only; otherwise it is an output argument.
If equed = 'N' , s is not accessed.   
If fact = 'F' and equed = 'Y', each element of s must be positive.

ldx INTEGER.  The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.  
Workspace array, DIMENSION  at least max(1, n); used in real flavors only. 

rwork REAL for cpbsvx;
DOUBLE PRECISION for zpbsvx.
Workspace array, DIMENSION  at least max(1, n); used in complex flavors 
only. 

Output Parameters

x REAL for spbsvx 
DOUBLE PRECISION for dpbsvx 
COMPLEX for cpbsvx 
DOUBLE COMPLEX for zpbsvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
original system of equations.  Note that if equed ='Y', A and B are modified 
on exit, and the solution to the equilibrated system is diag(s)-1*X.
The second dimension of x  must be at least max(1,nrhs).

ab On exit, if fact = 'E' and equed = 'Y', A is overwritten by diag(s)*A*diag(s)

afb If fact = 'N' or 'E', then afb is an output argument  and on exit returns the 
triangular factor U or L from the Cholesky factorization  A=UHU or A=LLH of 
the original matrix A(if fact = 'N'), or of the equilibrated matrix A (if fact = 
'E'). See the description of ab for the form of the equilibrated matrix.
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b Overwritten by diag(s)*B , if equed = 'Y'; 
not changed  if  equed = 'N'.

s This array  is an output argument if fact ≠ 'F' .
See the description of s in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A after 
equilibration (if done). If rcond is less than the machine precision (in 
particular, if rcond = 0), the matrix is singular to working precision.  This 
condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of 
equilibration that was done (see the description of equed in Input Arguments 
section). 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and hence the matrix A 
itself) is not positive definite, so the factorization could not be completed, and 
the solution and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.

?ptsv
Computes the solution to the system of linear equations 
with a symmetric or Hermitian positive definite 
tridiagonal matrix A and multiple right-hand sides.

Syntax
call sptsv (n, nrhs, d, e, b, ldb, info)
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call dptsv (n, nrhs, d, e, b, ldb, info)

call cptsv (n, nrhs, d, e, b, ldb, info)

call zptsv (n, nrhs, d, e, b, ldb, info)

Description

This routine solves for X the real or complex system of linear equations  
AX = B, where A is an n-by-n  symmetric/Hermitian positive definite tridiagonal matrix, the  
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding 
solutions.

A is factored as   A = L D LH , and the factored form of A is then used to solve the system of 
equations AX = B.

Input Parameters
n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

d REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Array, dimension at least max(1, n). Contains the diagonal elements of the 
tridiagonal matrix A. 

e, b REAL for sptsv
DOUBLE PRECISION for dptsv
COMPLEX for cptsv
DOUBLE COMPLEX for zptsv.
Arrays: e(n - 1) ,  b(ldb,*).
The array e contains the (n - 1) subdiagonal elements 
of  A. 
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters

d Overwritten by the n diagonal elements of the diagonal matrix D from the 
LDLH factorization of A. 
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e Overwritten by the (n - 1) subdiagonal elements of the unit bidiagonal factor L 
from the factorization of A.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself) is not 
positive definite, and the solution has not been computed.  The factorization 
has not been completed unless i = n. 

?ptsvx
Uses the factorization A=LDLH to compute 
the solution to the system of linear equations with a 
symmetric (Hermitian) positive definite tridiagonal 
matrix A, and provides error bounds on the solution.

Syntax
call sptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,

berr, work, info)

call dptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
berr, work, info)

call cptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)

call zptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)

Description

This routine uses the Cholesky factorization  A=L D LH to compute the solution to a real or 
complex system of linear equations  AX = B,  where A is a n-by-n symmetric or Hermitian 
positive definite tridiagonal matrix, the columns of matrix B are individual right-hand sides, and 
the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ptsvx performs the following steps:
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1. If fact = 'N', the matrix A is factored as  A = L D LH, where L is a unit lower bidiagonal matrix 
and D is diagonal.  The factorization can also be regarded as having the form A = UH D U.

2. If the leading i-by-i principal minor is not positive definite, then the routine returns with info 
= i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If 
the reciprocal of the condition number is less than machine precision, info = n + 1 is returned as 
a warning, but the routine still goes on to solve for X and compute error bounds as described 
below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A is supplied on entry.

If fact = 'F':  on entry, df and ef contain the factored form of A. Arrays d, 
e, df, and ef will not be modified.

If fact = 'N', the matrix A will be copied to df and ef and factored.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

d,df,rwork REAL for single precision flavors 
DOUBLE PRECISION for double precision flavors
Arrays:  d(n ), df(n ), rwork(n ).
The array d contains the n diagonal elements of the tridiagonal matrix  A. 
The array df  is an input argument if fact = 'F' and on entry contains the  n  
diagonal elements of the diagonal matrix D from the L D LH factorization of A. 
The array rwork is a workspace array used for complex flavors only.

e,ef,b,work REAL for sptsvx 
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.
Arrays: e(n - 1),  ef(n - 1),  b(ldb,*),  work(*).
The array e  contains the  (n - 1)  subdiagonal elements of the tridiagonal 
matrix A.
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The array ef  is an input argument if fact = 'F' and on entry contains the  (n 
- 1)  subdiagonal elements of the unit bidiagonal factor L from the L D LH 

factorization of  A.
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The array work is a workspace array. The dimension of work must be at least 
2*n  for real flavors, and at least n  for complex flavors.

ldb INTEGER.  The leading dimension of b; ldb ≥ max(1, n).

ldx INTEGER.  The leading dimension of x; ldx ≥ max(1, n).

Output Parameters

x REAL for sptsvx 
DOUBLE PRECISION for dptsvx 
COMPLEX for cptsvx 
DOUBLE COMPLEX for zptsvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
system of equations.  The second dimension of x  must be at least 
max(1,nrhs).

df, ef These arrays  are output arguments if fact = 'N' .
See the description of df, ef in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A after 
equilibration (if done). If rcond is less than the machine precision (in 
particular, if rcond = 0), the matrix is singular to working precision.  This 
condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and hence the matrix A 
itself) is not positive definite, so the factorization could not be completed, and 
the solution and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
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Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.

?sysv
Computes the solution to the system of linear equations 
with a real or complex symmetric matrix A and multiple 
right-hand sides.

Syntax
call ssysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call dsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call csysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Description

This routine solves for X the real or complex system of linear equations  
AX = B, where A is an n-by-n  symmetric  matrix, the columns of matrix B are individual 
right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as   A = U D UT  or 
A = L D LT , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, 
and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.  

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and  
A is factored as UDUT.
If uplo = 'L', the array a stores the lower triangular part of the matrix A;  A is 
factored as LDLT.

n INTEGER.  The order of matrix A (n ≥ 0). 
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nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

a, b, work REAL for ssysv
DOUBLE PRECISION for dsysv
COMPLEX for csysv
DOUBLE COMPLEX for zsysv.
Arrays: a(lda,*),  b(ldb,*), work(lwork).
The array a contains either the upper or the lower triangular part of the 
symmetric matrix A (see uplo). 
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of b must be at least max(1,nrhs).
work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

lwork INTEGER.  The size of the work array (lwork ≥ 1)
See Application notes for the suggested value of lwork.

Output Parameters
a If info = 0, a is overwritten by the block-diagonal matrix D and the 

multipliers used to obtain the factor U (or L) from the factorization of A as 
computed by ?sytrf. 

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
Contains details of the interchanges and the block structure of D, as 
determined by ?sytrf. 
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row and 
column of A was interchanged with the kth row and column. 
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

work(1) If info=0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.
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info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is exactly 
singular, so the solution could not be computed.

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. 

If you are in doubt how much workspace to supply, use lwork =-1 for the first run. In this case, a 
workspace query is assumed; the routine only calculates the optimal size of the work array, returns 
this value as the first entry work(1) of the work  array , and no error message related to lwork is 
issued by XERBLA. On exit, examine work(1) and use this value for subsequent runs.

?sysvx
Uses the diagonal pivoting factorization  to compute 
the solution to the system of linear equations with a real 
or complex symmetric  matrix A, and provides error 
bounds on the solution.

Syntax
call ssysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,

rcond, ferr, berr, work, lwork, iwork, info)

call dsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, iwork, info)

call csysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

call zsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex 
system of linear equations  AX = B,  where A is a n-by-n symmetric matrix, the columns of matrix 
B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
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The routine ?sysvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the 
factorization is  A = U D UT or A = L D LT, where  U (or L) is a product of permutation and unit 
upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 
diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i. 
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If the 
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a 
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been supplied on 
entry.

If fact = 'F':  on entry, af and ipiv contain the factored form of A. Arrays 
a, af, and ipiv will not be modified.

If fact = 'N', the matrix A will be copied to af and factored.

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the symmetric 
matrix A, and  A is factored 
as UDUT.
If uplo = 'L', the array a stores the lower triangular part of the symmetric 
matrix A;  A is factored as LDLT.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 
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a,af,b,work REAL for ssysvx 
DOUBLE PRECISION for dsysvx 
COMPLEX for csysvx 
DOUBLE COMPLEX for zsysvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*). 

The array a contains either the upper or the lower triangular part of the 
symmetric matrix A (see uplo). 
The second dimension of a must be at least max(1,n).

The array af is an input argument if fact = 'F' . It contains he block diagonal 
matrix D and the multipliers used to obtain the factor U or L from the 
factorization  A = U D UT or A = L D LT as computed by ?sytrf. 
The second dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations. The second dimension of b  must be at least 
max(1,nrhs).

work(*) is a workspace array of dimension (lwork). 

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER.  The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The array ipiv is an input argument if fact = 'F' . 
It contains  details of the interchanges and the block structure of D, as 
determined by ?sytrf. 
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row and 
column of A was interchanged with the kth row and column. 

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

ldx INTEGER.  The leading dimension of the output array x; ldx ≥ max(1, n).

lwork INTEGER.  The size of the work array .
See Application notes for the suggested value of lwork.
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iwork INTEGER.  
Workspace array, DIMENSION  at least max(1, n); used in real flavors only. 

rwork REAL for csysvx;
DOUBLE PRECISION for zsysvx.
Workspace array, DIMENSION  at least max(1, n); used in complex flavors 
only. 

Output Parameters

x REAL for ssysvx 
DOUBLE PRECISION for dsysvx 
COMPLEX for csysvx 
DOUBLE COMPLEX for zsysvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
system of equations.  The second dimension of x  must be at least 
max(1,nrhs).

af, ipiv These arrays are output arguments if fact = 'N' .
See the description of af, ipiv in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A. If rcond is 
less than the machine precision (in particular, if rcond = 0), the matrix is 
singular to working precision.  This condition is indicated by a return code of 
info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.

work(1) If info=0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The factorization has been 
completed, but the block diagonal matrix D is exactly singular, so the solution  
and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then D is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
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Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.

Application Notes

For real flavors, lwork must be at least 3*n, and for complex flavors at least 2*n. For better 
performance, try using lwork = n*blocksize, where blocksize is the optimal block size for 
?sytrf. 

If you are in doubt how much workspace to supply, use lwork =-1 for the first run. In this case, a 
workspace query is assumed; the routine only calculates the optimal size of the work array, returns 
this value as the first entry work(1) of the work  array , and no error message related to lwork is 
issued by XERBLA. On exit, examine work(1) and use this value for subsequent runs.

?hesvx
Uses the diagonal pivoting factorization  to compute 
the solution to the complex system of linear equations 
with a Hermitian matrix A, and provides error bounds 
on the solution.

Syntax
call chesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,

rcond, ferr, berr, work, lwork, rwork, info)

call zhesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex system 
of linear equations  AX = B,  where A is a n-by-n Hermitian matrix, the columns of matrix B are 
individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?hesvx performs the following steps:



3-194

3 Intel® Math Kernel Library Reference Manual

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the 
factorization is  A = U D UH or A = L D LH, where  U (or L) is a product of permutation and unit 
upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 
diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i. 
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If the 
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a 
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been supplied on 
entry.

If fact = 'F':  on entry, af and ipiv contain the factored form of A. Arrays 
a, af, and ipiv will not be modified.

If fact = 'N', the matrix A will be copied to af and factored.

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the Hermitian 
matrix A, and  A is factored 
as UDUH.
If uplo = 'L', the array a stores the lower triangular part of the Hermitian 
matrix A;  A is factored as LDLH.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

a,af,b,work COMPLEX for chesvx 
DOUBLE COMPLEX for zhesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*). 
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The array a contains either the upper or the lower triangular part of the 
Hermitian matrix A (see uplo). 
The second dimension of a must be at least max(1,n).

The array af is an input argument if fact = 'F' . It contains he block diagonal 
matrix D and the multipliers used to obtain the factor U or L from the 
factorization  A = U D UH or A = L D LH as computed by ?hetrf. 
The second dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations. The second dimension of b  must be at least 
max(1,nrhs).

work(*) is a workspace array of dimension (lwork). 

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER.  The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The array ipiv is an input argument if fact = 'F' . 
It contains  details of the interchanges and the block structure of D, as 
determined by ?hetrf. 
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row and 
column of A was interchanged with the kth row and column. 

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

ldx INTEGER.  The leading dimension of the output array x; ldx ≥ max(1, n).

lwork INTEGER.  The size of the work array .
See Application notes for the suggested value of lwork.

rwork REAL for chesvx;
DOUBLE PRECISION for zhesvx.
Workspace array, DIMENSION  at least max(1, n). 
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Output Parameters

x COMPLEX for chesvx 
DOUBLE COMPLEX for zhesvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
system of equations.  The second dimension of x  must be at least 
max(1,nrhs).

af, ipiv These arrays are output arguments if fact = 'N' .
See the description of af, ipiv in Input Arguments section.

rcond REAL for chesvx;
DOUBLE PRECISION for zhesvx. 
An estimate of the reciprocal condition number of the matrix A. If rcond is 
less than the machine precision (in particular, if rcond = 0), the matrix is 
singular to working precision.  This condition is indicated by a return code of 
info > 0.

ferr, berr REAL for chesvx;
DOUBLE PRECISION for zhesvx. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.

work(1) If info=0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The factorization has been 
completed, but the block diagonal matrix D is exactly singular, so the solution  
and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then D is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.

Application Notes

The value of lwork must be at least 2*n. For better performance, try using lwork = n*blocksize, 
where blocksize is the optimal block size for ?hetrf. 
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If you are in doubt how much workspace to supply, use lwork =-1 for the first run. In this case, a 
workspace query is assumed; the routine only calculates the optimal size of the work array, returns 
this value as the first entry work(1) of the work  array , and no error message related to lwork is 
issued by XERBLA. On exit, examine work(1) and use this value for subsequent runs.

?hesv
Computes the solution to the system of linear equations 
with a Hermitian matrix A and multiple right-hand 
sides.

Syntax
call chesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zhesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Description

This routine solves for X the real or complex system of linear equations  
AX = B, where A is an n-by-n  symmetric  matrix, the columns of matrix B are individual 
right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as   A = U D UH  or 
A = L D LH , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, 
and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.  

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and  
A is factored as UDUH.
If uplo = 'L', the array a stores the lower triangular part of the matrix A;  A is 
factored as LDLH.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 
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a, b, work COMPLEX for chesv
DOUBLE COMPLEX for zhesv.
Arrays: a(lda,*),  b(ldb,*), work(lwork).
The array a contains either the upper or the lower triangular part of the 
Hermitian matrix A (see uplo). 
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of b must be at least max(1,nrhs).
work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; lda ≥ max(1, n).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

lwork INTEGER.  The size of the work array (lwork ≥ 1)
See Application notes for the suggested value of lwork.

Output Parameters
a If info = 0, a is overwritten by the block-diagonal matrix D and the 

multipliers used to obtain the factor U (or L) from the factorization of A as 
computed by ?hetrf. 

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
Contains details of the interchanges and the block structure of D, as 
determined by ?hetrf. 
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row and 
column of A was interchanged with the kth row and column. 
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

work(1) If info=0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is exactly 
singular, so the solution could not be computed.
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Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. 

If you are in doubt how much workspace to supply, use lwork =-1 for the first run. In this case, a 
workspace query is assumed; the routine only calculates the optimal size of the work array, returns 
this value as the first entry work(1) of the work  array , and no error message related to lwork is 
issued by XERBLA. On exit, examine work(1) and use this value for subsequent runs.

?spsv
Computes the solution to the system of linear equations 
with a real or complex symmetric matrix A stored in 
packed format, and multiple right-hand sides.

Syntax
call sspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call dspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call cspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Description

This routine solves for X the real or complex system of linear equations  
AX = B, where A is an n-by-n  symmetric  matrix stored in packed format, the columns of matrix B 
are individual right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as   A = U D UT  or 
A = L D LT , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, 
and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.  

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
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If uplo = 'U', the array ap stores the upper triangular part of the matrix A, 
and  A is factored as UDUT.
If uplo = 'L', the array ap stores the lower triangular part of the matrix A;  A 
is factored as LDLT.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

ap, b REAL for sspsv
DOUBLE PRECISION for dspsv
COMPLEX for cspsv
DOUBLE COMPLEX for zspsv.
Arrays: ap(*), b(ldb,*) 
The dimension of ap must be at least max(1,n(n+1)/2). 
The array ap contains the factor U or L, as specified by uplo, in packed 
storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters
ap The block-diagonal matrix D and the multipliers used to obtain the factor U (or 

L) from the factorization of A as computed by ?sptrf, stored as a packed 
triangular matrix in the same storage format as A. 

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
Contains details of the interchanges and the block structure of D, as 
determined by ?sptrf. 
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and column of 
A was interchanged with the kth row and column. 

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 
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info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is exactly 
singular, so the solution could not be computed.

?spsvx
Uses the diagonal pivoting factorization  to compute 
the solution to the system of linear equations with a real 
or complex symmetric  matrix A stored in packed 
format, and provides error bounds on the solution.

Syntax
call sspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,

ferr, berr, work, iwork, info)

call dspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, iwork, info)

call cspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

call zspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex 
system of linear equations  AX = B,  where A is a n-by-n symmetric matrix stored in packed 
format, the columns of matrix B are individual right-hand sides, and the columns of X are the 
corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?spsvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the 
factorization is  A = U D UT or A = L D LT, where  U (or L) is a product of permutation and unit 
upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 
diagonal blocks.
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2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i. 
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If the 
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a 
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been supplied on 
entry.

If fact = 'F':  on entry, afp and ipiv contain the factored form of A. 
Arrays ap, afp, and ipiv will not be modified.

If fact = 'N', the matrix A will be copied to afp and factored.

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array ap stores the upper triangular part of the symmetric 
matrix A, and  A is factored 
as UDUT.
If uplo = 'L', the array ap stores the lower triangular part of the symmetric 
matrix A;  A is factored as LDLT.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

ap,afp,b,work REAL for sspsvx 
DOUBLE PRECISION for dspsvx 
COMPLEX for cspsvx 
DOUBLE COMPLEX for zspsvx.
Arrays: ap(*), afp(*), b(ldb,*), work (*).

The array ap contains the upper or lower triangle of the symmetric matrix A in 
packed storage (see Matrix Storage Schemes). 
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The array afp is an input argument if fact = 'F' . It contains the block 
diagonal matrix D and the multipliers used to obtain the factor U or L  from the 
factorization
 A = U D UT or A = L D LT as computed by ?sptrf,  in the same storage 
format as A.  
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the 
second dimension of b  must be at least max(1,nrhs); the dimension of work  
must be at least max(1, 3*n) for real flavors and max(1, 2*n) for complex 
flavors.

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The array ipiv is an input argument if fact = 'F' . 
It contains  details of the interchanges and the block structure of D, as 
determined by ?sptrf. 
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row and 
column of A was interchanged with the kth row and column. 

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

ldx INTEGER.  The leading dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.  
Workspace array, DIMENSION  at least max(1, n); used in real flavors only. 

rwork REAL for cspsvx;
DOUBLE PRECISION for zspsvx.
Workspace array, DIMENSION  at least max(1, n); used in complex flavors 
only. 
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Output Parameters

x REAL for sspsvx 
DOUBLE PRECISION for dspsvx 
COMPLEX for cspsvx 
DOUBLE COMPLEX for zspsvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
system of equations.  The second dimension of x  must be at least 
max(1,nrhs).

afp, ipiv These arrays are output arguments if fact = 'N' .
See the description of afp, ipiv in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A. If rcond is 
less than the machine precision (in particular, if rcond = 0), the matrix is 
singular to working precision.  This condition is indicated by a return code of 
info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The factorization has been 
completed, but the block diagonal matrix D is exactly singular, so the solution  
and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then D is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.
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?hpsvx
Uses the diagonal pivoting factorization  to compute 
the solution to the system of linear equations with a 
Hermitian  matrix A stored in packed format, and 
provides error bounds on the solution.

Syntax
call chpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,

ferr, berr, work, rwork, info)

call zhpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex system 
of linear equations  AX = B,  where A is a n-by-n Hermitian matrix stored in packed format, the 
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding 
solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?hpsvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the 
factorization is  A = U D UH or A = L D LH, where  U (or L) is a product of permutation and unit 
upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 
diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i. 
Otherwise, the factored form of A is used to estimate the condition number of the matrix A.  If the 
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a 
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.
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Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been supplied on 
entry.

If fact = 'F':  on entry, afp and ipiv contain the factored form of A. 
Arrays ap, afp, and ipiv will not be modified.

If fact = 'N', the matrix A will be copied to afp and factored.

uplo CHARACTER*1.  Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
If uplo = 'U', the array ap stores the upper triangular part of the Hermitian 
matrix A, and  A is factored 
as UDUH.
If uplo = 'L', the array ap stores the lower triangular part of the Hermitian 
matrix A;  A is factored as LDLH.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

ap,afp,b,work COMPLEX for chpsvx 
DOUBLE COMPLEX for zhpsvx.
Arrays: ap(*), afp(*), b(ldb,*), work (*).

The array ap contains the upper or lower triangle of the Hermitian matrix A in 
packed storage (see Matrix Storage Schemes). 

The array afp is an input argument if fact = 'F' . It contains the block 
diagonal matrix D and the multipliers used to obtain the factor U or L  from the 
factorization
 A = U D UH or A = L D LH as computed by ?hptrf,  in the same storage 
format as A.  
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the 
second dimension of b  must be at least max(1,nrhs); the dimension of work  
must be at least max(1, 2*n) .

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).
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ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The array ipiv is an input argument if fact = 'F' . 
It contains  details of the interchanges and the block structure of D, as 
determined by ?hptrf. 
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row and 
column of A was interchanged with the kth row and column. 

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 

ldx INTEGER.  The leading dimension of the output array x; ldx ≥ max(1, n).

rwork REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
Workspace array, DIMENSION  at least max(1, n). 

Output Parameters

x COMPLEX for chpsvx 
DOUBLE COMPLEX for zhpsvx.
Array, DIMENSION (ldx,*). 

If info = 0 or info = n+1, the array x contains the solution matrix X to the 
system of equations.  The second dimension of x  must be at least 
max(1,nrhs).

afp, ipiv These arrays are output arguments if fact = 'N' .
See the description of afp, ipiv in Input Arguments section.

rcond REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
An estimate of the reciprocal condition number of the matrix A. If rcond is 
less than the machine precision (in particular, if rcond = 0), the matrix is 
singular to working precision.  This condition is indicated by a return code of 
info > 0.

ferr, berr REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise 
forward and relative backward errors, respectively, for each solution vector.
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info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The factorization has been 
completed, but the block diagonal matrix D is exactly singular, so the solution  
and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then D is nonsingular, but rcond is less than 
machine precision, meaning that the matrix is singular to working precision.  
Nevertheless, the  solution and error bounds are computed because there are a 
number of situations where the  computed solution can be more accurate than 
the value of rcond would suggest.

?hpsv
Computes the solution to the system of linear equations 
with a Hermitian matrix A stored in packed format, and 
multiple right-hand sides.

Syntax
call chpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zhpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Description

This routine solves for X the  system of linear equations  AX = B, where A is an n-by-n  Hermitian  
matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the 
columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as   A = U D UH  or 
A = L D LH , where U (or L) is a product of permutation and unit upper (lower) triangular matrices, 
and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.  

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and how A is 
factored: 
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If uplo = 'U', the array ap stores the upper triangular part of the matrix A, 
and  A is factored as UDUH.
If uplo = 'L', the array ap stores the lower triangular part of the matrix A;  A 
is factored as LDLH.

n INTEGER.  The order of matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

ap, b COMPLEX for chpsv
DOUBLE COMPLEX for zhpsv.
Arrays: ap(*), b(ldb,*) 
The dimension of ap must be at least max(1,n(n+1)/2). 
The array ap contains the factor U or L, as specified by uplo, in packed 
storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldb INTEGER.  The first dimension of b; ldb ≥ max(1, n).

Output Parameters
ap The block-diagonal matrix D and the multipliers used to obtain the factor U (or 

L) from the factorization of A as computed by ?hptrf, stored as a packed 
triangular matrix in the same storage format as A. 

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
Contains details of the interchanges and the block structure of D, as 
determined by ?hptrf. 
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and column of 
A was interchanged with the kth row and column. 

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i-1, and (i-1)th row and column of A was 
interchanged with the mth row and column. 

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2 block 
in rows/columns i and i+1, and (i+1)th row and column of A was 
interchanged with the mth row and column. 
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info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is exactly 
singular, so the solution could not be computed.



4-1

LAPACK Routines:
Least Squares and 
Eigenvalue Problems 4

This chapter describes the Intel® Math Kernel Library implementation of routines from the 
LAPACK package that are used for solving linear least-squares  problems, eigenvalue and singular 
value problems, as well as performing a number of related computational tasks.

Sections in this chapter include descriptions of LAPACK computational routines and driver 
routines.

For full reference on LAPACK routines and related information see [LUG].

Least-Squares Problems. A typical least-squares problem is as follows: given a matrix A and 
a vector b, find the vector x that minimizes the sum of squares  Σi ((Ax)i - bi)

2  or, equivalently, 
find the vector x that minimizes the 2-norm ||Ax − b||2.

In the most usual case, A is an m by n matrix with m ≥ n  and  rank(A) = n. This problem is also 
referred to as finding the least-squares solution to an overdetermined system of linear equations 
(here we have more equations than unknowns). To solve this problem, you can use the QR 
factorization of the matrix A (see QR Factorization on page 4-5). 

If m < n and rank(A) = m, there exist an infinite number of solutions x which exactly satisfy Ax = b, 
and thus minimize the norm ||Ax − b||2. In this case it is often useful to find the unique solution 
that minimizes ||x||2. This problem is referred to as finding the minimum-norm solution to an 
underdetermined system of linear equations (here we have more unknowns than equations). To 
solve this problem, you can use the LQ factorization of the matrix A (see LQ Factorization on 
page 4-6).

In the general case you may have a rank-deficient least-squares problem, with rank(A) < min(m, 
n): find the minimum-norm least-squares solution that minimizes both ||x||2 and ||Ax − b||2. In 
this case (or when the rank of A is in doubt) you can use the QR factorization with pivoting or 
singular value decomposition (see page 4-68).
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Eigenvalue Problems (from German eigen “own”) are stated as follows: given a matrix A, find 
the eigenvalues λ and the corresponding eigenvectors z that satisfy the equation
                       Az = λz  (right eigenvectors z) 

or the equation
                       zHA = λzH  (left eigenvectors z). 

If A is a real symmetric or complex Hermitian matrix, the above two equations are equivalent, and 
the problem is called a symmetric eigenvalue problem. Routines for solving this type of problems 
are described in the section Symmetric Eigenvalue Problems (see page 4-95).

Routines for solving eigenvalue problems with nonsymmetric or non-Hermitian matrices are 
described in the section Nonsymmetric Eigenvalue Problems (see page 4-162).

The library also includes routines that handle generalized symmetric- definite eigenvalue 
problems: find the eigenvalues λ and the corresponding eigenvectors x that satisfy one of the 
following equations:

                       Az = λBz,   ABz = λz,  or  BAz = λz

where A is symmetric or Hermitian, and B is symmetric positive-definite or Hermitian 
positive-definite. Routines for reducing these problems to standard symmetric eigenvalue 
problems are described in the section Generalized Symmetric-Definite Eigenvalue Problems (see 
page 4-147).

* * *

To solve a particular problem, you usually call several computational routines. Sometimes you 
need to combine the routines of this chapter with other LAPACK routines described in Chapter 3 
as well as with BLAS routines (Chapter 2).

For example, to solve a set of least-squares problems minimizing ||Ax − b||2 for all columns b of 
a given matrix B (where A and B are real matrices), you can call ?geqrf to form the factorization 
A = QR, then call ?ormqr to compute C = QHB, and finally call the BLAS routine ?trsm to solve 
for X the system of equations RX = C.

Another way is to call an appropriate driver routine that performs several tasks in one call. For 
example, to solve the least-squares problem the driver routine ?gels can be used.

WARNING.  LAPACK routines expect that input matrices do not contain 
INF or NaN values. When input data is inappropriate for LAPACK, problems 
may arise, including possible hangs.
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Routine Naming Conventions  
For each routine in this chapter, you can use the LAPACK name. 

LAPACK names have the structure xyyzzz, which is described below.

The initial letter x indicates the data type:
s real, single precisionc complex, single precision
d real, double precisionz complex, double precision

The second and third letters yy indicate the matrix type and storage scheme:
bd bidiagonal matrix
ge general matrix
gb general band matrix
hs upper Hessenberg matrix
or (real) orthogonal matrix
op (real) orthogonal matrix (packed storage) 
un (complex) unitary matrix
up (complex) unitary matrix (packed storage) 
pt symmetric or Hermitian positive-definite tridiagonal matrix
sy symmetric matrix
sp symmetric matrix (packed storage) 
sb (real) symmetric band matrix
st (real) symmetric tridiagonal matrix
he Hermitian matrix
hp Hermitian matrix (packed storage) 
hb (complex) Hermitian band matrix
tr triangular or quasi-triangular matrix.

The last three letters zzz indicate the computation performed, for example:
qrf form the QR factorization 
lqf form the LQ factorization.

Thus, the routine sgeqrf forms the QR factorization of general real matrices in single precision; 
the corresponding routine for complex matrices is cgeqrf.
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Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element aij 
stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more 
compactly: the upper or lower triangle of the matrix is packed by columns in a 
one-dimensional array.

• Band storage: an m by n band matrix with kl sub-diagonals and ku super-diagonals is stored 
compactly in a two-dimensional array ab with kl+ku+1 rows and n columns. Columns of the 
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are 
stored in rows of the array.

In Chapters 3 and 4, arrays that hold matrices in packed storage have names ending in p; arrays 
with matrices in band storage have names ending in b.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

Mathematical Notation
In addition to the mathematical notation used in previous chapters, descriptions of routines in this 
chapter use the following notation:

λi Eigenvalues of the matrix A (for the definition of eigenvalues, see Eigenvalue 
Problems on page 4-2).

σi Singular values of the matrix A. They are equal to square roots of the 
eigenvalues of AHA. (For more information, see Singular Value 
Decomposition).

||x||2 The 2-norm of the vector x: ||x||2 = (Σi |xi|
2)1/2 = ||x||E .

||A||2 The 2-norm (or spectral norm) of the matrix A.
||A||2 = maxi σi ,  ||A||2

2 = max|x|=1(Ax·Ax).

||A||E The Euclidean norm of the matrix A: ||A||E2 = Σi Σj |aij|2 (for vectors, the 
Euclidean norm and the 2-norm are equal: ||x||E = ||x||2).

q(x, y) The acute angle between vectors x and y:
cos q(x, y) = |x·y| / (||x||2 ||y||2).
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Computational Routines  
In the sections that follow, the descriptions of LAPACK computational routines are given. These 
routines perform distinct computational tasks that can be used for:

Orthogonal Factorizations
Singular Value Decomposition
Symmetric Eigenvalue Problems
Generalized Symmetric-Definite Eigenvalue Problems
Nonsymmetric Eigenvalue Problems
Generalized Nonsymmetric Eigenvalue Problems
Generalized Singular Value Decomposition

See also the respective driver routines.

Orthogonal Factorizations      

This section describes the LAPACK routines for the QR (RQ) and LQ (QL) factorization of 
matrices. Routines for the RZ factorization as well as for generalized QR and RQ factorizations are 
also included.

QR Factorization. Assume that A is an m by n matrix to be factored. 
If m ≥ n, the QR factorization is given by 

where R is an n by n upper triangular matrix with real diagonal elements, and Q is an m by m 
orthogonal (or unitary) matrix.

You can use the QR factorization for solving the following least-squares problem: minimize ||Ax − 
b||2 where A is a full-rank m by n matrix (m ≥ n). After factoring the matrix, compute the solution 
x by solving Rx = (Q1)T b. 

If m < n, the QR factorization is given by

where R is trapezoidal, R1 is upper triangular and R2 is rectangular.

The LAPACK routines do not form the matrix Q explicitly. Instead, Q is represented as a product 
of min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

A Q R
0� �
� � Q1 Q2,( ) R

0� �
� �= =

A QR Q R1R2( )= =
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LQ Factorization of an m by n matrix A is as follows. If m ≤ n,   

where L is an m by m lower triangular matrix with real diagonal elements, and Q is an n by n 
orthogonal (or unitary) matrix.

If m > n, the LQ factorization is        

where L1 is an n by n lower triangular matrix, L2 is rectangular, and Q is an n by n orthogonal (or 
unitary) matrix.

You can use the LQ factorization to find the minimum-norm solution of an underdetermined 
system of linear equations Ax = b where A is an m by n matrix of rank m (m < n). After factoring 
the matrix, compute the solution vector x as follows: solve Ly = b for y, and then compute x = 
(Q1)H y.

Table 5-1 lists LAPACK routines that perform orthogonal factorization of matrices.    

Table 4-1 Computational Routines for Orthogonal Factorization     

Matrix type, factorization
Factorize 
without pivoting

Factorize 
with pivoting

Generate 
matrix Q

Apply 
matrix Q

general matrices,
QR factorization

?geqrf ?geqpf
?geqp3

?orgqr
 ?ungqr 

?ormqr
?unmqr 

general matrices,
RQ factorization

?gerqf ?orgrq
?ungrq 

?ormrq
?unmrq   

general matrices,
LQ factorization

?gelqf ?orglq
?unglq

?ormlq
?unmlq 

general matrices,
QL factorization

?geqlf ?orgql
?ungql

?ormql
?unmql

trapezoidal matrices,
RZ factorization

?tzrzf ?ormrz
?unmrz 

pair of matrices, generalized 
QR factorization

?ggqrf

pair of matrices, generalized 
RQ factorization

?ggrqf

A L 0,( )Q L 0,( ) Q1

Q2� �
� � LQ1= = =

A
L1

L2� �
� �Q=
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?geqrf           
Computes the QR factorization of a general m by n 
matrix.

Syntax
call sgeqrf ( m, n, a, lda, tau, work, lwork, info )

call dgeqrf ( m, n, a, lda, tau, work, lwork, info )

call cgeqrf ( m, n, a, lda, tau, work, lwork, info )

call zgeqrf ( m, n, a, lda, tau, work, lwork, info )

Description

The routine forms the QR factorization of a general m by n matrix A 
(see Orthogonal Factorizations on page 4-5). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of 
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgeqrf 
DOUBLE PRECISION for dgeqrf 
COMPLEX for cgeqrf 
DOUBLE COMPLEX for zgeqrf.
Arrays: 
a(lda,*) contains the matrix A. 
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

lwork INTEGER.  The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.
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Output Parameters

a Overwritten by the factorization data as follows:

If m ≥ n, the elements below the diagonal are overwritten by the details of the 
unitary matrix Q, and the upper triangle is overwritten by the corresponding 
elements of the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by the details of the 
unitary matrix Q, and the remaining elements are overwritten by the 
corresponding elements of the m by n upper trapezoidal matrix R.

tau REAL for sgeqrf 
DOUBLE PRECISION for dgeqrf 
COMPLEX for cgeqrf 
DOUBLE COMPLEX for zgeqrf.
Array, DIMENSION at least max (1, min(m, n)). 
Contains additional information on the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. 

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed factorization is the exact factorization of a matrix A + E, where 
||E||2 = O(ε) ||A||2.

The approximate number of floating-point operations for real flavors is

   (4/3)n3 if m = n,

   (2/3)n2(3m-n) if m > n,

   (2/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.
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To solve a set of least-squares problems minimizing ||Ax − b||2 for all columns b of a given 
matrix B, you can call the following:

?geqrf (this routine) to factorize A = QR;

?ormqr to compute C = QTB (for real matrices);

?unmqr to compute C = QHB (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the least-squares solution vectors x.)

To compute the elements of Q explicitly, call 

?orgqr (for real matrices)

?ungqr (for complex matrices).

?geqpf               
Computes the QR factorization of a general m by n 
matrix with pivoting.

Syntax
call sgeqpf ( m, n, a, lda, jpvt, tau, work, info )

call dgeqpf ( m, n, a, lda, jpvt, tau, work, info )

call cgeqpf ( m, n, a, lda, jpvt, tau, work, rwork, info )

call zgeqpf ( m, n, a, lda, jpvt, tau, work, rwork, info )

Description

This routine is deprecated and has been replaced by routine ?geqp3.

The routine ?geqpf forms the QR factorization of a general m by n matrix A with column 
pivoting: AP = QR (see Orthogonal Factorizations on page 4-5). Here P denotes an n by n 
permutation matrix.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m, 
n) elementary reflectors. Routines are provided to work with Q in this representation.
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Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgeqpf 
DOUBLE PRECISION for dgeqpf 
COMPLEX for cgeqpf 
DOUBLE COMPLEX for zgeqpf.
Arrays: 
a (lda,*) contains the matrix A. 
The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

lwork INTEGER.  The size of the work array; must be at least max(1, 3∗ n).

jpvt INTEGER.  Array, DIMENSION  at least max(1, n).

On entry, if jpvt(i)> 0, the ith column of A is moved to the beginning of AP 
before the computation, and fixed in place during the computation. 
If jpvt(i) = 0, the ith column of A is a free column (that is, it may be 
interchanged during the computation with any other free column).

rwork REAL for cgeqpf 
DOUBLE PRECISION for zgeqpf.
A workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

a Overwritten by the factorization data as follows:

If m ≥ n, the elements below the diagonal are overwritten by the details of the 
unitary (orthogonal) matrix Q, and the upper triangle is overwritten by the 
corresponding elements of the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by the details of the 
matrix Q, and the remaining elements are overwritten by the corresponding 
elements of the m by n upper trapezoidal matrix R.

tau REAL for sgeqpf 
DOUBLE PRECISION for dgeqpf 
COMPLEX for cgeqpf 
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DOUBLE COMPLEX for zgeqpf.
Array, DIMENSION at least max (1, min(m, n)). 
Contains additional information on the matrix Q.

jpvt Overwritten by details of the permutation matrix P in the factorization AP = 
QR.  More precisely, the columns of AP are the columns of A in the following 
order:
jpvt(1), jpvt(2), ..., jpvt(n).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed factorization is the exact factorization of a matrix A + E, where ||E||2 = O(ε) 
||A||2.

The approximate number of floating-point operations for real flavors is

   (4/3)n3 if m = n,

   (2/3)n2(3m-n) if m > n,

   (2/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing ||Ax − b||2 for all columns b of a given 
matrix B, you can call the following:

?geqpf (this routine) to factorize AP = QR;

?ormqr to compute C = QTB (for real matrices);

?unmqr to compute C = QHB (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the permuted least-squares solution vectors x; the output 
array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call 

?orgqr (for real matrices)

?ungqr (for complex matrices).
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?geqp3               
Computes the QR factorization of a general m by n 
matrix with column pivoting using Level 3 BLAS.

Syntax
call sgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, info )

call dgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, info )

call cgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, rwork, info )

call zgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, rwork, info )

Description

The routine forms the QR factorization of a general m by n matrix A with column pivoting: AP = 
QR (see Orthogonal Factorizations on page 4-5)  using Level 3 BLAS. Here P denotes an n by n 
permutation matrix. 
Use this routine instead of ?geqpf for better performance.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m, 
n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgeqp3 
DOUBLE PRECISION for dgeqp3 
COMPLEX for cgeqp3 
DOUBLE COMPLEX for zgeqp3.
Arrays: 
a (lda,*) contains the matrix A. 
The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

lwork INTEGER.  The size of the work array; must be at least max(1, 3∗ n+1) for real 
flavors, and at least max(1, n+1) for complex flavors.
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jpvt INTEGER.  Array, DIMENSION  at least max(1, n).

On entry, if jpvt(i)≠ 0, the ith column of A is moved to the beginning of AP 
before the computation, and fixed in place during the computation. 
If jpvt(i) = 0, the ith column of A is a free column (that is, it may be 
interchanged during the computation with any other free column).

rwork REAL for cgeqp3 
DOUBLE PRECISION for zgeqp3.
A workspace array, DIMENSION at least max(1, 2*n). Used in complex flavors 
only.

Output Parameters

a Overwritten by the factorization data as follows:

If m ≥ n, the elements below the diagonal are overwritten by the details of the 
unitary (orthogonal) matrix Q, and the upper triangle is overwritten by the 
corresponding elements of the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by the details of the 
matrix Q, and the remaining elements are overwritten by the corresponding 
elements of the m by n upper trapezoidal matrix R.

tau REAL for sgeqp3 
DOUBLE PRECISION for dgeqp3 
COMPLEX for cgeqp3 
DOUBLE COMPLEX for zgeqp3.
Array, DIMENSION at least max (1, min(m, n)). 
Contains scalar factors of the elementary reflectors for  the matrix Q.

jpvt Overwritten by details of the permutation matrix P in the factorization AP = 
QR.  More precisely, the columns of AP are the columns of A in the following 
order:
jpvt(1), jpvt(2), ..., jpvt(n).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

To solve a set of least-squares problems minimizing ||Ax − b||2 for all columns b of a given 
matrix B, you can call the following:

?geqp3 (this routine) to factorize AP = QR;
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?ormqr to compute C = QTB (for real matrices);

?unmqr to compute C = QHB (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the permuted least-squares solution vectors x; the output 
array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call 

?orgqr (for real matrices)

?ungqr (for complex matrices).
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?orgqr            
Generates the real orthogonal matrix Q of the QR 
factorization formed by ?geqrf.

Syntax
call sorgqr ( m, n, k, a, lda, tau, work, lwork, info )

call dorgqr ( m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates the whole or part of m by m orthogonal matrix Q of the QR factorization 
formed by the routines sgeqrf/dgeqrf (see page 4-7) or sgeqpf/dgeqpf (see page 4-9). Use 
this routine after a call to sgeqrf/dgeqrf or sgeqpf/dgeqpf. 

Usually Q is determined from the QR factorization of an m by p matrix A with m ≥ p. To compute 
the whole matrix Q, use:

call ?orgqr ( m, m, p, a, lda, tau, work, lwork, info )

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned by 
the columns of A):

call ?orgqr ( m, p, p, a, lda, tau, work, lwork, info )

To compute the matrix Qk of the QR factorization of A’s leading k columns: 

call ?orgqr ( m, m, k, a, lda, tau, work, lwork, info )

To compute the leading k columns of Qk (which form an orthonormal basis in the space spanned 
by A’s leading k columns):

call ?orgqr ( m, k, k, a, lda, tau, work, lwork, info )

Input Parameters

m INTEGER.  The order of the orthogonal matrix Q (m ≥ 0). 

n INTEGER.  The number of columns of Q to be computed (0 ≤ n ≤ m). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q (0 ≤ k ≤ n). 
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a, tau, work REAL for sorgqr 
DOUBLE PRECISION for dorgqr 
Arrays: 
a(lda,*) and tau(*) are the arrays returned by sgeqrf / dgeqrf  or 
sgeqpf / dgeqpf. 
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

lwork INTEGER.  The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by n leading columns of the m by m orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 = O(ε) 
||A||2 where ε is the machine precision.

The total number of floating-point operations is approximately 
4*m*n*k - 2*(m + n)*k2 + (4/3)*k3. 
If n = k, the number is approximately (2/3)*n2*(3m - n).

The complex counterpart of this routine is ?ungqr.
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?ormqr         
Multiplies a real matrix by the orthogonal matrix Q of the 
QR factorization formed by ?geqrf or ?geqpf.

Syntax
call sormqr ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

call dormqr ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal matrix Q of the QR 
factorization formed by the routines sgeqrf/dgeqrf (see page 4-7) or sgeqpf/dgeqpf (see page 
4-9). 

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QTC, CQ, or CQT   (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'. 
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER.  The number of rows in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤ k ≤ m  if side ='L';
0 ≤ k ≤ n  if side ='R'. 

a,work,tau,c REAL for sgeqrf 
DOUBLE PRECISION for dgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgeqrf / dgeqrf or 
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sgeqpf / dgeqpf. 
The second dimension of a must be at least max(1, k).
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a. Constraints: 
lda ≥ max(1, m)  if side ='L';
lda ≥ max(1, n)  if side ='R'.

ldc INTEGER.  The first dimension of c. Constraint: 
ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The complex counterpart of this routine is ?unmqr.
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?ungqr            
Generates the complex unitary matrix Q of the QR 
factorization formed by ?geqrf.

Syntax
call cungqr ( m, n, k, a, lda, tau, work, lwork, info )

call zungqr ( m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates the whole or part of m by m unitary matrix Q of the QR factorization formed 
by the routines cgeqrf/zgeqrf (see page 4-7) or cgeqpf/zgeqpf (see page 4-9).  Use this 
routine after a call to cgeqrf/zgeqrf or cgeqpf/zgeqpf. 

Usually Q is determined from the QR factorization of an m by p matrix A with m ≥ p. To compute 
the whole matrix Q, use:

call ?ungqr ( m, m, p, a, lda, tau, work, lwork, info )

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned by 
the columns of A):

call ?ungqr ( m, p, p, a, lda, tau, work, lwork, info )

To compute the matrix Qk of the QR factorization of A’s leading k columns: 

call ?ungqr ( m, m, k, a, lda, tau, work, lwork, info )

To compute the leading k columns of Qk (which form an orthonormal basis in the space spanned 
by A’s leading k columns):

call ?ungqr ( m, k, k, a, lda, tau, work, lwork, info )

Input Parameters

m INTEGER.  The order of the unitary matrix Q (m ≥ 0). 

n INTEGER.  The number of columns of Q to be computed (0 ≤ n ≤ m). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q (0 ≤ k ≤ n). 
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a, tau, work COMPLEX for cungqr 
DOUBLE COMPLEX for zungqr 
Arrays: 
a(lda,*) and tau(*) are the arrays returned by cgeqrf/zgeqrf or 
cgeqpf/zgeqpf. 
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

lwork INTEGER.  The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by n leading columns of the m by m unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly unitary matrix by a matrix E such that ||E||2 = O(ε) 
||A||2 where ε is the machine precision.

The total number of floating-point operations is approximately 
16*m*n*k - 8*(m + n)*k2 + (16/3)*k3. 
If n = k, the number is approximately (8/3)*n2*(3m - n).

The real counterpart of this routine is ?orgqr.
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?unmqr         
Multiplies a complex matrix by the unitary matrix Q of the 
QR factorization formed by ?geqrf.

Syntax
call cunmqr ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

call zunmqr ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a rectangular complex matrix C by Q or QH, where Q is the unitary matrix 
Q of the QR factorization formed by the routines cgeqrf/zgeqrf (see page 4-7) or 
cgeqpf/zgeqpf (see page 4-9). 

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QHC, CQ, or CQH   (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'. 
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER.  The number of rows in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤ k ≤ m  if side ='L';
0 ≤ k ≤ n  if side ='R'. 

a,work,tau,c COMPLEX for cgeqrf 
DOUBLE COMPLEX for zgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by cgeqrf / zgeqrf  or 
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cgeqpf / zgeqpf. 
The second dimension of a must be at least max(1, k).
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a.  Constraints: 
lda ≥ max(1, m)  if side ='L';
lda ≥ max(1, n)  if side ='R'.

ldc INTEGER.  The first dimension of c.  Constraint: 
ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The real counterpart of this routine is ?ormqr.
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?gelqf            
Computes the LQ factorization of a general m by n 
matrix.

Syntax
call sgelqf ( m, n, a, lda, tau, work, lwork, info )

call dgelqf ( m, n, a, lda, tau, work, lwork, info )

call cgelqf ( m, n, a, lda, tau, work, lwork, info )

call zgelqf ( m, n, a, lda, tau, work, lwork, info )

Description

The routine forms the LQ factorization of a general m by n matrix A 
(see Orthogonal Factorizations on page 4-5). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m, 
n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgelqf 
DOUBLE PRECISION for dgelqf 
COMPLEX for cgelqf 
DOUBLE COMPLEX for zgelqf.
Arrays: 
a(lda,*) contains the matrix A. 
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.
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Output Parameters

a Overwritten by the factorization data as follows:

If m ≤ n, the elements above the diagonal are overwritten by the details of the 
unitary (orthogonal) matrix Q, and the lower triangle is overwritten by the 
corresponding elements of the lower triangular matrix L.

If m > n, the strictly upper triangular part is overwritten by the details of the 
matrix Q, and the remaining elements are overwritten by the corresponding 
elements of the m by n lower trapezoidal matrix L.

tau REAL for sgelqf 
DOUBLE PRECISION for dgelqf 
COMPLEX for cgelqf 
DOUBLE COMPLEX for zgelqf.
Array, DIMENSION at least max(1, min(m, n)). 
Contains additional information on the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed factorization is the exact factorization of a matrix A + E, where ||E||2 = O(ε) 
||A||2.
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The approximate number of floating-point operations for real flavors is

   (4/3)n3 if m = n,

   (2/3)n2(3m-n) if m > n,

   (2/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

To find the minimum-norm solution of an underdetermined least-squares problem minimizing 
||Ax − b||2 for all columns b of a given matrix B, you can call the following:

?gelqf (this routine) to factorize A = LQ;

?trsm (a BLAS routine) to solve LY = B for Y;

?ormlq to compute X = (Q1)TY (for real matrices);

?unmlq to compute X = (Q1)HY (for complex matrices).

(The columns of the computed X are the minimum-norm solution vectors x. Here A is an m by n 
matrix with m < n; Q1 denotes the first m columns of Q).

To compute the elements of Q explicitly, call 

?orglq (for real matrices)

?unglq (for complex matrices).
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?orglq           
Generates the real orthogonal matrix Q of the LQ 
factorization formed by ?gelqf.

Syntax
call sorglq ( m, n, k, a, lda, tau, work, lwork, info )

call dorglq ( m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates the whole or part of n by n orthogonal matrix Q of the LQ factorization 
formed by the routines sgelqf/dgelqf (see page 4-23). Use this routine after a call to 
sgelqf/dgelqf. 

Usually Q is determined from the LQ factorization of an p by n matrix A with n ≥ p. To compute 
the whole matrix Q, use:

call ?orglq ( n, n, p, a, lda, tau, work, lwork, info )

To compute the leading p rows of Q (which form an orthonormal basis in the space spanned by the 
rows of A):

call ?orglq ( p, n, p, a, lda, tau, work, lwork, info )

To compute the matrix Qk of the LQ factorization of A’s leading k rows: 

call ?orglq ( n, n, k, a, lda, tau, work, lwork, info )

To compute the leading k rows of Qk (which form an orthonormal basis in the space spanned by 
A’s leading k rows):

call ?orgqr ( k, n, k, a, lda, tau, work, lwork, info )

Input Parameters

m INTEGER.  The number of rows of Q to be computed 
(0 ≤ m ≤ n). 

n INTEGER.  The order of the orthogonal matrix Q (n ≥ m). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q (0 ≤ k ≤ m). 



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-27

a, tau, work REAL for sorglq 
DOUBLE PRECISION for dorglq 
Arrays: 
a(lda,*) and tau(*) are the arrays returned by sgelqf/dgelqf. 
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by m leading rows of the n by n orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 = O(ε) 
||A||2 where ε is the machine precision.

The total number of floating-point operations is approximately 
4*m*n*k - 2*(m + n)*k2 + (4/3)*k3. 
If m = k, the number is approximately (2/3)*m2*(3n - m).

The complex counterpart of this routine is ?unglq.
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?ormlq         
Multiplies a real matrix by the orthogonal matrix Q of the 
LQ factorization formed by ?gelqf.

Syntax
call sormlq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

call dormlq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the orthogonal matrix Q of 
the LQ factorization formed by the routine sgelqf/dgelqf (see page 4-23). 

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QTC, CQ, or CQT   (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'. 
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER.  The number of rows in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤ k ≤ m  if side ='L';
0 ≤ k ≤ n  if side ='R'. 

a,work,tau,c REAL for sormlq 
DOUBLE PRECISION for dormlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf. 
The second dimension of a must be: 
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at least max(1, m)  if side ='L'; 
at least max(1, n)  if side ='R'.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a;  lda ≥ max(1, k). 

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The complex counterpart of this routine is ?unmlq.
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?unglq            
Generates the complex unitary matrix Q of the LQ 
factorization formed by ?gelqf.

Syntax
call cunglq ( m, n, k, a, lda, tau, work, lwork, info )

call zunglq ( m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates the whole or part of n by n unitary matrix Q of the LQ factorization formed 
by the routines cgelqf/zgelqf (see page 4-23). Use this routine after a call to cgelqf/zgelqf. 

Usually Q is determined from the LQ factorization of an p by n matrix A with n ≥ p. To compute 
the whole matrix Q, use:

call ?unglq ( n, n, p, a, lda, tau, work, lwork, info )

To compute the leading p rows of Q (which form an orthonormal basis in the space spanned by the 
rows of A):

call ?unglq ( p, n, p, a, lda, tau, work, lwork, info )

To compute the matrix Qk of the LQ factorization of A’s leading k rows: 

call ?unglq ( n, n, k, a, lda, tau, work, lwork, info )

To compute the leading k rows of Qk (which form an orthonormal basis in the space spanned by 
A’s leading k rows):

call ?ungqr ( k, n, k, a, lda, tau, work, lwork, info )

Input Parameters

m INTEGER.  The number of rows of Q to be computed 
(0 ≤ m ≤ n). 

n INTEGER.  The order of the unitary matrix Q (n ≥ m). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q (0 ≤ k ≤ m). 
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a, tau, work COMPLEX for cunglq 
DOUBLE COMPLEX for zunglq 
Arrays: 
a(lda,*) and tau(*) are the arrays returned by sgelqf/dgelqf. 
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by m leading rows of the n by n unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = m*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly unitary matrix by a matrix E such that ||E||2 = O(ε) 
||A||2 where ε is the machine precision.

The total number of floating-point operations is approximately 
16*m*n*k - 8*(m + n)*k2 + (16/3)*k3. 
If m = k, the number is approximately (8/3)*m2*(3n - m) .

The real counterpart of this routine is ?orglq.
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?unmlq          
Multiplies a complex matrix by the unitary matrix Q of the 
LQ factorization formed by ?gelqf.

Syntax
call cunmlq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

call zunmlq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a real m-by-n matrix C by Q or QH, where Q is the unitary matrix Q of the 
LQ factorization formed by the routine cgelqf/zgelqf (see page 4-23). 

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QHC, CQ, or CQH   (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'. 
If trans ='N', the routine multiplies C by Q.
If trans ='C',  the routine multiplies C by QH.

m INTEGER.  The number of rows in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤ k ≤ m  if side ='L';
0 ≤ k ≤ n  if side ='R'. 

a,work,tau,c COMPLEX for cunmlq 
DOUBLE COMPLEX for zunmlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf. 
The second dimension of a must be: 
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at least max(1, m)  if side ='L'; 
at least max(1, n)  if side ='R'.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a;  lda ≥ max(1, k). 

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The real counterpart of this routine is ?ormlq.
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?geqlf            
Computes the QL factorization of a general m by n 
matrix.

Syntax
call sgeqlf ( m, n, a, lda, tau, work, lwork, info )

call dgeqlf ( m, n, a, lda, tau, work, lwork, info )

call cgeqlf ( m, n, a, lda, tau, work, lwork, info )

call zgeqlf ( m, n, a, lda, tau, work, lwork, info )

Description

The routine forms the QL factorization of a general m-by-n  matrix A.
No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m, 
n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgeqlf 
DOUBLE PRECISION for dgeqlf 
COMPLEX for cgeqlf 
DOUBLE COMPLEX for zgeqlf.
Arrays: 
a(lda,*) contains the matrix A. 
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, n).
See Application notes for the suggested value of lwork.
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Output Parameters

a Overwritten on exit by the factorization data as follows:

if m ≥  n, the lower triangle of the subarray 
a(m-n+1:m, 1:n) contains the  n-by-n lower triangular matrix L;
if m ≤ n, the elements on and below the (n-m)th superdiagonal contain the  
m-by-n lower trapezoidal matrix L;
in both cases, the remaining elements, with the array tau, represent the 
orthogonal/unitary matrix Q as a product of elementary reflectors.

tau REAL for sgeqlf 
DOUBLE PRECISION for dgeqlf 
COMPLEX for cgeqlf 
DOUBLE COMPLEX for zgeqlf.
Array, DIMENSION at least max(1, min(m, n)). 
Contains scalar factors of the elementary reflectors for the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.
Related routines include:
?orgql to generate matrix Q (for real matrices);
?ungql to generate matrix Q (for complex matrices);
?ormql to apply matrix Q (for real matrices);
?unmql to apply matrix Q  (for complex matrices).
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?orgql           
Generates the real matrix Q of the QL factorization formed 
by ?geqlf.

Syntax
call sorgql ( m, n, k, a, lda, tau, work, lwork, info )

call dorgql ( m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates an  m-by-n real matrix Q with orthonormal columns, which is defined as the 
last n columns of a product of k elementary reflectors Hi of order m :  Q = Hk ⋅⋅⋅ H2H1  as 
returned by the routines sgeqlf/dgeqlf . Use this routine after a call to sgeqlf/dgeqlf. 

Input Parameters

m INTEGER.  The number of rows of the matrix Q  
(m ≥ 0). 

n INTEGER.  The number of columns of the matrix Q 
(m ≥ n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q (n ≥ k ≥ 0). 

a, tau, work REAL for sorgql 
DOUBLE PRECISION for dorgql 
Arrays: a(lda,*),  tau(*),  work(lwork).

On entry, the (n - k + i)th column of a must contain the vector which defines 
the elementary reflector Hi, for i = 1,2,...,k, as  returned by sgeqlf/dgeqlf in 
the last k columns of its array argument a;
tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by sgeqlf/dgeqlf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).
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lwork INTEGER. The size of the work array; at least max(1, n).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?ungql.
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?ungql           
Generates the complex matrix Q of the QL factorization 
formed by ?geqlf.

Syntax
call cungql ( m, n, k, a, lda, tau, work, lwork, info )

call zungql ( m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates an  m-by-n complex matrix Q with orthonormal columns, which is defined 
as the last n columns of a product of k elementary reflectors Hi of order m :  Q = Hk ⋅⋅⋅ H2 H1  
as returned by the routines cgeqlf/zgeqlf . Use this routine after a call to cgeqlf/zgeqlf. 

Input Parameters

m INTEGER.  The number of rows of the matrix Q  
(m ≥ 0). 

n INTEGER.  The number of columns of the matrix Q 
(m ≥ n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q (n ≥ k ≥ 0). 

a, tau, work COMPLEX for cungql 
DOUBLE COMPLEX for zungql 
Arrays: a(lda,*),  tau(*),  work(lwork).

On entry, the (n - k + i)th column of a must contain the vector which defines 
the elementary reflector Hi, for i = 1,2,...,k, as  returned by cgeqlf/zgeqlf in 
the last k columns of its array argument a;
tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by cgeqlf/zgeqlf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).
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lwork INTEGER. The size of the work array; at least max(1, n).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?orgql.
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?ormql         
Multiplies a real matrix by the orthogonal matrix Q of the 
QL factorization formed by ?geqlf.

Syntax
call sormql ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

call dormql ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

Description

This routine multiplies a real m-by-n matrix C by Q or QT, where Q is the orthogonal matrix Q of 
the QL factorization formed by the routine sgeqlf/dgeqlf . 

Depending on the parameters side and trans, the routine ?ormql can form one of the matrix 
products QC, QTC, CQ, or CQT   (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'. 
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER.  The number of rows  in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤ k ≤ m  if side ='L';
0 ≤ k ≤ n  if side ='R'. 

a,tau,c,work REAL for sormql 
DOUBLE PRECISION for dormql.
Arrays: a(lda,*),  tau(*),  c(ldc,*), work(lwork).
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On entry, the ith column of a must contain the vector which defines the 
elementary reflector Hi, for i = 1,2,...,k, as  returned by sgeqlf/dgeqlf in the 
last k columns of its array argument a. 
The second dimension of a must be at least max(1, k).

tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by sgeqlf/dgeqlf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a;  

 if side ='L',  lda ≥  max(1, m); 
 if side ='R', lda ≥  max(1, n) . 

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The complex counterpart of this routine is ?unmql.
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?unmql         
Multiplies a complex matrix by the unitary matrix Q of the 
QL factorization formed by ?geqlf.

Syntax
call cunmql ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

call zunmql ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is the unitary matrix Q of 
the QL factorization formed by the routine cgeqlf/zgeqlf . 

Depending on the parameters side and trans, the routine ?unmql can form one of the matrix 
products QC, QHC, CQ, or CQH   (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'. 
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER.  The number of rows  in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤ k ≤ m  if side ='L';
0 ≤ k ≤ n  if side ='R'. 

a,tau,c,work COMPLEX for cunmql 
DOUBLE COMPLEX for zunmql.
Arrays: a(lda,*),  tau(*),  c(ldc,*), work(lwork).
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On entry, the ith column of a must contain the vector which defines the 
elementary reflector Hi, for i = 1,2,...,k, as  returned by cgeqlf/zgeqlf in the 
last k columns of its array argument a. 
The second dimension of a must be at least max(1, k).

tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by cgeqlf/zgeqlf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a;  

 if side ='L',  lda ≥  max(1, m); 
 if side ='R', lda ≥  max(1, n) . 

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The real counterpart of this routine is ?ormql.
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?gerqf           
Computes the RQ factorization of a general m by n 
matrix.

Syntax
call sgerqf ( m, n, a, lda, tau, work, lwork, info )

call dgerqf ( m, n, a, lda, tau, work, lwork, info )

call cgerqf ( m, n, a, lda, tau, work, lwork, info )

call zgerqf ( m, n, a, lda, tau, work, lwork, info )

Description

The routine forms the RQ factorization of a general m-by-n matrix A.
No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m, 
n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgerqf 
DOUBLE PRECISION for dgerqf 
COMPLEX for cgerqf 
DOUBLE COMPLEX for zgerqf.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

lwork INTEGER.  The size of the work array;
lwork ≥  max(1, m).
See Application notes for the suggested value of lwork.
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Output Parameters

a Overwritten on exit by the factorization data as follows:
if m ≤   n, the upper triangle of the subarray 
a(1:m, n-m+1:n ) contains the  m-by-m upper triangular matrix R;
if m ≥  n, the elements on and above the (m-n)th subdiagonal contain the  
m-by-n upper trapezoidal matrix R;
in both cases, the remaining elements, with the array tau, represent the 
orthogonal/unitary matrix Q as a product of min(m,n) elementary reflectors.

tau REAL for sgerqf 
DOUBLE PRECISION for dgerqf 
COMPLEX for cgerqf 
DOUBLE COMPLEX for zgerqf.
Array, DIMENSION at least max (1, min(m, n)). 
Contains scalar factors of the elementary reflectors for the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.
Related routines include:
?orgrq to generate matrix Q (for real matrices);
?ungrq to generate matrix Q (for complex matrices);
?ormrq to apply matrix Q (for real matrices);
?unmrq to apply matrix Q  (for complex matrices).



4-46

4 Intel® Math Kernel Library Reference Manual

?orgrq            
Generates the real matrix Q of the RQ factorization formed 
by ?gerqf.

Syntax
call sorgrq ( m, n, k, a, lda, tau, work, lwork, info )

call dorgrq ( m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates an  m-by-n real matrix Q with orthonormal rows, which is defined as the last 
m rows of a product of k elementary reflectors Hi of order n :  Q = H1 H2 ⋅⋅⋅ Hk  as returned by 
the routines sgerqf/dgerqf. Use this routine after a call to sgerqf/dgerqf. 

Input Parameters

m INTEGER.  The number of rows of the matrix Q  
(m ≥ 0). 

n INTEGER.  The number of columns of the matrix Q 
(n ≥ m ). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q (m ≥ k ≥ 0). 

a, tau, work REAL for sorgrq 
DOUBLE PRECISION for dorgrq 
Arrays: a(lda,*),  tau(*),  work(lwork).

On entry, the (m - k + i)th row of a must contain the vector which defines the 
elementary reflector Hi, for i = 1,2,...,k, as  returned by sgerqf/dgerqf in the 
last k rows of its array argument a;
tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by sgerqf/dgerqf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).
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lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?ungrq.
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?ungrq            
Generates the complex matrix Q of the RQ factorization 
formed by ?gerqf.

Syntax
call cungrq ( m, n, k, a, lda, tau, work, lwork, info )

call zungrq ( m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates an  m-by-n complex matrix Q with orthonormal rows, which is defined as 
the last m rows of a product of k elementary reflectors Hi of order n :  Q = H1

H H2
H ⋅⋅⋅ Hk

H
  as 

returned by the routines sgerqf/dgerqf. Use this routine after a call to sgerqf/dgerqf. 

Input Parameters

m INTEGER.  The number of rows of the matrix Q  
(m ≥ 0). 

n INTEGER.  The number of columns of the matrix Q 
(n ≥ m ). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q (m ≥ k ≥ 0). 

a, tau, work REAL for cungrq 
DOUBLE PRECISION for zungrq 
Arrays: a(lda,*),  tau(*),  work(lwork).

On entry, the (m - k + i)th row of a must contain the vector which defines the 
elementary reflector Hi, for i = 1,2,...,k, as  returned by sgerqf/dgerqf in the 
last k rows of its array argument a;
tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by sgerqf/dgerqf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).
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lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?orgrq.
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?ormrq         
Multiplies a real matrix by the orthogonal matrix Q of the 
RQ factorization formed by ?gerqf.

Syntax
call sormrq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

call dormrq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the real orthogonal matrix 
defined as a product of k elementary reflectors Hi :  Q = H1 H2 ⋅⋅⋅ Hk as returned by the RQ 
factorization routine sgerqf/dgerqf . 

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QTC, CQ, or CQT   (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'. 
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER.  The number of rows  in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤  k  ≤ m ,  if side ='L';
0 ≤ k ≤ n ,  if side ='R'. 

a,tau,c,work REAL for sormrq 
DOUBLE PRECISION for dormrq.
Arrays: a(lda,*),  tau(*),  c(ldc,*), work(lwork).
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On entry, the ith row of a must contain the vector which defines the elementary 
reflector Hi, for i = 1,2,...,k, as  returned by sgerqf/dgerqf in the last k rows 
of its array argument a. 
The second dimension of a must be at least max(1, m) if side ='L', and at 
least max(1, n) if side ='R'. 

tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by sgerqf/dgerqf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; lda ≥  max(1, k) . 

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

 Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The complex counterpart of this routine is ?unmrq.
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?unmrq         
Multiplies a complex matrix by the unitary matrix Q of the 
RQ factorization formed by ?gerqf.

Syntax
call cunmrq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

call zunmrq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is the complex unitary 
matrix defined as a product of k elementary reflectors Hi :  Q = H1

H H2
H ⋅⋅⋅ Hk

H as returned by 
the RQ factorization routine cgerqf/zgerqf . 

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QHC, CQ, or CQH   (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'. 
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER.  The number of rows  in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤  k  ≤ m ,  if side ='L';
0 ≤ k ≤ n ,  if side ='R'. 

a,tau,c,work COMPLEX for cunmrq 
DOUBLE COMPLEX for zunmrq.
Arrays: a(lda,*),  tau(*),  c(ldc,*), work(lwork).
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On entry, the ith row of a must contain the vector which defines the elementary 
reflector Hi, for i = 1,2,...,k, as  returned by cgerqf/zgerqf in the last k rows 
of its array argument a. 
The second dimension of a must be at least max(1, m) if side ='L', and at 
least max(1, n) if side ='R'. 

tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by cgerqf/zgerqf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; lda ≥  max(1, k) . 

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

 Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The real counterpart of this routine is ?ormrq.
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?tzrzf           
Reduces the upper trapezoidal matrix A to upper 
triangular form.

Syntax
call stzrzf ( m, n, a, lda, tau, work, lwork, info )

call dtzrzf ( m, n, a, lda, tau, work, lwork, info )

call ctzrzf ( m, n, a, lda, tau, work, lwork, info )

call ztzrzf ( m, n, a, lda, tau, work, lwork, info )

Description

This routine reduces the m-by-n  ( m ≤ n ) real/complex upper trapezoidal matrix A to upper 
triangular form by means of orthogonal/unitary transformations.  The upper trapezoidal matrix A 
is factored as

     A = ( R  0 ) * Z,

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper triangular matrix.

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ m). 

a, work REAL for stzrzf 
DOUBLE PRECISION for dtzrzf 
COMPLEX for ctzrzf 
DOUBLE COMPLEX for ztzrzf.
Arrays: a(lda,*), work(lwork).
The leading m-by-n upper trapezoidal part of the array a contains the matrix A 
to be factorized. 
The second dimension of a must be at least max(1, n).

work is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

lwork INTEGER.  The size of the work array;
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lwork ≥  max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten on exit by the factorization data as follows:

the leading m-by-m upper triangular part of a contains the upper triangular 
matrix R, and elements m +1 to n of the first m rows of a, with the array tau, 
represent the orthogonal matrix Z as a product of m elementary reflectors.

tau REAL for stzrzf 
DOUBLE PRECISION for dtzrzf 
COMPLEX for ctzrzf 
DOUBLE COMPLEX for ztzrzf.
Array, DIMENSION at least max (1, m). 
Contains scalar factors of the elementary reflectors for the matrix Z.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. 
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.
Related routines include:

?ormrz to apply matrix Q (for real matrices);

?unmrz to apply matrix Q  (for complex matrices).
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?ormrz         
Multiplies a real matrix by the orthogonal matrix defined 
from the factorization formed by ?tzrzf.

Syntax
call sormrz ( side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info )

call dormrz ( side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the real orthogonal matrix 
defined as a product of k elementary reflectors Hi :  Q = H1 H2 ⋅⋅⋅ Hk as returned by the 
factorization routine stzrzf/dtzrzf . 

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QTC, CQ, or CQT   (overwriting the result over C).

The matrix Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'. 
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER.  The number of rows  in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤  k  ≤ m ,  if side ='L';
0 ≤ k ≤ n ,  if side ='R'.

l INTEGER.
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The number of columns of the matrix A containing the meaningful part of the 
Householder reflectors. Constraints:
0 ≤  l  ≤ m ,  if side ='L';
0 ≤ l ≤ n ,  if side ='R'.

a,tau,c,work REAL for sormrz 
DOUBLE PRECISION for dormrz.
Arrays: a(lda,*),  tau(*),  c(ldc,*), work(lwork).

On entry, the ith row of a must contain the vector which defines the elementary 
reflector Hi, for i = 1,2,...,k, as  returned by stzrzf/dtzrzf in the last k rows 
of its array argument a. 
The second dimension of a must be at least max(1, m) if side ='L', and at 
least max(1, n) if side ='R'. 

tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by stzrzf/dtzrzf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; lda ≥  max(1, k) . 

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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 Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The complex counterpart of this routine is ?unmrz.
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?unmrz         
Multiplies a complex matrix by the unitary matrix defined 
from the factorization formed by ?tzrzf.

Syntax
call cunmrz ( side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info )

call zunmrz ( side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is the unitary matrix 
defined as a product of k elementary reflectors Hi :  
Q = H1

H H2
H ⋅⋅⋅ Hk

H as returned by the factorization routine ctzrzf/ztzrzf . 

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QHC, CQ, or CQH   (overwriting the result over C).

The matrix Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'. 
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER.  The number of rows  in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

k INTEGER.  The number of elementary reflectors whose product defines the 
matrix Q. Constraints: 
0 ≤  k  ≤ m ,  if side ='L';
0 ≤ k ≤ n ,  if side ='R'.

l INTEGER.
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The number of columns of the matrix A containing the meaningful part of the 
Householder reflectors. Constraints:
0 ≤  l  ≤ m ,  if side ='L';
0 ≤ l ≤ n ,  if side ='R'.

a,tau,c,work COMPLEX for cunmrz 
DOUBLE COMPLEX for zunmrz.
Arrays: a(lda,*),  tau(*),  c(ldc,*), work(lwork).

On entry, the ith row of a must contain the vector which defines the elementary 
reflector Hi, for i = 1,2,...,k, as  returned by ctzrzf/ztzrzf in the last k rows 
of its array argument a. 
The second dimension of a must be at least max(1, m) if side ='L', and at 
least max(1, n) if side ='R'. 

tau(i) must contain the scalar factor of the elementary reflector Hi, as returned 
by ctzrzf/ztzrzf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; lda ≥  max(1, k) . 

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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 Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if 
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The real counterpart of this routine is ?ormrz.
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?ggqrf           
Computes the generalized QR factorization of two 
matrices.

Syntax
call sggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call dggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call cggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call zggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

Description

The routine forms the generalized QR factorization of an  n-by-m matrix A and an  n-by-p matrix B 
as  A = Q R,     B = Q T Z , 
where  Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R 
and T assume one of the forms:
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where T12  or T21  is a p-by-p upper triangular matrix.

In particular, if B is square and nonsingular, the GQR factorization of A and B implicitly gives the 
QR factorization of B-1A as:

        B -1 A = ZH (T -1 R)

Input Parameters

n INTEGER.  The number of rows of the matrices A and B (n ≥ 0). 

m INTEGER.  The number of columns in A (m ≥ 0). 

p INTEGER.  The number of columns in B (p ≥ 0). 

a, b, work REAL for sggqrf 
DOUBLE PRECISION for dggqrf 
COMPLEX for cggqrf 
DOUBLE COMPLEX for zggqrf.
Arrays: 
a(lda,*) contains the matrix A. 
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the matrix B. 
The second dimension of b must be at least max(1, p).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

lwork INTEGER.  The size of the work array; must be at least  max(1, n, m, p)
See Application notes for the suggested value of lwork.

Output Parameters

a, b Overwritten by the factorization data as follows:

on exit, the elements on and above the diagonal of the array a contain the 
min(n,m)-by-m upper trapezoidal matrix R (R is upper triangular if n ≥ m); the 
elements below the diagonal, with the array taua, represent the 
orthogonal/unitary matrix Q as a product of min(n,m) elementary reflectors ;
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if n ≤ p, the upper triangle of the subarray 
b(1:n, p-n+1:p ) contains the  n-by-n upper triangular matrix T;
if n > p, the elements on and above the (n-p)th subdiagonal contain the  n-by-p 
upper trapezoidal matrix T; the remaining elements, with the array taub, 
represent the orthogonal/unitary matrix Z as a product of elementary reflectors.

taua, taub REAL for sggqrf 
DOUBLE PRECISION for dggqrf 
COMPLEX for cggqrf 
DOUBLE COMPLEX for zggqrf.
Arrays, DIMENSION at least max (1, min(n, m)) for taua and at least max (1, 
min(n, p)) for taub. 
The array taua contains  the scalar factors of the elementary reflectors which 
represent the orthogonal/unitary matrix Q.

The array taub contains  the scalar factors of the elementary reflectors which 
represent the orthogonal/unitary matrix Z.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using
lwork ≥ max(n,m,p)*max(nb1,nb2,nb3),
 where nb1 is the optimal blocksize for the QR factorization of an n-by-m matrix, nb2 is the 
optimal blocksize for the RQ factorization of an n-by-p matrix, and nb3 is the optimal blocksize 
for a call of ?ormqr/?unmqr.



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-65

?ggrqf           
Computes the generalized RQ factorization of two 
matrices.

Syntax
call sggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call dggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call cggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call zggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

Description

The routine forms the generalized RQ factorization of an  m-by-n matrix A and an  p-by-n matrix B 
as  A = R Q,     B = Z  T Q , 
where  Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R 
and T assume one of the forms:
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 ,   if p < n ,

where T11  is upper triangular.

In particular, if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the 
RQ factorization of  AB-1 as:

        AB -1  =  (R  T -1) ZH 

Input Parameters

m INTEGER.  The number of rows of the matrix A (m ≥ 0). 

p INTEGER.  The number of rows in B (p ≥ 0). 

n INTEGER.  The number of columns of the matrices A and B (n ≥ 0). 

a, b, work REAL for sggrqf 
DOUBLE PRECISION for dggrqf 
COMPLEX for cggrqf 
DOUBLE COMPLEX for zggrqf.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B. 
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

ldb INTEGER.  The first dimension of b; at least max(1, p).

lwork INTEGER.  The size of the work array; must be at least  max(1, n, m, p)
See Application notes for the suggested value of lwork.

Output Parameters

a, b Overwritten by the factorization data as follows:

p n p–

T p= T11( T12 )
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on exit, if m ≤ n, the upper triangle of the subarray 
a(1:m, n-m+1:n ) contains the  m-by-m upper triangular matrix R;
if m > n, the elements on and above the (m-n)th subdiagonal contain the  m-by-n 
upper trapezoidal matrix R; the remaining elements, with the array taua, 
represent the orthogonal/unitary matrix Q as a product of elementary 
reflectors;
the elements on and above the diagonal of the array b contain the 
min(p,n)-by-n upper trapezoidal matrix T (T is upper triangular if p ≥ n); the 
elements below the diagonal, with the array taub, represent the 
orthogonal/unitary matrix Z as a product of elementary reflectors.

taua, taub REAL for sggrqf 
DOUBLE PRECISION for dggrqf 
COMPLEX for cggrqf 
DOUBLE COMPLEX for zggrqf.
Arrays, DIMENSION at least max (1, min(m, n)) for taua and at least max (1, 
min(p, n)) for taub. 
The array taua contains  the scalar factors of the elementary reflectors which 
represent the orthogonal/unitary matrix Q.

The array taub contains  the scalar factors of the elementary reflectors which 
represent the orthogonal/unitary matrix Z.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using
lwork ≥ max(n,m,p)*max(nb1,nb2,nb3),

 where nb1 is the optimal blocksize for the RQ factorization of an m-by-n matrix, nb2 is the 
optimal blocksize for the QR factorization of an p-by-n matrix, and nb3 is the optimal blocksize 
for a call of ?ormrq/?unmrq.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.
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Singular Value Decomposition                   

This section describes LAPACK routines for computing the singular value decomposition (SVD) 
of a general m by n matrix A:

A = UΣVH.

In this decomposition, U and V are unitary (for complex A) or orthogonal (for real A); Σ is an m by 
n diagonal matrix with real diagonal elements σi:

σ1 ≥ σ2 ≥ ... ≥ σmin(m, n) ≥ 0.

The diagonal elements σi are singular values of A. The first min(m, n) columns of the matrices U 
and V are, respectively, left and right singular vectors of A. The singular values and singular 
vectors satisfy 

 Avi = σiui  and  AHui = σivi 

where ui and vi are the ith columns of U and V, respectively.

To find the SVD of a general matrix A, call the LAPACK routine ?gebrd or ?gbbrd for reducing 
A to a bidiagonal matrix B by a unitary (orthogonal) transformation: A = QBPH. Then call ?bdsqr, 
which forms the SVD of a bidiagonal matrix: B = U1ΣV1

H.

Thus, the sought-for SVD of A is given by A = UΣVH = (QU1) Σ (V1
HPH).    

Table 4-2 Computational Routines for Singular Value Decomposition (SVD)

Operation Real matrices Complex matrices

Reduce A to a bidiagonal matrix B:
A = QBPH (full storage) 

?gebrd ?gebrd

Reduce A to a bidiagonal matrix B:
A = QBPH (band storage) 

?gbbrd ?gbbrd

Generate the orthogonal (unitary) 
matrix Q or P 

?orgbr ?ungbr 

Apply the orthogonal (unitary) 
matrix Q or P 

?ormbr ?unmbr

Form singular value decomposition 
of the bidiagonal matrix B: 
B = U ΣVH

?bdsqr
?bdsdc

?bdsqr 
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Figure 4-1 Decision Tree: Singular Value Decomposition

Figure 4-1 presents a decision tree that helps you choose the right sequence of routines for SVD, 
depending on whether you need singular values only or singular vectors as well, whether A is real 
or complex, and so on.

You can use the SVD to find a minimum-norm solution to a (possibly) rank-deficient least-squares 
problem of minimizing ||Ax − b||2. The effective rank k of the matrix A can be determined as the 
number of singular values which exceed a suitable threshold. The minimum-norm solution is 

x = Vk(Σk)−1c 

where Σk is the leading k by k submatrix of Σ, the matrix Vk consists of the first k columns of V = 
PV1, and the vector c consists of the first k elements of UHb = U1

HQHb.
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?gebrd          
Reduces a general matrix to bidiagonal form.

Syntax
call sgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )

call dgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )

call cgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )

call zgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )

Description

The routine reduces a general m by n matrix A to a bidiagonal matrix B by an orthogonal (unitary) 
transformation. 

If m ≥ n, the reduction is given by 

where B1 is an n by n upper diagonal matrix, Q and P are orthogonal or, for a complex A, unitary 
matrices; Q1 consists of the first n columns of Q.

If m < n, the reduction is given by

where B1 is an m by m lower diagonal matrix, Q and P are orthogonal or, for a complex A, unitary 
matrices; P1 consists of the first m rows of P.

The routine does not form the matrices Q and P explicitly, but represents them as products of 
elementary reflectors. Routines are provided to work with the matrices Q and P in this 
representation:

If the matrix A is real,

• to compute Q and P explicitly, call ?orgbr.
• to multiply a general matrix by Q or P, call ?ormbr.

If the matrix A is complex,

• to compute Q and P explicitly, call ?ungbr.
• to multiply a general matrix by Q or P, call ?unmbr.

A QBPH Q
B1

0� �
� �PH Q1B1P

H,= = =

A QBPH Q B10( )PH Q1B1P1
H,= = =
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Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgebrd 
DOUBLE PRECISION for dgebrd 
COMPLEX for cgebrd 
DOUBLE COMPLEX for zgebrd.

Arrays: 
a(lda,*) contains the matrix A. 
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The dimension of work; at least max(1, m, n).
See Application notes for the suggested value of lwork.

Output Parameters

a If m ≥ n, the diagonal and first super-diagonal of a are overwritten by the upper 
bidiagonal matrix B. Elements below the diagonal are overwritten by details of 
Q, and the remaining elements are overwritten by details of P.

If m < n, the diagonal and first sub-diagonal of a are overwritten by the lower 
bidiagonal matrix B. Elements above the diagonal are overwritten by details of 
P, and the remaining elements are overwritten by details of Q.

d REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least 
max(1, min(m, n)). 
Contains the diagonal elements of B.

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least 
max(1, min(m, n) − 1). 
Contains the off-diagonal elements of B.

tauq,taup REAL for sgebrd 
DOUBLE PRECISION for dgebrd 
COMPLEX for cgebrd 
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DOUBLE COMPLEX for zgebrd.
Arrays, DIMENSION at least max (1, min(m, n)). 
Contain further details of the matrices Q and P.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork  = (m + n)*blocksize, where blocksize is a 
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked 
algorithm. 

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed matrices Q, B, and P satisfy QBPH = A + E, where 
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and 
ε is the machine precision.

The approximate number of floating-point operations for real flavors is 
(4/3)*n2*(3*m − n)  for m ≥ n,
(4/3)*m2*(3*n − m)  for m < n.
The number of operations for complex flavors is four times greater.

If n is much less than m, it can be more efficient to first form the QR factorization of A by calling 
?geqrf and then reduce the factor R to bidiagonal form. This requires approximately 2*n2*(m + 
n) floating-point operations.

If m is much less than n, it can be more efficient to first form the LQ factorization of A by calling 
?gelqf and then reduce the factor L to bidiagonal form. This requires approximately 2*m2*(m + 
n) floating-point operations.
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?gbbrd          
Reduces a general band matrix to bidiagonal form.

Syntax
call sgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,

ldpt, c, ldc, work, info )

call dgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, info )

call cgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info )

call zgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info )

Description

This routine reduces an m by n band matrix A to upper bidiagonal matrix B: A = QBPH. Here the 
matrices Q and P are orthogonal (for real A) or unitary (for complex A). They are determined as 
products of Givens rotation matrices, and may be formed explicitly by the routine if required. The 
routine can also update a matrix C as follows: C = QHC.

Input Parameters

vect CHARACTER*1.  Must be 'N' or 'Q' or 'P' or 'B'. 
If vect = 'N', neither Q nor PH is generated.
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PH.
If vect = 'B', the routine generates both Q and PH.

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

ncc INTEGER.  The number of columns in C (ncc ≥ 0). 

kl INTEGER.  The number of sub-diagonals within the band of A (kl ≥ 0). 
ku INTEGER.  The number of super-diagonals within the band of A (ku ≥ 0). 

ab,c,work REAL for sgbbrd 
DOUBLE PRECISION for dgbbrd
COMPLEX for cgbbrd
DOUBLE COMPLEX for zgbbrd.
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Arrays:
ab(ldab,*) contains the matrix A in band storage 
(see Matrix Storage Schemes). 
The second dimension of a must be at least max(1, n).

c(ldc,*) contains an m by ncc matrix C. 
If ncc = 0, the array c is not referenced. The second dimension of c must be at 
least max(1, ncc).

work(*) is a workspace array.
The dimension of work must be at least 2*max(m, n) for real flavors, or max(m, 
n) for complex flavors.

ldab INTEGER.  The first dimension of the array ab 
(ldab ≥ kl + ku + 1).

ldq INTEGER.  The first dimension of the output array q. 
ldq ≥ max(1, m)  if vect = 'Q' or 'B',
ldq ≥ 1 otherwise.

ldpt INTEGER.  The first dimension of the output array pt. 
ldpt ≥ max(1, n)  if vect = 'P' or 'B',
ldpt ≥ 1 otherwise.

ldc INTEGER.  The first dimension of the array c. 
ldc ≥ max(1, m)  if ncc > 0; ldc ≥ 1  if ncc = 0.

rwork REAL for cgbbrd
DOUBLE PRECISION for zgbbrd.
A workspace array, DIMENSION at least max(m, n).

Output Parameters

ab Overwritten by values generated during the reduction.

d REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least 
max(1, min(m, n)). 
Contains the diagonal elements of the matrix B.

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least 
max(1, min(m, n) − 1). 
Contains the off-diagonal elements of B.
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q, pt REAL for sgebrd 
DOUBLE PRECISION for dgebrd 
COMPLEX for cgebrd 
DOUBLE COMPLEX for zgebrd.
Arrays:

q(ldq,*) contains the output m by m matrix Q.
The second dimension of q must be at least max(1, m).

p(ldpt,*) contains the output n by n matrix PH.
The second dimension of pt must be at least max(1, n).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrices Q, B, and P satisfy QBPH = A + E, where 
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and 
ε is the machine precision.

If m = n, the total number of floating-point operations for real flavors is approximately the sum of: 

6*n2*(kl + ku) if vect = 'N' and ncc = 0, 

3*n2*ncc*(kl + ku − 1)/(kl + ku) if C is updated, and 

3*n3*(kl + ku − 1)/(kl + ku) if either Q or PH is generated 
(double this if both).

To estimate the number of operations for complex flavors, use the same formulas with the 
coefficients 20 and 10 (instead of 6 and 3).



4-76

4 Intel® Math Kernel Library Reference Manual

?orgbr          
Generates the real orthogonal matrix Q or PT 
determined by ?gebrd.

Syntax
call sorgbr ( vect, m, n, k, a, lda, tau, work, lwork, info )

call dorgbr ( vect, m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates the whole or part of the orthogonal matrices Q and PT formed by the 
routines sgebrd/dgebrd (see page 4-70). Use this routine after a call to sgebrd/dgebrd. All 
valid combinations of arguments are described in Input parameters. In most cases you’ll need the 
following:

To compute the whole m by m matrix Q:
call ?orgbr ( 'Q', m, m, n, a ... ) 
(note that the array a must have at least m columns).

To form the n leading columns of Q if m > n:
call ?orgbr ( 'Q', m, n, n, a ... ) 

To compute the whole n by n matrix PT:
call ?orgbr ( 'P', n, n, m, a ... ) 
(note that the array a must have at least n rows).

To form the m leading rows of PT if m < n:
call ?orgbr ( 'P', m, n, m, a ... ) 

Input Parameters

vect CHARACTER*1.  Must be 'Q' or 'P'. 
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PT.

m INTEGER.  The number of required rows of Q or PT. 

n INTEGER.  The number of required columns of Q or PT. 
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k INTEGER.  One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints:  m ≥ 0, n ≥ 0, k ≥ 0.
For vect ='Q':  k ≤ n ≤ m  if m > k,  or  m = n  if m ≤ k.
For vect ='P':  k ≤ m ≤ n  if n > k,  or  m = n  if n ≤ k.

a, work REAL for sorgbr 
DOUBLE PRECISION for dorgbr.
Arrays: 
a(lda,*) is the array a as returned by ?gebrd. 
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

tau REAL for sorgbr 
DOUBLE PRECISION for dorgbr.
For vect = 'Q', the array tauq as returned by ?gebrd. For vect = 'P', the 
array taup as returned by ?gebrd.
The dimension of tau must be at least max(1, min(m,k))
for vect ='Q', or  max(1, min(m, k))  for vect = 'P'.

lwork INTEGER.  The size of the work array. 
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the orthogonal matrix Q or PT (or the leading rows or columns 
thereof) as specified by vect, m, and n.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = min(m,n)*blocksize, where blocksize is a 
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked 
algorithm. 
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If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 
= O(ε).

The approximate numbers of floating-point operations for the cases listed in Description are as 
follows:

To form the whole of Q:

      (4/3)n(3m2 - 3m*n + n2) if m > n; 

      (4/3)m3  if m ≤ n.

To form the n leading columns of Q when  m > n:

      (2/3)n2(3m - n2) if m > n.

To form the whole of PT:

      (4/3)n3 if m ≥ n; 

      (4/3)m(3n2 - 3m*n + m2) if m < n.

To form the m leading columns of PT when  m < n:

      (2/3)n2(3m - n2) if m > n.

The complex counterpart of this routine is ?ungbr.
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?ormbr          
Multiplies an arbitrary real matrix by the real 
orthogonal matrix Q or PT determined by ?gebrd.

Syntax
call sormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

Given an arbitrary real matrix C, this routine forms one of the matrix products QC, QTC, CQ, CQT, 
PC, PTC, CP, or CPT, where Q and P are orthogonal matrices computed by a call to 
sgebrd/dgebrd (see page 4-70). The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or PT: 
If side ='L', r = m;  if side ='R', r = n.

vect CHARACTER*1.  Must be 'Q' or 'P'. 
If vect ='Q', then Q or QT is applied to C.
If vect ='P', then P or PT is applied to C.

side CHARACTER*1.  Must be 'L' or 'R'. 
If side ='L', multipliers are applied to C from the left.
If side ='R', they are applied to C from the right.

trans CHARACTER*1.  Must be 'N' or 'T'. 
If trans ='N', then Q or P is applied to C.
If trans ='T', then QT or PT is applied to C.

m INTEGER.  The number of rows in C. 

n INTEGER.  The number of columns in C. 

k INTEGER.  One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints:  m ≥ 0, n ≥ 0, k ≥ 0.
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a, c, work REAL for sormbr 
DOUBLE PRECISION for dormbr.
Arrays: 
a(lda,*) is the array a as returned by ?gebrd. 
Its second dimension must be at least max(1, min(r,k)) for vect = 'Q', or 
max(1, r)) for vect = 'P'.

c(ldc,*) holds the matrix C. 
Its second dimension must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a. Constraints:
lda ≥ max(1, r)  if vect = 'Q';
lda ≥ max(1, min(r,k))  if vect = 'P'.

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

tau REAL for sormbr 
DOUBLE PRECISION for dormbr.
Array, DIMENSION at least max (1, min(r, k)). 
For vect = 'Q', the array tauq as returned by ?gebrd. For vect = 'P', the 
array taup as returned by ?gebrd.

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, CQT, PC, PTC, CP, or CPT, as 
specified by vect, side, and trans.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Application Notes

For better performance, try using 
lwork = n*blocksize  for side ='L', or 
lwork = m*blocksize  for side ='R', 

where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum 
performance of the blocked algorithm. 

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε) 
||C||2.

The total number of floating-point operations is approximately

      2*n*k(2*m - k) if side ='L' and  m ≥ k;

      2*m*k(2*n - k) if side ='R' and  n ≥ k;

      2*m2*n if side ='L' and  m < k;

      2*n2*m if side ='R' and  n < k.

The complex counterpart of this routine is ?unmbr.
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?ungbr          
Generates the complex unitary matrix Q or PH 
determined by ?gebrd.

Syntax
call cungbr ( vect, m, n, k, a, lda, tau, work, lwork, info )

call zungbr ( vect, m, n, k, a, lda, tau, work, lwork, info )

Description

The routine generates the whole or part of the unitary matrices Q and PH formed by the routines 
cgebrd/zgebrd (see page 4-70). Use this routine after a call to cgebrd/zgebrd. All valid 
combinations of arguments are described in Input Parameters; in most cases you’ll need the 
following:

To compute the whole m by m matrix Q:
call ?ungbr ( 'Q', m, m, n, a ... ) 
(note that the array a must have at least m columns).

To form the n leading columns of Q if m > n:
call ?ungbr ( 'Q', m, n, n, a ... ) 

To compute the whole n by n matrix PH:
call ?ungbr ( 'P', n, n, m, a ... ) 
(note that the array a must have at least n rows).

To form the m leading rows of PH if m < n:
call ?ungbr ( 'P', m, n, m, a ... ) 

Input Parameters

vect CHARACTER*1.  Must be 'Q' or 'P'. 
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PH.

m INTEGER.  The number of required rows of Q or PH. 

n INTEGER.  The number of required columns of Q or PH. 
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k INTEGER.  One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints:  m ≥ 0, n ≥ 0, k ≥ 0.
For vect ='Q':  k ≤ n ≤ m  if m > k,  or  m = n  if m ≤ k.
For vect ='P':  k ≤ m ≤ n  if n > k,  or  m = n  if n ≤ k.

a, work COMPLEX for cungbr 
DOUBLE COMPLEX for zungbr.
Arrays: 
a(lda,*) is the array a as returned by ?gebrd. 
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

tau COMPLEX for cungbr 
DOUBLE COMPLEX for zungbr.
For vect = 'Q', the array tauq as returned by ?gebrd. For vect = 'P', the 
array taup as returned by ?gebrd.
The dimension of tau must be at least max(1, min(m,k))
for vect ='Q', or  max(1, min(m, k))  for vect = 'P'.

lwork INTEGER.  The size of the work array. 
Constraint: lwork ≥ max(1, min(m, n)).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the orthogonal matrix Q or PT (or the leading rows or columns 
thereof) as specified by vect, m, and n.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = min(m,n)*blocksize, where blocksize is a 
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked 
algorithm. 
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If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 
= O(ε).

The approximate numbers of floating-point operations for the cases listed in Description are as 
follows:

To form the whole of Q:

      (16/3)n(3m2 - 3m*n + n2) if m > n; 

      (16/3)m3  if m ≤ n.

To form the n leading columns of Q when  m > n:

      (8/3)n2(3m - n2) if m > n.

To form the whole of PT:

      (16/3)n3 if m ≥ n; 

      (16/3)m(3n2 - 3m*n + m2) if m < n.

To form the m leading columns of PT when  m < n:

      (8/3)n2(3m - n2) if m > n.

The real counterpart of this routine is ?orgbr.
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?unmbr          
Multiplies an arbitrary complex matrix by the unitary 
matrix Q or P determined by ?gebrd.

Syntax
call cunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Description

Given an arbitrary complex matrix C, this routine forms one of the matrix products QC, QHC, CQ, 
CQH, PC, PHC, CP, or CPH, where Q and P are orthogonal matrices computed by a call to 
cgebrd/zgebrd (see page 4-70). The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or PH: 
If side ='L', r = m;  if side ='R', r = n.

vect CHARACTER*1.  Must be 'Q' or 'P'. 
If vect ='Q', then Q or QH is applied to C.
If vect ='P', then P or PH is applied to C.

side CHARACTER*1.  Must be 'L' or 'R'. 
If side ='L', multipliers are applied to C from the left.
If side ='R', they are applied to C from the right.

trans CHARACTER*1.  Must be 'N' or 'C'. 
If trans ='N', then Q or P is applied to C.
If trans ='C', then QH or PH is applied to C.

m INTEGER.  The number of rows in C. 

n INTEGER.  The number of columns in C. 

k INTEGER.  One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints:  m ≥ 0, n ≥ 0, k ≥ 0.
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a, c, work COMPLEX for cunmbr 
DOUBLE COMPLEX for zunmbr.
Arrays: 
a(lda,*) is the array a as returned by ?gebrd. 
Its second dimension must be at least max(1, min(r,k)) for vect = 'Q', or 
max(1, r)) for vect = 'P'.

c(ldc,*) holds the matrix C. 
Its second dimension must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a. Constraints:
lda ≥ max(1, r)  if vect = 'Q';
lda ≥ max(1, min(r,k))  if vect = 'P'.

ldc INTEGER.  The first dimension of c;  ldc ≥ max(1, m).

tau COMPLEX for cunmbr 
DOUBLE COMPLEX for zunmbr.
Array, DIMENSION at least max (1, min(r, k)). 
For vect = 'Q', the array tauq as returned by ?gebrd. For vect = 'P', the 
array taup as returned by ?gebrd.

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, CQH, PC, PHC, CP, or CPH, as 
specified by vect, side, and trans.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Application Notes

For better performance, try using 
lwork = n*blocksize  for side ='L', or 
lwork = m*blocksize  for side ='R', 

where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum 
performance of the blocked algorithm. 

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε) 
||C||2.

The total number of floating-point operations is approximately

      8*n*k(2*m - k) if side ='L' and  m ≥ k;

      8*m*k(2*n - k) if side ='R' and  n ≥ k;

      8*m2*n if side ='L' and  m < k;

      8*n2*m if side ='R' and  n < k.

The real counterpart of this routine is ?ormbr.
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?bdsqr          
Computes the singular value decomposition of a general 
matrix that has been reduced to bidiagonal form.

Syntax
call sbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,

c, ldc, work, info )

call dbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )

call cbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )

call zbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )

Description

This routine computes the singular values and, optionally, the right and/or left singular vectors 
from the Singular Value Decomposition (SVD) of a real n-by-n (upper or lower) bidiagonal matrix 
B using the implicit zero-shift QR algorithm.  The SVD of B has the form  B = Q *S *PH where S 
is the diagonal matrix of singular values, Q is an orthogonal matrix of left singular vectors, and P 
is an orthogonal matrix of right singular vectors.  If left singular vectors are requested, this 
subroutine actually returns U *Q instead of Q, and, if right singular vectors are requested, this 
subroutine returns 
PH *VT instead of PH, for given real/complex input matrices U and VT.  When U and VT are the 
orthogonal/unitary matrices that reduce a general matrix A to bidiagonal form:  A = U *B *VT, as 
computed by ?gebrd, then 
                    A = (U *Q) *S *(PH *VT) 
is the SVD of A.  Optionally, the subroutine may also compute QH *C  for a given real/complex 
input matrix C. 

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.

n INTEGER.  The order of the matrix B (n ≥ 0). 
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ncvt INTEGER.  The number of columns of the matrix VT, that is, the number of 
right singular vectors (ncvt ≥  0). 
Set ncvt = 0 if no right singular vectors are required.

nru INTEGER.  The number of rows in U, that is, the number of left singular 
vectors (nru ≥  0). 
Set nru = 0 if no left singular vectors are required.

ncc INTEGER.  The number of columns in the matrix C
used for computing the product QHC (ncc ≥ 0). 
Set ncc = 0 if no matrix C is supplied.

d, e, work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays: 
d(*) contains the diagonal elements of B. 
The dimension of d must be at least max(1, n).

e(*) contains the (n-1) off-diagonal elements of B. 
The dimension of e must be at least max(1, n). 
e(n) is used for workspace.

work(*) is a workspace array.
The dimension of work must be at least
max(1, 2*n)  if ncvt = nru = ncc = 0;
max(1, 4*(n-1))  otherwise.

vt, u, c REAL for sbdsqr 
DOUBLE PRECISION for dbdsqr 
COMPLEX for cbdsqr 
DOUBLE COMPLEX for zbdsqr.
Arrays: 
vt(ldvt,*)  contains an n by ncvt matrix VT. 
The second dimension of vt must be at least 
max(1, ncvt).
vt is not referenced if ncvt = 0.

u(ldu,*) contains an nru by n unit matrix U. 
The second dimension of u must be at least max(1, n).
u is not referenced if nru = 0.

c(ldc,*) contains the matrix C for computing the product QH *C. The 
second dimension of c must be at least max(1,ncc). The array is not referenced 
if ncc = 0.
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ldvt INTEGER.  The first dimension of vt.  Constraints:
ldvt ≥  max(1, n)  if ncvt > 0;
ldvt ≥ 1  if ncvt = 0.

ldu INTEGER.  The first dimension of u.  Constraint:
ldu ≥ max(1, nru).

ldc INTEGER.  The first dimension of c.  Constraints:
ldc ≥  max(1, n)  if ncc > 0;
ldc ≥ 1  otherwise.

Output Parameters

d On exit, if info = 0, overwritten by the singular values in decreasing order 
(see info). 

e On exit, if info = 0, e is destroyed. See also info below. 

c Overwritten by the product QH *C. 

vt On exit, this array is overwritten by PH *VT. 

u On exit, this array is overwritten by U *Q . 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the algorithm failed to converge; 
i specifies how many off-diagonals did not converge. 
In this case, d and e contain on exit the diagonal and off-diagonal elements, 
respectively, of a bidiagonal matrix orthogonally equivalent to B.

Application Notes

Each singular value and singular vector is computed to high relative accuracy. However, the 
reduction to bidiagonal form (prior to calling the routine) may decrease the relative accuracy in the 
small singular values of the original matrix if its singular values vary widely in magnitude. 

If σi is an exact singular value of B, and si is the corresponding computed value, then 

          |si - σi| ≤ p(m, n)εσi 

where p(m, n) is a modestly increasing function of m and n, and ε is the machine precision. If only 
singular values are computed, they are computed more accurately than when some singular vectors 
are also computed (that is, the function p(m, n) is smaller).
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If ui is the corresponding exact left singular vector of B, and wi is the corresponding computed left 
singular vector, then the angle θ(ui, wi) between them is bounded as follows: 
          θ(ui, wi) ≤ p(m, n)ε / mini≠j(|σi - σj|/|σi + σj|). 

Here mini≠j(|σi - σj|/|σi + σj|) is the relative gap between σi and the other singular values. A 
similar error bound holds for the right singular vectors.

The total number of real floating-point operations is roughly proportional to n2 if only the singular 
values are computed. About 6n2*nru additional operations (12n2*nru for complex flavors) are 
required to compute the left singular vectors and about 6n2*ncvt operations (12n2*ncvt for 
complex flavors) to compute the right singular vectors. 
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?bdsdc          
Computes the singular value decomposition of a real 
bidiagonal matrix using a divide and conquer method.

Syntax
call sbdsdc ( uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,

iwork, info )

call dbdsdc ( uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
iwork, info )

Description

This routine computes the Singular Value Decomposition (SVD) of a real n-by-n (upper or lower) 
bidiagonal matrix B:  B = U Σ VT, using a divide and conquer method, where Σ is a diagonal matrix 
with non-negative diagonal elements (the singular values of B), and U and V are orthogonal 
matrices of left and right singular vectors, respectively. ?bdsdc can be used to compute all 
singular values, and optionally, singular vectors or singular vectors in compact form.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.

compq CHARACTER*1.  Must be 'N', 'P', or 'I'.

If compq = 'N', compute singular values only.
If compq = 'P', compute singular values and compute singular vectors in 
compact form.
If compq = 'I', compute singular values and singular vectors.

n INTEGER.  The order of the matrix B (n ≥ 0). 

d, e, work REAL for sbdsdc
DOUBLE PRECISION for sbdsdc. 
Arrays:

d(*) contains the n diagonal elements of the bidiagonal matrix B. The 
dimension of d must be at least max(1, n).
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e(*)  contains the off-diagonal elements of the bidiagonal matrix B. The 
dimension of e must be at least max(1, n).

work(*) is a workspace array.
The dimension of work must be at least:
max(1, 4*n),  if compq = 'N';
max(1, 6*n),  if compq = 'P';
max(1, 3*n2+4*n),  if compq = 'I'.

ldu INTEGER.  The first dimension of the output array u;  ldu ≥ 1. If singular 
vectors are desired, then
ldu ≥ max(1, n).

ldvt INTEGER.  The first dimension of the output array vt;  ldvt ≥ 1. If singular 
vectors are desired, then
ldvt ≥ max(1, n).

iwork INTEGER.  
Workspace array, dimension at least max(1, 8*n). 

Output Parameters

d If info = 0, overwritten by the singular values of B. 

e On exit, e is overwritten. 

u, vt, q REAL for sbdsdc
DOUBLE PRECISION for sbdsdc. 
Arrays: u(ldu,*),  vt(ldvt,*), q(*).
 If compq = 'I', then on exit u contains the left singular vectors of the 
bidiagonal matrix B, unless info ≠ 0 (see info). For other values of compq,  
u is not referenced. The second dimension of u must be at least max(1,n).

 If compq = 'I', then on exit vt contains the right singular vectors of the 
bidiagonal matrix B, unless 
info ≠ 0 (see info). For other values of compq,  vt is not referenced. The 
second dimension of vt must be at least max(1,n).

If compq = 'P', then on exit, if info = 0, q and iq contain the left and right 
singular vectors in a compact form. Specifically, q contains all the REAL (for 
sbdsdc) or DOUBLE PRECISION (for dbdsdc) data for singular vectors. For 
other values of compq , q is not referenced. See Application notes for details.

iq INTEGER.  
Array: iq(*).
If compq = 'P', then on exit, if info = 0, q and iq contain the left and right 
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singular vectors in a compact form. Specifically, iq contains all the INTEGER 
data for singular vectors. For other values of compq , iq is not referenced. See 
Application notes for details.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the algorithm failed to compute a singular value. The update 
process of divide and conquer failed.
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Symmetric Eigenvalue Problems                    

Symmetric eigenvalue problems are posed as follows: given an n by n real symmetric or complex 
Hermitian matrix A, find the eigenvalues λ and the corresponding eigenvectors z that satisfy the 
equation

                       Az = λz. (or, equivalently, zHA = λzH).

In such eigenvalue problems, all n eigenvalues are real not only for real symmetric but also for 
complex Hermitian matrices A, and there exists an orthonormal system of n eigenvectors. If A is a 
symmetric or Hermitian positive-definite matrix, all eigenvalues are positive.

To solve a symmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to 
tridiagonal form and then solve the eigenvalue problem with the tridiagonal matrix obtained. 
LAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or 
unitary) similarity transformation A = QTQH as well as for solving tridiagonal symmetric 
eigenvalue problems. These routines are listed in Table 4-3.

There are different routines for symmetric eigenvalue problems, depending on whether you need 
all eigenvectors or only some of them or eigenvalues only, whether the matrix A is positive-definite 
or not, and so on. 
These routines are based on three primary algorithms for computing eigenvalues and eigenvectors 
of symmetric problems: the divide and conquer algorithm, the QR algorithm, and bisection 
followed by inverse iteration. The divide and conquer algorithm is generally more efficient and is 
recommended for computing all eigenvalues and eigenvectors. 
Furthermore, to solve an eigenvalue problem using the divide and conquer algorithm, you need to 
call only one routine. In general, more than one routine has to be called if the QR algorithm or 
bisection followed by inverse iteration is used.

Decision tree in Figure 4-2 will help you choose the right routine or sequence of routines for 
eigenvalue problems with real symmetric matrices. A similar decision tree for complex Hermitian 
matrices is presented in Figure 4-3.
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Figure 4-2  Decision Tree: Real Symmetric Eigenvalue Problems
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Figure 4-3  Decision Tree: Complex Hermitian Eigenvalue Problems
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Table 4-3 Computational Routines for Solving Symmetric Eigenvalue Problems 

Operation Real symmetric 
matrices

Complex Hermitian 
matrices

Reduce to tridiagonal form 
A = QTQH (full storage)

?sytrd ?hetrd 

Reduce to tridiagonal form 
A = QTQH (packed storage)

?sptrd ?hptrd 

Reduce to tridiagonal form
A = QTQH (band storage).

?sbtrd ?hbtrd 

Generate matrix Q 
(full storage)

?orgtr ?ungtr 

Generate matrix Q
(packed storage)

?opgtr ?upgtr 

Apply matrix Q 
(full storage)

?ormtr ?unmtr 

Apply matrix Q
(packed storage)

?opmtr ?upmtr 

Find all eigenvalues of 
a tridiagonal matrix T 

?sterf
 

Find all eigenvalues and eigenvectors 
of a tridiagonal matrix T 

?steqr    ?stedc ?steqr      ?stedc

Find all eigenvalues and eigenvectors 
of a tridiagonal positive-definite 
matrix T.  

?pteqr ?pteqr

Find selected eigenvalues of a 
tridiagonal matrix T 

?stebz
?stegr ?stegr

Find selected eigenvectors of a 
tridiagonal matrix T

?stein
?stegr

?stein

?stegr

Compute the reciprocal condition 
numbers for the eigenvectors 

?disna ?disna
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 ?sytrd          
Reduces a real symmetric matrix to tridiagonal form.

Syntax
call ssytrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )

call dsytrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )

Description

This routine reduces a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal 
similarity transformation: A = QTQT. The orthogonal matrix Q is not formed explicitly but is 
represented as a product of n-1 elementary reflectors. Routines are provided for working with Q 
in this representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U',  a stores the upper triangular part of A.
If uplo = 'L',  a stores the lower triangular part of A.

n INTEGER.  The order of the matrix A (n ≥ 0). 

a, work REAL for ssytrd 
DOUBLE PRECISION for dsytrd.
a(lda,*) is an array containing either upper or lower triangular part of the 
matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

lwork INTEGER.  The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the tridiagonal matrix T and details of the orthogonal matrix Q, 
as specified by uplo.
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d, e, tau REAL for ssytrd 
DOUBLE PRECISION for dsytrd.
Arrays: 
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau(*) stores further details of the orthogonal matrix Q. The dimension of 
tau must be at least max(1, n-1).

work(1) If info=0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The computed matrix T is exactly similar to a matrix A + E, where 
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

?orgtr to form the computed matrix Q explicitly;

?ormtr to multiply a real matrix by Q.

The complex counterpart of this routine is ?hetrd.
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?orgtr         
Generates the real orthogonal matrix Q determined by 
?sytrd.

Syntax
call sorgtr ( uplo, n, a, lda, tau, work, lwork, info )

call dorgtr ( uplo, n, a, lda, tau, work, lwork, info )

Description

The routine explicitly generates the n by n orthogonal matrix Q formed by ?sytrd (see page 
4-99) when reducing a real symmetric matrix A to tridiagonal form: A = QTQT. Use this routine 
after a call to ?sytrd. 

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.  

Use the same uplo as supplied to ?sytrd.

n INTEGER.  The order of the matrix Q (n ≥ 0). 

a, tau, work REAL for sorgtr 
DOUBLE PRECISION for dorgtr.
Arrays: 
a(lda,*) is the array a as returned by ?sytrd.
The second dimension of a must be at least max(1, n).

tau(*) is the array tau as returned by ?sytrd. 
The dimension of tau must be at least max(1, n-1).

work (lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

lwork INTEGER.  The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = (n-1)*blocksize, where blocksize is a 
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked 
algorithm. 

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that 
||E||2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is ?ungtr.
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?ormtr          
Multiplies a real matrix by the real orthogonal matrix Q 
determined by ?sytrd.

Syntax
call sormtr ( side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info )

call dormtr ( side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal matrix Q formed by 
?sytrd (see page 4-99) when reducing a real symmetric matrix A to tridiagonal form: A = QTQT. 
Use this routine after a call to ?sytrd.

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q: 
If side ='L', r = m;  if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

uplo CHARACTER*1. Must be 'U' or 'L'.  
Use the same uplo as supplied to ?sytrd.

trans CHARACTER*1. Must be either 'N' or 'T'. 
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER.  The number of rows in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

a,work,tau,c REAL for sormtr 
DOUBLE PRECISION for dormtr.
a(lda,*) and tau are the arrays returned by ?sytrd.
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The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; lda ≥ max(1, r).

ldc INTEGER.  The first dimension of c; ldc ≥ max(1, n).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize  for side ='L', or 
lwork = m*blocksize  for side ='R', where blocksize is a machine-dependent value (typically, 16 
to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much 
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1) 
and use this value for subsequent runs.

The computed product differs from the exact product by a matrix E such that |
|E||2 = O(ε) ||C||2.

The total number of floating-point operations is approximately 2*m2*n if side ='L' 
or 2*n2*m  if side ='R'.

The complex counterpart of this routine is ?unmtr.
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?hetrd          
Reduces a complex Hermitian matrix to tridiagonal form.

Syntax
call chetrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )

call zhetrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )

Description

This routine reduces a complex Hermitian matrix A to symmetric tridiagonal form T by a unitary 
similarity transformation: A = QTQH. The unitary matrix Q is not formed explicitly but is 
represented as a product of n-1 elementary reflectors. Routines are provided to work with Q in 
this representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U',  a stores the upper triangular part of A.
If uplo = 'L',  a stores the lower triangular part of A.

n INTEGER.  The order of the matrix A (n ≥ 0). 

a, work COMPLEX for chetrd 
DOUBLE COMPLEX for zhetrd.
a(lda,*) is an array containing either upper or lower triangular part of the 
matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

lwork INTEGER.  The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the tridiagonal matrix T and details of the unitary matrix Q, as 
specified by uplo.
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d, e REAL for chetrd 
DOUBLE PRECISION for zhetrd.
Arrays: 
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau COMPLEX for chetrd 
DOUBLE COMPLEX for zhetrd.
Array, DIMENSION at least max(1, n-1).
Stores further details of the unitary matrix Q. 

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent 
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are 
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, 
examine work(1) and use this value for subsequent runs.

The computed matrix T is exactly similar to a matrix A + E, where 
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

After calling this routine, you can call the following:

?ungtr to form the computed matrix Q explicitly;

?unmtr to multiply a complex matrix by Q.

The real counterpart of this routine is ?sytrd.
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?ungtr         
Generates the complex unitary matrix Q determined by 
?hetrd.

Syntax
call cungtr ( uplo, n, a, lda, tau, work, lwork, info )

call zungtr ( uplo, n, a, lda, tau, work, lwork, info )

Description

The routine explicitly generates the n by n unitary matrix Q formed by ?hetrd (see page 4-105) 
when reducing a complex Hermitian matrix A to tridiagonal form: A = QTQH. Use this routine 
after a call to ?hetrd. 

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.  

Use the same uplo as supplied to ?hetrd.

n INTEGER.  The order of the matrix Q (n ≥ 0). 

a, tau, work COMPLEX for cungtr 
DOUBLE COMPLEX for zungtr.
Arrays: 
a(lda,*) is the array a as returned by ?hetrd.
The second dimension of a must be at least max(1, n).

tau(*) is the array tau as returned by ?hetrd. 
The dimension of tau must be at least max(1, n-1).

work (lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

lwork INTEGER.  The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = (n-1)*blocksize, where blocksize is a 
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked 
algorithm. 

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that 
||E||2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is ?orgtr.
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?unmtr         
Multiplies a complex matrix by the complex unitary matrix 
Q determined by ?hetrd.

Syntax
call cunmtr ( side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info )

call zunmtr ( side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info )

Description

The routine multiplies a complex matrix C by Q or QH, where Q is the unitary matrix Q formed by 
?hetrd (see page 4-105) when reducing a complex Hermitian matrix A to tridiagonal form: 
A = QTQH. Use this routine after a call to ?hetrd.

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QHC, CQ, or CQH (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q: 
If side ='L', r = m;  if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

uplo CHARACTER*1. Must be 'U' or 'L'.  
Use the same uplo as supplied to ?hetrd.

trans CHARACTER*1. Must be either 'N' or 'T'. 
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QH.

m INTEGER.  The number of rows in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

a,work,tau,c COMPLEX for cunmtr 
DOUBLE COMPLEX for zunmtr.
a(lda,*) and tau are the arrays returned by ?hetrd.
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The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; lda ≥ max(1, r).

ldc INTEGER.  The first dimension of c; ldc ≥ max(1, n).

lwork INTEGER.  The size of the work array. Constraints: 
lwork ≥ max(1, n)  if side ='L';
lwork ≥ max(1, m)  if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH 
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (for side ='L') or lwork = m*blocksize 
(for side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for 
optimum performance of the blocked algorithm. If you are in doubt how much workspace to 
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this 
value for subsequent runs.

The computed product differs from the exact product by a matrix E such that 
||E||2 = O(ε) ||C||2, where ε is the machine precision.

The total number of floating-point operations is approximately 8*m2*n if side ='L' 
or 8*n2*m  if side ='R'.

The real counterpart of this routine is ?ormtr.
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?sptrd         
Reduces a real symmetric matrix to tridiagonal form using 
packed storage.

Syntax
call ssptrd ( uplo,n,ap,d,e,tau,info )

call dsptrd ( uplo,n,ap,d,e,tau,info )

Description

This routine reduces a packed real symmetric matrix A to symmetric tridiagonal form T by an 
orthogonal similarity transformation: A = QTQT. The orthogonal matrix Q is not formed explicitly 
but is represented as a product of n-1 elementary reflectors. Routines are provided for working 
with Q in this representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

If uplo ='U', ap stores the packed upper triangle of A.
If uplo ='L', ap stores the packed lower triangle of A.

n INTEGER.  The order of the matrix A (n ≥ 0). 

ap REAL for ssptrd 
DOUBLE PRECISION for dsptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of A (as specified by uplo) in packed 
form.

Output Parameters

ap Overwritten by the tridiagonal matrix T and details of the orthogonal matrix Q, 
as specified by uplo.

d, e, tau REAL for ssptrd 
DOUBLE PRECISION for dsptrd.
Arrays: 
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
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e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau(*) stores further details of the matrix Q. 
The dimension of tau must be at least max(1, n-1).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where 
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

?opgtr to form the computed matrix Q explicitly;

?opmtr to multiply a real matrix by Q.

The complex counterpart of this routine is ?hptrd.
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?opgtr         
Generates the real orthogonal matrix Q determined by 
?sptrd.

Syntax
call sopgtr ( uplo, n, ap, tau, q, ldq, work, info )
call dopgtr ( uplo, n, ap, tau, q, ldq, work, info )

Description

The routine explicitly generates the n by n orthogonal matrix Q formed by ?sptrd (see page 
4-111) when reducing a packed real symmetric matrix A to tridiagonal form: A = QTQT. Use this 
routine after a call to ?sptrd. 

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'. 

Use the same uplo as supplied to ?sptrd.

n INTEGER.  The order of the matrix Q (n ≥ 0). 

ap, tau REAL for sopgtr 
DOUBLE PRECISION for dopgtr.
Arrays ap and tau, as returned by ?sptrd. 
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1, n-1).

ldq INTEGER.  The first dimension of the output array q; 
at least max(1, n).

work REAL for sopgtr 
DOUBLE PRECISION for dopgtr.
Workspace array, DIMENSION at least max(1, n-1).

Output Parameters

q REAL for sopgtr 
DOUBLE PRECISION for dopgtr. 
Array, DIMENSION (ldq,*). 
Contains the computed matrix Q.
The second dimension of q must be at least max(1, n).
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
 ||E||2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is ?upgtr.

?opmtr         
Multiplies a real matrix by the real orthogonal matrix Q 
determined by ?sptrd.

Syntax
call sopmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

call dopmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

Description

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal matrix Q formed by 
?sptrd (see page 4-111) when reducing a packed real symmetric matrix A to tridiagonal form: A 
= QTQT. Use this routine after a call to ?sptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q: 
If side ='L', r = m;  if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.
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uplo CHARACTER*1. Must be 'U' or 'L'.  
Use the same uplo as supplied to ?sptrd.

trans CHARACTER*1. Must be either 'N' or 'T'. 
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER.  The number of rows in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

ap,work,tau,c REAL for sopmtr 
DOUBLE PRECISION for dopmtr.
ap and tau are the arrays returned by ?sptrd.
The dimension of ap must be at least max(1, r(r+1)/2).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(*) is a workspace array.
The dimension of work must be at least 
max(1, n)  if side ='L';
max(1, m)  if side ='R'.

ldc INTEGER.  The first dimension of c; ldc ≥ max(1, n).

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT 
(as specified by side and trans).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed product differs from the exact product by a matrix E such that 
||E||2 = O(ε) ||C||2, where ε is the machine precision.

The total number of floating-point operations is approximately 2*m2*n if side ='L' 
or 2*n2*m  if side ='R'.

The complex counterpart of this routine is ?upmtr. 



4-116

4 Intel® Math Kernel Library Reference Manual

?hptrd         
Reduces a complex Hermitian matrix to tridiagonal form 
using packed storage.

Syntax
call chptrd ( uplo,n,ap,d,e,tau,info )

call zhptrd ( uplo,n,ap,d,e,tau,info )

Description

This routine reduces a packed complex Hermitian matrix A to symmetric tridiagonal form T by a 
unitary similarity transformation: A = QTQH. The unitary matrix Q is not formed explicitly but is 
represented as a product of n-1 elementary reflectors. Routines are provided for working with Q 
in this representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

If uplo ='U', ap stores the packed upper triangle of A.
If uplo ='L', ap stores the packed lower triangle of A.

n INTEGER.  The order of the matrix A (n ≥ 0). 

ap COMPLEX for chptrd 
DOUBLE COMPLEX for zhptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of A (as specified by uplo) in packed 
form.

Output Parameters

ap Overwritten by the tridiagonal matrix T and details of the orthogonal matrix Q, 
as specified by uplo.

d, e REAL for chptrd 
DOUBLE PRECISION for zhptrd.
Arrays: 
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).
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e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau COMPLEX for chptrd 
DOUBLE COMPLEX for zhptrd.
Arrays, DIMENSION at least max(1, n-1).
Contains further details of the orthogonal matrix Q.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where 
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

After calling this routine, you can call the following:

?upgtr to form the computed matrix Q explicitly;

?upmtr to multiply a complex matrix by Q.

The real counterpart of this routine is ?sptrd.
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?upgtr          
Generates the complex unitary matrix Q determined by 
?hptrd.

Syntax
call cupgtr ( uplo, n, ap, tau, q, ldq, work, info )
call zupgtr ( uplo, n, ap, tau, q, ldq, work, info )

Description

The routine explicitly generates the n by n unitary matrix Q formed by ?hptrd (see page 4-116) 
when reducing a packed complex Hermitian matrix A to tridiagonal form: A = QTQH. Use this 
routine after a call to ?hptrd. 

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'. 

Use the same uplo as supplied to ?sptrd.

n INTEGER.  The order of the matrix Q (n ≥ 0). 

ap, tau COMPLEX for cupgtr 
DOUBLE COMPLEX for zupgtr.
Arrays ap and tau, as returned by ?hptrd. 
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1, n-1).

ldq INTEGER.  The first dimension of the output array q; 
at least max(1, n).

work COMPLEX for cupgtr 
DOUBLE COMPLEX for zupgtr.
Workspace array, DIMENSION at least max(1, n-1).

Output Parameters

q COMPLEX for cupgtr 
DOUBLE COMPLEX for zupgtr.
Array, DIMENSION (ldq,*). 
Contains the computed matrix Q.
The second dimension of q must be at least max(1, n).
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 
= O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is ?opgtr.

?upmtr         
Multiplies a complex matrix by the unitary matrix Q 
determined by ?hptrd.

Syntax
call cupmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

call zupmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

Description

The routine multiplies a complex matrix C by Q or QH, where Q is the unitary matrix Q formed by 
?hptrd (see page 4-116) when reducing a packed complex Hermitian matrix A to tridiagonal 
form: A = QTQH. Use this routine after a call to ?hptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products 
QC, QHC, CQ, or CQH (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q: 
If side ='L', r = m;  if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'. 
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.
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uplo CHARACTER*1. Must be 'U' or 'L'.  
Use the same uplo as supplied to ?hptrd.

trans CHARACTER*1. Must be either 'N' or 'T'. 
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QH.

m INTEGER.  The number of rows in the matrix C  (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 

ap,tau,c,work COMPLEX for cupmtr 
DOUBLE COMPLEX for zupmtr.
ap and tau are the arrays returned by ?hptrd.

The dimension of ap must be at least max(1, r(r+1)/2).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(*) is a workspace array.
The dimension of work must be at least 
max(1, n)  if side ='L';
max(1, m)  if side ='R'.

ldc INTEGER.  The first dimension of c; ldc ≥ max(1, n).

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH 
(as specified by side and trans).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε) 
||C||2, where ε is the machine precision.

The total number of floating-point operations is approximately 8*m2*n if side ='L' or 8*n2*m  
if side ='R'.

The real counterpart of this routine is ?opmtr.
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?sbtrd         
Reduces a real symmetric band matrix to tridiagonal form.

Syntax
call ssbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

call dsbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

Description

This routine reduces a real symmetric band matrix A to symmetric tridiagonal form T by an 
orthogonal similarity transformation: A = QTQT. The orthogonal matrix Q is determined as a 
product of Givens rotations. If required, the routine can also form the matrix Q explicitly.

Input Parameters
vect CHARACTER*1.  Must be 'V' or 'N'.

If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER.  The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super- or sub-diagonals in A
(kd ≥ 0). 

ab, work REAL for ssbtrd 
DOUBLE PRECISION for dsbtrd.
ab (ldab,*) is an array containing either upper or lower triangular part of the 
matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array. 
The dimension of work must be at least max(1, n).

ldab INTEGER.  The first dimension of ab; at least kd+1.

ldq INTEGER.  The first dimension of q. Constraints:
 ldq ≥ max(1, n)  if vect = 'V';
ldq ≥ 1  if vect = 'N'.
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Output Parameters

ab On exit, the array ab is overwritten.

d, e, q REAL for ssbtrd 
DOUBLE PRECISION for dsbtrd.
Arrays: 
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

q(ldq,*) is not referenced if vect = 'N'.
If vect ='V', q contains the n by n matrix Q.
The second dimension of q must be:
at least max(1, n)  if vect = 'V';
at least 1 if vect = 'N'.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where 
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision. 
The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 
= O(ε).

The total number of floating-point operations is approximately 6n2*kd if vect ='N', with 
3n3*(kd-1)/kd additional operations if vect ='V'.

The complex counterpart of this routine is ?hbtrd.
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?hbtrd         
Reduces a complex Hermitian band matrix to tridiagonal 
form.

Syntax
call chbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

call zhbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

Description

This routine reduces a complex Hermitian band matrix A to symmetric tridiagonal form T by a 
unitary similarity transformation: A = QTQH. The unitary matrix Q is determined as a product of 
Givens rotations. If required, the routine can also form the matrix Q explicitly.

Input Parameters
vect CHARACTER*1.  Must be 'V' or 'N'.

If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER.  The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super- or sub-diagonals in A
(kd ≥ 0). 

ab, work COMPLEX for chbtrd 
DOUBLE COMPLEX for zhbtrd.
ab (ldab,*) is an array containing either upper or lower triangular part of the 
matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array. 
The dimension of work must be at least max(1, n).

ldab INTEGER.  The first dimension of ab; at least kd+1.

ldq INTEGER.  The first dimension of q. Constraints:
 ldq ≥ max(1, n)  if vect = 'V';
ldq ≥ 1  if vect = 'N'.
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Output Parameters

ab On exit, the array ab is overwritten.

d, e REAL for chbtrd 
DOUBLE PRECISION for zhbtrd.
Arrays: 
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

q COMPLEX for chbtrd 
DOUBLE COMPLEX for zhbtrd.
Array, DIMENSION  (ldq,*). 
If vect ='N',  q is not referenced.
If vect ='V',  q contains the n by n matrix Q.
The second dimension of q must be:
at least max(1, n)  if vect = 'V';
at least 1 if vect = 'N'.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where 
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision. 
The computed matrix Q differs from an exactly unitary matrix by a matrix E such that ||E||2 = 
O(ε).

The total number of floating-point operations is approximately 20n2*kd if vect ='N', with 
10n3*(kd-1)/kd additional operations if vect ='V'.

The real counterpart of this routine is ?sbtrd.
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?sterf         
Computes all eigenvalues of a real symmetric tridiagonal 
matrix using QR algorithm.

Syntax
call ssterf ( n, d, e, info )

call dsterf ( n, d, e, info )

Description

This routine computes all the eigenvalues of a real symmetric tridiagonal matrix T (which can be 
obtained by reducing a symmetric or Hermitian matrix to tridiagonal form). The routine uses a 
square-root-free variant of the QR algorithm.

If you need not only the eigenvalues but also the eigenvectors, call ?steqr (page 4-127). 

Input Parameters

n INTEGER.  The order of the matrix T (n ≥ 0). 

d, e REAL for ssterf 
DOUBLE PRECISION for dsterf. 
Arrays: 
d(*) contains the diagonal elements of T. 
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T. 
The dimension of e must be at least max(1, n-1).

Output Parameters

d The n eigenvalues in ascending order, unless info > 0.
See also info.

e On exit, the array is overwritten; see info.

info INTEGER. 
If info = 0, the execution is successful.
If info = i, the algorithm failed to find all the eigenvalues after 30n iterations: 
i off-diagonal elements have not converged to zero. On exit, d and e contain, 
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respectively, the diagonal and off-diagonal elements of a tridiagonal matrix 
orthogonally similar to T.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε) 
||T||2, where ε is the machine precision.

If λi is an exact eigenvalue, and µi is the corresponding computed value, then 

          |µi - λi| ≤ c(n)ε ||T||2 

where c(n) is a modestly increasing function of n. 

The total number of floating-point operations depends on how rapidly the algorithm converges. 
Typically, it is about 14n2.
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?steqr         
Computes all eigenvalues and eigenvectors of a 
symmetric or Hermitian matrix reduced to tridiagonal 
form 
(QR algorithm).

Syntax
call ssteqr ( compz, n, d, e, z, ldz, work, info )
call dsteqr ( compz, n, d, e, z, ldz, work, info )
call csteqr ( compz, n, d, e, z, ldz, work, info )
call zsteqr ( compz, n, d, e, z, ldz, work, info )

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric 
tridiagonal matrix T. In other words, the routine can compute the spectral factorization: T = ZΛZT. 
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi; Z is an orthogonal 
matrix whose columns are eigenvectors. Thus, 

            Tzi = λizi  for i = 1, 2, ..., n.
(The routine normalizes the eigenvectors so that ||zi||2 = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors of an arbitrary real 
symmetric (or complex Hermitian) matrix A reduced to tridiagonal form T: A = QTQH. In this case, 
the spectral factorization is as follows:  A = QTQH = (QZ)Λ(QZ)H. Before calling ?steqr, you 
must reduce A to tridiagonal form and generate the explicit matrix Q by calling the following 
routines:

for real matrices:            for complex matrices:
full storage ?sytrd,?orgtr ?hetrd,?ungtr 
packed storage ?sptrd,?opgtr ?hptrd,?upgtr 
band storage ?sbtrd (vect='V') ?hbtrd (vect='V')

If you need eigenvalues only, it’s more efficient to call ?sterf (page 4-125). If T is 
positive-definite, ?pteqr (page 4-137) can compute small eigenvalues more accurately than 
?steqr. 

To solve the problem by a single call, use one of the divide and conquer routines ?stevd, ?syevd, 
?spevd, or ?sbevd for real symmetric matrices or ?heevd, ?hpevd, or ?hbevd for complex 
Hermitian matrices. 
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Input Parameters
compz CHARACTER*1.  Must be 'N' or 'I' or 'V'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues and eigenvectors of the 
tridiagonal matrix T.
If compz ='V', the routine computes the eigenvalues and eigenvectors of A 
(and the array z must contain the matrix Q on entry).

n INTEGER.  The order of the matrix T (n ≥ 0). 

d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
Arrays: 
d(*) contains the diagonal elements of T. 
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T. 
The dimension of e must be at least max(1, n-1).

work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1, 2*n-2)  if compz ='V' or 'I'.

z REAL for ssteqr 
DOUBLE PRECISION for dsteqr 
COMPLEX for csteqr 
DOUBLE COMPLEX for zsteqr.
Array,  DIMENSION (ldz, *) 
If compz ='N' or 'I', z need not be set.
If vect ='V',  z must contain the n by n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1, n)  if compz ='V' or 'I'.

work (lwork) is a workspace array.

ldz INTEGER.  The first dimension of z. Constraints:
ldz ≥ 1  if compz = 'N';
ldz ≥ max(1, n)  if compz ='V' or 'I'.
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Output Parameters

d The n eigenvalues in ascending order, unless info > 0.
See also info.

e On exit, the array is overwritten; see info.

z If info = 0, contains the n orthonormal eigenvectors, stored by columns. (The 
ith column corresponds to the ith eigenvalue.)

info INTEGER. 
If info = 0, the execution is successful.
If info = i, the algorithm failed to find all the eigenvalues after 30n iterations: 
i off-diagonal elements have not converged to zero. On exit, d and e contain, 
respectively, the diagonal and off-diagonal elements of a tridiagonal matrix 
orthogonally similar to T.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε) 
||T||2, where ε is the machine precision.

If λi is an exact eigenvalue, and µi is the corresponding computed value, then 

          |µi - λi| ≤ c(n)ε ||T||2 

where c(n) is a modestly increasing function of n. 

If zi is the corresponding exact eigenvector, and wi is the corresponding computed vector, then the 
angle θ(zi, wi) between them is bounded as follows: 
          θ(zi, wi) ≤ c(n)ε ||T||2 / mini≠j|λi - λj|. 

The total number of floating-point operations depends on how rapidly the algorithm converges. 
Typically, it is about 
           24n2 if compz = 'N';
          7n3 (for complex flavors, 14n3)  if compz ='V' or 'I'. 
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?stedc         
Computes all eigenvalues and eigenvectors of a 
symmetric tridiagonal matrix using the divide and 
conquer method.

Syntax
call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)

call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)

call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork,info)

call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork,info)

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric 
tridiagonal matrix using the divide and conquer method. 
The eigenvectors of a full or band real symmetric or complex Hermitian matrix can also be found 
if ?sytrd/?hetrd or ?sptrd/?hptrd or ?sbtrd/?hbtrd has been used to reduce this matrix 
to tridiagonal form. 

Input Parameters
compz CHARACTER*1.  Must be 'N' or 'I' or 'V'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues and eigenvectors of the 
tridiagonal matrix.
If compz ='V', the routine computes the eigenvalues and eigenvectors of 
original symmetric/Hermitian matrix. On entry, the array z must contain the 
orthogonal/unitary matrix used to reduce the original matrix to tridiagonal 
form.

n INTEGER.  The order of the symmetric tridiagonal matrix (n ≥ 0). 

d, e, rwork REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
Arrays: 
d(*) contains the diagonal elements of the tridiagonal matrix. The dimension 
of d must be at least max(1, n).
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e(*) contains the subdiagonal elements of the tridiagonal matrix. The 
dimension of e must be at least max(1, n-1).

rwork(lrwork) is a workspace array used in complex flavors only.

z, work REAL for sstedc 
DOUBLE PRECISION for dstedc 
COMPLEX for cstedc 
DOUBLE COMPLEX for zstedc.
Arrays: z(ldz, *), work(*). 
If compz ='V', then, on entry, z  must contain the orthogonal/unitary matrix 
used to reduce the original matrix to tridiagonal form.
The second dimension of z must be at least max(1, n).

work (lwork) is a workspace array.

ldz INTEGER.  The first dimension of z. Constraints:
ldz ≥ 1  if compz = 'N';
ldz ≥ max(1, n)  if compz ='V' or 'I'.

lwork INTEGER.  The dimension of the array work. 
See Application Notes for the required value of lwork.

lrwork INTEGER.  The dimension of the array rwork (used for complex flavors only). 
See Application Notes for the required value of lrwork.

iwork INTEGER.  Workspace array, DIMENSION  (liwork). 

liwork INTEGER.  The dimension of the array iwork. 
See Application Notes for the required value of liwork.

Output Parameters

d The n eigenvalues in ascending order, unless info ≠  0.
See also info.

e On exit, the array is overwritten; see info.

z If info = 0, then if compz ='V', z contains the orthonormal eigenvectors of 
the original symmetric/Hermitian matrix, and if compz ='I', z contains the 
orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz ='N', 
z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the optimal lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the optimal lrwork (for 
complex flavors only).
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iwork(1) On exit, if info = 0, then iwork(1) returns the optimal liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.If info = i, the algorithm 
failed to compute an eigenvalue while working on the submatrix lying in rows 
and columns i/(n+1) through mod(i, n+1).

Application Notes

The required size of workspace arrays must be as follows.

For sstedc/dstedc:

If compz ='N' or n ≤  1 then lwork must be at least 1.
If compz ='V' and n > 1 then lwork must be at least  
 (1 + 3n + 2n⋅lgn + 3n2),  where lg( n ) = smallest integer k such  that 2k≥ n.

If compz ='I' and n > 1 then lwork must be at least (1 + 4n + n2).

If compz ='N' or n ≤  1 then liwork must be at least 1.
If compz ='V' and n > 1 then liwork must be at least (6 + 6n + 5n⋅lgn).
If compz ='I' and n > 1 then liwork must be at least   (3 + 5n).

For cstedc/zstedc:

If compz ='N' or'I', or n ≤  1, lwork must be at least 1.
If compz ='V' and n > 1, lwork must be at least n2.

If compz ='N' or n ≤  1, lrwork must be at least 1.
If compz ='V' and n > 1, lrwork must be at least
  (1 + 3n + 2n⋅lgn + 3n2),  where lg( n ) = smallest integer k such  that 2k≥ n.

If compz ='I' and n > 1, lrwork must be at least(1 + 4n + 2n2).

The required value of liwork for complex flavors is the same as for real flavors.
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?stegr         
Computes selected eigenvalues and eigenvectors of a 
real symmetric tridiagonal matrix.

Syntax
call sstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,

ldz, isuppz, work, lwork, iwork, liwork, info)

call dstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call cstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call zstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

Description

This routine computes  selected eigenvalues and, optionally, eigenvectors of a real symmetric 
tridiagonal matrix T.  Eigenvalues and eigenvectors can be selected by specifying either a range of 
values or a range of indices for the desired eigenvalues. The eigenvalues are computed by the dqds 
algorithm, while orthogonal eigenvectors are computed from various “good'' LDLT representations 
(also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as 
far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th 
unreduced block of T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively robust
representation;
(b) Compute the eigenvalues, λj, of Li Di Li

T to high relative accuracy by the dqds
algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the cluster, and go
to step (a);
(d) Given the approximate eigenvalue λj of Li Di Li

T, compute the corresponding
eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.
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Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

n INTEGER.  The order of the matrix T (n ≥ 0). 

d, e, work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors. 
Arrays: 
d(*) contains the diagonal elements of T. 
The dimension of d must be at least max(1, n).

e(*) contains the subdiagonal elements of T in elements 1 to n-1; e(n) need 
not be set. 
The dimension of e must be at least max(1, n).

work(lwork) is a workspace array.

vl, vu REAL for single precision flavors
DOUBLE PRECISION for double precision flavors. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for single precision flavors
DOUBLE PRECISION for double precision flavors. 
The absolute tolerance to which each eigenvalue/eigenvector is required. 
If jobz = 'V', the eigenvalues and eigenvectors output have residual norms 
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bounded by abstol, and the dot products between different eigenvectors are 
bounded by abstol. If abstol < nε||T||1, then nε||T||1 will be used in its 
place, where ε  is the machine precision. The eigenvalues are computed to an 
accuracy of ε||T||1 irrespective of abstol. If high relative accuracy is 
important, set abstol to ?lamch ( 'Safe minimum' ).

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1  if jobz ='N';
ldz ≥ max(1, n)  if jobz ='V'.

lwork INTEGER. The dimension of the array work,  
lwork ≥ max(1, 18n).

iwork INTEGER.   
Workspace array, DIMENSION  (liwork).

liwork INTEGER. The dimension of the array iwork,  
lwork ≥ max(1, 10n).

Output Parameters

d, e On exit, d and e are overwritten. 

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w REAL for single precision flavors
DOUBLE PRECISION for double precision flavors. 
Array, DIMENSION at least max(1, n).
The selected eigenvalues in ascending order, stored in w(1) to w(m).

z REAL for sstegr 
DOUBLE PRECISION for dstegr 
COMPLEX for cstegr 
DOUBLE COMPLEX for zstegr.
Array z(ldz, *), the second dimension of z must be at least max(1, m).

 If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix T corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i). If jobz ='N', then z  is not referenced. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.
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isuppz INTEGER.   
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices indicating the nonzero 
elements in z. The i-th eigenvector is nonzero only in elements isuppz( 2i-1 
) through isuppz( 2i ).

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

If info = 1, internal error in slarre occurred, 
If info = 2, internal error in ?larrv occurred.

Application Notes

Currently ?stegr is only set up to find all the n eigenvalues and eigenvectors of T in O(n2) time, 
that is, only range ='A' is  supported.

Currently the routine ?stein is called when an appropriate σi cannot be chosen in step (c) above. 
?stein invokes modified Gram-Schmidt when eigenvalues are close.

?stegr works only on machines which follow IEEE-754 floating-point standard in their handling 
of infinities and NaNs. Normal execution of ?stegr may create NaNs and infinities and hence 
may abort due to a floating point exception in environments which  do not conform to the 
IEEE-754 standard.
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?pteqr        
Computes all eigenvalues and (optionally) all eigenvectors 
of a real symmetric positive-definite tridiagonal matrix.

Syntax
call spteqr ( compz, n, d, e, z, ldz, work, info )

call dpteqr ( compz, n, d, e, z, ldz, work, info )

call cpteqr ( compz, n, d, e, z, ldz, work, info )

call zpteqr ( compz, n, d, e, z, ldz, work, info )

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric 
positive-definite tridiagonal matrix T. In other words, the routine can compute the spectral 
factorization: T = ZΛZT. 
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi; Z is an orthogonal 
matrix whose columns are eigenvectors. Thus, 

            Tzi = λizi  for i = 1, 2, ..., n.

(The routine normalizes the eigenvectors so that ||zi||2 = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors of real symmetric (or 
complex Hermitian) positive-definite matrices A reduced to tridiagonal form T: A = QTQH. In this 
case, the spectral factorization is as follows:  A = QTQH = (QZ)Λ(QZ)H. Before calling ?pteqr, 
you must reduce A to tridiagonal form and generate the explicit matrix Q by calling the following 
routines:

for real matrices:            for complex matrices:
full storage ?sytrd,?orgtr ?hetrd,?ungtr 
packed storage ?sptrd,?opgtr ?hptrd,?upgtr 
band storage ?sbtrd (vect='V') ?hbtrd (vect='V')

The routine first factorizes T as LDLH where L is a unit lower bidiagonal matrix, and D is a 
diagonal matrix. Then it forms the bidiagonal matrix 
B = LD1/2 and calls ?bdsqr to compute the singular values of B, which are the same as the 
eigenvalues of T.
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Input Parameters
compz CHARACTER*1.  Must be 'N' or 'I' or 'V'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues and eigenvectors of the 
tridiagonal matrix T.
If compz ='V', the routine computes the eigenvalues and eigenvectors of A 
(and the array z must contain the matrix Q on entry).

n INTEGER.  The order of the matrix T (n ≥ 0). 

d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
Arrays: 
d(*) contains the diagonal elements of T. 
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T. 
The dimension of e must be at least max(1, n-1).

work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1, 4*n-4)  if compz ='V' or 'I'.

z REAL for spteqr 
DOUBLE PRECISION for dpteqr 
COMPLEX for cpteqr 
DOUBLE COMPLEX for zpteqr.
Array,  DIMENSION (ldz,*) 
If compz ='N' or 'I', z need not be set.
If vect ='V',  z must contains the n by n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1, n)  if compz ='V' or 'I'.

ldz INTEGER.  The first dimension of z. Constraints:
ldz ≥ 1  if compz = 'N';
ldz ≥ max(1, n)  if compz ='V' or 'I'.

Output Parameters

d The n eigenvalues in descending order, unless info > 0.
See also info.
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e On exit, the array is overwritten.

z If info = 0, contains the n orthonormal eigenvectors, stored by columns. (The 
ith column corresponds to the ith eigenvalue.)

info INTEGER. 
If info = 0, the execution is successful.
If info = i, the leading minor of order i (and hence T itself) is not 
positive-definite. 
If info = n + i, the algorithm for computing singular values failed to 
converge; i off-diagonal elements have not converged to zero. 
If info = -i, the ith parameter had an illegal value.

Application Notes

If λi is an exact eigenvalue, and µi is the corresponding computed value, then 

          |µi - λi| ≤ c(n)εKλi

where c(n) is a modestly increasing function of n, ε is the machine precision, and K = ||DTD||2 
||(DTD)−1||2, D is diagonal with dii = tii

-1/2. 

If zi is the corresponding exact eigenvector, and wi is the corresponding computed vector, then the 
angle θ(zi, wi) between them is bounded as follows: 
          θ(ui, wi) ≤ c(n)εK / mini≠j(|λi - λj|/|λi + λj|). 

Here mini≠j(|λi - λj|/|λi + λj|) is the relative gap between λi and the other eigenvalues. 

The total number of floating-point operations depends on how rapidly the algorithm converges. 
Typically, it is about 
           30n2 if compz = 'N';
          6n3 (for complex flavors, 12n3)  if compz ='V' or 'I'. 
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?stebz         
Computes selected eigenvalues of a real symmetric 
tridiagonal matrix by bisection.

Syntax
call sstebz (range, order, n, vl, vu, il, iu, abstol,

d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

call dstebz (range, order, n, vl, vu, il, iu, abstol,
d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

Description

This routine computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix T by 
bisection. The routine searches for zero or negligible off-diagonal elements to see if T splits into 
block-diagonal form
T = diag(T1, T2, ...). Then it performs bisection on each of the blocks Ti and returns the block index 
of each computed eigenvalue, so that a subsequent call to ?stein can also take advantage of the 
block structure.

Input Parameters
range CHARACTER*1.  Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

order CHARACTER*1.  Must be 'B' or 'E'.
If order ='B', the eigenvalues are to be ordered from smallest to largest 
within each split-off block.
If order ='E', the eigenvalues for the entire matrix are to be ordered from 
smallest to largest.

n INTEGER.  The order of the matrix T (n ≥ 0). 

vl, vu REAL for sstebz
DOUBLE PRECISION for dstebz. 
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.

If range ='A' or 'I', vl and vu are not referenced.
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il, iu INTEGER. Constraint: 1 ≤ il ≤ iu ≤ n.
If range ='I', the routine computes eigenvalues λi such that il≤ i ≤ iu 
(assuming that the eigenvalues λi are in ascending order).

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sstebz
DOUBLE PRECISION for dstebz. 
The absolute tolerance to which each eigenvalue is required. An eigenvalue (or 
cluster) is considered to have converged if it lies in an interval of width 
abstol. If abstol ≤ 0.0, then the tolerance is taken as ε||T||1, where ε is 
the machine precision.

d, e REAL for sstebz
DOUBLE PRECISION for dstebz. 
Arrays: 
d(*) contains the diagonal elements of T. 
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T. 
The dimension of e must be at least max(1, n-1).

iwork INTEGER.  Workspace. 
Array, DIMENSION at least max(1, 3n).

Output Parameters

m INTEGER. The actual number of eigenvalues found.

nsplit INTEGER. The number of diagonal blocks detected in T.

w REAL for sstebz
DOUBLE PRECISION for dstebz. 
Array, DIMENSION at least max(1, n).
The computed eigenvalues, stored in w(1) to w(m).

iblock,isplit INTEGER. 
Arrays, DIMENSION at least max(1, n).
A positive value iblock(i) is the block number of the eigenvalue stored in 
w(i) (see also info).
The leading nsplit elements of isplit contain points at which T splits into 
blocks Ti as follows: the block 
T1 contains rows/columns 1 to isplit(1); the block
T2 contains rows/columns isplit(1)+1 to isplit(2), and so on. 
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info INTEGER. 
If info = 0, the execution is successful.
If info = 1, for range ='A' or 'V', the algorithm failed to compute some of 
the required eigenvalues to the desired accuracy; iblock(i)< 0 indicates that 
the eigenvalue stored in w(i) failed to converge. 
If info = 2, for range ='I', the algorithm failed to compute some of the 
required eigenvalues. Try calling the routine again with range ='A'. 
If info = 3: 
     for range ='A' or 'V', same as info = 1; 
     for range ='I', same as info = 2. 
If info = 4, no eigenvalues have been computed. The floating-point arithmetic 
on the computer is not behaving as expected.
If info = -i, the ith parameter had an illegal value.

Application Notes

The eigenvalues of T are computed to high relative accuracy which means that if they vary widely 
in magnitude, then any small eigenvalues will be computed more accurately than, for example, 
with the standard QR  method. However, the reduction to tridiagonal form (prior to calling the 
routine) may exclude the possibility of obtaining high relative accuracy in the small eigenvalues of 
the original matrix if its eigenvalues vary widely in magnitude.
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?stein         
Computes the eigenvectors corresponding to specified 
eigenvalues of a real symmetric tridiagonal matrix.

Syntax
call sstein ( n, d, e, m, w, iblock, isplit, z, ldz,

work, iwork, ifailv, info )

call dstein ( n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info )

call cstein ( n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info )

call zstein ( n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info )

Description

This routine computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to 
specified eigenvalues, by inverse iteration. It is designed to be used in particular after the specified 
eigenvalues have been computed by ?stebz with order ='B', but may also be used when the 
eigenvalues have been computed by other routines. If you use this routine after ?stebz, it can take 
advantage of the block structure by performing inverse iteration on each block Ti separately, which 
is more efficient than using the whole matrix T.

If T has been formed by reduction of a full symmetric or Hermitian matrix A to tridiagonal form, 
you can transform eigenvectors of T to eigenvectors of A by calling ?ormtr or ?opmtr (for real 
flavors) or by calling ?unmtr or ?upmtr (for complex flavors).

Input Parameters

n INTEGER.  The order of the matrix T (n ≥ 0). 

m INTEGER. The number of eigenvectors to be returned.

d, e, w REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
Arrays: 
d(*) contains the diagonal elements of T. 
The dimension of d must be at least max(1, n).
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e(*) contains the off-diagonal elements of T. 
The dimension of e must be at least max(1, n-1).

w(*) contains the eigenvalues of T, stored in w(1) 
to w(m) (as returned by ?stebz, see page 4-140). Eigenvalues of  T1 must be 
supplied first, in non-decreasing order; then those of T2, again in 
non-decreasing order, and so on. Constraint: 
if iblock(i) = iblock(i+1), w(i) ≤ w(i+1).

The dimension of w must be at least max(1, n).

iblock,isplit INTEGER. 
Arrays, DIMENSION at least max(1, n).
The arrays iblock and isplit, as returned by ?stebz  with order ='B'. 

If you did not call ?stebz with order ='B', set all elements of iblock to 1, 
and isplit(1) to n.)

ldz INTEGER.  The first dimension of the output array z; ldz ≥ max(1, n).

work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.  Workspace array, 
DIMENSION at least max(1, 5n).

iwork INTEGER.  
Workspace array, DIMENSION at least max(1, n).

Output Parameters

z REAL for sstein 
DOUBLE PRECISION for dstein 
COMPLEX for cstein 
DOUBLE COMPLEX for zstein.
Array,  DIMENSION (ldz, *). 
If info = 0, z contains the m orthonormal eigenvectors, stored by columns. 
(The ith column corresponds to the ith specified eigenvalue.)

ifailv INTEGER. Array, DIMENSION at least max(1, m).
If info = i > 0, the first i elements of ifailv contain the indices of any 
eigenvectors that failed to converge.

info INTEGER. 
If info = 0, the execution is successful.
If info = i, then i eigenvectors (as indicated by the parameter ifailv) each 
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failed to converge in 5 iterations. The current iterates are stored in the 
corresponding columns of the array z.
If info = -i, the ith parameter had an illegal value.

Application Notes

Each computed eigenvector zi is an exact eigenvector of a matrix T + Ei, where ||Ei||2 = O(ε) 
||T||2. However, a set of eigenvectors computed by this routine may not be orthogonal to so high 
a degree of accuracy as those computed by ?steqr.

?disna              
Computes the reciprocal condition numbers for the 
eigenvectors of a symmetric/ Hermitian matrix or for the left or 
right singular vectors of a general matrix.

Syntax
call sdisna (job, m, n, d, sep, info)

call ddisna (job, m, n, d, sep, info)

Description

This routine computes the reciprocal condition numbers for the eigenvectors of a real symmetric 
or complex Hermitian matrix or for the left or right singular vectors of a general m-by-n matrix.

The reciprocal condition number is the 'gap' between the corresponding eigenvalue or singular 
value and the nearest other one.

The bound on the error, measured by angle in radians, in the i-th computed vector is given by

        slamch( 'E' ) * ( anorm / sep(i) )

where anorm = ||A||2 = max( |d(j)| ).  sep(i) is not allowed to be smaller than slamch( 'E' 
)*anorm in order to limit the size of the error bound.

?disna may also be used to compute error bounds for eigenvectors of the generalized symmetric 
definite eigenproblem.
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Input Parameters

job CHARACTER*1. Must be 'E','L' ,  or 'R'.
Specifies for which problem the reciprocal condition numbers should be 
computed:
job ='E':  for the eigenvectors of a symmetric/Hermitian matrix ;
job ='L':  for the left singular vectors of a general matrix;
job ='R':  for the right singular vectors of a general matrix .

m INTEGER.  The number of rows of the matrix (m ≥ 0). 

n INTEGER.  If job ='L', or 'R', the number of columns of the matrix (n ≥ 0). 
Ignored if job ='E'.  

d REAL for sdisna 
DOUBLE PRECISION for ddisna. 
Array, dimension at least max(1,m) if job ='E', and at least max(1, 
min(m,n)) if job ='L'or 'R'. 
This array must contain the eigenvalues (if job ='E') or singular values 
(if job ='L' or 'R') of the matrix, in either increasing or decreasing 
order. If singular values, they must be non-negative.

Output Parameters

sep REAL for sdisna 
DOUBLE PRECISION for ddisna. 
Array, dimension at least max(1,m) if job ='E', and at least max(1, min(m,n)) 
if job ='L'or 'R'. 
The reciprocal condition numbers of the vectors.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Generalized Symmetric-Definite Eigenvalue Problems

Generalized symmetric-definite eigenvalue problems are as follows: find the eigenvalues λ and the 
corresponding eigenvectors z that satisfy one of these equations:                                

                       Az = λBz,   ABz = λz,  or  BAz = λz

where A is an n by n symmetric or Hermitian matrix, and B is an n by n symmetric 
positive-definite or Hermitian positive-definite matrix.

In these problems, there exist n real eigenvectors corresponding to real eigenvalues (even for 
complex Hermitian matrices A and B).

Routines described in this section allow you to reduce the above generalized problems to standard 
symmetric eigenvalue problem  Cy = λy ,
which you can solve by calling LAPACK routines described earlier in this chapter (see page 4-95).

Different routines allow the matrices to be stored either conventionally or in packed storage. Prior 
to reduction, the positive-definite matrix B must first be factorized using either ?potrf or 
?pptrf. 
The reduction routine for the banded matrices A and B uses a split Cholesky factorization for 
which a specific routine ?pbstf  is provided. This refinement halves the amount of work required 
to form matrix C.

   

Table 4-4 Computational Routines for Reducing Generalized Eigenproblems to Standard 
Problems

Matrix 
type

Reduce to standard
problems 
(full storage)

Reduce to standard
problems 
(packed storage)

Reduce to standard
problems 
(band  matrices)

Factorize
band
matrix

real 
symmetric
matrices

?sygst ?spgst ?sbgst ?pbstf

complex 
Hermitian 
matrices

?hegst / ?hpgst ?hbgst ?pbstf
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?sygst                     
Reduces a real symmetric-definite generalized 
eigenvalue problem to the standard form.

Syntax
call ssygst ( itype, uplo, n, a, lda, b, ldb, info )

call dsygst ( itype, uplo, n, a, lda, b, ldb, info )

Description

This routine reduces real symmetric-definite generalized eigenproblems

                       Az = λBz,   ABz = λz,  or  BAz = λz

to the standard form Cy = λy. Here A is a real symmetric matrix, and B is a real symmetric 
positive-definite matrix. Before calling this routine, call ?potrf to compute the Cholesky 
factorization: B = UTU or B = LLT 
(see page 3-12).

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
If itype = 1, the generalized eigenproblem is Az = λBz;
          for uplo = 'U': C = U-TAU-1,  z = U-1y;
          for uplo = 'L': C = L-1AL-T,  z = L-Ty.
If itype = 2, the generalized eigenproblem is ABz = λz;
          for uplo = 'U': C = UAUT,  z = U-1y;
          for uplo = 'L': C = LTAL,  z = L-Ty.
If itype = 3, the generalized eigenproblem is BAz = λz;
          for uplo = 'U': C = UAUT,  z = UTy;
          for uplo = 'L': C = LTAL,  z = Ly.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', the array a stores the upper triangle of A; you must supply B in 
the factored form B = UTU.
If uplo = 'L', the array a stores the lower triangle of A; you must supply B in 
the factored form B = LLT.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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a, b REAL for ssygst
DOUBLE PRECISION for dsygst. 
Arrays: 
a(lda,*) contains the upper or lower triangle of A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the Cholesky-factored matrix B: 
B = UTU or B = LLT  (as returned by ?potrf). 
The second dimension of b must be at least max(1, n).

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

Output Parameters

a The upper or lower triangle of A is overwritten by the upper or lower triangle 
of C, as specified by the arguments itype and uplo.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication 
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the 
computation of eigenvalues and eigenvectors of the original problem, there may be a significant 
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.
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?hegst           
Reduces a complex Hermitian-definite generalized 
eigenvalue problem to the standard form.

Syntax
call chegst ( itype, uplo, n, a, lda, b, ldb, info )

call zhegst ( itype, uplo, n, a, lda, b, ldb, info )

Description

This routine reduces complex Hermitian-definite generalized eigenvalue problems

                       Az = λBz,   ABz = λz,  or  BAz = λz

to the standard form Cy = λy. Here the matrix A is complex Hermitian, and B is complex 
Hermitian positive-definite. Before calling this routine, you must call ?potrf to compute the 
Cholesky factorization: B = UHU or B = LLH (see page 3-12).

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
If itype = 1, the generalized eigenproblem is Az = λBz;
          for uplo = 'U': C = U-HAU-1,  z = U-1y;
          for uplo = 'L': C = L-1AL-H,  z = L-Hy.
If itype = 2, the generalized eigenproblem is ABz = λz;
          for uplo = 'U': C = UAUH,  z = U-1y;
          for uplo = 'L': C = LHAL,  z = L-Hy.
If itype = 3, the generalized eigenproblem is BAz = λz;
          for uplo = 'U': C = UAUH,  z = UHy;
          for uplo = 'L': C = LHAL,  z = Ly.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', the array a stores the upper triangle of A; you must supply B in 
the factored form B = UHU.
If uplo = 'L', the array a stores the lower triangle of A; you must supply B in 
the factored form B = LLH.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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a, b COMPLEX for chegst
DOUBLE COMPLEX for zhegst. 
Arrays: 
a(lda,*) contains the upper or lower triangle of A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the Cholesky-factored matrix B: 
B = UHU or B = LLH  (as returned by ?potrf). 
The second dimension of b must be at least max(1, n).

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

Output Parameters

a The upper or lower triangle of A is overwritten by the upper or lower triangle 
of C, as specified by the arguments itype and uplo.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication 
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the 
computation of eigenvalues and eigenvectors of the original problem, there may be a significant 
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.
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?spgst            
Reduces a real symmetric-definite generalized 
eigenvalue problem to the standard form using packed 
storage.

Syntax
call sspgst ( itype, uplo, n, ap, bp, info )

call dspgst ( itype, uplo, n, ap, bp, info )

Description

This routine reduces real symmetric-definite generalized eigenproblems

                       Az = λBz,   ABz = λz,  or  BAz = λz

to the standard form Cy = λy, using packed matrix storage. Here A is a real symmetric matrix, and 
B is a real symmetric positive-definite matrix. Before calling this routine, call ?pptrf to compute 
the Cholesky factorization: B = UTU or B = LLT (see page 3-14).

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
If itype = 1, the generalized eigenproblem is Az = λBz;
          for uplo = 'U': C = U-TAU-1,  z = U-1y;
          for uplo = 'L': C = L-1AL-T,  z = L-Ty.
If itype = 2, the generalized eigenproblem is ABz = λz;
          for uplo = 'U': C = UAUT,  z = U-1y;
          for uplo = 'L': C = LTAL,  z = L-Ty.
If itype = 3, the generalized eigenproblem is BAz = λz;
          for uplo = 'U': C = UAUT,  z = UTy;
          for uplo = 'L': C = LTAL,  z = Ly.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', ap stores the packed upper triangle of A; 
you must supply B in the factored form B = UTU.
If uplo = 'L', ap stores the packed lower triangle of A; 
you must supply B in the factored form B = LLT.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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ap, bp REAL for sspgst
DOUBLE PRECISION for dspgst. 
Arrays: 
ap(*) contains the packed upper or lower triangle of A. 
The dimension of ap must be at least max(1, n*(n+1)/2).

bp(*) contains the packed Cholesky factor of B
(as returned by ?pptrf with the same uplo value). 
The dimension of bp must be at least max(1, n*(n+1)/2).

Output Parameters

ap The upper or lower triangle of A is overwritten by the upper or lower triangle 
of C, as specified by the arguments itype and uplo.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication 
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the 
computation of eigenvalues and eigenvectors of the original problem, there may be a significant 
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.
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?hpgst            
Reduces a complex Hermitian-definite generalized 
eigenvalue problem to the standard form using packed 
storage.

Syntax
call chpgst ( itype, uplo, n, ap, bp, info )

call zhpgst ( itype, uplo, n, ap, bp, info )

Description

This routine reduces real symmetric-definite generalized eigenproblems

                       Az = λBz,   ABz = λz,  or  BAz = λz

to the standard form Cy = λy, using packed matrix storage. Here A is a real symmetric matrix, and 
B is a real symmetric positive-definite matrix. Before calling this routine, you must call ?pptrf to 
compute the Cholesky factorization: B = UHU or B = LLH (see page 3-14).

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
If itype = 1, the generalized eigenproblem is Az = λBz;
          for uplo = 'U': C = U-HAU-1,  z = U-1y;
          for uplo = 'L': C = L-1AL-H,  z = L-Hy.
If itype = 2, the generalized eigenproblem is ABz = λz;
          for uplo = 'U': C = UAUH,  z = U-1y;
          for uplo = 'L': C = LHAL,  z = L-Hy.
If itype = 3, the generalized eigenproblem is BAz = λz;
          for uplo = 'U': C = UAUH,  z = UHy;
          for uplo = 'L': C = LHAL,  z = Ly.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', ap stores the packed upper triangle of A; you must supply B in 
the factored form B = UHU.
If uplo = 'L', ap stores the packed lower triangle of A; you must supply B in 
the factored form B = LLH.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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ap, bp COMPLEX for chpgst
DOUBLE COMPLEX for zhpgst. 
Arrays: 
ap(*) contains the packed upper or lower triangle of A. 
The dimension of a must be at least max(1, n*(n+1)/2).

bp(*) contains the packed Cholesky factor of B
(as returned by ?pptrf with the same uplo value). 
The dimension of b must be at least max(1, n*(n+1)/2).

Output Parameters

ap The upper or lower triangle of A is overwritten by the upper or lower triangle 
of C, as specified by the arguments itype and uplo.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication 
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the 
computation of eigenvalues and eigenvectors of the original problem, there may be a significant 
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

?sbgst         
Reduces a real symmetric-definite generalized 
eigenproblem for banded matrices to the standard form 
using the factorization performed by ?pbstf.

Syntax
call ssbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,

work, info )

call dsbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, info )
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Description

To reduce the real symmetric-definite generalized eigenproblem  Az = λBz  to the standard form 
Cy = λy , where A, B and C are banded, this routine must be preceded by a call to 
spbstf/dpbstf, which computes the split Cholesky factorization of the positive-definite matrix 
B: B = STS. The split Cholesky factorization, compared with the ordinary Cholesky factorization, 
allows the work to be approximately halved.

This routine overwrites  A with C = XTAX, where X = S-1Q and Q is an orthogonal matrix chosen 
(implicitly) to preserve the bandwidth of A.
The routine also has an option to allow the accumulation of X, and then, if z is an eigenvector of C,  
Xz is an eigenvector of the original system.

Input Parameters
vect CHARACTER*1.  Must be 'N' or 'V'.

If vect = 'N',  then matrix X is not returned;
If vect = 'V',  then matrix X is returned.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER. The order of the matrices  A and B (n ≥ 0). 

ka INTEGER.  The number of super- or sub-diagonals in A
(ka ≥ 0). 

kb INTEGER.  The number of super- or sub-diagonals in B
(ka ≥ kb ≥ 0). 

ab,bb,work REAL for ssbgst
DOUBLE PRECISION for dsbgst
ab (ldab,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A (as specified by uplo) in band storage format. The second 
dimension of the array ab must be at least max(1, n).
bb (ldbb,*) is an array containing the banded split Cholesky factor of B as 
specified by uplo, n and kb and returned by spbstf/dpbstf. The second 
dimension of the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least max(1, 2*n)

ldab INTEGER.  The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER.  The first dimension of the array bb; must be at least kb+1.
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ldx The first dimension of the output array x. Constraints:
 if vect ='N' , then  ldx ≥ 1;
 if vect ='V' , then ldx ≥ max(1, n).

Output Parameters

ab On exit, this array is overwritten by the upper or lower triangle of C as 
specified by uplo. 

x REAL for ssbgst
DOUBLE PRECISION for dsbgst
Array.
If vect ='V', then x (ldx,*) contains the n by n matrix  X = S-1Q.
If vect ='N', then x  is not referenced.
The second dimension of x must be:
at least max(1, n),  if vect ='V';
at least 1, if vect ='N'.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C involves implicit multiplication by B-1. When the routine is used as 
a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a 
significant loss of accuracy if B is ill-conditioned with respect to inversion.
The total number of floating-point operations is approximately 6n2*kb, when vect ='N'. 
Additional (3/2)n3*(kb/ka)   operations are required when vect ='V'. All these estimates 
assume that both ka and kb are much less than n.
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?hbgst       
Reduces a complex Hermitian-definite generalized 
eigenproblem for banded matrices to the standard form 
using the factorization performed by ?pbstf.

Syntax
call chbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,

work, rwork, info )

call zhbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, rwork, info )

Description

To reduce the complex Hermitian-definite generalized eigenproblem  Az = λBz  to the standard 
form Cy = λy , where A, B and C are banded, this routine must be preceded by a call to 
cpbstf/zpbstf, which computes the split Cholesky factorization of the positive-definite matrix 
B: B = SHS. The split Cholesky factorization, compared with the ordinary Cholesky factorization, 
allows the work to be approximately halved.

This routine overwrites  A with C = XHAX, where X = S-1Q and Q is a unitary matrix chosen 
(implicitly) to preserve the bandwidth of A.
The routine also has an option to allow the accumulation of X, and then, if z is an eigenvector of C,  
Xz is an eigenvector of the original system.

Input Parameters
vect CHARACTER*1.  Must be 'N' or 'V'.

If vect = 'N',  then matrix X is not returned;
If vect = 'V',  then matrix X is returned.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER. The order of the matrices  A and B (n ≥ 0). 

ka INTEGER.  The number of super- or sub-diagonals in A
(ka ≥ 0). 

kb INTEGER.  The number of super- or sub-diagonals in B
(ka ≥ kb ≥ 0). 
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ab,bb,work COMPLEX for chbgst
DOUBLE COMPLEX for zhbgst
ab (ldab,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A (as specified by uplo) in band storage format. The second 
dimension of the array ab must be at least max(1, n).
bb (ldbb,*) is an array containing the banded split Cholesky factor of B as 
specified by uplo, n and kb and returned by cpbstf/zpbstf. The second 
dimension of the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least max(1, n)

ldab INTEGER.  The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER.  The first dimension of the array bb; must be at least kb+1.

ldx The first dimension of the output array x. Constraints:
 if vect ='N' , then  ldx ≥ 1;
 if vect ='V' , then ldx ≥ max(1, n).

rwork REAL for chbgst
DOUBLE PRECISION for zhbgst
Workspace array, DIMENSION at least max(1, n)

Output Parameters

ab On exit, this array is overwritten by the upper or lower triangle of C as 
specified by uplo. 

x COMPLEX for chbgst
DOUBLE COMPLEX for zhbgst
Array.
If vect ='V', then x (ldx,*) contains the n by n matrix  X = S-1Q.
If vect ='N', then x  is not referenced.
The second dimension of x must be:
at least max(1, n),  if vect ='V';
at least 1, if vect ='N'.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C involves implicit multiplication by B-1. When the routine is used as 
a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a 
significant loss of accuracy if B is ill-conditioned with respect to inversion.
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The total number of floating-point operations is approximately 20n2*kb, when vect ='N'. 
Additional 5n3*(kb/ka)   operations are required when vect ='V'. All these estimates assume 
that both ka and kb are much less than n.

?pbstf       
Computes a split Cholesky factorization of a real 
symmetric or complex Hermitian positive-definite 
banded matrix used in ?sbgst/?hbgst .

Syntax
call spbstf ( uplo, n, kb, bb, ldbb, info )
call dpbstf ( uplo, n, kb, bb, ldbb, info )
call cpbstf ( uplo, n, kb, bb, ldbb, info )
call zpbstf ( uplo, n, kb, bb, ldbb, info )

Description

This routine computes a split Cholesky factorization of a real symmetric or complex Hermitian 
positive-definite band matrix B. It is to be used in conjunction with ?sbgst/?hbgst.

The factorization has the form  B = STS (or B = SHS for complex flavors), where S is a band matrix 
of the same bandwidth as B and the following structure: S is upper triangular in the first (n+kb)/2 
rows and lower triangular in the remaining rows.

Input Parameters
uplo CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U',  bb stores the upper triangular part of B.
If uplo = 'L',  bb stores the lower triangular part of B.

n INTEGER. The order of the matrix B (n ≥ 0). 

kb INTEGER.  The number of super- or sub-diagonals in B
(kb ≥ 0). 

bb REAL for spbstf
DOUBLE PRECISION for dpbstf
COMPLEX for cpbstf 
DOUBLE COMPLEX for zpbstf.
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bb (ldbb,*) is an array containing either upper or lower triangular part of the 
matrix B (as specified by uplo) in band storage format.
The second dimension of the array bb must be at least max(1, n).

ldbb INTEGER.  The first dimension of bb; must be at least kb+1.

Output Parameters

bb On exit, this array is overwritten by the elements of the split Cholesky factor S. 

info INTEGER. 
If info = 0, the execution is successful.
If info = i, then the factorization could not be completed, because the 
updated element bii would be the square root of a negative number; hence the 
matrix B is not positive-definite.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed factor S is the exact factor of a perturbed matrix B + E,
 where

c(n) is a modest linear function of n, and ε is the machine precision.

The total number of floating-point operations for real flavors is approximately n(kb+1)2. The 
number of operations for complex flavors is 4 times greater. All these estimates assume that kb is 
much less than n.

After calling this routine, you can call ?sbgst/?hbgst to solve the generalized eigenproblem   Az 
= λBz , where A and B are banded and B is positive-definite.

E c kb 1+( )ε SH S eij c kb 1+( )ε biibjj≤,≤



4-162

4 Intel® Math Kernel Library Reference Manual

Nonsymmetric Eigenvalue Problems                    

This section describes LAPACK routines for solving nonsymmetric eigenvalue problems, 
computing the Schur factorization of general matrices, as well as performing a number of related 
computational tasks.  

A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric (or non-Hermitian) 
matrix A, find the eigenvalues λ and the corresponding eigenvectors z that satisfy the equation

Az = λz  (right eigenvectors z) 

or the equation

zHA = λzH  (left eigenvectors z). 

Nonsymmetric eigenvalue problems have the following properties:

• The number of eigenvectors may be less than the matrix order (but is not less than the number 
of distinct eigenvalues of A).

• Eigenvalues may be complex even for a real matrix A. 

• If a real nonsymmetric matrix has a complex eigenvalue a+bi corresponding to an eigenvector 
z, then a-bi is also an eigenvalue. 
The eigenvalue a-bi corresponds to the eigenvector whose elements are complex conjugate to 
the elements of z.

To solve a nonsymmetric eigenvalue problem with LAPACK, you usually need to reduce the 
matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg 
matrix obtained. Table 4-5 lists LAPACK routines for reducing the matrix to the upper Hessenberg 
form by an orthogonal (or unitary) similarity transformation A = QHQH as well as routines for 
solving eigenvalue problems with Hessenberg matrices, forming the Schur factorization of such 
matrices and computing the corresponding condition numbers.

Decision tree in Figure 4-4 helps you choose the right routine or sequence of routines for an 
eigenvalue problem with a real nonsymmetric matrix. 
If you need to solve an eigenvalue problem with a complex non-Hermitian matrix, use the decision 
tree shown in Figure 4-5.
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Table 4-5 Computational Routines for Solving Nonsymmetric Eigenvalue Problems 

Operation performed Routines for real matrices Routines for complex matrices

Reduce to Hessenberg 
form A = QHQH

?gehrd, ?gehrd

Generate the matrix Q ?orghr ?unghr

Apply the matrix Q ?ormhr ?unmhr 

Balance matrix ?gebal ?gebal

Transform eigenvectors of 
balanced matrix to those 
of the original matrix

?gebak ?gebak

Find eigenvalues and 
Schur factorization 
(QR algorithm)

?hseqr ?hseqr

Find eigenvectors from 
Hessenberg form (inverse 
iteration)

?hsein ?hsein

Find eigenvectors from 
Schur factorization

?trevc ?trevc

Estimate sensitivities of 
eigenvalues and 
eigenvectors

?trsna ?trsna

Reorder Schur 
factorization

?trexc ?trexc

Reorder Schur 
factorization, find the 
invariant subspace and 
estimate sensitivities

?trsen ?trsen

Solves Sylvester’s 
equation.

?trsyl ?trsyl
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Figure 4-4  Decision Tree: Real Nonsymmetric Eigenvalue Problems
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Figure 4-5  Decision Tree: Complex Non-Hermitian Eigenvalue Problems
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?gehrd          
Reduces a general matrix to upper Hessenberg form.

Syntax
call sgehrd ( n, ilo, ihi, a, lda, tau, work, lwork, info )

call dgehrd ( n, ilo, ihi, a, lda, tau, work, lwork, info )

call cgehrd ( n, ilo, ihi, a, lda, tau, work, lwork, info )

call zgehrd ( n, ilo, ihi, a, lda, tau, work, lwork, info )

Description

The routine reduces a general matrix A to upper Hessenberg form H by an orthogonal or unitary 
similarity transformation A = QHQH. Here H has real subdiagonal elements.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of 
elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

ilo, ihi INTEGER. If A has been output by ?gebal, then
ilo and ihi must contain the values returned by that routine. Otherwise ilo =
1 and ihi = n. (If n > 0, then 1 ≤ ilo ≤ ihi ≤ n; if n = 0, ilo = 1 and ihi = 0.)

a, work REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array; at least max(1,n).
See Application notes for the suggested value of lwork.
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Output Parameters

a Overwritten by the upper Hessenberg matrix H and details of the matrix Q. The
subdiagonal elements of H are real.

tau REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Array, DIMENSION at least max (1, n-1).
Contains additional information on the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required
for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The computed Hessenberg matrix H is exactly similar to a nearby matrix
A + E, where ||E||2 < c(n)ε||A||2, c(n) is a modestly increasing function of n, and ε is the
machine precision.

The approximate number of floating-point operations for real flavors is (2/3)(ihi - ilo)2(2ihi +
2ilo + 3n); for complex flavors it is 4 times greater.
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?orghr          
Generates the real orthogonal matrix Q determined by 
?gehrd.

Syntax
call sorghr ( n, ilo, ihi, a, lda, tau, work, lwork, info )

call dorghr ( n, ilo, ihi, a, lda, tau, work, lwork, info )

Description

This routine explicitly generates the orthogonal matrix Q that has been determined by a preceding 
call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix A to upper 
Hessenberg form H by an orthogonal similarity transformation, A = QHQT, and represents the 
matrix Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined 
by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, ilo = 1 and 
ihi = n.)

The matrix Q generated by ?orghr has the structure:

where Q22 occupies rows and columns ilo to ihi.

Input Parameters

n INTEGER.  The order of the matrix Q (n ≥ 0). 

ilo, ihi INTEGER. These must be the same parameters ilo and ihi, respectively, as
supplied to ?gehrd. (If n > 0, then 1 ≤ ilo ≤ ihi ≤ n; if n = 0, ilo = 1 and ihi
= 0.)

a, tau, work REAL for sorghr
DOUBLE PRECISION for dorghr
Arrays:
a(lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).

Q
I 0 0

0 Q22 0

0 0 I

=
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tau(*) contains further details of the elementary reflectors, as returned by
?gehrd.
The dimension of tau must be at least max (1, n-1).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array;
lwork ≥ max(1,ihi−ilo).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the n by n orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =(ihi−ilo)*blocksize, where blocksize is a 
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked 
algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for 
the first run. On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = O(ε), where 
ε is the machine precision.

The approximate number of floating-point operations is (4/3)(ihi−ilo)3.

The complex counterpart of this routine is ?unghr.
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?ormhr          
Multiplies an arbitrary real matrix C  by the real 
orthogonal matrix Q determined by ?gehrd.

Syntax
call sormhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,

work, lwork, info )

call dormhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info )

Description

This routine multiplies a matrix C by the orthogonal matrix Q that has been determined by a 
preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix A to upper 
Hessenberg form H by an orthogonal similarity transformation, A = QHQT, and represents the 
matrix Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined 
by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, ilo = 1 and 
ihi = n.)

With ?ormhr, you can form one of the matrix products QC, QTC, CQ, or CQT, overwriting the 
result on C (which may be any real rectangular matrix). 

A common application of ?ormhr is to transform a matrix V of eigenvectors of H to the matrix QV 
of eigenvectors of A.

Input Parameters

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then the routine forms QC or QTC.
If side = 'R', then the routine forms CQ or CQT.

trans CHARACTER*1. Must be 'N' or 'T'.
If trans = 'N', then Q is applied to C.
If trans = 'T', then QT is applied to C.

m INTEGER.  The number of rows in C (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0). 
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ilo, ihi INTEGER. These must be the same parameters ilo and ihi, respectively, as
supplied to ?gehrd.
If m > 0 and side ='L', then 1 ≤ ilo ≤ ihi ≤ m.
If m = 0 and side ='L', then ilo = 1 and ihi = 0.
If n > 0 and side ='R', then 1 ≤ ilo ≤ ihi ≤ n.
If n = 0 and side ='R', then ilo = 1 and ihi = 0.

a,tau,c,work REAL for sormhr 
DOUBLE PRECISION for dormhr 
Arrays: 
a(lda,*) contains details of the vectors which define the elementary 
reflectors, as returned by ?gehrd. 
The second dimension of a must be at least max(1, m) if side = 'L' and at 
least max(1, n) if side = 'R'.

tau(*) contains further details of the elementary reflectors, as returned by
?gehrd.
The dimension of tau must be at least max (1, m-1)
if side ='L' and at least max (1, n-1) if side ='R'.

c(ldc,*) contains the m by n matrix C.
The second dimension of c must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m)  if side ='L' and at 
least max (1, n) if side ='R'.

ldc INTEGER.  The first dimension of c; at least max(1, m).

lwork INTEGER.  The size of the work array.
If side ='L', lwork ≥ max(1,n).
If side ='R', lwork ≥ max(1,m).
See Application notes for the suggested value of lwork.

Output Parameters

c C is overwritten by QC or QTC or CQT or CQ as specified by side and trans.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Application Notes

For better performance, lwork should be at least n*blocksize if side ='L' and at least 
m*blocksize if side ='R', where blocksize is a machine-dependent value (typically, 16 to 64) 
required for optimum performance of the blocked algorithm. If you are in doubt how much 
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1) 
and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = 
O(ε)||C||2, where ε is the machine precision.

The approximate number of floating-point operations is 
2n(ihi−ilo)2 if side ='L'; 
2m(ihi−ilo)2 if side ='R'.

The complex counterpart of this routine is ?unmhr.
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?unghr          
Generates the complex unitary matrix Q determined by 
?gehrd.

Syntax
call cunghr ( n, ilo, ihi, a, lda, tau, work, lwork, info )

call zunghr ( n, ilo, ihi, a, lda, tau, work, lwork, info )

Description

This routine is intended to be used following a call to cgehrd/zgehrd, which reduces a complex 
matrix A to upper Hessenberg form H by a unitary similarity transformation: A = QHQH. ?gehrd 
represents the matrix Q as a product of ihi−ilo elementary reflectors. Here ilo and ihi are 
values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been 
balanced, ilo = 1 and ihi = n.

Use the routine ?unghr to generate Q explicitly as a square matrix. The matrix Q has the 
structure:

where Q22 occupies rows and columns ilo to ihi.

Input Parameters

n INTEGER.  The order of the matrix Q (n ≥ 0). 

ilo, ihi INTEGER. These must be the same parameters ilo and ihi, respectively, as
supplied to ?gehrd. (If n > 0, then 1 ≤ ilo ≤ ihi ≤ n. If n = 0, then ilo = 1 and
ihi = 0.)

a, tau, work COMPLEX for cunghr
DOUBLE COMPLEX for zunghr.
Arrays:
a(lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).

Q
I 0 0

0 Q22 0

0 0 I

=
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tau(*) contains further details of the elementary reflectors, as returned by
?gehrd.
The dimension of tau must be at least max (1, n-1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array;
lwork ≥ max(1, ihi−ilo).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the n by n unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = (ihi−ilo)*blocksize, where blocksize is a 
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked 
algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for 
the first run. On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = O(ε), where 
ε is the machine precision.

The approximate number of real floating-point operations is (16/3)(ihi−ilo)3.

The real counterpart of this routine is ?orghr.
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?unmhr         
Multiplies an arbitrary complex matrix C by the 
complex unitary matrix Q determined by ?gehrd.

Syntax
call cunmhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,

work, lwork, info )

call zunmhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info )

Description

This routine multiplies a matrix C by the unitary matrix Q that has been determined by a preceding 
call to cgehrd/zgehrd. (The routine ?gehrd reduces a real general matrix A to upper 
Hessenberg form H by an orthogonal similarity transformation, A = QHQH, and represents the 
matrix Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined 
by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, ilo = 1 and 
ihi = n.)

With ?unmhr, you can form one of the matrix products QC, QHC, CQ, or CQH, overwriting the 
result on C (which may be any complex rectangular matrix). A common application of this routine 
is to transform a matrix V of eigenvectors of H to the matrix QV of eigenvectors of A.

Input Parameters

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then the routine forms QC or QHC.
If side = 'R', then the routine forms CQ or CQH.

trans CHARACTER*1. Must be 'N' or 'C'.
If trans = 'N', then Q is applied to C.
If trans = 'T', then QH is applied to C.

m INTEGER.  The number of rows in C (m ≥ 0). 

n INTEGER.  The number of columns in C (n ≥ 0).

ilo, ihi INTEGER. These must be the same parameters ilo and ihi, respectively, as
supplied to ?gehrd.
If m > 0 and side ='L', then 1 ≤ ilo ≤ ihi ≤ m.
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If m = 0 and side ='L', then ilo = 1 and ihi = 0.
If n > 0 and side ='R', then 1 ≤ ilo ≤ ihi ≤ n.
If n = 0 and side ='R', then ilo =1 and ihi = 0.

a,tau,c,work COMPLEX for cunmhr 
DOUBLE COMPLEX for zunmhr.
Arrays: 
a (lda,*) contains details of the vectors which define the elementary 
reflectors, as returned by ?gehrd. 
The second dimension of a must be at least max(1, m) if side = 'L' and at 
least max(1, n) if side = 'R'.

tau(*) contains further details of the elementary reflectors, as returned by
?gehrd.
The dimension of tau must be at least max (1, m-1)
if side ='L' and at least max (1, n-1) if side ='R'.

c (ldc,*) contains the m by n matrix C.
The second dimension of c must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m)  if side ='L' and at 
least max (1, n) if side = 'R'.

ldc INTEGER.  The first dimension of c; at least max(1, m).

lwork INTEGER.  The size of the work array.
If side = 'L', lwork ≥ max(1,n).
If side = 'R', lwork ≥ max(1,m).
See Application notes for the suggested value of lwork.

Output Parameters

c C is overwritten by QC or QHC or CQH or CQ as specified by side and 
trans.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Application Notes

For better performance, lwork should be at least n*blocksize if side ='L' and at least 
m*blocksize if side = 'R', where blocksize is a machine-dependent value (typically, 16 to 64) 
required for optimum performance of the blocked algorithm. If you are in doubt how much 
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1) 
and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = O(ε) 
||C||2, where ε is the machine precision.

The approximate number of floating-point operations is 
8n(ihi−ilo)2 if side = 'L';
8m(ihi−ilo)2 if side = 'R'.

The real counterpart of this routine is ?ormhr.
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?gebal            
Balances a general matrix to improve the accuracy of 
computed eigenvalues and eigenvectors.

Syntax
call sgebal ( job, n, a, lda, ilo, ihi, scale, info )
call dgebal ( job, n, a, lda, ilo, ihi, scale, info )
call cgebal ( job, n, a, lda, ilo, ihi, scale, info )
call zgebal ( job, n, a, lda, ilo, ihi, scale, info )

Description

This routine balances a matrix A by performing either or both of the following two similarity 
transformations:

(1) The routine first attempts to permute A to block upper triangular form: 

where P is a permutation matrix, and A′11 and A′33 are upper triangular. The diagonal elements of 
A′11 and A′33 are eigenvalues of A. The rest of the eigenvalues of A are the eigenvalues of the 
central diagonal block A′22, in rows and columns ilo to ihi. Subsequent operations to compute 
the eigenvalues of A (or its Schur factorization) need only be applied to these rows and columns; 
this can save a significant amount of work if ilo > 1 and ihi < n. If no suitable permutation exists 
(as is often the case), the routine sets ilo = 1 and ihi = n, and A′22 is the whole of A.

(2) The routine applies a diagonal similarity transformation to A′, to make the rows and columns 
of A′22 as close in norm as possible:

  

This scaling can reduce the norm of the matrix (that is, ||A′′22|| < ||A′22||), and hence reduce 
the effect of rounding errors on the accuracy of computed eigenvalues and eigenvectors.
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Input Parameters

job CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.
If job ='N', then A is neither permuted nor scaled (but ilo, ihi, and scale
get their values).
If job ='P', then A is permuted but not scaled.
If job ='S', then A is scaled but not permuted.
If job ='B', then A is both scaled and permuted.

n INTEGER.  The order of the matrix A  (n ≥ 0). 

a REAL for sgebal 
DOUBLE PRECISION for dgebal 
COMPLEX for cgebal 
DOUBLE COMPLEX for zgebal.
Arrays: 
a (lda,*) contains the matrix A. 
The second dimension of a must be at least max(1, n). 
a is not referenced if job ='N'.

lda INTEGER.  The first dimension of a; at least max(1, n).

Output Parameters

a Overwritten by the balanced matrix (a is not referenced if job = 'N').

ilo, ihi INTEGER. The values ilo and ihi such that on exit a(i,j) is zero if i > j

and 1 ≤ j < ilo or ihi < i ≤ n. If job ='N' or 'S', then ilo = 1 and ihi = n.

scale REAL for single-precision flavors 
DOUBLE PRECISION for double-precision flavors 
Array, DIMENSION at least max(1, n). 

Contains details of the permutations and scaling factors.

More precisely, if pj is the index of the row and column interchanged with row 
and column j, and dj is the scaling factor used to balance row and column j, 
then
scale(j)= pj  for j = 1, 2,..., ilo-1, ihi+1,..., n;
scale(j)= dj  for j = ilo, ilo + 1,..., ihi.
The order in which the interchanges are made is 
n to ihi+1, then 1 to ilo-1.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Application Notes

The errors are negligible, compared with those in subsequent computations.

If the matrix A is balanced by this routine, then any eigenvectors computed subsequently are 
eigenvectors of the matrix A′′  and hence you must call ?gebak (see page 4-181) to transform them 
back to eigenvectors of A.

If the Schur vectors of A are required, do not call this routine with 
job = 'S' or 'B', because then the balancing transformation is not orthogonal (not unitary for 
complex flavors). If you call this routine with job = 'P', then any Schur vectors computed 
subsequently are Schur vectors of the matrix A′′ , and you’ll need to call ?gebak (with side 
='R') to transform them back to Schur vectors of A.

The total number of floating-point operations is proportional to n2.
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?gebak          
Transforms eigenvectors of a balanced matrix to those 
of the original nonsymmetric matrix.

Syntax
call sgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )

call dgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )

call cgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )

call zgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )

Description

This routine is intended to be used after a matrix A has been balanced by 
a call to ?gebal, and eigenvectors of the balanced matrix A′′22 have subsequently been computed.
For a description of balancing, see ?gebal (page 4-178). The balanced matrix A′′  is obtained as 
A′′= DPAPTD-1, where P is a permutation matrix and D is a diagonal scaling matrix. This routine 
transforms the eigenvectors as follows:
if x is a right eigenvector of A′′ , then PTD-1x is a right eigenvector of A;
if x is a left eigenvector of  A′′ , then PTDy is a left eigenvector of A.

Input Parameters

job CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.
The same parameter job as supplied to ?gebal.

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then left eigenvectors are transformed.
If side = 'R', then right eigenvectors are transformed.

n INTEGER.  The number of rows of the matrix of eigenvectors (n ≥ 0). 

ilo, ihi INTEGER.  The values ilo and ihi, as returned by ?gebal. (If n > 0, then 1 ≤ 
ilo ≤ ihi ≤ n; 
if n = 0, then ilo = 1 and ihi = 0.)

scale REAL for single-precision flavors 
DOUBLE PRECISION for double-precision flavors 
Array, DIMENSION at least max(1, n). 
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Contains details of the permutations and/or the scaling factors used to balance 
the original general matrix, as returned by ?gebal.

m INTEGER.  The number of columns of the matrix of eigenvectors (m ≥ 0). 

v REAL for sgebak 
DOUBLE PRECISION for dgebak 
COMPLEX for cgebak 
DOUBLE COMPLEX for zgebak.
Arrays: 
v (ldv,*) contains the matrix of left or right eigenvectors to be transformed. 
The second dimension of v must be at least max(1, m).

ldv INTEGER.  The first dimension of v; at least max(1, n).

Output Parameters

v Overwritten by the transformed eigenvectors.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The errors in this routine are negligible.

The approximate number of floating-point operations is approximately proportional to m*n.
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?hseqr           
Computes all eigenvalues and (optionally) the Schur 
factorization of a matrix reduced to Hessenberg form.

Syntax
call shseqr (job,compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork,info)

call dhseqr (job,compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork,info)

call chseqr (job,compz,n,ilo,ihi,h,ldh,w,z,ldz,work,lwork,info)

call zhseqr (job,compz,n,ilo,ihi,h,ldh,w,z,ldz,work,lwork,info)

Description

This routine computes all the eigenvalues, and optionally the Schur factorization, of an upper 
Hessenberg matrix H: H = ZTZH, where T is an upper triangular (or, for real flavors, 
quasi-triangular) matrix (the Schur form of H), and Z is the unitary or orthogonal matrix whose 
columns are the Schur vectors zi.

You can also use this routine to compute the Schur factorization of a general matrix A which has 
been reduced to upper Hessenberg form H:
A = QHQH, where Q is unitary (orthogonal for real flavors); 
A = (QZ)T(QZ)H. 

In this case, after reducing A to Hessenberg form by ?gehrd (page 4-166), 
call ?orghr to form Q explicitly (page 4-168) and then pass Q to ?hseqr 
with compz ='V'.

You can also call ?gebal (page 4-178) to balance the original matrix before reducing it to 
Hessenberg form by ?hseqr, so that the Hessenberg matrix H will have the structure:

where H11 and H33 are upper triangular.

H11 H12 H13

0 H22 H23

0 0 H33
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If so, only the central diagonal block H22 (in rows and columns ilo to ihi) needs to be further 
reduced to Schur form (the blocks H12 and H23 are also affected). Therefore the values of ilo and 
ihi can be supplied to ?hseqr directly. Also, after calling this routine you must call ?gebak 
(page 4-181) to permute the Schur vectors of the balanced matrix to those of the original matrix.

If ?gebal has not been called, however, then ilo must be set to 1 and ihi to n. Note that if the 
Schur factorization of A is required, ?gebal must not be called with job ='S' or 'B', because 
the balancing transformation is not unitary (for real flavors, it is not orthogonal).

?hseqr uses a multishift form of the upper Hessenberg QR algorithm. The Schur vectors are 
normalized so that ||zi||2 = 1, but are determined only to within a complex factor of absolute 
value 1 (for the real flavors, to within a factor ±1).

Input Parameters

job CHARACTER*1. Must be 'E' or 'S'.
If job ='E', then eigenvalues only are required.
If job ='S', then the Schur form T is required.

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz ='N', then no Schur vectors are computed (and the array z is not
referenced).
If compz ='I', then the Schur vectors of H are computed (and the array z is
initialized by the routine).
If compz ='V', then the Schur vectors of A are computed (and the array z
must contain the matrix Q on entry).

n INTEGER.  The order of the matrix H (n ≥ 0). 

ilo, ihi INTEGER.  If A has been balanced by ?gebal, then ilo and ihi must contain 
the values returned by ?gebal. Otherwise, ilo must be set to 1 and ihi to n.

h, z, work REAL for shseqr 
DOUBLE PRECISION for dhseqr 
COMPLEX for chseqr 
DOUBLE COMPLEX for zhseqr.
Arrays: 
h(ldh,*) The n by n upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

z(ldz,*) 
If compz ='V', then z must contain the matrix Q from the reduction to 
Hessenberg form.
If compz ='I', then z need not be set.
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If compz ='N', then z is not referenced.
The second dimension of z must be 
at least max(1, n) if compz ='V' or 'I'; 
at least 1 if compz ='N'.

work(lwork) is a workspace array.
The dimension of work must be at least max (1, n).

ldh INTEGER.  The first dimension of h; at least max(1, n).

ldz INTEGER.  The first dimension of z; 
If compz ='N', then ldz ≥ 1.
If compz ='V' or 'I', then ldz ≥ max(1,n).

lwork INTEGER.  The dimension of the array work.
lwork ≥ max(1,n). If lwork = -1, then a workspace query is assumed; the 
routine only calculates the optimal size of the work array, returns this value as 
the first entry of the work array, and no error message related to lwork is 
issued by xerbla. 

Output Parameters

w COMPLEX for chseqr 
DOUBLE COMPLEX for zhseqr.
Array, DIMENSION at least max (1, n). 
Contains the computed eigenvalues, unless info>0. The eigenvalues are 
stored in the same order as on the diagonal of the Schur form T (if computed).

wr, wi REAL for shseqr 
DOUBLE PRECISION for dhseqr 
Arrays, DIMENSION at least max (1, n) each. 
Contain the real and imaginary parts, respectively, of the computed 
eigenvalues, unless info > 0. Complex conjugate pairs of eigenvalues appear 
consecutively with the eigenvalue having positive imaginary part first. The 
eigenvalues are stored in the same order as on the diagonal of the Schur form T 
(if computed).

z If compz ='V' or 'I', then z contains the unitary (orthogonal) matrix of the 
required Schur vectors, unless info > 0.
If compz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the optimal lwork.
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info > 0, the algorithm has failed to find all the eigenvalues after a total 
30(ihi−ilo+1) iterations. If info = i, elements 1,2, ..., ilo−1 and i+1, i+2, ..., 
n of wr and wi contain the real and imaginary parts of the eigenvalues which 
have been found.

Application Notes

The computed Schur factorization is the exact factorization of a nearby matrix H + E, where
||E||2 < O(ε) ||H||2/si, and ε is the machine precision.
If λi is an exact eigenvalue, and µi is the corresponding computed value, then |λi − µi| ≤ c(n)ε 
||H||2/si where c(n) is a modestly increasing function of n, and si is the reciprocal condition
number of λi. You can compute the condition numbers si by calling ?trsna (see page 4-196).

The total number of floating-point operations depends on how rapidly the algorithm converges; 
typical numbers are as follows.

If only eigenvalues are computed:                         7n3 for real flavors 
25n3 for complex flavors.

If the Schur form is computed:                         10n3 for real flavors
35n3 for complex flavors.

If the full Schur factorization is computed:           20n3 for real flavors 
70n3 for complex flavors.
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?hsein           
Computes selected eigenvectors of an upper 
Hessenberg matrix that correspond to specified 
eigenvalues.

Syntax
call shsein ( job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,

ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info )

call dhsein ( job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info )

call chsein ( job, eigsrc, initv, select, n, h, ldh, w, vl,
ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info )

call zhsein ( job, eigsrc, initv, select, n, h, ldh, w, vl,
ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info )

Description

This routine computes left and/or right eigenvectors of an upper Hessenberg matrix H, 
corresponding to selected eigenvalues.

The right eigenvector x and the left eigenvector y, corresponding to an eigenvalue λ, are defined 
by: Hx = λx and yHH = λyH (or HHy = λ∗ y). 
Here λ∗  denotes the conjugate of λ.

The eigenvectors are computed by inverse iteration. They are scaled so that, for a real eigenvector 
x, max|xi| = 1, and for a complex eigenvector, max(|Rexi| + |Imxi|) = 1.

If H has been formed by reduction of a general matrix A to upper Hessenberg form, then 
eigenvectors of H may be transformed to eigenvectors of A by ?ormhr (page 4-170) or ?unmhr 
(page 4-175).

Input Parameters

job CHARACTER*1. Must be 'R' or 'L' or 'B'.
If job ='R', then only right eigenvectors are computed.
If job ='L', then only left eigenvectors are computed.
If job ='B', then all eigenvectors are computed.
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eigsrc CHARACTER*1. Must be 'Q' or 'N'.
If eigsrc ='Q', then the eigenvalues of H were found using ?hseqr (see
page 4-183); thus if H has any zero sub-diagonal elements (and so is block
triangular), then the jth eigenvalue can be assumed to be an eigenvalue of the
block containing the jth row/column. This property allows the routine to
perform inverse iteration on just one diagonal block.
If eigsrc ='N', then no such assumption is made and the routine performs
inverse iteration using the whole matrix.

initv CHARACTER*1. Must be 'N' or 'U'.
If initv ='N', then no initial estimates for the selected eigenvectors are
supplied.
If initv ='U', then initial estimates for the selected eigenvectors are supplied
in vl and/or vr.

select LOGICAL.
Array, DIMENSION at least max (1, n). 
Specifies which eigenvectors are to be computed.
For real flavors:
To obtain the real eigenvector corresponding to the real eigenvalue wr(j), set 
select(j) to .TRUE. 
To select the complex eigenvector corresponding to the complex eigenvalue 
(wr(j),wi(j)) with complex conjugate (wr(j+1),wi(j+1)), set 
select(j) and/or select(j+1) to .TRUE.; the eigenvector corresponding to 
the first eigenvalue in the pair is computed. 
For complex flavors:
To select the eigenvector corresponding to the eigenvalue w(j), set 
select(j) to .TRUE.

n INTEGER.  The order of the matrix H (n ≥ 0). 

h,vl,vr,work REAL for shsein 
DOUBLE PRECISION for dhsein 
COMPLEX for chsein 
DOUBLE COMPLEX for zhsein.
Arrays: 
h(ldh,*) The n by n upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

vl(ldvl,*) 
If initv ='V' and job ='L' or 'B', then vl must contain starting vectors for 
inverse iteration for the left eigenvectors. Each starting vector must be stored in 
the same column or columns as will be used to store the corresponding 
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eigenvector.
If initv ='N', then vl need not be set.
The second dimension of vl must be at least max(1, mm) if job ='L' or 'B' 
and at least 1 if job ='R'.
The array vl is not referenced if job ='R'.

vr(ldvr,*) 
If initv ='V' and job ='R' or 'B', then vr must contain starting vectors for 
inverse iteration for the right eigenvectors. Each starting vector must be stored 
in the same column or columns as will be used to store the corresponding 
eigenvector.
If initv ='N', then vr need not be set.
The second dimension of vr must be at least max(1, mm) if job ='R' or 'B' 
and at least 1 if job ='L'.
The array vr is not referenced if job ='L'.

work(*) is a workspace array.
DIMENSION at least max (1, n*(n+2)) for real flavors and at least max (1, n*n) 
for complex flavors.

ldh INTEGER.  The first dimension of h; at least max(1, n).

w COMPLEX for chsein 
DOUBLE COMPLEX for zhsein.
Array, DIMENSION at least max (1, n). 
Contains the eigenvalues of the matrix H.
If eigsrc ='Q', the array must be exactly as returned by ?hseqr.

wr, wi REAL for shsein 
DOUBLE PRECISION for dhsein 
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the eigenvalues of the 
matrix H. Complex conjugate pairs of values must be stored in consecutive 
elements of the arrays. If eigsrc ='Q', the arrays must be exactly as returned 
by ?hseqr.

ldvl INTEGER.  The first dimension of vl.
If job ='L' or 'B', ldvl ≥ max(1,n).
If job ='R', ldvl ≥ 1.

ldvr INTEGER.  The first dimension of vr.
If job ='R' or 'B', ldvr ≥ max(1,n).
If job ='L', ldvr ≥ 1.
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mm INTEGER.  The number of columns in vl and/or vr. 
Must be at least m, the actual number of columns required (see Output 
Parameters below).
For real flavors, m is obtained by counting 1 for each selected real eigenvector 
and 2 for each selected complex eigenvector (see select).
For complex flavors, m is the number of selected eigenvectors (see select). 
Constraint: 0 ≤ mm ≤ n.

rwork REAL for chsein
DOUBLE PRECISION for zhsein.
Array, DIMENSION at least max (1, n).

Output Parameters

select Overwritten for real flavors only. If a complex eigenvector was selected as 
specified above, then select(j) is set to .TRUE. and select(j+1) 
to .FALSE.

w The real parts of some elements of w may be modified, as close eigenvalues are 
perturbed slightly in searching for independent eigenvectors.

wr Some elements of wr may be modified, as close eigenvalues are perturbed 
slightly in searching for independent eigenvectors.

vl, vr If job ='L' or 'B', vl contains the computed left eigenvectors (as specified 
by select). 
If job ='R' or 'B', vr contains the computed right eigenvectors (as specified 
by select).

The eigenvectors are stored consecutively in the columns of the array, in the 
same order as their eigenvalues.
For real flavors: a real eigenvector corresponding to a selected real eigenvalue 
occupies one column; 
a complex eigenvector corresponding to a selected complex eigenvalue 
occupies two columns: the first column holds the real part and the second 
column holds the imaginary part.

m INTEGER. For real flavors: the number of columns of vl and/or vr required to 
store the selected eigenvectors.
For complex flavors: the number of selected  eigenvectors.

ifaill,ifailr INTEGER.
Arrays, DIMENSION at least max(1, mm) each.
ifaill(i) = 0 if the ith column of vl converged; 
ifaill(i) = j > 0 if the eigenvector stored in the ith column of vl 
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(corresponding to the jth eigenvalue) failed to converge. 
ifailr(i) = 0 if the ith column of vr converged; 
ifailr(i) = j > 0 if the eigenvector stored in the ith column of vr 
(corresponding to the jth eigenvalue) failed to converge. 
For real flavors: if the ith and (i+1)th columns of vl contain a selected 
complex eigenvector, then ifaill(i) and ifaill(i+1) are set to the same 
value. A similar rule holds for vr and ifailr.

The array ifaill is not referenced if job ='R'.
The array ifailr is not referenced if job ='L'.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info > 0, then i eigenvectors (as indicated by the parameters ifaill and/or 
ifailr above) failed to converge. The corresponding columns of vl and/or 
vr contain no useful information.

Application Notes

Each computed right eigenvector xi is the exact eigenvector of a nearby matrix A + Ei, such that 
||Ei|| < O(ε)||A||. Hence the residual is small: 
||Axi − λixi|| = O(ε)||A||.

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span 
the relevant subspaces.

Similar remarks apply to computed left eigenvectors.
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?trevc          
Computes selected eigenvectors of an upper (quasi-) 
triangular matrix computed by ?hseqr.

Syntax
call strevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,

mm, m, work, info )

call dtrevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, info )

call ctrevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, rwork, info )

call ztrevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, rwork, info )

Description

This routine computes some or all of the right and/or left eigenvectors of an upper triangular  
matrix T (or, for real flavors, an upper quasi-triangular matrix T). Matrices of this type are 
produced by the Schur factorization of a general matrix:  A = Q T QH, as computed by ?hseqr (see 
page 4-183).

The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w, are 
defined by: 
            T x = w x  ,         yHT = w yH  
where yH denotes the conjugate transpose of y.

The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of T.

This routine returns the matrices X and/or Y of right and left eigenvectors of T, or the products Q X 
and/or Q Y, where Q is an input matrix.  
If Q is the orthogonal/unitary factor that reduces a matrix A to Schur form T, then Q X and Q Y are 
the matrices of right and left eigenvectors of A.

Input Parameters

side CHARACTER*1. Must be 'R' or 'L' or 'B'.
If side ='R', then only right eigenvectors are computed.
If side ='L', then only left eigenvectors are computed.
If side ='B', then all eigenvectors are computed.
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howmny CHARACTER*1. Must be 'A' or 'B' or 'S'.
If howmny ='A', then all eigenvectors (as specified by side) are computed.
If howmny ='B', then all eigenvectors (as specified by side) are computed
and backtransformed by the matrices supplied in vl and vr .
If howmny ='S', then selected eigenvectors (as specified by side and
select) are computed.

select LOGICAL.
Array, DIMENSION at least max (1, n).
If howmny='S', select specifies which eigenvectors are to be computed.
If howmny= 'A'or 'B', select is not referenced.
For real flavors:
If ωj is a real eigenvalue, the corresponding real eigenvector is computed if 
select(j) is .TRUE.. 
If ωj and ωj+1 are the real and imaginary parts of a complex eigenvalue, the 
corresponding complex eigenvector is computed if either select(j) or 
select(j+1) is .TRUE. , and on exit select(j) is set to .TRUE.and  
select(j+1) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the j-th eigenvalue  is computed if select(j) 
is .TRUE.. 

n INTEGER.  The order of the matrix T (n ≥ 0). 

t,vl,vr,work REAL for strevc 
DOUBLE PRECISION for dtrevc 
COMPLEX for ctrevc 
DOUBLE COMPLEX for ztrevc.
Arrays: 
t(ldt,*) contains the n by n matrix T in Schur canonical form.
The second dimension of t must be at least max(1, n).

vl(ldvl,*) 
If howmny ='B' and side ='L' or 'B', then vl must contain an n by n matrix 
Q (usually the matrix of Schur vectors returned by ?hseqr).
If howmny ='A' or 'S', then vl need not be set.
The second dimension of vl must be at least max(1, mm) if side ='L' or 'B' 
and at least 1 if side ='R'.
The array vl is not referenced if side ='R'.

vr (ldvr,*) 
If howmny ='B' and side ='R' or 'B', then vr must contain an n by n matrix 
Q (usually the matrix of Schur vectors returned by ?hseqr). .
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If howmny ='A' or 'S', then vr need not be set.
The second dimension of vr must be at least max(1, mm) if side ='R' or 'B' 
and at least 1 if side ='L'.
The array vr is not referenced if side ='L'.

work(*) is a workspace array.
DIMENSION at least max (1, 3*n) for real flavors and 
at least max (1, 2*n) for complex flavors.

ldt INTEGER.  The first dimension of t; at least max(1, n).

ldvl INTEGER.  The first dimension of vl.
If side ='L' or 'B', ldvl ≥ max(1,n).
If side ='R', ldvl ≥ 1.

ldvr INTEGER.  The first dimension of vr.
If side ='R' or 'B', ldvr ≥ max(1,n).
If side ='L', ldvr ≥ 1.

mm INTEGER. The number of columns in the arrays vl and/or vr. Must be at least 
m (the precise number of columns required). If howmny ='A' or 'B',  m = n.
If howmny ='S': for real flavors, m is obtained by counting 1 for each selected 
real eigenvector and 2 for each selected complex eigenvector;

for complex flavors, m is the number of selected eigenvectors (see select). 
Constraint: 0 ≤ m ≤ n.

rwork REAL for ctrevc  
DOUBLE PRECISION for ztrevc.
Workspace array, DIMENSION at least max (1, n).

Output Parameters

select If a complex eigenvector of a real matrix was selected as specified above, then 
select(j) is set to .TRUE. and select(j+1) to .FALSE. 

vl,vr If side ='L' or 'B', vl contains the computed left eigenvectors (as specified 
by howmny and select). 
If side ='R' or 'B', vr contains the computed right eigenvectors (as 
specified by howmny and select).

The eigenvectors are stored consecutively in the columns of the array, in the 
same order as their eigenvalues.
For real flavors: corresponding to each real eigenvalue is a real eigenvector, 
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occupying one column; corresponding to each complex conjugate pair of 
eigenvalues is a complex eigenvector, occupying two columns; the first column 
holds the real part and the second column holds the imaginary part.

m INTEGER. 
For complex flavors: the number of selected eigenvectors. If howmny ='A' or 
'B',  m is set to n. 
For real flavors: the number of columns of vl and/or vr actually used to store 
the selected eigenvectors. 
If howmny ='A' or 'B',  m is set to n.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

If xi is an exact right eigenvector and yi is the corresponding computed eigenvector, then the angle 
θ(yi,xi) between them is bounded as follows: θ(yi,xi) ≤ (c(n)ε||T||2)/sepi where sepi is the 
reciprocal condition number 
of xi. The condition number sepi may be computed by calling ?trsna.
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?trsna          
Estimates condition numbers for specified eigenvalues and 
right eigenvectors of an upper (quasi-) triangular matrix.

Syntax
call strsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,

s, sep, mm, m, work, ldwork, iwork, info )

call dtrsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, iwork, info )

call ctrsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, rwork, info )

call ztrsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, rwork, info )

Description

This routine estimates condition numbers for specified eigenvalues and/or right eigenvectors of an 
upper triangular matrix T (or, for real flavors, upper quasi-triangular matrix T in canonical Schur 
form). These are the same as the condition numbers of the eigenvalues and right eigenvectors of an 
original matrix A = ZTZH (with unitary or, for real flavors, orthogonal Z), from which T may have 
been derived.

The routine computes the reciprocal of the condition number of an eigenvalue λi as  si = 
|vHu|/(||u||E||v||E), where u and v are the right and left eigenvectors of T, respectively, 
corresponding to λi. This reciprocal condition number always lies between zero (ill-conditioned) 
and one (well-conditioned). 

An approximate error estimate for a computed eigenvalue λi is then given by ε||T||/si, where ε is 
the machine precision.

To estimate the reciprocal of the condition number of the right eigenvector corresponding to λi, the 
routine first calls ?trexc (see page 4-201) to reorder the eigenvalues so that λi is in the leading 
position:

T Q λi C
H

0 T22

Q
H

=



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-197

The reciprocal condition number of the eigenvector is then estimated as  sepi, the smallest singular 
value of the matrix T22 − λiI. This number ranges from zero (ill-conditioned) to very large 
(well-conditioned).

An approximate error estimate for a computed right eigenvector u corresponding to λi is then 
given by ε ||T||/sepi.

Input Parameters

job CHARACTER*1. Must be 'E' or 'V' or 'B'.
If job ='E', then condition numbers for eigenvalues only are computed.
If job ='V', then condition numbers for eigenvectors only are computed.
If job ='B', then condition numbers for both eigenvalues and eigenvectors are
computed.

howmny CHARACTER*1. Must be 'A' or 'S'.
If howmny ='A', then the condition numbers for all eigenpairs are computed.
If howmny ='S', then condition numbers for selected eigenpairs (as specified
by select) are computed.

select LOGICAL.
Array, DIMENSION at least max (1, n) if howmny ='S' and at least 1 otherwise.
Specifies the eigenpairs for which condition numbers are to be computed if
howmny= 'S'.
For real flavors:
To select condition numbers for the eigenpair corresponding to the real
eigenvalue λj, select(j) must be set .TRUE.; to select condition numbers for
the eigenpair corresponding to a complex conjugate pair of eigenvalues λj and
λj+1, select(j) and/or select(j+1) must be set .TRUE.
For complex flavors:
To select condition numbers for the eigenpair corresponding to the eigenvalue
λj, select(j) must be set .TRUE.
select is not referenced if howmny ='A'.

n INTEGER.  The order of the matrix T (n ≥ 0). 

t,vl,vr,work REAL for strsna 
DOUBLE PRECISION for dtrsna 
COMPLEX for ctrsna 
DOUBLE COMPLEX for ztrsna.
Arrays: 
t(ldt,*) contains the n by n matrix T .
The second dimension of t must be at least max(1, n).
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vl(ldvl,*) 
If job ='E' or 'B', then vl must contain the left eigenvectors of T (or of any 
matrix QTQH with Q unitary or orthogonal) corresponding to the eigenpairs 
specified by howmny and select. The eigenvectors must be stored in 
consecutive columns of vl, as returned by ?trevc or ?hsein.
The second dimension of vl must be at least max(1, mm) if job ='E' or 'B' 
and at least 1 if job ='V'.
The array vl is not referenced if job ='V'.

vr(ldvr,*) 
If job ='E' or 'B', then vr must contain the right eigenvectors of T (or of any 
matrix QTQH with Q unitary or orthogonal) corresponding to the eigenpairs 
specified by howmny and select. The eigenvectors must be stored in 
consecutive columns of vr, as returned by ?trevc or ?hsein.
The second dimension of vr must be at least max(1, mm) if job ='E' or 'B' 
and at least 1 if job ='V'.
The array vr is not referenced if job ='V'.

work(ldwork,*) is a workspace array.
The second dimension of work must be 
at least max(1, n+1) for complex flavors and 
at least max(1, n+6) for real flavors if job ='V' or 'B'; at least 1 if job ='E'.
The array work is not referenced if job ='E'.

ldt INTEGER.  The first dimension of t; at least max(1, n).

ldvl INTEGER.  The first dimension of vl.
If job ='E' or 'B', ldvl≥max(1,n).
If  job ='V', ldvl≥1.

ldvr INTEGER.  The first dimension of vr.
If job ='E' or'B', ldvr≥max(1,n).
If job ='R', ldvr≥1.

mm INTEGER.  The number of elements in the arrays s and sep, and the number of 
columns in vl and vr (if used).  Must be at least m (the precise number 
required). 
If howmny ='A', m = n; 
if howmny ='S', for real flavors m is obtained by counting 1 for each selected 
real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues.
for complex flavors m is the number of selected eigenpairs (see select). 
Constraint: 0 ≤ m ≤ n.
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ldwork INTEGER.  The first dimension of work.
If job ='V' or 'B', ldwork ≥ max(1,n).
If  job ='E', ldwork ≥ 1.

rwork REAL for ctrsna,  ztrsna.
Array, DIMENSION at least max (1, n).

iwork INTEGER for strsna,  dtrsna.
Array, DIMENSION at least max (1, n).

Output Parameters

s REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, mm) if job ='E' or 'B' and at least 1 if job 
='V'.
Contains the reciprocal condition numbers of the selected eigenvalues if job 
='E' or 'B', stored in consecutive elements of the array. Thus s(j), sep(j) and 
the jth columns of vl and vr all correspond to the same eigenpair (but not in 
general the jth eigenpair unless all eigenpairs have been selected). For real 
flavors: For a complex conjugate pair of eigenvalues, two consecutive elements 
of S are set to the same value.
The array s is not referenced if job ='V'.

sep REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, mm) 
if job ='V' or 'B' and at least 1 if job ='E'.
Contains the estimated reciprocal condition numbers of the selected right 
eigenvectors if job ='V' or 'B', stored in consecutive elements of the array. 
For real flavors: for a complex eigenvector, two consecutive elements of sep 
are set to the same value; if the eigenvalues cannot be reordered to compute 
sep(j), then sep(j) is set to zero; this can only occur when the true value would 
be very small anyway.
The array sep is not referenced if job ='E'.

m INTEGER. 
For complex flavors: the number of selected eigenpairs. If howmny ='A', m is 
set to n. 
For real flavors: the number of elements of s and/or sep actually used to store 
the estimated condition numbers. If howmny ='A', m is set to n.
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed values sepi may overestimate the true value, but seldom by a factor of more than 3.
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?trexc           
Reorders the Schur factorization of a general matrix.

Syntax
call strexc ( compq, n, t, ldt, q, ldq, ifst, ilst, work, info )

call dtrexc ( compq, n, t, ldt, q, ldq, ifst, ilst, work, info )

call ctrexc ( compq, n, t, ldt, q, ldq, ifst, ilst, info )

call ztrexc ( compq, n, t, ldt, q, ldq, ifst, ilst, info )

Description

This routine reorders the Schur factorization of a general matrix A= QTQH, so that the diagonal 
element or block of T with row index ifst is moved to row ilst.

The reordered Schur form S is computed by an unitary (or, for real flavors, orthogonal)  similarity 
transformation: S = ZHTZ. Optionally the updated matrix P of Schur vectors is computed as P = 
QZ, giving A=PSPH.

Input Parameters

compq CHARACTER*1. Must be 'V' or 'N'.
If compq ='V', then the Schur vectors (Q) are updated.
If compq ='N', then no Schur vectors are updated.

n INTEGER.  The order of the matrix T (n ≥ 0).

t, q REAL for strexc 
DOUBLE PRECISION for dtrexc 
COMPLEX for ctrexc 
DOUBLE COMPLEX for ztrexc.
Arrays: 
t(ldt,*) contains the n by n matrix T.
The second dimension of t must be at least max(1, n).

q(ldq,*) 
If compq ='V', then q must contain Q (Schur vectors).
If compq ='N', then q is not referenced.

The second dimension of q must be at least max(1, n) 
if compq ='V' and at least 1 if compq ='N'.
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ldt INTEGER.  The first dimension of t; at least max(1, n).

ldq INTEGER.  The first dimension of q; 
If compq ='N', then ldq≥1.
If compq ='V', then ldq≥max(1,n).

ifst, ilst INTEGER.  1 ≤ ifst ≤ n; 1 ≤ ilst ≤ n.
Must specify the reordering of the diagonal elements (or blocks, which is 
possible for real flavors) of the matrix T. The element (or block) with row 
index ifst is moved to row ilst by a sequence of exchanges between 
adjacent elements (or blocks).

work REAL for strexc 
DOUBLE PRECISION for dtrexc.
Array, DIMENSION at least max (1, n). 

Output Parameters

t Overwritten by the updated matrix S.

q If compq ='V',  q contains the updated matrix of Schur vectors.

ifst, ilst Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to 
point to the first row; ilst always points to the first row of the block in its 
final position (which may differ from its input value by ±1).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix S is exactly similar to a matrix T + E, where 
||E||2 = O(ε) ||T||2, and ε is the machine precision.

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in 
general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the 
block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for 
a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become 
purely real. 

The values of  eigenvalues however are never changed by the re-ordering.

The approximate number of floating-point operations is
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for real flavors: 6n(ifst−ilst)    if compq ='N';
12n(ifst−ilst)  if compq ='V'; 

for complex flavors: 20n(ifst−ilst)  if compq ='N';
40n(ifst−ilst)  if compq ='V'.

?trsen          
Reorders the Schur factorization of a matrix and (optionally) 
computes the reciprocal condition numbers and invariant 
subspace for the selected cluster of eigenvalues.

Syntax
call strsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,

sep, work, lwork, iwork, liwork, info)

call dtrsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
sep, work, lwork, iwork, liwork, info)

call ctrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
sep, work, lwork, info)

call ztrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
sep, work, lwork, info)

Description

This routine reorders the Schur factorization of a general matrix A = QTQH so that a selected 
cluster of eigenvalues appears in the leading diagonal elements (or, for real flavors, diagonal 
blocks) of the Schur form.
The reordered Schur form R is computed by an unitary(orthogonal) similarity transformation: R = 
ZHTZ. Optionally the updated matrix P of Schur vectors is computed as P = QZ, giving A =PRPH.

Let  

           

where the selected eigenvalues are precisely the eigenvalues of the leading m by m submatrix T11. 
Let P be correspondingly partitioned as (Q1 Q2) where Q1 consists of the first m columns of Q. 
Then AQ1 = Q1T11, and so the m columns of Q1 form an orthonormal basis for the invariant 
subspace corresponding to the selected cluster of eigenvalues.

R
T11 T12

0 T13

=
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Optionally the routine also computes estimates of the reciprocal condition numbers of the average 
of the cluster of eigenvalues and of the invariant subspace.

Input Parameters

job CHARACTER*1. Must be 'N' or 'E' or 'V' or 'B'.
If job ='N', then no condition numbers are required.
If job ='E', then only the condition number for the cluster of eigenvalues is
computed.
If job ='V', then only the condition number for the invariant subspace is
computed.
If job ='B', then condition numbers for both the cluster and the invariant
subspace are computed.

compq CHARACTER*1. Must be 'V' or 'N'.
If compq ='V', then Q of the Schur vectors is updated.
If compq ='N', then no Schur vectors are updated.

select LOGICAL.
Array, DIMENSION at least max (1, n).
Specifies the eigenvalues in the selected cluster.
To select an eigenvalue λj, select(j) must be .TRUE. For real flavors: to
select a complex conjugate pair of eigenvalues λj and λj+1(corresponding 2 by
2 diagonal block), select(j) and/or select(j+1) must be .TRUE.; the
complex conjugate λj and λj+1 must be either both included in the cluster or
both excluded.

n INTEGER.  The order of the matrix T (n ≥ 0). 

t, q, work REAL for strsen 
DOUBLE PRECISION for dtrsen 
COMPLEX for ctrsen 
DOUBLE COMPLEX for ztrsen.
Arrays: 
t (ldt,*) The n by n T.
The second dimension of t must be at least max(1, n).

q (ldq,*) 
If compq ='V', then q must contain Q of Schur vectors.
If compq ='N', then q is not referenced.
The second dimension of q must be at least max(1, n) if compq ='V' and at 
least 1 if compq ='N'.
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work (lwork) is a workspace array.
For complex flavors: the array work is not referenced if job ='N'.
The actual amount of workspace required cannot exceed n2/4 if job ='E' or 
n2/2 if job ='V' or 'B'.

ldt INTEGER.  The first dimension of t; at least max(1, n).

ldq INTEGER.  The first dimension of q; 
If compq ='N', then ldq ≥ 1.
If compq ='V', then ldq ≥ max(1,n).

lwork INTEGER.  The dimension of the array work.
If job ='V' or 'B', lwork ≥ max(1,2m(n−m)).
If job ='E', then lwork ≥ max(1,m(n−m))
If job ='N', then lwork ≥ 1 for complex flavors and lwork ≥ max(1,n) for 
real flavors.

iwork INTEGER.
iwork(liwork) is a workspace array.
The array iwork is not referenced if job ='N'or 'E'.
The actual amount of workspace required cannot exceed n2/2  if job ='V' or 
'B'.

liwork INTEGER.  
The dimension of the array iwork.
If job ='V' or 'B', liwork ≥ max(1,2m(n−m)).
If job ='E' or 'E', liwork ≥ 1.

Output Parameters

t Overwritten by the updated matrix R.

q If compq ='V',  q contains the updated matrix of Schur vectors; the first m 
columns of the Q form an orthogonal basis for the specified invariant subspace.

w COMPLEX for ctrsen 
DOUBLE COMPLEX for ztrsen.
Array, DIMENSION at least max(1,n).
The recorded eigenvalues of R. The eigenvalues are stored in the same order as 
on the diagonal of R.

wr, wi REAL for strsen 
DOUBLE PRECISION for dtrsen 
Arrays, DIMENSION at least max(1,n).
Contain the real and imaginary parts, respectively, of the reordered eigenvalues 
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of R. The eigenvalues are stored in the same order as on the diagonal of R. Note 
that if a complex eigenvalue is sufficiently ill-conditioned, then its value may 
differ significantly from its value before reordering.

m INTEGER. 
For complex flavors: the number of the specified invariant subspaces, which is 
the same as the number of  selected eigenvalues (see select). 
For real flavors: the dimension of the specified invariant subspace. The value 
of m is obtained by counting 1 for each selected real eigenvalue and 2 for each 
selected complex conjugate pair of eigenvalues (see select). 

Constraint: 0 ≤ m ≤ n.

s REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
If job ='E' or 'B', s is a lower bound on the reciprocal condition number of 
the average of the selected cluster of eigenvalues. If m = 0 or n, then s = 1.
For real flavors: if info = 1, then s is set to zero.
s is not referenced if job ='N' or 'V'.

sep REAL for single-precision flavors 
DOUBLE PRECISION for double-precision flavors.
If job ='V' or 'B', sep is the estimated reciprocal condition number of the 
specified invariant subspace. 
If m = 0 or n, then sep = ||T||.
For real flavors: if info = 1, then sep is set to zero.
sep is not referenced if job ='N' or 'E'.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix R is exactly similar to a matrix T + E, where 
||E||2 = O(ε)||T||2, and ε is the machine precision.
The computed s cannot underestimate the true reciprocal condition number by more than a factor 
of (min(m, n-m))1/2; sep may differ from the true value by (m*n-m2)1/2. The angle between the 
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computed invariant subspace and the true subspace is O(ε) ||A||2/sep.
Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in 
general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the 
block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for 
a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become 
purely real. The values of  eigenvalues however are never changed by the re-ordering.

?trsyl            
Solves Sylvester’s equation for real quasi-triangular or 
complex triangular matrices.

Syntax
call strsyl ( trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info )

call dtrsyl ( trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info )

call ctrsyl ( trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info )

call ztrsyl ( trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info )

Description

This routine solves the Sylvester matrix equation op(A)X ± Xop(B) = αC, where op(A) = A or AH,
and the matrices A and B are upper triangular (or, for real flavors, upper quasi-triangular in
canonical Schur form); α ≤ 1 is a scale factor determined by the routine to avoid overflow in X; A is
m by m, B is n by n, and C and X are both m by n. The matrix X is obtained by a straightforward
process of back substitution.

The equation has a unique solution if and only if αi ± βi ≠ 0, where {α i}  and {β i}  are the 
eigenvalues of A and B, respectively, and the sign (+ or −) is the same as that used in the equation to 
be solved.

Input Parameters

trana CHARACTER*1. Must be 'N' or 'T' or 'C'.
If trana = 'N', then op(A) = A.
If trana = 'T', then op(A) = AT (real flavors only).
If trana = 'C' then op(A) = AH.
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tranb CHARACTER*1. Must be 'N' or 'T' or 'C'.
If tranb = 'N', then op(B) = B.
If tranb = 'T', then op(B) = BT (real flavors only).
If tranb = 'C', then op(B) = BH.

isgn INTEGER. Indicates the form of the Sylvester equation.
If isgn = +1, op(A)X + Xop(B) = αC.
If isgn = −1, op(A)X − Xop(B) = αC.

m INTEGER. The order of A, and the number of rows in X and C (m ≥ 0).

n INTEGER. The order of B, and the number of columns in X and C (n ≥ 0).

a, b, c REAL for strsyl
DOUBLE PRECISION for dtrsyl
COMPLEX for ctrsyl
DOUBLE COMPLEX for ztrsyl.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldc INTEGER. The first dimension of c; at least max(1, n).

Output Parameters

c Overwritten by the solution matrix X.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The value of the scale factor α.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

If info = 1, A and B have common or close eigenvalues perturbed values were
used to solve the equation.
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Application Notes

Let X be the exact, Y the corresponding computed solution, and R the residual matrix: R = C − (AY 
± YB). Then the residual is always small:

          ||R||F = O(ε) (||A||F + ||B||F) ||Y||F .

However, Y is not necessarily the exact solution of a slightly perturbed equation; in other words, 
the solution is not backwards stable.

For the forward error, the following bound holds:

          ||Y − X||F ≤ ||R||F/sep(A, B) 

but this may be a considerable overestimate. See [Golub96]  for a definition of sep(A, B).

The approximate number of floating-point operations for real flavors is m*n*(m + n). For complex
flavors it is 4 times greater.
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Generalized Nonsymmetric Eigenvalue Problems                    

This section describes LAPACK routines for solving generalized nonsymmetric eigenvalue 
problems, reordering the generalized Schur factorization of a pair of matrices, as well as 
performing a number of related computational tasks.  

A generalized nonsymmetric eigenvalue problem is as follows: given a pair of nonsymmetric (or 
non-Hermitian) n-by-n matrices  A and B, find the generalized eigenvalues λ and the 
corresponding generalized eigenvectors x and y that satisfy the equations

Ax = λBx   (right generalized eigenvectors  x)

and

yHA = λyHB  (left generalized eigenvectors y). 

Table 4-6 lists LAPACK routines used to solve the generalized nonsymmetric eigenvalue problems 
and the generalized Sylvester 
equation.    

Table 4-6 Computational Routines for Solving Generalized Nonsymmetric Eigenvalue 
Problems

Routine 
name 

Operation performed

?gghrd Reduces a pair of matrices to generalized upper Hessenberg form using 
orthogonal/unitary transformations.

?ggbal Balances a pair of general real or complex matrices.

?ggbak Forms the right or left eigenvectors of a generalized eigenvalue problem.

?hgeqz Implements the QZ method for finding the generalized eigenvalues of the matrix 
pair (H,T).

?tgevc Computes some or all of the right and/or left generalized eigenvectors of a pair 
of upper triangular matrices

?tgexc Reorders the generalized Schur decomposition of a pair of matrices (A,B) so 
that one diagonal block of (A,B) moves to another row index.

?tgsen Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that 
a selected cluster of eigenvalues appears in the leading diagonal blocks of (A,B).

?tgsyl Solves the generalized Sylvester equation.

?tgsna Estimates reciprocal condition numbers for specified eigenvalues and/or 
eigenvectors of a pair of matrices in generalized real Schur canonical form.
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?gghrd 
Reduces a pair of matrices to generalized upper 
Hessenberg form using orthogonal/unitary 
transformations.

Syntax
call sgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,

z, ldz, info )

call dgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info )

call cgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info )

call zgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info )

Description

This routine reduces a pair of real/complex matrices (A,B) to generalized upper Hessenberg form 
using orthogonal/unitary transformations, where A is a general matrix and B is upper triangular.  
The form of the generalized eigenvalue problem is   Ax = λBx,   and B is typically made upper 
triangular by computing its QR factorization and moving the orthogonal matrix Q to the left side of 
the equation. 
This routine simultaneously reduces A to a Hessenberg matrix H:
            QH A  Z = H
and transforms B to another upper triangular matrix T: 
           QH B  Z = T
in order to reduce the problem to its standard form  Hy = λTy  where 
y = ZH x .  

The orthogonal/unitary matrices Q and Z are determined as products of Givens rotations.  They 
may either be formed explicitly, or they may be postmultiplied into input matrices Q1 and Z1, so 
that 

   Q1  A  Z1
H = (Q1Q)  H  (Z1Z)H

   Q1 B  Z1
H = (Q1Q)  T  (Z1Z)H

If Q1  is the orthogonal matrix from the QR factorization of B in the original equation  Ax = λBx , 
then ?gghrd reduces the original problem to generalized Hessenberg form.
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Input Parameters
compq CHARACTER*1.  Must be 'N', 'I', or 'V'.

If compq = 'N',  matrix Q is not computed.
If compq = 'I', Q is initialized to the unit matrix, and the orthogonal/unitary 
matrix Q is returned;
If compq = 'V', Q must contain an orthogonal/unitary matrix Q1 on entry, and 
the product Q1Q is returned.

compz CHARACTER*1.  Must be 'N', 'I', or 'V'.
If compz = 'N',  matrix Z is not computed.

If compz = 'I', Z is initialized to the unit matrix, and the orthogonal/unitary 
matrix Z is returned;
If compz = 'V', Z must contain an orthogonal/unitary matrix Z1 on entry, and 
the product Z1Z is returned.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ilo, ihi INTEGER.  ilo and ihi mark the rows and columns of A which are to be 
reduced. It is assumed that A is already upper triangular in rows and columns 
1:ilo-1 and ihi+1:n. Values of ilo and ihi are normally set by a previous 
call to ?ggbal; otherwise they should be set to 1 and n respectively. 
Constraint:
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n; 
if n = 0, then ilo = 1 and ihi = 0.

a, b, q, z REAL for sgghrd
DOUBLE PRECISION for dgghrd
COMPLEX for cgghrd
DOUBLE COMPLEX for zgghrd.
Arrays:
a(lda,*) contains the n-by-n general matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the n-by-n upper triangular matrix B. 
The second dimension of b must be at least max(1, n).

q (ldq,*) 
If compq ='N', then q  is not referenced.
If compq ='I', then, on entry, q need not be set.
If compq ='V', then q  must contain the orthogonal/unitary matrix Q1, 
typically from the QR factorization of B.
The second dimension of q must be at least max(1, n).
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z (ldz,*) 
If compq ='N', then z  is not referenced.
If compq ='I', then, on entry, z need not be set.
If compq ='V', then z  must contain the orthogonal/unitary matrix Z1.
The second dimension of z must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldq INTEGER.  The first dimension of q; 
If compq ='N', then ldq ≥ 1.
If compq ='I'or 'V', then ldq ≥ max(1,n).

ldz INTEGER.  The first dimension of z; 
If compq ='N', then ldz ≥ 1.
If compq ='I'or 'V', then ldz ≥ max(1,n).

Output Parameters

a On exit, the upper triangle and the first subdiagonal of A are overwritten with 
the upper Hessenberg matrix H, and the rest is set to zero.

b On exit, overwritten by the upper triangular matrix 
T = QH B  Z. The elements below the diagonal are set to zero.

q If compq ='I', then q contains the orthogonal/unitary matrix Q, where QH is 
the product of the Givens transformations  which are applied to A and B on the 
left;
If compq ='V', then q  is overwritten by the 
product Q1Q.

z If compq ='I', then z contains the orthogonal/unitary matrix Z, which is the 
product of the Givens transformations  which are applied to A and B on the 
right;
If compq ='V', then z  is overwritten by the 
product Z1Z.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.



4-214

4 Intel® Math Kernel Library Reference Manual

?ggbal 
Balances a pair of general real or complex matrices.

Syntax
call sggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,

work, info )

call dggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info )

call cggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info )

call zggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info )

Description

This routine balances a pair of general real/complex matrices (A,B).  This involves, first, 
permuting A and B by similarity transformations to isolate eigenvalues in the first 1 to ilo-1 and 
last ihi+1 to n elements on the diagonal; and second, applying a diagonal similarity 
transformation to rows and columns ilo to ihi to make the rows and columns as close in norm as 
possible. Both steps are optional. 
Balancing may reduce the 1-norm of the matrices, and improve the accuracy of the computed 
eigenvalues and/or eigenvectors in the generalized eigenvalue problem  Ax = λBx.

Input Parameters

job CHARACTER*1. Specifies the operations to be performed on A and B. Must be
'N' or 'P' or 'S' or 'B'.
If job ='N', then no operations are done; simply set ilo=1, ihi=n,
lscale(i) =1.0 and rscale(i)=1.0 for
i = 1,...,n.
If job ='P', then permute only.
If job ='S', then scale only.
If job ='B', then both permute and scale.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b REAL for sggbal
DOUBLE PRECISION for dggbal
COMPLEX for cggbal
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DOUBLE COMPLEX for zggbal.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, 6n).

Output Parameters

a, b Overwritten by the balanced matrices A and B, respectively. If job ='N', a
and b are not referenced.

ilo, ihi INTEGER.  ilo and ihi are set to integers such that on exit a(i,j)=0 and 
b(i,j)=0 if i>j and j=1,...,ilo-1 
or i=ihi+1,...,n.

If job ='N'or 'S', then ilo = 1 and ihi = n.

lscale,rscale REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n).

lscale contains details of the permutations and scaling factors applied to the 
left side of A and B.
If Pj  is the index of the row interchanged with row j, and Dj is the scaling 
factor applied to row j, then

lscale(j) = Pj  , for j = 1,..., ilo-1
                   = Dj  , for j = ilo,...,ihi
                   = Pj  , for j = ihi+1,..., n.
rscale contains details of the permutations and scaling factors applied to the 
right side of A and B.
If Pj  is the index of the column interchanged with column j, and Dj is the 
scaling factor applied to 
column j, then
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rscale(j) = Pj  , for j = 1,..., ilo-1
                   = Dj  , for j = ilo,...,ihi
                   = Pj  , for j = ihi+1,..., n
The order in which the interchanges are made is n to ihi+1, then 1 to ilo-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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?ggbak 
Forms the right or left eigenvectors of a generalized 
eigenvalue problem.

Syntax
call sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call zggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

Description

This routine forms the right or left eigenvectors of a real/complex generalized eigenvalue problem 
                           Ax = λBx 
by backward transformation on the computed eigenvectors of the balanced pair of matrices output 
by ?ggbal.

Input Parameters

job CHARACTER*1. Specifies the type of backward transformation required. Must
be 'N', 'P', 'S', or 'B'.
If job ='N', then no operations are done; return.
If job ='P', then do backward transformation for permutation only.
If job ='S', then do backward transformation for scaling only.
If job ='B', then do backward transformation for both permutation and
scaling.
This argument must be the same as the argument job supplied to ?ggbal.

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then v contains left eigenvectors .
If side = 'R', then v contains right eigenvectors .

n INTEGER. The number of rows of the matrix V (n ≥ 0).

ilo, ihi INTEGER.  The integers ilo and ihi determined by ?gebal.  Constraint:
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n; 
if n = 0, then ilo = 1 and ihi = 0.
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lscale,rscale REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n).

The array lscale contains details of the permutations and/or scaling factors 
applied to the left side of A and B, as returned by ?ggbal.

The array rscale contains details of the permutations and/or scaling factors 
applied to the right side of A and B, as returned by ?ggbal.

m INTEGER. The number of columns of the matrix V
(m ≥ 0).

v REAL for sggbak 
DOUBLE PRECISION for dggbak 
COMPLEX for cggbak 
DOUBLE COMPLEX for zggbak.
Array v(ldv,*). Contains the matrix of right or left  eigenvectors to be 
transformed, as returned by ?tgevc. 
The second dimension of v must be at least max(1, m).

ldv INTEGER. The first dimension of v; at least max(1, n).

Output Parameters

v Overwritten by the transformed eigenvectors

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.
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?hgeqz 
Implements the QZ method for finding the generalized 
eigenvalues of the matrix pair (H,T).

Syntax
call shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,

alphai, beta, q, ldq, z, ldz, work, lwork, info )

call dhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
alphai, beta, q, ldq, z, ldz, work, lwork, info )

call chgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
beta, q, ldq, z, ldz, work, lwork, rwork, info )

call zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
beta, q, ldq, z, ldz, work, lwork, rwork, info )

Description

This routine computes the eigenvalues of a real/complex matrix pair (H,T), where H is an upper 
Hessenberg matrix and T is upper triangular, using the double-shift version (for real flavors) or 
single-shift version (for complex flavors) of the QZ method. 
Matrix pairs of this type are produced by the reduction to generalized upper Hessenberg form of a 
real/complex matrix pair (A,B):

              A = Q1  H  Z1
H ,        B = Q1  T  Z1

H  ,

as computed by ?gghrd. 

For real flavors:
If job ='S', then the Hessenberg-triangular pair (H,T) is also reduced to generalized Schur form,

             H = Q  S  ZT ,        T = Q  P  ZT  ,

where Q and Z are orthogonal matrices, P is an upper triangular matrix, and S is a quasi-triangular 
matrix with 1-by-1 and 2-by-2 diagonal blocks. 
The 1-by-1 blocks correspond to real eigenvalues of the matrix pair (H,T) and the 2-by-2 blocks 
correspond to complex conjugate pairs of eigenvalues. 
Additionally, the 2-by-2 upper triangular diagonal blocks of P corresponding to 2-by-2 blocks of S 
are reduced to positive diagonal form, that is, if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, 
P(j,j) > 0, and P(j+1,j+1) > 0. 
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For complex flavors:
If job ='S', then the Hessenberg-triangular pair (H,T) is also reduced to generalized Schur form,

             H = Q  S  ZH ,        T = Q  P  ZH  ,

where Q and Z are unitary matrices, and S and P are upper triangular. 

For all function flavors:
Optionally, the orthogonal/unitary matrix Q from the generalized Schur factorization may be 
postmultiplied into an input matrix Q1, and the orthogonal/unitary matrix Z may be postmultiplied 
into an input matrix Z1. If Q1 and Z1 are the orthogonal/unitary matrices from ?gghrd that 
reduced the matrix pair (A,B) to generalized upper Hessenberg form, then the output matrices  
Q1Q  and  Z1Z  are the orthogonal/unitary factors from the generalized Schur factorization of 
(A,B):

          A = (Q1Q)  S  (Z1Z)H ,      B = (Q1Q)  P  (Z1Z)H  .

To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, of (A,B)) are computed as a 
pair of values (alpha,beta). For chgeqz/zhgeqz, alpha and beta are complex, and for 
shgeqz/dhgeqz, alpha is complex and beta real. If beta is nonzero, λ = alpha / beta is an 
eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP) 
           Ax = λBx 
and if alpha is nonzero, µ = beta / alpha is an eigenvalue of the alternate form of the GNEP 
         µAy = By . 
Real eigenvalues (for real flavors) or the values of alpha and beta for the i-th eigenvalue (for 
complex flavors) can be read directly from the generalized Schur form:  
       alpha = S(i,i),   beta = P(i,i). 

Input Parameters

job CHARACTER*1. Specifies the operations to be performed. Must be 'E' or 'S' .
If job ='E', then compute eigenvalues only;
If job ='S', then compute eigenvalues and the Schur form.

compq CHARACTER*1.  Must be 'N', 'I', or 'V'.
If compq = 'N',  left Schur vectors (q) are not computed;

If compq = 'I',  q  is initialized to the unit matrix and the matrix of left Schur 
vectors of (H,T) is returned;
If compq = 'V',  q  must contain an orthogonal/unitary matrix Q1 on entry and 
the product Q1Q is returned.

compz CHARACTER*1.  Must be 'N', 'I', or 'V'.
If compz = 'N',  left Schur vectors (q) are not computed;

If compz = 'I',  z  is initialized to the unit matrix and the matrix of right 
Schur vectors of (H,T) is returned;
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If compz = 'V',  z  must contain an orthogonal/unitary matrix Z1 on entry and 
the product Z1Z is returned.

n INTEGER. The order of the matrices H, T, Q, and Z
(n ≥ 0).

ilo, ihi INTEGER.  ilo and ihi mark the rows and columns of H which are in 
Hessenberg form. It is assumed that H is already upper triangular in rows and 
columns 1:ilo-1 and ihi+1:n.  Constraint:
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n; 
if n = 0, then ilo = 1 and ihi = 0.

h,t,q,z,work REAL for shgeqz 
DOUBLE PRECISION for dhgeqz 
COMPLEX for chgeqz 
DOUBLE COMPLEX for zhgeqz.
Arrays: 
On entry, h(ldh,*) contains the n-by-n upper Hessenberg matrix H.  
The second dimension of h must be at least max(1, n).

On entry, t(ldt,*) contains the n-by-n upper triangular matrix T.
The second dimension of t must be at least max(1, n).

q (ldq,*):
On entry,  if compq ='V',  this array contains  the orthogonal/unitary matrix 
Q1 used in the reduction of (A,B) to generalized Hessenberg form.  
If compq ='N', then q is not referenced.
The second dimension of q must be at least max(1, n).

z (ldz,*): 
On entry,  if compz ='V',  this array contains  the orthogonal/unitary matrix Z1 
used in the reduction of (A,B) to generalized Hessenberg form.  
If compz ='N', then z is not referenced.
The second dimension of z must be at least max(1, n).

work(lwork) is a workspace array.

ldh INTEGER. The first dimension of h; at least max(1, n).

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER.  The first dimension of q; 
If compq ='N', then ldq ≥ 1.
If compq ='I'or 'V', then ldq ≥ max(1,n).
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ldz INTEGER.  The first dimension of z; 
If compq ='N', then ldz ≥ 1.
If compq ='I'or 'V', then ldz ≥ max(1,n).

lwork INTEGER.  The dimension of the array work.
lwork ≥ max(1,n).

rwork REAL for chgeqz
DOUBLE PRECISION for zhgeqz.
Workspace array,  DIMENSION at least max(1, n). Used in complex flavors 
only.

Output Parameters

h For real flavors:
If job ='S', then, on exit, h contains the upper quasi-triangular matrix S from 
the generalized Schur factorization; 2-by-2 diagonal blocks (corresponding to 
complex conjugate pairs of eigenvalues) are returned in standard form, with 
h(i,i) = h(i+1, i+1) and 
h(i+1, i) * h(i, i+1) < 0.
If job ='E', then on exit the diagonal blocks of h match those of S, but the 
rest of h is unspecified.

For complex flavors:
If job ='S', then, on exit, h contains the upper triangular matrix S from the 
generalized Schur factorization.
If job ='E', then on exit the diagonal of h matches that of S, but the rest of h 
is unspecified.

t If job ='S', then, on exit, t contains the upper triangular matrix P from the 
generalized Schur factorization.
For real flavors:
2-by-2 diagonal blocks of P corresponding to 2-by-2  blocks of S  are reduced 
to positive diagonal form, that is, if h(j+1,j) is non-zero, then 
t(j+1,j)=t(j,j+1)=0 and t(j,j) and t(j+1,j+1) will be positive.

If job ='E', then on exit the diagonal blocks of t match those of P, but the 
rest of t is unspecified.

For complex flavors:
If job ='E', then on exit the diagonal of t matches that of P, but the rest of t 
is unspecified.
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alphar,alphai REAL for shgeqz;
DOUBLE PRECISION for dhgeqz. 
Arrays, DIMENSION at least max(1,n). 
The real and imaginary parts, respectively, of each scalar alpha defining an 
eigenvalue of GNEP.

If alphai(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th 
and  (j+1)-th eigenvalues are a complex conjugate pair, with 
alphai(j+1) = -alphai(j).

alpha COMPLEX for chgeqz;
DOUBLE COMPLEX for zhgeqz. 
Array, DIMENSION at least max(1,n). 
The complex scalars alpha that define the eigenvalues of GNEP.  alphai(i) = 
S(i,i) in the generalized Schur factorization.

beta REAL for shgeqz 
DOUBLE PRECISION for dhgeqz 
COMPLEX for chgeqz 
DOUBLE COMPLEX for zhgeqz.
Array, DIMENSION at least max(1,n).
For real flavors:
The  scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (alphar(j), alphai(j)) and beta = beta(j)  
represent the j-th eigenvalue of the matrix pair (A,B),  in one of the forms  λ = 
alpha/beta   or  µ = beta/alpha . Since either λ or µ may overflow, they 
should not, in general, be computed.

For complex flavors:
The real non-negative scalars beta that define the eigenvalues of GNEP. 
beta(i) = P(i,i)  in the generalized Schur factorization.
Together, the quantities alpha = alpha(j) and beta = beta(j)  represent the 
j-th eigenvalue of the matrix pair (A,B),  in one of the forms  λ = alpha/beta   
or  
µ = beta/alpha . Since either λ or µ may overflow, they should not, in 
general, be computed.

q On exit, if compq ='I', q is overwritten by the orthogonal/unitary matrix of
left Schur vectors of the pair (H,T), and if compq ='V', q is overwritten by the
orthogonal/unitary matrix of left Schur vectors of (A,B).

z On exit, if compz ='I', z is overwritten by the orthogonal/unitary matrix of
right Schur vectors of the pair (H,T), and if compz ='V', z is overwritten by
the orthogonal/unitary matrix of right Schur vectors of (A,B).



4-224

4 Intel® Math Kernel Library Reference Manual

work(1) If info ≥ 0, on exit, work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1,...,n, the QZ iteration did not converge.
(H,T) is not in Schur form, but alphar(i), alphai(i) (for real flavors), 
alpha(i) (for complex flavors), and beta(i), i=info+1,...,n should be correct.

If info = n+1,...,2n, the shift calculation failed.
(H,T) is not in Schur form, but alphar(i), alphai(i) (for real flavors), 
alpha(i) (for complex flavors), and beta(i), i =info-n+1,...,n should be 
correct.
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?tgevc 
Computes some or all of the right and/or left 
generalized eigenvectors of a pair of upper triangular 
matrices.

Syntax
call stgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,

ldvr, mm, m, work, info )

call dtgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, info )

call ctgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, rwork, info )

call ztgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, rwork, info )

Description

This routine computes some or all of the right and/or left eigenvectors of a pair of real/complex  
matrices (S,P), where S is quasi-triangular (for real flavors) or upper triangular (for complex 
flavors) and P is upper triangular.

Matrix pairs of this type are produced by the generalized Schur factorization of a real/complex 
matrix pair (A,B):

              A = Q S ZH   ,          B = Q P ZH

as computed by ?gghrd plus ?hgeqz.

The right eigenvector x and the left eigenvector y of (S,P) corresponding to an eigenvalue w are 
defined by:

             S x = w P x  ,           yH S = w yHP

The eigenvalues are not input to this routine, but are computed directly from the diagonal blocks or 
diagonal elements of S and P.

This routine returns  the matrices X and/or Y of right and left eigenvectors of (S,P), or the products  
Z X and/or Q Y, where Z and Q are input  matrices.  
If  Q and Z are the orthogonal/unitary factors  from the generalized Schur factorization of a matrix 
pair (A,B),  then Z X and Q Y are the matrices of right and left eigenvectors of (A,B). 
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Input Parameters

side CHARACTER*1. Must be 'R', 'L', or 'B'.
If side = 'R', compute right eigenvectors only.
If side = 'L', compute left eigenvectors only.
If side = 'B', compute both right and left eigenvectors.

howmny CHARACTER*1. Must be 'A' , 'B', or 'S'.
If howmny ='A', compute all right and/or left eigenvectors.
If howmny ='B', compute all right and/or left eigenvectors, backtransformed
by the matrices in vr and/or vl.
If howmny ='S', compute selected right and/or left eigenvectors, specified by
the logical array select.

select LOGICAL.
Array, DIMENSION at least max (1, n).
If howmny ='S' , select specifies the eigenvectors to be computed.
If howmny= 'A'or 'B', select is not referenced.
For real flavors:
If ωj is a real eigenvalue, the corresponding real eigenvector is computed if 
select(j) is .TRUE.. 
If ωj and ωj+1 are the real and imaginary parts of a complex eigenvalue, the 
corresponding complex eigenvector is computed if either select(j) or 
select(j+1) is .TRUE. , and on exit select(j) is set to .TRUE.and  
select(j+1) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the j-th eigenvalue  is computed if select(j) 
is .TRUE.. 

n INTEGER. The order of the matrices A and B (n ≥ 0).

s,p,vl,vr,workREAL for stgevc 
DOUBLE PRECISION for dtgevc 
COMPLEX for ctgevc 
DOUBLE COMPLEX for ztgevc.
Arrays: 

s(lds,*) contains the matrix S from a generalized Schur factorization as 
computed by ?hgeqz. This matrix is upper quasi-triangular for real flavors, 
and upper triangular for complex flavors. 
The second dimension of s must be at least max(1, n).
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p(ldp,*) contains the upper triangular matrix P from a generalized Schur
factorization as computed by ?hgeqz.
For real flavors, 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
of S must be in positive diagonal form.
For complex flavors, P must have real diagonal elements.
The second dimension of p must be at least max(1, n).

If side ='L' or 'B' and howmny ='B',
vl(ldvl,*) must contain an n-by-n matrix Q (usually the orthogonal/unitary
matrix Q of left Schur vectors returned by ?hgeqz). The second dimension of
vl must be at least max(1, mm). If side ='R' , vl is not referenced.

If side ='R' or 'B' and howmny ='B',
vr(ldvr,*) must contain an n-by-n matrix Z (usually the orthogonal/unitary
matrix Z of right Schur vectors returned by ?hgeqz). The second dimension of
vr must be at least max(1, mm). If side ='L' , vr is not referenced.

work(*) is a workspace array.
DIMENSION at least max (1, 6*n) for real flavors and 
at least max (1, 2*n) for complex flavors.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldvl INTEGER.  The first dimension of vl; 
If side ='L'or 'B', then ldvl ≥ max(1,n).
If side ='R', then ldvl ≥ 1.

ldvr INTEGER.  The first dimension of vr; 
If side ='R'or 'B', then ldvr ≥ max(1,n).
If side ='L', then ldvr ≥ 1.

mm INTEGER. The number of columns in the arrays vl and/or vr (mm ≥ m).

rwork REAL for ctgevc
DOUBLE PRECISION for ztgevc.
Workspace array, DIMENSION at least max (1, 2*n). Used in complex flavors 
only.

Output Parameters

vl On exit, if side ='L'or 'B', vl contains:
if howmny ='A', the matrix Y of left eigenvectors of (S,P);
if howmny ='B', the matrix QY;
if howmny ='S', the left eigenvectors of (S,P) specified by select,  stored 



4-228

4 Intel® Math Kernel Library Reference Manual

consecutively in the columns of vl, in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored in two 
consecutive columns, the first holding the real part, and the second the 
imaginary part.

vr On exit, if side ='R'or 'B', vr contains:
if howmny ='A', the matrix X of right eigenvectors of (S,P);
if howmny ='B', the matrix ZX;
if howmny ='S', the right eigenvectors of (S,P) specified by select,  stored 
consecutively in the columns of vr, in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored in two 
consecutive columns, the first holding the real part, and the second the 
imaginary part.

m INTEGER.  The number of columns in the arrays vl and/or vr actually used to 
store the eigenvectors. 
If howmny ='A' or 'B', m is set to n.   
For real flavors:
Each selected real eigenvector occupies one column and each selected complex 
eigenvector occupies two columns.
For complex flavors:
Each selected eigenvector occupies one column. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
For real flavors:
If info = i>0, the 2-by-2 block (i:i+1) does not have a complex eigenvalue.
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?tgexc 
Reorders the generalized Schur decomposition of a pair of 
matrices (A,B) so that one diagonal block of (A,B) moves to 
another row index.

Syntax
call stgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,

ifst, ilst, work, lwork, info )

call dtgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, work, lwork, info )

call ctgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, info )

call ztgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, info )

Description

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix 
pair (A,B) using an orthogonal/unitary equivalence transformation

               (A, B) = Q  (A, B)  ZH,

so that the diagonal block of (A, B) with row index ifst is moved to row ilst.
Matrix pair (A, B) must be in generalized real-Schur/Schur canonical form (as returned by ?gges),  
i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks and B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are updated.

        Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'

        Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'.

Input Parameters

wantq, wantz LOGICAL. 
If wantq =.TRUE., update the left transformation 
matrix Q;
If wantq =.FALSE., do not update Q;
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If wantz =.TRUE., update the right transformation 
matrix Z;
If wantz =.FALSE., do not update Z.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, q, z REAL for stgexc
DOUBLE PRECISION for dtgexc
COMPLEX for ctgexc
DOUBLE COMPLEX for ztgexc.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).

q (ldq,*) 
If wantq =.FALSE., then q  is not referenced.
If wantq =.TRUE., then q  must contain the orthogonal/unitary matrix Q.
The second dimension of q must be at least max(1, n).

z (ldz,*) 
If wantz =.FALSE., then z  is not referenced.
If wantz =.TRUE., then z  must contain the orthogonal/unitary matrix Z.
The second dimension of z must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldq INTEGER.  The first dimension of q; 
If wantq =.FALSE., then ldq ≥ 1.
If wantq =.TRUE., then ldq ≥ max(1,n).

ldz INTEGER.  The first dimension of z; 
If wantz =.FALSE., then ldz ≥ 1.
If wantz =.TRUE., then ldz ≥ max(1,n).

ifst, ilst INTEGER. Specify the reordering of the diagonal blocks of (A, B). The block 
with row index ifst is moved to row ilst, by a sequence of swapping 
between adjacent blocks. Constraint: 1 ≤ ifst , ilst ≤ n. 

work REAL for stgexc;
DOUBLE PRECISION for dtgexc.
Workspace array, DIMENSION (lwork). Used in real flavors only.



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-231

lwork INTEGER. The dimension of work; must be at least
4n +16.

Output Parameters

a, b Overwritten by the updated matrices A and B.

ifst, ilst Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to 
point to the first row; ilst always points to the first row of the block in its 
final position (which may differ from its input value by ±1).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the transformed matrix pair (A, B) would be too far from 
generalized Schur form; the problem is ill-conditioned. (A, B) may have been 
partially reordered, and ilst points to the first row of the current position of 
the block being moved.
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?tgsen 
Reorders the generalized Schur decomposition of a pair of 
matrices (A,B) so that a selected cluster of eigenvalues 
appears in the leading diagonal blocks 
of (A,B).

Syntax
call stgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,

alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info )

call dtgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info )

call ctgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info )

call ztgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info )

Description

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix
pair (A, B) (in terms of an orthogonal/unitary equivalence transformation Q' * (A, B) * Z), so that
a selected cluster of eigenvalues appears in the leading diagonal blocks of the pair (A, B).
The leading columns of Q and Z form orthonormal/unitary bases of the corresponding left and
right eigenspaces (deflating subspaces).
(A, B) must be in generalized real-Schur/Schur canonical form (as returned by ?gges), that is, A
and B are both upper triangular.
?tgsen also computes the generalized eigenvalues

ωj = (alphar(j) + alphai(j)*i)/beta(j) (for real flavors)
ωj = alpha(j)/beta(j) (for complex flavors)
of the reordered matrix pair (A, B).

Optionally, the routine computes the estimates of reciprocal condition numbers for eigenvalues 
and eigenspaces. These are 
Difu[(A11, B11), (A22, B22)] and Difl[(A11, B11), (A22, B22)],  that is, the separation(s) between the 
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matrix pairs (A11, B11) and (A22, B22) that correspond to the selected cluster and the eigenvalues 
outside the cluster, respectively, and norms of "projections" onto left and right eigenspaces with 
respect to the selected cluster in the (1,1)-block.

Input Parameters

ijob INTEGER. Specifies whether condition numbers are required for the cluster of
eigenvalues (pl and pr) or the deflating subspaces Difu and Difl.
If ijob =0, only reorder with respect to select;
If ijob =1, reciprocal of norms of "projections" onto left and right
eigenspaces with respect to the selected cluster (pl and pr);
If ijob =2, compute upper bounds on Difu and Difl, using F-norm-based
estimate (dif (1:2));
If ijob =3, compute estimate of Difu and Difl, using 1-norm-based estimate
(dif (1:2)). This option is about 5 times as expensive as ijob =2;
If ijob =4, compute pl, pr and dif (i.e., options 0, 1 and 2 above). This is
an economic version to get it all;
If ijob =5, compute pl, pr and dif (i.e., options 0, 1 and 3 above).

wantq, wantz LOGICAL. 
If wantq =.TRUE., update the left transformation 
matrix Q;
If wantq =.FALSE., do not update Q;
If wantz =.TRUE., update the right transformation 
matrix Z;
If wantz =.FALSE., do not update Z.

select LOGICAL.
Array, DIMENSION at least max (1, n).
Specifies the eigenvalues in the selected cluster.
To select an eigenvalue ωj, select(j) must be .TRUE. For real flavors: to
select a complex conjugate pair of eigenvalues ωj and ωj+1(corresponding 2 by
2 diagonal block), select(j) and/or select(j+1) must be set to .TRUE.; the
complex conjugate ωj and ωj+1 must be either both included in the cluster or
both excluded.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a,b,q,z,work REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Arrays:
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a(lda,*) contains the matrix A.
For real flavors: A is upper quasi-triangular, with (A, B) in generalized real
Schur canonical form.
For complex flavors: A is upper triangular, in generalized Schur canonical
form.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B.
For real flavors: B is upper triangular, with (A, B) in generalized real Schur
canonical form.
For complex flavors: B is upper triangular, in generalized Schur canonical
form.
The second dimension of b must be at least max(1, n).

q (ldq,*) 
If wantq =.TRUE., then q  is an n-by-n  matrix;
If wantq =.FALSE., then q  is not referenced.
The second dimension of q must be at least max(1, n).

z (ldz,*) 
If wantz =.TRUE., then z  is an n-by-n  matrix;
If wantz =.FALSE., then z  is not referenced.
The second dimension of z must be at least max(1, n).

work(lwork) is a workspace array. If ijob=0, work is not referenced.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldq INTEGER.  The first dimension of q; ldq ≥ 1.
If wantq =.TRUE., then ldq ≥ max(1,n).

ldz INTEGER.  The first dimension of z; ldz ≥ 1.
If wantz =.TRUE., then ldz ≥ max(1,n).

lwork INTEGER.  The dimension of the array work.
For real flavors: 
If ijob = 1, 2, or 4, lwork ≥  max(4n+16, 2m(n−m)).
If ijob = 3 or 5, lwork ≥  max(4n+16, 4m(n−m)).
For complex flavors: 
If ijob = 1, 2, or 4, lwork ≥  max(1, 2m(n−m)).
If ijob = 3 or 5, lwork ≥  max(1, 4m(n−m)).

iwork INTEGER. Workspace array, DIMENSION (liwork).
If ijob=0, iwork is not referenced.
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liwork INTEGER.  The dimension of the array iwork.
For real flavors: 
If ijob = 1, 2, or 4, liwork ≥  n+6.
If ijob = 3 or 5, liwork ≥  max(n+6, 2m(n−m)).
For complex flavors: 
If ijob = 1, 2, or 4, liwork ≥  n+2.
If ijob = 3 or 5, liwork ≥  max(n+2, 2m(n−m)).

Output Parameters

a, b Overwritten by the reordered matrices A and B, respectively.

alphar,alphai REAL for stgsen;
DOUBLE PRECISION for dtgsen. 
Arrays, DIMENSION at least max(1,n). Contain values that form generalized 
eigenvalues in real flavors. 
See beta.

alpha COMPLEX for ctgsen;
DOUBLE COMPLEX for ztgsen. 
Array, DIMENSION at least max(1,n). Contain values that form generalized 
eigenvalues in complex flavors. See beta.

beta REAL for stgsen 
DOUBLE PRECISION for dtgsen 
COMPLEX for ctgsen 
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the generalized 
eigenvalues.  
alphar(j) + alphai(j)*i and beta(j), j=1,...,n  are the diagonals of the 
complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the 
real generalized Schur form of (A,B) were further reduced to triangular form 
using complex unitary transformations. If alphai(j) is zero, then the j-th 
eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a 
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
The diagonal elements of A and B, respectively, when the pair (A,B) has been 
reduced to generalized Schur form. alpha(i)/beta(i), i=1,...,n are the 
generalized eigenvalues. 
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q If wantq =.TRUE., then, on exit, Q has been postmultiplied by the left
orthogonal transformation matrix which reorder (A, B). The leading m columns
of Q form orthonormal bases for the specified pair of left eigenspaces
(deflating subspaces).

z If wantz =.TRUE., then, on exit, Z has been postmultiplied by the left
orthogonal transformation matrix which reorder (A, B). The leading m columns
of Z form orthonormal bases for the specified pair of left eigenspaces
(deflating subspaces).

m INTEGER. The dimension of the specified pair of left and right eigen-spaces
(deflating subspaces); 0 ≤  m ≤  n.

pl, pr REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors. 
If ijob = 1, 4, or 5, pl and pr are lower bounds on the reciprocal of the norm 
of "projections" onto left and right eigenspaces with respect to the selected 
cluster.
0 < pl, pr ≤ 1. If m = 0 or m = n,  pl = pr  = 1.
If ijob = 0, 2 or 3, pl and pr are not referenced

dif REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors. 
Array, DIMENSION (2).
If ijob ≥  2, dif(1:2) store the estimates of Difu and Difl.
If ijob = 2 or 4, dif(1:2) are F-norm-based upper bounds on Difu and Difl. 
If ijob = 3 or 5, dif(1:2) are 1-norm-based estimates of Difu and Difl. If m = 
0 or n, 
dif(1:2) = F-norm([A, B]).
If ijob = 0 or 1, dif is not referenced.

work(1) If ijob is not 0 and info = 0, on exit, work(1) contains the minimum value 
of lwork required for optimum performance. Use this lwork for subsequent 
runs.

iwork(1) If ijob is not 0 and info = 0, on exit, iwork(1) contains the minimum 
value of liwork required for optimum performance. Use this liwork for 
subsequent runs.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, Reordering of (A, B) failed because the transformed matrix pair 
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(A, B) would be too far from generalized Schur form; the problem is very 
ill-conditioned. (A, B) may have been partially reordered. If requested, 0 is 
returned in dif(*), pl and pr.
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?tgsyl 
Solves the generalized Sylvester equation.

Syntax
call stgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,

lde, f, ldf, scale, dif, work, lwork, iwork, info )

call dtgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info )

call ctgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info )

call ztgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info )

Description

This routine solves the generalized Sylvester equation:

              A R - L B = scale * C                

              D R - L E = scale * F

where R and L are unknown m-by-n matrices, (A, D), (B, E) and (C, F) are given matrix pairs of 
size m-by-m, n-by-n and m-by-n, respectively, with real/complex  entries. (A, D) and (B, E) must be 
in generalized real-Schur/Schur canonical form, that is,  A, B are upper quasi-triangular/triangular 
and D, E are upper triangular.

The solution (R, L) overwrites (C, F).  The factor scale,  0 ≤  scale ≤  1, 
is an output scaling factor chosen to avoid overflow.

In matrix notation the above equation is equivalent to the following:
solve  Zx = scale* b, where Z is defined as

Z
kron In A,( ) k– ron B ′ Im,( )

kron In D,( ) k– ron E ′ Im,( )� �
� �
� �

=
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Here Ik is the identity matrix of size k and X' is the transpose/conjugate-transpose of X. kron(X, Y) 
is the Kronecker product between the matrices X and Y.
If trans = 'T'(for real flavors), or trans = 'C'(for complex flavors), the routine ?tgsyl 
solves the transposed/conjugate-transposed system 
Z' y = scale * b, which is equivalent to solve for R and L in 

               A' R + D' L = scale * C                

              R B' + L E' = scale * (-F)

This case (trans = 'T' for stgsyl/dtgsyl or trans = 'C' for ctgsyl/ztgsyl) is used to 
compute an one-norm-based estimate of Dif[(A,D), (B,E)], the separation between the matrix pairs 
(A,D)and (B,E), using slacon/clacon. 

If ijob ≥ 1, ?tgsyl computes a Frobenius norm-based estimate of Dif[(A,D), (B,E)]. That is, the 
reciprocal of a lower bound on the reciprocal of the smallest singular value of Z. This is a level 3 
BLAS algorithm.

Input Parameters

trans CHARACTER*1. Must be 'N', 'T', or 'C'.
If trans = 'N', solve the generalized Sylvester equation.
If trans = 'T', solve the 'transposed' system (for real flavors only).
If trans = 'C', solve the ' conjugate transposed' system (for complex flavors
only).

ijob INTEGER. Specifies what kind of functionality to be performed:
If ijob =0, solve the generalized Sylvester equation only ;
If ijob =1, perform the functionality of ijob =0
and ijob =3;
If ijob =2, perform the functionality of ijob =0
and ijob =4;
If ijob =3, only an estimate of Dif[(A,D), (B,E)] is computed (look ahead
strategy is used);
If ijob =4, only an estimate of Dif[(A,D), (B,E)] is computed (?gecon on
sub-systems is used).
If trans = 'T'or 'C', ijob is not referenced.

m INTEGER.
The order of the matrices A and D, and the row dimension of the matrices C, F,
R and L.
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n INTEGER.
The order of the matrices B and E, and the column dimension of the matrices
C, F, R and L.

a,b,c,d,e,f,workREAL for stgsyl
DOUBLE PRECISION for dtgsyl
COMPLEX for ctgsyl
DOUBLE COMPLEX for ztgsyl.

Arrays: 
a(lda,*) contains the upper quasi-triangular (for real flavors) or upper 
triangular (for complex flavors) 
matrix A. 
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the upper quasi-triangular (for real flavors) or upper
triangular (for complex flavors)
matrix B.
The second dimension of b must be at least max(1, n).

c (ldc,*)  contains  the right-hand-side of the first matrix equation in the 
generalized Sylvester equation (as defined by trans) 
The second dimension of c must be at least max(1, n).

d (ldd,*)  contains the upper triangular matrix D. 
The second dimension of d must be at least max(1, m).

e (lde,*)  contains the upper triangular matrix E. 
The second dimension of e must be at least max(1, n).

f (ldf,*)  contains  the right-hand-side of the second matrix equation in the 
generalized Sylvester equation (as defined by trans) 
The second dimension of f must be at least max(1, n).

work(lwork) is a workspace array. If ijob=0, work is not referenced.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldc INTEGER. The first dimension of c; at least max(1, m).

ldd INTEGER. The first dimension of d; at least max(1, m).

lde INTEGER. The first dimension of e; at least max(1, n).

ldf INTEGER. The first dimension of f; at least max(1, m).
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lwork INTEGER. The dimension of the array work . lwork ≥ 1. If ijob = 1 or 2 and 
trans = 'N', lwork ≥   2mn.

iwork INTEGER.  Workspace array,  DIMENSION at least (m+n+6) for real flavors, and 
at least (m+n+2) for complex flavors. 
If ijob=0, iwork is not referenced.

Output Parameters

c If ijob=0, 1, or 2, overwritten by the solution R.
If ijob=3 or 4 and trans = 'N', c holds R, the solution achieved during the
computation of the Dif-estimate.

f If ijob=0, 1, or 2, overwritten by the solution L.
If ijob=3 or 4 and trans = 'N', f holds L, the solution achieved during the
computation of the Dif-estimate.

dif REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
On exit, dif is the reciprocal of a lower bound of the reciprocal of the
Dif-function, i.e. dif is an upper bound of Dif[(A,D), (B,E)] = sigma_min(Z),
where Z as in (2).
If ijob = 0, or trans = 'T'(for real flavors), or trans = 'C'(for complex
flavors), dif is not touched.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
On exit, scale is the scaling factor in the generalized Sylvester equation. If 0
< scale < 1, c and f hold the solutions R and L, respectively, to a slightly
perturbed system but the input matrices A, B, D and E have not been changed.
If scale = 0, c and f hold the solutions R and L, respectively, to the
homogeneous system with C = F = 0. Normally, scale = 1.

work(1) If ijob is not 0 and info = 0, on exit, work(1) contains the minimum value 
of lwork required for optimum performance. Use this lwork for subsequent 
runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info > 0, (A, D) and (B, E) have common or close eigenvalues.



4-242

4 Intel® Math Kernel Library Reference Manual

?tgsna 
Estimates reciprocal condition numbers for specified 
eigenvalues and/or eigenvectors of a pair of matrices in 
generalized real Schur canonical form.

Syntax
call stgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,

ldvr, s, dif, mm, m, work, lwork, iwork, info )

call dtgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info )

call ctgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info )

call ztgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info )

Description

The real flavors stgsna/dtgsna of this routine estimate reciprocal condition numbers for 
specified eigenvalues and/or eigenvectors of a matrix pair (A, B) in generalized real Schur 
canonical form (or of any matrix pair (Q A ZT, Q B ZT) with orthogonal matrices Q and Z.
(A, B) must be in generalized real Schur form (as returned by sgges/dgges), that is, A is block 
upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.

The complex flavors ctgsna/ztgsna estimate reciprocal condition numbers for specified 
eigenvalues and/or eigenvectors of a matrix 
pair (A, B). (A, B) must be in generalized Schur canonical form , that is, 
A and B are both upper triangular. 

Input Parameters

job CHARACTER*1. Specifies whether condition numbers are required for 
eigenvalues or eigenvectors . 
Must be 'E' or 'V' or 'B'.
If job ='E',  for eigenvalues only (compute s ).
If job ='V',  for eigenvectors only (compute dif ).
If job ='B',  for both eigenvalues and eigenvectors (compute both s and dif).
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howmny CHARACTER*1. Must be 'A' or 'S'.
If howmny ='A', compute condition numbers for all eigenpairs.
If howmny ='S', compute condition numbers for selected eigenpairs specified
by the logical array select.

select LOGICAL.
Array, DIMENSION at least max (1, n).
If howmny ='S' , select specifies the eigenpairs for which condition 
numbers are required.
If howmny= 'A', select is not referenced.
For real flavors:
To select condition numbers for the eigenpair corresponding to a real 
eigenvalue ωj, select(j) must be set to .TRUE.; to select condition numbers 
corresponding to a complex conjugate pair of  eigenvalues ωj and ωj+1, either 
select(j) or select(j+1) must be set to .TRUE. 
For complex flavors:
To select condition numbers for the corresponding  j-th eigenvalue and/or 
eigenvector,  select(j) must be set to .TRUE..

n INTEGER. The order of the square matrix pair (A, B)
(n ≥ 0).

a,b,vl,vr,workREAL for stgsna 
DOUBLE PRECISION for dtgsna 
COMPLEX for ctgsna 
DOUBLE COMPLEX for ztgsna.
Arrays: 
a(lda,*) contains the upper quasi-triangular (for real flavors) or upper 
triangular (for complex flavors) 
matrix A in the pair (A, B) . 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper triangular matrix B in the pair (A, B) .
The second dimension of b must be at least max(1, n).

If job ='E' or 'B',
vl(ldvl,*) must contain left eigenvectors of (A, B), corresponding to the
eigenpairs specified by howmny and select. The eigenvectors must be stored
in consecutive columns of vl, as returned by ?tgevc.
If job ='V', vl is not referenced.
The second dimension of vl must be at least max(1, m).



4-244

4 Intel® Math Kernel Library Reference Manual

If job ='E' or 'B',
vr(ldvr,*) must contain right eigenvectors of (A, B), corresponding to the
eigenpairs specified by howmny and select. The eigenvectors must be stored
in consecutive columns of vr, as returned by ?tgevc.
If job ='V', vr is not referenced.
The second dimension of vr must be at least max(1, m).

work(lwork) is a workspace array. If job ='E', work is not referenced.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldvl INTEGER.  The first dimension of vl;  ldvl ≥  1.
If job ='E'or 'B', then ldvl ≥ max(1,n).

ldvr INTEGER.  The first dimension of vr;  ldvr ≥  1.
If job ='E'or 'B', then ldvr ≥ max(1,n).

mm INTEGER. The number of elements in the arrays s and dif (mm ≥ m).

lwork INTEGER.  The dimension of the array work.
For real flavors: 
lwork ≥  n.
If job ='V' or 'B', lwork ≥  2n(n+2)+16.
For complex flavors: 
lwork ≥  1.
If job ='V' or 'B', lwork ≥  2n2.

iwork INTEGER.  Workspace array,  DIMENSION at least (n+6) for real flavors, and at 
least (n+2) for complex flavors. 
If ijob ='E', iwork is not referenced.

Output Parameters

s REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job ='E' or 'B', contains the reciprocal condition numbers of the selected
eigenvalues, stored in consecutive elements of the array.
If job ='V', s is not referenced.
For real flavors:
For a complex conjugate pair of eigenvalues two consecutive elements of s are
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set to the same value. Thus, s(j), dif(j), and the j-th columns of vl and vr all
correspond to the same eigenpair (but not in general the j-th eigenpair, unless
all eigenpairs are selected).

dif REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job ='V' or 'B', contains the estimated reciprocal condition numbers of
the selected eigenvectors, stored in consecutive elements of the array. If the
eigenvalues cannot be reordered to compute dif(j), dif(j) is set to 0; this can
only occur when the true value would be very small anyway.
If job ='E', dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of dif are set to the
same value.
For complex flavors:
For each eigenvalue/vector specified by select, dif stores a Frobenius
norm-based estimate of Difl.

m INTEGER. The number of elements in the arrays s and dif used to store the
specified condition numbers; for each selected eigenvalue one element is used.
If howmny ='A', m is set to n.

work(1) work(1)If job is not 'E' and info = 0, on exit, work(1) contains the 
minimum value of lwork required for optimum performance. Use this lwork 
for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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Generalized Singular Value Decomposition 

This section describes LAPACK computational routines used for finding the generalized singular 
value decomposition (GSVD) of two matrices A and B as

UHAQ = D1 * (0  R),

VHBQ = D2 * (0  R),

where U, V, and Q  are orthogonal/unitary matrices, R is a nonsingular upper triangular matrix, and 
D1 , D2 are “diagonal” matrices of the structure detailed in the routines description section.       

You can use routines listed in the above table as well as the driver routine ?ggsvd to find the 
GSVD of a pair of general rectangular matrices.

Table 4-7 Computational Routines for Generalized Singular Value Decomposition

Routine name Operation performed

?ggsvp Computes the preprocessing 
decomposition for the generalized SVD

?tgsja Computes the generalized SVD of two 
upper triangular or trapezoidal matrices
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?ggsvp 
Computes the preprocessing decomposition for the 
generalized SVD.

Syntax
call sggsvp ( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,

k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info )

call dggsvp ( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info )

call cggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info )

call zggsvp ( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info )

Description

This routine computes orthogonal matrices U, V and Q such that
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where the k-by-k matrix A12 and l-by-l matrix B13 are nonsingular upper triangular; A23  is 
l-by-l upper triangular if m-k-l ≥ 0, otherwise A23  is (m-k)-by-l upper trapezoidal.  The sum 
k+l is equal to the effective numerical rank of the (m+p)-by-n matrix (AH,BH)H. 

This decomposition is the preprocessing step for computing the Generalized Singular Value 
Decomposition (GSVD), see subroutine ?ggsvd.

Input Parameters

jobu CHARACTER*1. Must be 'U' or 'N'.
If jobu ='U', orthogonal/unitary matrix U is computed.
If jobu ='N',  U is not computed.

jobv CHARACTER*1. Must be 'V' or 'N'.
If jobv ='V', orthogonal/unitary matrix V is computed.
If jobv ='N',  V is not computed.

jobq CHARACTER*1. Must be 'Q' or 'N'.
If jobq ='Q', orthogonal/unitary matrix Q is computed.
If jobq ='N',  Q is not computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

p INTEGER. The number of rows of the matrix B (p ≥ 0).

n INTEGER. The number of columns of the matrices A and B (n ≥ 0).

a,b,tau,work REAL for sggsvp 
DOUBLE PRECISION for dggsvp 
COMPLEX for cggsvp 
DOUBLE COMPLEX for zggsvp.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

tau(*) is a workspace array. The dimension of tau must be at least max(1,
n).

work(*) is a workspace array. The dimension of work must be at least max(1,
3n, m, p).

lda INTEGER. The first dimension of a; at least max(1, m).
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ldb INTEGER. The first dimension of b; at least max(1, p).

tola, tolb REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the thresholds to determine the effective numerical rank of 
matrix B and a subblock of A. Generally, they are set to 
 tola = max(m, n)*||A||*MACHEPS, 
 tolb = max(p, n)*||B||*MACHEPS.
The size of tola and tolb may affect the size of backward errors of the 
decomposition.

ldu INTEGER. The first dimension of the output array u. ldu ≥ max(1, m) if jobu
='U'; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the output array v. ldv ≥ max(1, p) if jobv
='V'; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the output array q. ldq ≥ max(1, n) if jobq
='Q'; ldq ≥ 1 otherwise.

iwork INTEGER.  Workspace array,  DIMENSION at least max(1, n) .

rwork REAL for cggsvp
DOUBLE PRECISION for zggsvp.
Workspace array,  DIMENSION at least max(1, 2n). Used in complex flavors 
only.

Output Parameters

a Overwritten by the triangular (or trapezoidal) matrix described in the 
Description section.

b Overwritten by the triangular matrix described in the Description section.

k, l INTEGER.  
On exit, k and l specify the dimension of subblocks.
The sum k +l is equal to effective numerical rank of 
(AH, BH)H.

u, v, q REAL for sggsvp 
DOUBLE PRECISION for dggsvp 
COMPLEX for cggsvp 
DOUBLE COMPLEX for zggsvp.
Arrays: 
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If jobu ='U', u(ldu,*) contains the orthogonal/unitary matrix U. 
The second dimension of u must be at least max(1, m).
If jobu ='N', u is not referenced.

If jobv ='V', v(ldv,*) contains the orthogonal/unitary matrix V. 
The second dimension of v must be at least max(1, m).
If jobv ='N', v is not referenced.

If jobq ='Q', q(ldq,*) contains the orthogonal/unitary matrix Q. 
The second dimension of q must be at least max(1, n).
If jobq ='N', q is not referenced.

info INTEGER.
If info = 0, the execution is successful.
‘If info = -i, the ith parameter had an illegal value.
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?tgsja 
Computes the generalized SVD of two upper triangular 
or trapezoidal matrices.

Syntax
call stgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,

tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )

call dtgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )

call ctgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )

call ztgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )

Description

This routine computes the generalized singular value decomposition (GSVD) of two real/complex 
upper triangular (or trapezoidal) matrices A and B. On entry, it is assumed that matrices A and B 
have the following forms, which may be obtained by the preprocessing subroutine?ggsvp from a 
general m-by-n matrix A and p-by-n matrix B: 
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where the k-by-k matrix A12 and l-by-l matrix B13 are nonsingular upper triangular; A23  is 
l-by-l upper triangular if m-k-l ≥ 0, otherwise A23  is (m-k)-by-l upper trapezoidal.  

On exit,

 UH A Q = D1*( 0   R ),   VH B Q = D2*( 0   R ), 
where U, V and Q are orthogonal/unitary matrices, R is a nonsingular upper triangular matrix, and 
D1 and D2 are “diagonal'' matrices, which are of the following structures: 

If m-k-l ≥ 0,
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C = diag ( alpha(k+1),...,alpha(k+l))
S = diag ( beta(k+1),...,beta(k+l))
C2 + S2 = I
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If m-k-l < 0,
                              

 

                         

 

                                         

where

C = diag ( alpha(k+1),...,alpha(m)),
S = diag ( beta(k+1),...,beta(m)),
C2 + S2 = I 

 On exit,    is stored in a(1:m, n-k-l+1:n ) and R33 is stored

in b(m-k+1:l, n+m-k-l+1:n ).

The computation of the orthogonal/unitary transformation matrices U, V or Q is optional.  These 
matrices may either be formed explicitly, or they may be postmultiplied into input matrices U1, 
V1, or Q1.
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Input Parameters

jobu CHARACTER*1. Must be 'U', 'I', or 'N'.
If jobu ='U',  u must contain an orthogonal/unitary matrix U1  on entry.
If jobu ='I',  u  is initialized to the unit matrix.
If jobu ='N',  u  is not computed.

jobv CHARACTER*1. Must be 'V', 'I', or 'N'.
If jobv ='V',  v must contain an orthogonal/unitary matrix V1  on entry.
If jobv ='I',  v  is initialized to the unit matrix.
If jobv ='N',  v  is not computed.

jobq CHARACTER*1. Must be 'Q', 'I', or 'N'.
If jobq ='Q',  q must contain an orthogonal/unitary matrix Q1  on entry.
If jobq ='I',  q  is initialized to the unit matrix.
If jobq ='N',  q  is not computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

p INTEGER. The number of rows of the matrix B (p ≥ 0).

n INTEGER. The number of columns of the matrices A and B (n ≥ 0).

k, l INTEGER. Specify the subblocks in the input matrices
A and B, whose GSVD is going to be computed by ?tgsja.

a,b,u,v,q,workREAL for stgsja 
DOUBLE PRECISION for dtgsja 
COMPLEX for ctgsja 
DOUBLE COMPLEX for ztgsja.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

If jobu ='U', u(ldu,*) must contain a matrix U1 
(usually the orthogonal/unitary matrix returned by ?ggsvp).
The second dimension of u must be at least max(1, m).

If jobv ='V', v(ldv,*) must contain a matrix V1 
(usually the orthogonal/unitary matrix returned by ?ggsvp).
The second dimension of v must be at least max(1, p).
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If jobq ='Q', q(ldq,*) must contain a matrix Q1 
(usually the orthogonal/unitary matrix returned by ?ggsvp).
The second dimension of q must be at least max(1, n).

work(*) is a workspace array. The dimension of work must be at least max(1,
2n).

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

ldu INTEGER. The first dimension of the array u.
ldu ≥ max(1, m) if jobu ='U'; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the array v.
ldv ≥ max(1, p) if jobv ='V'; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the array q.
ldq ≥ max(1, n) if jobq ='Q'; ldq ≥ 1 otherwise.

tola, tolb REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz 
iteration procedure. Generally, they are the same as used in ?ggsvp :
 tola = max(m, n)*||A||*MACHEPS, 
 tolb = max(p, n)*||B||*MACHEPS.

Output Parameters

a On exit, a(n-k+1:n, 1:min(k+l, m)) contains the triangular matrix R or part of 
R.

b On exit, if necessary, b(m-k+1: l, n+m-k-l+1: n)) contains a part of R.

alpha, beta REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1,n).
Contain the generalized singular value pairs of A and B:

alpha(1:k) = 1,
beta(1:k)  = 0,

and if m-k-l ≥  0,
alpha(k+1:k+l) = diag(C),
beta(k+1:k+l)  = diag(S),
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or if m-k-l < 0,
alpha(k+1:m)= C, alpha(m+1:k+l)= 0
beta(k+1:m) = S, beta(m+1:k+l) = 1.

Furthermore, if k+l < n,
alpha(k+l+1:n) = 0 and
beta(k+l+1:n)  = 0.

u If jobu ='I', u contains the orthogonal/unitary 
matrix U.
If jobu ='U',  u contains the product U1U.
If jobu ='N', u is not referenced.

v If jobv ='I', v contains the orthogonal/unitary 
matrix U.
If jobv ='V',  v contains the product V1V.
If jobv ='N', v is not referenced.

q If jobq ='I', q contains the orthogonal/unitary 
matrix U.
If jobq ='Q',  q contains the product Q1Q.
If jobq ='N', q is not referenced.

ncycle INTEGER. The number of cycles required for convergence.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the procedure does not converge after
MAXIT cycles.
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Driver Routines     
Each of the LAPACK driver routines solves a complete problem. 
To arrive at the solution, driver routines typically call a sequence of appropriate computational 
routines.  
Driver routines are described in the following sections:

Linear Least Squares (LLS) Problems
Generalized LLS Problems
Symmetric Eigenproblems
Nonsymmetric Eigenproblems
Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems

Linear Least Squares (LLS) Problems

This section describes LAPACK driver routines used for solving linear least-squares problems. 
Table 4-8 lists routines described in more detail below.   

Table 4-8 Driver Routines for Solving LLS Problems

Routine Name Operation performed

?gels Uses QR or LQ factorization to solve a overdetermined or underdetermined 
linear system with full rank matrix.

?gelsy Computes the minimum-norm solution to a linear least squares problem 
using a complete orthogonal factorization of A.

?gelss Computes the minimum-norm solution to a linear least squares problem 
using the  singular value decomposition of A.

?gelsd Computes the minimum-norm solution to a linear least squares problem 
using the  singular value decomposition of A and a divide and conquer 
method.
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?gels 
Uses QR or LQ factorization to solve a overdetermined 
or underdetermined linear system with full rank matrix.

Syntax
call sgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )

call dgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )

call cgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )

call zgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )

Description

This routine solves overdetermined or underdetermined real/ complex linear systems involving an 
m-by-n matrix A, or its transpose/ conjugate-transpose, using a QR or LQ factorization of A.  It is 
assumed that A has full rank.

The following options are provided: 

1. If trans = 'N' and m ≥ n:  find the least squares solution of an overdetermined system, that is, 
solve the least squares problem 

minimize   || b - A x ||2

2. If trans = 'N' and m < n:  find the minimum norm solution of an underdetermined system   
A X = B.

3. If trans = 'T' or 'C' and m ≥ n:  find the minimum norm solution of an undetermined system   
AH X = B.

4. If trans = 'T' or 'C' and m < n:  find the least squares solution of an overdetermined system, that 
is, solve the least squares problem 

minimize   || b - AH x ||2

Several right hand side vectors b and solution vectors x can be  handled in a single call; they are 
stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrh solution  matrix 
X.
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Input Parameters

trans CHARACTER*1. Must be 'N', 'T', or 'C'.
If trans = 'N', the linear system involves matrix A;
If trans = 'T', the linear system involves the transposed matrix AT (for real
flavors only);
If trans = 'C', the linear system involves the conjugate-transposed matrix AH

(for complex flavors only).

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

a, b, work REAL for sgels 
DOUBLE PRECISION for dgels 
COMPLEX for cgels 
DOUBLE COMPLEX for zgels.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B of right hand side vectors,  stored 
columnwise; B  is m-by-nrhs if trans = 'N', or n-by-nrhs if trans = 
'T'or 'C'.  
The second dimension of b must be at least 
max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

ldb INTEGER.  The first dimension of b; must be at least max(1, m, n).

lwork INTEGER.  The size of the work array; must be at least  min (m, n) +max(1, m, 
n, nrhs).
See Application notes for the suggested value of lwork.

Output Parameters

a On exit, overwritten by the factorization data as follows:
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if m ≥ n, array a contains the details of the QR factorization of the matrix A as 
returned by ?geqrf;
if m < n, array a contains the details of the LQ factorization of the matrix A as 
returned by ?gelqf.

b Overwritten by the solution vectors, stored  columnwise:  If trans = 'N' and 
m ≥ n, rows 1 to n of b contain the least  squares solution vectors; the residual 
sum of squares for the  solution in each column is given by the sum of squares 
of  elements n+1 to m in that column; 
If trans = 'N' and m < n, rows 1 to n of b contain the  minimum norm 
solution vectors;  
if trans = 'T'or 'C' and m ≥ n, rows 1 to m of b contain the  minimum norm 
solution vectors; 
 if trans = 'T'or 'C' and m < n, rows 1 to m of b contain the  least squares 
solution vectors; the residual sum of squares  for the solution in each column is 
given by the sum of  squares of elements m+1 to n in that column.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using 
lwork =min (m, n) +max(1, m, n, nrhs)*blocksize, where blocksize is a machine-dependent value 
(typically, 16 to 64) required for optimum performance of the blocked algorithm. 

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.
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?gelsy 
Computes the minimum-norm solution to a linear least 
squares problem using a complete orthogonal 
factorization of A.

Syntax
call sgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,

lwork, info )

call dgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, info )

call cgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, rwork, info )

call zgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, rwork, info )

Description

This routine computes the minimum-norm solution to a real/complex linear least  squares 
problem:

minimize   || b - A x ||2

using a complete orthogonal factorization of A.  A is an m-by-n  matrix which may be 
rank-deficient.  
Several right hand side vectors  b and solution vectors x can be  handled in a single call; they are 
stored as the columns of the  m-by-nrhs right hand side matrix B and the n-by-nrhs solution  
matrix X.

The routine first computes a QR factorization with column pivoting:

                     

with R11 defined as the largest leading submatrix whose estimated  condition number is less than 
1/rcond.  The order of R11, rank,  is the effective rank of A.  
Then, R22 is considered to be negligible, and R12 is annihilated  by orthogonal/unitary 
transformations from the right, arriving at the  complete orthogonal factorization:

AP Q
R11R12
0 R22� �
� �=
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The minimum-norm solution is then

                     

where Q1 consists of the first rank columns of Q.  This routine is basically identical to the original 
?gelsx except  three differences:

• The call to the subroutine ?geqpf has been substituted by the call to the subroutine ?geqp3. 
This subroutine is a BLAS-3 version of the QR factorization with column pivoting.

• Matrix B (the right hand side) is updated with BLAS-3.

• The permutation of matrix B (the right hand side) is faster and more simple.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

a, b, work REAL for sgelsy 
DOUBLE PRECISION for dgelsy 
COMPLEX for cgelsy 
DOUBLE COMPLEX for zgelsy.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the m-by-nrhs right hand side matrix B .  
The second dimension of b must be at least 
max(1, nrhs).

work(lwork) is a workspace array.

AP Q
T110
0 0� �
� � Z=

x PZ
H T11

1–
Q1
H
b

0� �
� �
� �

=
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lda INTEGER.  The first dimension of a; at least max(1, m).

ldb INTEGER.  The first dimension of b; must be at least max(1, m, n).

jpvt INTEGER.  Array, DIMENSION  at least max(1, n).

On entry, if jpvt(i)≠ 0, the ith column of A is permuted to the front of AP, 
otherwise the ith column of A is a free column. 

rcond REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

rcond is used to determine the effective rank of A, which is defined as the 
order of the largest leading triangular submatrix R11 in the QR factorization 
with pivoting of A, whose estimated condition number < 1/rcond.

lwork INTEGER.  The size of the work array. See Application notes for the suggested 
value of lwork.

rwork REAL for cgelsy
DOUBLE PRECISION for zgelsy.
Workspace array,  DIMENSION at least max(1, 2n). Used in complex flavors 
only.

Output Parameters

a On exit, overwritten by the details of the complete orthogonal factorization of 
A.

b Overwritten by the n-by-nrhs solution matrix X.

jpvt On exit, if jpvt(i)= k, then the ith column of AP was the kth column of A.

rank INTEGER. 
The effective rank of A, that is, the order of the submatrix R11.  This is the same 
as the order of the submatrix T11 in the complete orthogonal factorization of A.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For real flavors:
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The unblocked strategy requires that:
 lwork ≥ max( mn+3n+1, 2*mn + nrhs ),
where mn = min( m, n ). 

The block algorithm requires that:
lwork ≥ max( mn+2n+nb*(n+1), 2*mn+nb*nrhs ), 

where nb is an upper bound on the blocksize returned by ilaenv for the routines 
sgeqp3/dgeqp3, stzrzf/dtzrzf, stzrqf/dtzrqf, sormqr/dormqr, and sormrz/dormrz.

For complex flavors:

The unblocked strategy requires that:
 lwork ≥ mn + max( 2*mn, n+1, mn + nrhs ),
where mn = min( m, n ). 

The block algorithm requires that:
lwork ≥ mn + max(2*mn,  nb*(n+1),  mn+mn*nb, mn+nb*nrhs ), 
where nb is an upper bound on the blocksize returned by ilaenv for the routines 
cgeqp3/zgeqp3, ctzrzf/ztzrzf, ctzrqf/ztzrqf, cunmqr/zunmqr, and cunmrz/zunmrz.
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?gelss 
Computes the minimum-norm solution to a linear least 
squares problem using the  singular value decomposition 
of A.

Syntax
call sgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,

lwork, info )

call dgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, info )

call cgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, info )

call zgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, info )

Description

This routine computes the minimum norm solution to a real linear least squares problem:
minimize   || b - A x ||2

using the singular value decomposition (SVD) of A.  A is an m-by-n matrix which may be 
rank-deficient. 
Several right hand side vectors b and solution vectors x can be handled in a single call; they are 
stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution 
matrix X. 
The effective rank of A is determined by treating as zero those singular values which are less than 
rcond times the largest singular value.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 
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a, b, work REAL for sgelss 
DOUBLE PRECISION for dgelss 
COMPLEX for cgelss 
DOUBLE COMPLEX for zgelss.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the m-by-nrhs right hand side matrix B .  
The second dimension of b must be at least 
max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

ldb INTEGER.  The first dimension of b; must be at least max(1, m, n).

rcond REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

rcond is used to determine the effective rank of A. Singular values s(i) ≤ 
rcond *s(1) are treated as zero. If rcond < 0, machine precision is used 
instead.

lwork INTEGER.  The size of the work array; lwork ≥ 1. See Application notes for 
the suggested value of lwork.

rwork REAL for cgelss
DOUBLE PRECISION for zgelss.
Workspace array used in complex flavors only. DIMENSION at least max(1, 
5*min(m, n)). 

Output Parameters

a On exit, the first min(m, n) rows of A are overwritten with its right singular 
vectors, stored row-wise.

b Overwritten by the n-by-nrhs solution matrix X.

If m ≥ n and rank = n, the residual sum-of-squares for the solution in the i-th 
column is given by the sum of squares of elements n+1:m in that column.



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-267

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m, n)). The singular values of A in 
decreasing order. The condition number of A in the 2-norm is
         k2(A) = s(1) / s(min(m, n)) .

rank INTEGER. 
The effective rank of A, that is, the number of singular values which are greater 
than rcond *s(1).

work(1) If info = 0, on exit, work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm for computing the SVD failed to converge; i
indicates the number of off-diagonal elements of an intermediate bidiagonal
form which did not converge to zero.

Application Notes

For real flavors:

 lwork ≥ 3*min(m, n) + max( 2*min(m, n), max(m, n),  nrhs) 

For complex flavors:

 lwork ≥ 2*min(m, n) + max(m, n , nrhs) 

For good performance, lwork should generally be larger. If you are in doubt how much 
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1) 
and use this value for subsequent runs.
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?gelsd 
Computes the minimum-norm solution to a linear least 
squares problem using the  singular value decomposition 
of A and a divide and conquer method.

Syntax
call sgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,

lwork, iwork, info )

call dgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, iwork, info )

call cgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, iwork, info )

call zgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, iwork, info )

Description

This routine computes the minimum-norm solution to a real linear least squares problem:

minimize   || b - A x ||2

using the singular value decomposition (SVD) of A.  A is an m-by-n matrix which may be 
rank-deficient. 

Several right hand side vectors b and solution vectors x can be handled in a single call; they are 
stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution 
matrix X. 

The problem is solved in three steps:

1. Reduce the coefficient matrix A to bidiagonal form with Householder transformations, 
reducing the original problem into a "bidiagonal least squares problem" (BLS).

2. Solve the BLS using a divide and conquer approach.

3. Apply back all the Householder transformations to solve the original least squares 
problem.

The effective rank of A is determined by treating as zero those singular values which are less than 
rcond times the largest singular value.
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Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER.  The number of right-hand sides; the number of columns in B
(nrhs ≥ 0). 

a, b, work REAL for sgelsd 
DOUBLE PRECISION for dgelsd 
COMPLEX for cgelsd 
DOUBLE COMPLEX for zgelsd.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the m-by-nrhs right hand side matrix B .  
The second dimension of b must be at least 
max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

ldb INTEGER.  The first dimension of b; must be at least max(1, m, n).

rcond REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

rcond is used to determine the effective rank of A. Singular values s(i) ≤ 
rcond *s(1) are treated as zero. If rcond < 0, machine precision is used 
instead.

lwork INTEGER.  The size of the work array; lwork ≥ 1. See Application notes for 
the suggested value of lwork.

iwork INTEGER. Workspace array. See Application notes for the suggested dimension 
of iwork.

rwork REAL for cgelsd 
DOUBLE PRECISION for zgelsd .

Workspace array, used in complex flavors only. See

 Application notes for the suggested dimension of rwork.
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Output Parameters

a On exit,  A has been overwritten.

b Overwritten by the n-by-nrhs solution matrix X.

If m ≥ n and rank = n, the residual sum-of-squares for the solution in the i-th 
column is given by the sum of squares of elements n+1:m in that column.

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m, n)). The singular values of A in 
decreasing order. The condition number of A in the 2-norm is
         k2(A) = s(1) / s(min(m, n)) .

rank INTEGER. 
The effective rank of A, that is, the number of singular values which are greater 
than rcond *s(1).

work(1) If info = 0, on exit, work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm for computing the SVD failed to converge; i
indicates the number of off-diagonal elements of an intermediate bidiagonal
form which did not converge to zero.

Application Notes

The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It 
will work on machines with a guard digit in add/subtract.  It could conceivably fail on hexadecimal 
or decimal machines without guard digits, but we know of none.

The exact minimum amount of workspace needed depends on m, n and nrhs. The size lwork of 
the workspace array work must be as given below.

For real flavors:

If m ≥ n,
lwork ≥ 12n + 2n*smlsiz + 8n*nlvl + n*nrhs + (smlsiz+1)2;

If m < n,
lwork ≥ 12m + 2m*smlsiz + 8m*nlvl + m*nrhs  + (smlsiz+1)2;
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For complex flavors:

If m ≥ n,
lwork ≥ 2n + n*nrhs ;

If m < n,
lwork ≥ 2m + m*nrhs ;

where smlsiz is returned by ilaenv and is equal to the maximum size of the subproblems at the 
bottom of the computation tree (usually about 25), and
 nlvl = INT( log2( min( m, n )/(smlsiz+1) ) ) + 1 .

For good performance, lwork should generally be larger. If you are in doubt how much 
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1) 
and use this value for subsequent runs.

The dimension of the workspace array iwork must be at least
3*min( m, n )*nlvl + 11*min( m, n ).

The dimension lrwork of the workspace array rwork (for complex flavors) must be at least:
If m ≥ n,
lrwork ≥ 10n + 2n*smlsiz + 8n*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2;

If m < n,
lrwork ≥ 10m + 2m*smlsiz + 8m*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2.
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Generalized LLS Problems

This section describes LAPACK driver routines used for solving generalized linear least-squares 
problems. Table 4-9 lists routines described in more detail below.   

?gglse 
Solves the linear equality-constrained least squares 
problem using a generalized RQ factorization.

Syntax
call sgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )

call dgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )

call cgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )

call zgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )

Description

This routine solves the linear equality-constrained least squares (LSE) problem:

minimize   || c - A x ||2    subject to   B x = d

where A is an m-by-n matrix, B is a p-by-n matrix, c  is a given m-vector, and d  is a given p-vector. 
It is assumed that  p ≤ n ≤ m+p, and

              rank(B) = p   and   rank  = n . 

These conditions ensure that the LSE problem has a unique solution, which is obtained using a 
generalized RQ factorization of the matrices B and A.

Table 4-9 Driver Routines for Solving Generalized LLS Problems

Routine Name Operation performed

?gglse Solves the linear equality-constrained least squares problem using a 
generalized RQ factorization.

?ggglm Solves a general Gauss-Markov linear model problem  using a generalized 
QR factorization.

A

B� �
� �
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Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrices A and B (n ≥ 0).

p INTEGER. The number of rows of the matrix B
(0 ≤ p ≤ n ≤ m+p).

a,b,c,d,work REAL for sgglse 
DOUBLE PRECISION for dgglse 
COMPLEX for cgglse 
DOUBLE COMPLEX for zgglse.

Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B .  
The second dimension of b must be at least max(1, n).

c(*), dimension at least max(1, m), contains the right hand side vector for the 
least squares part of the LSE problem.   
d(*), dimension at least max(1, p), contains the right hand side vector for the 
constrained equation.   
work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, m).

ldb INTEGER.  The first dimension of b; at least max(1, p).

lwork INTEGER.  The size of the work array; 
lwork ≥ max(1, m+n+p). See Application notes for the suggested value of 
lwork.

Output Parameters

x REAL for sgglse 
DOUBLE PRECISION for dgglse 
COMPLEX for cgglse 
DOUBLE COMPLEX for zgglse.
Array,  DIMENSION at least max(1, n).  
On exit, contains the solution of the LSE problem.

a,b,d On exit, these arrays are overwritten.
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c On exit, the residual sum-of-squares for the solution is given by the sum of 
squares of elements n-p+1 to m of vector c.

work(1) If info = 0, on exit, work(1) contains the minimum value of lwork required 
for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

 For optimum performance use 
lwork ≥ p+min(m, n)+max(m, n)*nb,

 where nb is an upper bound for the optimal blocksizes for ?geqrf, ?gerqf,  ?ormqr/?unmqr 
and ?ormrq/?unmrq.
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?ggglm 
Solves a general Gauss-Markov linear model problem  
using a generalized QR factorization.

Syntax
call sggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )

call dggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )

call cggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )

call zggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )

Description

This routine solves a general Gauss-Markov linear model (GLM) problem:
              minimizex   || y ||2    subject to   d = Ax + By
where A is an n-by-m matrix, B is an n-by-p matrix, and d is a given n-vector. 
It is assumed that  m ≤ n ≤ m+p, and
              rank(A) = m   and   rank( A B ) = n . 
Under these assumptions, the constrained equation is always consistent, and there is a unique 
solution x and a minimal 2-norm solution y, which is obtained using a generalized QR factorization 
of A and B.
In particular, if matrix B is square nonsingular, then the problem GLM is equivalent to the 
following weighted linear least squares problem
            minimizex  || B

-1(d-Ax) ||2  .

Input Parameters

n INTEGER. The number of rows of the matrices A and B (n ≥ 0).

m INTEGER. The number of columns in A (m ≥ 0).

p INTEGER. The number of columns in B (p ≥ n - m).

a,b,d,work REAL for sggglm 
DOUBLE PRECISION for dggglm 
COMPLEX for cggglm 
DOUBLE COMPLEX for zggglm.

Arrays: 
a(lda,*) contains the n-by-m matrix A. 
The second dimension of a must be at least max(1, m).
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b(ldb,*) contains the n-by-p matrix B .  
The second dimension of b must be at least max(1, p).

d(*), dimension at least max(1, n), contains the left hand side of the GLM 
equation.   
work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

lwork INTEGER.  The size of the work array; 
lwork ≥ max(1, n+m+p). See Application notes for the suggested value of 
lwork.

Output Parameters

x, y REAL for sggglm 
DOUBLE PRECISION for dggglm 
COMPLEX for cggglm 
DOUBLE COMPLEX for zggglm.
Arrays x(*), y(*). DIMENSION at least max(1, m) for x and at least  max(1, p) 
for y.  
On exit, x and y are the solutions of the GLM problem.

a,b,d On exit, these arrays are overwritten.

work(1) If info = 0, on exit, work(1) contains the minimum value of lwork required 
for optimum performance. 

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

 For optimum performance use 
lwork ≥ m+min(n, p)+max(n, p)*nb,

 where nb is an upper bound for the optimal blocksizes for ?geqrf, ?gerqf,  ?ormqr/?unmqr 
and ?ormrq/?unmrq.
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Symmetric Eigenproblems

This section describes LAPACK driver routines used for solving symmetric eigenvalue problems. 
See also computational routines that can be called to solve these problems. 
Table 4-10 lists routines described in more detail below.   

Table 4-10 Driver Routines for Solving Symmetric Eigenproblems

Routine Name Operation performed

?syev/?heev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / 
Hermitian matrix.

?syevd/?heevd Computes all eigenvalues and (optionally) all eigenvectors of a real 
symmetric / Hermitian matrix using divide and conquer algorithm.

?syevx/?heevx Computes selected eigenvalues and, optionally, eigenvectors of a 
symmetric / Hermitian matrix.

?syevr/?heevr Computes selected eigenvalues and, optionally, eigenvectors of a real 
symmetric / Hermitian matrix using the Relatively Robust Representations.

?spev/?hpev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / 
Hermitian matrix in packed storage.

?spevd/?hpevd Uses divide and conquer algorithm to compute all eigenvalues and 
(optionally) all eigenvectors of a real symmetric / Hermitian matrix held in 
packed storage.

?spevx/?hpevx Computes selected eigenvalues and, optionally, eigenvectors of a real 
symmetric / Hermitian matrix in packed storage.

?sbev /?hbev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric  
/ Hermitian band matrix.

?sbevd/?hbevd Computes all eigenvalues and (optionally) all eigenvectors of a real 
symmetric  / Hermitian band matrix using divide and conquer algorithm.

?sbevx/?hbevx Computes selected eigenvalues and, optionally, eigenvectors of a real 
symmetric / Hermitian band matrix.

?stev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric  
tridiagonal matrix.

?stevd Computes all eigenvalues and (optionally) all eigenvectors of a real 
symmetric tridiagonal matrix using divide and conquer algorithm.

?stevx Computes selected eigenvalues and eigenvectors of a real symmetric  
tridiagonal matrix.

?stevr Computes selected eigenvalues and, optionally, eigenvectors of a real 
symmetric tridiagonal matrix using the Relatively Robust Representations.
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?syev 
Computes all eigenvalues and, optionally, eigenvectors 
of a real symmetric matrix.

Syntax
call ssyev ( jobz, uplo, n, a, lda, w, work, lwork, info )

call dsyev ( jobz, uplo, n, a, lda, w, work, lwork, info )

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  a stores the upper triangular part of A.
If uplo = 'L',  a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

a, work REAL for ssyev 
DOUBLE PRECISION for dsyev 
Arrays: 
a(lda,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

lwork INTEGER. The dimension of the array work. 
Constraint: lwork ≥ max(1, 3n-1). See Application notes for the suggested 
value of lwork.
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Output Parameters

a On exit, if jobz ='V', then if info = 0, array a contains the orthonormal 
eigenvectors  of the matrix A.
If jobz ='N', then on exit the lower triangle 
(if uplo = 'L') or the upper triangle (if uplo = 'U') of A, including the 
diagonal, is overwritten. 

w REAL for ssyev 
DOUBLE PRECISION for dsyev 
Array, DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in ascending order.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.

Application Notes

 For optimum performance use 
lwork ≥ (nb+2)*n, 

 where nb is the blocksize for ?sytrd returned by ilaenv. 
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.
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?heev 
Computes all eigenvalues and, optionally, eigenvectors 
of a Hermitian matrix.

Syntax
call cheev ( jobz, uplo, n, a, lda, w, work, lwork, rwork, info )

call zheev ( jobz, uplo, n, a, lda, w, work, lwork, rwork, info )

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  a stores the upper triangular part of A.
If uplo = 'L',  a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

a, work COMPLEX for cheev 
DOUBLE COMPLEX for zheev 
Arrays: 
a(lda,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

lwork INTEGER. The dimension of the array work. 
Constraint: lwork ≥ max(1, 2n-1). See Application notes for the suggested 
value of lwork.
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rwork REAL for cheev 
DOUBLE PRECISION for zheev .
Workspace array, DIMENSION  at least max(1, 3n-2).

Output Parameters

a On exit, if jobz ='V', then if info = 0, array a contains the orthonormal 
eigenvectors  of the matrix A.
If jobz ='N', then on exit the lower triangle 
(if uplo = 'L') or the upper triangle (if uplo = 'U') of A, including the 
diagonal, is overwritten. 

 w REAL for cheev 
DOUBLE PRECISION for zheev 
Array, DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in ascending order.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.

Application Notes

 For optimum performance use 
lwork ≥ (nb+1)*n, 

 where nb is the blocksize for ?hetrd returned by ilaenv. 
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.
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?syevd       
Computes all eigenvalues and (optionally) all 
eigenvectors of a real symmetric matrix using divide 
and conquer algorithm.

Syntax
call ssyevd (job,uplo,n,a,lda,w,work,lwork,iwork,liwork,info)

call dsyevd (job,uplo,n,a,lda,w,work,lwork,iwork,liwork,info)

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric 
matrix A. In other words, it can compute the spectral factorization of A as:  A = ZΛZT. 
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the 
orthogonal matrix whose columns are the eigenvectors zi. Thus, 

            Azi = λizi  for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute 
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the 
Pal-Walker-Kahan variant of the QL or QR algorithm. 

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  a stores the upper triangular part of A.
If uplo = 'L',  a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

a REAL for ssyevd 
DOUBLE PRECISION for dsyevd 
Array, DIMENSION (lda, *) .
a(lda,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
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lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

work REAL for ssyevd 
DOUBLE PRECISION for dsyevd. 
Workspace array, DIMENSION at least lwork. 

lwork INTEGER. The dimension of the array work. 
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ 2n+1;
 if job ='V' and n > 1, then 
lwork ≥ 3n2+(5+2k)*n+1, where k is the smallest integer which satisfies 2k 
≥ n.

iwork INTEGER.
Workspace array, DIMENSION  at least liwork.

liwork INTEGER. The dimension of the array iwork. 
Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

Output Parameters

w REAL for ssyevd 
DOUBLE PRECISION for dsyevd 
Array, DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in ascending order.
See also info.

a If job ='V', then on exit this array is overwritten by the orthogonal matrix Z 
which contains the eigenvectors 
of A. 

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal size of 
liwork.



4-284

4 Intel® Math Kernel Library Reference Manual

info INTEGER. 
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε) 
||T||2, where ε is the machine precision.

The complex analogue of this routine is ?heevd.

?heevd     
Computes all eigenvalues and (optionally) all 
eigenvectors of a complex Hermitian matrix using 
divide and conquer algorithm.

Syntax
call cheevd (job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,

iwork, liwork, info)

call zheevd (job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,
iwork, liwork, info)

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex 
Hermitian matrix A. In other words, it can compute the spectral factorization of A as:   A = ZΛZH .
Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the 
(complex) unitary matrix whose columns are the eigenvectors zi. Thus, 

            Azi = λizi  for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute 
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the 
Pal-Walker-Kahan variant of the QL or QR algorithm. 
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Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  a stores the upper triangular part of A.
If uplo = 'L',  a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

a COMPLEX for cheevd 
DOUBLE COMPLEX for zheevd 
Array, DIMENSION (lda, *) .
a(lda,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

work COMPLEX for cheevd 
DOUBLE COMPLEX for zheevd. 
Workspace array, DIMENSION at least lwork. 

lwork INTEGER. The dimension of the array work. 
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ n+1;
 if job ='V' and n > 1, then lwork ≥ n2+2n 

rwork REAL for cheevd 
DOUBLE PRECISION for zheevd 
Workspace array, DIMENSION at least lrwork. 

lrwork INTEGER. The dimension of the array rwork. 
Constraints:
if n ≤ 1, then lrwork ≥ 1;
 if job ='N' and n > 1, then lrwork ≥ n;
 if job ='V' and n > 1, then 
lrwork ≥ 3n2+(4+2k)*n+1, where k is the smallest integer which satisfies 
2k ≥ n.

 iwork INTEGER.
Workspace array, DIMENSION  at least liwork.
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liwork INTEGER. The dimension of the array iwork. 
Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

Output Parameters

w REAL for cheevd 
DOUBLE PRECISION for zheevd 
Array, DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in ascending order.
See also info.

a If job ='V', then on exit this array is overwritten by the unitary matrix Z 
which contains the eigenvectors 
of A. 

work(1) On exit, if lwork > 0, then the real part of work(1) returns the required 
minimal size of lwork.

rwork(1) On exit, if lrwork > 0, then rwork(1) returns the required minimal size of 
lrwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix A + E such that ||E||2 = O(ε) 
||A||2, where ε is the machine precision.

The real analogue of this routine is ?syevd. 
See also ?hpevd for matrices held in packed storage, and ?hbevd for banded matrices.
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?syevx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a symmetric matrix.

Syntax
call ssyevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,

m, w, z, ldz, work, lwork, iwork, ifail, info)

call dsyevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric 
matrix A.  Eigenvalues and eigenvectors can be selected by specifying either a range of values or a 
range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found. 
If range ='V', all eigenvalues in the half-open interval
  (vl, vu] will be found. 
If range ='I', the eigenvalues with indices il through iu will be found. 

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  a stores the upper triangular part of A.
If uplo = 'L',  a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

a, work REAL for ssyevx 
DOUBLE PRECISION for dsyevx. 
Arrays: 
a(lda,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).
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work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

vl, vu REAL for ssyevx 
DOUBLE PRECISION for dsyevx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues;  vl ≤ vu .
Not referenced if range ='A'or 'I'.

il, iu INTEGER. If range ='I', the indices of the smallest and largest eigenvalues 
to be returned.
Constraints: 1 ≤ il ≤ iu ≤ n ,  if n > 0;
il = 1 and  iu = 0 , if n = 0.
Not referenced if range ='A'or 'V'.

abstol REAL for ssyevx 
DOUBLE PRECISION for dsyevx. 
The absolute error tolerance for the eigenvalues . 
See Application notes for more information.

ldz INTEGER.  The first dimension of the output array z; ldz ≥ 1. If jobz ='V', 
then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work. 
Constraint: lwork ≥ max(1, 8n). See Application notes for the suggested value 
of lwork.

iwork INTEGER. Workspace array, DIMENSION  at least  max(1, 5n). 

Output Parameters

a On exit,  the lower triangle (if uplo = 'L') or the upper triangle (if uplo = 
'U') of A, including the diagonal, is overwritten. 

m INTEGER. The total number of eigenvalues found;
0 ≤ m ≤ n . If range ='A', m = n , and if 
range ='I',  m = iu-il+1 .

w REAL for ssyevx 
DOUBLE PRECISION for dsyevx 
Array, DIMENSION  at least max(1, n) .
The first m elements contain the selected eigenvalues of the matrix A in 
ascending order.
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z REAL for ssyevx 
DOUBLE PRECISION for dsyevx. 
Array z(ldz,*) contains eigenvectors.
The second dimension of z must be at least max(1, m).

If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z holding the eigenvector associated with 
w(i). If an eigenvector fails to converge, then that column of z contains the 
latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz ='N', then z is not referenced. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size of 
lwork.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero; if info 
> 0, then ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='V', then ifail is not referenced.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in 
the array ifail.

Application Notes

For optimum performance use lwork ≥ (nb+3)*n, where nb is the maximum of the blocksize for 
?sytrd and ?ormtr returned by ilaenv. 
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*|T|  will be used in its place, where |T| is the 1-norm of the tridiagonal matrix 
obtained by reducing A to tridiagonal form. 
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Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*slamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*slamch('S').

?heevx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a Hermitian matrix.

Syntax
call cheevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,

m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

call zheevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian 
matrix A.  Eigenvalues and eigenvectors can be selected by specifying either a range of values or a 
range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found. 
If range ='V', all eigenvalues in the half-open interval
  (vl, vu] will be found. 
If range ='I', the eigenvalues with indices il through iu will be found. 

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  a stores the upper triangular part of A.
If uplo = 'L',  a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 
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a, work COMPLEX for cheevx 
DOUBLE COMPLEX for zheevx. 
Arrays: 
a(lda,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

vl, vu REAL for cheevx 
DOUBLE PRECISION for zheevx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues;  vl ≤ vu .
Not referenced if range ='A'or 'I'.

il, iu INTEGER. If range ='I', the indices of the smallest and largest eigenvalues 
to be returned.
Constraints: 1 ≤ il ≤ iu ≤ n ,  if n > 0;
il = 1 and  iu = 0 , if n = 0.
Not referenced if range ='A'or 'V'.

abstol REAL for cheevx 
DOUBLE PRECISION for zheevx. 
The absolute error tolerance for the eigenvalues . 
See Application notes for more information.

ldz INTEGER.  The first dimension of the output array z; ldz ≥ 1. If jobz ='V', 
then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work. 
Constraint: lwork ≥ max(1, 2n-1). See Application notes for the suggested 
value of lwork.

rwork REAL for cheevx 
DOUBLE PRECISION for zheevx. 
Workspace array, DIMENSION  at least  max(1, 7n). 

iwork INTEGER. Workspace array, DIMENSION  at least  max(1, 5n). 

Output Parameters

a On exit,  the lower triangle (if uplo = 'L') or the upper triangle (if uplo = 
'U') of A, including the diagonal, is overwritten. 
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m INTEGER. The total number of eigenvalues found;
0 ≤ m ≤ n . If range ='A', m = n , and if 
range ='I',  m = iu-il+1 .

w REAL for cheevx 
DOUBLE PRECISION for zheevx 
Array, DIMENSION  at least max(1, n) .
The first m elements contain the selected eigenvalues of the matrix A in 
ascending order.

z COMPLEX for cheevx 
DOUBLE COMPLEX for zheevx. 
Array z(ldz,*) contains eigenvectors.
The second dimension of z must be at least max(1, m).

If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z holding the eigenvector associated with 
w(i). If an eigenvector fails to converge, then that column of z contains the 
latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz ='N', then z is not referenced. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size of 
lwork.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero; if info 
> 0, then ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='V', then ifail is not referenced.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in 
the array ifail.
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Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the maximum of the blocksize for 
?hetrd and ?unmtr returned by ilaenv. 
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*|T|  will be used in its place, where |T| is the 1-norm of the tridiagonal matrix 
obtained by reducing A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*slamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*slamch('S').
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?syevr 
Computes selected eigenvalues and, optionally, 
eigenvectors of a real symmetric matrix using the 
Relatively Robust Representations.

Syntax
call ssyevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,

m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)

call dsyevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric 
matrix T.  Eigenvalues and eigenvectors can be selected by specifying either a range of values or a 
range of indices for the desired eigenvalues. 

Whenever possible, ?syevr calls sstegr/dstegr to compute the eigenspectrum using 
Relatively Robust Representations. ?stegr computes eigenvalues by the dqds algorithm, while 
orthogonal eigenvectors are computed from various “good'' LDLT representations (also known as 
Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. 
More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of 
T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively robust
representation;
(b) Compute the eigenvalues, λj, of Li Di Li

T to high relative accuracy by the dqds
algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the cluster, and go
to step (a);
(d) Given the approximate eigenvalue λj of Li Di Li

T, compute the corresponding
eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?syevr calls sstegr/dstegr when the full spectrum is requested on machines 
which conform to the IEEE-754 floating point standard. ?syevr calls sstebz/dstebz  and 
sstein/dstein  on non-IEEE machines and when partial spectrum requests are made. 
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Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

For range ='V'or 'I' and iu-il < n-1, sstebz/dstebz and 
sstein/dstein are called.

n INTEGER.  The order of the matrix A (n ≥ 0). 

a, work REAL for ssyevr 
DOUBLE PRECISION for dsyevr. 
Arrays: 
a(lda,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

vl, vu REAL for ssyevr 
DOUBLE PRECISION for dsyevr. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.
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abstol REAL for ssyevr 
DOUBLE PRECISION for dsyevr. 
The absolute error tolerance to which each eigenvalue/eigenvector is required. 
If jobz = 'V', the eigenvalues and eigenvectors output have residual norms 
bounded by abstol, and the dot products between different eigenvectors are 
bounded by abstol. If abstol < nε||T||1, then nε||T||1 will be used in its 
place, where ε  is the machine precision. The eigenvalues are computed to an 
accuracy of ε||T||1 irrespective of abstol. If high relative accuracy is 
important, set abstol to ?lamch('S').

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1  if jobz ='N';
ldz ≥ max(1, n)  if jobz ='V'.

lwork INTEGER. The dimension of the array work. 
Constraint: lwork ≥ max(1, 26n). See Application notes for the suggested 
value of lwork.

iwork INTEGER.   
Workspace array, DIMENSION  (liwork).

liwork INTEGER. The dimension of the array iwork,  
lwork ≥ max(1, 10n).

Output Parameters

a On exit,  the lower triangle (if uplo = 'L') or the upper triangle (if uplo = 
'U') of A, including the diagonal, is overwritten. 

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w, z REAL for ssyevr 
DOUBLE PRECISION for dsyevr. 
Arrays:
w(*),  DIMENSION at least max(1, n), contains the selected eigenvalues in 
ascending order, stored in w(1) to w(m);

z(ldz, *), the second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix T corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i). 
If jobz ='N', then z  is not referenced. 
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Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

isuppz INTEGER.   
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices indicating the nonzero 
elements in z. The i-th eigenvector is nonzero only in elements isuppz( 2i-1 
) through isuppz( 2i ). 
Implemented only for range ='A' or 'I' and 
iu-il = n-1.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i,  an internal error has occurred.

Application Notes

For optimum performance use lwork ≥ (nb+6)*n, where nb is the maximum of the blocksize for 
?sytrd and ?ormtr returned by ilaenv. 
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a 
floating point exception in environments which do not handle NaNs and infinities in the IEEE 
standard default manner.
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?heevr 
Computes selected eigenvalues and, optionally, 
eigenvectors of a Hermitian matrix using the Relatively 
Robust Representations.

Syntax
call cheevr ( jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,

m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,
iwork, liwork, info)

call zheevr ( jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,
iwork, liwork, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian 
matrix T.  Eigenvalues and eigenvectors can be selected by specifying either a range of values or a 
range of indices for the desired eigenvalues. 

Whenever possible, ?heevr calls cstegr/zstegr to compute the eigenspectrum using 
Relatively Robust Representations. ?stegr computes eigenvalues by the dqds algorithm, while 
orthogonal eigenvectors are computed from various “good'' LDLT representations (also known as 
Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. 
More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of 
T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively robust
representation;
(b) Compute the eigenvalues, λj, of Li Di Li

T to high relative accuracy by the dqds
algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the cluster, and go
to step (a);
(d) Given the approximate eigenvalue λj of Li Di Li

T, compute the corresponding
eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.
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The routine ?heevr calls cstegr/zstegr when the full spectrum is requested on machines 
which conform to the IEEE-754 floating point standard. ?heevr calls sstebz/dstebz  and 
cstein/zstein  on non-IEEE machines and when partial spectrum requests are made. 

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

For range ='V'or 'I', sstebz/dstebz and cstein/zstein are called.

n INTEGER.  The order of the matrix A (n ≥ 0). 

a, work COMPLEX for cheevr 
DOUBLE COMPLEX for zheevr. 
Arrays: 
a(lda,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

vl, vu REAL for cheevr 
DOUBLE PRECISION for zheevr. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
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If range ='A' or 'V', il and iu are not referenced.

abstol REAL for cheevr 
DOUBLE PRECISION for zheevr. 
The absolute error tolerance to which each eigenvalue/eigenvector is required. 
If jobz = 'V', the eigenvalues and eigenvectors output have residual norms 
bounded by abstol, and the dot products between different eigenvectors are 
bounded by abstol. If abstol < nε||T||1, then nε||T||1 will be used in its 
place, where ε  is the machine precision. The eigenvalues are computed to an 
accuracy of ε||T||1 irrespective of abstol. If high relative accuracy is 
important, set abstol to ?lamch('S').

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1  if jobz ='N';
ldz ≥ max(1, n)  if jobz ='V'.

lwork INTEGER. The dimension of the array work. 
Constraint: lwork ≥ max(1, 2n). See Application notes for the suggested value 
of lwork.

rwork REAL for cheevr 
DOUBLE PRECISION for zheevr. 
Workspace array, DIMENSION  (lrwork).

lrwork INTEGER. The dimension of the array rwork; 
lwork ≥ max(1, 24n). .

iwork INTEGER.   
Workspace array, DIMENSION  (liwork).

liwork INTEGER. The dimension of the array iwork,  
lwork ≥ max(1, 10n).

Output Parameters

a On exit,  the lower triangle (if uplo = 'L') or the upper triangle (if uplo = 
'U') of A, including the diagonal, is overwritten. 

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w REAL for cheevr 
DOUBLE PRECISION for zheevr. 
Array,  DIMENSION at least max(1, n), contains the selected eigenvalues in 
ascending order, stored in w(1) to w(m).
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z COMPLEX for cheevr 
DOUBLE COMPLEX for zheevr. 
Array z(ldz, *); the second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix T corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i). 
If jobz ='N', then z  is not referenced. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

isuppz INTEGER.   
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices indicating the nonzero 
elements in z. The i-th eigenvector is nonzero only in elements isuppz( 2i-1 
) through isuppz( 2i ).

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the required minimal size of 
lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i,  an internal error has occurred.

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the maximum of the blocksize for 
?hetrd and ?unmtr returned by ilaenv. 
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. 
On exit, examine work(1) and use this value for subsequent runs.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a 
floating point exception in environments which do not handle NaNs and infinities in the IEEE 
standard default manner.



4-302

4 Intel® Math Kernel Library Reference Manual

?spev 
Computes all eigenvalues and, optionally, eigenvectors 
of a real symmetric matrix in packed storage.

Syntax
call sspev (jobz, uplo, n, ap, w, z, ldz, work, info)

call dspev (jobz, uplo, n, ap, w, z, ldz, work, info)

Description

This routine computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix 
A in packed storage.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ap stores the packed upper triangular part of A.
If uplo = 'L',  ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap,work REAL for sspev 
DOUBLE PRECISION for dspev 
Arrays:
ap(*) contains the packed upper or lower triangle of symmetric matrix A, as 
specified by uplo. The dimension of ap must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 3n). 

ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥  max(1, n) .
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Output Parameters

w,z REAL for sspev 
DOUBLE PRECISION for dspev 
Arrays:
w(*), DIMENSION  at least max(1, n) .
If info = 0, w contains the eigenvalues of the matrix A in ascending order. 
z(ldz,*) . The second dimension of z must be at least max(1, n) .
If jobz ='V', then if info = 0,  z contains the orthonormal eigenvectors of 
the matrix A, with the i-th column of z  holding the eigenvector associated 
with w(i). 
If jobz ='N', then z  is not referenced. 

ap On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. The elements of the diagonal and the off-diagonal of the 
tridiagonal matrix overwrite the corresponding elements of A.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.
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?hpev 
Computes all eigenvalues and, optionally, eigenvectors 
of a Hermitian matrix in packed storage.

Syntax
call chpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

call zhpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

Description

This routine computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian 
matrix A in packed storage.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ap stores the packed upper triangular part of A.
If uplo = 'L',  ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap,work COMPLEX for chpev 
DOUBLE COMPLEX for zhpev . 
Arrays:
ap(*) contains the packed upper or lower triangle of Hermitian matrix A, as 
specified by uplo. The dimension of ap must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 2n-1). 

ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥  max(1, n) .

rwork REAL for chpev 
DOUBLE PRECISION for zhpev. 
Workspace array, DIMENSION at least max(1, 3n-2).



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-305

Output Parameters

w REAL for chpev 
DOUBLE PRECISION for zhpev. 
Array, DIMENSION at least max(1, n). 
If info = 0, w contains the eigenvalues of the matrix A in ascending order. 

z COMPLEX for chpev 
DOUBLE COMPLEX for zhpev . 
Array z(ldz,*). The second dimension of z must be at least max(1, n) .
If jobz ='V', then if info = 0,  z contains the orthonormal eigenvectors of 
the matrix A, with the i-th column of z  holding the eigenvector associated 
with w(i). 
If jobz ='N', then z  is not referenced. 

ap On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. The elements of the diagonal and the off-diagonal of the 
tridiagonal matrix overwrite the corresponding elements of A.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.

?spevd       
Uses divide and conquer algorithm to compute all 
eigenvalues and (optionally) all eigenvectors of a real 
symmetric matrix held in packed storage.

Syntax
call sspevd (job,uplo,n,ap,w,z,ldz,work,lwork,iwork,liwork,info)

call dspevd (job,uplo,n,ap,w,z,ldz,work,lwork,iwork,liwork,info)
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Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric 
matrix A (held in packed storage). In other words, it can compute the spectral factorization of A as:  
A = ZΛZT. 
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the 
orthogonal matrix whose columns are the eigenvectors zi. Thus, 

            Azi = λizi  for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute 
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the 
Pal-Walker-Kahan variant of the QL or QR algorithm. 

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ap stores the packed upper triangular part of A.
If uplo = 'L',  ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap,work REAL for sspevd 
DOUBLE PRECISION for dspevd 
Arrays:
ap(*) contains the packed upper or lower triangle of symmetric matrix A, as 
specified by uplo. The dimension of ap must be at least max(1, n*(n+1)/2)
work(*) is a workspace array, DIMENSION at least lwork. 

ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if job ='N', then ldz ≥ 1;
 if job ='V', then ldz ≥  max(1, n) .

lwork INTEGER. The dimension of the array work. 
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ 2n;
 if job ='V' and n > 1, then 
lwork ≥ 2n2+(5+2k)*n+1, where k is the smallest integer which satisfies 2k 
≥ n.
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If lwork = -1, then a workspace query is assumed; the routine only calculates 
the optimal size of the work array, returns this value as the first entry of the 
work array, and no error message related to lwork is issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION  at least liwork.

liwork INTEGER. The dimension of the array iwork. 
Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+3.
If liwork = -1, then a workspace query is assumed; the routine only calculates 
the optimal size of the iwork array, returns this value as the first entry of the 
iwork array, and no error message related to liwork is issued by xerbla.

Output Parameters

w,z REAL for sspevd 
DOUBLE PRECISION for dspevd 
Arrays:
w(*), DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in ascending order. See 
also info.
z(ldz,*) . The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n)  if job ='V'.
If job ='V', then this array is overwritten by the orthogonal matrix Z which 
contains the eigenvectors of A. If job ='N', then z is not referenced.

ap On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. The elements of the diagonal and the off-diagonal of the 
tridiagonal matrix overwrite the corresponding elements of A.

work(1) On exit, if info = 0, then  work(1) returns the optimal lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the optimal liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.
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Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε) 
||T||2, where ε is the machine precision.

The complex analogue of this routine is ?hpevd.

See also ?syevd for matrices held in full storage, and ?sbevd for banded matrices.

?hpevd      
Uses divide and conquer algorithm to compute all 
eigenvalues and (optionally) all eigenvectors of a 
complex Hermitian matrix held in packed storage.

Syntax
call chpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,

lrwork, iwork, liwork, info)

call zhpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex 
Hermitian matrix A (held in packed storage). In other words, it can compute the spectral 
factorization of A as:  A = ZΛZH. 
Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the 
(complex) unitary matrix whose columns are the eigenvectors zi. Thus, 

            Azi = λizi  for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute 
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the 
Pal-Walker-Kahan variant of the QL or QR algorithm. 

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.
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uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ap stores the packed upper triangular part of A.
If uplo = 'L',  ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap,work COMPLEX for chpevd 
DOUBLE COMPLEX for zhpevd 
Arrays:
ap(*) contains the packed upper or lower triangle of Hermitian matrix A, as 
specified by uplo. The dimension of ap must be at least max(1, n*(n+1)/2)
work(*) is a workspace array, DIMENSION at least lwork. 

ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if job ='N', then ldz ≥ 1;
 if job ='V', then ldz ≥  max(1, n) .

lwork INTEGER. The dimension of the array work. 
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ n;
 if job ='V' and n > 1, then lwork ≥ 2n

rwork REAL for chpevd 
DOUBLE PRECISION for zhpevd 
Workspace array, DIMENSION at least lrwork. 

lrwork INTEGER. The dimension of the array rwork. 
Constraints:
if n ≤ 1, then lrwork ≥ 1;
 if job ='N' and n > 1, then lrwork ≥ n;
 if job ='V' and n > 1, then 
lrwork ≥ 3n2+(4+2k)*n+1, where k is the smallest integer which satisfies 
2k ≥ n.

iwork INTEGER.
Workspace array, DIMENSION  at least liwork.

liwork INTEGER. The dimension of the array iwork. 
Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.
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Output Parameters

w REAL for chpevd 
DOUBLE PRECISION for zhpevd 
Array, DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in ascending order. See 
also info.

z COMPLEX for chpevd 
DOUBLE COMPLEX for zhpevd 
Array, DIMENSION (ldz,*) . The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n)  if job ='V'.
If job ='V', then this array is overwritten by the unitary matrix Z which 
contains the eigenvectors of A. If job ='N', then z is not referenced.

ap On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. The elements of the diagonal and the off-diagonal of the 
tridiagonal matrix overwrite the corresponding elements of A.

work(1) On exit, if lwork > 0, then the real part of  work(1) returns the required 
minimal size of lwork.

rwork(1) On exit, if lrwork > 0, then rwork(1) returns the required minimal size of 
lrwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε) 
||T||2, where ε is the machine precision.

The real analogue of this routine is ?spevd.

See also ?heevd for matrices held in full storage, and ?hbevd for banded matrices.
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?spevx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a real symmetric matrix in packed 
storage.

Syntax
call sspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,

m, w, z, ldz, work, iwork, ifail, info)

call dspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric 
matrix A in packed storage.  Eigenvalues and eigenvectors can be selected by specifying either a 
range of values or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ap stores the packed upper triangular part of A.
If uplo = 'L',  ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap, work REAL for sspevx 
DOUBLE PRECISION for dspevx 
Arrays:
ap(*) contains the packed upper or lower triangle of the symmetric matrix A, 
as specified by uplo. The dimension of ap must be at least max(1, 
n*(n+1)/2).
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work(*) is a workspace array, DIMENSION at least max(1, 8n). 

vl, vu REAL for sspevx 
DOUBLE PRECISION for dspevx 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sspevx 
DOUBLE PRECISION for dspevx 
The absolute error tolerance to which each eigenvalue is required. See 
Application notes for details on error tolerance.

ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥  max(1, n) .

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, 5n).

Output Parameters

ap On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. The elements of the diagonal and the off-diagonal of the 
tridiagonal matrix overwrite the corresponding elements of A.

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w,z REAL for sspevx 
DOUBLE PRECISION for dspevx 
Arrays:
w(*), DIMENSION  at least max(1, n) .
If info = 0, contains the selected eigenvalues of the matrix A in ascending 
order. 
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z(ldz,*) . The second dimension of z must be at least max(1, m) .
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i). If an eigenvector fails to converge, then that column of z contains the 
latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz ='N', then z  is not referenced. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in 
the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').
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?hpevx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a Hermitian matrix in packed storage.

Syntax
call chpevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,

m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhpevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian 
matrix A in packed storage.  Eigenvalues and eigenvectors can be selected by specifying either a 
range of values or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ap stores the packed upper triangular part of A.
If uplo = 'L',  ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

ap, work COMPLEX for chpevx 
DOUBLE COMPLEX for zhpevx 
Arrays:
ap(*) contains the packed upper or lower triangle of the Hermitian matrix A, 
as specified by uplo. The dimension of ap must be at least max(1, 
n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 2n). 
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vl, vu REAL for chpevx 
DOUBLE PRECISION for zhpevx 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chpevx 
DOUBLE PRECISION for zhpevx 
The absolute error tolerance to which each eigenvalue is required. See 
Application notes for details on error tolerance.

ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥  max(1, n) .

rwork REAL for chpevx 
DOUBLE PRECISION for zhpevx 
Workspace array, DIMENSION  at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, 5n).

Output Parameters

ap On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. The elements of the diagonal and the off-diagonal of the 
tridiagonal matrix overwrite the corresponding elements of A.

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w REAL for chpevx 
DOUBLE PRECISION for zhpevx 
Array, DIMENSION  at least max(1, n). If info = 0, contains the selected 
eigenvalues of the matrix A in ascending order. 
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z COMPLEX for chpevx 
DOUBLE COMPLEX for zhpevx 
Array z(ldz,*) . The second dimension of z must be at least max(1, m) .
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i). If an eigenvector fails to converge, then that column of z contains the 
latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz ='N', then z  is not referenced. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in 
the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').
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?sbev 
Computes all eigenvalues and, optionally, eigenvectors 
of a real symmetric  band matrix.

Syntax
call ssbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

call dsbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric band 
matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super- or sub-diagonals in A
(kd ≥ 0). 

ab, work REAL for ssbev 
DOUBLE PRECISION for dsbev.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array. 
The dimension of work must be at least max(1, 3n-2).

ldab INTEGER.  The leading dimension of ab; must be at least kd +1.
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ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥  max(1, n) .

Output Parameters

w,z REAL for ssbev 
DOUBLE PRECISION for dsbev 
Arrays:
w(*),  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in ascending order. 

z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the orthonormal eigenvectors of 
the matrix A, with the i-th column of z  holding the eigenvector associated 
with w(i). 
If jobz ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. If uplo = 'U', the first superdiagonal and the diagonal of 
the tridiagonal matrix T are returned in rows kd and kd+1 of ab, and if uplo = 
'L', the diagonal and first subdiagonal of T are returned in the first two rows 
of ab.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; 
i indicates the number of elements of an intermediate tridiagonal form which 
did not converge to zero.
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?hbev 
Computes all eigenvalues and, optionally, eigenvectors 
of a Hermitian  band matrix.

Syntax
call chbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork,info)

call zhbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork,info)

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band 
matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super- or sub-diagonals in A
(kd ≥ 0). 

ab, work COMPLEX for chbev 
DOUBLE COMPLEX for zhbev.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array. 
The dimension of work must be at least max(1, n).

ldab INTEGER.  The leading dimension of ab; must be at least kd +1.
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ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥  max(1, n) .

rwork REAL for chbev 
DOUBLE PRECISION for zhbev 
Workspace array, DIMENSION  at least max(1, 3n-2).

Output Parameters

w REAL for chbev 
DOUBLE PRECISION for zhbev 
Array, DIMENSION  at least max(1, n). If info = 0, contains the eigenvalues in 
ascending order. 

z COMPLEX for chbev 
DOUBLE COMPLEX for zhbev.
Array z(ldz,*) . The second dimension of z must be at least max(1, n). If 
jobz ='V', then if info = 0, z contains the orthonormal eigenvectors of the 
matrix A, with the i-th column of z  holding the eigenvector associated with 
w(i). If jobz ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. If uplo = 'U', the first superdiagonal and the diagonal of 
the tridiagonal matrix T are returned in rows kd and kd+1 of ab, and if uplo = 
'L', the diagonal and first subdiagonal of T are returned in the first two rows 
of ab.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; 
i indicates the number of elements of an intermediate tridiagonal form which 
did not converge to zero.
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?sbevd     
Computes all eigenvalues and (optionally) all 
eigenvectors of a real symmetric band matrix using 
divide and conquer algorithm.

Syntax
call ssbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,

iwork, liwork, info)
call dsbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,

iwork, liwork, info)

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric 
band matrix A . In other words, it can compute the spectral factorization of A as: 
                                      A = ZΛZT 
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the 
orthogonal matrix whose columns are the eigenvectors zi. 
Thus, 

            Azi = λizi  for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute 
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the 
Pal-Walker-Kahan variant of the QL or QR algorithm. 

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super- or sub-diagonals in A
(kd ≥ 0). 
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ab, work REAL for ssbevd 
DOUBLE PRECISION for dsbevd.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array. 
The dimension of work must be at least lwork.

ldab INTEGER.  The leading dimension of ab; must be at least kd+1.

ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if job ='N', then ldz ≥ 1;
 if job ='V', then ldz ≥  max(1, n) .

lwork INTEGER. The dimension of the array work. 
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ 2n;
 if job ='V' and n > 1, then 
lwork ≥ 3n2+(4+2k)*n+1, where k is the smallest integer which satisfies 2k 
≥ n.

iwork INTEGER.
Workspace array, DIMENSION  at least liwork.

liwork INTEGER. The dimension of the array iwork. 
Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

Output Parameters

w,z REAL for ssbevd 
DOUBLE PRECISION for dsbevd 
Arrays:
w(*), DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in ascending order. See 
also info.
z(ldz,*) . The second dimension of z must be:
at least 1 if job ='N';
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at least max(1, n)  if job ='V'.
If job ='V', then this array is overwritten by the orthogonal matrix Z which 
contains the eigenvectors of A. The ith column of Z contains the eigenvector 
which corresponds to the eigenvalue w(i).
If job ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. 

work(1) On exit, if lwork > 0, then  work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε) 
||T||2, where ε is the machine precision.

The complex analogue of this routine is ?hbevd.

See also ?syevd for matrices held in full storage, and ?spevd for matrices held in packed storage.

?hbevd     
Computes all eigenvalues and (optionally) all 
eigenvectors of a complex Hermitian band matrix using 
divide and conquer algorithm.

Syntax
call chbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,

rwork, lrwork, iwork, liwork, info)

call zhbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)
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Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex 
Hermitian band matrix A . In other words, it can compute the spectral factorization of A as:  A = 
ZΛZH. 
Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the 
(complex) unitary matrix whose columns are the eigenvectors zi. Thus, 

            Azi = λizi  for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute 
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the 
Pal-Walker-Kahan variant of the QL or QR algorithm. 

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super- or sub-diagonals in A
(kd ≥ 0). 

ab, work COMPLEX for chbevd 
DOUBLE COMPLEX for zhbevd.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array. 
The dimension of work must be at least lwork.

ldab INTEGER.  The leading dimension of ab; must be at least kd+1.

ldz INTEGER. The leading dimension of the output array z. 
Constraints:
 if job ='N', then ldz ≥ 1;
 if job ='V', then ldz ≥  max(1, n) .
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lwork INTEGER. The dimension of the array work. 
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ n;
 if job ='V' and n > 1, then  lwork ≥ 2n2

rwork REAL for chbevd 
DOUBLE PRECISION for zhbevd 
Workspace array, DIMENSION at least lrwork. 

lrwork INTEGER. The dimension of the array rwork. 
Constraints:
if n ≤ 1, then lrwork ≥ 1;
 if job ='N' and n > 1, then lrwork ≥ n;
 if job ='V' and n > 1, then 
lrwork ≥ 3n2+(4+2k)*n+1, where k is the smallest integer which satisfies 
2k ≥ n.

iwork INTEGER.
Workspace array, DIMENSION  at least liwork.

liwork INTEGER. The dimension of the array iwork. 
Constraints:
 if job ='N' or n ≤ 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

Output Parameters

w REAL for chbevd 
DOUBLE PRECISION for zhbevd 
Array, DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in ascending order. See 
also info.

z COMPLEX for chbevd 
DOUBLE COMPLEX for zhbevd 
Array, DIMENSION (ldz,*) . The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n)  if job ='V'.
If job ='V', then this array is overwritten by the unitary matrix Z which 
contains the eigenvectors of A. The ith column of Z contains the eigenvector 
which corresponds to the eigenvalue w(i).
If job ='N', then z is not referenced.
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ab On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. 

work(1) On exit, if lwork > 0, then the real part of  work(1) returns the required 
minimal size of lwork.

rwork(1) On exit, if lrwork > 0, then rwork(1) returns the required minimal size of 
lrwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε) 
||T||2, where ε is the machine precision.

The real analogue of this routine is ?sbevd.

See also ?heevd for matrices held in full storage, and ?hpevd for matrices held in packed storage.
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?sbevx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a real symmetric band matrix.

Syntax
call ssbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,

iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

call dsbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band 
matrix A.  Eigenvalues and eigenvectors can be selected by specifying either a range of values or a 
range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super- or sub-diagonals in A
(kd ≥ 0). 

ab, work REAL for ssbevx 
DOUBLE PRECISION for dsbevx.
Arrays:
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ab (ldab,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array. 
The dimension of work must be at least max(1, 7n).

ldab INTEGER.  The leading dimension of ab; must be at least kd +1.

vl, vu REAL for ssbevx 
DOUBLE PRECISION for dsbevx.
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chpevx 
DOUBLE PRECISION for zhpevx 
The absolute error tolerance to which each eigenvalue is required. See 
Application notes for details on error tolerance.

ldq, ldz INTEGER. The leading dimensions of the output arrays q and z, respectively. 
Constraints:
ldq ≥  1, ldz ≥  1;
If jobz ='V', then ldq ≥ max(1, n) and ldz ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, 5n).

Output Parameters

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w,z REAL for ssbevx 
DOUBLE PRECISION for dsbevx 
Arrays:
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w(*),  DIMENSION  at least max(1, n) .
The first m elements of w contain the selected eigenvalues of the matrix A in 
ascending order. 

z(ldz,*) . The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i). If an eigenvector fails to converge, then that column of z contains the 
latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz ='N', then z  is not referenced. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

ab On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. If uplo = 'U', the first superdiagonal and the diagonal of 
the tridiagonal matrix T are returned in rows kd and kd+1 of ab, and if uplo = 
'L', the diagonal and first subdiagonal of T are returned in the first two rows 
of ab.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in 
the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
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Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').
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?hbevx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a Hermitian band matrix.

Syntax
call chbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,

iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian 
band matrix A.  Eigenvalues and eigenvectors can be selected by specifying either a range of 
values or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1.  Must be 'U' or 'L'.
If uplo = 'U',  ab stores the upper triangular part of A.
If uplo = 'L',  ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0). 

kd INTEGER.  The number of super- or sub-diagonals in A
(kd ≥ 0). 

ab, work COMPLEX for chbevx 
DOUBLE COMPLEX for zhbevx.
Arrays:
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ab (ldab,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array. 
The dimension of work must be at least max(1, n).

ldab INTEGER.  The leading dimension of ab; must be at least kd +1.

vl, vu REAL for chbevx 
DOUBLE PRECISION for zhbevx.
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chbevx 
DOUBLE PRECISION for zhbevx.
The absolute error tolerance to which each eigenvalue is required. See 
Application notes for details on error tolerance.

ldq, ldz INTEGER. The leading dimensions of the output arrays q and z, respectively. 
Constraints:
ldq ≥  1, ldz ≥  1;
If jobz ='V', then ldq ≥ max(1, n) and ldz ≥ max(1, n).

rwork REAL for chbevx 
DOUBLE PRECISION for zhbevx 
Workspace array, DIMENSION at least max(1, 7n). 

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, 5n).

Output Parameters

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.
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w REAL for chbevx 
DOUBLE PRECISION for zhbevx 
Array, DIMENSION  at least max(1, n) .
The first m elements contain the selected eigenvalues of the matrix A in 
ascending order. 

z COMPLEX for chbevx 
DOUBLE COMPLEX for zhbevx.
Array z(ldz,*) . The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i). If an eigenvector fails to converge, then that column of z contains the 
latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz ='N', then z  is not referenced. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

ab On exit, this array is overwritten by the values generated during the reduction 
to tridiagonal form. If uplo = 'U', the first superdiagonal and the diagonal of 
the tridiagonal matrix T are returned in rows kd and kd+1 of ab, and if uplo = 
'L', the diagonal and first subdiagonal of T are returned in the first two rows 
of ab.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in 
the array ifail.
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Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').
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?stev 
Computes all eigenvalues and, optionally, eigenvectors 
of a real symmetric  tridiagonal matrix.

Syntax
call sstev (jobz, n, d, e, z, ldz, work, info)

call dstev (jobz, n, d, e, z, ldz, work, info)

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric  
tridiagonal matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

n INTEGER. The order of the matrix A (n ≥ 0). 

d, e, work REAL for sstev 
DOUBLE PRECISION for dstev. 
Arrays: 
d(*) contains the n diagonal elements of the tridiagonal matrix A. 
The dimension of d must be at least max(1, n).

e(*) contains the n-1 subdiagonal elements of the tridiagonal matrix A. 
The dimension of e must be at least max(1, n). The nth element of this array is 
used as workspace.

work(*) is a workspace array.
The dimension of work must be at least max(1, 2n-2).
If jobz ='N',  work is not referenced.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1. If jobz ='V'
then ldz ≥ max(1, n).
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Output Parameters

d On exit, if info = 0, contains the eigenvalues of the matrix A in ascending 
order.

z REAL for sstev 
DOUBLE PRECISION for dstev 
Array, DIMENSION (ldz, *) .
The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the orthonormal eigenvectors of 
the matrix A, with the i-th column of z  holding the eigenvector associated 
with the eigenvalue returned in d(i).
If job ='N', then z is not referenced.

e On exit, this array is overwritten with intermediate results.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; 
i elements of e did not converge to zero.
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?stevd      
Computes all eigenvalues and (optionally) all 
eigenvectors of a real symmetric tridiagonal matrix 
using divide and conquer algorithm.

Syntax
call sstevd (job, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

call dstevd (job, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric 
tridiagonal matrix T. In other words, the routine can compute the spectral factorization of T as:  T = 
ZΛZT. 
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the 
orthogonal matrix whose columns are the eigenvectors zi. Thus, 

            Tzi = λizi  for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute 
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the 
Pal-Walker-Kahan variant of the QL or QR algorithm. 

There is no complex analogue of this routine.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

n INTEGER. The order of the matrix T (n ≥ 0). 

d, e, work REAL for sstevd 
DOUBLE PRECISION for dstevd. 
Arrays: 
d(*) contains the n diagonal elements of the tridiagonal matrix T. 
The dimension of d must be at least max(1, n).
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e(*) contains the n-1 off-diagonal elements of T. 
The dimension of e must be at least max(1, n). The nth element of this array is 
used as workspace.

work(*) is a workspace array.
The dimension of work must be at least lwork.

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1  if job ='N';
ldz ≥ max(1, n)  if job ='V'.

lwork INTEGER. The dimension of the array work. 
Constraints:
 if job ='N' or n ≤ 1, then lwork ≥ 1;
 if job ='V' and n > 1, then 
lwork ≥ 2n2+(3+2k)*n+1, where k is the smallest integer which satisfies 2k 
≥ n.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork. 
Constraints:
 if job ='N' or n ≤ 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

Output Parameters

d On exit, if info = 0, contains the eigenvalues of the matrix T in ascending 
order.
See also info.

z REAL for sstevd 
DOUBLE PRECISION for dstevd 
Array, DIMENSION (ldz, *) .
The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n)  if job ='V'.

If job ='V', then this array is overwritten by the orthogonal matrix Z which 
contains the eigenvectors 
of T. If job ='N', then z is not referenced.

e On exit, this array is overwritten with intermediate results.
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work(1) On exit, if lwork > 0, then work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the number of 
elements of an intermediate tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε) 
||T||2, where ε is the machine precision.

If λi is an exact eigenvalue, and µi is the corresponding computed value, then 

          |µi - λi| ≤ c(n)ε ||T||2 

where c(n) is a modestly increasing function of n. 

If zi is the corresponding exact eigenvector, and wi is the corresponding computed vector, then the 
angle θ(zi, wi) between them is bounded as follows: 
          θ(zi, wi) ≤ c(n)ε ||T||2 / mini≠j|λi - λj|. 

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all 
the other eigenvalues.
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?stevx 
Computes selected eigenvalues and eigenvectors of a 
real symmetric  tridiagonal matrix.

Syntax
call sstevx ( jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,

ldz, work, iwork, ifail, info)

call dstevx ( jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric 
tridiagonal matrix A.  Eigenvalues and eigenvectors can be selected by specifying either a range of 
values or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed. 
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

n INTEGER. The order of the matrix A (n ≥ 0). 

d, e, work REAL for sstevx 
DOUBLE PRECISION for dstevx. 
Arrays: 
d(*) contains the n diagonal elements of the tridiagonal matrix A. 
The dimension of d must be at least max(1, n).

e(*) contains the n-1 subdiagonal elements of A. 
The dimension of e must be at least max(1, n). The nth element of this array is 
used as workspace.
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work(*) is a workspace array.
The dimension of work must be at least  max(1, 5n).

vl, vu REAL for sstevx 
DOUBLE PRECISION for dstevx.
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sstevx 
DOUBLE PRECISION for dstevx.
The absolute error tolerance to which each eigenvalue is required. See 
Application notes for details on error tolerance.

ldz INTEGER. The leading dimensions of the output array z; ldz ≥  1. If jobz 
='V', then ldz ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION  at least max(1, 5n).

Output Parameters

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w, z REAL for sstevx 
DOUBLE PRECISION for dstevx.
Arrays:
w(*),  DIMENSION  at least max(1, n) .
The first m elements of w contain the selected eigenvalues of the matrix A in 
ascending order. 
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z(ldz,*) . The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i). If an eigenvector fails to converge, then that column of z contains the 
latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz ='N', then z  is not referenced. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

d, e On exit, these arrays may be multiplied by a constant factor chosen to avoid 
overflow or underflow in computing the eigenvalues. 

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in 
the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||A||1  will be used in its place. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').
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?stevr 
Computes selected eigenvalues and, optionally, 
eigenvectors of a real symmetric tridiagonal matrix 
using the Relatively Robust Representations.

Syntax
call sstevr ( jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,

ldz, isuppz, work, lwork, iwork, liwork, info)

call dstevr ( jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric 
tridiagonal matrix T.  Eigenvalues and eigenvectors can be selected by specifying either a range of 
values or a range of indices for the desired eigenvalues. 

Whenever possible, ?stevr calls sstegr/dstegr to compute the eigenspectrum using 
Relatively Robust Representations. ?stegr computes eigenvalues by the dqds algorithm, while 
orthogonal eigenvectors are computed from various “good'' LDLT representations (also known as 
Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. 
More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of 
T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively robust
representation;
(b) Compute the eigenvalues, λj, of Li Di Li

T to high relative accuracy by the dqds
algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the cluster, and go
to step (a);
(d) Given the approximate eigenvalue λj of Li Di Li

T, compute the corresponding
eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?stevr calls sstegr/dstegr when the full spectrum is requested on machines 
which conform to the IEEE-754 floating point standard. ?stevr calls sstebz/dstebz  and 
sstein/dstein  on non-IEEE machines and when partial spectrum requests are made. 
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Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

For range ='V'or 'I' and iu-il < n-1, sstebz/dstebz and 
sstein/dstein are called.

n INTEGER.  The order of the matrix T (n ≥ 0). 

d, e, work REAL for sstevr 
DOUBLE PRECISION for dstevr. 
Arrays: 
d(*) contains the n diagonal elements of the tridiagonal matrix T. 
The dimension of d must be at least max(1, n).

e(*) contains the n-1 subdiagonal elements of A. 
The dimension of e must be at least max(1, n). The nth element of this array is 
used as workspace.

work(lwork) is a workspace array.

vl, vu REAL for sstevr 
DOUBLE PRECISION for dstevr. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.
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abstol REAL for ssyevr 
DOUBLE PRECISION for dsyevr. 
The absolute error tolerance to which each eigenvalue/eigenvector is required. 
If jobz = 'V', the eigenvalues and eigenvectors output have residual norms 
bounded by abstol, and the dot products between different eigenvectors are 
bounded by abstol. If abstol < nε||T||1, then nε||T||1 will be used in its 
place, where ε  is the machine precision. The eigenvalues are computed to an 
accuracy of ε||T||1 irrespective of abstol. If high relative accuracy is 
important, set abstol to ?lamch('S').

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1  if jobz ='N';
ldz ≥ max(1, n)  if jobz ='V'.

lwork INTEGER. The dimension of the array work. 
Constraint: lwork ≥ max(1, 20n). 

iwork INTEGER.   
Workspace array, DIMENSION  (liwork).

liwork INTEGER. The dimension of the array iwork,  
lwork ≥ max(1, 10n).

Output Parameters

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w, z REAL for sstevr 
DOUBLE PRECISION for dstevr.
Arrays:
w(*),  DIMENSION  at least max(1, n) .
The first m elements of w contain the selected eigenvalues of the matrix T in 
ascending order. 

z(ldz,*) . The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix T corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i). 
If jobz ='N', then z  is not referenced. 



4-346

4 Intel® Math Kernel Library Reference Manual

Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

d, e On exit, these arrays may be multiplied by a constant factor chosen to avoid 
overflow or underflow in computing the eigenvalues. 

isuppz INTEGER.   
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices indicating the nonzero 
elements in z. The i-th eigenvector is nonzero only in elements isuppz( 2i-1 
) through isuppz( 2i ). 
Implemented only for range ='A' or 'I' and 
iu-il = n-1.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i,  an internal error has occurred.

Application Notes

Normal execution of the routine ?stegr may create NaNs and infinities and hence may abort due 
to a floating point exception in environments which do not handle NaNs and infinities in the IEEE 
standard default manner.
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Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving nonsymmetric eigenproblems. 
See also computational routines that can be called to solve these problems.
Table 4-12 lists routines described in more detail below.   

?gees
Computes the eigenvalues and Schur factorization of a 
general matrix, and orders the factorization so that selected 
eigenvalues are at the top left of the Schur form.

Syntax
call sgees ( jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,

work, lwork, bwork, info)

call dgees ( jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,
work, lwork, bwork, info)

call cgees ( jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)

call zgees ( jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)

Table 4-11 Driver Routines for Solving Nonsymmetric Eigenproblems

Routine Name Operation performed

?gees Computes the eigenvalues and Schur factorization of a general matrix, and 
orders the factorization so that selected eigenvalues are at the top left of the 
Schur form.

?geesx Computes the eigenvalues and Schur factorization of a general matrix, 
orders the factorization and computes reciprocal condition numbers.

?geev Computes the eigenvalues and left and right eigenvectors of a general 
matrix.

?geevx Computes the eigenvalues and left and right eigenvectors of a general 
matrix, with preliminary matrix balancing, and computes reciprocal condition 
numbers for the eigenvalues and right eigenvectors.
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Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues, the 
real Schur form T, and, optionally, the matrix of Schur vectors Z.  This gives the Schur 
factorization A = Z T ZH. 

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that 
selected eigenvalues are at the top left. The leading columns of Z then form an orthonormal basis 
for the invariant subspace corresponding to the selected eigenvalues. 

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 
2-by-2 blocks will be standardized in the form

                      

where b*c < 0. The eigenvalues of such a block are .

A complex matrix is in Schur form if it is upper triangular.

Input Parameters

jobvs CHARACTER*1. Must be 'N' or 'V'.
If jobvs ='N', then Schur vectors are not computed. 
If jobvs ='V', then Schur vectors are computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the diagonal of the Schur 
form.

If sort ='N', then eigenvalues are not ordered. 
If sort ='S', eigenvalues are ordered (see select).

select LOGICAL FUNCTION of two REAL arguments 
for real flavors.
LOGICAL FUNCTION of one COMPLEX argument 
for complex flavors.

select must be declared EXTERNAL in the calling subroutine.
If sort ='S', select is used to select eigenvalues to sort to the top left of 
the Schur form.
If sort ='N', select is not referenced.
For real flavors:
An eigenvalue wr(j)+ *wi(j) is selected if select(wr(j), wi(j)) is true; 
that is, if either one of a complex conjugate pair of eigenvalues is selected, then 

a
c

b
a� �

� �

a bc±

1–
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both complex eigenvalues are selected. Note that a selected complex 
eigenvalue may no longer satisfy select(wr(j), wi(j)) = .TRUE. after 
ordering, since ordering may change the value of complex eigenvalues 
(especially if the eigenvalue is ill-conditioned); in this case info may be set to 
n+2 (see info below).
For complex flavors:
An eigenvalue w(j) is selected if select(w(j)) is true.

 n INTEGER.  The order of the matrix A (n ≥ 0). 

a, work REAL for sgees 
DOUBLE PRECISION for dgees 
COMPLEX for cgees 
DOUBLE COMPLEX for zgees.
Arrays: 
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

ldvs INTEGER. The leading dimension of the output array vs. Constraints:
ldvs ≥ 1  ;
ldvs ≥ max(1, n)  if jobvs ='V'.

lwork INTEGER. The dimension of the array work. 
Constraint: 
lwork ≥ max(1, 3n) for real flavors; 
lwork ≥ max(1, 2n) for complex flavors.

rwork REAL for cgees 
DOUBLE PRECISION for zgees 
Workspace array, DIMENSION at least max(1, n).  Used in complex flavors 
only.

bwork LOGICAL. 
Workspace array, DIMENSION at least max(1, n).  Not referenced if sort 
='N'.

Output Parameters

a On exit, this array is overwritten by the real-Schur/Schur form T . 
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sdim INTEGER. 
If sort ='N',  sdim= 0. 
If sort ='S',  sdim is equal to the number of eigenvalues (after sorting) for 
which select is true. 
Note that for real flavors complex conjugate pairs for which select is true for 
either eigenvalue count as 2. 

wr, wi REAL for sgees 
DOUBLE PRECISION for dgees 
Arrays, DIMENSION at least max (1, n) each. 
Contain the real and imaginary parts, respectively, of the computed 
eigenvalues, in the same order that they appear on the diagonal of the output 
real-Schur form T. Complex conjugate pairs of eigenvalues appear 
consecutively with the eigenvalue having positive imaginary part first. 

w COMPLEX for cgees 
DOUBLE COMPLEX for zgees.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues. The eigenvalues are stored in the same 
order as they appear on the diagonal of the output Schur form T.

vs REAL for sgees 
DOUBLE PRECISION for dgees 
COMPLEX for cgees 
DOUBLE COMPLEX for zgees.
Array vs(ldvs,*); the second dimension of vs must be at least max(1, n).

If jobvs ='V', vs  contains the orthogonal/unitary matrix Z of Schur vectors. 
If jobvs ='N', vs  is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

If info = i, and
i ≤ n :
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the QR algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and 
i+1:n of wr and wi (for real flavors) or w (for complex flavors) 
contain those eigenvalues which have converged; if jobvs ='V', 
vs contains the matrix which reduces A to its partially converged 
Schur form;

i = n+1 :

the eigenvalues could not be reordered because some eigenvalues were too 
close to separate (the problem is very ill-conditioned);

i = n+2 :

after reordering, roundoff changed values of some complex eigenvalues so that 
leading eigenvalues in the Schur form no longer satisfy select = 
.TRUE..  This could also be caused by underflow due to scaling.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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?geesx 
Computes the eigenvalues and Schur factorization of a 
general matrix, orders the factorization and computes 
reciprocal condition numbers.

Syntax
call sgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,

ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call dgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,
ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call cgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)

call zgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues, the 
real-Schur/Schur form T, and, optionally, the matrix of Schur vectors Z.  This gives the Schur 
factorization A = Z T ZH.

 Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that 
selected eigenvalues are at the top left; computes a reciprocal condition number for the average of 
the selected eigenvalues (rconde); and computes a reciprocal condition number for the right 
invariant subspace corresponding to the selected eigenvalues (rcondv).  The leading columns of Z 
form an orthonormal basis for this invariant subspace. 

For further explanation of the reciprocal condition numbers rconde and rcondv, see  [LUG], 
Section 4.10 (where these quantities are called s and sep respectively). 

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 
2-by-2 blocks will be standardized in the form

                      

where b*c < 0. The eigenvalues of such a block are .

A complex matrix is in Schur form if it is upper triangular.

a
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Input Parameters

jobvs CHARACTER*1. Must be 'N' or 'V'.
If jobvs ='N', then Schur vectors are not computed. 
If jobvs ='V', then Schur vectors are computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the diagonal of the Schur 
form.

If sort ='N', then eigenvalues are not ordered. 
If sort ='S', eigenvalues are ordered (see select).

select LOGICAL FUNCTION of two REAL arguments 
for real flavors.
LOGICAL FUNCTION of one COMPLEX argument 
for complex flavors.

select must be declared EXTERNAL in the calling subroutine.
If sort ='S', select is used to select eigenvalues to sort to the top left of 
the Schur form.
If sort ='N', select is not referenced.
For real flavors:
An eigenvalue wr(j)+ *wi(j) is selected if select(wr(j), wi(j)) is true; 
that is, if either one of a complex conjugate pair of eigenvalues is selected, then 
both complex eigenvalues are selected. Note that a selected complex 
eigenvalue may no longer satisfy select(wr(j), wi(j)) = .TRUE. after 
ordering, since ordering may change the value of complex eigenvalues 
(especially if the eigenvalue is ill-conditioned); in this case info may be set to 
n+2 (see info below).
For complex flavors:
An eigenvalue w(j) is selected if select(w(j)) is true.

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are computed.

If sense ='N', none are computed; 
If sense ='E',  computed for average of selected eigenvalues only; 
If sense ='V',  computed for selected right invariant subspace only; 
If sense ='B',  computed for both.

If sense is 'E', 'V', or 'B', then sort must equal 'S'.

 n INTEGER.  The order of the matrix A (n ≥ 0). 

1–
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a, work REAL for sgeesx 
DOUBLE PRECISION for dgeesx 
COMPLEX for cgeesx 
DOUBLE COMPLEX for zgeesx.
Arrays: 
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

ldvs INTEGER. The leading dimension of the output array vs. Constraints:
ldvs ≥ 1  ;
ldvs ≥ max(1, n)  if jobvs ='V'.

lwork INTEGER. The dimension of the array work. 
Constraint: 
lwork ≥ max(1, 3n) for real flavors; 
lwork ≥ max(1, 2n) for complex flavors.

Also, if sense = 'E', 'V', or 'B', then
lwork ≥ n+2*sdim*(n-sdim) for real flavors; 
lwork ≥ 2*sdim*(n-sdim) for complex flavors; 
where sdim is the number of selected eigenvalues computed by this routine. 
Note that 
2*sdim*(n-sdim) ≤ n*n/2 .

For good performance, lwork must generally be larger.

iwork INTEGER.   
Workspace array, DIMENSION  (liwork). Used in real flavors only. Not 
referenced if sense = 'N' or 'E'.

liwork INTEGER. The dimension of the array iwork. Used in real flavors only.  
Constraint:
liwork ≥ 1; 
if sense = 'V' or 'B', liwork ≥ sdim*(n-sdim).

rwork REAL for cgeesx 
DOUBLE PRECISION for zgeesx 
Workspace array, DIMENSION at least max(1, n).  Used in complex flavors 
only.
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bwork LOGICAL. 
Workspace array, DIMENSION at least max(1, n).  Not referenced if sort 
='N'.

Output Parameters

a On exit, this array is overwritten by the real-Schur/Schur form T . 

sdim INTEGER. 
If sort ='N',  sdim= 0. 
If sort ='S',  sdim is equal to the number of eigenvalues (after sorting) for 
which select is true. 
Note that for real flavors complex conjugate pairs for which select is true for 
either eigenvalue count as 2. 

wr, wi REAL for sgeesx 
DOUBLE PRECISION for dgeesx 
Arrays, DIMENSION at least max (1, n) each. 
Contain the real and imaginary parts, respectively, of the computed 
eigenvalues, in the same order that they appear on the diagonal of the output 
real-Schur form T. Complex conjugate pairs of eigenvalues appear 
consecutively with the eigenvalue having positive imaginary part first. 

w COMPLEX for cgeesx 
DOUBLE COMPLEX for zgeesx.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues. The eigenvalues are stored in the same 
order as they appear on the diagonal of the output Schur form T.

vs REAL for sgeesx 
DOUBLE PRECISION for dgeesx 
COMPLEX for cgeesx 
DOUBLE COMPLEX for zgeesx.
Array vs(ldvs,*); the second dimension of vs must be at least max(1, n).

If jobvs ='V', vs  contains the orthogonal/unitary matrix Z of Schur vectors. 
If jobvs ='N', vs  is not referenced.

rconde,rcondv REAL for single precision flavors 
DOUBLE PRECISION for double precision flavors. 
If sense = 'E' or 'B', rconde contains  the reciprocal condition number 
for the average of the selected eigenvalues. If sense = 'N' or 'V', rconde
is not referenced.
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If sense = 'V' or 'B', rcondv contains  the reciprocal condition number 
for the selected right invariant subspace. If sense = 'N' or 'E', rcondv is 
not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

If info = i, and
i ≤ n :

the QR algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and 
i+1:n of wr and wi (for real flavors) or w (for complex flavors) 
contain those eigenvalues which have converged; if jobvs ='V', 
vs contains the transformation which reduces A to its partially 
converged Schur form;

i = n+1 :

the eigenvalues could not be reordered because some eigenvalues were too 
close to separate (the problem is very ill-conditioned);

i = n+2 :

after reordering, roundoff changed values of some complex eigenvalues so that 
leading eigenvalues in the Schur form no longer satisfy select = 
.TRUE..  This could also be caused by underflow due to scaling.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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?geev 
Computes the eigenvalues and left and right 
eigenvectors of a general matrix.

Syntax
call sgeev ( jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,

work, lwork, info)

call dgeev ( jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info)

call cgeev ( jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)

call zgeev ( jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues and, 
optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies

                   A*v(j) = λ(j)*v(j)

where λ(j) is its eigenvalue. 

The left eigenvector u(j) of A satisfies

                u(j)H*A = λ(j)*u(j)H

where u(j)H denotes the conjugate transpose of u(j). 
The computed eigenvectors are normalized to have Euclidean norm equal 
to 1 and largest component real.

Input Parameters

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', then left eigenvectors of A are not computed. 
If jobvl ='V', then left eigenvectors of A are  computed.

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', then right eigenvectors of A are not computed. 
If jobvr ='V', then right eigenvectors of A are  computed.
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 n INTEGER.  The order of the matrix A (n ≥ 0). 

a, work REAL for sgeev 
DOUBLE PRECISION for dgeev 
COMPLEX for cgeev 
DOUBLE COMPLEX for zgeev.
Arrays: 
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

ldvl, ldvr INTEGER. The leading dimensions of the output arrays vl and vr, respectively. 
Constraints:
ldvl ≥ 1 ;  ldvr ≥ 1.
If jobvl ='V', ldvl ≥ max(1, n) ; 
If jobvr ='V', ldvr ≥ max(1, n).

lwork INTEGER. The dimension of the array work. 
Constraint: 
lwork ≥ max(1, 3n) , and if jobvl ='V' or 
jobvr ='V', lwork ≥ max(1, 4n)  (for real flavors); 
lwork ≥ max(1, 2n)   (for complex flavors). 
For good performance, lwork must generally be larger.

rwork REAL for cgeev 
DOUBLE PRECISION for zgeev 
Workspace array, DIMENSION at least max(1, 2n).  Used in complex flavors 
only.

Output Parameters

a On exit, this array is overwritten by intermediate results. 

wr, wi REAL for sgeev 
DOUBLE PRECISION for dgeev 
Arrays, DIMENSION at least max (1, n) each. 
Contain the real and imaginary parts, respectively, of the computed 
eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively 
with the eigenvalue having positive imaginary part first. 
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w COMPLEX for cgeev 
DOUBLE COMPLEX for zgeev.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues. 

vl, vr REAL for sgeev 
DOUBLE PRECISION for dgeev 
COMPLEX for cgeev 
DOUBLE COMPLEX for zgeev.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least max(1, n).

If jobvl ='V', the left eigenvectors u(j) are stored one after another in the 
columns of vl, in the same order as their eigenvalues. If jobvl ='N', vl is 
not referenced. 
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th column of vl. If the j-th 
and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = vl(:,j) + 
i*vl(:,j+1) and u(j+1) = vl(:,j) - i*vl(:,j+1), where i= .

For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at least max(1, n).

If jobvr ='V', the right eigenvectors v(j) are stored one after another in the 
columns of vr, in the same order as their eigenvalues. If jobvr ='N', vr is not 
referenced. 
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th column of vr. If the j-th 
and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = vr(:,j) + 
i*vr(:,j+1) and v(j+1) = vr(:,j) - i*vr(:,j+1), where i= .

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the QR algorithm failed to compute all the eigenvalues, and no 

1–
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eigenvectors have been computed; elements i+1:n of wr and wi (for real 
flavors) or w (for complex flavors) contain those eigenvalues which have 
converged.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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?geevx 
Computes the eigenvalues and left and right eigenvectors 
of a general matrix, with preliminary matrix balancing, 
and computes reciprocal condition numbers for the 
eigenvalues and right eigenvectors.

Syntax
call sgeevx ( balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl,

ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,
rcondv, work, lwork, iwork, info)

call dgeevx ( balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,
rcondv, work, lwork, iwork, info)

call cgeevx ( balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,
work, lwork, rwork, info)

call zgeevx ( balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,
work, lwork, rwork, info)

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues and, 
optionally, the left and/or right eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the 
eigenvalues and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for the 
eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector v(j) of A satisfies

                   A*v(j) = λ(j)*v(j)

where λ(j) is its eigenvalue. 

The left eigenvector u(j) of A satisfies

                u(j)H*A = λ(j)*u(j)H
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where u(j)H denotes the conjugate transpose of u(j). 
The computed eigenvectors are normalized to have Euclidean norm equal 
to 1 and largest component real.

Balancing a matrix means permuting the rows and columns to make it more nearly upper 
triangular, and applying a diagonal similarity transformation 
D A D-1, where D is a diagonal matrix, to make its rows and columns closer in norm and the 
condition numbers of its eigenvalues and eigenvectors smaller.  The computed reciprocal condition 
numbers correspond to the balanced matrix. 
Permuting rows and columns will not change the condition numbers in exact arithmetic) but 
diagonal scaling will.  For further explanation of balancing, see [LUG], Section 4.10.

Input Parameters

balanc CHARACTER*1. Must be 'N', 'P', 'S', or 'B'.
Indicates how the input matrix should be diagonally scaled and/or permuted to 
improve the conditioning of its eigenvalues.

If balanc ='N', do not diagonally scale or permute; 
If balanc ='P',  perform permutations to make the matrix more nearly upper 
triangular. Do not diagonally scale; 
If balanc ='S',  Diagonally scale the matrix, i.e. replace A by D A D-1, where 
D is a diagonal matrix chosen to make the rows and columns of A more equal 
in norm. Do not permute; 
If balanc ='B', both diagonally scale and permute A.

Computed reciprocal condition numbers will be for the matrix after balancing 
and/or permuting. Permuting does not change condition numbers (in exact 
arithmetic), but balancing does.

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', left eigenvectors of A are not computed; 
If jobvl ='V', left eigenvectors of A are  computed.
If sense ='E'or 'B', then jobvl must be 'V'.

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', right eigenvectors of A are not computed; 
If jobvr ='V', right eigenvectors of A are  computed.
If sense ='E'or 'B', then jobvr must be 'V'.

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are computed.
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If sense ='N', none are computed; 
If sense ='E',  computed for eigenvalues only; 
If sense ='V',  computed for right eigenvectors only; 
If sense ='B',  computed for eigenvalues and right eigenvectors.

If sense is 'E' or 'B', both left and right eigenvectors must also be 
computed (jobvl ='V'and jobvr ='V').

 n INTEGER.  The order of the matrix A (n ≥ 0). 

a, work REAL for sgeevx 
DOUBLE PRECISION for dgeevx 
COMPLEX for cgeevx 
DOUBLE COMPLEX for zgeevx.
Arrays: 
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

ldvl, ldvr INTEGER. The leading dimensions of the output arrays vl and vr, respectively. 
Constraints:
ldvl ≥ 1 ;  ldvr ≥ 1.
If jobvl ='V', ldvl ≥ max(1, n) ; 
If jobvr ='V', ldvr ≥ max(1, n).

lwork INTEGER. The dimension of the array work. 
For real flavors:
If sense ='N'or 'E', lwork ≥ max(1, 2n) , and 
if jobvl ='V' or jobvr ='V', lwork ≥ 3n ; 
If sense ='V'or 'B', lwork ≥ n(n+6). 
For good performance, lwork must generally be larger.

For complex flavors:
If sense ='N'or 'E', lwork ≥ max(1, 2n) ; 
If sense ='V'or 'B', lwork ≥ n2+2n. 
For good performance, lwork must generally be larger.

rwork REAL for cgeevx 
DOUBLE PRECISION for zgeevx 
Workspace array, DIMENSION at least max(1, 2n).  Used in complex flavors 
only.
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iwork INTEGER.   
Workspace array, DIMENSION  at least max(1, 2n-2). Used in real flavors 
only. Not referenced if sense = 'N' or 'E'.

Output Parameters

a On exit, this array is overwritten. If jobvl ='V' or jobvr ='V', it contains 
the real-Schur/Schur form of the balanced version of the input matrix A.

wr, wi REAL for sgeevx 
DOUBLE PRECISION for dgeevx 
Arrays, DIMENSION at least max (1, n) each. 
Contain the real and imaginary parts, respectively, of the computed 
eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively 
with the eigenvalue having positive imaginary part first. 

w COMPLEX for cgeevx 
DOUBLE COMPLEX for zgeevx.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues. 

vl, vr REAL for sgeevx 
DOUBLE PRECISION for dgeevx 
COMPLEX for cgeevx 
DOUBLE COMPLEX for zgeevx.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least max(1, n).

If jobvl ='V', the left eigenvectors u(j) are stored one after another in the 
columns of vl, in the same order as their eigenvalues. If jobvl ='N', vl is 
not referenced. 
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th column of vl. If the j-th 
and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = vl(:,j) + 
i*vl(:,j+1) and u(j+1) = vl(:,j) - i*vl(:,j+1), where i= .

For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at least max(1, n).

If jobvr ='V', the right eigenvectors v(j) are stored one after another in the 
columns of vr, in the same order as their eigenvalues. If jobvr ='N', vr is not 
referenced. 
For real flavors:

1–
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If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th column of vr. If the j-th 
and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = vr(:,j) + 
i*vr(:,j+1) and v(j+1) = vr(:,j) - i*vr(:,j+1), where i= .

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

ilo, ihi INTEGER.  
ilo and ihi are integer values determined when A was balanced. 
The balanced A(i,j) = 0 if i > j and j = 1,..., ilo-1 or
i =  ihi+1,..., n.  
If balanc ='N'or 'S', ilo = 1 and ihi = n.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, n) .
Details of the permutations and scaling factors applied when balancing A.  If 
P(j) is the index of the row and column interchanged with row and column j, 
and D(j) is the scaling factor applied to row and column j, then

scale(j) = P(j),    for j = 1,...,ilo-1

             = D(j),    for j = ilo,...,ihi

             = P(j)     for j = ihi+1,...,n.

 The order in which the interchanges are made is n to ihi+1, then 1 to ilo-1.

abnrm REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

The one-norm of the balanced matrix (the maximum of the sum of absolute 
values of elements of any column).

rconde,rcondv REAL for single precision flavors 
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1, n) each.
rconde(j) is  the reciprocal condition number of the j-th eigenvalue.

rcondv(j) is  the reciprocal condition number of the j-th right eigenvector.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

1–
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If info = i, the QR algorithm failed to compute all the eigenvalues, and no 
eigenvectors or condition numbers have been computed; elements 1:ilo-1 and 
i+1:n of wr and wi (for real flavors) or w (for complex flavors) contain 
eigenvalues which have converged.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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Singular Value Decomposition

This section describes LAPACK driver routines used for solving singular value problems. See also 
computational routines that can be called to solve these problems.
Table 4-12 lists routines described in more detail below.   

?gesvd 
Computes the singular value decomposition of a 
general rectangular matrix.

Syntax
call sgesvd ( jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,

work, lwork, info)

call dgesvd ( jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, info)

call cgesvd ( jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)

call zgesvd ( jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)

Description

This routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix A, 
optionally computing the left and/or right singular vectors. The SVD is written 

A = U Σ VH

where Σ  is an m-by-n matrix which is zero except for its min(m,n) diagonal elements, U is an 
m-by-m orthogonal/unitary matrix, and V is an n-by-n orthogonal/unitary matrix.  The diagonal 
elements of Σ are the singular values of A; they are real and non-negative, and are returned in 

Table 4-12 Driver Routines for Singular Value Decomposition

Routine Name Operation performed

?gesvd Computes the singular value decomposition of a general rectangular matrix.

?gesdd Computes the singular value decomposition of a general rectangular matrix 
using a divide and conquer method.

?ggsvd Computes the generalized singular value decomposition of a pair of general 
rectangular matrices.
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descending order.  The first min(m,n) columns of U and V are the left and right singular vectors of 
A. 
Note that the routine returns VH, not V.

Input Parameters

jobu CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the 
matrix U.

If jobu ='A', all m columns of U are returned in the array u;
if jobu ='S', the first min(m,n) columns of U (the left singular vectors) are 
returned in the array u;
if jobu ='O', the first min(m,n) columns of U (the left singular vectors) are 
overwritten on the array a;
if jobu ='N', no columns of U (no left singular vectors) are computed.

jobvt CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the 
matrix VH.

If jobvt ='A', all n rows of VH are returned in the 
array vt;
if jobvt ='S', the first min(m,n) rows of VH (the right singular vectors) are 
returned in the array vt;
if jobvt ='O', the first min(m,n) rows of VH (the right singular vectors) are 
overwritten on the array a;
if jobvt ='N', no rows of VH (no right singular vectors) are computed.

jobvt and jobu cannot both be 'O'.

 m INTEGER.  The number of rows of the matrix A (m ≥ 0). 

 n INTEGER. The number of columns in A (n ≥ 0). 

a, work REAL for sgesvd 
DOUBLE PRECISION for dgesvd 
COMPLEX for cgesvd 
DOUBLE COMPLEX for zgesvd.
Arrays: 
a(lda,*) is an array containing the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.
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lda INTEGER. The first dimension of the array a. 
Must be at least max(1, m) .

ldu, ldvt INTEGER. The leading dimensions of the output arrays u and vt, respectively. 
Constraints:
ldu ≥ 1 ;  ldvt ≥ 1.
If jobu ='S' or 'A', ldu ≥ m ; 
If jobvt ='A', ldvt ≥  n;
If jobvt ='S', ldvt ≥ min(m, n).

lwork INTEGER. The dimension of the array work; lwork ≥ 1. 
Constraints: 
lwork ≥ max(3*min(m,n)+max(m,n), 5*min(m,n))  (for real flavors); 
lwork ≥ 2*min(m,n)+max(m,n)   (for complex flavors). 
For good performance, lwork must generally be larger.

rwork REAL for cgesvd 
DOUBLE PRECISION for zgesvd 
Workspace array, DIMENSION at least 
max(1, 5*min(m,n)).  Used in complex flavors only.

Output Parameters

a On exit, 
If jobu ='O',  a is overwritten with the first min(m,n) columns of U (the left 
singular vectors, stored columnwise);
If jobvt ='O',  a is overwritten with the first min(m,n) rows of VH (the right 
singular vectors, stored rowwise);
If jobu ≠'O' and jobvt ≠'O', the contents of a are destroyed.

s REAL for single precision flavors 
DOUBLE PRECISION for double precision flavors. 
Array, DIMENSION at least max(1, min(m,n)).
Contains the singular values of A sorted so that 
s(i) ≥ s(i+1).

u, vt REAL for sgesvd 
DOUBLE PRECISION for dgesvd 
COMPLEX for cgesvd 
DOUBLE COMPLEX for zgesvd.
Arrays:
u(ldu,*); the second dimension of u must be at least max(1, m) if jobu 
='A', and at least max(1, min(m,n)) if jobu ='S'.
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If jobu ='A', u contains the m-by-m orthogonal/unitary matrix U.
If jobu ='S', u contains the first min(m,n) columns of U (the left singular 
vectors, stored columnwise).
If jobu ='N'or 'O', u is not referenced.

vt(ldvt,*); the second dimension of vt must be at least max(1, n).

If jobvt ='A', vt contains the n-by-n orthogonal/unitary matrix VH.
If jobvt ='S', vt contains the first min(m,n) rows of VH (the right singular 
vectors, stored rowwise).
If jobvt ='N'or 'O', vt is not referenced.

work On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.
For real flavors:
If info > 0,  work(2:min(m,n)) contains the unconverged superdiagonal 
elements of an upper bidiagonal matrix B whose diagonal is in s (not 
necessarily sorted). B satisfies A = u * B * vt, so it has the same singular 
values as A, and singular vectors related by u and vt.

rwork On exit (for complex flavors), if info > 0,  rwork(1:min(m,n)-1) contains the 
unconverged superdiagonal elements of an upper bidiagonal matrix B whose 
diagonal is in s (not necessarily sorted). B satisfies A = u * B * vt, so it has the 
same singular values as A, and singular vectors related by u and vt.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then if ?bdsqr did not converge, i specifies how many
superdiagonals of the intermediate bidiagonal form B did not converge to zero.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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?gesdd 
Computes the singular value decomposition of a 
general rectangular matrix using a divide and conquer 
method.

Syntax
call sgesdd ( jobz, m, n, a, lda, s, u, ldu, vt, ldvt,

work, lwork, iwork, info)

call dgesdd ( jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)

call cgesdd ( jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)

call zgesdd ( jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)

Description

This routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix A, 
optionally computing the left and/or right singular vectors. If singular vectors are desired, it uses a 
divide and conquer algorithm.
The SVD is written 

A = U Σ VH

where Σ  is an m-by-n matrix which is zero except for its min(m,n) diagonal elements, U is an 
m-by-m orthogonal/unitary matrix, and V is an n-by-n orthogonal/unitary matrix.  The diagonal 
elements of Σ are the singular values of A; they are real and non-negative, and are returned in 
descending order.  The first min(m,n) columns of U and V are the left and right singular vectors of 
A.
Note that the routine returns VH, not V.

Input Parameters

jobz CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the 
matrix U.
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If jobz ='A', all m columns of U and all n rows of VT are returned in the 
arrays u and vt;
if jobz ='S', the first min(m,n) columns of U and the first min(m,n) rows of 
VT are returned in the arrays u and vt;
if jobz ='O', then 

 if m ≥ n,  the first n columns of U are overwritten 
on the array a and all rows of VT are returned in the array vt;
 if m < n,  all columns of U are returned in the array u and the first m 
rows of VT are overwritten in the array vt;

if jobz ='N', no columns of U or rows of VTare computed.

 m INTEGER.  The number of rows of the matrix A (m ≥ 0). 

 n INTEGER. The number of columns in A (n ≥ 0). 

a, work REAL for sgesdd 
DOUBLE PRECISION for dgesdd 
COMPLEX for cgesdd 
DOUBLE COMPLEX for zgesdd.
Arrays: 
a(lda,*) is an array containing the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, m) .

ldu, ldvt INTEGER. The leading dimensions of the output arrays u and vt, respectively. 
Constraints:
ldu ≥ 1 ;  ldvt ≥ 1.
If jobz ='S' or 'A', or jobz ='O' and  m < n, 
then ldu ≥ m ; 
If jobz ='A' or jobz ='O' and  m ≥ n, 
then ldvt ≥  n;
If jobz ='S', ldvt ≥ min(m, n).

lwork INTEGER. The dimension of the array work; lwork ≥ 1. 
See Application Notes for the suggested value of lwork.

rwork REAL for cgesdd 
DOUBLE PRECISION for zgesdd 
Workspace array, DIMENSION at least 
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max(1, 5*min(m,n)) if jobz ='N'.  Otherwise, the dimension of rwork must 
be at least 5*(min(m,n))2 + 7*min(m,n).  This array is used in complex flavors 
only.

iwork INTEGER.   Workspace array, DIMENSION  at least 
max(1, 8*min(m,n)). 

Output Parameters

a On exit: 
If jobz ='O', then if m ≥ n, a is overwritten with the first n columns of U (the 
left singular vectors, stored columnwise). If m < n, a is overwritten with the 
first m rows of VT (the right singular vectors, stored rowwise);
If jobz ≠'O', the contents of a are destroyed.

s REAL for single precision flavors 
DOUBLE PRECISION for double precision flavors. 
Array, DIMENSION at least max(1, min(m,n)).
Contains the singular values of A sorted so that 
s(i) ≥ s(i+1).

u, vt REAL for sgesdd 
DOUBLE PRECISION for dgesdd 
COMPLEX for cgesdd 
DOUBLE COMPLEX for zgesdd.
Arrays:
u(ldu,*); the second dimension of u must be at least max(1, m) if jobz 
='A'or jobz ='O' and  m < n. 
If jobz ='S', the second dimension of u must be at least max(1, min(m,n)) .

If jobz ='A'or jobz ='O' and  m < n, u contains the m-by-m 
orthogonal/unitary matrix U.
If jobz ='S', u contains the first min(m,n) columns of U (the left singular 
vectors, stored columnwise).
If jobz ='O' and  m ≥ n, or jobz ='N', u is not referenced.

vt(ldvt,*); the second dimension of vt must be at least max(1, n).

If jobz ='A'or jobz ='O' and  m ≥ n, vt contains the n-by-n 
orthogonal/unitary matrix VT.
If jobz ='S', vt contains the first min(m,n) rows of VT (the right singular 
vectors, stored rowwise).
If jobz ='O' and  m < n, or jobz ='N', vt is not referenced.
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work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then ?bdsdc did not converge, updating process failed.

Application Notes

For real flavors:
If jobz ='N' ,  lwork ≥ 3*min(m,n) + max (max(m,n),  6*min(m,n));
If jobz ='O' , lwork ≥ 3*(min(m,n))2 + 
                                         max (max(m,n),  5*(min(m,n))2 + 4*min(m,n));
If jobz ='S' or 'A', lwork ≥ 3*(min(m,n))2 + 
                                         max (max(m,n),  4*(min(m,n))2 + 4*min(m,n)).

For complex flavors:
If jobz ='N' ,  lwork ≥ 2*min(m,n) + max(m,n) ;
If jobz ='O' , lwork ≥ 2*(min(m,n))2 + max(m,n) + 2*min(m,n);
If jobz ='S' or 'A', lwork ≥ (min(m,n))2 + max(m,n) + 2*min(m,n);

For good performance, lwork should generally be larger.
If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-375

?ggsvd 
Computes the generalized singular value 
decomposition of a pair of general rectangular 
matrices.

Syntax
call sggsvd ( jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,

beta, u, ldu, v, ldv, q, ldq, work, iwork, info)

call dggsvd ( jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, iwork, info)

call cggsvd ( jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

call zggsvd ( jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

Description

This routine computes the generalized singular value decomposition (GSVD) of an m-by-n 
real/complex matrix A and p-by-n real/complex matrix B:

UH A Q = D1*( 0 R ), VH B Q = D2*( 0 R ),
where U, V and Q are orthogonal/unitary matrices.

Let k+l = the effective numerical rank of the matrix (AH, BH)H, then R is a (k+l)-by-(k+l) 
nonsingular upper triangular matrix, D1 and D2 are m-by-(k+l) and p-by-(k+l) "diagonal" 
matrices and of the following structures, respectively:

If m-k-l ≥ 0,
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where

C = diag ( alpha(k+1),...,alpha(k+l))
S = diag ( beta(k+1),...,beta(k+l))
C2 + S2 = I

R is stored in a(1:k+l, n-k-l+1:n ) on exit.

If m-k-l < 0,
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C = diag ( alpha(k+1),...,alpha(m)),
S = diag ( beta(k+1),...,beta(m)),
C2 + S2 = I 

 On exit,    is stored in a(1:m, n-k-l+1:n ) and R33 is stored

in b(m-k+1:l, n+m-k-l+1:n ).

The routine computes C, S, R, and optionally the orthogonal/unitary transformation matrices U, V 
and Q. 
In particular, if B is an n-by-n nonsingular matrix, then the GSVD of A and B implicitly gives the 
SVD of AB -1:

                        AB -1 = U ( D1 D2
 -1) VH.

If (AH, BH)H has orthonormal columns, then the GSVD of A and B is also equal to the CS 
decomposition of A and B. Furthermore, the GSVD can be used to derive the solution of the 
eigenvalue problem:

                       AHA x = λ BHB x.

Input Parameters

jobu CHARACTER*1. Must be 'U' or 'N'.
If jobu ='U', orthogonal/unitary matrix U is computed.
If jobu ='N',  U  is not computed.

jobv CHARACTER*1. Must be 'V' or 'N'.
If jobv ='V', orthogonal/unitary matrix V is computed.
If jobv ='N',  V  is not computed.

jobq CHARACTER*1. Must be 'Q' or 'N'.
If jobq ='Q', orthogonal/unitary matrix Q is computed.
If jobq ='N',  Q  is not computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrices A and B (n ≥ 0).

p INTEGER. The number of rows of the matrix B (p ≥ 0).

R11

0

R12

R22

R13

R23� �
� �
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a, b, work REAL for sggsvd 
DOUBLE PRECISION for dggsvd 
COMPLEX for cggsvd 
DOUBLE COMPLEX for zggsvd.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

work(*) is a workspace array. The dimension of work must be at least
max(3n, m, p)+n.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

ldu INTEGER. The first dimension of the array u.
ldu ≥ max(1, m) if jobu ='U'; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the array v.
ldv ≥ max(1, p) if jobv ='V'; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the array q.
ldq ≥ max(1, n) if jobq ='Q'; ldq ≥ 1 otherwise.

iwork INTEGER.   
Workspace array, DIMENSION  at least max(1, n). 

rwork REAL for cggsvd
DOUBLE PRECISION for zggsvd. 
Workspace array, DIMENSION  at least max(1, 2n). Used in complex flavors 
only.

Output Parameters

k, l INTEGER. On exit, k and l specify the dimension of the subblocks. The sum
k+l is equal to the effective numerical rank of (AH, BH)H.

a On exit, a contains the triangular matrix R or part of R.

b On exit,  b contains part of the triangular matrix R 
if m-k-l < 0.
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alpha, beta REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1,n) each.
Contain the generalized singular value pairs of A and B:

alpha(1:k) = 1,
beta(1:k)  = 0,

and if m-k-l ≥  0,
alpha(k+1:k+l) = C,
beta(k+1:k+l)  = S,

or if m-k-l < 0,
alpha(k+1:m)= C, alpha(m+1:k+l)= 0
beta(k+1:m) = S, beta(m+1:k+l) = 1

and
alpha(k+l+1:n) = 0 
beta(k+l+1:n)  = 0.

u, v, q REAL for sggsvd 
DOUBLE PRECISION for dggsvd 
COMPLEX for cggsvd 
DOUBLE COMPLEX for zggsvd.
Arrays:
u(ldu,*); the second dimension of u must be at least max(1, m).
If jobu ='U', u contains the m-by-m orthogonal/unitary matrix U. 
If jobu ='N', u is not referenced.
v(ldv,*); the second dimension of v must be at least max(1, p).
If jobv ='V', v contains the p-by-p orthogonal/unitary matrix V. 
If jobv ='N', v is not referenced.
q(ldq,*); the second dimension of q must be at least max(1, n).
If jobq ='Q', q contains the n-by-n orthogonal/unitary matrix Q. 
If jobq ='N', q is not referenced.

iwork On exit, iwork stores the sorting information.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the Jacobi-type procedure failed to converge. For further details,
see subroutine ?tgsja.
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Generalized Symmetric Definite Eigenproblems

This section describes LAPACK driver routines used for solving generalized symmetric definite 
eigenproblems. See also computational routines that can be called to solve these problems.
Table 4-13 lists routines described in more detail below.   

Table 4-13 Driver Routines for Solving Generalized Symmetric Definite Eigenproblems

Routine Name Operation performed

?sygv /?hegv Computes all eigenvalues and, optionally, eigenvectors of a real / complex 
generalized symmetric /Hermitian definite eigenproblem.

?sygvd/?hegvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex 
generalized symmetric /Hermitian definite eigenproblem. If eigenvectors are 
desired, it uses a divide and conquer method.

?sygvx /?hegvx Computes selected eigenvalues and, optionally, eigenvectors of a real / 
complex generalized symmetric /Hermitian definite eigenproblem.

?spgv/?hpgv Computes all eigenvalues and, optionally, eigenvectors of a real / complex 
generalized symmetric /Hermitian definite eigenproblem with matrices in 
packed storage.

?spgvd /?hpgvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex 
generalized symmetric /Hermitian definite eigenproblem with matrices in 
packed storage. If eigenvectors are desired, it uses a divide and conquer 
method.

?spgvx/?hpgvx Computes selected eigenvalues and, optionally, eigenvectors of a real / 
complex generalized symmetric /Hermitian definite eigenproblem with 
matrices in packed storage.

?sbgv /?hbgv Computes all eigenvalues and, optionally, eigenvectors of a real / complex 
generalized symmetric /Hermitian definite eigenproblem with banded 
matrices.

?sbgvd/?hbgvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex 
generalized symmetric /Hermitian definite eigenproblem with banded 
matrices. If eigenvectors are desired, it uses a divide and conquer method.

?sbgvx/?hbgvx Computes selected eigenvalues and, optionally, eigenvectors of a real / 
complex generalized symmetric /Hermitian definite eigenproblem with 
banded matrices.
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?sygv 
Computes all eigenvalues and, optionally, eigenvectors 
of a real generalized symmetric definite eigenproblem.

Syntax
call ssygv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,

lwork, info )

call dsygv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be symmetric and B is also positive definite.

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

a, b, work REAL for ssygv
DOUBLE PRECISION for dsygv. 
Arrays: 
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a(lda,*) contains the upper or lower triangle of  the symmetric matrix A, as 
specified by uplo. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of  the symmetric positive 
definite matrix B, as specified by uplo. 
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work; 
lwork ≥ max(1, 3n-1). 
See Application Notes for the suggested value of lwork.

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the matrix Z of 
eigenvectors.  The eigenvectors are normalized as follows:
if itype = 1 or 2,    ZTB Z = I;
if itype = 3,         ZTB-1

 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo = 'U') or the lower 
triangle (if uplo = 'L') of A, including the diagonal, is destroyed.

b  On exit, if info ≤ n, the part of b containing the matrix is overwritten by the 
triangular factor U or L from the Cholesky factorization B = UTU or B = L LT.

w REAL for ssygv
DOUBLE PRECISION for dsygv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyev/dsyev returned an error code:
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If info = i ≤ n, ssyev/dsyev failed to converge, and i off-diagonal 
elements of an intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.

Application Notes

For optimum performance use lwork ≥ (nb+2)*n, where nb is the  blocksize for 
ssytrd/dsytrd returned by ilaenv. 
If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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?hegv 
Computes all eigenvalues and, optionally, eigenvectors 
of a complex generalized Hermitian definite 
eigenproblem.

Syntax
call chegv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,

lwork, rwork, info )

call zhegv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be Hermitian and B is also positive definite.

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

a, b, work COMPLEX for chegv
DOUBLE COMPLEX for zhegv. 
Arrays: 
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a(lda,*) contains the upper or lower triangle of  the Hermitian matrix A, as 
specified by uplo. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of  the Hermitian positive 
definite matrix B, as specified by uplo. 
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work; 
lwork ≥ max(1, 2n-1). 
See Application Notes for the suggested value of lwork.

rwork REAL for chegv
DOUBLE PRECISION for zhegv. 
Workspace array, DIMENSION  at least max(1, 3n-2). 

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the matrix Z of 
eigenvectors.  The eigenvectors are normalized as follows:
if itype = 1 or 2,    ZHB Z = I;
if itype = 3,         ZHB-1

 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo = 'U') or the lower 
triangle (if uplo = 'L') of A, including the diagonal, is destroyed.

b  On exit, if info ≤ n, the part of b containing the matrix is overwritten by the 
triangular factor U or L from the Cholesky factorization B = UHU or B = L LH.

w REAL for chegv
DOUBLE PRECISION for zhegv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheev/zheev returned an error code:
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If info = i ≤ n, cheev/zheev failed to converge, and i off-diagonal 
elements of an intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the  blocksize for 
chetrd/zhetrd returned by ilaenv. 
If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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?sygvd 
Computes all eigenvalues and, optionally, eigenvectors of a 
real generalized symmetric definite eigenproblem. If 
eigenvectors are desired, it uses a divide and conquer 
method.

Syntax
call ssygvd ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,

lwork, iwork, liwork, info )

call dsygvd ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, iwork, liwork, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be symmetric and B is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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a, b, work REAL for ssygvd
DOUBLE PRECISION for dsygvd. 
Arrays: 
a(lda,*) contains the upper or lower triangle of  the symmetric matrix A, as 
specified by uplo. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of  the symmetric positive 
definite matrix B, as specified by uplo. 
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If  n ≤  1, lwork ≥ 1; 
If jobz ='N'and n>1, lwork ≥ 2n+1;
If jobz ='V'and n>1, lwork ≥ 2n2+6n+1 .

iwork INTEGER.   
Workspace array, DIMENSION  (liwork). 

liwork INTEGER. The dimension of the array iwork. 
Constraints:
If  n ≤  1, liwork ≥ 1; 
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the matrix Z of 
eigenvectors.  The eigenvectors are normalized as follows:
if itype = 1 or 2,    ZTB Z = I;
if itype = 3,         ZTB-1

 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo = 'U') or the lower 
triangle (if uplo = 'L') of A, including the diagonal, is destroyed.

b  On exit, if info ≤ n, the part of b containing the matrix is overwritten by the 
triangular factor U or L from the Cholesky factorization B = UTU or B = L LT.
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w REAL for ssygvd
DOUBLE PRECISION for dsygvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyev/dsyev returned an error code:

If info = i ≤ n, ssyev/dsyev failed to converge, and i off-diagonal 
elements of an intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.
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?hegvd 
Computes all eigenvalues and, optionally, eigenvectors of a 
complex generalized Hermitian definite eigenproblem. If 
eigenvectors are desired, it uses a divide and conquer 
method.

Syntax
call chegvd ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,

lwork, rwork, lrwork, iwork, liwork, info )

call zhegvd ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, lrwork, iwork, liwork, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be Hermitian and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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a, b, work COMPLEX for chegvd
DOUBLE COMPLEX for zhegvd. 
Arrays: 
a(lda,*) contains the upper or lower triangle of  the Hermitian matrix A, as 
specified by uplo. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of  the Hermitian positive 
definite matrix B, as specified by uplo. 
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If  n ≤  1, lwork ≥ 1; 
If jobz ='N'and n>1, lwork ≥ n+1;
If jobz ='V'and n>1, lwork ≥ n2+2n .

rwork REAL for chegvd
DOUBLE PRECISION for zhegvd. 
Workspace array, DIMENSION  (lrwork). 

lrwork INTEGER. The dimension of the array rwork. 
Constraints:
If  n ≤  1, lrwork ≥ 1; 
If jobz ='N'and n>1, lrwork ≥ n;
If jobz ='V'and n>1, lrwork ≥ 2n2+5n+1 .

iwork INTEGER.   
Workspace array, DIMENSION  (liwork). .

liwork INTEGER. The dimension of the array iwork. 
Constraints:
If  n ≤  1, liwork ≥ 1; 
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .
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Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the matrix Z of 
eigenvectors.  The eigenvectors are normalized as follows:
if itype = 1 or 2,    ZHB Z = I;
if itype = 3,         ZHB-1

 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo = 'U') or the lower 
triangle (if uplo = 'L') of A, including the diagonal, is destroyed.

b  On exit, if info ≤ n, the part of b containing the matrix is overwritten by the 
triangular factor U or L from the Cholesky factorization B = UHU or B = L LH.

w REAL for chegvd
DOUBLE PRECISION for zhegvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the required minimal size of 
lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheev/zheev returned an error code:

If info = i ≤ n, cheev/zheev failed to converge, and i off-diagonal 
elements of an intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.
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?sygvx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a real generalized symmetric definite 
eigenproblem.

Syntax
call ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,

iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

call dsygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,
iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be symmetric and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of 
indices for the desired eigenvalues. 

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.
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uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

a, b, work REAL for ssygvx
DOUBLE PRECISION for dsygvx. 
Arrays: 
a(lda,*) contains the upper or lower triangle of  the symmetric matrix A, as 
specified by uplo. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of  the symmetric positive 
definite matrix B, as specified by uplo. 
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

vl, vu REAL for ssygvx
DOUBLE PRECISION for dsygvx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for ssygvx
DOUBLE PRECISION for dsygvx. 
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1;  if jobz ='V', ldz ≥ max(1, n) .
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lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 8n). 
See Application Notes for the suggested value of lwork.

iwork INTEGER.   
Workspace array, DIMENSION at least max(1, 5n). 

Output Parameters

a On exit, the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 
'L') of A, including the diagonal, is overwritten.

b  On exit, if info ≤ n, the part of b containing the matrix is overwritten by the 
triangular factor U or L from the Cholesky factorization B = UTU or B = L LT.

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w, z REAL for ssygvx
DOUBLE PRECISION for dsygvx. 
Arrays:
w(*),  DIMENSION  at least max(1, n) .
The first m elements of w contain the selected eigenvalues in ascending order. 

z(ldz,*) . The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i).  The eigenvectors are normalized as follows:
  if itype = 1 or 2,    ZTB Z = I;
  if itype = 3,         ZTB-1

 Z = I;

If jobz ='N', then z  is not referenced. 
If an eigenvector fails to converge, then that column of z contains the latest 
approximation to the eigenvector, and the index of the eigenvector is returned 
in ifail. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.
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ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyevx/dsyevx returned an error code:

If info = i ≤ n, ssyevx/dsyevx failed to converge, and i eigenvectors 
failed to converge. Their indices are stored in the array ifail;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

For optimum performance use lwork ≥ (nb+3)*n, where nb is the  blocksize for 
ssytrd/dsytrd returned by ilaenv. 
If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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?hegvx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a complex generalized Hermitian 
definite eigenproblem.

Syntax
call chegvx ( itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu,

il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info)

call zhegvx ( itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu,
il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info)

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be Hermitian and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of 
indices for the desired eigenvalues. 

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.



4-398

4 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

a, b, work COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx. 
Arrays: 
a(lda,*) contains the upper or lower triangle of  the Hermitian matrix A, as 
specified by uplo. 
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of  the Hermitian positive 
definite matrix B, as specified by uplo. 
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER.  The first dimension of a; at least max(1, n).

ldb INTEGER.  The first dimension of b; at least max(1, n).

vl, vu REAL for chegvx
DOUBLE PRECISION for zhegvx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chegvx
DOUBLE PRECISION for zhegvx. 
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1;  if jobz ='V', ldz ≥ max(1, n) .



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-399

lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 2n-1). 
See Application Notes for the suggested value of lwork.

rwork REAL for chegvx
DOUBLE PRECISION for zhegvx. 
Workspace array, DIMENSION  at least max(1, 7n). 

iwork INTEGER.   
Workspace array, DIMENSION at least max(1, 5n). 

Output Parameters

a On exit, the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 
'L') of A, including the diagonal, is overwritten.

b  On exit, if info ≤ n, the part of b containing the matrix is overwritten by the 
triangular factor U or L from the Cholesky factorization B = UHU or B = L LH.

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w REAL for chegvx
DOUBLE PRECISION for zhegvx. 
Array,  DIMENSION  at least max(1, n) .
The first m elements of w contain the selected eigenvalues in ascending order. 

z COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx. 
Array z(ldz,*) . The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i).  The eigenvectors are normalized as follows:
  if itype = 1 or 2,    ZHB Z = I;
  if itype = 3,         ZHB-1

 Z = I;

If jobz ='N', then z  is not referenced. 
If an eigenvector fails to converge, then that column of z contains the latest 
approximation to the eigenvector, and the index of the eigenvector is returned 
in ifail. 
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Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheevx/zheevx returned an error code:

If info = i ≤ n, cheevx/zheevx failed to converge, and i eigenvectors 
failed to converge. Their indices are stored in the array ifail;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to
 abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

For optimum performance use lwork ≥ (nb+1)*n, where nb is the  blocksize for 
chetrd/zhetrd returned by ilaenv. 
If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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?spgv 
Computes all eigenvalues and, optionally, eigenvectors of a 
real generalized symmetric definite eigenproblem with 
matrices in packed storage.

Syntax
call sspgv ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info )

call dspgv ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite.

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

ap, bp, work REAL for sspgv
DOUBLE PRECISION for dspgv. 
Arrays:
ap(*) contains the packed upper or lower triangle of the symmetric matrix A, 
as specified by uplo. The dimension of ap must be at least max(1, 
n*(n+1)/2).
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bp(*) contains the packed upper or lower triangle of the symmetric matrix B, 
as specified by uplo. The dimension of bp must be at least max(1, 
n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 3n). 

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky factorization B 
= UTU or B = L LT, in the same storage format as B.

w, z REAL for sspgv
DOUBLE PRECISION for dspgv. 
Arrays:
w(*),  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 

z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors. The 
eigenvectors are normalized as follows:
  if itype = 1 or 2,    ZTB Z = I;
  if itype = 3,         ZTB-1

 Z = I;

If jobz ='N', then z  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spptrf/dpptrf and sspev/dspev returned an error code:

If info = i ≤ n, sspev/dspev failed to converge, and i off-diagonal 
elements of an intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.
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?hpgv 
Computes all eigenvalues and, optionally, eigenvectors of a 
complex generalized Hermitian definite eigenproblem with 
matrices in packed storage.

Syntax
call chpgv ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,

info )

call zhpgv ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,
info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite.

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

ap, bp, work COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv. 
Arrays:
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ap(*) contains the packed upper or lower triangle of the Hermitian matrix A, 
as specified by uplo. The dimension of ap must be at least max(1, 
n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the Hermitian matrix B, 
as specified by uplo. The dimension of bp must be at least max(1, 
n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 2n-1). 

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .

rwork REAL for chpgv
DOUBLE PRECISION for zhpgv. 
Workspace array, DIMENSION  at least max(1, 3n-2). 

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky factorization B 
= UHU or B = L LH, in the same storage format as B.

w REAL for chpgv
DOUBLE PRECISION for zhpgv. 
Array,  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv. 
Array z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors. The 
eigenvectors are normalized as follows:
  if itype = 1 or 2,    ZHB Z = I;
  if itype = 3,         ZHB-1

 Z = I;

If jobz ='N', then z  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpev/zhpev returned an error code:
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If info = i ≤ n, chpev/zhpev failed to converge, and i off-diagonal 
elements of an intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.
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?spgvd 
Computes all eigenvalues and, optionally, eigenvectors of a 
real generalized symmetric definite eigenproblem with 
matrices in packed storage. If eigenvectors are desired, it 
uses a divide and conquer method.

Syntax
call sspgvd ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,

iwork, liwork, info )

call dspgvd ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
iwork, liwork, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite. 
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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ap, bp, work REAL for sspgvd
DOUBLE PRECISION for dspgvd. 
Arrays:
ap(*) contains the packed upper or lower triangle of the symmetric matrix A, 
as specified by uplo. The dimension of ap must be at least max(1, 
n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the symmetric matrix B, 
as specified by uplo. The dimension of bp must be at least max(1, 
n*(n+1)/2).

work(lwork) is a workspace array. 

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

Constraints:
If  n ≤  1, lwork ≥ 1; 
If jobz ='N'and n>1, lwork ≥ 2n;
If jobz ='V'and n>1, lwork ≥ 2n2+6n+1 .

iwork INTEGER.   
Workspace array, DIMENSION  (liwork). .

liwork INTEGER. The dimension of the array iwork. 
Constraints:
If  n ≤  1, liwork ≥ 1; 
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky factorization B 
= UTU or B = L LT, in the same storage format as B.

w, z REAL for sspgv
DOUBLE PRECISION for dspgv. 
Arrays:
w(*),  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 
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z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors. The 
eigenvectors are normalized as follows:
  if itype = 1 or 2,    ZTB Z = I;
  if itype = 3,         ZTB-1

 Z = I;

If jobz ='N', then z  is not referenced. 

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevd/dspevd returned an error code:

If info = i ≤ n, sspevd/dspevd failed to converge, and i off-diagonal 
elements of an intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.
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?hpgvd 
Computes all eigenvalues and, optionally, eigenvectors of a 
complex generalized Hermitian definite eigenproblem with 
matrices in packed storage. If eigenvectors are desired, it 
uses a divide and conquer method.

Syntax
call chpgvd ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,

rwork, lrwork, iwork, liwork, info )

call zhpgvd ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite. 
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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ap, bp, work COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd. 
Arrays:
ap(*) contains the packed upper or lower triangle of the Hermitian matrix A, 
as specified by uplo. The dimension of ap must be at least max(1, 
n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the Hermitian matrix B, 
as specified by uplo. The dimension of bp must be at least max(1, 
n*(n+1)/2).

work(lwork) is a workspace array. 

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

Constraints:
If  n ≤  1, lwork ≥ 1; 
If jobz ='N'and n>1, lwork ≥  n;
If jobz ='V'and n>1, lwork ≥ 2n .

rwork REAL for chpgvd
DOUBLE PRECISION for zhpgvd. 
Workspace array, DIMENSION  (lrwork). 

lrwork INTEGER. The dimension of the array rwork. 
Constraints:
If  n ≤  1, lrwork ≥ 1; 
If jobz ='N'and n>1, lrwork ≥ n;
If jobz ='V'and n>1, lrwork ≥ 2n2+5n+1 .

iwork INTEGER.   
Workspace array, DIMENSION  (liwork). .

liwork INTEGER. The dimension of the array iwork. 
Constraints:
If  n ≤  1, liwork ≥ 1; 
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

Output Parameters

ap On exit, the contents of ap are overwritten.



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-411

bp On exit, contains the triangular factor U or L from the Cholesky factorization B 
= UHU or B = L LH, in the same storage format as B.

w REAL for chpgvd
DOUBLE PRECISION for zhpgvd. 
Array,  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd. 
Array z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors. The 
eigenvectors are normalized as follows:
  if itype = 1 or 2,    ZHB Z = I;
  if itype = 3,         ZHB-1

 Z = I;

If jobz ='N', then z  is not referenced. 

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the required minimal size of 
lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevd/zhpevd returned an error code:

If info = i ≤ n, chpevd/zhpevd failed to converge, and i off-diagonal 
elements of an intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.
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?spgvx 
Computes selected eigenvalues and, optionally, eigenvectors 
of a real generalized symmetric definite eigenproblem with 
matrices in packed storage.

Syntax
call sspgvx ( itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,

abstol, m, w, z, ldz, work, iwork, ifail, info )

call dspgvx ( itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info )

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of 
indices for the desired eigenvalues. 

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.
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uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

ap, bp, work REAL for sspgvx
DOUBLE PRECISION for dspgvx. 
Arrays:
ap(*) contains the packed upper or lower triangle of the symmetric matrix A, 
as specified by uplo. The dimension of ap must be at least max(1, 
n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the symmetric matrix B, 
as specified by uplo. The dimension of bp must be at least max(1, 
n*(n+1)/2).

work(*) is a workspace array, DIMENSION  at least max(1, 8n). 

vl, vu REAL for sspgvx
DOUBLE PRECISION for dspgvx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sspgvx
DOUBLE PRECISION for dspgvx. 
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1;  if jobz ='V', ldz ≥ max(1, n) .

iwork INTEGER.   
Workspace array, DIMENSION at least max(1, 5n). 
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Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky factorization B 
= UTU or B = L LT, in the same storage format as B.

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w, z REAL for sspgvx
DOUBLE PRECISION for dspgvx. 
Arrays:
w(*),  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 

z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i).  The eigenvectors are normalized as follows:
  if itype = 1 or 2,    ZTB Z = I;
  if itype = 3,         ZTB-1

 Z = I;

If jobz ='N', then z  is not referenced. 
If an eigenvector fails to converge, then that column of z contains the latest 
approximation to the eigenvector, and the index of the eigenvector is returned 
in ifail. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevx/dspevx returned an error code:
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If info = i ≤ n, sspevx/dspevx failed to converge, and i eigenvectors 
failed to converge. Their indices are stored in the array ifail;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').
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?hpgvx 
Computes selected eigenvalues and, optionally, eigenvectors of a  
generalized Hermitian definite eigenproblem with matrices in 
packed storage.

Syntax
call chpgvx ( itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,

abstol, m, w, z, ldz, work, rwork, iwork, ifail, info )

call zhpgvx ( itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info )

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite eigenproblem, of the form 
               Ax = λ  Bx,   ABx = λ  x,  or  B Ax = λ  x .
Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of 
indices for the desired eigenvalues. 

Input Parameters

itype INTEGER.  Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if itype = 1, the problem  type is  Ax = λ  Bx;
if itype = 2, the problem  type is  ABx = λ  x;
if itype = 3, the problem  type is  B Ax = λ  x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.
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uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

ap, bp, work COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx. 
Arrays:
ap(*) contains the packed upper or lower triangle of the Hermitian matrix A, 
as specified by uplo. The dimension of ap must be at least max(1, 
n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the Hermitian matrix B, 
as specified by uplo. The dimension of bp must be at least max(1, 
n*(n+1)/2).

work(*) is a workspace array, DIMENSION  at least max(1, 2n). 

vl, vu REAL for chpgvx
DOUBLE PRECISION for zhpgvx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chpgvx
DOUBLE PRECISION for zhpgvx. 
The absolute error tolerance for the eigenvalues.

See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .

rwork REAL for chpgvx
DOUBLE PRECISION for zhpgvx. 
Workspace array, DIMENSION at least max(1, 7n).
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iwork INTEGER.   
Workspace array, DIMENSION at least max(1, 5n). 

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky factorization B 
= UHU or B = L LH, in the same storage format as B.

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w REAL for chpgvx
DOUBLE PRECISION for zhpgvx. 
Array, DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 

z COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx. 
Array z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix A corresponding to the selected 
eigenvalues, with the i-th column of z  holding the eigenvector associated with 
w(i).  The eigenvectors are normalized as follows:
  if itype = 1 or 2,    ZHB Z = I;
  if itype = 3,         ZHB-1

 Z = I;

If jobz ='N', then z  is not referenced. 

If an eigenvector fails to converge, then that column of z contains the latest 
approximation to the eigenvector, and the index of the eigenvector is returned 
in ifail. 
Note: you must ensure that at least max(1,m) columns are supplied in the array 
z ; if range ='V', the exact value of m is not known in advance and an upper 
bound must be used.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevx/zhpevx returned an error code:

If info = i ≤ n, chpevx/zhpevx failed to converge, and i eigenvectors 
failed to converge. Their indices are stored in the array ifail;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of order i of B is 
not positive-definite. The factorization of B could not be completed 
and no eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').
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?sbgv 
Computes all eigenvalues and, optionally, eigenvectors of a 
real generalized symmetric definite eigenproblem with 
banded matrices.

Syntax
call ssbgv ( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,

work, info )

call dsbgv ( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite banded eigenproblem, of the form 
 Ax = λ  Bx .  Here A and B are assumed to be symmetric and banded, and B is also positive definite. 

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

ka INTEGER.  The number of super- or sub-diagonals in A
(ka ≥ 0). 

kb INTEGER.  The number of super- or sub-diagonals in B
(kb ≥ 0). 

ab,bb,work REAL for ssbgv
DOUBLE PRECISION for dsbgv
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A (as specified by uplo) in band storage format. 
The second dimension of the array ab must be at least max(1, n).
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bb (ldbb,*) is an array containing either upper or lower triangular part of the 
symmetric matrix B (as specified by uplo) in band storage format. 
The second dimension of the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least max(1, 3n)

ldab INTEGER.  The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER.  The first dimension of the array bb; must be at least kb+1.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B = STS , as 
returned by spbstf/dpbstf.

w, z REAL for ssbgv
DOUBLE PRECISION for dsbgv
Arrays:
w(*),  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 

z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors , with 
the i-th column of z  holding the eigenvector associated with w(i). The 
eigenvectors are normalized so that  ZTB Z = I.
If jobz ='N', then z  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal elements of an 
intermediate tridiagonal did not converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then spbstf/dpbstf returned info =  
i and B is not positive-definite. The factorization of B could not be 
completed and no eigenvalues or eigenvectors were computed.
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?hbgv 
Computes all eigenvalues and, optionally, eigenvectors of a 
complex generalized Hermitian definite eigenproblem with 
banded matrices.

Syntax
call chbgv ( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,

work, rwork, info )

call zhbgv ( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, rwork, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite banded eigenproblem, of the form  Ax = λ  Bx .  Here A and B are 
assumed to be Hermitian and banded, and B is also positive definite. 

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

ka INTEGER.  The number of super- or sub-diagonals in A
(ka ≥ 0). 

kb INTEGER.  The number of super- or sub-diagonals in B
(kb ≥ 0). 

ab,bb,work COMPLEX for chbgv
DOUBLE COMPLEX for zhbgv
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A (as specified by uplo) in band storage format. 
The second dimension of the array ab must be at least max(1, n).
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bb (ldbb,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix B (as specified by uplo) in band storage format. 
The second dimension of the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least max(1, n) .

ldab INTEGER.  The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER.  The first dimension of the array bb; must be at least kb+1.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .

rwork REAL for chbgv
DOUBLE PRECISION for zhbgv. 
Workspace array, DIMENSION at least max(1, 3n).

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B = SHS , as 
returned by cpbstf/zpbstf.

w REAL for chbgv
DOUBLE PRECISION for zhbgv. 
Array,  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 

z COMPLEX for chbgv
DOUBLE COMPLEX for zhbgv
Array z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors , with 
the i-th column of z  holding the eigenvector associated with w(i). The 
eigenvectors are normalized so that  ZHB Z = I.
If jobz ='N', then z  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal elements of an 
intermediate tridiagonal did not converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then cpbstf/zpbstf returned info =  
i and B is not positive-definite. The factorization of B could not be 
completed and no eigenvalues or eigenvectors were computed.
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?sbgvd 
Computes all eigenvalues and, optionally, eigenvectors of a 
real generalized symmetric definite eigenproblem with 
banded matrices. If eigenvectors are desired, it uses a divide 
and conquer method.

Syntax
call ssbgvd ( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,

work, lwork, iwork, liwork, info )

call dsbgvd ( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, iwork, liwork, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite banded eigenproblem, of the form 
 Ax = λ  Bx .  Here A and B are assumed to be symmetric and banded, and B is also positive definite. 
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

ka INTEGER.  The number of super- or sub-diagonals in A
(ka ≥ 0). 

kb INTEGER.  The number of super- or sub-diagonals in B
(kb ≥ 0). 

ab,bb,work REAL for ssbgvd
DOUBLE PRECISION for dsbgvd
Arrays:
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ab (ldab,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A (as specified by uplo) in band storage format. 
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part of the 
symmetric matrix B (as specified by uplo) in band storage format. 
The second dimension of the array bb must be at least max(1, n).

work(lwork) is a workspace array.

ldab INTEGER.  The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER.  The first dimension of the array bb; must be at least kb+1.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

Constraints:
If  n ≤  1, lwork ≥ 1; 
If jobz ='N'and n>1, lwork ≥  3n;
If jobz ='V'and n>1, lwork ≥ 2n2+5n+1 .

iwork INTEGER.   
Workspace array, DIMENSION  (liwork). .

liwork INTEGER. The dimension of the array iwork. 
Constraints:
If  n ≤  1, liwork ≥ 1; 
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B = STS , as 
returned by spbstf/dpbstf.

w, z REAL for ssbgvd
DOUBLE PRECISION for dsbgvd
Arrays:
w(*),  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 
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z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors , with 
the i-th column of z  holding the eigenvector associated with w(i). The 
eigenvectors are normalized so that  ZTB Z = I.
If jobz ='N', then z  is not referenced. 

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal elements of an 
intermediate tridiagonal did not converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then spbstf/dpbstf returned info =  
i and B is not positive-definite. The factorization of B could not be 
completed and no eigenvalues or eigenvectors were computed.
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?hbgvd 
Computes all eigenvalues and, optionally, eigenvectors of a 
complex generalized Hermitian definite eigenproblem with 
banded matrices. If eigenvectors are desired, it uses a divide 
and conquer method.

Syntax
call chbgvd ( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,

work, lwork, rwork, lrwork, iwork, liwork, info )

call zhbgvd ( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, rwork, lrwork, iwork, liwork, info )

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite banded eigenproblem, of the form  Ax = λ  Bx .  Here A and B are 
assumed to be Hermitian and banded, and B is also positive definite.  If eigenvectors are desired, it 
uses a divide and conquer algorithm.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1.  Must be 'U' or 'L'. 
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 

ka INTEGER.  The number of super- or sub-diagonals in A
(ka ≥ 0). 

kb INTEGER.  The number of super- or sub-diagonals in B
(kb ≥ 0). 

ab,bb,work COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Arrays:
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ab (ldab,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A (as specified by uplo) in band storage format. 
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix B (as specified by uplo) in band storage format. 
The second dimension of the array bb must be at least max(1, n).

work(lwork) is a workspace array.

ldab INTEGER.  The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER.  The first dimension of the array bb; must be at least kb+1.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

Constraints:
If  n ≤  1, lwork ≥ 1; 
If jobz ='N'and n>1, lwork ≥  n;
If jobz ='V'and n>1, lwork ≥ 2n2 .

rwork REAL for chbgvd
DOUBLE PRECISION for zhbgvd. 
Workspace array, DIMENSION  (lrwork). 

lrwork INTEGER. The dimension of the array rwork.

Constraints:
If  n ≤  1, lrwork ≥ 1; 
If jobz ='N'and n>1, lrwork ≥  n;
If jobz ='V'and n>1, lrwork ≥ 2n2+5n +1 .

iwork INTEGER.   
Workspace array, DIMENSION  (liwork). 

liwork INTEGER. The dimension of the array iwork. 
Constraints:
If  n ≤  1, liwork ≥ 1; 
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

Output Parameters

ab On exit, the contents of ab are overwritten.
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bb On exit, contains the factor S from the split Cholesky factorization B = SHS , as 
returned by cpbstf/zpbstf.

w REAL for chbgvd
DOUBLE PRECISION for zhbgvd. 
Array,  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 

z COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Array z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors , with 
the i-th column of z  holding the eigenvector associated with w(i). The 
eigenvectors are normalized so that  ZHB Z = I.
If jobz ='N', then z  is not referenced. 

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the required minimal size of 
lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of 
liwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal elements of an 
intermediate tridiagonal did not converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then cpbstf/zpbstf returned info =  
i and B is not positive-definite. The factorization of B could not be 
completed and no eigenvalues or eigenvectors were computed.
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?sbgvx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a real generalized symmetric definite 
eigenproblem with banded matrices.

Syntax
call ssbgvx ( jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,

ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info )

call dsbgvx ( jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info )

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite banded eigenproblem, of the form 
Ax = λ  Bx . Here A and B are assumed to be symmetric and banded, and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of 
values or a range of indices for the desired eigenvalues. 

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1.  Must be 'U' or 'L'. 

If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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ka INTEGER.  The number of super- or sub-diagonals in A
(ka ≥ 0). 

kb INTEGER.  The number of super- or sub-diagonals in B
(kb ≥ 0). 

ab,bb,work REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the 
symmetric matrix A (as specified by uplo) in band storage format. 
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part of the 
symmetric matrix B (as specified by uplo) in band storage format. 
The second dimension of the array bb must be at least max(1, n).

work(*) is a workspace array, DIMENSION  at least max(1, 7n). 

ldab INTEGER.  The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER.  The first dimension of the array bb; must be at least kb+1.

vl, vu REAL for ssbgvx
DOUBLE PRECISION for dsbgvx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for ssbgvx
DOUBLE PRECISION for dsbgvx. 
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .
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ldq INTEGER. The leading dimension of the output array q; ldq ≥ 1.  If jobz 
='V', ldq ≥ max(1, n) .

iwork INTEGER.   
Workspace array, DIMENSION at least max(1, 5n). 

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B = STS , as 
returned by spbstf/dpbstf.

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w, z, q REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
w(*),  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 

z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors , with 
the i-th column of z  holding the eigenvector associated with w(i). The 
eigenvectors are normalized so that  ZTB Z = I.
If jobz ='N', then z  is not referenced. 
q(ldq,*) . The second dimension of q must be at least max(1, n).
If jobz ='V', then q contains the n-by-n matrix used in the reduction of   Ax = 
λ  Bx  to standard form, that is,
Cx = λ  x  and consequently C to tridiagonal form.
If jobz ='N', then q  is not referenced. 

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
info > 0, the ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and
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if i ≤ n, the algorithm failed to converge, and i off-diagonal elements of an 
intermediate tridiagonal did not converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then spbstf/dpbstf returned info =  
i and B is not positive-definite. The factorization of B could not be 
completed and no eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').
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?hbgvx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a complex generalized Hermitian definite 
eigenproblem with banded matrices.

Syntax
call chbgvx ( jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,

ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
iwork, ifail, info )

call zhbgvx ( jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
iwork, ifail, info )

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite banded eigenproblem, of the form  Ax = λ  Bx . Here A and B are 
assumed to be Hermitian and banded, and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of 
values or a range of indices for the desired eigenvalues. 

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1.  Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open interval: 
vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1.  Must be 'U' or 'L'. 

If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER.  The order of the matrices A and B (n ≥ 0). 
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ka INTEGER.  The number of super- or sub-diagonals in A
(ka ≥ 0). 

kb INTEGER.  The number of super- or sub-diagonals in B
(kb ≥ 0). 

ab,bb,work COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix A (as specified by uplo) in band storage format. 
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part of the 
Hermitian matrix B (as specified by uplo) in band storage format. 
The second dimension of the array bb must be at least max(1, n).

work(*) is a workspace array, DIMENSION  at least max(1, n). 

ldab INTEGER.  The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER.  The first dimension of the array bb; must be at least kb+1.

vl, vu REAL for chbgvx
DOUBLE PRECISION for zhbgvx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chbgvx
DOUBLE PRECISION for zhbgvx. 
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.  If jobz 
='V', ldz ≥ max(1, n) .
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ldq INTEGER. The leading dimension of the output array q; ldq ≥ 1.  If jobz 
='V', ldq ≥ max(1, n) .

rwork REAL for chbgvx
DOUBLE PRECISION for zhbgvx. 
Workspace array, DIMENSION at least max(1, 7n). 

iwork INTEGER.   
Workspace array, DIMENSION at least max(1, 5n). 

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B = SHS , as 
returned by cpbstf/zpbstf.

m INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', 
m = iu-il+1.

w REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Array w(*),  DIMENSION  at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order. 

z, q COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0,  z contains the matrix Z of eigenvectors , with 
the i-th column of z  holding the eigenvector associated with w(i). The 
eigenvectors are normalized so that  ZHB Z = I.
If jobz ='N', then z  is not referenced. 
q(ldq,*) . The second dimension of q must be at least max(1, n).
If jobz ='V', then q contains the n-by-n matrix used in the reduction of   Ax = 
λ  Bx  to standard form, that is,
Cx = λ  x  and consequently C to tridiagonal form.
If jobz ='N', then q  is not referenced. 

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;  if 
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info > 0, the ifail contains the indices of the eigenvectors that failed to 
converge.
If jobz ='N', then ifail  is not referenced. 

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i off-diagonal elements of an 
intermediate tridiagonal did not converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then cpbstf/zpbstf returned info =  
i and B is not positive-definite. The factorization of B could not be 
completed and no eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval 
[a,b] of width less than or equal to 
abstol + ε * max( |a|,|b| ) ,  where ε  is the machine precision.  If abstol is less than or equal to 
zero, then  ε*||T||1  will be used in its place, where T is the tridiagonal matrix obtained by reducing 
A to tridiagonal form. 
Eigenvalues will be computed most accurately when abstol is set to twice the underflow 
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some 
eigenvectors did not converge, try setting abstol to 2*?lamch('S').
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Generalized Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving generalized nonsymmetric 
eigenproblems. See also computational routines that can be called to solve these problems.
Table 4-14 lists routines described in more detail below.   

?gges 
Computes the generalized eigenvalues, Schur form, and 
the left and/or right Schur vectors for a pair of 
nonsymmetric matrices.

Syntax
call sgges ( jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,

alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,
lwork, bwork, info )

call dgges ( jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,
lwork, bwork, info )

call cgges ( jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,
bwork, info )

call zgges ( jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,
bwork, info )

Table 4-14 Driver Routines for Solving Generalized Nonsymmetric Eigenproblems

Routine Name Operation performed

?gges Computes the generalized eigenvalues, Schur form, and the left and/or right 
Schur vectors for a pair of nonsymmetric matrices.

?ggesx Computes the generalized eigenvalues, Schur form, and, optionally,  the left 
and/or right matrices of Schur vectors .

?ggev Computes the generalized eigenvalues,  and the left and/or right 
generalized eigenvectors for a pair of nonsymmetric matrices.

?ggevx Computes the generalized eigenvalues,  and, optionally,  the left and/or right 
generalized eigenvectors.
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Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the 
generalized eigenvalues, the generalized real/complex Schur form (S,T), optionally, the left and/or 
right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur factorization

           (A,B) = ( vsl*S *vsrH, vsl*T*vsrH )

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the 
leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular matrix T. 
The leading columns of vsl and vsr then form an orthonormal/unitary basis for the 
corresponding left and right eigenspaces (deflating subspaces). 
(If only the generalized eigenvalues are needed, use the driver ?ggev instead, which is faster.)
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha / beta = w, such 
that  A - w*B  is singular.  It is usually represented as the pair (alpha, beta), as there is a reasonable 
interpretation for beta=0 or for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is upper triangular with non-negative 
diagonal and S is block upper triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond 
to real generalized eigenvalues, while 2-by-2 blocks of S will be “standardized" by making the 
corresponding elements of T have the form:

                      

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of 
generalized eigenvalues. 
A pair of matrices (S,T) is in generalized complex Schur form if S and T are upper triangular and, 
in addition, the diagonal of T are non-negative real numbers.

Input Parameters

jobvsl CHARACTER*1. Must be 'N' or 'V'.
If jobvsl ='N', then the left Schur vectors are not computed. 
If jobvsl ='V', then the left Schur vectors are computed.

jobvsr CHARACTER*1. Must be 'N' or 'V'.
If jobvsr ='N', then the right Schur vectors are not computed. 
If jobvsr ='V', then the right Schur vectors are computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the diagonal of the 
generalized Schur form.

a

0

0

b� �
� �
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If sort ='N', then eigenvalues are not ordered. 
If sort ='S', eigenvalues are ordered (see selctg).

selctg LOGICAL FUNCTION of three REAL arguments 
for real flavors.
LOGICAL FUNCTION of two COMPLEX arguments 
for complex flavors.

selctg must be declared EXTERNAL in the calling subroutine.
If sort ='S', selctg is used to select eigenvalues to sort to the top left of 
the Schur form.
If sort ='N', selctg is not referenced.

For real flavors:
An eigenvalue (alphar(j) + alphai(j))/beta(j)  is selected if 
selctg(alphar(j), alphai(j), beta(j)) is true; that is, if either one of a 
complex conjugate pair of eigenvalues is selected, then both complex 
eigenvalues are selected. 
Note that in the ill-conditioned case, a selected complex eigenvalue may no 
longer satisfy 
selctg(alphar(j), alphai(j), beta(j)) = .TRUE. after ordering. In this case 
info is set to n+2 .

For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if selctg(alpha(j), beta(j)) is 
true.
Note that a selected complex eigenvalue may no longer satisfy 
selctg(alpha(j), beta(j)) = .TRUE. after ordering, since ordering may 
change the value of complex eigenvalues (especially if the eigenvalue is 
ill-conditioned); in this case info is set to n+2 (see info below).

n INTEGER.  The order of the matrices A, B, vsl, and vsr (n ≥ 0). 

a, b, work REAL for sgges 
DOUBLE PRECISION for dgges 
COMPLEX for cgges 
DOUBLE COMPLEX for zgges.
Arrays: 
a(lda,*) is an array containing the n-by-n matrix A (first of the pair of 
matrices).
The second dimension of a must be at least max(1, n).
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b(ldb,*) is an array containing the n-by-n matrix B (second of the pair of 
matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

ldb INTEGER. The first dimension of the array b. 
Must be at least max(1, n) .

ldvsl,ldvsr INTEGER. The first dimensions of the output matrices vsl and vsr, 
respectively. Constraints:
ldvsl ≥  1.  If jobvsl ='V', ldvsl ≥  max(1, n) .
ldvsr ≥ 1.  If jobvsr ='V', ldvsr ≥ max(1, n) . 

lwork INTEGER. The dimension of the array work.

lwork ≥  max(1, 8n+16) for real flavors;
lwork ≥  max(1, 2n) for complex flavors.
For good performance, lwork must generally be larger.

rwork REAL for cgges 
DOUBLE PRECISION for zgges 
Workspace array, DIMENSION at least max(1, 8n). 
This array is used in complex flavors only.

bwork LOGICAL. 
Workspace array, DIMENSION at least max(1, n). 
Not referenced if sort ='N'.

Output Parameters

a On exit, this array has been overwritten by its generalized Schur form S . 

b On exit, this array has been overwritten by its generalized Schur form T . 

sdim INTEGER. 
If sort ='N',  sdim= 0. 
If sort ='S',  sdim is equal to the number of eigenvalues (after sorting) for 
which selctg is true. 
Note that for real flavors complex conjugate pairs for which selctg is true for 
either eigenvalue count as 2. 
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alphar,alphai REAL for sgges;
DOUBLE PRECISION for dgges. 
Arrays, DIMENSION at least max(1,n) each. Contain values that form 
generalized eigenvalues in real flavors. 
See beta.

alpha COMPLEX for cgges;
DOUBLE COMPLEX for zgges. 
Array, DIMENSION at least max(1,n). Contain values that form generalized 
eigenvalues in complex flavors. See beta.

beta REAL for sgges 
DOUBLE PRECISION for dgges 
COMPLEX for cgges 
DOUBLE COMPLEX for zgges.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the generalized 
eigenvalues.  
alphar(j) + alphai(j)*i and beta(j), j=1,...,n  are the diagonals of the 
complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the 
real generalized Schur form of (A,B) were further reduced to triangular form 
using complex unitary transformations. If alphai(j) is zero, then the j-th 
eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a 
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the generalized eigenvalues. 
alpha(j), j=1,...,n, and beta(j), j=1,...,n,  are the diagonals of the complex 
Schur form (S,T) output by cgges/zgges. The beta(j) will be non-negative 
real. 

See also Application Notes below.

vsl, vsr REAL for sgges 
DOUBLE PRECISION for dgges 
COMPLEX for cgges 
DOUBLE COMPLEX for zgges.
Arrays:
vsl(ldvsl,*), the second dimension of vsl must be at least max(1, n).
If jobvsl ='V', this array will contain the left Schur vectors.
If jobvsl ='N', vsl is not referenced. 
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vsr(ldvsr,*), the second dimension of vsr must be at least max(1, n).
If jobvsr ='V', this array will contain the right Schur vectors.
If jobvsr ='N', vsr is not referenced. 

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤ n :

the QZ iteration failed. (A,B) is not in Schur form, but alphar(j), alphai(j) 
(for real flavors), or alpha(j) (for complex flavors), and beta(j), 
j=info+1,...,n should be correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: after reordering, roundoff changed values of some complex 
eigenvalues so that leading eigenvalues in the generalized Schur form 
no longer satisfy selctg = .TRUE..  This could also be caused due to 
scaling;

i = n+3: reordering failed in ?tgsen.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and 
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar 
and alphai will be always less than and usually comparable with norm(A) in magnitude, and 
beta always less than and usually comparable with norm(B).
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?ggesx 
Computes the generalized eigenvalues, Schur form, 
and, optionally,  the left and/or right matrices of Schur 
vectors .

Syntax
call sggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,

sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info )

call dggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info )

call cggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
work, lwork, rwork, iwork, liwork, bwork, info )

call zggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
work, lwork, rwork, iwork, liwork, bwork, info )

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the 
generalized eigenvalues, the generalized real/complex Schur form (S,T), optionally, the left and/or 
right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur factorization

           (A,B) = ( vsl*S *vsrH, vsl*T*vsrH )

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the 
leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular matrix T; 
computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and 
computes a reciprocal condition number for the right and left deflating subspaces corresponding to 
the selected eigenvalues (rcondv).  The leading columns of vsl and vsr then form an 
orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces). 

A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha / beta = w, such 
that  A - w*B  is singular.  It is usually represented as the pair (alpha, beta), as there is a reasonable 
interpretation for beta=0 or for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is upper triangular with non-negative 
diagonal and S is block upper triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond 
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to real generalized eigenvalues, while 2-by-2 blocks of S will be “standardized" by making the 
corresponding elements of T have the form:

                      

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of 
generalized eigenvalues. 
A pair of matrices (S,T) is in generalized complex Schur form if S and T are upper triangular and, 
in addition, the diagonal of T are non-negative real numbers.

Input Parameters

jobvsl CHARACTER*1. Must be 'N' or 'V'.
If jobvsl ='N', then the left Schur vectors are not computed. 
If jobvsl ='V', then the left Schur vectors are computed.

jobvsr CHARACTER*1. Must be 'N' or 'V'.
If jobvsr ='N', then the right Schur vectors are not computed. 
If jobvsr ='V', then the right Schur vectors are computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the diagonal of the 
generalized Schur form.

If sort ='N', then eigenvalues are not ordered. 
If sort ='S', eigenvalues are ordered (see selctg).

selctg LOGICAL FUNCTION of three REAL arguments 
for real flavors.
LOGICAL FUNCTION of two COMPLEX arguments 
for complex flavors.

selctg must be declared EXTERNAL in the calling subroutine.
If sort ='S', selctg is used to select eigenvalues to sort to the top left of 
the Schur form.
If sort ='N', selctg is not referenced.

For real flavors:
An eigenvalue (alphar(j) + alphai(j))/beta(j)  is selected if 
selctg(alphar(j), alphai(j), beta(j)) is true; that is, if either one of a 
complex conjugate pair of eigenvalues is selected, then both complex 
eigenvalues are selected. 
Note that in the ill-conditioned case, a selected complex eigenvalue may no 

a

0

0

b� �
� �
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longer satisfy 
selctg(alphar(j), alphai(j), beta(j)) = .TRUE. after ordering. In this case 
info is set to n+2 .

For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if selctg(alpha(j), beta(j)) is 
true.
Note that a selected complex eigenvalue may no longer satisfy 
selctg(alpha(j), beta(j)) = .TRUE. after ordering, since ordering may 
change the value of complex eigenvalues (especially if the eigenvalue is 
ill-conditioned); in this case info is set to n+2 (see info below).

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are computed.

If sense ='N', none are computed; 
If sense ='E',  computed for average of selected eigenvalues only; 
If sense ='V',  computed for selected deflating subspaces only; 
If sense ='B',  computed for both.
If sense is 'E', 'V', or 'B', then sort must equal 'S'.

n INTEGER.  The order of the matrices A, B, vsl, and vsr (n ≥ 0). 

a, b, work REAL for sggesx 
DOUBLE PRECISION for dggesx 
COMPLEX for cggesx 
DOUBLE COMPLEX for zggesx.
Arrays: 
a(lda,*) is an array containing the n-by-n matrix A (first of the pair of 
matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B (second of the pair of 
matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

ldb INTEGER. The first dimension of the array b. 
Must be at least max(1, n) .



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-447

ldvsl,ldvsr INTEGER. The first dimensions of the output matrices vsl and vsr, 
respectively. Constraints:
ldvsl ≥  1.  If jobvsl ='V', ldvsl ≥  max(1, n) .
ldvsr ≥ 1.  If jobvsr ='V', ldvsr ≥ max(1, n) . 

lwork INTEGER. The dimension of the array work.
For real flavors:
lwork ≥  max(1, 8(n+1)+16);
if sense = 'E', 'V', or 'B', then
lwork ≥  max( 8(n+1)+16) , 2*sdim*(n-sdim)) . 
For complex flavors:
lwork ≥  max(1, 2n);
if sense = 'E', 'V', or 'B', then
lwork ≥  max( 2n , 2*sdim*(n-sdim)) . 

For good performance, lwork must generally be larger.

rwork REAL for cggesx 
DOUBLE PRECISION for zggesx 
Workspace array, DIMENSION at least max(1, 8n). 
This array is used in complex flavors only.

iwork INTEGER.   
Workspace array, DIMENSION (liwork) . Not referenced if sense = 'N'.

liwork INTEGER. The dimension of the array iwork.

liwork ≥  n+6  for real flavors;
liwork ≥  n+2  for complex flavors.

bwork LOGICAL. 
Workspace array, DIMENSION at least max(1, n). 
Not referenced if sort ='N'.

Output Parameters

a On exit, this array has been overwritten by its generalized Schur form S . 

b On exit, this array has been overwritten by its generalized Schur form T . 

sdim INTEGER. 
If sort ='N',  sdim= 0. 
If sort ='S',  sdim is equal to the number of eigenvalues (after sorting) for 
which selctg is true. 
Note that for real flavors complex conjugate pairs for which selctg is true for 
either eigenvalue count as 2. 
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alphar,alphai REAL for sggesx;
DOUBLE PRECISION for dggesx. 
Arrays, DIMENSION at least max(1,n) each. Contain values that form 
generalized eigenvalues in real flavors. 
See beta.

alpha COMPLEX for cggesx;
DOUBLE COMPLEX for zggesx. 
Array, DIMENSION at least max(1,n). Contain values that form generalized 
eigenvalues in complex flavors. See beta.

beta REAL for sggesx 
DOUBLE PRECISION for dggesx 
COMPLEX for cggesx 
DOUBLE COMPLEX for zggesx.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the generalized 
eigenvalues.  
alphar(j) + alphai(j)*i and beta(j), j=1,...,n  are the diagonals of the 
complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the 
real generalized Schur form of (A,B) were further reduced to triangular form 
using complex unitary transformations. If alphai(j) is zero, then the j-th 
eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a 
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the generalized eigenvalues. 
alpha(j), j=1,...,n, and beta(j), j=1,...,n,  are the diagonals of the complex 
Schur form (S,T) output by cggesx/zggesx. The beta(j) will be 
non-negative real. 

See also Application Notes below.

vsl, vsr REAL for sggesx 
DOUBLE PRECISION for dggesx 
COMPLEX for cggesx 
DOUBLE COMPLEX for zggesx.
Arrays:
vsl(ldvsl,*), the second dimension of vsl must be at least max(1, n).
If jobvsl ='V', this array will contain the left Schur vectors.
If jobvsl ='N', vsl is not referenced. 



LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-449

vsr(ldvsr,*), the second dimension of vsr must be at least max(1, n).
If jobvsr ='V', this array will contain the right Schur vectors.
If jobvsr ='N', vsr is not referenced. 

rconde,rcondv REAL for single precision flavors 
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION (2) each

If sense = 'E' or 'B' , rconde(1) and rconde(2) contain the reciprocal 
condition numbers for the average of the selected eigenvalues.  
Not referenced if sense = 'N' or 'V'.

If sense = 'V' or 'B' , rcondv(1) and rcondv(2) contain the reciprocal 
condition numbers for the selected deflating subspaces.  
Not referenced if sense = 'N' or 'E'.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤ n :

the QZ iteration failed. (A,B) is not in Schur form, but alphar(j), alphai(j) 
(for real flavors), or alpha(j) (for complex flavors), and beta(j), 
j=info+1,...,n should be correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: after reordering, roundoff changed values of some complex 
eigenvalues so that leading eigenvalues in the generalized Schur form 
no longer satisfy selctg = .TRUE..  This could also be caused due to 
scaling;

i = n+3: reordering failed in ?tgsen.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.
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The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and 
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar 
and alphai will be always less than and usually comparable with norm(A) in magnitude, and 
beta always less than and usually comparable with norm(B).
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?ggev 
Computes the generalized eigenvalues,  and the left 
and/or right generalized eigenvectors for a pair of 
nonsymmetric matrices.

Syntax
call sggev ( jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,

vl, ldvl, vr, ldvr, work, lwork, info )

call dggev ( jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,
vl, ldvl, vr, ldvr, work, lwork, info )

call cggev ( jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
vl, ldvl, vr, ldvr, work, lwork, rwork, info )

call zggev ( jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
vl, ldvl, vr, ldvr, work, lwork, rwork, info )

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the 
generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. 

A generalized eigenvalue for a pair of matrices (A,B) is a scalar λ or a ratio alpha / beta = λ, such 
that  A - λ*B  is singular.  It is usually represented as the pair (alpha, beta), as there is a reasonable 
interpretation for beta=0 and even for both being zero.
The right generalized eigenvector v(j) corresponding to the generalized eigenvalue λ(j) of (A,B) 
satisfies

                   A*v(j) = λ(j)*B*v(j) . 

The left generalized eigenvector u(j) corresponding to the generalized eigenvalue λ(j) of (A,B) 
satisfies

                u(j)H*A = λ(j)*u(j)H*B

where u(j)H denotes the conjugate transpose of u(j). 

Input Parameters

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', the left generalized eigenvectors  are not computed; 
If jobvl ='V',  the left generalized eigenvectors  are  computed.
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jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', the right generalized eigenvectors  are not computed; 
If jobvr ='V',  the right generalized eigenvectors  are  computed.

n INTEGER.  The order of the matrices A, B, vl, and vr (n ≥ 0). 

a, b, work REAL for sggev 
DOUBLE PRECISION for dggev 
COMPLEX for cggev 
DOUBLE COMPLEX for zggev.
Arrays: 
a(lda,*) is an array containing the n-by-n matrix A (first of the pair of 
matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B (second of the pair of 
matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

ldb INTEGER. The first dimension of the array b. 
Must be at least max(1, n) .

ldvl,ldvr INTEGER. The first dimensions of the output matrices vl and vr, respectively. 
Constraints:
ldvl ≥  1.  If jobvl ='V', ldvl ≥  max(1, n) .
ldvr ≥ 1.  If jobvr ='V', ldvr ≥ max(1, n) . 

lwork INTEGER. The dimension of the array work.

lwork ≥  max(1, 8n+16) for real flavors;
lwork ≥  max(1, 2n) for complex flavors.
For good performance, lwork must generally be larger.

rwork REAL for cggev 
DOUBLE PRECISION for zggev 
Workspace array, DIMENSION at least max(1, 8n). 
This array is used in complex flavors only.

Output Parameters

a, b On exit, these arrays have been overwritten. 
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alphar,alphai REAL for sggev;
DOUBLE PRECISION for dggev. 
Arrays, DIMENSION at least max(1,n) each. Contain values that form 
generalized eigenvalues in real flavors. 
See beta.

alpha COMPLEX for cggev;
DOUBLE COMPLEX for zggev. 
Array, DIMENSION at least max(1,n). Contain values that form generalized 
eigenvalues in complex flavors. See beta.

beta REAL for sggev 
DOUBLE PRECISION for dggev 
COMPLEX for cggev 
DOUBLE COMPLEX for zggev.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the generalized 
eigenvalues.  
If alphai(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th 
and (j+1)-st eigenvalues are a complex conjugate pair, with alphai(j+1) 
negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the generalized eigenvalues. 

See also Application Notes below.

vl, vr REAL for sggev 
DOUBLE PRECISION for dggev 
COMPLEX for cggev 
DOUBLE COMPLEX for zggev.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least max(1, n).

If jobvl ='V', the left generalized eigenvectors u(j) are stored one after 
another in the columns of vl, in the same order as their eigenvalues. Each 
eigenvector will be scaled so the largest component have abs(Re) + abs(Im) = 
1. If jobvl ='N', vl is not referenced. 
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th column of vl. If the j-th 
and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = vl(:,j) + 
i*vl(:,j+1) and u(j+1) = vl(:,j) - i*vl(:,j+1), where i= . 1–
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For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at least max(1, n).

If jobvr ='V', the right generalized eigenvectors v(j) are stored one after 
another in the columns of vr, in the same order as their eigenvalues. Each 
eigenvector will be scaled so the largest component have abs(Re) + abs(Im) = 
1. If jobvr ='N', vr is not referenced. 
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th column of vr. If the j-th 
and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = vr(:,j) + 
i*vr(:,j+1) and v(j+1) = vr(:,j) - i*vr(:,j+1). 

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤ n :

the QZ iteration failed. No eigenvectors have been calculated, but alphar(j), 
alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j), 
j=info+1,...,n should be correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: error return from ?tgevc.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and 
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar 
and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually 
comparable with norm(A) in magnitude, and beta always less than and usually comparable with 
norm(B).
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?ggevx 
Computes the generalized eigenvalues,  and, optionally,  
the left and/or right generalized eigenvectors.

Syntax
call sggevx ( balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,

alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, iwork, bwork, info)

call dggevx ( balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, iwork, bwork, info)

call cggevx ( balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, rwork, iwork, bwork, info)

call zggevx ( balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, rwork, iwork, bwork, info)

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the 
generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. 

Optionally also, it computes a balancing transformation to improve the conditioning of the 
eigenvalues and eigenvectors (ilo, ihi, lscale, rscale, abnrm, and bbnrm), reciprocal 
condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the  right 
eigenvectors (rcondv).

 A generalized eigenvalue for a pair of matrices (A,B) is a scalar λ or a ratio alpha / beta = λ, such 
that  A - λ*B  is singular.  It is usually represented as the pair (alpha, beta), as there is a reasonable 
interpretation for beta=0 and even for both being zero.
The right generalized eigenvector v(j) corresponding to the generalized eigenvalue λ(j) of (A,B) 
satisfies

                   A*v(j) = λ(j)*B*v(j) . 
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The left generalized eigenvector u(j) corresponding to the generalized eigenvalue λ(j) of (A,B) 
satisfies

                u(j)H*A = λ(j)*u(j)H*B

where u(j)H denotes the conjugate transpose of u(j). 

Input Parameters

balanc CHARACTER*1. Must be 'N', 'P', 'S', or 'B'.
Specifies the balance option to be performed.

If balanc ='N',  do not diagonally scale or permute; 
If balanc ='P',  permute only; 
If balanc ='S',  scale only; 
If balanc ='B', both permute and scale.

Computed reciprocal condition numbers will be for the matrices after 
balancing and/or permuting. Permuting does not change condition numbers (in 
exact arithmetic), but balancing does.

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', the left generalized eigenvectors  are not computed; 
If jobvl ='V',  the left generalized eigenvectors  are  computed.

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', the right generalized eigenvectors  are not computed; 
If jobvr ='V',  the right generalized eigenvectors  are  computed.

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are computed.

If sense ='N', none are computed; 
If sense ='E',  computed for eigenvalues only; 
If sense ='V',  computed for eigenvectors only; 
If sense ='B',  computed for eigenvalues and eigenvectors.

n INTEGER.  The order of the matrices A, B, vl, and vr (n ≥ 0). 

a, b, work REAL for sggevx 
DOUBLE PRECISION for dggevx 
COMPLEX for cggevx 
DOUBLE COMPLEX for zggevx.
Arrays: 
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a(lda,*) is an array containing the n-by-n matrix A (first of the pair of 
matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B (second of the pair of 
matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. 
Must be at least max(1, n) .

ldb INTEGER. The first dimension of the array b. 
Must be at least max(1, n) .

ldvl,ldvr INTEGER. The first dimensions of the output matrices vl and vr, respectively. 
Constraints:
ldvl ≥  1.  If jobvl ='V', ldvl ≥  max(1, n) .
ldvr ≥ 1.  If jobvr ='V', ldvr ≥ max(1, n) . 

lwork INTEGER. The dimension of the array work.
For real flavors:
lwork ≥  max(1, 6n);
if sense = 'E', lwork ≥  12n ;  
if sense = 'V', or 'B', lwork ≥  2n2+ 12n+16 .  
For complex flavors:
lwork ≥  max(1, 2n);
if sense ='N', or 'E', lwork ≥  2n ;  
if sense = 'V', or 'B', lwork ≥  2n2+ 2n .  

rwork REAL for cggevx 
DOUBLE PRECISION for zggevx 
Workspace array, DIMENSION at least max(1, 6n). 
This array is used in complex flavors only.

iwork INTEGER.   
Workspace array, DIMENSION at least (n+6) for real flavors and at least (n+2) 
for complex flavors. 
Not referenced if sense = 'E'.

bwork LOGICAL. 
Workspace array, DIMENSION at least max(1, n). 
Not referenced if sense ='N'.
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Output Parameters

a, b On exit, these arrays have been overwritten. 

If jobvl ='V' or jobvr ='V' or both, then a contains the first part of the real 
Schur form of the "balanced" versions of the input A and B, and b contains its 
second part.

alphar,alphai REAL for sggevx;
DOUBLE PRECISION for dggevx. 
Arrays, DIMENSION at least max(1,n) each. Contain values that form 
generalized eigenvalues in real flavors. 
See beta.

alpha COMPLEX for cggevx;
DOUBLE COMPLEX for zggevx. 
Array, DIMENSION at least max(1,n). Contain values that form generalized 
eigenvalues in complex flavors. See beta.

beta REAL for sggevx 
DOUBLE PRECISION for dggevx 
COMPLEX for cggevx 
DOUBLE COMPLEX for zggevx.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the generalized 
eigenvalues.  
If alphai(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th 
and (j+1)-st eigenvalues are a complex conjugate pair, with alphai(j+1) 
negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the generalized eigenvalues. 

See also Application Notes below.

vl, vr REAL for sggevx 
DOUBLE PRECISION for dggevx 
COMPLEX for cggevx 
DOUBLE COMPLEX for zggevx.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least max(1, n).

If jobvl ='V', the left generalized eigenvectors u(j) are stored one after 
another in the columns of vl, in the same order as their eigenvalues. Each 
eigenvector will be scaled so the largest component have abs(Re) + abs(Im) = 
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1. If jobvl ='N', vl is not referenced. 
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th column of vl. If the j-th 
and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = vl(:,j) + 
i*vl(:,j+1) and u(j+1) = vl(:,j) - i*vl(:,j+1), where i= . 

For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at least max(1, n).

If jobvr ='V', the right generalized eigenvectors v(j) are stored one after 
another in the columns of vr, in the same order as their eigenvalues. Each 
eigenvector will be scaled so the largest component have abs(Re) + abs(Im) = 
1. If jobvr ='N', vr is not referenced. 
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th column of vr. If the j-th 
and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = vr(:,j) + 
i*vr(:,j+1) and v(j+1) = vr(:,j) - i*vr(:,j+1). 

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

ilo, ihi INTEGER.  
ilo and ihi are integer values such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j = 1,..., ilo-1 or
i =  ihi+1,..., n.  
If balanc ='N'or 'S', ilo = 1 and ihi = n.

lscale,rscale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1, n) each.
lscale contains details of the permutations and scaling factors applied to the 
left side of A and B.  
If PL(j) is the index of the row interchanged with row j, and DL(j) is the scaling 
factor applied to row j, then

lscale(j) = PL(j),    for j = 1,...,ilo-1

              = DL(j),    for j = ilo,...,ihi

              = PL(j)     for j = ihi+1,...,n.

 The order in which the interchanges are made is n to ihi+1, then 1 to ilo-1.

1–
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rscale contains details of the permutations and scaling factors applied to the 
right side of A and B.  
If PR(j) is the index of the column interchanged with column j, and DR(j) is the 
scaling factor applied to column j, then

rscale(j) = PR(j),    for j = 1,...,ilo-1

              = DR(j),    for j = ilo,...,ihi

              = PR(j)     for j = ihi+1,...,n.

 The order in which the interchanges are made is n to ihi+1, then 1 to ilo-1.

abnrm,bbnrm REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

The one-norms of the balanced matrices A and B, respectively.

rconde,rcondv REAL for single precision flavors 
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(1, n) each.

 If sense ='E', or 'B', rconde contains the reciprocal condition numbers of 
the selected eigenvalues, stored in consecutive elements of the array. For a 
complex conjugate pair of eigenvalues two consecutive elements of rconde 
are set to the same value. Thus rconde(j), rcondv(j), and the j-th columns of 
vl and vr all correspond to the same eigenpair (but not in general the j-th 
eigenpair, unless all eigenpairs are selected). 
If sense ='V', rconde is not referenced.

If sense ='V', or 'B', rcondv contains the estimated reciprocal condition 
numbers of the selected eigenvectors, stored in consecutive elements of the 
array. For a complex eigenvector two consecutive elements of rcondv are set 
to the same value. If the eigenvalues cannot be reordered to compute 
rcondv(j), rcondv(j) is set to 0; this can only occur when the true value 
would be very small anyway. 
If sense ='E', rcondv is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤ n :
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the QZ iteration failed. No eigenvectors have been calculated, but alphar(j), 
alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j), 
j=info+1,...,n should be correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: error return from ?tgevc.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and 
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar 
and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually 
comparable with norm(A) in magnitude, and beta always less than and usually comparable with 
norm(B).
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LAPACK Auxiliary and 
Utility Routines 5

This chapter describes the Intel® Math Kernel Library implementation of LAPACK auxiliary and 
utility routines. The library includes auxiliary routines for both real and complex data.

Auxiliary Routines
Routine naming conventions, mathematical notation, and matrix storage schemes used for 
LAPACK auxiliary routines are the same as for the driver and computational routines described in 
previous chapters.

The table below summarizes information about the available LAPACK auxiliary routines.

Table 5-1 LAPACK Auxiliary Routines

Routine Name Data 
Types

Description

?lacgv c, z Conjugates a complex vector.

?lacrm c, z Multiplies a complex matrix by a square real matrix.

?lacrt c, z Performs a linear transformation of a pair of complex vectors.

?laesy c, z Computes the eigenvalues and eigenvectors of a 2-by-2 complex 
symmetric matrix.

?rot c, z Applies a plane rotation with real cosine and complex sine to a pair 
of complex vectors.

?spmv c, z Computes a matrix-vector product for complex vectors using a 
complex symmetric packed matrix

?spr c, z Performs the symmetrical rank-1 update of a complex symmetric 
packed matrix.

?symv c, z Computes a matrix-vector product for a complex symmetric matrix.
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?syr c, z Performs the symmetric rank-1 update of a complex symmetric 
matrix.

i?max1 c, z Finds the index of the vector element whose real part has 
maximum absolute value.

?sum1 sc,dz Forms the 1-norm of the complex vector using the true absolute 
value.

?gbtf2 s,d,c,z Computes the LU factorization of a general band matrix using the 
unblocked version of the algorithm.

?gebd2 s,d,c,z Reduces a general matrix to bidiagonal form using an unblocked 
algorithm.

?gehd2 s,d,c,z Reduces a general square matrix to upper Hessenberg form using 
an unblocked algorithm.

?gelq2 s,d,c,z Computes the LQ factorization of a general rectangular matrix 
using an unblocked algorithm.

?geql2 s,d,c,z Computes the QL factorization of a general rectangular matrix 
using an unblocked algorithm.

?geqr2 s,d,c,z Computes the QR factorization of a general rectangular matrix 
using an unblocked algorithm.

?gerq2 s,d,c,z Computes the RQ factorization of a general rectangular matrix 
using an unblocked algorithm.

?gesc2 s,d,c,z Solves a system of linear equations using the LU factorization with 
complete pivoting computed by ?getc2.

?getc2 s,d,c,z Computes the LU factorization with complete pivoting of the 
general n-by-n matrix.

?getf2 s,d,c,z Computes the LU factorization of a general m by n matrix using 
partial pivoting with row interchanges (unblocked algorithm).

?gtts2 s,d,c,z Solves a system of linear equations with a tridiagonal matrix using 
the LU factorization computed by ?gttrf.

?labrd s,d,c,z Reduces the first nb rows and columns of a general matrix to a 
bidiagonal form.

?lacon s,d,c,z Estimates the 1-norm of a square matrix, using reverse 
communication for evaluating matrix-vector products.

?lacpy s,d,c,z Copies all or part of one two-dimensional array to another.

?ladiv s,d,c,z Performs complex division in real arithmetic, avoiding unnecessary 
overflow.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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?lae2 s,d Computes the eigenvalues of a 2-by-2 symmetric matrix.

?laebz s,d Computes the number of eigenvalues of a real symmetric 
tridiagonal matrix which are less than or equal to a given value, and 
performs other tasks required by the routine ?stebz.

?laed0 s,d,c,z Used by ?stedc. Computes all eigenvalues and corresponding 
eigenvectors of an unreduced symmetric tridiagonal matrix using 
the divide and conquer method.

?laed1 s,d Used by sstedc/dstedc. Computes the updated eigensystem 
of a diagonal matrix after modification by a rank-one symmetric 
matrix. Used when the original matrix is tridiagonal.

?laed2 s,d Used by sstedc/dstedc. Merges eigenvalues and deflates 
secular equation. Used when the original matrix is tridiagonal.

?laed3 s,d Used by sstedc/dstedc. Finds the roots of the secular equation 
and updates the eigenvectors. Used when the original matrix is 
tridiagonal.

?laed4 s,d Used by sstedc/dstedc. Finds a single root of the secular 
equation.

?laed5 s,d Used by sstedc/dstedc. Solves the 2-by-2 secular equation.

?laed6 s,d Used by sstedc/dstedc. Computes one Newton step in 
solution of the secular equation.

?laed7 s,d,c,z Used by ?stedc. Computes the updated eigensystem of a 
diagonal matrix after modification by a rank-one symmetric matrix. 
Used when the original matrix is dense.

?laed8 s,d,c,z Used by ?stedc. Merges eigenvalues and deflates secular 
equation. Used when the original matrix is dense.

?laed9 s,d Used by sstedc/dstedc. Finds the roots of the secular equation 
and updates the eigenvectors. Used when the original matrix is 
dense.

?laeda s,d Used by ?stedc. Computes the Z vector determining the 
rank-one modification of the diagonal matrix. Used when the 
original matrix is dense.

?laein s,d,c,z Computes a specified right or left eigenvector of an upper 
Hessenberg matrix by inverse iteration.

?laev2 s,d,c,z Computes the eigenvalues and eigenvectors of a 2-by-2 
symmetric/Hermitian matrix.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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?laexc s,d Swaps adjacent diagonal blocks of a real upper quasi-triangular 
matrix in Schur canonical form, by an orthogonal similarity 
transformation.

?lag2 s,d Computes the eigenvalues of a 2-by-2 generalized eigenvalue 
problem, with scaling as necessary to avoid over-/underflow.

?lags2 s,d Computes 2-by-2 orthogonal matrices U, V, and Q, and applies 
them to matrices A and B such that the rows of the transformed A 
and B are parallel.

?lagtf s,d Computes an LU factorization of a matrix  T-λI, where T is a 
general tridiagonal matrix, and λ a scalar, using partial pivoting 
with row interchanges.

?lagtm s,d,c,z Performs a matrix-matrix product of the form C = αAB+βC, 
where A is a tridiagonal matrix, B and C are rectangular matrices, 
and α and β are scalars, which may be 0, 1, or -1.

?lagts s,d Solves the system of equations (T-λI)x = y or (T-λI)Tx = y 
,where T is a general tridiagonal matrix and λ a scalar, using the 
LU factorization computed by ?lagtf.

?lagv2 s,d Computes the Generalized Schur factorization of a real 2-by-2 
matrix pencil (A,B) where B is upper triangular.

?lahqr s,d,c,z Computes the eigenvalues and Schur factorization of an upper 
Hessenberg matrix, using the double-shift/single-shift QR 
algorithm.

?lahrd s,d,c,z Reduces the first nb columns of a general rectangular matrix A so 
that elements below the k-th subdiagonal are zero, and returns 
auxiliary matrices which are needed to apply the transformation to 
the unreduced part of A.

?laic1 s,d,c,z Applies one step of incremental condition estimation.

?laln2 s,d Solves a 1-by-1 or 2-by-2 linear system of equations of the 
specified form.

?lals0 s,d,c,z Applies back multiplying factors in solving the least squares 
problem using divide and conquer SVD approach. Used by 
?gelsd.

?lalsa s,d,c,z Computes the SVD of the coefficient matrix in compact form. Used 
by ?gelsd.

?lalsd s,d,c,z Uses the singular value decomposition of A to solve the least 
squares problem.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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?lamrg s,d Creates a permutation list to merge the entries of two 
independently sorted sets into a single set sorted in acsending 
order.

?langb s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, or 
the largest absolute value of any element of general band matrix.

?lange s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, or 
the largest absolute value of any element of a general rectangular 
matrix.

?langt s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, or 
the largest absolute value of any element of a general tridiagonal 
matrix.

?lanhs s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, or 
the largest absolute value of any element of an upper Hessenberg 
matrix.

?lansb s,d,c,z Returns the value of the 1-norm, or the Frobenius norm, or the 
infinity norm, or the element of largest absolute value of a 
symmetric band matrix.

?lanhb c,z Returns the value of the 1-norm,  or the Frobenius norm, or the  
infinity norm,  or the element of  largest absolute value  of a 
Hermitian band matrix.

?lansp s,d,c,z Returns the value of the 1-norm, or the Frobenius norm, or the 
infinity norm, or the  element of  largest absolute value  of a 
symmetric matrix supplied in packed form.

?lanhp c,z Returns the value of the 1-norm,  or the Frobenius norm, or the  
infinity norm,  or the  element of  largest absolute value  of a 
complex Hermitian matrix supplied in packed form.

?lanst/?lanht s,d/c,z Returns the value of the 1-norm, or the Frobenius norm, or the 
infinity norm, or the element of  largest absolute value of a real 
symmetric or complex Hermitian tridiagonal matrix.

?lansy s,d,c,z Returns the value of the 1-norm,  or the Frobenius norm, or the  
infinity norm,  or the  element of  largest absolute value  of a 
real/complex symmetric matrix.

?lanhe c,z Returns the value of the 1-norm,  or the Frobenius norm, or the  
infinity norm, or the element of  largest absolute value  of a 
complex Hermitian matrix.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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?lantb s,d,c,z Returns the value of the 1-norm,  or the Frobenius norm, or the 
infinity norm,  or the element of largest absolute value of a 
triangular band matrix.

?lantp s,d,c,z Returns the value of the 1-norm,  or the Frobenius norm, or the 
infinity norm, or the element of  largest absolute value  of a 
triangular matrix supplied in packed form.

?lantr s,d,c,z Returns the value of the 1-norm,  or the Frobenius norm, or the  
infinity norm,  or the  element of  largest absolute value  of a  
trapezoidal or triangular matrix.

?lanv2 s,d Computes the Schur factorization of a real 2-by-2 nonsymmetric 
matrix in standard form.

?lapll s,d,c,z Measures the linear dependence of two vectors.

?lapmt s,d,c,z Performs a forward or backward permutation of the columns of a 
matrix.

?lapy2 s,d Returns sqrt(x2+y2).

?lapy3 s,d Returns sqrt(x2+y2+z2).

?laqgb s,d,c,z Scales a general band matrix, using row and column scaling 
factors computed by ?gbequ.

?laqge s,d,c,z Scales a general rectangular matrix, using row and column scaling 
factors computed by ?geequ.

?laqp2 s,d,c,z Computes a QR factorization with column pivoting of the matrix 
block.

?laqps s,d,c,z Computes a step of QR factorization with column pivoting of a real 
m-by-n matrix A by using BLAS level 3.

?laqsb s,d,c,z Scales a symmetric/Hermitian band matrix, using scaling factors 
computed by ?pbequ.

?laqsp s,d,c,z Scales a symmetric/Hermitian matrix in packed storage, using 
scaling factors computed by ?ppequ.

?laqsy s,d,c,z Scales a symmetric/Hermitian matrix, using scaling factors 
computed by ?poequ.

?laqtr s,d Solves a real quasi-triangular system of equations, or a complex 
quasi-triangular system of special form, in real arithmetic.

?lar1v s,d,c,z Computes the (scaled) r-th column of the inverse of the submatrix 
in rows b1 through bn of the tridiagonal matrix LDLT - σI.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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?lar2v s,d,c,z Applies a vector of plane rotations with real cosines and 
real/complex sines from both sides to a sequence of 2-by-2 
symmetric/Hermitian matrices.

?larf s,d,c,z Applies an elementary reflector to a general rectangular matrix.

?larfb s,d,c,z Applies a block reflector or its transpose/conjugate-transpose to a 
general rectangular matrix.

?larfg s,d,c,z Generates an elementary reflector (Householder matrix).

?larft s,d,c,z Forms the  triangular factor T of a block reflector H = I - VTVH

?larfx s,d,c,z Applies an elementary reflector to a general rectangular matrix, 
with loop unrolling when the reflector has  order ≤ 10.

?largv s,d,c,z Generates a vector of plane rotations with real cosines and 
real/complex sines.

?larnv s,d,c,z Returns a vector of random numbers from a uniform or normal 
distribution.

?larrb s,d Provides limited bisection to locate eigenvalues for more accuracy.

?larre s,d Given the tridiagonal matrix T, sets small off-diagonal elements to 
zero and  for each unreduced block Ti, finds base representations 
and eigenvalues.

?larrf s,d Finds a new relatively robust representation such that at least one 
of the eigenvalues is relatively isolated.

?larrv s,d,c,z Computes the eigenvectors of the tridiagonal matrix T = L D LT 
given L, D and the eigenvalues of L D LT.

?lartg s,d,c,z Generates a plane rotation with real cosine and real/complex sine.

?lartv s,d,c,z Applies a vector of plane rotations with real cosines and 
real/complex sines to the elements of a pair of vectors.

?laruv s,d Returns a vector of n random real numbers from a uniform 
distribution.

?larz s,d,c,z Applies an elementary reflector (as returned by ?tzrzf) to a 
general matrix.

?larzb s,d,c,z Applies a block reflector or its transpose/conjugate-transpose to a 
general matrix.

?larzt s,d,c,z Forms the triangular factor T of a block reflector H = I - VTVH.

?las2 s,d Computes singular values of a 2-by-2 triangular matrix.

?lascl s,d,c,z Multiplies a general rectangular matrix by a real scalar defined as  
cto/cfrom.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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?lasd0 s,d Computes the singular values of a real upper bidiagonal n-by-m 
matrix B with diagonal d and off-diagonal e. Used by ?bdsdc.

?lasd1 s,d Computes the SVD of an upper bidiagonal matrix B of the specified 
size. Used by ?bdsdc.

?lasd2 s,d Merges the two sets of singular values together into a single  
sorted set.  Used by ?bdsdc.

?lasd3 s,d Finds all square roots of the roots of the secular equation, as 
defined by the values in D and Z, and then updates the singular 
vectors by matrix multiplication. Used by ?bdsdc.

?lasd4 s,d Computes the square root of the i-th updated eigenvalue of a 
positive symmetric rank-one modification to a positive diagonal 
matrix. Used by ?bdsdc.

?lasd5 s,d Computes the square root of the i-th eigenvalue of a positive 
symmetric rank-one modification of a 2-by-2 diagonal matrix.Used 
by ?bdsdc.

?lasd6 s,d Computes the SVD of an updated upper bidiagonal matrix 
obtained by merging two smaller ones by appending a row. Used 
by ?bdsdc.

?lasd7 s,d Merges the two sets of singular values together into a single sorted 
set. Then it tries to deflate the size of the problem. Used by 
?bdsdc.

?lasd8 s,d Finds the square roots of the roots of the secular equation, and 
stores, for each  element in D, the distance  to its two nearest 
poles. Used by ?bdsdc.

?lasd9 s,d Finds the square roots of the roots of the secular equation, and 
stores, for each  element in D, the distance  to its two nearest 
poles. Used by ?bdsdc.

?lasda s,d Computes the singular value decomposition (SVD) of a real upper 
bidiagonal matrix with diagonal d and off-diagonal e. Used by 
?bdsdc.

?lasdq s,d Computes the SVD of a real  bidiagonal matrix with diagonal d and 
off-diagonal e. Used by ?bdsdc.

?lasdt s,d Creates a tree of subproblems for bidiagonal divide and conquer. 
Used by ?bdsdc.

?laset s,d,c,z Initializes the off-diagonal elements  and the diagonal elements of 
a matrix to given values. 

Table 5-1 LAPACK Auxiliary Routines (continued)
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?lasq1 s,d Computes the singular values of a real  square bidiagonal matrix. 
Used by ?bdsqr.

?lasq2 s,d Computes all the eigenvalues of the symmetric positive definite 
tridiagonal matrix associated with the qd Array z to high relative 
accuracy. Used by ?bdsqr and ?stegr.

?lasq3 s,d Checks for deflation, computes a shift  and calls dqds. Used by 
?bdsqr.

?lasq4 s,d Computes an approximation to the smallest eigenvalue using 
values of d from the previous transform.  Used by ?bdsqr.

?lasq5 s,d Computes one dqds transform in ping-pong form. Used by 
?bdsqr and ?stegr.

?lasq6 s,d Computes one dqds transform in ping-pong form. Used by 
?bdsqr and ?stegr.

?lasr s,d,c,z Applies a sequence of plane rotations to a general rectangular 
matrix.

?lasrt s,d Sorts numbers in increasing or decreasing order.

?lassq s,d,c,z Updates a sum of squares represented in scaled form.

?lasv2 s,d Computes the singular value decomposition of a 2-by-2 triangular 
matrix.

?laswp s,d,c,z Performs a series of row interchanges on a general rectangular 
matrix.

?lasy2 s,d Solves the Sylvester matrix equation where the matrices are of 
order 1 or 2.

?lasyf s,d,c,z Computes a partial factorization of a real/complex symmetric 
matrix, using the diagonal pivoting method.

?lahef c,z Computes a partial factorization of a complex Hermitian indefinite 
matrix, using the diagonal pivoting method.

?latbs s,d,c,z Solves a triangular banded system of equations.

?latdf s,d,c,z Uses the LU factorization of the n-by-n matrix computed by 
?getc2 and computes a contribution to the reciprocal 
Dif-estimate.

?latps s,d,c,z Solves a triangular system of equations with the matrix held in 
packed storage.

Table 5-1 LAPACK Auxiliary Routines (continued)
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?latrd s,d,c,z Reduces the first nb rows and columns of a symmetric/Hermitian 
matrix A to real tridiagonal form by an orthogonal/unitary similarity 
transformation.

?latrs s,d,c,z Solves a triangular system of equations with the scale factor set to 
prevent overflow. 

?latrz s,d,c,z Factors an upper trapezoidal matrix by means of 
orthogonal/unitary transformations.

?lauu2 s,d,c,z Computes the product UUH or LHL, where U and L are upper or 
lower triangular matrices (unblocked algorithm).

?lauum s,d,c,z Computes the product UUH or LHL, where U and L are upper or 
lower triangular matrices.

?org2l/?ung2l s,d/c,z Generates all or part of the orthogonal/unitary matrix Q from a QL 
factorization determined by ?geqlf (unblocked algorithm).

?org2r/?ung2r s,d/c,z Generates all or part of the orthogonal/unitary matrix Q from a QR 
factorization determined by ?geqrf (unblocked algorithm).

?orgl2/?ungl2 s,d/c,z Generates all or part of the orthogonal/unitary matrix Q from an LQ 
factorization determined by ?gelqf (unblocked algorithm).

?orgr2/?ungr2 s,d/c,z Generates all or part of the orthogonal/unitary matrix Q from an RQ 
factorization determined by ?gerqf (unblocked algorithm).

?orm2l/?unm2l s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a 
QL factorization determined by ?geqlf (unblocked algorithm).

?orm2r/?unm2r s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a 
QR factorization determined by ?geqrf (unblocked algorithm).

?orml2/?unml2 s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a 
LQ factorization determined by ?gelqf (unblocked algorithm).

?ormr2/?unmr2 s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a 
RQ factorization determined by ?gerqf (unblocked algorithm).

?ormr3/?unmr3 s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a 
RZ factorization determined by ?tzrzf (unblocked algorithm).

?pbtf2 s,d,c,z Computes the Cholesky factorization of a symmetric/ Hermitian 
positive definite band matrix (unblocked algorithm).

?potf2 s,d,c,z Computes the Cholesky factorization of a symmetric/Hermitian 
positive definite matrix (unblocked algorithm).

?ptts2 s,d,c,z Solves a tridiagonal system of the form AX=B using the L D LH 
factorization computed by ?pttrf.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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?lacgv
Conjugates a complex vector.

Syntax
call clacgv (n, x, incx)

call zlacgv (n, x, incx)

Description

This routine conjugates a complex vector x of length n and increment incx (see “Vector 
Arguments in BLAS” in Appendix B).

Input Parameters

n INTEGER. The length of the vector  x (n ≥ 0). 

?rscl s,d,cs,
zd

Multiplies a vector by the reciprocal of a real scalar.

?sygs2/?hegs2 s,d/c,z Reduces a symmetric/Hermitian definite generalized eigenproblem 
to standard form, using the factorization results obtained from 
?potrf (unblocked algorithm).

?sytd2/?hetd2 s,d/c,z Reduces a symmetric/Hermitian matrix to real symmetric 
tridiagonal form by an orthogonal/unitary similarity transformation 
(unblocked algorithm).

?sytf2 s,d,c,z Computes the factorization of a real/complex symmetric indefinite 
matrix, using the diagonal pivoting method (unblocked algorithm).

?hetf2 c,z Computes the factorization of a complex Hermitian matrix, using 
the diagonal pivoting method (unblocked algorithm).

?tgex2 s,d,c,z Swaps adjacent diagonal blocks in an upper (quasi) triangular 
matrix pair by an orthogonal/unitary equivalence transformation.

?tgsy2 s,d,c,z Solves the generalized Sylvester equation (unblocked algorithm).

?trti2 s,d,c,z Computes the inverse of a triangular matrix (unblocked algorithm).

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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x COMPLEX for clacgv 
COMPLEX*16 for zlacgv.
Array, dimension (1+(n-1)* |incx|). 
Contains the vector of length n to be conjugated.

incx INTEGER.  The spacing between successive elements 
of x. 

Output Parameters

x On exit, overwritten with conjg(x).

?lacrm  
Multiplies a complex matrix by a square real matrix.

Syntax
call clacrm (m, n, a, lda, b, ldb, c, ldc, rwork)

call zlacrm (m, n, a, lda, b, ldb, c, ldc, rwork)

Description

This routine performs a simple matrix-matrix multiplication of the form 

                        C = A * B ,
where A is m-by-n and complex, B is n-by-n and real, C is m-by-n and complex.

Input Parameters

m INTEGER. The number of rows of the matrix  A and of the matrix C (m ≥ 0). 

n INTEGER. The number of columns and rows of the matrix  B and the number of 
columns of the matrix C 
(n ≥ 0). 

a COMPLEX for clacrm
COMPLEX*16 for zlacrm

Array, DIMENSION (lda, n). Contains the m-by-n matrix  A.

lda INTEGER. The leading dimension of the array a, 
lda ≥ max(1, m).
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b REAL for clacrm
DOUBLE PRECISION for zlacrm

Array, DIMENSION (ldb, n). Contains the n-by-n matrix  B.

ldb INTEGER. The leading dimension of the array b, 
ldb ≥ max(1, n).

ldc INTEGER. The leading dimension of the output array c, 
ldc ≥ max(1, n).

rwork REAL for clacrm
DOUBLE PRECISION for zlacrm

Workspace array, DIMENSION (2*m*n). 

Output Parameters

c COMPLEX for clacrm
COMPLEX*16 for zlacrm

Array, DIMENSION (ldc, n). Contains the m-by-n matrix  C.

?lacrt
Performs a linear transformation of a pair of complex 
vectors.

Syntax
call clacrt (n, cx, incx, cy, incy, c, s)

call zlacrt (n, cx, incx, cy, incy, c, s)

Description

This routine performs the following transformation

                        ,

where c, s are complex scalars and x, y are complex vectors.

c s

s– c� �
� �
� � x

y� �
� � x

y� �
� ��
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Input Parameters

n INTEGER. The number of elements in the vectors  cx and cy (n ≥ 0). 

cx, cy COMPLEX for clacrt
COMPLEX*16 for zlacrt

Arrays, dimension (n). 
Contain input vectors x and y, respectively.

incx INTEGER.  The increment between successive elements 
of cx. 

incy INTEGER.  The increment between successive elements 
of cy. 

c, s COMPLEX for clacrt
COMPLEX*16 for zlacrt

Complex scalars that define the transform matrix 

                               

Output Parameters

cx On exit, overwritten with c*x + s*y .

cy On exit, overwritten with -s*x + c*y .

?laesy
Computes the eigenvalues and eigenvectors of a 2-by-2 
complex symmetric matrix, and checks that the norm of 
the matrix of eigenvectors is larger than a threshold 
value.

Syntax
call claesy (a, b, c, rt1, rt2, evscal, cs1, sn1)

call zlaesy (a, b, c, rt1, rt2, evscal, cs1, sn1)

c s

-s c
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Description

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix 

                                        ,

provided the norm of the matrix of eigenvectors is larger than some threshold value.

rt1 is the eigenvalue of larger absolute value, and rt2 of smaller absolute value.  If the 
eigenvectors are computed, then on return (cs1, sn1) is the unit eigenvector for rt1, hence

Input Parameters

a, b, c COMPLEX for claesy
COMPLEX*16 for zlaesy

Elements of the input matrix.

Output Parameters

rt1, rt2 COMPLEX for claesy
COMPLEX*16 for zlaesy

Eigenvalues of larger and smaller modulus, respectively.

evscal COMPLEX for claesy
COMPLEX*16 for zlaesy

The complex value by which the eigenvector matrix was scaled to make it 
orthonormal.  If evscal is zero, the eigenvectors were not computed.  This 
means one of two things:  the 2-by-2 matrix could not be diagonalized, or the 
norm of the matrix of eigenvectors before scaling was larger than the threshold 
value thresh (set to 0.1E0).

cs1, sn1 COMPLEX for claesy
COMPLEX*16 for zlaesy

If evscal is not zero, then  (cs1, sn1) is the unit right eigenvector for rt1.

a b

b c

cs1 sn1

sn1– cs1

a b

b c
cs1 sn1–

sn1 cs1
⋅ ⋅ rt1 0

0 rt2
=
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?rot
Applies a plane rotation with real cosine and complex 
sine to a pair of complex vectors.

Syntax
call crot (n, cx, incx, cy, incy, c, s)

call zrot (n, cx, incx, cy, incy, c, s)

Description

This routine applies a plane rotation, where the cosine (c) is real and the sine (s) is complex, and 
the vectors cx and cy are complex. This routine has its real equivalents in BLAS (see ?rot in 
Chapter 2).

Input Parameters

n INTEGER. The number of elements in the vectors  cx and cy. 

cx, cy COMPLEX for crot 
COMPLEX*16 for zrot
Arrays of dimension (n), contain input vectors  x and y, respectively. 

incx INTEGER.  The increment between successive elements 
of cx. 

incy INTEGER.  The increment between successive elements 
of cy. 

c REAL for crot
DOUBLE PRECISION for zrot

s COMPLEX for crot 
COMPLEX*16 for zrot
Values that define a rotation 

                               

where c*c + s*conjg(s) = 1.0 .

c s

conjg s( )– c
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Output Parameters

cx On exit, overwritten with c*x + s*y .

cy On exit, overwritten with -conjg(s)*x + c*y .

?spmv
Computes a matrix-vector product for complex vectors 
using a complex symmetric packed matrix.

Syntax
call cspmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )

call zspmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )

Description

These routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are complex scalars,

x and y are n-element complex vectors

a is an n-by-n complex symmetric matrix, supplied in packed form.

These routines have their real equivalents in BLAS (see ?spmv in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
matrix a is supplied in the packed array ap, as follows:

If uplo = 'U' or 'u', the upper triangular part of the matrix a is supplied in 
the array ap .
If uplo = 'L' or 'l', the lower triangular part of the matrix a is supplied in 
the array ap .

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.
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alpha, beta COMPLEX for cspmv
COMPLEX*16 for zspmv

Specify complex scalars alpha and beta. When beta is supplied as zero, 
then y need not be set on input.

ap COMPLEX for cspmv
COMPLEX*16 for zspmv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry, with uplo = 'U' 
or 'u', the array ap must contain the upper triangular part of the symmetric 
matrix packed sequentially, column-by-column, so that ap(1) contains a(1, 
1), ap(2) and ap(3) contain a(1, 2) and a(2, 2) respectively, and so on. 
Before entry, with uplo = 'L' or 'l', the array ap must contain the lower 
triangular part of the symmetric matrix packed sequentially, 
column-by-column, so that ap(1) contains a(1, 1), ap(2) and ap(3) 
contain a(2, 1) and a(3, 1) respectively, and so on.

x COMPLEX for cspmv
COMPLEX*16 for zspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

y COMPLEX for cspmv
COMPLEX*16 for zspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

Output Parameters

y Overwritten by the updated vector y.
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?spr 
Performs the symmetrical rank-1 update of a complex 
symmetric packed matrix.

Syntax
call cspr( uplo, n, alpha, x, incx, ap )

call zspr( uplo, n, alpha, x, incx, ap )

Description

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*conjg(x') + a,

where:

alpha is a complex scalar

x is an n-element complex vector

a is an n-by-n complex symmetric matrix, supplied in packed form.

These routines have their real equivalents in BLAS (see ?spr in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
matrix a is supplied in the packed array ap, as follows:

If uplo = 'U' or 'u', the upper triangular part of the matrix a is supplied in 
the array ap .
If uplo = 'L' or 'l', the lower triangular part of the matrix a is supplied in 
the array ap .

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha COMPLEX for cspr
COMPLEX*16 for zspr

Specifies the scalar alpha.
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x COMPLEX for cspr
COMPLEX*16 for zspr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

ap COMPLEX for cspr
COMPLEX*16 for zspr

Array, DIMENSION at least ((n*(n + 1))/2). Before entry, with uplo = 'U' 
or 'u', the array ap must contain the upper triangular part of the symmetric 
matrix packed sequentially, column-by-column, so that ap(1) contains 
a(1,1), ap(2) and ap(3) contain a(1, 2) and a(2,2) respectively, and so 
on. 

Before entry, with uplo = 'L' or 'l', the array ap must contain the lower 
triangular part of the symmetric matrix packed sequentially, 
column-by-column, so that ap(1) contains a(1,1), ap(2)and 
ap(3)contain a(2,1) and a(3,1) respectively, and so on. 

Note that the imaginary parts of the diagonal elements need not be set, they are 
assumed to be zero, and on exit they are set to zero.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the 
updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the 
updated matrix.

?symv
Computes a matrix-vector product for a complex 
symmetric matrix.

Syntax
call csymv ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )

call zsymv ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )
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Description

These routines perform the matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are complex scalars

x and y are n-element complex vectors

a is an n-by-n symmetric complex matrix.

These routines have their real equivalents in BLAS (see ?symv in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
array a is to be referenced, as follows:

If uplo = 'U' or 'u', the upper triangular part of the array a is to be 
referenced .
If uplo = 'L' or 'l', the lower triangular part of the array a is to be 
referenced.

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha, beta COMPLEX for csymv
COMPLEX*16 for zsymv

Specify the scalars alpha and beta. When beta is supplied as zero, then y 
need not be set on input.

a COMPLEX for csymv
COMPLEX*16 for zsymv

Array, DIMENSION (lda, n). Before entry with 
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a 
must contain the upper triangular part of the symmetric matrix and the strictly 
lower triangular part of a is not referenced. Before entry with 
uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a 
must contain the lower triangular part of the symmetric matrix and the strictly 
upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1,n).
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x COMPLEX for csymv
COMPLEX*16 for zsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x  must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx 
must not be zero.

y COMPLEX for csymv
COMPLEX*16 for zsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the 
incremented array y must contain the n-element vector y. 

incy INTEGER. Specifies the increment for the elements of y. The value of incy 
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?syr
Performs the symmetric rank-1 update of a complex 
symmetric matrix.

Syntax
call csyr( uplo, n, alpha, x, incx, a, lda )

call zsyr( uplo, n, alpha, x, incx, a, lda )

Description

These routines perform the symmetric rank 1 operation defined as

a := alpha*x*x' + a,

where:

alpha is a complex scalar

x is an n-element complex vector
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a is an n-by-n complex symmetric matrix.

These routines have their real equivalents in BLAS (see ?syr in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
array a is to be referenced, as follows:

If uplo = 'U' or 'u', the upper triangular part of the array a is to be 
referenced .
If uplo = 'L' or 'l', the lower triangular part of the array a is to be 
referenced.

n INTEGER. Specifies the order of the matrix a. The value of n must be at least 
zero.

alpha COMPLEX for csyr
COMPLEX*16 for zsyr

Specifies the scalar alpha.

x COMPLEX for csyr
COMPLEX*16 for zsyr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the 
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

a COMPLEX for csyr
COMPLEX*16 for zsyr

Array, DIMENSION (lda, n). Before entry with 
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a 
must contain the upper triangular part of the symmetric matrix and the strictly 
lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n  lower triangular part 
of the array a must contain the lower triangular part of the symmetric matrix 
and the strictly upper triangular part of a is not referenced. 

lda INTEGER. Specifies the first dimension of a as declared in the calling 
(sub)program. The value of lda must be at least max(1,n).
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Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten 
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten 
by the lower triangular part of the updated matrix.

i?max1 
Finds the index of the vector element whose real part 
has maximum absolute value.

Syntax
index = icmax1 ( n, cx, incx )

index = izmax1 ( n, cx, incx )

Description

Given a complex vector cx, the i?max1 functions return the index of the vector element whose 
real part has maximum absolute value. These functions are based on the BLAS functions 
icamax/izamax, but using the absolute value of the real part. They are designed for use with 
clacon/zlacon.

Input Parameters

n INTEGER.  Specifies the number of elements in the  vector cx. 

cx COMPLEX for icmax1
COMPLEX*16 for izmax1

Array, DIMENSION at least (1+(n-1)*abs(incx)). 

Contains the input vector. 

incx INTEGER.  Specifies the spacing between successive  elements of cx.

Output Parameters

index INTEGER.  Contains the index of the vector element whose real part has 
maximum absolute value.
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?sum1  
Forms the 1-norm of the complex vector using the true 
absolute value.

Syntax
res = scsum1 ( n, cx, incx )

res = dzsum1 ( n, cx, incx )

Description

Given a complex vector cx, scsum1/dzsum1 functions take the sum of the absolute values of 
vector elements and return a single/double precision result, respectively. These functions are based 
on scasum/dzasum  from Level 1 BLAS, but use the true absolute value and were designed for 
use with clacon/zlacon.

Input Parameters

n INTEGER.  Specifies the number of elements in the  vector cx. 

cx COMPLEX for scsum1
COMPLEX*16 for dzsum1

Array, DIMENSION at least (1+(n-1)*abs(incx)). 

Contains the input vector whose elements will be summed. 

incx INTEGER.  Specifies the spacing between successive  elements of cx (incx > 
0).

Output Parameters

res REAL for scsum1
DOUBLE PRECISION for dzsum1

 Contains the sum of absolute values.



5-26

5 Intel® Math Kernel Library Reference Manual

?gbtf2  
Computes the LU factorization of a general band 
matrix using the unblocked version of the algorithm.

Syntax
call sgbtf2 ( m, n, kl, ku, ab, ldab, ipiv, info )

call dgbtf2 ( m, n, kl, ku, ab, ldab, ipiv, info )

call cgbtf2 ( m, n, kl, ku, ab, ldab, ipiv, info )

call zgbtf2 ( m, n, kl, ku, ab, ldab, ipiv, info )

Description

The routine forms the LU factorization of a general real/complex m by n band matrix A with kl 
sub-diagonals and ku  super-diagonals. The routine uses partial pivoting with row interchanges 
and implements the unblocked version of the algorithm, calling Level 2 BLAS. See also ?gbtrf.

Input Parameters
m INTEGER.  The number of rows of the matrix A (m ≥ 0). 
n INTEGER.  The number of columns in A  (n ≥ 0). 
kl INTEGER.  The number of sub-diagonals within the band of A (kl ≥ 0). 
ku INTEGER.  The number of super-diagonals within the band of A (ku ≥ 0). 
ab REAL for sgbtf2 

DOUBLE PRECISION for dgbtf2
COMPLEX for cgbtf2
COMPLEX*16 for zgbtf2.
Array, DIMENSION (ldab,*).
The array ab contains the matrix A in band storage 
(see Matrix Arguments). 
The second dimension of ab must be at least max(1, n).

ldab INTEGER.  The first dimension of the array ab. 
(ldab ≥ 2kl + ku +1)

Output Parameters

ab Overwritten by details of the factorization.  The diagonal and kl + ku 
super-diagonals of U are stored in the first 1 + kl + ku rows of ab. The 
multipliers used during the factorization are stored in the next kl rows.
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ipiv INTEGER. 
Array, DIMENSION at least max(1,min(m,n)). 
The pivot indices: row i was interchanged with row ipiv(i). 

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is exactly 
singular. Division by 0 will occur if you use the factor U for solving a system 
of linear equations.

?gebd2  
Reduces a general matrix to bidiagonal form using an 
unblocked algorithm.

Syntax
call sgebd2 ( m, n, a, lda, d, e, tauq, taup, work, info )

call dgebd2 ( m, n, a, lda, d, e, tauq, taup, work, info )

call cgebd2 ( m, n, a, lda, d, e, tauq, taup, work, info )

call zgebd2 ( m, n, a, lda, d, e, tauq, taup, work, info )

Description

The routine reduces a general m-by-n matrix A to upper or lower bidiagonal form B by an 
orthogonal (unitary) transformation:  Q′ A P = B 

If m ≥ n, B is upper bidiagonal; if m < n, B is lower bidiagonal. 

The routine does not form the matrices Q and P explicitly, but represents them as products of 
elementary reflectors. If m ≥ n,

Q = H(1)H(2)...H(n)  and P = G(1)G(2)...G(n-1)

If m < n,

Q = H(1)H(2)...H(m-1)  and P = G(1)G(2)...G(m)

Each H(i) and G(i) has the form

H(i) = I - tauq*v*v′   and G(i) = I - taup*u*u′
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where tauq and taup are scalars (real for sgebd2/dgebd2, complex for cgebd2/zgebd2), and v 
and u are vectors (real for sgebd2/dgebd2, complex for cgebd2/zgebd2).

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgebd2 
DOUBLE PRECISION for dgebd2 
COMPLEX for cgebd2 
COMPLEX*16 for zgebd2.

Arrays: 
a(lda,*) contains the m-by-n general matrix A to be reduced. The second 
dimension of a must be at least max(1, n).

work(*) is a workspace array, the dimension of work must be at least max(1, 
m, n).

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a If m ≥ n, the diagonal and first super-diagonal of a are overwritten with the 
upper bidiagonal matrix B. Elements below the diagonal, with the array tauq, 
represent the orthogonal/unitary matrix Q as a product of elementary 
reflectors,  and elements above the first superdiagonal, with the array taup, 
represent the orthogonal/unitary matrix P as a product of elementary reflectors.

If m < n, the diagonal and first sub-diagonal of a are overwritten by the lower 
bidiagonal matrix B. Elements below the first subdiagonal, with the array 
tauq, represent the orthogonal/unitary matrix Q as a product of elementary 
reflectors,  and elements above the diagonal, with the array taup, represent the 
orthogonal/unitary matrix P as a product of elementary reflectors.

d REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least 
max(1, min(m, n)). 
Contains the diagonal elements of the bidiagonal matrix B: d(i) = a(i, i).

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least 
max(1, min(m, n) − 1). 
Contains the off-diagonal elements of the bidiagonal matrix B:
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If m ≥ n, e(i) = a(i, i+1) for i = 1,2,..., n-1;
If m < n, e(i) = a(i+1, i) for i = 1,2,..., m-1.

tauq,taup REAL for sgebd2 
DOUBLE PRECISION for dgebd2 
COMPLEX for cgebd2 
COMPLEX*16 for zgebd2.
Arrays, DIMENSION at least max (1, min(m, n)). 
Contain scalar factors of the elementary reflectors which represent 
orthogonal/unitary matrices Q and P, respectively.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?gehd2 
Reduces a general square matrix to upper Hessenberg 
form using an unblocked algorithm.

Syntax
call sgehd2 ( n, ilo, ihi, a, lda, tau, work, info )

call dgehd2 ( n, ilo, ihi, a, lda, tau, work, info )

call cgehd2 ( n, ilo, ihi, a, lda, tau, work, info )

call zgehd2 ( n, ilo, ihi, a, lda, tau, work, info )

Description

The routine reduces a real/complex general matrix A to upper Hessenberg form H by an 
orthogonal or unitary similarity transformation  Q′A Q = H. 

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of 
elementary reflectors. 

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).
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ilo, ihi INTEGER. It is assumed that A is already upper triangular in rows and columns
1:ilo -1 and ihi+1:n .
If A has been output by ?gebal, then
ilo and ihi must contain the values returned by that routine. Otherwise they
should be set to ilo = 1 and ihi = n. Constraint: 1 ≤ ilo ≤ ihi ≤  max(1, n) .

a, work REAL for sgehd2 
DOUBLE PRECISION for dgehd2 
COMPLEX for cgehd2 
COMPLEX*16 for zgehd2.
Arrays: 
a (lda,*) contains the n-by-n matrix A to be reduced. 
The second dimension of a must be at least max(1, n).

work (n) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

Output Parameters

a On exit, the upper triangle and the first subdiagonal of A are overwritten with 
the upper Hessenberg matrix H and the elements below the first subdiagonal, 
with the array tau, represent the orthogonal/unitary matrix Q as a product of 
elementary reflectors. See Application Notes below.

tau REAL for sgehd2
DOUBLE PRECISION for dgehd2
COMPLEX for cgehd2
COMPLEX*16 for zgehd2.
Array, DIMENSION at least max (1, n-1).
Contains the scalar factors of elementary reflectors. See Application Notes
below.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The matrix Q is represented as a product of (ihi -ilo) elementary reflectors

Q = H(ilo) H(ilo +1) ... H(ihi -1)  

Each H(i) has the form
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H(i) = I - tau *v *v′ 

where tau is a real/complex scalar, and v is a real/complex vector with 
v(1:i) = 0,  v(i+1) = 1  and v(ihi+1:n) = 0 .

On exit, v(i+2:ihi) is stored in a(i+2:ihi, i) and tau in tau(i).

The contents of a are illustrated by the following example, with n = 7, 
ilo = 2 and ihi = 6:

        on entry                                    on exit

                  

where a denotes an element of the original matrix A,   h denotes a modified element of the upper 
Hessenberg matrix H, and vi denotes an element of the vector defining H(i).

a a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a

a a h h h h a

a h h h h a

h h h h h h

v2 h h h h h

v2 v3 h h h h

v2 v3 v4 h h h

a



5-32

5 Intel® Math Kernel Library Reference Manual

?gelq2 
Computes the LQ factorization of a general rectangular 
matrix using an unblocked algorithm.

Syntax
call sgelq2 ( m, n, a, lda, tau, work, info )

call dgelq2 ( m, n, a, lda, tau, work, info )

call cgelq2 ( m, n, a, lda, tau, work, info )

call zgelq2 ( m, n, a, lda, tau, work, info )

Description

The routine computes an LQ factorization of a real/complex m by n matrix A as   A = L Q. 

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m, 
n) elementary reflectors :

Q = H(k) ... H(2) H(1)  (or Q = H(k)′ ... H(2)′ H(1)′ for complex flavors), where k =  min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′   

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with v(1:i-1) = 0 
and  v(i) = 1. 

On exit,  v(i+1:n)  is stored in a(i, i+1:n).

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgelq2 
DOUBLE PRECISION for dgelq2 
COMPLEX for cgelq2 
COMPLEX*16 for zgelq2.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).
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work(m) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, the elements on and below the diagonal of the array a contain the 
m-by-min(n,m) lower trapezoidal matrix L (L is lower triangular if n ≥ m); the 
elements above the diagonal, with the array tau, represent the 
orthogonal/unitary matrix Q as a product of min(n,m) elementary reflectors.

tau REAL for sgelq2 
DOUBLE PRECISION for dgelq2 
COMPLEX for cgelq2 
COMPLEX*16 for zgelq2.
Array, DIMENSION at least max(1, min(m, n)). 
Contains scalar factors of the elementary reflectors.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?geql2 
Computes the QL factorization of a general rectangular 
matrix using an unblocked algorithm.

Syntax
call sgeql2 ( m, n, a, lda, tau, work, info )

call dgeql2 ( m, n, a, lda, tau, work, info )

call cgeql2 ( m, n, a, lda, tau, work, info )

call zgeql2 ( m, n, a, lda, tau, work, info )

Description

The routine computes a QL factorization of a real/complex m by n matrix A as   A = Q L. 
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The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m, 
n) elementary reflectors :

Q = H(k) ... H(2) H(1) , where k =  min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′   

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with 
v(m-k+i+1:m) = 0 and  v(m-k+i) = 1. 

On exit,  v(1:m-k+i-1)  is stored in a(1:m-k+i-1, n-k+i).

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgeql2 
DOUBLE PRECISION for dgeql2 
COMPLEX for cgeql2 
COMPLEX*16 for zgeql2.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

work(m) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, if m ≥ n, the lower triangle of the subarray 
a(m-n+1:m, 1:n) contains the  n-by-n lower triangular matrix L;
if m < n, the elements on and below the (n-m)th superdiagonal contain the  
m-by-n lower trapezoidal matrix L; the remaining elements, with the array
tau, represent the orthogonal/unitary matrix Q as a product of elementary 
reflectors.

tau REAL for sgeql2 
DOUBLE PRECISION for dgeql2 
COMPLEX for cgeql2 
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COMPLEX*16 for zgeql2.
Array, DIMENSION at least max(1, min(m, n)). 
Contains scalar factors of the elementary reflectors.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?geqr2 
Computes the QR factorization of a general rectangular 
matrix using an unblocked algorithm.

Syntax
call sgeqr2 ( m, n, a, lda, tau, work, info )

call dgeqr2 ( m, n, a, lda, tau, work, info )

call cgeqr2 ( m, n, a, lda, tau, work, info )

call zgeqr2 ( m, n, a, lda, tau, work, info )

Description

The routine computes a QR factorization of a real/complex m by n matrix A as   A = Q R. 

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m, 
n) elementary reflectors :

Q = H(1)H(2) ...  H(k) , where k =  min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′   

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with v(1:i-1) = 0 
and  v(i) = 1. 

On exit,  v(i+1:m)  is stored in a(i+1:m, i).

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 
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n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgeqr2 
DOUBLE PRECISION for dgeqr2 
COMPLEX for cgeqr2 
COMPLEX*16 for zgeqr2.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).

work(n) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, the elements on and above the diagonal of the array a contain the 
min(n,m)-by-n upper trapezoidal matrix R (R is upper triangular if m ≥ n); the 
elements below the diagonal, with the array tau, represent the 
orthogonal/unitary matrix Q as a product of elementary reflectors.

tau REAL for sgeqr2 
DOUBLE PRECISION for dgeqr2 
COMPLEX for cgeqr2 
COMPLEX*16 for zgeqr2.
Array, DIMENSION at least max(1, min(m, n)). 
Contains scalar factors of the elementary reflectors.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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?gerq2 
Computes the RQ factorization of a general rectangular 
matrix using an unblocked algorithm.

Syntax
call sgerq2 ( m, n, a, lda, tau, work, info )

call dgerq2 ( m, n, a, lda, tau, work, info )

call cgerq2 ( m, n, a, lda, tau, work, info )

call zgerq2 ( m, n, a, lda, tau, work, info )

Description

The routine computes a RQ factorization of a real/complex m by n matrix A as   A = R Q. 

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m, 
n) elementary reflectors :

Q = H(1)H(2) ...  H(k) , where k =  min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′   

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with 
v(n-k+i+1:n) = 0 and  v(n-k+i) = 1. 

On exit,  v(1:n-k+i-1)  is stored in a(m-k+i, 1:n-k+i-1).

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a, work REAL for sgerq2 
DOUBLE PRECISION for dgerq2 
COMPLEX for cgerq2 
COMPLEX*16 for zgerq2.
Arrays: 
a(lda,*) contains the m-by-n matrix A. 
The second dimension of a must be at least max(1, n).
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work(m) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, if m ≤  n, the upper triangle of the subarray 
a(1:m, n-m+1:n ) contains the  m-by-m upper triangular matrix R;
if m > n, the elements on and above the (m-n)th subdiagonal contain the  m-by-n 
upper trapezoidal matrix R; the remaining elements, with the array tau, 
represent the orthogonal/unitary matrix Q as a product of elementary 
reflectors.

tau REAL for sgerq2 
DOUBLE PRECISION for dgerq2 
COMPLEX for cgerq2 
COMPLEX*16 for zgerq2.
Array, DIMENSION at least max(1, min(m, n)). 
Contains scalar factors of the elementary reflectors.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?gesc2 
Solves a system of linear equations using the LU 
factorization with complete pivoting computed by 
?getc2.

Syntax
call sgesc2 ( n, a, lda, rhs, ipiv, jpiv, scale )

call dgesc2 ( n, a, lda, rhs, ipiv, jpiv, scale )

call cgesc2 ( n, a, lda, rhs, ipiv, jpiv, scale )

call zgesc2 ( n, a, lda, rhs, ipiv, jpiv, scale )
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Description

This routine solves a system of linear equations

                      AX = scale * RHS 

with a general n-by-n matrix A using the LU factorization with complete pivoting computed by 
?getc2.

Input Parameters

n INTEGER.  The order of the matrix  A. 

a, rhs REAL for sgesc2 
DOUBLE PRECISION for dgesc2 
COMPLEX for cgesc2 
COMPLEX*16 for zgesc2.
Arrays: 
a(lda,*) contains the LU part of the factorization of the n-by-n matrix A 
computed by ?getc2:  
A = P L U Q. 
The second dimension of a must be at least max(1, n);

rhs(n) contains on entry the right hand side vector for the system of 
equations.

lda INTEGER. The first dimension of a; at least max(1, n).

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The pivot indices: for 1 ≤ i ≤  n , row i of the matrix has been interchanged 
with row ipiv(i). 

jpiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The pivot indices: for 1 ≤ j ≤  n , column j of the matrix has been interchanged 
with column jpiv(j). 

 Output Parameters

rhs On exit, overwritten with the solution vector X.

scale REAL for  sgesc2/cgesc2
DOUBLE PRECISION for dgesc2/zgesc2 
Contains the scale factor. scale is chosen in the range 
0 ≤ scale ≤  1 to prevent overflow in the solution.
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?getc2 
Computes the LU factorization with complete pivoting 
of the general n-by-n matrix.

Syntax
call sgetc2 ( n, a, lda, ipiv, jpiv, info )

call dgetc2 ( n, a, lda, ipiv, jpiv, info )

call cgetc2 ( n, a, lda, ipiv, jpiv, info )

call zgetc2 ( n, a, lda, ipiv, jpiv, info )

Description

This routine computes an LU factorization with complete pivoting of the n-by-n matrix A. The 
factorization has the form A = P * L * U * Q, where P and Q are permutation matrices, L is lower 
triangular with unit diagonal elements and U is upper triangular.

Input Parameters

n INTEGER.  The order of the matrix A (n ≥ 0). 

a REAL for sgetc2 
DOUBLE PRECISION for dgetc2 
COMPLEX for cgetc2 
COMPLEX*16 for zgetc2.
Array a(lda,*) contains the n-by-n matrix A to be factored. 
The second dimension of a must be at least max(1, n);

lda INTEGER. The first dimension of a; at least max(1, n).

 Output Parameters

a On exit, the factors L and U from the factorization 
A = P*L*U*Q; the unit diagonal elements of L are not stored. If U(k, k) 
appears to be less than smin, U(k, k) is given the value of smin, i.e., giving a 
nonsingular perturbed system.

ipiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The pivot indices: for 1 ≤ i ≤  n , row i of the matrix has been interchanged 
with row ipiv(i). 
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jpiv INTEGER. 
Array, DIMENSION at least max(1,n). 
The pivot indices: for 1 ≤ j ≤  n , column j of the matrix has been interchanged 
with column jpiv(j). 

info INTEGER. 
If info = 0, the execution is successful.
If info = k > 0, U(k, k) is likely to produce overflow if we try to solve for x in 
Ax = b. So U is perturbed to avoid the overflow.

?getf2 
Computes the LU factorization of a general m by n 
matrix using partial pivoting with row interchanges 
(unblocked algorithm).

Syntax
call sgetf2 ( m, n, a, lda, Ipiv, info )

call dgetf2 ( m, n, a, lda, Ipiv, info )

call cgetf2 ( m, n, a, lda, Ipiv, info )

call zgetf2 ( m, n, a, lda, Ipiv, info )

Description

The routine computes the LU factorization of a general m-by-n matrix A using partial pivoting with 
row interchanges. The factorization has the form

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower 
trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n). 

Input Parameters

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a REAL for sgetf2 
DOUBLE PRECISION for dgetf2 
COMPLEX for cgetf2 

A PLU,=
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COMPLEX*16 for zgetf2.
Array, DIMENSION (lda,*). Contains the matrix A to be factored. The second 
dimension of a must be at least max(1, n).

lda INTEGER.  The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by L and U. The unit diagonal elements of L are not stored. 

ipiv INTEGER. 
Array, DIMENSION at least max(1,min(m,n)). 
The pivot indices: for 1 ≤ i ≤  n , row i was interchanged with row ipiv(i). 

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i > 0, uii is 0. The factorization has been completed, but U is 
exactly singular. Division by 0 will occur if you use the factor U for solving a 
system of linear equations.

?gtts2                 
Solves a system of linear equations with a tridiagonal 
matrix using the LU factorization computed by ?gttrf.

Syntax
call sgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call dgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call cgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call zgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

Description

This routine solves for X one of the following systems of linear equations with multiple right hand 
sides:

AX = B          ATX = B      or   AHX = B   (for complex matrices only),
 with a tridiagonal matrix A using  the LU factorization computed 
by ?gttrf.
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Input Parameters
itrans INTEGER.  Must be 0, 1, or 2.

Indicates the form of the equations being solved:
If itrans = 0, then AX = B (no transpose).
If itrans = 1, then ATX = B (transpose).
If itrans = 2, then AHX = B (conjugate transpose).

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides, i.e., the number of columns in B
(nrhs ≥ 0). 

dl,d,du,du2,b REAL for sgtts2 
DOUBLE PRECISION for dgtts2
COMPLEX for cgtts2
COMPLEX*16 for zgtts2.
Arrays: dl(n - 1), d(n ), du(n - 1), du2(n - 2),  b(ldb,nrhs).
The array dl  contains the  (n - 1) multipliers that define the matrix L from the 
LU factorization of  A. 
The array d contains the n diagonal elements of the upper triangular matrix U 
from the LU factorization of  A. 
The array du  contains the  (n - 1) elements of the first super-diagonal of U.
The array du2  contains the  (n - 2) elements of the second super-diagonal of 
U.
The array b contains the matrix B whose columns are the right-hand sides for 
the systems of equations.

ldb INTEGER.  The leading dimension of b; must be
ldb ≥ max(1, n).

ipiv INTEGER. 
Array, DIMENSION (n). 
The pivot indices array, as returned by ?gttrf.

Output Parameters

b Overwritten by the solution matrix X.
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?labrd 
Reduces the first nb rows and columns of a general 
matrix to a bidiagonal form.

Syntax
call slabrd ( m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy )

call dlabrd ( m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy )

call clabrd ( m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy )

call zlabrd ( m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy )

Description

The routine reduces the first nb rows and columns of a general m-by-n matrix A to upper or lower 
bidiagonal form by an orthogonal/unitary transformation Q′ A P, and returns the matrices X and Y 
which are needed to apply the transformation to the unreduced part of A.

If m ≥ n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form.

The matrices Q and P are represented as products of elementary reflectors: Q = H(1) H(2) ... 
H(nb)  and  P = G(1) G(2) ... G(nb)

Each H(i) and G(i) has the form

H(i) = I - tauq*v*v′   and G(i) = I - taup*u*u′

where tauq and taup are scalars, and v and u are vectors.

The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix 
U′ which are needed, with X and Y, to apply the transformation to the unreduced part of the 
matrix, using a block update of the form:  A := A - V*Y′ - X*U′.

This is an auxiliary routine called by ?gebrd.

Input Parameters

m INTEGER.  The number of rows  in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

nb INTEGER.  The number of leading rows and columns of A to be reduced. 
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a REAL for slabrd 
DOUBLE PRECISION for dlabrd 
COMPLEX for clabrd 
COMPLEX*16 for zlabrd.

Array a(lda,*) contains the matrix A to be reduced. 
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, m).

ldx INTEGER. The first dimension of the output array x; must beat least max(1, m).

ldy INTEGER. The first dimension of the output array y; must beat least max(1, n).

Output Parameters

a On exit, the first nb rows and columns of the matrix are overwritten; the rest of 
the array is unchanged.

 If m ≥ n, elements on and below the diagonal in the first nb columns, with the 
array tauq, represent the orthogonal/unitary matrix Q as a product of 
elementary reflectors; and elements above the diagonal in the first nb rows, 
with the array taup, represent the orthogonal/unitary matrix P as a product of 
elementary reflectors.

If m < n, elements below the diagonal in the first nb columns, with the array 
tauq, represent the orthogonal/unitary matrix Q as a product of elementary 
reflectors, and elements on and above the diagonal in the first nb rows, with 
the array taup, represent the orthogonal/unitary matrix P as a product of 
elementary reflectors.

d, e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Arrays, DIMENSION (nb) 
each. 
The array d contains the diagonal elements of the first nb rows and columns of 
the reduced matrix: 
d(i) = a(i,i).
The array e contains the off-diagonal elements of the first nb rows and 
columns of the reduced matrix.

tauq,taup REAL for slabrd 
DOUBLE PRECISION for dlabrd 
COMPLEX for clabrd 
COMPLEX*16 for zlabrd.



5-46

5 Intel® Math Kernel Library Reference Manual

Arrays, DIMENSION (nb) each. 
Contain scalar factors of the elementary reflectors which represent the 
orthogonal/unitary matrices Q and P, respectively.

x, y REAL for slabrd 
DOUBLE PRECISION for dlabrd 
COMPLEX for clabrd 
COMPLEX*16 for zlabrd.

Arrays, dimension x(ldx, nb),  y(ldy, nb). 
The array x contains the m-by-nb matrix X required to update the unreduced 
part of A. 

The array y contains the n-by-nb matrix Y required to update the unreduced 
part of A. 

Application Notes

 If m ≥ n, then for the elementary reflectors H(i) and G(i),

v(1:i-1) = 0,  v(i) = 1,  and v(i:m) is stored on exit in a(i:m, i) ;
u(1:i) = 0,  u(i+1) = 1,  and u(i+1:n) is stored on exit in a(i, i+1:n) ;
tauq is stored in tauq(i) and taup in taup(i).

If m < n, 

v(1:i) = 0,  v(i+1) = 1,  and v(i+1:m) is stored on exit in a(i+2:m, i) ;
u(1:i-1) = 0,  u(i) = 1,  and u(i:n) is stored on exit in a(i, i+1:n) ;
tauq is stored in tauq(i) and taup in taup(i).

The contents of a on exit are illustrated by the following examples with 
nb = 2:

  m =6 , n =5 (m > n)                   m =5 , n =6 (m < n)

                                                                                     

1 1 u1 u1 u1

v1 1 1 u2 u2

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

1 u1 u1 u1 u1 u1

1 1 u2 u2 u2 u2

v1 1 a a a a

v1 v2 a a a a

v1 v2 a a a a
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where a denotes an element of the original matrix which is unchanged,  vi denotes an element of 
the vector defining H(i), and  ui an element of the vector defining G(i).

?lacon 
Estimates the 1-norm of a square matrix, using reverse 
communication for evaluating matrix-vector products.

Syntax
call slacon ( n, v, x, isgn, est, kase )

call dlacon ( n, v, x, isgn, est, kase )

call clacon ( n, v, x, est, kase )

call zlacon ( n, v, x, est, kase )

Description

This routine estimates the 1-norm of a square, real/complex matrix A. Reverse communication is 
used for evaluating matrix-vector products. 

Input Parameters

n INTEGER.  The order of the matrix A  (n ≥ 1). 

v, x REAL for slacon 
DOUBLE PRECISION for dlacon 
COMPLEX for clacon 
COMPLEX*16 for zlacon.

Arrays, DIMENSION (n) each. 
v is a workspace array.
x is used as input after an intermediate return.  

isgn INTEGER.  Workspace array, DIMENSION (n) , used with real flavors only. 

kase INTEGER.
On the initial call to ?lacon, kase should be 0.
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Output Parameters

est REAL for slacon/clacon 
DOUBLE PRECISION for dlacon/zlacon 
An estimate (a lower bound) for norm(A).

kase On an intermediate return, kase will be 1 or 2, indicating whether x should be 
overwritten by A *x  or A′*x. On the final return from ?lacon, kase will 
again be 0.

v On the final return, v = A*w, where est = norm(v)/norm(w)  (w is not 
returned). 

x On an intermediate return, x should be overwritten by
A *x ,      if kase  = 1,
A′*x ,    if kase  = 2,
(where for complex flavors  A′ is the conjugate transpose of A), and ?lacon 
must be re-called with all the other parameters unchanged. 

?lacpy 
Copies all or part of one two-dimensional array to 
another.

Syntax
call slacpy ( uplo, m, n, a, lda, b, ldb )

call dlacpy ( uplo, m, n, a, lda, b, ldb )

call clacpy ( uplo, m, n, a, lda, b, ldb )

call zlacpy ( uplo, m, n, a, lda, b, ldb )

Description

This routine copies all or part of a two-dimensional matrix A to another matrix B. 

Input Parameters
uplo CHARACTER*1.  

Specifies the part of the matrix A to be copied to B. 
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If uplo = 'U', the upper triangular part of A is copied.
If uplo = 'L', the lower triangular part of A is copied.
Otherwise, all of the matrix A is copied.

m INTEGER.  The number of rows in the matrix A  (m ≥ 0). 

n INTEGER.  The number of columns in A (n ≥ 0). 

a REAL for slacpy 
DOUBLE PRECISION for dlacpy 
COMPLEX for clacpy 
COMPLEX*16 for zlacpy.
Array a(lda,*), contains the m-by-n matrix A.
The second dimension of a must be at least max(1,n).
If uplo = 'U', only the upper triangle or trapezoid is accessed; if uplo = 'L', 
only the lower triangle or trapezoid is accessed. 

lda INTEGER.  The first dimension of a; lda ≥ max(1, m).

ldb INTEGER.  The first dimension of the output array b; ldb ≥ max(1, m).

Output Parameters

b REAL for slacpy 
DOUBLE PRECISION for dlacpy 
COMPLEX for clacpy 
COMPLEX*16 for zlacpy.
Array b(ldb,*), contains the m-by-n matrix B.
The second dimension of b must be at least max(1,n).
On exit, B = A in the locations specified by uplo . 

?ladiv 
Performs complex division in real arithmetic, avoiding 
unnecessary overflow.

Syntax
call sladiv ( a, b, c, d, p, q )

call dladiv ( a, b, c, d, p, q )

res = cladiv ( x, y )
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res = zladiv ( x, y )

Description

The routines sladiv/dladiv perform complex division in real arithmetic as

                

Complex functions cladiv/zladiv compute the result as 

              ,

where x and y are complex. The computation of x / y  will not overflow on an intermediary step 
unless the results overflows.

Input Parameters

a, b, c, d REAL for sladiv 
DOUBLE PRECISION for dladiv 
The scalars a, b, c, and d  in the above expression (for real flavors only).

x, y COMPLEX for cladiv 
COMPLEX*16 for zladiv 
The complex scalars  x and y (for complex flavors only).

Output Parameters

p, q REAL for sladiv 
DOUBLE PRECISION for dladiv 
The scalars  p and q  in the above expression (for real flavors only).

res COMPLEX for cladiv 
DOUBLE COMPLEX for zladiv 
Contains the result of division  x / y .

p iq+
a ib+
c id+
-----------------=

res x y⁄=
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?lae2 
Computes the eigenvalues of a 
2-by-2 symmetric matrix.

Syntax
call slae2 ( a, b, c, rt1, rt2 )

call dlae2 ( a, b, c, rt1, rt2 )

Description

The routines sla2/dlae2 compute the eigenvalues of a 2-by-2 symmetric matrix

                           

On return, rt1 is the eigenvalue of larger absolute value, and rt1  is the eigenvalue of smaller 
absolute value.

Input Parameters

a, b, c REAL for slae2 
DOUBLE PRECISION for dlae2 
The elements a, b, and c of the 2-by-2 matrix above.

Output Parameters

rt1, rt2 REAL for slae2 
DOUBLE PRECISION for dlae2 
The computed eigenvalues of larger and smaller absolute value, respectively.

Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive 
cancellation in the determinant a*c-b*b; higher precision or correctly rounded or correctly 
truncated arithmetic would be needed to compute rt2 accurately in all cases. 

Overflow is possible only if rt1 is within a factor of 5 of overflow. Underflow is harmless if the 
input data is 0 or exceeds 
underflow_threshold / macheps.

a b

b c
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?laebz 
Computes the number of eigenvalues of a real 
symmetric tridiagonal matrix which are less than or 
equal to a given value, and performs other tasks 
required by the routine ?stebz.

Syntax
call slaebz( ijob, nitmax, n, mmax, minp, nbmin, abstol,

reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
work, iwork, info )

call dlaebz( ijob, nitmax, n, mmax, minp, nbmin, abstol,
reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
work, iwork, info )

Description

The routine ?laebz contains the iteration loops which compute and use the function N(w), which 
is the count of eigenvalues of a symmetric tridiagonal matrix T less than or equal to its argument  
w.  It performs a choice of two types of loops:

ijob =1,  followed by

ijob =2:  It takes as input a list of intervals and returns a list of sufficiently small intervals whose 
union contains the same eigenvalues as the union of the original intervals. The 
input intervals are (ab(j,1),ab(j,2)], j=1,...,minp. The output interval 
(ab(j,1),ab(j,2)] will contain eigenvalues nab(j,1)+1,...,nab(j,2), where 1 ≤ j ≤ 
mout.

ijob =3:  It performs a binary search in each input interval (ab(j,1),ab(j,2)] for a point  w(j)  such 
that N(w(j))=nval(j), and uses  c(j)  as the starting point of the search.  If such a 
w(j) is found, then on output ab(j,1)=ab(j,2)=w.  If no such w(j) is found, then on 
output (ab(j,1),ab(j,2)] will be a small interval containing the point where N(w) 
jumps through nval(j), unless that point lies outside the initial interval.

Note that the intervals are in all cases half-open intervals, that is, of the form  (a,b] , which 
includes  b  but not  a .

To avoid underflow, the matrix should be scaled so that its largest element is no greater than  
overflow**(1/2) * underflow**(1/4) in absolute value.  To assure the most accurate computation 
of small eigenvalues, the matrix should be scaled to be not much smaller than that, either.
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Note: the arguments are, in general, not checked for unreasonable values.

Input Parameters

ijob INTEGER. Specifies what is to be done:
= 1:  Compute nab for the initial intervals.
= 2:  Perform bisection iteration to find eigenvalues of T.
= 3:  Perform bisection iteration to invert N(w), i.e., to find a point which has a 
specified number of eigenvalues of T to its left.
Other values will cause ?laebz to return with info=-1.

nitmax INTEGER.
The maximum number of "levels" of bisection to be performed, i.e., an interval 
of width W will not be made smaller than 2^(-nitmax) * W.  If not all intervals 
have converged after nitmax iterations, then info is set to the number of 
non-converged intervals.

n INTEGER.
The dimension n of the tridiagonal matrix T.  It must be at least 1.

mmax INTEGER.
The maximum number of intervals.  If more than mmax intervals are generated, 
then ?laebz will quit with info=mmax+1.

minp INTEGER.
The initial number of intervals.  It may not be greater than mmax.

nbmin INTEGER.
The smallest number of intervals that should be processed using a vector loop.  
If zero, then only the scalar loop will be used.

abstol REAL for slaebz
DOUBLE PRECISION for dlaebz. 
The minimum (absolute) width of an interval.  When an interval is narrower 
than abstol, or than reltol times the larger (in magnitude) endpoint, then it 
is considered to be sufficiently small, i.e., converged.  This must be at least 
zero.

reltol REAL for slaebz
DOUBLE PRECISION for dlaebz. 
The minimum relative width of an interval.  When an interval is narrower than 
abstol, or than reltol times the larger (in magnitude) endpoint, then it is 
considered to be sufficiently small, i.e., converged.  Note: this should always 
be at least radix*machine epsilon.
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pivmin REAL for slaebz
DOUBLE PRECISION for dlaebz. 
The minimum absolute value of a "pivot" in the Sturm sequence loop.  This 
must be at least  
max |e(j)**2| * safe_min  and at least safe_min, where safe_min is at least the 
smallest number that can divide one without overflow.

d, e, e2 REAL for slaebz
DOUBLE PRECISION for dlaebz. 
Arrays, dimension (n) each.
The array d contains the diagonal elements of the tridiagonal matrix T.

The array e contains the off-diagonal elements of the tridiagonal matrix T in 
positions 1 through n-1.  e(n) is arbitrary.

The array e2 contains the squares of the off-diagonal elements of the 
tridiagonal matrix T.  e2(n) is ignored.

nval INTEGER.
Array, dimension (minp).
If ijob=1 or 2, not referenced.
If ijob=3, the desired values of N(w).  

ab REAL for slaebz
DOUBLE PRECISION for dlaebz. 
Array, dimension (mmax,2)
The endpoints of the intervals.  ab(j,1) is  a(j), the left endpoint of the j-th 
interval, and ab(j,2) is  b(j), the right endpoint of the j-th interval.  

c REAL for slaebz
DOUBLE PRECISION for dlaebz. 
Array, dimension (mmax)
If ijob=1, ignored.
If ijob=2, workspace.
If ijob=3, then on input c(j) should be initialized to the first search point in 
the binary search.

nab INTEGER.
Array, dimension (mmax,2)
If ijob=2, then on input, nab(i,j) should be set.  It must satisfy the condition:
N(ab(i,1)) ≤ nab(i,1) ≤ nab(i,2) ≤ N(ab(i,2)), which means that in interval i only 
eigenvalues
nab(i,1)+1,...,nab(i,2) will be considered.  Usually, nab(i,j)=N(ab(i,j)), from a 
previous call to ?laebz with ijob=1. 
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If ijob=3, normally, nab should be set to some distinctive value(s) before 
?laebz is called.

work REAL for slaebz
DOUBLE PRECISION for dlaebz. 
Workspace array, dimension (mmax).

iwork INTEGER.
Workspace array, dimension (mmax).

Output Parameters

nval The elements of nval will be reordered to correspond with the intervals in ab. 
Thus, nval(j) on output will not, in general be the same as nval(j) on input, 
but it will correspond with the interval (ab(j,1),ab(j,2)] on output.

ab The input intervals will, in general, be modified, split, and reordered by the 
calculation.

mout INTEGER.
If ijob=1, the number of eigenvalues in the intervals.
If ijob=2 or 3, the number of intervals output.
If ijob=3, mout will equal minp.

nab If ijob=1, then on output nab(i,j) will be set to N(ab(i,j)).
If ijob=2, then on output, nab(i,j) will contain
max(na(k),min(nb(k),N(ab(i,j)))), where k is the index of the input interval that
the output interval (ab(j,1),ab(j,2)] came from, and na(k) and nb(k) are the the
input values of nab(k,1) and nab(k,2).
If ijob=3, then on output, nab(i,j) contains N(ab(i,j)), unless N(w) > nval(i)
for all search points w , in which case nab(i,1) will not be modified, i.e., the
output value will be the same as the input value (modulo reorderings, see
nval and ab), or unless N(w) < nval(i) for all search points w , in which case
nab(i,2) will not be modified.

info INTEGER.

0:       All intervals converged.
1--mmax: The last info intervals did not converge.
mmax+1:  More than mmax intervals were generated.

Application Notes

This routine is intended to be called only by other LAPACK routines, thus the interface is less 
user-friendly.  It is intended for two purposes:
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(a) finding eigenvalues.  In this case, ?laebz should have one or more initial intervals set up in 
ab, and ?laebz should be called with ijob=1.  This sets up nab, and also counts the eigenvalues. 
Intervals with no eigenvalues would usually be thrown out at this point.  Also, if not all the 
eigenvalues in an interval i are desired, nab(i,1) can be increased or nab(i,2) decreased. For 
example, set nab(i,1)=nab(i,2)-1 to get the largest eigenvalue.  ?laebz is then called with 
ijob=2 and mmax no smaller than the value of mout returned by the call with ijob=1.  After this 
(ijob=2) call, eigenvalues nab(i,1)+1 through nab(i,2) are approximately ab(i,1) (or ab(i,2)) to 
the tolerance specified by abstol and reltol.

(b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). In this case, start with a 
Gershgorin interval  (a,b).  Set up ab to contain 2 search intervals, both initially (a,b).  One nval 
element should contain  f-1  and the other should contain  l, while c should contain a and b, 
respectively.  nab(i,1) should be -1 and nab(i,2) should be n+1, to flag an error if the desired 
interval does not lie in (a,b).  ?laebz is then called with ijob=3.  On exit, if w(f-1) < w(f), then 
one of the intervals -- j -- will have ab(j,1)=ab(j,2) and nab(j,1)=nab(j,2)=f-1, while if, to the 
specified tolerance, w(f-k)=...=w(f+r), k > 0 and r ≥ 0, then the interval will have  
N(ab(j,1))=nab(j,1)=f-k and N(ab(j,2))=nab(j,2)=f+r.  The cases w(l) < w(l+1) and 
w(l-r)=...=w(l+k) are handled similarly.

?laed0  
Used by ?stedc. Computes all eigenvalues and 
corresponding eigenvectors of an unreduced symmetric 
tridiagonal matrix using the divide and conquer 
method.

Syntax
call slaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs,

work, iwork, info)

call dlaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs,
work, iwork, info)

call claed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork,
iwork, info)

call zlaed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork,
iwork, info)
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Description

Real flavors of this routine compute all eigenvalues and (optionally) corresponding eigenvectors of 
a symmetric tridiagonal matrix using the divide and conquer method. 

Complex flavors claed0/zlaed0 compute all eigenvalues of a symmetric tridiagonal matrix 
which is one diagonal block of those from reducing a dense or band Hermitian matrix and 
corresponding eigenvectors of the dense or band matrix.

Input Parameters
icompq INTEGER.  Used with real flavors only.

If icompq = 0,  compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense symmetric matrix also. 
On entry, the array q must contain the orthogonal matrix used to reduce the 
original matrix to tridiagonal form.
If icompq = 2,  compute eigenvalues and eigenvectors of the tridiagonal 
matrix.

qsiz INTEGER.  

The dimension of the orthogonal/unitary matrix used to reduce the full matrix 
to tridiagonal form;  qsiz ≥ n  (for real flavors, qsiz ≥ n if icompq = 1).

n INTEGER.  The dimension of the symmetric tridiagonal matrix (n ≥ 0). 

d, e, rwork REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
Arrays: 
d(*) contains the main diagonal of the tridiagonal matrix. The dimension of d 
must be at least max(1, n).

e(*) contains the off-diagonal elements of the tridiagonal matrix. The 
dimension of e must be at least max(1, n-1).

rwork(*) is a workspace array used in complex flavors only. The dimension 
of rwork must be at least 
(1 +3n+2nlg(n)+3n2), where lg(n) = smallest integer k such that 2k ≥ n.

q, qstore REAL for slaed0 
DOUBLE PRECISION for dlaed0 
COMPLEX for claed0 
COMPLEX*16 for zlaed0.
Arrays: q(ldq, *), qstore(ldqs, *).  The second dimension of these arrays 
must be at least max(1, n).
For real flavors:
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If icompq = 0, array q is not referenced.
If icompq = 1, on entry, q is a subset of the columns of the orthogonal matrix 
used to reduce the full matrix to tridiagonal form corresponding to the subset 
of the full matrix which is being decomposed at this time. 
If icompq = 2, on entry, q will be the identity matrix. 
The array qstore is a workspace array referenced only when icompq = 1. 
Used to store parts of the eigenvector matrix when the updating matrix 
multiplies take place.

For complex flavors:
On entry, q must contain an qsiz-by-n matrix whose columns are unitarily 
orthonormal. It is a part of the unitary matrix that reduces the full dense 
Hermitian matrix to a (reducible) symmetric tridiagonal matrix.
The array qstore is a workspace array used to store parts of the eigenvector 
matrix when the updating matrix multiplies take place.

ldq INTEGER.  The first dimension of the array q; 
ldq ≥ max(1, n).

ldqs INTEGER.  The first dimension of the array qstore; ldqs ≥ max(1, n).

work REAL for slaed0
DOUBLE PRECISION for dlaed0. 
Workspace array, used in real flavors only. 
If icompq = 0 or 1, the dimension of work must be at least (1 
+3n+2nlg(n)+2n2), where lg(n) = smallest integer k such that 2k ≥ n.
If icompq = 2, the dimension of work must be at least (4n+n2).

iwork INTEGER. 
Workspace array. 
For real flavors, if icompq = 0 or 1, and for complex flavors, the dimension of 
iwork must be at least 
(6 +6n+5nlg(n)), 
For real flavors, If icompq = 2, the dimension of iwork must be at least 
(3+5n).

Output Parameters

d On exit, contains eigenvalues in ascending order.

e On exit, the array has been destroyed.

q If icompq = 2, on exit, q contains the eigenvectors of the tridiagonal matrix.
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i > 0, the algorithm failed to compute an eigenvalue while working 
on the submatrix lying in rows and columns i/(n+1) through mod(i, n+1).

?laed1  
Used by sstedc/dstedc. Computes the updated 
eigensystem of a diagonal matrix after modification by 
a rank-one symmetric matrix. Used when the original 
matrix is tridiagonal.

Syntax
call slaed1( n, d, q, ldq, indxq, rho, cutpnt, work,

iwork, info)

call dlaed1( n, d, q, ldq, indxq, rho, cutpnt, work,
iwork, info)

Description

The routine ?laed1 computes the updated eigensystem of a diagonal matrix after modification 
by a rank-one symmetric matrix.  This routine is used only for the eigenproblem which requires all 
eigenvalues and eigenvectors of a tridiagonal matrix.  ?laed7 handles the case in which 
eigenvalues only or eigenvalues and eigenvectors of a full symmetric matrix (which was reduced 
to tridiagonal form) are desired.

   T = Q(in) ( D(in) + rho * z*z' ) Q'(in) = Q(out) * D(out) * Q'(out)

where z = Q'u, u is a vector of length n with ones in the cutpnt and (cutpnt + 1) -th elements 
and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues 
are in D.  The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues or 
if there is a zero in the z vector.  For each such occurrence the dimension of the secular equation 
problem is reduced by one.  This stage is performed by the routine ?laed2.
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The second stage consists of calculating the updated eigenvalues. This is done by finding the roots 
of the secular equation via the routine ?laed4 (as called by ?laed3). This routine also calculates 
the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated 
eigenvalues.  The eigenvectors for the current problem are multiplied with the eigenvectors from 
the overall problem.

Input Parameters

n INTEGER.  The dimension of the symmetric tridiagonal matrix (n ≥ 0). 

d, q, work REAL for slaed1
DOUBLE PRECISION for dlaed1. 
Arrays: 
d(*) contains the eigenvalues of the rank-1-perturbed matrix. The dimension 
of d must be at least max(1, n).

q(ldq, *) contains the eigenvectors of the rank-1-perturbed matrix. The 
second dimension of q must be at least max(1, n).

work(*) is a workspace array, dimension at least 
(4n+n2).

ldq INTEGER.  The first dimension of the array q; 
ldq ≥ max(1, n).

indxq INTEGER.  Array, dimension (n).
On entry, the permutation which separately sorts the two subproblems in d into 
ascending order.

rho REAL for slaed1
DOUBLE PRECISION for dlaed1. 
The subdiagonal entry used to create the rank-1 modification.

cutpnt INTEGER.  
The location of the last eigenvalue in the leading sub-matrix.  min(1,n) ≤ 
cutpnt ≤ n/2.

iwork INTEGER.  Workspace array, dimension (4n).

Output Parameters

d On exit, contains the eigenvalues of the repaired matrix.

q On exit, q contains the eigenvectors of the repaired tridiagonal matrix.
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indxq On exit, contains the permutation which will reintegrate the subproblems back 
into sorted order, that is,
 d( indxq( i = 1, n ) ) will be in ascending order.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

?laed2  
Used by sstedc/dstedc. Merges eigenvalues and 
deflates secular equation. Used when the original 
matrix is tridiagonal.

Syntax
call slaed2( k, n, n1, d, q, ldq, indxq, rho, z, dlamda,

w, q2, indx, indxc, indxp, coltyp, info)

call dlaed2( k, n, n1, d, q, ldq, indxq, rho, z, dlamda,
w, q2, indx, indxc, indxp, coltyp, info)

Description

The routine ?laed2 merges the two sets of eigenvalues together into a single sorted set.  Then it 
tries to deflate the size of the problem. There are two ways in which deflation can occur:  when 
two or more eigenvalues are close together or if there is a tiny entry in the z vector.  For each such 
occurrence the order of the related secular equation problem is reduced by one.

 Input Parameters

k INTEGER.  The number of non-deflated eigenvalues, and the order of the 
related secular equation  (0 ≤ k ≤ n).

n INTEGER.  The dimension of the symmetric tridiagonal matrix (n ≥ 0). 

n1 INTEGER.  The location of the last eigenvalue in the leading sub-matrix;  
min(1,n) ≤ n1 ≤ n/2.
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d, q, z REAL for slaed2
DOUBLE PRECISION for dlaed2. 
Arrays: 
d(*) contains the eigenvalues of the two submatrices to be combined. The 
dimension of d must be at least max(1, n).

q(ldq, *) contains the eigenvectors of the two submatrices in the two square 
blocks with corners at (1,1), (n1,n1) and  (n1+1,n1+1), (n,n). The second 
dimension of q must be at least max(1, n).
z(*) contains the updating vector (the last row of the first sub-eigenvector 
matrix and the first row of the second sub-eigenvector matrix).

ldq INTEGER.  The first dimension of the array q; 
ldq ≥ max(1, n).

indxq INTEGER.  Array, dimension (n).
On entry, the permutation which separately sorts the two subproblems in d into 
ascending order. Note that elements in the second half of this permutation must 
first have n1 added to their values. 

rho REAL for slaed2
DOUBLE PRECISION for dlaed2. 
On entry, the off-diagonal element associated with the rank-1 cut which 
originally split the two submatrices which are now being recombined.

indx, indxp INTEGER.  

Workspace arrays, dimension (n) each.
Array indx contains the permutation used to sort the contents of dlamda  into 
ascending order.  

 Array indxp contains the permutation used to place deflated values of d at the 
end of the array.  
indxp(1:k) points to the nondeflated d-values and indxp(k+1:n) points to the 
deflated eigenvalues.

coltyp INTEGER.  Workspace array, dimension (n).
During execution, a label which will indicate which of the following types a 
column in the q2 matrix is:
1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;
4 : deflated.
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Output Parameters

d On exit, d contains the trailing (n-k) updated eigenvalues (those which were 
deflated) sorted into increasing order.

q On exit, q contains the trailing (n-k) updated eigenvectors (those which were 
deflated) in its last n-k columns.

indxq Destroyed on exit.

rho On exit, rho has been modified to the value required by ?laed3.

dlamda, w, q2 REAL for slaed2
DOUBLE PRECISION for dlaed2. 
Arrays: dlamda(n), w(n), q2(n12+(n-n1)2).

The array dlamda contains a copy of the first k eigenvalues which will be 
used by ?laed3 to form the secular equation.

The array w contains  the first k values of the final deflation-altered z-vector 
which will be passed to ?laed3.

The array q2 contains a copy of the first k eigenvectors which will be used by 
?laed3 in a matrix multiply (sgemm/dgemm) to solve for the new 
eigenvectors.

indxc INTEGER. Array, dimension (n).
The permutation used to arrange the columns of the deflated q matrix into 
three groups:  the first group contains non-zero elements only at and above n1, 
the second contains non-zero elements only below n1, and the third is dense.

coltyp On exit, coltyp(i) is the number of columns of type i, for i=1 to 4 only (see 
the definition of types in the description of coltyp in Input Parameters).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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?laed3  
Used by sstedc/dstedc. Finds the roots of the 
secular equation and updates the eigenvectors. Used 
when the original matrix is tridiagonal.

Syntax
call slaed3( k, n, n1, d, q, ldq, rho, dlamda, q2, indx,

ctot, w, s, info)

call dlaed3( k, n, n1, d, q, ldq, rho, dlamda, q2, indx,
ctot, w, s, info)

Description

The routine ?laed3 finds the roots of the secular equation, as defined by the values in d, w, and 
rho, between 1 and k.  It makes the appropriate calls to ?laed4 and then updates the eigenvectors 
by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the 
matrix of eigenvectors of the k-by-k system which is solved here.

This code makes very mild assumptions about floating point arithmetic. It will work on machines 
with a guard digit in add/subtract, or on those binary machines without guard digits which subtract 
like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal 
or decimal machines without guard digits, but none are known.

 Input Parameters

k INTEGER.  The number of terms in the rational function to be solved by 
?laed4  (k ≥ 0).

n INTEGER. The number of rows and columns in the q matrix. n ≥ k (deflation 
may result in n > k).

n1 INTEGER.  The location of the last eigenvalue in the leading sub-matrix;  
min(1,n) ≤ n1 ≤ n/2.

q REAL for slaed3
DOUBLE PRECISION for dlaed3. 
Array q(ldq, *). The second dimension of q must be at least max(1, n).
Initially, the first k columns of this array are used as workspace.

ldq INTEGER.  The first dimension of the array q; 
ldq ≥ max(1, n).
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rho REAL for slaed3
DOUBLE PRECISION for dlaed3. 
The value of the parameter in the rank one update equation. rho ≥ 0 required.

dlamda, q2, w REAL for slaed3
DOUBLE PRECISION for dlaed3. 
Arrays: dlamda(k), q2(ldq2, *),  w(k).

The first k elements of the array dlamda contain the old roots of the deflated 
updating problem.  These are the poles of the secular equation.

The first k columns of the array q2 contain the non-deflated eigenvectors for 
the split problem. The second dimension of q2 must be at least max(1, n).

The first k elements of the array w contain the components of the 
deflation-adjusted updating vector. 

indx INTEGER.  Array, dimension (n).
The permutation used to arrange the columns of the deflated q matrix into 
three groups (see ?laed2). The rows of the eigenvectors found by ?laed4 
must be likewise permuted before the matrix multiply can take place.

ctot INTEGER.  Array, dimension (4).
A count of the total number of the various types of columns in q , as described 
in indx.  The fourth column type is any column which has been deflated.

s REAL for slaed3
DOUBLE PRECISION for dlaed3. 
Workspace array, dimension (n1+1)*k . 

Will contain the eigenvectors of the repaired matrix which will be multiplied 
by the previously accumulated eigenvectors to update the system.

Output Parameters

d REAL for slaed3
DOUBLE PRECISION for dlaed3. 
Array, dimension at least max(1, n). 
d(i) contains the updated eigenvalues for 1 ≤   i ≤   k. 

q On exit, the columns 1 to k of q contain the updated eigenvectors.

dlamda May be changed on output by having lowest order bit set to zero on Cray 
X-MP, Cray Y-MP, Cray-2, or Cray C-90, as described above.

w Destroyed on exit.
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info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

?laed4 
Used by sstedc/dstedc. Finds a single root of the 
secular equation.

Syntax
call slaed4 ( n, i, d, z, delta, rho, dlam, info )

call dlaed4 ( n, i, d, z, delta, rho, dlam, info )

Description

This subroutine computes the i-th updated eigenvalue of a symmetric rank-one modification to a 
diagonal matrix whose elements are given in the array d, and that

D(i) < D(j)  for  i < j

and that rho > 0.  This is arranged by the calling routine, and is no loss in generality.  The 
rank-one modified system is thus

 diag( D )  +  rho * Z  * transpose(Z) .

where we assume the Euclidean norm of Z is 1.

The method consists of approximating the rational functions in the secular equation by simpler 
interpolating rational functions.

Input Parameters

n INTEGER. The length of all arrays.

i INTEGER. The index of the eigenvalue to be computed; 
1 ≤   i ≤   n.
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d, z REAL for slaed4 
DOUBLE PRECISION for dlaed4 
Arrays, dimension (n) each.
The array d contains the original eigenvalues.  It is assumed that they are in 
order, d(i) < d(j)  for i < j.

The array z contains the components of the updating vector Z.

rho REAL for slaed4 
DOUBLE PRECISION for dlaed4 
The scalar in the symmetric updating formula.

Output Parameters

delta REAL for slaed4 
DOUBLE PRECISION for dlaed4 
Array, dimension (n). 
If n ≠ 1, delta contains (d(j) - lambda_i) in its  j-th component.  If n = 1, 
then delta(1) = 1.  The vector delta contains the information necessary to 
construct the eigenvectors.

dlam REAL for slaed4 
DOUBLE PRECISION for dlaed4 
The computed lambda_i, the i-th updated eigenvalue.

info INTEGER. 
If info = 0, the execution is successful.
If info = 1, the updating process failed.

?laed5 
Used by sstedc/dstedc. 
Solves the 2-by-2 secular equation.

Syntax
call slaed5 ( i, d, z, delta, rho, dlam )

call dlaed5 ( i, d, z, delta, rho, dlam )
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Description

This subroutine computes the i-th eigenvalue of a symmetric rank-one modification of a 2-by-2 
diagonal matrix

 diag( D )  +  rho * Z  * transpose(Z) .

The diagonal elements in the array D are assumed to satisfy

  D(i) < D(j)  for  i < j .

We also assume rho > 0 and that the Euclidean norm of the vector Z is one.

Input Parameters

i INTEGER. The index of the eigenvalue to be computed; 
1 ≤   i ≤   2.

d, z REAL for slaed5 
DOUBLE PRECISION for dlaed5 
Arrays, dimension (2) each.
The array d contains the original eigenvalues.  It is assumed that d(1) < d(2).

The array z contains the components of the updating vector.

rho REAL for slaed5 
DOUBLE PRECISION for dlaed5 
The scalar in the symmetric updating formula.

Output Parameters

delta REAL for slaed5 
DOUBLE PRECISION for dlaed5 
Array, dimension (2). 
The vector delta contains the information necessary to construct the 
eigenvectors.

dlam REAL for slaed5 
DOUBLE PRECISION for dlaed5 
The computed lambda_i, the i-th updated eigenvalue.



LAPACK Auxiliary and Utility Routines 5

5-69

?laed6 
Used by sstedc/dstedc. 
Computes one Newton step in solution of the secular 
equation.

Syntax
call slaed6(kniter, orgati, rho, d, z, finit, tau, info)

call dlaed6(kniter, orgati, rho, d, z, finit, tau, info)

Description

This routine computes the positive or negative root (closest to the origin) of

It is assumed that if orgati = .TRUE. the root is between d(2) and d(3); otherwise it is between 
d(1) and d(2) 
This routine will be called by ?laed4 when necessary. In most cases, the root sought is the 
smallest in magnitude, though it might not be in some extremely rare situations.

Input Parameters

kniter INTEGER. 
Refer to ?laed4 for its significance.

orgati LOGICAL.  
If orgati = .TRUE., the needed root is between d(2) and d(3); otherwise it is 
between d(1) and d(2). See ?laed4 for further details.

rho REAL for slaed6 
DOUBLE PRECISION for dlaed6 
Refer to the equation for f(x) above.

d, z REAL for slaed6 
DOUBLE PRECISION for dlaed6 
Arrays, dimension (3) each.

The array d satisfies d(1) < d(2) < d(3).

f x( ) rho
z 1( )

d 1( ) x–
-------------------- z 2( )

d 2( ) x–
-------------------- z 3( )

d 3( ) x–
--------------------+ + +=
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Each of the elements in the array z must be positive.

finit REAL for slaed6 
DOUBLE PRECISION for dlaed6 
The value of f(x) at 0. It is more accurate than the one evaluated inside this 
routine (if someone wants to do so).

Output Parameters

tau REAL for slaed6 
DOUBLE PRECISION for dlaed6 
The root of the equation for f(x).

info INTEGER. 
If info = 0, the execution is successful.
If info = 1, failure to converge.

?laed7  
Used by ?stedc. Computes the updated eigensystem of 
a diagonal matrix after modification by a rank-one 
symmetric matrix. Used when the original matrix is 
dense.

Syntax
call slaed7( icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,

indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
givnum, work, iwork, info )

call dlaed7( icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,
indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
givnum, work, iwork, info )

call claed7( n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
work, rwork, iwork, info )

call zlaed7( n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
work, rwork, iwork, info )
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Description

The routine ?laed7 computes the updated eigensystem of a diagonal matrix after modification 
by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all 
eigenvalues and optionally eigenvectors of a dense symmetric/Hermitian matrix that has been 
reduced to tridiagonal form. For real flavors, slaed1/dlaed1 handles the case in which all 
eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired.

 T = Q(in) ( D(in) + rho * z*z' ) Q'(in) = Q(out) * D(out) * Q'(out)

where z = Q'u, u is a vector of length n with ones in the cutpnt and (cutpnt + 1) -th elements 
and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues 
are in D.  The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues or 
if there is a zero in the z vector.  For each such occurrence the dimension of the secular equation 
problem is reduced by one.  This stage is performed by the routine slaed8/dlaed8 (for real 
flavors) or by the routine slaed2/dlaed2 (for complex flavors) .

The second stage consists of calculating the updated eigenvalues. This is done by finding the roots 
of the secular equation via the routine ?laed4 (as called by ?laed9 or ?laed3). This routine also 
calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated 
eigenvalues.  The eigenvectors for the current problem are multiplied with the eigenvectors from 
the overall problem.

Input Parameters
icompq INTEGER.  Used with real flavors only.

If icompq = 0,  compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense symmetric matrix also. 
On entry, the array q must contain the orthogonal matrix used to reduce the 
original matrix to tridiagonal form.

n INTEGER.  The dimension of the symmetric tridiagonal matrix (n ≥ 0). 

cutpnt INTEGER.  The location of the last eigenvalue in the leading sub-matrix.  
min(1,n) ≤ cutpnt ≤ n .

qsiz INTEGER.  The dimension of the orthogonal/unitary matrix used to reduce the 
full matrix to tridiagonal form;  qsiz ≥ n  (for real flavors, qsiz ≥ n if 
icompq = 1).
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tlvls INTEGER.  The total number of merging levels in the overall divide and 
conquer tree.

curlvl INTEGER.  The current level in the overall merge routine, 0 ≤ curlvl ≤ tlvls .

curpbm INTEGER.  The current problem in the current level in the overall merge 
routine (counting from upper left to lower right).

d REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7. 

Array, dimension at least max(1, n).
Array d(*) contains the eigenvalues of the rank-1-perturbed matrix. 

q, work REAL for slaed7
DOUBLE PRECISION for dlaed7
COMPLEX for claed7
COMPLEX*16 for zlaed7.
Arrays: 
q(ldq, *) contains the the eigenvectors of the rank-1-perturbed matrix. The 
second dimension of q must be at least max(1, n).

work(*) is a workspace array, dimension at least 
(3n+qsiz*n) for real flavors and at least (qsiz*n) for complex flavors.

ldq INTEGER.  The first dimension of the array q; 
ldq ≥ max(1, n).

rho REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7. 
The subdiagonal element used to create the rank-1 modification.

qstore REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7. 
Array, dimension (n2+1). Serves also as output parameter.
Stores eigenvectors of submatrices encountered during divide and conquer, 
packed together. qptr points to beginning of the submatrices.

qptr INTEGER.  Array, dimension (n+2). Serves also as output parameter.
List of indices pointing to beginning of submatrices stored in qstore. The 
submatrices are numbered starting at the bottom left of the divide and conquer 
tree, from left to right and bottom to top.

prmptr, perm,
givptr INTEGER. Arrays, dimension (n lgn ) each.



LAPACK Auxiliary and Utility Routines 5

5-73

The array prmptr(*) contains a list of pointers which indicate where in perm 
a level's permutation is stored.  prmptr(i+1) - prmptr(i) indicates the size of 
the permutation and also the size of the full, non-deflated problem.

The array perm(*) contains the permutations (from deflation and sorting) to be 
applied to each eigenblock.

The array givptr(*) contains a list of pointers which indicate where in 
givcol a level's Givens rotations are stored.  givptr(i+1) - givptr(i) 
indicates the number of Givens rotations.

givcol INTEGER.  Array, dimension (2, n lgn ).
Each pair of numbers indicates a pair of columns to take place in a Givens 
rotation.

givnum REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7. 
Array, dimension (2, n lgn). 
Each number indicates the S value to be used in the corresponding Givens 
rotation.

iwork INTEGER.  Workspace array, dimension (4n ).

rwork REAL for claed7
DOUBLE PRECISION for zlaed7. 
Workspace array, dimension (3n+2qsiz*n). Used in complex flavors only.

Output Parameters

d On exit, contains the eigenvalues of the repaired matrix.

q On exit, q contains the eigenvectors of the repaired tridiagonal matrix.

indxq INTEGER.  Array, dimension (n).
Contains the permutation which will reintegrate the subproblems back into 
sorted order, that is,
d( indxq( i = 1, n ) ) will be in ascending order.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.
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?laed8  
Used by ?stedc. Merges eigenvalues and deflates 
secular equation. Used when the original matrix is 
dense.

Syntax
call slaed8( icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z,

dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx,
info )

call dlaed8( icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z,
dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx,
info )

call claed8( k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
info )

call zlaed8( k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
info )

Description

This routine merges the two sets of eigenvalues together into a single sorted set.  Then it tries to 
deflate the size of the problem. There are two ways in which deflation can occur:  when two or 
more eigenvalues are close together or if there is a tiny element in the z vector.  For each such 
occurrence the order of the related secular equation problem is reduced by one.

Input Parameters
icompq INTEGER.  Used with real flavors only.

If icompq = 0,  compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense symmetric matrix also. 
On entry, the array q must contain the orthogonal matrix used to reduce the 
original matrix to tridiagonal form.

n INTEGER.  The dimension of the symmetric tridiagonal matrix (n ≥ 0). 

cutpnt INTEGER.  The location of the last eigenvalue in the leading sub-matrix.  
min(1,n) ≤ cutpnt ≤ n .
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qsiz INTEGER.  The dimension of the orthogonal/unitary matrix used to reduce the 
full matrix to tridiagonal form;  qsiz ≥ n  (for real flavors, qsiz ≥ n if 
icompq = 1).

d, z REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8. 
Arrays, dimension at least max(1, n) each.
The array d(*) contains the eigenvalues of the two submatrices to be 
combined. 
On entry, z(*) contains the updating vector (the last row of the first 
sub-eigenvector matrix and the first row of the second sub-eigenvector matrix). 
The contents of z are destroyed by the updating process.

q REAL for slaed8
DOUBLE PRECISION for dlaed8
COMPLEX for claed8
COMPLEX*16 for zlaed8.
Array q(ldq, *). The second dimension of q must be at least max(1, n). On 
entry, q contains the eigenvectors of the partially solved system which has been 
previously updated in matrix multiplies with other partially solved 
eigensystems.
For real flavors, if icompq = 0, q  is not referenced.

ldq INTEGER.  The first dimension of the array q; 
ldq ≥ max(1, n).

ldq2 INTEGER.  The first dimension of the output array q2; 
ldq2 ≥ max(1, n).

indxq INTEGER.  Array, dimension (n).
The permutation which separately sorts the two sub-problems in d into 
ascending order.  Note that elements in the second half of this permutation 
must first have cutpnt added to their values in order to be accurate.

rho REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8. 
On entry, the off-diagonal element associated with the rank-1 cut which 
originally split the two submatrices which are now being recombined.

Output Parameters

k INTEGER.  The number of non-deflated eigenvalues, and the order of the 
related secular equation.
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d On exit, contains the trailing (n-k) updated eigenvalues (those which were 
deflated) sorted into increasing order.

q On exit, q contains the trailing (n-k) updated eigenvectors (those which were 
deflated) in its last (n-k) columns.

rho On exit, rho has been modified to the value required by ?laed3.

dlamda, w REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8. 
Arrays, dimension (n) each. 
The array dlamda(*) contains a copy of the first k eigenvalues which will be 
used by ?laed3 to form the secular equation.

The array w(*) will hold the first k values of the final deflation-altered z-vector 
and will be passed to ?laed3.

q2 REAL for slaed8
DOUBLE PRECISION for dlaed8
COMPLEX for claed8
COMPLEX*16 for zlaed8.
Array q2(ldq2, *). The second dimension of q2 must be at least max(1, n). 
Contains a copy of the first k eigenvectors which will be used by 
slaed7/dlaed7 in a matrix multiply (sgemm/dgemm) to update the new 
eigenvectors.
For real flavors, if icompq = 0, q2  is not referenced.

indxp, indx INTEGER.  Workspace arrays, dimension (n) each.

The array indxp(*) will contain the permutation used to place deflated values 
of d at the end of the array. On output, indxp(1:k) points to the nondeflated 
d-values and indxp(k+1:n) points to the deflated eigenvalues.

The array indx(*) will contain the permutation used to sort the contents of d 
into ascending order.  

perm INTEGER. Array, dimension (n ).
Contains  the permutations (from deflation and sorting) to be applied to each 
eigenblock.

givptr INTEGER. Contains the number of Givens rotations which took place in this 
subproblem.

givcol INTEGER.  Array, dimension (2, n ).
Each pair of numbers indicates a pair of columns to take place in a Givens 
rotation.
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givnum REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8. 
Array, dimension (2, n). 
Each number indicates the S value to be used in the corresponding Givens 
rotation.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?laed9 
Used by sstedc/dstedc. 
Finds the roots of the secular equation and updates the 
eigenvectors. Used when the original matrix is dense.

Syntax
call slaed9( k, kstart, kstop, n, d, q, ldq, rho,

dlamda, w, s, lds, info )

call dlaed9( k, kstart, kstop, n, d, q, ldq, rho,
dlamda, w, s, lds, info )

Description

This routine finds the roots of the secular equation, as defined by the values in d, z, and rho, 
between kstart and kstop.  It makes the appropriate calls to slaed4/dlaed4 and then stores 
the new matrix of eigenvectors for use in calculating the next level of z vectors.

Input Parameters

k INTEGER. The number of terms in the rational function to be solved by 
slaed4/dlaed4  (k ≥ 0).

kstart, kstop INTEGER. The updated eigenvalues lambda(i), 
kstart ≤   i  ≤   kstop are to be computed.  
1  ≤  kstart  ≤  kstop  ≤  k.

n INTEGER. The number of rows and columns in the Q matrix. n ≥ k (deflation 
may result in n > k).
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q REAL for slaed9
DOUBLE PRECISION for dlaed9. 
Workspace array, dimension (ldq, *) . The second dimension of q must be at 
least max(1, n).

ldq INTEGER.  The first dimension of the array q; 
ldq ≥ max(1, n).

rho REAL for slaed9 
DOUBLE PRECISION for dlaed9 
The value of the parameter in the rank one update equation. rho ≥ 0 required.

dlamda, w REAL for slaed9 
DOUBLE PRECISION for dlaed9 
Arrays, dimension (k) each. 
The first k elements of the array dlamda(*) contain the old roots of the 
deflated updating problem.  These are the poles of the secular equation.

The first k elements of the array w(*) contain the components of the 
deflation-adjusted updating vector.

lds INTEGER.  The first dimension of the output array s; 
lds ≥ max(1, k).

Output Parameters

d REAL for slaed9 
DOUBLE PRECISION for dlaed9 
Array, dimension (n). d (i ) contains the updated eigenvalues for kstart ≤   i  ≤   
kstop.

s REAL for slaed9
DOUBLE PRECISION for dlaed9. 
Array, dimension (lds, *) . The second dimension of s must be at least 
max(1, k).
Will contain the eigenvectors of the repaired matrix which will be stored for 
subsequent z vector calculation and multiplied by the previously accumulated 
eigenvectors to update the system.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the eigenvalue did not converge.



LAPACK Auxiliary and Utility Routines 5

5-79

?laeda  
Used by ?stedc. Computes the Z vector determining 
the rank-one modification of the diagonal matrix. Used 
when the original matrix is dense.

Syntax
call slaeda( n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,

givnum, q, qptr, z, ztemp, info )

call dlaeda( n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,
givnum, q, qptr, z, ztemp, info )

Description

The routine ?laeda computes the z vector corresponding to the merge step in the curlvl-th step 
of the merge process with tlvls steps for the curpbm-th problem.

Input Parameters

n INTEGER.  The dimension of the symmetric tridiagonal matrix (n ≥ 0). 

tlvls INTEGER.  The total number of merging levels in the overall divide and 
conquer tree.

curlvl INTEGER.  The current level in the overall merge routine, 0 ≤ curlvl ≤ tlvls .

curpbm INTEGER.  The current problem in the current level in the overall merge 
routine (counting from upper left to lower right).

prmptr, perm,
givptr INTEGER. Arrays, dimension (n lgn ) each.

The array prmptr(*) contains a list of pointers which indicate where in perm 
a level's permutation is stored.  prmptr(i+1) - prmptr(i) indicates the size of 
the permutation and also the size of the full, non-deflated problem.

The array perm(*) contains the permutations (from deflation and sorting) to be 
applied to each eigenblock.

The array givptr(*) contains a list of pointers which indicate where in 
givcol a level's Givens rotations are stored.  givptr(i+1) - givptr(i) 
indicates the number of Givens rotations.
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givcol INTEGER.  Array, dimension (2, n lgn ).
Each pair of numbers indicates a pair of columns to take place in a Givens 
rotation.

givnum REAL for slaeda
DOUBLE PRECISION for dlaeda. 
Array, dimension (2, n lgn). 
Each number indicates the S value to be used in the corresponding Givens 
rotation.

q REAL for slaeda
DOUBLE PRECISION for dlaeda. 
Array, dimension ( n2). 
Contains the square eigenblocks from previous levels, the starting positions for 
blocks are given by qptr.

qptr INTEGER.  Array, dimension (n+2). Contains a list of pointers which indicate 
where in q an eigenblock is stored.  sqrt( qptr(i+1) - qptr(i) ) indicates the 
size of the block.

ztemp REAL for slaeda
DOUBLE PRECISION for dlaeda. 
Workspace array, dimension ( n). 

Output Parameters

z REAL for slaeda
DOUBLE PRECISION for dlaeda. 
Array, dimension (n). Contains the updating vector (the last row of the first 
sub-eigenvector matrix and the first row of the second sub-eigenvector matrix).

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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?laein  
Computes a specified right or left eigenvector of an 
upper Hessenberg matrix by inverse iteration.

Syntax
call slaein( rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb,

work, eps3, smlnum, bignum, info )

call dlaein( rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb,
work, eps3, smlnum, bignum, info )

call claein( rightv, noinit, n, h, ldh, w, v, b, ldb,
rwork, eps3, smlnum, info )

call zlaein( rightv, noinit, n, h, ldh, w, v, b, ldb,
rwork, eps3, smlnum, info )

Description

The routine ?laein uses inverse iteration to find a right or left eigenvector corresponding to the 
eigenvalue (wr,wi) of a real upper Hessenberg matrix H (for real flavors slaein/dlaein) or to 
the eigenvalue w of a complex upper Hessenberg matrix H (for complex flavors 
claein/zlaein).

Input Parameters

rightv LOGICAL.  
If rightv = .TRUE., compute right eigenvector;
if rightv = .FALSE., compute left eigenvector.

noinit LOGICAL.  
If noinit = .TRUE., no initial vector is supplied in (vr,vi) or in v (for 
complex flavors);
if noinit = .FALSE., initial vector is supplied in (vr,vi) or in v (for 
complex flavors).

n INTEGER.  The order of the matrix H (n ≥ 0). 

h REAL for slaein
DOUBLE PRECISION for dlaein
COMPLEX for claein
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COMPLEX*16 for zlaein.
Array h(ldh, *). The second dimension of h must be at least max(1, n). 
Contains the upper Hessenberg matrix H.

ldh INTEGER.  The first dimension of the array h; 
ldh ≥ max(1, n).

wr, wi REAL for slaein
DOUBLE PRECISION for dlaein. 
The real and imaginary parts of the eigenvalue of H whose corresponding right 
or left eigenvector is to be computed (for real flavors of the routine).

w COMPLEX for claein
COMPLEX*16 for zlaein.
The eigenvalue of H whose corresponding right or left eigenvector is to be 
computed (for complex flavors of the routine).

vr, vi REAL for slaein
DOUBLE PRECISION for dlaein. 
Arrays, dimension (n ) each. Used for real flavors only.
On entry, if noinit = .FALSE. and wi = 0.0, vr must contain a real starting 
vector for inverse iteration using the real eigenvalue wr; 
if noinit = .FALSE. and wi ≠ 0.0, vr and vi must contain the real and 
imaginary parts of a complex starting vector for inverse iteration using the 
complex eigenvalue (wr,wi); otherwise vr and vi need not be set.

v COMPLEX for claein
COMPLEX*16 for zlaein.
Array, dimension (n ) . Used for complex flavors only.
On entry, if noinit = .FALSE., v must contain a starting vector for inverse 
iteration; otherwise v need not be set.

b REAL for slaein
DOUBLE PRECISION for dlaein
COMPLEX for claein
COMPLEX*16 for zlaein.
Workspace array b(ldb, *). The second dimension of b must be at least 
max(1, n).  

ldb INTEGER.  The first dimension of the array b; 
ldb ≥ n+1  for real flavors;
ldb ≥  max(1, n) for complex flavors.
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work REAL for slaein
DOUBLE PRECISION for dlaein. 
Workspace array, dimension ( n). Used for real flavors only.

rwork REAL for claein
DOUBLE PRECISION for zlaein. 
Workspace array, dimension ( n). Used for complex flavors only.

eps3, smlnum REAL for slaein/claein
DOUBLE PRECISION for dlaein/zlaein. 
eps3 is a small machine-dependent value which is used to perturb close 
eigenvalues, and to replace zero pivots.
smlnum is a machine-dependent value close to underflow threshold.

bignum REAL for slaein
DOUBLE PRECISION for dlaein. 
bignum is a machine-dependent value close to overflow threshold. Used for
real flavors only.

Output Parameters

vr, vi On exit, if wi = 0.0 (real eigenvalue), vr contains the computed real 
eigenvector; if wi ≠ 0.0 (complex eigenvalue), vr and vi contain the real and 
imaginary parts of the computed complex eigenvector. The eigenvector is 
normalized so that the component of largest magnitude has magnitude 1; here 
the magnitude of a complex number (x,y) is taken to be |x| + |y|. 
vi is not referenced if wi = 0.0.

v On exit, v contains the computed eigenvector, normalized so that the 
component of largest magnitude has magnitude 1; here the magnitude of a 
complex number (x,y) is taken to be |x| + |y|.

info INTEGER. 
If info = 0, the execution is successful.
If info = 1, inverse iteration did not converge. For real flavors, vr is set to the 
last iterate, and so is vi if wi ≠ 0.0. For complex flavors, v is set to the last 
iterate.
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?laev2
Computes the eigenvalues and eigenvectors of a 2-by-2 
symmetric/Hermitian matrix.

Syntax
call slaev2 (a, b, c, rt1, rt2, cs1, sn1)

call dlaev2 (a, b, c, rt1, rt2, cs1, sn1)

call claev2 (a, b, c, rt1, rt2, cs1, sn1)

call zlaev2 (a, b, c, rt1, rt2, cs1, sn1)

Discussion

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix 

   (for slaev2/dlaev2)  or Hermitian matrix   

(for claev2/zlaev2). 

On return, rt1 is the eigenvalue of larger absolute value,  rt2 of smaller absolute value, and (cs1, 
sn1) is the unit right eigenvector for rt1, giving the decomposition

  

(for slaev2/dlaev2), 
or

(for claev2/zlaev2).

a b

b c

a b

conjg b( ) c

cs1 sn1

sn1– cs1

a b

b c
cs1 sn1–

sn1 cs1
⋅ ⋅ rt1 0

0 rt2
=

cs1 conjg sn1( )
sn1– cs1

a b

conjg b( ) c
cs1 conjg sn1( )–

sn1 cs1
⋅ ⋅ rt1 0

0 rt2
=
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Input Parameters

a, b, c REAL for slaev2
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
COMPLEX*16 for zlaev2.
Elements of the input matrix.

Output Parameters

rt1, rt2 REAL for slaev2/claev2
DOUBLE PRECISION for dlaev2/zlaev2.
Eigenvalues of larger and smaller absolute value, respectively.

cs1 REAL for slaev2/claev2
DOUBLE PRECISION for dlaev2/zlaev2.

sn1 REAL for slaev2
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
COMPLEX*16 for zlaev2.
The vector  (cs1, sn1) is the unit right eigenvector for rt1.

Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive 
cancellation in the determinant a*c-b*b; higher precision or correctly rounded or correctly 
truncated arithmetic would be needed to compute rt2 accurately in all cases. cs1 and sn1 are 
accurate to a few ulps barring over/underflow. Overflow is possible only if rt1 is within a factor 
of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / 
macheps.

?laexc 
Swaps adjacent diagonal blocks of a real upper 
quasi-triangular matrix in Schur canonical form, by an 
orthogonal similarity transformation.

Syntax
call slaexc ( wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info )
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call dlaexc ( wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info )

Description

This routine swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in an upper 
quasi-triangular matrix T by an orthogonal similarity transformation. 
T must be in Schur canonical form, that is, block upper triangular with 1-by-1 and 2-by-2 diagonal 
blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements 
of opposite sign.

Input Parameters

wantq LOGICAL. 
If wantq =.TRUE., accumulate the transformation  in the matrix Q;
If wantq =.FALSE., do not accumulate the transformation.

n INTEGER. The order of the matrix T (n ≥ 0).

t, q REAL for slaexc 
DOUBLE PRECISION for dlaexc 
Arrays: 
t(ldt,*) contains on entry the upper quasi-triangular matrix T, in Schur 
canonical form. 
The second dimension of t must be at least max(1, n).

q(ldq,*) contains on entry, if wantq =.TRUE., the orthogonal matrix Q. If
wantq =.FALSE., q is not referenced.
The second dimension of q must be at least max(1, n).

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER.  The first dimension of q; 
If wantq =.FALSE., then ldq ≥ 1.
If wantq =.TRUE., then ldq ≥ max(1,n).

j1 INTEGER. The index of the first row of the first 
block  T11.

n1 INTEGER. The order of the first block  T11 
(n1 = 0, 1, or 2).

n2 INTEGER. The order of the second block  T22 
(n2 = 0, 1, or 2).
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work REAL for slaexc;
DOUBLE PRECISION for dlaexc.
Workspace array, DIMENSION (n).

Output Parameters

t On exit, the updated matrix T, again in Schur canonical form.

q On exit, if wantq =.TRUE., the updated matrix Q.

info INTEGER. 
If info = 0, the execution is successful.
If info = 1, the transformed matrix T would be too far from Schur form; the 
blocks are not swapped and  T and Q are unchanged.

?lag2 
Computes the eigenvalues of a 2-by-2 generalized 
eigenvalue problem, with scaling as necessary to avoid 
over-/underflow.

Syntax
call slag2 ( a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi )

call dlag2 ( a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi )

Description

This routine computes the eigenvalues of a 2 x 2 generalized eigenvalue problem  A - w B, with 
scaling as necessary to avoid over-/underflow. The scaling factor, s,  results in a modified 
eigenvalue equation

 s A - w B ,

where  s  is a non-negative scaling factor chosen so that  w,  w B, and  s A  do not overflow and, if 
possible, do not underflow, either.

Input Parameters

a, b REAL for slag2 
DOUBLE PRECISION for dlag2 
Arrays: 
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a(lda,2) contains, on entry, the 2 x 2 matrix A.  It is assumed that its 1-norm 
is less than 1/safmin.  Entries less than sqrt(safmin)*norm(A) are subject 
to being treated as zero.

b(ldb,2) contains, on entry, the 2 x 2 upper triangular matrix B.  It is 
assumed that the one-norm of B is less than 1/safmin.  The diagonals should 
be at least sqrt(safmin) times the largest element of B (in absolute value); if 
a diagonal is smaller than that, then  +/- sqrt(safmin) will be used instead of 
that diagonal.

lda INTEGER. The first dimension of a; lda ≥ 2.

ldb INTEGER. The first dimension of b; ldb ≥ 2.

safmin REAL for slag2;
DOUBLE PRECISION for dlag2. 
The smallest positive number such that 1/safmin does not overflow.  (This 
should always be ?lamch('S') - it is an argument in order to avoid having to 
call ?lamch frequently.)

Output Parameters

scale1 REAL for slag2;
DOUBLE PRECISION for dlag2. 
A scaling factor used to avoid over-/underflow in the eigenvalue equation 
which defines the first eigenvalue.  If the eigenvalues are complex, then the 
eigenvalues are ( wr1  +/-  wi i ) /scale1  (which may lie outside the exponent 
range of the machine), scale1=scale2, and scale1 will always be positive.  
If the eigenvalues are real, then the first (real) eigenvalue is  wr1 / scale1 , but 
this may overflow or underflow, and in fact, scale1 may be zero or less than 
the underflow threshhold if the exact eigenvalue is sufficiently large.

scale2 REAL for slag2;
DOUBLE PRECISION for dlag2. 
A scaling factor used to avoid over-/underflow in the eigenvalue equation 
which defines the second eigenvalue.  If the eigenvalues are complex, then  
scale2=scale1. If the eigenvalues are real, then the second (real) eigenvalue 
is  wr2 / scale2 , but this may overflow or underflow, and in fact, scale2 
may be zero or less than the underflow threshold if the exact eigenvalue is 
sufficiently large.
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wr1 REAL for slag2;
DOUBLE PRECISION for dlag2. 
If the eigenvalue is real, then wr1 is scale1 times the eigenvalue closest to the 
(2,2) element of AB-1.  If the eigenvalue is complex, then wr1=wr2 is scale1 
times the real part of the eigenvalues.

wr2 REAL for slag2;
DOUBLE PRECISION for dlag2. 
If the eigenvalue is real, then wr2 is scale2 times the other eigenvalue.  If the 
eigenvalue is complex, then wr1=wr2 is scale1 times the real part of the 
eigenvalues.

wi REAL for slag2;
DOUBLE PRECISION for dlag2. 
If the eigenvalue is real, then wi is zero.  If the eigenvalue is complex, then wi 
is scale1 times the imaginary part of the eigenvalues.  wi will always be 
non-negative.

?lags2 
Computes 2-by-2 orthogonal matrices U, V, and Q, and 
applies them to matrices A and B such that the rows of 
the transformed A and B are parallel.

Syntax
call slags2 ( upper, a1, a2, a3, b1, b2, b3, csu, snu,

csv, snv, csq, snq )

call dlags2 ( upper, a1, a2, a3, b1, b2, b3, csu, snu,
csv, snv, csq, snq )

Description

This routine computes 2-by-2 orthogonal matrices U, V and Q, such that if  upper =.TRUE. , then

U ′*A*Q U ′*
A1 A2

0 A3

*Q x 0
x x

= =
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and

 

or if upper =.FALSE. , then

and

The rows of the transformed A and B are parallel, where

 ,   ,  

Here Z' denotes the transpose of Z.

Input Parameters

upper LOGICAL. 
If upper =.TRUE., the input matrices A and B are upper triangular;
If upper =.FALSE., the input matrices A and B are lower triangular.

a1, a2, a3 REAL for slags2 
DOUBLE PRECISION for dlags2 
On entry, a1, a2 and a3 are elements of the input 2-by-2 upper (lower) 
triangular matrix A.

V ′*B*Q V ′*
B1 B2

0 B3

*Q x 0
x x

= =

U ′*A*Q U ′*
A1 0

A2 A3

*Q x x

0 x
= =

V ′*B*Q V ′*
B1 0

B2 B3

*Q x x

0 x
= =

U csu snu

snu– csu
= V csv snv

snv– csv
= Q csq snq

snq– csq
=
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b1, b2, b3 REAL for slags2 
DOUBLE PRECISION for dlags2 
On entry, b1, b2 and b3 are elements of the input 2-by-2 upper (lower) 
triangular matrix B.

Output Parameters

csu, snu REAL for slags2 
DOUBLE PRECISION for dlags2 
The desired orthogonal matrix U.

csv, snv REAL for slags2 
DOUBLE PRECISION for dlags2 
The desired orthogonal matrix V.

csq, snq REAL for slags2 
DOUBLE PRECISION for dlags2 
The desired orthogonal matrix Q.

?lagtf 
Computes an LU factorization of a matrix  T-λI, where 
T is a general tridiagonal matrix, and λ a scalar, using 
partial pivoting with row interchanges.

Syntax
call slagtf ( n, a, lambda, b, c, tol, d, in, info )

call dlagtf ( n, a, lambda, b, c, tol, d, in, info )

Description

This routine factorizes the matrix (T - lambda*I), where T is an n-by-n tridiagonal matrix and 
lambda is a scalar, as

     T - lambda*I = P L U,

where P is a permutation matrix, L is a unit lower tridiagonal matrix with at most one non-zero 
sub-diagonal elements per column and U is an upper triangular matrix with at most two non-zero 
super-diagonal elements per column. The factorization is obtained by Gaussian elimination with 
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partial pivoting and implicit row scaling. The parameter lambda is included in the routine so that 
?lagtf may be used, in conjunction with ?lagts, to obtain eigenvectors of T by inverse 
iteration..

Input Parameters

n INTEGER. The order of the matrix T (n ≥ 0).

a, b, c REAL for slagtf 
DOUBLE PRECISION for dlagtf 
Arrays, dimension a(n) ,  b(n-1),  c(n-1): 
On entry, a(*) must contain the diagonal elements of the matrix T.
On entry, b(*) must contain the (n-1) super-diagonal elements of T.
On entry, c(*) must contain the (n-1) sub-diagonal elements of T.

tol REAL for slagtf 
DOUBLE PRECISION for dlagtf 
On entry, a relative tolerance used to indicate whether or not the matrix (T - 
lambda*I) is nearly singular. tol should normally be chose as approximately 
the largest relative error in the elements of T. For example, if the elements of T 
are correct to about 4 significant figures, then tol should be set to about 
5*10-4. If tol is supplied as less than eps, where eps is the relative machine 
precision, then the value eps is used in place of tol.

Output Parameters

a On exit, a is overwritten by the n diagonal elements of the upper triangular 
matrix U of the factorization of T.

b On exit, b is overwritten by the n-1 super-diagonal elements of the matrix U of 
the factorization of T.

c On exit, c is overwritten by the n-1 sub-diagonal elements of the matrix L of 
the factorization of T.

d REAL for slagtf 
DOUBLE PRECISION for dlagtf 
Array, dimension (n-2). 
On exit, d is overwritten by the n-2 second super-diagonal elements of the 
matrix U of the factorization of T.

in INTEGER. 
Array, dimension (n). 
On exit, in contains details of the permutation matrix P. If an interchange 
occurred at the k-th step of the elimination, then in(k) = 1, otherwise in(k) = 
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0. The element in(n) returns the smallest positive integer j such that 
        abs( u(j,j) ) ≤  norm( (T - lambda*I)(j) )*tol, 
where norm( A(j) ) denotes the sum of the absolute values of the j-th row of 
the matrix A. If no such j exists then in(n) is returned as zero. If in(n) is 
returned as positive, then a diagonal element of U is small, indicating that (T - 
lambda*I) is singular or nearly singular.

info INTEGER. 
If info = 0, the execution is successful.
If info = -k, the kth parameter had an illegal value.

?lagtm  
Performs a matrix-matrix product of the form C = 
αAB+βC, where A is a tridiagonal matrix, B and C are 
rectangular matrices, and α and β are scalars, which 
may be 0, 1, or -1.

Syntax
call slagtm( trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call dlagtm( trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call clagtm( trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call zlagtm( trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

Description

This routine performs a matrix-vector product of the form :

B := alpha*A*X + beta*B

where A is a tridiagonal matrix of order n, B and X are n-by-nrhs matrices, and alpha and beta 
are real scalars, each of which may be 0., 1., or -1.

Input Parameters
trans CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', then B := alpha*A*X + beta*B 

(no transpose);
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If trans = 'T', then B := alpha*AT*X + beta*B 
(transpose);

If trans = 'C', then B := alpha*AH*X + beta*B 
(conjugate transpose)

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER.  The number of right-hand sides, i.e., the number of columns in X 
and B (nrhs ≥ 0). 

alpha, beta REAL for slagtm/clagtm 
DOUBLE PRECISION for dlagtm/zlagtm 
The scalars α and β.  alpha must be 0., 1., or -1.; otherwise, it is 
assumed to be 0. beta must be 0., 1., or -1.; otherwise, it is assumed to 
be 1.

dl,d,du REAL for slagtm 
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays: dl(n - 1), d(n ), du(n - 1).
The array dl  contains the  (n - 1) sub-diagonal elements of  T. 
The array d contains the n diagonal elements of T. 
The array du  contains the  (n - 1) super-diagonal elements of  T. 

x, b REAL for slagtm 
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays: 
x(ldx,*) contains the n-by-nrhs matrix X. The second dimension of x must 
be at least max(1, nrhs).

b(ldb,*) contains the n-by-nrhs matrix B. The second dimension of b must 
be at least max(1, nrhs).

ldx INTEGER.  The leading dimension of the array x; 
ldx ≥ max(1, n).

ldb INTEGER.  The leading dimension of the array b; 
ldb ≥ max(1, n).

Output Parameters

b Overwritten by the matrix expression
B := alpha*A*X + beta*B
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?lagts 
Solves the system of equations (T-λI)x = y or (T-λI)Tx 
= y ,where T is a general tridiagonal matrix and λ a 
scalar, using the LU factorization computed by 
?lagtf.

Syntax
call slagts ( job, n, a, b, c, d, in, y, tol, info )

call dlagts ( job, n, a, b, c, d, in, y, tol, info )

Description

This routine may be used to solve for x one of the systems of equations:

 (T - lambda*I)*x = y     or        (T - lambda*I)′*x = y , 
where T is an n-by-n tridiagonal matrix, following the factorization of 
 (T - lambda*I) as

     T - lambda*I = P L U,

computed by the routine ?lagtf. 

The choice of equation to be solved is controlled by the argument job, and in each case there is an 
option to perturb zero or very small diagonal elements of U, this option being intended for use in 
applications such as inverse iteration.

Input Parameters

job INTEGER. Specifies the job to be performed by ?lagts as follows:
=  1: The equations  (T - lambda*I)x = y  are to be solved, but diagonal 
elements of U are not to be perturbed.

= -1: The equations  (T - lambda*I)x = y  are to be solved and, if overflow 
would otherwise occur, the diagonal elements of U are to be perturbed. See 
argument tol below.

 =  2: The equations   (T - lambda*I)′x = y  are to be solved, but diagonal 
elements of U are not to be perturbed.
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= -2: The equations  (T - lambda*I)′x = y  are to be solved and, if overflow 
would otherwise occur, the diagonal elements of U are to be perturbed. See 
argument tol below.

n INTEGER. The order of the matrix T (n ≥ 0).

a, b, c, d REAL for slagts 
DOUBLE PRECISION for dlagts 
Arrays, dimension a(n) ,  b(n-1),  c(n-1),  d(n-2): 
On entry, a(*) must contain the diagonal elements of U as returned from 
?lagtf.
On entry, b(*) must contain the first super-diagonal elements of U as 
returned from ?lagtf.
On entry, c(*) must contain the sub-diagonal elements of L as returned from 
?lagtf.
On entry, d(*) must contain the second super-diagonal elements of U as 
returned from ?lagtf.

in INTEGER. 
Array, dimension (n). 
On entry, in(*) must contain details of the matrix P as returned from 
?lagtf.

y REAL for slagts 
DOUBLE PRECISION for dlagts 
Array, dimension (n) . On entry, the right hand side vector y. 

tol REAL for slagtf 
DOUBLE PRECISION for dlagtf. 
On entry, with  job < 0, tol should be the minimum perturbation to be made 
to very small diagonal elements of U. tol should normally be chosen as about 
eps*norm(U), where eps is the relative machine precision, but if tol is 
supplied as non-positive, then it is reset to eps*max( abs( u(i,j) ) ). If  job > 0  
then tol is not referenced.

Output Parameters

y On exit, y is overwritten by the solution vector x.

tol On exit, tol is changed as described in Input Parameters section above, only if 
tol is non-positive on entry. Otherwise tol is unchanged.

info INTEGER. 
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
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If info  = i > 0, overflow would occur when computing the ith element of 
the solution vector x. This can only occur when job is supplied as positive and 
either means that a diagonal element of U is very small, or that the elements of 
the right-hand side vector y are very large.

?lagv2 
Computes the Generalized Schur factorization of a real 
2-by-2 matrix pencil (A,B) where B is upper triangular. 

Syntax
call slagv2 ( a, lda, b, ldb, alphar, alphai, beta, csl,

snl, csr, snr )

call dlagv2 ( a, lda, b, ldb, alphar, alphai, beta, csl,
snl, csr, snr )

Description

This routine computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) 
where B is upper triangular. The routine computes orthogonal (rotation) matrices given by csl, 
snl and csr, snr such that:

1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then 

2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then

a11 a12

0 a22

csl snl

snl– csl

a11 a12

a21 a22

csr snr–
snr csr

=

b11 b12

0 b22

csl snl

snl– csl

b11 b12

0 b22

csr snr–
snr csr

=

a11 a12

a21 a22

csl snl

snl– csl

a11 a12

a21 a22

csr snr–
snr csr

=
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 where b11 ≥  b22 > 0.

Input Parameters

a, b REAL for slagv2 
DOUBLE PRECISION for dlagv2 
Arrays:
a(lda,2) contains the 2-by-2 matrix A; 
b(ldb,2) contains the upper triangular 2-by-2 matrix B. 

lda INTEGER.  The leading dimension of the array a; 
lda ≥ 2.

ldb INTEGER.  The leading dimension of the array b; 
ldb ≥ 2.

Output Parameters

a On exit, a is overwritten by the “A-part” of the generalized Schur form.

b On exit, b is overwritten by the “B-part” of the generalized Schur form.

alphar,alphai,
beta REAL for slagv2

DOUBLE PRECISION for dlagv2.
Arrays, dimension (2) each.

(alphar(k) + i ∗ alphai(k))/beta(k) are the eigenvalues of the pencil (A,B), 
k=1,2 and i = sqrt(-1).  Note that beta(k) may be zero.

csl, snl REAL for slagv2 
DOUBLE PRECISION for dlagv2 
The cosine and sine of the left rotation matrix, respectively.

csr, snr REAL for slagv2 
DOUBLE PRECISION for dlagv2 
The cosine and sine of the right rotation matrix, respectively.

b11 0

0 b22

csl snl

snl– csl

b11 b12

0 b22

csr snr–
snr csr

=
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?lahqr 
Computes the eigenvalues and Schur factorization of an 
upper Hessenberg matrix, using the 
double-shift/single-shift QR algorithm.

Syntax
call slahqr ( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,

iloz, ihiz, z, ldz, info )

call dlahqr ( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
iloz, ihiz, z, ldz, info )

call clahqr ( wantt, wantz, n, ilo, ihi, h, ldh, w,
iloz, ihiz, z, ldz, info )

call zlahqr ( wantt, wantz, n, ilo, ihi, h, ldh, w,
iloz, ihiz, z, ldz, info )

Description

This routine is an auxiliary routine called by ?hseqr to update the eigenvalues and Schur 
decomposition already computed by ?hseqr, by dealing with the Hessenberg submatrix in rows 
and columns ilo to ihi.

Input Parameters

wantt LOGICAL. 
If wantt =.TRUE., the full Schur form T is required;
If wantt =.FALSE., eigenvalues only are required.

wantz LOGICAL. 
If wantz =.TRUE., the matrix of Schur vectors Z is required;
If wantz =.FALSE., Schur vectors are not required.

n INTEGER.  The order of the matrix H (n ≥ 0). 

ilo, ihi INTEGER.  
It is assumed that H is already upper quasi-triangular in rows and columns 
ihi+1:n, and that H(ilo,ilo-1) = 0 (unless ilo = 1). The routine ?lahqr 
works primarily with the Hessenberg submatrix in rows and columns ilo to 
ihi, but applies transformations to all of H if wantt =.TRUE.. 
Constraints:
1 ≤ ilo ≤ max(1,ihi);  ihi ≤ n.
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h, z REAL for slahqr 
DOUBLE PRECISION for dlahqr 
COMPLEX for clahqr 
COMPLEX*16 for zlahqr.
Arrays: 
h(ldh,*) contains the upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

z(ldz,*) 
If wantz =.TRUE., then, on entry, z must contain the current matrix Z of 
transformations accumulated by ?hseqr.
If wantz =.FALSE., then z is not referenced.
The second dimension of z must be at least max(1, n) .

ldh INTEGER.  The first dimension of h; at least max(1, n).

ldz INTEGER.  The first dimension of z; at least max(1, n).

iloz, ihiz INTEGER.  Specify the rows of Z to which transformations must be applied if 
wantz =.TRUE..
1 ≤ iloz ≤ ilo;  ihi ≤ ihiz ≤ n.

Output Parameters

h On exit, if wantt =.TRUE., H is upper quasi-triangular (upper triangular for 
complex flavors) in rows and columns ilo:ihi, with any 2-by-2 diagonal 
blocks in standard form. If wantt =.FALSE., the contents of H are 
unspecified on exit.

wr, wi REAL for slahqr 
DOUBLE PRECISION for dlahqr 
Arrays, DIMENSION at least max (1, n) each. Used with real flavors only. 
The real and imaginary parts, respectively, of the computed eigenvalues ilo to 
ihi are stored in the corresponding elements of wr and wi. If two eigenvalues 
are computed as a complex conjugate pair, they are stored in consecutive 
elements of wr and wi, say the i-th and (i+1)th, with wi(i) > 0 and wi(i+1) < 0. 
If wantt =.TRUE., the eigenvalues are stored in the same order as on the 
diagonal of the Schur form returned in H, with wr(i) = H(i,i), and, if H(i:i+1, 
i:i+1) is a 2-by-2 diagonal block, 
wi(i) = sqrt(H(i+1,i)*H(i,i+1)) and wi(i+1) = -wi(i).

w COMPLEX for clahqr 
COMPLEX*16 for zlahqr.
Array, DIMENSION at least max (1, n). Used with complex flavors only. 
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The computed eigenvalues ilo to ihi are stored in the corresponding 
elements of w. 
If wantt =.TRUE., the eigenvalues are stored in the same order as on the 
diagonal of the Schur form returned in H, with w(i) = H(i,i).

z If wantz =.TRUE., then, on exit z has been updated; transformations are 
applied only to the submatrix Z(iloz:ihiz, ilo:ihi).

info INTEGER. 
If info = 0, the execution is successful.
If info = i > 0, ?lahqr failed to compute all the eigenvalues ilo to ihi in a 
total of 30*(ihi-ilo+1) iterations; elements i+1:ihi of wr and wi (for 
slahqr/dlahqr) or w  (for clahqr/zlahqr) contain those eigenvalues 
which have been successfully computed.

?lahrd 
Reduces the first nb columns of a general rectangular 
matrix A so that elements below the k-th subdiagonal 
are zero, and returns auxiliary matrices which are 
needed to apply the transformation to the unreduced 
part of A.

Syntax
call slahrd ( n, k, nb, a, lda, tau, t, ldt, y, ldy )

call dlahrd ( n, k, nb, a, lda, tau, t, ldt, y, ldy )

call clahrd ( n, k, nb, a, lda, tau, t, ldt, y, ldy )

call zlahrd ( n, k, nb, a, lda, tau, t, ldt, y, ldy )

Description

The routine reduces the first nb  columns of a real/complex general n-by-(n-k+1) matrix A so that 
elements below the k-th subdiagonal are zero. The reduction is performed by an 
orthogonal/unitary similarity transformation Q′ A Q. The routine returns the matrices V and T 
which determine Q as a block reflector I - V T V′, and also the matrix Y = A V T. 

The matrix Q is represented as products of nb elementary reflectors: 
Q = H(1) H(2) ... H(nb)  
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Each H(i) has the form

H(i) = I - tau*v*v′   

where tau is a real/complex scalar, and v is a real/complex vector.

This is an auxiliary routine called by ?gehrd.

Input Parameters

n INTEGER.  The order of the matrix A  (n ≥ 0). 

k INTEGER.  The offset for the reduction. Elements below the k-th subdiagonal 
in the first nb columns are reduced to zero. 

nb INTEGER.  The number of columns to be reduced. 

a REAL for slahrd 
DOUBLE PRECISION for dlahrd 
COMPLEX for clahrd 
COMPLEX*16 for zlahrd.

Array a(lda, n-k+1) contains the n-by-(n-k+1) general matrix A to be 
reduced.

lda INTEGER. The first dimension of a; at least max(1, n).

ldt INTEGER. The first dimension of the output array t; must be at least max(1, 
nb).

ldy INTEGER. The first dimension of the output array y; must be at least max(1, n).

Output Parameters

a On exit, the elements on and above the k-th subdiagonal in the first nb columns 
are overwritten with the corresponding elements of the reduced matrix; the 
elements below the k-th subdiagonal, with the array tau, represent the matrix 
Q as a product of elementary reflectors. The other columns of a are unchanged. 
See Application Notes below.

tau REAL for slahrd 
DOUBLE PRECISION for dlahrd 
COMPLEX for clahrd 
COMPLEX*16 for zlahrd.

Array, DIMENSION (nb). 
Contains scalar factors of the elementary reflectors.
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t, y REAL for slahrd 
DOUBLE PRECISION for dlahrd 
COMPLEX for clahrd 
COMPLEX*16 for zlahrd.

Arrays, dimension t(ldt, nb),  y(ldy, nb). 
The array t contains upper triangular matrix T. 

The array y contains the n-by-nb matrix Y . 

Application Notes

For the elementary reflector H(i) ,

v(1:i+k-1) = 0,  v(i+k) = 1;    v(i+k+1:n) is stored on exit in a(i+k+1:n, i) and tau is stored in 
tau(i).

The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with T 
and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form: 
A := (I - V T V′) * (A - Y V′). 
The contents of A on exit are illustrated by the following example with 
n = 7, k = 3 and nb = 2:

                                                                                     

where a denotes an element of the original matrix A, h denotes a modified element of the upper 
Hessenberg matrix H, and vi denotes an element of the vector defining H(i).

a h a a a

a h a a a

a h a a a

h h a a a

v1 h a a a

v1 v2 a a a

v1 v2 a a a
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?laic1 
Applies one step of incremental condition estimation.

Syntax
call slaic1 ( job, j, x, sest, w, gamma, sestpr, s, c )

call dlaic1 ( job, j, x, sest, w, gamma, sestpr, s, c )

call claic1 ( job, j, x, sest, w, gamma, sestpr, s, c )

call zlaic1 ( job, j, x, sest, w, gamma, sestpr, s, c )

Description

The routine ?laic1 applies one step of incremental condition estimation in its simplest version.

Let x, ||x||2 = 1 (where ||a||2 denotes the 2-norm of a), be an approximate singular vector of 
an j-by-j lower triangular matrix L, such that

||L*x||2 = sest

Then ?laic1 computes sestpr, s, c such that the vector

is an approximate singular vector of

in the sense that

||Lhat *xhat||2 = sestpr.

Depending on job, an estimate for the largest or smallest singular value is computed.

Note that [s c]′ and sestpr2 is an eigenpair of the system (for slaic1/claic)

xhat s*x

c
=

Lhat
L 0

w ′ gamma
=
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where  alpha =  x′*w ;

or of the system (for claic1/zlaic)

where  alpha =  conjg(x)′*w.

Input Parameters

job INTEGER. 
If job =1, an estimate for the largest singular value is computed;
If job =2, an estimate for the smallest singular value is computed;

j INTEGER. Length of x and w.

x, w REAL for slaic1 
DOUBLE PRECISION for dlaic1 
COMPLEX for claic1 
COMPLEX*16 for zlaic1.
Arrays, dimension (j) each. 
Contain vectors x and w , respectively.

sest REAL for slaic1/claic1;
DOUBLE PRECISION for dlaic1/zlaic1. 
Estimated singular value of j-by-j matrix L.

gamma REAL for slaic1 
DOUBLE PRECISION for dlaic1 
COMPLEX for claic1 
COMPLEX*16 for zlaic1.
The diagonal element gamma.

Output Parameters

sestpr REAL for slaic1/claic1;
DOUBLE PRECISION for dlaic1/zlaic1. 
Estimated singular value of (j+1)-by-(j+1) matrix Lhat.

diag sest*sest 0( , ) alpha gamma[ ] *
alpha

gamma
+

diag sest*sest 0( , ) alpha gamma[ ] *
conjg alpha( )

conjg gamma( )
+
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s, c REAL for slaic1 
DOUBLE PRECISION for dlaic1 
COMPLEX for claic1 
COMPLEX*16 for zlaic1.
Sine and cosine needed in forming xhat.

?laln2
Solves a 1-by-1 or 2-by-2 linear system of equations of 
the specified form.

Syntax
call slaln2( ltrans, na, nw, smin, ca, a, lda, d1, d2,

b, ldb, wr, wi, x, ldx, scale, xnorm, info )

call dlaln2( ltrans, na, nw, smin, ca, a, lda, d1, d2,
b, ldb, wr, wi, x, ldx, scale, xnorm, info )

Description

The routine solves a system of the form  

           (ca A - w D ) X = s B   or    (ca A' - w D) X = s B   
with possible scaling (s) and perturbation of A  (A' means A-transpose.)

A is an na-by-na real matrix, ca is a real scalar, D is an na-by-na real diagonal matrix, w is a real 
or complex value, and X and B are na-by-1 matrices: real if w is real, complex if w is complex. The 
parameter na may be 1 or 2.

If w is complex, X and B are represented as na-by-2 matrices, the first column of each being the 
real part and the second being the imaginary part.

The routine computes the scaling factor s ( ≤ 1 ) so chosen that X can be computed without 
overflow. X is further scaled if necessary to assure that norm(ca A - w D)*norm(X) is less than 
overflow.

If both singular values of (ca A - w D) are less than smin, smin * I (where I stands for identity) 
will be used instead of (ca A - w D).  If only one singular value is less than smin, one element of 
(ca A - w D) will be perturbed enough to make the smallest singular value roughly smin. If both 
singular values are at least smin, (ca A - w D) will not be perturbed.  
In any case, the perturbation will be at most some small multiple of 
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max( smin, ulp * norm(ca A - w D) ).  
The singular values are computed by infinity-norm approximations, and thus will only be correct 
to a factor of 2 or so.

Input Parameters

trans LOGICAL. 
If trans =.TRUE.,  A- transpose will be used.
If trans =.FALSE., A will be used (not transposed.)

na INTEGER. The size of the matrix A. May only be 1 or 2.

nw INTEGER. This parameter must be 1 if w is real, and 2 if w is complex. May 
only be 1or 2.

smin REAL for slaln2 
DOUBLE PRECISION for dlaln2. 
The desired lower bound on the singular values of A. This should be a safe 
distance away from underflow or overflow, for example, between 
(underflow/machine_precision) and  (machine_precision * overflow). (See 
bignum and ulp).

ca REAL for slaln2 
DOUBLE PRECISION for dlaln2.
The coefficient by which A is multiplied.

a REAL for slaln2 
DOUBLE PRECISION for dlaln2. 
Array, DIMENSION (lda,na). The na-by-na matrix A.

lda INTEGER. The leading dimension of a. Must be at least na.

d1, d2 REAL for slaln2 
DOUBLE PRECISION for dlaln2. 
The (1,1) and (2,2) elements in the diagonal matrix D, respectively. d2 is not 
used if nw = 1.

NOTE.  All input quantities are assumed to be smaller than overflow 
by a reasonable factor (see bignum).
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b REAL for slaln2 
DOUBLE PRECISION for dlaln2. 
Array, DIMENSION (ldb,nw). The na-by-nw matrix B (right-hand side).  If nw
=2 (w is complex), column 1 contains the real part of B and column 2 contains 
the imaginary part.

ldb INTEGER. The leading dimension of b. Must be at least na.

wr, wi REAL for slaln2 
DOUBLE PRECISION for dlaln2. 
The real and imaginary part of the scalar w, respectively. wi is not used if nw = 
1.

ldx INTEGER. The leading dimension of the output array x. Must be at least na.

Output Parameters

x REAL for slaln2 
DOUBLE PRECISION for dlaln2. 
Array, DIMENSION (ldx,nw). The na-by-nw matrix X (unknowns), as 
computed by the routine. If nw = 2 (w is complex), on exit, column 1 will 
contain the real part of X and column 2 will contain the imaginary part.

scale REAL for slaln2 
DOUBLE PRECISION for dlaln2. 
The scale factor that B must be multiplied by to insure that overflow does not 
occur when computing X.  Thus (ca A - w D) X  will be scale*B, not B 
(ignoring perturbations of A.)  It will be at most 1.

xnorm REAL for slaln2 
DOUBLE PRECISION for dlaln2. 
The infinity-norm of X, when X is regarded as an na-by-nw  real matrix.

info INTEGER. 
An error flag.  It will be zero if no error occurs, a negative number if an 
argument is in error, or a positive number if  (ca A - w D)  had to be perturbed.
The possible values are:
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If info = 0: no error occurred, and (ca A - w D) did not have to be perturbed.
If info = 1: (ca A - w D) had to be perturbed to make its smallest (or only) 
singular value greater than smin.

?lals0
Applies back multiplying factors in solving the least 
squares problem using divide and conquer SVD 
approach. Used by ?gelsd.

Syntax
call slals0( icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,

givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, work, info )

call dlals0( icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, work, info )

call clals0 ( icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, rwork, info )

call zlals0 ( icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, rwork, info )

Description

The routine applies back the multiplying factors of either the left or right singular vector matrix of 
a diagonal matrix appended by a row to the right hand side matrix B in solving the least squares 
problem using the divide-and-conquer SVD approach.

For the left singular vector matrix, three types of orthogonal matrices are involved:

NOTE.  In the interests of speed, this routine does not  check the 
inputs for errors.
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(1L) Givens rotations: the number of such rotations is givptr; the  pairs of columns/rows they 
were applied to are stored in givcol; and the c- and s-values of these rotations are stored in 
givnum.

(2L) Permutation. The (nl+1)-st row of B is to be moved to the first row, and for j=2:n, perm(j)-th 
row of B is to be moved to the j-th row.

(3L) The left singular vector matrix of the remaining matrix.

For the right singular vector matrix, four types of orthogonal matrices are involved:

(1R) The right singular vector matrix of the remaining matrix.

(2R) If sqre = 1, one extra Givens rotation to generate the right null space.

(3R) The inverse transformation of (2L).

(4R) The inverse transformation of (1L).

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be computed in factored 
form:
If icompq = 0: Left singular vector matrix.
If icompq = 1: Right singular vector matrix.

nl INTEGER. The row dimension of the upper block. 
nl ≥ 1.

nr INTEGER. The row dimension of the lower block. 
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square matrix.
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The 
bidiagonal matrix has row dimension n = nl + nr + 1, and column dimension 
m = n + sqre.

nrhs INTEGER. The number of columns of b and bx. 
Must be at least 1.

b REAL for slals0 
DOUBLE PRECISION for dlals0 
COMPLEX for clals0 
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COMPLEX*16 for zlals0.
Array, DIMENSION ( ldb, nrhs ). Contains the right hand sides of the least 
squares problem in rows 1 through m.

ldb INTEGER. The leading dimension of b. Must be at least  max(1,max( m, n ) ).

bx REAL for slals0 
DOUBLE PRECISION for dlals0 
COMPLEX for clals0 
COMPLEX*16 for zlals0.
Workspace array, DIMENSION ( ldbx, nrhs ). 

ldbx INTEGER. The leading dimension of bx.

perm INTEGER.
Array, DIMENSION (n). The permutations (from deflation and sorting) applied 
to the two blocks.

givptr INTEGER. The number of Givens rotations which took place in this 
subproblem.

givcol INTEGER.
Array, DIMENSION ( ldgcol, 2 ). Each pair of numbers indicates a pair of 
rows/columns involved in a Givens rotation.

ldgcol INTEGER. The leading dimension of givcol, must be at least n.

givnum REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION ( ldgnum, 2 ). Each number indicates the c or s value used 
in the corresponding Givens rotation.

ldgnum INTEGER. The leading dimension of arrays difr, poles and givnum, must be 
at least k.

poles REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION ( ldgnum, 2 ). On entry, 
poles(1:k, 1) contains the new singular values obtained from solving the 
secular equation, and poles(1:k, 2) is an array containing the poles in the 
secular equation.
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difl REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION ( k ). On entry, difl(i) is the distance between i-th 
updated (undeflated) singular value and the i-th (undeflated) old singular 
value.

difr REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION ( ldgnum, 2 ). On entry, difr(i, 1) contains the distances 
between i-th updated (undeflated) singular value and the i+1-th (undeflated) 
old singular value. And difr(i, 2) is the normalizing factor for the i-th right 
singular vector.

z REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION ( k ). Contains the components of the deflation-adjusted 
updating row vector.

k INTEGER. Contains the dimension of the non-deflated matrix. This is the order 
of the related secular equation. 1 ≤ k ≤ n.

c REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre =0 and the c value of a Givens rotation related to the 
right null space if sqre = 1.

s REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre =0 and the s value of a Givens rotation related to the 
right null space if sqre = 1.

work REAL for slals0 
DOUBLE PRECISION for dlals0
Workspace array, DIMENSION ( k ). Used with real flavors only.

rwork REAL for clals0
DOUBLE PRECISION for zlals0
Workspace array, DIMENSION (k*(1+nrhs) + 2*nrhs). Used with complex 
flavors only.

Output Parameters

b On exit, contains the solution X in rows 1 through n.
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info INTEGER. 
If info = 0:  successful exit.
If info = -i < 0, the i-th argument had an illegal value.

?lalsa
Computes the SVD of the coefficient matrix in compact 
form. Used by ?gelsd.

Syntax
call slalsa ( icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,

u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, work,
iwork, info )

call dlalsa ( icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, work,
iwork, info )

call clalsa ( icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, rwork,
iwork, info )

call zlalsa ( icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, rwork,
iwork, info )

Description

The routine is an itermediate step in solving the least squares problem by computing the SVD of 
the coefficient matrix in compact form. The singular vectors are computed as products of simple 
orthorgonal matrices.

If icompq = 0, ?lalsa applies the inverse of the left singular vector matrix of an upper bidiagonal 
matrix to the right hand side; and if 
icompq = 1, the routine applies the right singular vector matrix to the right hand side. The singular 
vector matrices were generated in the compact form by ?lalsa.
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Input Parameters

icompq INTEGER. Specifies whether the left or the right singular vector matrix is 
involved.
If icompq = 0: left singular vector matrix is used
If icompq = 1: right singular vector matrix is used.

smlsiz INTEGER. The maximum size of the subproblems at the bottom of the 
computation tree.

n INTEGER. The row and column dimensions of the upper bidiagonal matrix.

nrhs INTEGER. The number of columns of b and bx. Must be at least 1.

b REAL for slalsa 
DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
COMPLEX*16 for zlalsa
Array, DIMENSION ( ldb, nrhs ). Contains the right hand sides of the least 
squares problem in rows 1 through m.

ldb INTEGER. The leading dimension of b in the calling subprogram. Must be at 
least max(1,max( m, n ) ).

ldbx INTEGER. The leading dimension of the output array bx.

u REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION ( ldu, smlsiz ). On entry, u contains the left singular 
vector matrices of all subproblems at the bottom level.

ldu INTEGER, ldu ≥ n. The leading dimension of arrays u, vt, difl, difr, 
poles, givnum, and z.

vt REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION ( ldu, smlsiz +1 ). On entry, contains the right singular 
vector matrices of all subproblems at the bottom level.

k INTEGER array, DIMENSION ( n ).

difl REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION ( ldu, nlvl ), where nlvl = int(log2 (n /(smlsiz+1))) 
+ 1.
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difr REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION ( ldu, 2*nlvl ). On entry, 
difl(*, i) and difr(*, 2i -1) record distances between singular values on the 
i-th level and singular values on the (i -1)-th level, and difr(*, 2i) record the 
normalizing factors of the right singular vectors matrices of subproblems on 
i-th level.

z REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION ( ldu, nlvl ). On entry, z(1, i) contains the components 
of the deflation- adjusted updating the row vector for subproblems on the i-th 
level.

poles REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION ( ldu, 2*nlvl ). 
On entry, poles(*, 2i-1: 2i) contains the new and old singular values 
involved in the secular equations on the i-th level.

givptr INTEGER.
Array, DIMENSION ( n ).  
On entry, givptr( i ) records the number of Givens rotations performed on 
the i-th problem on the computation tree.

givcol INTEGER.
Array, DIMENSION ( ldgcol, 2*nlvl ). On entry, for each i, givcol(*, 
2i-1: 2i) records the locations of Givens rotations performed on the i-th level 
on the computation tree.

ldgcol INTEGER, ldgcol ≥ n.   The leading dimension of arrays givcol and perm.

perm INTEGER.
Array, DIMENSION ( ldgcol, nlvl ). On entry, perm(*, i) records 
permutations done on the i-th level of the computation tree.

givnum REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION ( ldu, 2*nlvl ). On entry, givnum(*, 2i-1 : 2i) records 
the c and s values of Givens rotations performed on the i-th level on the 
computation tree.
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c REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION ( n ). On entry, if the i-th subproblem is not square, c( i ) 
contains the c value of a Givens rotation related to the right null space of the 
i-th subproblem.

s REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION ( n ). On entry, if the i-th subproblem is not square, s( i ) 
contains the s-value of a Givens rotation related to the right null space of the 
i-th subproblem.

work REAL for slalsa 
DOUBLE PRECISION for dlalsa
Workspace array, DIMENSION at least (n). Used with real flavors only.

rwork REAL for clalsa
DOUBLE PRECISION for zlalsa
Workspace array, DIMENSION at least 
max( n, (smlsz+1)*nrhs*3 ). Used with complex flavors only. 

iwork INTEGER.
Workspace array, DIMENSION  at least (3n).  

Output Parameters

b On exit, contains the solution X in rows 1 through n.

bx REAL for slalsa 
DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
COMPLEX*16 for zlalsa
Array, DIMENSION ( ldbx, nrhs ). On exit, the result of applying the left or 
right singular vector matrix to b.

info INTEGER.
If info = 0:  successful exit
If info = -i < 0, the i-th argument had an illegal value.
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?lalsd
Uses the singular value decomposition of A to solve the 
least squares problem.

Syntax
call slalsd ( uplo, smlsiz, n, nrhs, d, e, b, ldb,

rcond, rank, work, iwork, info )

call dlalsd ( uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, iwork, info )

call clalsd ( uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, rwork, iwork, info )

call zlalsd ( uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, rwork, iwork, info )

Description

The routine uses the singular value decomposition of A to solve the least squares problem of 
finding X to minimize the Euclidean norm of each column of AX-B, where A is n-by-n upper 
bidiagonal, and X and B are n-by-nrhs. The solution X overwrites B.

The singular values of A smaller than rcond times the largest singular value are treated as zero in 
solving the least squares problem; in this case a minimum norm solution is returned. The actual 
singular values are returned in d in ascending order.

This code makes very mild assumptions about floating point arithmetic. It will work on machines 
with a guard digit in add/subtract, or on those binary machines without guard digits which subtract 
like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.

It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know 
of none.

Input Parameters

uplo CHARACTER*1.
If uplo = 'U',  d and e define an upper bidiagonal matrix.
If uplo = 'L', d and e define a  lower bidiagonal matrix.

smlsiz INTEGER. The maximum size of the subproblems at the bottom of the 
computation tree.
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n INTEGER. The dimension of the  bidiagonal matrix.
n ≥ 0.

nrhs INTEGER. The number of columns of B. Must be at 
least 1.

d REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (n). On entry, d contains the main diagonal of the 
bidiagonal matrix. 

e REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (n-1). Contains the super-diagonal entries of the bidiagonal 
matrix. On exit, e is destroyed.

b REAL for slalsd 
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
COMPLEX*16 for zlalsd
Array, DIMENSION (ldb,nrhs). On input, b contains the right hand sides of 
the least squares problem. On output, b contains the solution X.

ldb INTEGER. The leading dimension of b in the calling subprogram. Must be at 
least max(1,n).

rcond REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
The singular values of A less than or equal to rcond times the largest singular 
value are treated as zero in solving the least squares problem. 
If rcond is negative, machine precision is used instead. 
For example, if  diag(S)*X=B were the least squares problem,  where diag(S) is 
a diagonal matrix of singular values, the solution would be X(i) = B(i) / S(i)  if 
S(i) is greater than rcond *max(S), and X(i) = 0 if S(i) is less than or equal to 
rcond *max(S).

rank INTEGER. The number of singular values of A greater than rcond times the 
largest singular value.

work REAL for slalsd 
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
COMPLEX*16 for zlalsd
Workspace array.
DIMENSION for real flavors at least
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(9n+2n*smlsiz+8n*nlvl+n*nrhs+(smlsiz+1)2), 
where 
nlvl = max( 0, int( log2(n / (smlsiz+1) ) ) + 1).

DIMENSION for complex flavors at least (n*nrhs).  

rwork REAL for clalsd
DOUBLE PRECISION for zlalsd
Workspace array, used with complex flavors only. DIMENSION at least (9n + 
2n*smlsiz + 8n*nlvl + 3*mlsiz*nrhs + (smlsiz+1)2), 
where 
nlvl = max( 0, int( log2( min( m,n )/(smlsiz+1) ) ) + 1).

iwork INTEGER.
Workspace array, DIMENSION at least (3n*nlvl + 11n). 

Output Parameters

d On exit, if info = 0, d contains singular values of the bidiagonal matrix.

b On exit, b contains the solution X.

info INTEGER.  
If info = 0:  successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info > 0:  The algorithm failed to compute a singular value while working 
on the submatrix lying in rows and columns info/(n+1) through 
mod(info,n+1).

?lamrg
Creates a permutation list to merge the entries of two 
independently sorted sets into a single set sorted in 
acsending order. 

Syntax
call slamrg ( n1, n2, a, strd1, strd2, index )

call dlamrg ( n1, n2, a, strd1, strd2, index )
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Description

The routine creates a permutation list which will merge the elements of a (which is composed of 
two independently sorted sets) into a single set which is sorted in ascending order.

Input Parameters

n1, n2 INTEGER.
These arguments contain the respective lengths of the two sorted lists to be 
merged.

a REAL for slamrg
DOUBLE PRECISION for dlamrg.
Array, DIMENSION (n1+n2). 
The first n1 elements of a contain a list of numbers which are sorted in either 
ascending or descending order. Likewise for the final n2 elements.

strd1, strd2 INTEGER. 
These are the strides to be taken through the array a. Allowable strides are 1 
and -1.  They indicate whether a subset of a is sorted in ascending (strdx = 1) 
or descending (strdx = -1) order.

Output Parameters

index INTEGER.
Array, DIMENSION (n1+n2). 
On exit, this array will contain a permutation such that if 
b(i) = a(index(i)) for i=1, n1+n2, then b will be sorted in ascending order.

?langb
Returns the value of the 1-norm, Frobenius norm, 
infinity-norm, or the largest absolute value of any 
element of general band matrix. 

Syntax
val = slangb ( norm, n, kl, ku, ab, ldab, work )

val = dlangb ( norm, n, kl, ku, ab, ldab, work )

val = clangb ( norm, n, kl, ku, ab, ldab, work )
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val = zlangb ( norm, n, kl, ku, ab, ldab, work )

Description

The function returns the value of the 1-norm,  or the Frobenius norm, or the  infinity norm,  or the 
element of  largest absolute value  of an n-by-n band matrix  A,  with kl sub-diagonals and ku 
super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned by the routine as described 
above.

n INTEGER. The order of the matrix A. 
n ≥ 0.  When n = 0, ?langb is set to zero.

kl INTEGER. The number of sub-diagonals of the matrix A.  kl ≥ 0.

ku INTEGER. The number of super-diagonals of the matrix A.  ku ≥ 0.

ab REAL for slangb 
DOUBLE PRECISION for dlangb
COMPLEX for clangb
COMPLEX*16 for zlangb
Array, DIMENSION (ldab,n).  The band matrix A, stored in rows 1 to 
kl+ku+1.  The j-th column of A is stored in the j-th column of the array ab as  
follows:
ab(ku+1+i-j,j) = a(i,j) 
for max(1,j-ku) ≤ i ≤ min(n,j+kl).

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ kl+ku+1.
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work REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb
Workspace array, DIMENSION (lwork),  where 
lwork ≥ n when norm = 'I'; otherwise, work is not referenced. 

Output Parameters

val REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb
Value returned by the function.

?lange
Returns the value of the 1-norm, Frobenius norm, 
infinity-norm, or the largest absolute value of any 
element of a general rectangular matrix. 

Syntax
val = slange ( norm, m, n, a, lda, work )

val = dlange ( norm, m, n, a, lda, work )

val = clange ( norm, m, n, a, lda, work )

val = zlange ( norm, m, n, a, lda, work )

Description

The function ?lange returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the  element of  largest absolute value  of a real/complex matrix A.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 
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where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lange as described 
above.

m INTEGER. The number of rows of the matrix A. 
m ≥ 0.  When m = 0, ?lange is set to zero.

n INTEGER. The number of columns of the matrix A. 
n ≥ 0.  When n = 0, ?lange is set to zero.

a REAL for slange
DOUBLE PRECISION for dlange
COMPLEX for clange
COMPLEX*16 for zlange
Array, DIMENSION (lda,n). The m-by-n matrix A.

lda INTEGER. The leading dimension of the array a.  
lda ≥ max(m,1).

work REAL for slange and clange.
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION (lwork), where lwork ≥ m when norm = 'I'; 
otherwise, work is not referenced. 

Output Parameters

val REAL for slange/clange
DOUBLE PRECISION for dlange/zlange
Value returned by the function.
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?langt
Returns the value of the 1-norm, Frobenius norm, 
infinity-norm, or the largest absolute value of any 
element of a general tridiagonal matrix.

Syntax
val = slangt ( norm, n, dl, d, du )

val = dlangt ( norm, n, dl, d, du )

val = clangt ( norm, n, dl, d, du )

val = zlangt ( norm, n, dl, d, du )

Description

The routine  returns the value of the 1-norm,  or the Frobenius norm, or the  infinity norm,  or the  
element of  largest absolute value  of a real/complex tridiagonal matrix A.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?langt as described 
above.

n INTEGER. The order of the matrix A. 
n ≥ 0.  When n = 0, ?langt is set to zero.

dl, d, du REAL for slangt
DOUBLE PRECISION for dlangt
COMPLEX for clangt
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COMPLEX*16 for zlangt
Arrays: dl (n-1), d (n), du (n-1). 
The array dl contains the (n-1) sub-diagonal elements of A.
The array d  contains the diagonal elements of A.
The array du  contains the (n-1) super-diagonal elements of A.

Output Parameters

val REAL for slangt/clangt
DOUBLE PRECISION for dlangt/zlangt
Value returned by the function.

?lanhs
Returns the value of the 1-norm, Frobenius norm, 
infinity-norm, or the largest absolute value of any 
element of an upper Hessenberg matrix.

Syntax
val = slanhs ( norm, n, a, lda, work )

val = dlanhs ( norm, n, a, lda, work )

val = clanhs ( norm, n, a, lda, work )

val = zlanhs ( norm, n, a, lda, work )

Description

The function ?lanhs returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the  element of  largest absolute value  of a Hessenberg matrix A.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 
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where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanhs as described 
above.

n INTEGER. The order of the matrix A. 
n ≥ 0.  When n = 0, ?lanhs  is set to zero.

a REAL for slanhs
DOUBLE PRECISION for dlanhs
COMPLEX for clanhs
COMPLEX*16 for zlanhs
Array, DIMENSION (lda,n). The n-by-n upper Hessenberg matrix A; the part 
of A below the first sub-diagonal is not referenced.

lda INTEGER. The leading dimension of the array a.  
lda ≥ max(n,1).

work REAL for slanhs and clanhs.
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION (lwork), where lwork ≥ n when norm = 'I'; 
otherwise, work is not referenced. 

Output Parameters

val REAL for slanhs/clanhs
DOUBLE PRECISION for dlanhs/zlanhs
Value returned by the function.

?lansb
Returns the value of the 1-norm, or the Frobenius norm, 
or the infinity norm, or the element of largest absolute 
value of a symmetric band matrix.

Syntax
val = slansb ( norm, uplo, n, k, ab, ldab, work )
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val = dlansb ( norm, uplo, n, k, ab, ldab, work )

val = clansb ( norm, uplo, n, k, ab, ldab, work )

val = zlansb ( norm, uplo, n, k, ab, ldab, work )

Description

The function ?lansb returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the element of  largest absolute value  of an n-by-n real/complex symmetric band matrix 
A,  with k super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lansb as described 
above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
band matrix A is supplied.
If uplo = 'U':  upper triangular part is supplied;
If uplo = 'L':  lower triangular part is supplied.

n INTEGER. The order of the matrix A.  n ≥ 0.  
When n = 0, ?lansb is set to zero.

k INTEGER. The number of super-diagonals or sub-diagonals of the band matrix 
A.  k ≥ 0.

ab REAL for slansb 
DOUBLE PRECISION for dlansb
COMPLEX for clansb
COMPLEX*16 for zlansb
Array, DIMENSION (ldab,n). The upper or lower triangle of the symmetric 
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band matrix A, stored in the first k+1 rows of ab.  The j-th column of A is 
stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j) 
for max(1,j-k) ≤  i≤  j;
if uplo = 'L', ab(1+i-j,j)  = a(i,j) for j≤i≤min(n,j+k). 

ldab INTEGER. The leading dimension of the array ab. 
ldab ≥ k+1.

work REAL for slansb and clansb.
DOUBLE PRECISION for dlansb and zlansb.
Workspace array, DIMENSION (lwork), where 
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.  

Output Parameters

val REAL for slansb/clansb
DOUBLE PRECISION for dlansb/zlansb
Value returned by the function.

?lanhb
Returns the value of the 1-norm,  or the Frobenius 
norm, or the  infinity norm,  or the element of  largest 
absolute value  of a Hermitian band matrix.

Syntax
val = clanhb ( norm, uplo, n, k, ab, ldab, work )

val = zlanhb ( norm, uplo, n, k, ab, ldab, work )

Description

The routine returns the value of the 1-norm,  or the Frobenius norm, or the  infinity norm,  or the 
element of  largest absolute value  of an n-by-n Hermitian band matrix A,  with k super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 
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       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanhb as described 
above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
band matrix A is supplied.
If uplo = 'U':  upper triangular part is supplied;
If uplo = 'L':  lower triangular part is supplied.

n INTEGER. The order of the matrix A.  n ≥ 0.  When 
n = 0, ?lanhb is set to zero.

k INTEGER. The number of super-diagonals or sub-diagonals of the band matrix 
A.  k ≥ 0.

ab COMPLEX for clanhb.
COMPLEX*16 for zlanhb.
Array, DIMENSION (ldab,n). The upper or lower triangle of the Hermitian 
band matrix A, stored in the first k+1 rows of ab.  The j-th column of A is 
stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j) 
for max(1,j-k) ≤  i≤  j;
if uplo = 'L', ab(1+i-j,j)  = a(i,j) for j≤i≤min(n,j+k). 

Note that the imaginary parts of the diagonal elements need not be set and are 
assumed to be zero.

ldab INTEGER. The leading dimension of the array ab. 
ldab ≥ k+1.

work REAL for clanhb.
DOUBLE PRECISION for zlanhb.
Workspace array, DIMENSION (lwork), where 
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.  
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Output Parameters

val REAL for slanhb/clanhb
DOUBLE PRECISION for dlanhb/zlanhb
Value returned by the function.

?lansp
Returns the value of the 1-norm, or the Frobenius norm, 
or the infinity norm, or the  element of  largest absolute 
value  of a symmetric matrix supplied in packed form.

Syntax
val = slansp ( norm, uplo, n, ap, work )

val = dlansp ( norm, uplo, n, ap, work )

val = clansp ( norm, uplo, n, ap, work )

val = zlansp ( norm, uplo, n, ap, work )

Description

The function ?lansp returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the  element of  largest absolute value  of a real/complex symmetric matrix A, supplied in 
packed form.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.
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Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lansp as described 
above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
symmetric matrix A is supplied.
If uplo =  'U':  Upper triangular part of A is supplied
If uplo =  'L':  Lower triangular part of A is supplied.

n INTEGER. The order of the matrix A.  n ≥ 0.  When
 n = 0, ?lansp is set to zero.

ap REAL for slansp 
DOUBLE PRECISION for dlansp
COMPLEX for clansp
COMPLEX*16 for zlansp
Array, DIMENSION (n(n+1)/2). The upper or lower triangle of the symmetric 
matrix A, packed columnwise in a linear array.  The j-th column of A is stored 
in the array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

work REAL for slansp and clansp.
DOUBLE PRECISION for dlansp and zlansp.
Workspace array, DIMENSION (lwork), where 
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.  

Output Parameters

val REAL for slansp/clansp
DOUBLE PRECISION for dlansp/zlansp
Value returned by the function.
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?lanhp
Returns the value of the 1-norm,  or the Frobenius 
norm, or the  infinity norm,  or the  element of  largest 
absolute value  of a complex Hermitian matrix supplied 
in packed form.

Syntax
val = clanhp ( norm, uplo, n, ap, work )

val = zlanhp ( norm, uplo, n, ap, work )

Description

The function ?lanhp returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the  element of  largest absolute value  of a complex Hermitian matrix A, supplied in 
packed form.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanhp as described 
above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
Hermitian matrix A is supplied.
If uplo =  'U':  Upper triangular part of A is supplied
If uplo =  'L':  Lower triangular part of A is supplied.
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n INTEGER. The order of the matrix A.
n ≥ 0.  When n = 0, ?lanhp is set to zero.

ap COMPLEX for clanhp.
COMPLEX*16 for zlanhp.
Array, DIMENSION (n(n+1)/2). The upper or lower triangle of the Hermitian 
matrix A, packed columnwise in a linear array.  The j-th column of A is stored 
in the array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

work REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Workspace array, DIMENSION (lwork), where 
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.  

Output Parameters

val REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Value returned by the function.

?lanst/?lanht
Returns the value of the 1-norm, or the Frobenius norm, 
or the infinity norm, or the element of  largest absolute 
value of a real symmetric or complex Hermitian 
tridiagonal matrix.

Syntax
val = slanst ( norm, n, d, e )

val = dlanst ( norm, n, d, e )

val = clanht ( norm, n, d, e )

val = zlanht ( norm, n, d, e )
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Description

The functions ?lanst/?lanht  return the value of the 1-norm,  or the Frobenius norm, or the  
infinity norm,  or the  element of  largest absolute value of a real symmetric or a complex 
Hermitian tridiagonal matrix A.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanst/?lanht as 
described above.

n INTEGER. The order of the matrix A.
n ≥ 0.  When n = 0, ?lanst/?lanht is set to zero.

d REAL for slanst/clanht 
DOUBLE PRECISION for dlanst/zlanht
Array, DIMENSION (n). The diagonal elements of A.

e REAL for slanst 
DOUBLE PRECISION for dlanst
COMPLEX for clanht
COMPLEX*16 for zlanht
Array, DIMENSION (n-1). The (n-1) sub-diagonal or super-diagonal elements 
of A.

Output Parameters

val REAL for slanst/clanht 
DOUBLE PRECISION for dlanst/zlanht
Value returned by the function.
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?lansy
Returns the value of the 1-norm,  or the Frobenius 
norm, or the  infinity norm,  or the  element of  largest 
absolute value  of a real/complex symmetric matrix.

Syntax
val = slansy ( norm, uplo, n, a, lda, work )

val = dlansy ( norm, uplo, n, a, lda, work )

val = clansy ( norm, uplo, n, a, lda, work )

val = zlansy ( norm, uplo, n, a, lda, work )

Description

The function ?lansy returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the  element of  largest absolute value  of a real/complex symmetric matrix A.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lansy as described 
above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
symmetric matrix A is to be referenced.
= 'U':  Upper triangular part of A is referenced.
= 'L':  Lower triangular part of A is referenced
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n INTEGER. The order of the matrix A. n ≥ 0.  When
n = 0, ?lansy is set to zero.

a REAL for slansy 
DOUBLE PRECISION for dlansy
COMPLEX for clansy
COMPLEX*16 for zlansy
Array, DIMENSION (lda,n). The symmetric matrix A.  If uplo = 'U', the 
leading n-by-n upper triangular part of a contains the upper triangular part of 
the matrix A, and the strictly lower triangular part of a is not referenced.  If 
uplo = 'L', the leading n-by-n lower triangular part of a contains the lower 
triangular part of the matrix A, and the strictly upper triangular part of a is not 
referenced.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(n,1).

work REAL for slansy and clansy.
DOUBLE PRECISION for dlansy and zlansy.
Workspace array, DIMENSION (lwork), where 
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.  

Output Parameters

val REAL for slansy/clansy 
DOUBLE PRECISION for dlansy/zlansy
Value returned by the function.

?lanhe
Returns the value of the 1-norm,  or the Frobenius 
norm, or the  infinity norm, or the element of  largest 
absolute value  of a complex Hermitian matrix.

Syntax
val = clanhe ( norm, uplo, n, a, lda, work )

val = zlanhe ( norm, uplo, n, a, lda, work )
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Description

The function ?lanhe returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the  element of  largest absolute value  of a complex Hermitian matrix A.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanhe as described 
above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
Hermitian matrix A is to be referenced.
= 'U':  Upper triangular part of A is referenced.
= 'L':  Lower triangular part of A is referenced

n INTEGER. The order of the matrix A. 
n ≥ 0.  When n = 0, ?lanhe is set to zero.

a COMPLEX for clanhe.
COMPLEX*16 for zlanhe.
Array, DIMENSION (lda,n). The Hermitian matrix A.  
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper 
triangular part of the matrix A, and the strictly lower triangular part of a is not 
referenced.  If uplo = 'L', the leading n-by-n lower triangular part of a contains 
the lower triangular part of the matrix A, and the strictly upper triangular part 
of a is not referenced.

lda INTEGER. The leading dimension of the array a.  
lda ≥ max(n,1).
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work REAL for clanhe.
DOUBLE PRECISION for zlanhe.
Workspace array, DIMENSION (lwork), where 
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.  

Output Parameters

val REAL for clanhe.
DOUBLE PRECISION for zlanhe.
Value returned by the function.

?lantb
Returns the value of the 1-norm,  or the Frobenius 
norm, or the infinity norm,  or the element of largest 
absolute value of a triangular band matrix.

Syntax
val = slantb ( norm, uplo, diag, n, k, ab, ldab, work )

val = dlantb ( norm, uplo, diag, n, k, ab, ldab, work )

val = clantb ( norm, uplo, diag, n, k, ab, ldab, work )

val = zlantb ( norm, uplo, diag, n, k, ab, ldab, work )

Description

The function ?lantb returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the element of  largest absolute value  of an  n-by-n triangular band matrix A,  with ( k + 
1 ) diagonals.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 
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where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lantb as described 
above.

uplo CHARACTER*1. Specifies whether the matrix A is upper or lower triangular.
= 'U':  Upper triangular
= 'L':  Lower triangular.

diag CHARACTER*1. Specifies whether or not the matrix A is unit triangular.
= 'N':  Non-unit triangular
= 'U':  Unit triangular.

n INTEGER. The order of the matrix A. 
n ≥ 0.  When n = 0, ?lantb is set to zero.

k INTEGER. The number of super-diagonals of the matrix A if uplo = 'U', or the 
number of sub-diagonals of the matrix A if uplo = 'L'. k ≥ 0.

ab REAL for slantb 
DOUBLE PRECISION for dlantb
COMPLEX for clantb
COMPLEX*16 for zlantb
Array, DIMENSION (ldab,n). The upper or lower triangular band matrix A, 
stored in the first k+1 rows of ab.  The j-th column of A is stored in the j-th 
column of the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j) for 
max(1,j-k) ≤  i ≤  j;
if uplo = 'L', ab(1+i-j,j)   = a(i,j) for 
j≤  i≤  min(n,j+k).
Note that when diag = 'U', the elements of the array ab corresponding to the 
diagonal elements of the matrix A are not referenced, but are assumed to be 
one.

ldab INTEGER. The leading dimension of the array ab.  
ldab ≥ k+1.

work REAL for slantb and clantb.
DOUBLE PRECISION for dlantb and zlantb.
Workspace array, DIMENSION (lwork), where 
lwork ≥ n when norm = 'I' ; otherwise, work is not referenced.  
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Output Parameters

val REAL for slantb/clantb.
DOUBLE PRECISION for dlantb/zlantb.
Value returned by the function.

 ?lantp
Returns the value of the 1-norm,  or the Frobenius 
norm, or the infinity norm, or the element of  largest 
absolute value  of a triangular matrix supplied in 
packed form.

Syntax
val = slantp ( norm, uplo, diag, n, ap, work )

val = dlantp ( norm, uplo, diag, n, ap, work )

val = clantp ( norm, uplo, diag, n, ap, work )

val = zlantp ( norm, uplo, diag, n, ap, work )

Discussion

The function ?lantp returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the  element of  largest absolute value  of a triangular matrix A, supplied in packed form.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.
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Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lantp as described 
above.

uplo CHARACTER*1. Specifies whether the matrix A is upper or lower triangular.
= 'U':  Upper triangular
= 'L':  Lower triangular.

diag CHARACTER*1. Specifies whether or not the matrix A is unit triangular.
= 'N':  Non-unit triangular
= 'U':  Unit triangular.

n INTEGER. The order of the matrix A. 
n ≥ 0.  When n = 0, ?lantp is set to zero.

ap REAL for slantp 
DOUBLE PRECISION for dlantp
COMPLEX for clantp
COMPLEX*16 for zlantp
Array, DIMENSION (n(n+1)/2). The upper or lower triangular matrix A, packed 
columnwise in a linear array.  The j-th column of A is stored in the array ap as 
follows:
if uplo = 'U', AP(i + (j-1)j/2) = a(i,j) 
for 1≤ i≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = a(i,j) 
for j≤ i≤  n.
Note that when diag = 'U', the elements of the array ap  corresponding to the 
diagonal elements of the matrix A are not referenced, but are assumed to be 
one.

work REAL for slantp and clantp.
DOUBLE PRECISION for dlantp and zlantp.
Workspace array, DIMENSION (lwork), where 
lwork ≥ n when norm = 'I' ; otherwise, work is not referenced.  

Output Parameters

val REAL for slantp/clantp.
DOUBLE PRECISION for dlantp/zlantp.
Value returned by the function.
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?lantr
Returns the value of the 1-norm,  or the Frobenius 
norm, or the  infinity norm,  or the  element of  largest 
absolute value  of a  trapezoidal or triangular matrix.

Syntax
val = slantr ( norm, uplo, diag, m, n, a, lda, work )

val = dlantr ( norm, uplo, diag, m, n, a, lda, work )

val = clantr ( norm, uplo, diag, m, n, a, lda, work )

val = zlantr ( norm, uplo, diag, m, n, a, lda, work )

Description

The function ?lantr returns the value of the 1-norm,  or the Frobenius norm, or the  infinity 
norm,  or the  element of  largest absolute value  of a trapezoidal or triangular matrix A.

The value val returned by the function is:

val = max(abs(Aij)),   if norm = ‘M’ or ‘m’ 

       = norm1(A) ,       if norm = ‘1’ or ‘O’ or ‘o’ 

       = normI(A) ,       if norm = ‘I’ or ‘i’ 

       = normF(A) ,       if norm = ‘F’, ‘f’, ‘E’  or ‘e’ 

where  norm1  denotes the  1-norm of a matrix (maximum column sum), normI  denotes the  
infinity norm  of a matrix  (maximum row sum) and normF  denotes the  Frobenius norm of a 
matrix (square root of sum of squares).  Note that  max(abs(Aij))  is not a  matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lantr as described 
above.

uplo CHARACTER*1. Specifies whether the matrix A is upper or lower trapezoidal.
= 'U':  Upper trapezoidal
= 'L':  Lower trapezoidal.
Note that A is triangular instead of trapezoidal if m = n.
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diag CHARACTER*1. Specifies whether or not the matrix A has unit diagonal.
= 'N':  Non-unit diagonal
= 'U':  Unit diagonal.

m INTEGER. The number of rows of the matrix A. 
m ≥ 0, and if uplo = 'U', m ≤ n.  When m = 0, ?lantr is set to zero.

n INTEGER. The number of columns of the matrix A. 
n ≥ 0, and if uplo = 'L', n ≤ m.  When n = 0, ?lantr is set to zero.

a REAL for slantr 
DOUBLE PRECISION for dlantr
COMPLEX for clantr
COMPLEX*16 for zlantr
Array, DIMENSION (lda,n). 

The trapezoidal matrix A (A is triangular if m = n). 
If uplo = 'U', the leading m-by-n upper trapezoidal part of the array a contains 
the upper trapezoidal matrix, and the strictly lower triangular part of a is not 
referenced. 
If uplo = 'L', the leading m-by-n lower trapezoidal part of the array a contains 
the lower trapezoidal matrix, and the strictly upper triangular part of a is not 
referenced.  Note that when diag = 'U', the diagonal elements of a are not 
referenced and are assumed to be one.

lda INTEGER. The leading dimension of the array a.  
lda ≥ max(m,1).

work REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Workspace array, DIMENSION (lwork), where 
lwork ≥ m when norm = 'I' ; otherwise, work is not referenced.  

Output Parameters

val REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Value returned by the function.
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?lanv2
Computes the Schur factorization of a real 2-by-2 
nonsymmetric matrix in standard form.

Syntax
call slanv2 ( a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn )

call dlanv2 ( a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn )

Description

The routine computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard 
form:

where either

1. cc = 0 so that aa and dd are real eigenvalues of the matrix, or

2. aa = dd and bb*cc < 0, so that aa  sqrt(bb*cc) are complex conjugate eigenvalues.

The routine was adjusted to reduce the risk of cancellation errors, when computing real 
eigenvalues, and to ensure, if possible, that abs(rt1r) ≥ abs(rt2r).

Input Parameters

a, b, c, d REAL for slanv2
DOUBLE PRECISION for dlanv2.
On entry, elements of the input matrix.

Output Parameters

a, b, c, d On exit, overwritten by the elements of the standardized Schur form.

rt1r, rt1i,
rt2r, rt2i,REAL for slanv2

DOUBLE PRECISION for dlanv2.
The real and imaginary parts of the eigenvalues. If the
eigenvalues are a complex conjugate pair, rt1i > 0.

a b

c d

cs sn–
sn cs

aa bb

cc dd

cs sn

sn– cs
=

±
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cs, sn REAL for slanv2
DOUBLE PRECISION for dlanv2.
Parameters of the rotation matrix.

?lapll
Measures the linear dependence of two vectors.

Syntax
call slapll ( n, x, incx, y, incy, ssmin )

call dlapll ( n, x, incx, y, incy, ssmin )

call clapll ( n, x, incx, y, incy, ssmin )

call zlapll ( n, x, incx, y, incy, ssmin )

Description

Given  two column vectors x and y of length n, let 

 A = (x y)  be the n-by-2 matrix.

The routine ?lapll first computes the QR factorization of A as A = QR and then computes the 
SVD of the 2-by-2 upper triangular matrix R. The smaller singular value of R is returned in ssmin, 
which is used as the measurement of the linear dependency of the vectors x and y.

Input Parameters

n INTEGER. The length of the vectors x and y.

x REAL for slapll 
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION (1+(n-1)incx). 
On entry, x contains the n-vector x.

y REAL for slapll 
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION (1+(n-1)incy). On entry, y contains the n-vector y.
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incx INTEGER. The increment between successive elements of x; incx > 0.

incy INTEGER. The increment between successive elements of y; incy > 0.

Output Parameters

x On exit, x is overwritten.

y On exit, y is overwritten.

ssmin REAL for slapll/clapll 
DOUBLE PRECISION for dlapll/zlapll
 The smallest singular value of the n-by-2 matrix 
A = (x y) .

?lapmt
Performs a forward or backward permutation of the 
columns of a matrix.

Syntax
call slapmt ( forwrd, m, n, x, ldx, k )

call dlapmt ( forwrd, m, n, x, ldx, k )

call clapmt ( forwrd, m, n, x, ldx, k )

call zlapmt ( forwrd, m, n, x, ldx, k )

Description

The routine ?lapmt rearranges the columns of the m-by-n matrix X as specified by the 
permutation k(1),k(2),...,k(n) of the integers 1,...,n.

If forwrd = .TRUE.,  forward permutation:

X(*,k(j)) is moved to X(*,j) for j= 1,2,...,n.

If forwrd = .FALSE., backward permutation:

X(*,j) is moved to X(*,k(j)) for j = 1,2,...,n.
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Input Parameters

forwrd LOGICAL.
If forwrd = .TRUE., forward permutation
If forwrd = .FALSE., backward permutation

m INTEGER. The number of rows of the matrix X.
m ≥ 0.

n INTEGER. The number of columns of the matrix X.
n ≥ 0.

x REAL for slapmt 
DOUBLE PRECISION for dlapmt
COMPLEX for clapmt
COMPLEX*16 for zlapmt
Array, DIMENSION (ldx,n). On entry, the m-by-n matrix X.

ldx INTEGER. The leading dimension of the array x, 
ldx ≥ max(1,m).

k INTEGER.
Array, DIMENSION (n). On entry, k contains the permutation vector.

Output Parameters

x On exit, x contains the permuted matrix X.

?lapy2
Returns sqrt(x2+y2).

Syntax
val = slapy2 ( x, y )

val = dlapy2 ( x, y )

Description

The function ?lapy2 returns sqrt(x2+y2), avoiding unnecessary overflow or harmful underflow.
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Input Parameters

x, y REAL for slapy2 
DOUBLE PRECISION for dlapy2
Specify the input values x and y.

Output Parameters

val REAL for slapy2 
DOUBLE PRECISION for dlapy2.
Value returned by the function.

?lapy3
Returns sqrt(x2+y2+z2).

Syntax
val = slapy3 ( x, y, z )

val = dlapy3 ( x, y, z )

Description

The function ?lapy3 returns sqrt(x2+y2+z2), avoiding unnecessary overflow or harmful 
underflow.

Input Parameters

x, y, z REAL for slapy3 
DOUBLE PRECISION for dlapy3
Specify the input values x, y and z.

Output Parameters

val REAL for slapy3 
DOUBLE PRECISION for dlapy3.
Value returned by the function.
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?laqgb
Scales a general band matrix, using row and column 
scaling factors computed by ?gbequ.

Syntax
call slaqgb ( m, n, kl, ku, ab, ldab, r, c, rowcnd,

colcnd, amax, equed )

call dlaqgb ( m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed )

call claqgb ( m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed )

call zlaqgb ( m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed )

Description

The routine equilibrates a general m-by-n band matrix A with kl subdiagonals and ku 
superdiagonals using the row and column scaling factors in the vectors r and c.

Input Parameters

m INTEGER. The number of rows of the matrix A. 
m ≥ 0.

n INTEGER. The number of columns of the matrix A. 
n ≥ 0.

kl INTEGER. The number of subdiagonals within the band of A.  kl ≥ 0.

ku INTEGER. The number of superdiagonals within the band of A.  ku ≥ 0.

ab REAL for slaqgb 
DOUBLE PRECISION for dlaqgb
COMPLEX for claqgb
COMPLEX*16 for zlaqgb
Array, DIMENSION (ldab,n). On entry, the matrix A in band storage, in rows 1 
to kl+ku+1. The j-th column of A is stored in the j-th column of the array ab 
as follows: ab(ku+1+i-j,j) = A(i,j) for 
max(1,j-ku) ≤ i ≤ min(m,j+kl).
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ldab INTEGER. The leading dimension of the array ab.  
lda ≥ kl+ku+1.

amax REAL for slaqgb/claqgb 
DOUBLE PRECISION for dlaqgb/zlaqgb
Absolute value of largest matrix entry.

Output Parameters

ab On exit, the equilibrated matrix, in the same storage format as A.  
See equed for the form of the equilibrated matrix.

r, c REAL for slaqgb/claqgb 
DOUBLE PRECISION for dlaqgb/zlaqgb
Arrays r (m), c (n). Contain the row and column scale factors for A, 
respectively.

rowcnd REAL for slaqgb/claqgb 
DOUBLE PRECISION for dlaqgb/zlaqgb
Ratio of the smallest r(i) to the largest r(i).

colcnd REAL for slaqgb/claqgb 
DOUBLE PRECISION for dlaqgb/zlaqgb
Ratio of the smallest c(i) to the largest c(i).

equed CHARACTER*1. 
Specifies the form of equilibration that was done.
If equed  = 'N': No equilibration
If equed = 'R':  Row equilibration, that is, A has been premultiplied by 
diag(r).
If equed = 'C':  Column equilibration, that is, A has been postmultiplied by 
diag(c).
If equed = 'B':  Both row and column equilibration, that is, A has been 
replaced by diag(r)*A*diag(c).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following 
meaning. thresh is a threshold value used to decide if row or column scaling should be done 
based on the ratio of the row or column scaling factors.  If rowcnd < thresh, row scaling is done, 
and if colcnd < thresh, column scaling is done. large and small are threshold values used to 
decide if row scaling should be done based on the absolute size of the largest matrix element.  If 
amax > large or amax < small, row scaling is done.
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?laqge
Scales a general rectangular matrix, using row and 
column scaling factors computed by ?geequ.

Syntax
call slaqge ( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )

call dlaqge ( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )

call claqge ( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )

call zlaqge ( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )

Description

The routine equilibrates a general m-by-n matrix A using the row and scaling factors in the vectors 
r and c.

Input Parameters

m INTEGER. The number of rows of the matrix A. 
m ≥ 0.

n INTEGER. The number of columns of the matrix A.  
n ≥ 0.

a REAL for slaqge 
DOUBLE PRECISION for dlaqge
COMPLEX for claqge
COMPLEX*16 for zlaqge
Array, DIMENSION (lda,n). On entry, the m-by-n matrix A.

lda INTEGER. The leading dimension of the array A.  
lda ≥ max(m,1).

r REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (m). The row scale factors for A.

c REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (n). The column scale factors for A.
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rowcnd REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest r(i) to the largest r(i).

colcnd REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest c(i) to the largest c(i).

amax REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Absolute value of largest matrix entry.

Output Parameters

a On exit, the equilibrated matrix.  
See equed for the form of the equilibrated matrix.

equed CHARACTER*1. 
Specifies the form of equilibration that was done.
If equed  = 'N': No equilibration
If equed = 'R':  Row equilibration, that is, A has been premultiplied by 
diag(r).
If equed = 'C':  Column equilibration, that is, A has been postmultiplied by 
diag(c).
If equed = 'B':  Both row and column equilibration, that is, A has been 
replaced by diag(r)*A*diag(c).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following 
meaning. thresh is a threshold value used to decide if row or column scaling should be done 
based on the ratio of the row or column scaling factors.  If rowcnd < thresh, row scaling is done, 
and if colcnd < thresh, column scaling is done. large and small are threshold values used to 
decide if row scaling should be done based on the absolute size of the largest matrix element.  If 
amax > large or amax < small, row scaling is done.
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?laqp2
Computes a QR factorization with column pivoting of 
the matrix block.

Syntax
call slaqp2 ( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )

call dlaqp2 ( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )

call claqp2 ( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )

call zlaqp2 ( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )

Description

The routine computes a QR factorization with column pivoting of the block A(offset+1:m,1:n). 
The block A(1:offset,1:n) is accordingly pivoted, but not factorized.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

offset INTEGER. The number of rows of the matrix A that must be pivoted but no 
factorized. offset ≥ 0.

a REAL for slaqp2 
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Array, DIMENSION (lda,n). On entry, the m-by-n matrix A. 

lda INTEGER. The leading dimension of the array A. lda ≥ max(1,m).

jpvt INTEGER .
Array, DIMENSION (n). On entry, if jpvt(i) ≠ 0, the i-th column of A is 
permuted to the front of A*P (a leading column); if jpvt(i) = 0, the i-th 
column of A is a free column.
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vn1, vn2 REAL for slaqp2/claqp2
DOUBLE PRECISION for dlaqp2/zlaqp2
Arrays, DIMENSION (n) each. Contain the vectors with the partial and exact 
column norms, respectively.

work REAL for slaqp2 
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Workspace array, DIMENSION (n).  

Output Parameters

a On exit, the upper triangle of block A(offset+1:m,1:n) is the triangular factor 
obtained; the elements in block A(offset+1:m,1:n) below the diagonal, 
together with the array tau, represent the orthogonal matrix Q as a product of 
elementary reflectors. Block A(1:offset,1:n) has been accordingly pivoted, 
but not factorized.

jpvt On exit, if jpvt(i) = k, then the i-th column of A*P was the k-th column of A.

tau REAL for slaqp2 
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Array, DIMENSION  (min(m,n)). The scalar factors of the elementary reflectors.

vn1, vn2 Contain the vectors with the partial and exact column norms, respectively.

?laqps
Computes a step of QR factorization with column 
pivoting of a real m-by-n matrix A by using BLAS level 
3.

Syntax
call slaqps ( m, n, offset, nb, kb, a, lda, jpvt, tau,

vn1, vn2, auxv, f, ldf )

call dlaqps ( m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf )
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call claqps ( m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf )

call zlaqps ( m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf )

Description

This routine computes a step of QR  factorization with column pivoting of a real m-by-n matrix A 
by using BLAS level 3. The routine tries to factorize nb columns from A starting from the row 
offset+1, and updates all of the matrix with BLAS level 3 routine ?gemm.

In some cases, due to catastrophic cancellations, ?laqps cannot factorize nb columns.  Hence, the 
actual number of factorized columns is returned 
in kb.

Block A(1:offset,1:n) is accordingly pivoted, but not factorized.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

offset INTEGER. The number of rows of A that have been factorized in previous steps.

nb INTEGER. The number of columns to factorize.

a REAL for slaqps 
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (lda,n). 
On entry, the m-by-n matrix A. 

lda INTEGER. The leading dimension of the array a. 
lda ≥ max(1,m).

jpvt INTEGER.
Array, DIMENSION (n). If jpvt(i) = k then column k of the full matrix A has 
been permuted into position i in AP.
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vn1, vn2 REAL for slaqps/claqps
DOUBLE PRECISION for dlaqps/zlaqps
Arrays, DIMENSION (n) each. Contain the vectors with the partial and exact 
column norms, respectively.

auxv REAL for slaqps 
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (nb). Auxiliary vector.

f REAL for slaqps 
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (ldf,nb). Matrix F′ = L*Y′*A.

ldf INTEGER. The leading dimension of the array f. 
ldf ≥ max(1,n).

Output Parameters

kb INTEGER. The number of columns actually factorized.

a On exit, block A(offset+1:m,1:kb) is the triangular factor obtained and block 
A(1:offset,1:n) has been accordingly pivoted, but no factorized. The rest of 
the matrix, block A(offset+1:m,kb+1:n) has been updated.

jpvt INTEGER array, DIMENSION (n). If jpvt(i) = k then column k of the full 
matrix A has been permuted into position i in AP.

tau REAL for slaqps 
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (kb). The scalar factors of the elementary reflectors.

vn1, vn2 The vectors with the partial and exact column norms, respectively.

auxv Auxiliary vector.

f Matrix F′ = L*Y′*A.
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?laqsb
Scales a symmetric/Hermitian band matrix, using 
scaling factors computed by ?pbequ.

Syntax
call slaqsb ( uplo, n, kd, ab, ldab, s, scond, amax, equed )

call dlaqsb ( uplo, n, kd, ab, ldab, s, scond, amax, equed )

call claqsb ( uplo, n, kd, ab, ldab, s, scond, amax, equed )

call zlaqsb ( uplo, n, kd, ab, ldab, s, scond, amax, equed )

Description

The routine equilibrates a symmetric band matrix A using the scaling factors in the vector s.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
symmetric matrix A is stored.
If uplo = 'U':  upper triangular.
If uplo = 'L':  lower triangular.

n INTEGER. The order of the matrix A. 
n ≥ 0.

kd INTEGER. The number of super-diagonals of the matrix A if uplo = 'U', or the 
number of sub-diagonals if uplo = 'L'.  kd ≥ 0.

ab REAL for slaqsb 
DOUBLE PRECISION for dlaqsb
COMPLEX for claqsb
COMPLEX*16 for zlaqsb
Array, DIMENSION (ldab,n). On entry, the upper or lower triangle of the 
symmetric band matrix A, stored in the first kd+1 rows of the array. The j-th 
column of A is stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for
 max(1,j-kd) ≤  i ≤  j;
if uplo = 'L', ab(1+i-j,j)  = A(i,j) for
j ≤ i ≤ min(n,j+kd).
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ldab INTEGER. The leading dimension of the array ab.  
ldab ≥ kd+1.

scond REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Ratio of the smallest s(i) to the largest s(i).

amax REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Absolute value of largest matrix entry.

Output Parameters

ab On exit, if info = 0, the triangular factor U or L from the Cholesky 
factorization A = U' U or A = L L' of the band matrix A, in the same storage 
format as A.

s REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Array, DIMENSION (n). The scale factors for A.

equed CHARACTER*1. 
Specifies whether or not equilibration was done.
If equed = 'N':  No equilibration.
If equed  = 'Y':  Equilibration was done, that is, A has been replaced by  
diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following 
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the 
scaling factors.  If scond < thresh, scaling is done. large and small are threshold values used 
to decide if scaling should be done based on the absolute size of the largest matrix element.  If 
amax > large or amax < small, scaling is done.
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?laqsp
Scales a symmetric/Hermitian matrix in packed 
storage, using scaling factors computed by ?ppequ.

Syntax
call slaqsp ( uplo, n, ap, s, scond, amax, equed )

call dlaqsp ( uplo, n, ap, s, scond, amax, equed )

call claqsp ( uplo, n, ap, s, scond, amax, equed )

call zlaqsp ( uplo, n, ap, s, scond, amax, equed )

Description

The routine ?laqsp equilibrates a symmetric matrix A using the scaling factors in the vector s.

Internal Parameters

uplo CHARACTER*1.  Specifies whether the upper or lower triangular part of the 
symmetric matrix A is stored.
If uplo = 'U':  upper triangular.
If uplo = 'L':  lower triangular.

n INTEGER. The order of the matrix A. 
n ≥ 0.

ap REAL for slaqsp 
DOUBLE PRECISION for dlaqsp
COMPLEX for claqsp
COMPLEX*16 for zlaqsp
Array, DIMENSION (n(n+1)/2). On entry, the upper or lower triangle of the 
symmetric matrix A, packed columnwise in a linear array.  The j-th column of 
A is stored in the array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1 ≤  i ≤  j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

s REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Array, DIMENSION (n). The scale factors for A.
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scond REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Ratio of the smallest s(i) to the largest s(i).

amax REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Absolute value of largest matrix entry.

Output Parameters

ap On exit, the equilibrated matrix: diag(s)*A*diag(s), in the same storage 
format as A.

equed CHARACTER*1. 
Specifies whether or not equilibration was done.
If equed = 'N':  No equilibration.
If equed  = 'Y':  Equilibration was done, that is, A has been replaced by  
diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following 
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the 
scaling factors.  If scond < thresh, scaling is done. large and small are threshold values used 
to decide if scaling should be done based on the absolute size of the largest matrix element.  If 
amax > large or amax < small, scaling is done.

?laqsy
Scales a symmetric/Hermitian matrix, using scaling 
factors computed by ?poequ.

Syntax
call slaqsy ( uplo, n, a, lda, s, scond, amax, equed )

call dlaqsy ( uplo, n, a, lda, s, scond, amax, equed )

call claqsy ( uplo, n, a, lda, s, scond, amax, equed )

call zlaqsy ( uplo, n, a, lda, s, scond, amax, equed )
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Description

The routine equilibrates a symmetric matrix A using the scaling factors  in the vector s.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the 
symmetric matrix A is stored.
If uplo = 'U':  upper triangular.
If uplo = 'L':  lower triangular.

n INTEGER. The order of the matrix A.
n ≥ 0.

a REAL for slaqsy 
DOUBLE PRECISION for dlaqsy
COMPLEX for claqsy
COMPLEX*16 for zlaqsy
Array, DIMENSION (lda,n). On entry, the symmetric matrix A.  If uplo = 'U', 
the leading n-by-n upper triangular part of a contains the upper triangular part 
of the matrix A, and the strictly lower triangular part of a is not referenced.  If 
uplo = 'L', the leading n-by-n lower triangular part of a contains the lower 
triangular part of the matrix A, and the strictly upper triangular part of a is not 
referenced.

lda INTEGER. The leading dimension of the array a.  
lda ≥ max(n,1).

s REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Array, DIMENSION (n). The scale factors for A.

scond REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Ratio of the smallest s(i) to the largest s(i).

amax REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Absolute value of largest matrix entry.

Output Parameters

a On exit, if equed = 'Y', the equilibrated matrix:  diag(s)*A*diag(s).
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equed CHARACTER*1. 
Specifies whether or not equilibration was done.
If equed = 'N':  No equilibration.
If equed  = 'Y':  Equilibration was done, i.e., A has been replaced by  
diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following 
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the 
scaling factors.  If scond < thresh, scaling is done. large and small are threshold values used 
to decide if scaling should be done based on the absolute size of the largest matrix element.  If 
amax > large or amax < small, scaling is done.

?laqtr
Solves a real quasi-triangular system of equations, or a 
complex quasi-triangular system of special form, in real 
arithmetic.

Syntax
call slaqtr ( ltran, lreal, n, t, ldt, b, w, scale, x,

work, info )

call dlaqtr ( ltran, lreal, n, t, ldt, b, w, scale, x,
work, info )

Description

The routine ?laqtr solves the real quasi-triangular system 
       op(T) * p = scale* c,                           if lreal = .TRUE. 
or the complex quasi-triangular systems
      op(T + iB)*(p+iq) = scale*(c+id),       if lreal = .FALSE. 
in real arithmetic, where T is upper quasi-triangular.

If lreal = .FALSE., then the first diagonal block of T must be 1-by-1,
B is the specially structured matrix
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op(A) = A or A′,  A′ denotes the conjugate transpose of matrix A.

On input,

 ,   on output 

This routine is designed for the condition number estimation in routine ?trsna.

Input Parameters

ltran LOGICAL. 
On entry, ltran specifies the option of conjugate transpose:
= .FALSE., op(T + iB) = T + iB,
= .TRUE.,   op(T + iB) = (T + iB)′.

lreal LOGICAL. 
On entry, lreal specifies the input matrix structure:
= .FALSE., the input is complex
= .TRUE.,    the input is real.

n INTEGER. On entry, n specifies the order of T + iB.
n ≥ 0.

t REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (ldt,n). On entry, t contains a matrix in Schur canonical 
form. If lreal = .FALSE., then the first diagonal block of t must be 1-by-1.

ldt INTEGER. The leading dimension of the matrix T. 
ldt ≥ max(1,n).

B

b1 b2 … … bn

w

w

…
w

=

x
c

d
= x

p

q
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b REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (n). On entry, b contains the elements to form the matrix B
as described above. If lreal = .TRUE., b is not referenced.

w REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On entry, w is the diagonal element of the matrix B. If lreal = .TRUE., w is 
not referenced.

x REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (2n). On entry, x contains the right hand side of the system.

work REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Workspace array, dimension (n). 

Output Parameters

scale   REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On exit, scale is the scale factor.

x On exit, x is overwritten by the solution.

info    INTEGER.
If info = 0: successful exit.
If info = 1: the some diagonal 1-by-1 block has been perturbed by a small 
number smin to keep nonsingularity.
If info = 2: the some diagonal 2-by-2 block has been perturbed by  a small 
number in ?laln2 to keep nonsingularity.

NOTE.  In the interests of speed, this routine does not check the 
inputs for errors.
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?lar1v
Computes the (scaled) r-th column of the inverse of the 
submatrix in rows b1 through bn of the tridiagonal 
matrix LDLT - σI.

Syntax
call slar1v ( n, b1, bn, sigma, d, l, ld, lld, gersch, z,

ztz, mingma, r, isuppz, work )

call dlar1v ( n, b1, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work )

call clar1v ( n, b1, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work )

call zlar1v ( n, b1, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work )

Description

The routine ?lar1v computes the (scaled) r-th column of the inverse of the submatrix in rows b1 
through bn of the tridiagonal matrix 
LDLT - σ*I. 
The following steps accomplish this computation :

1. Stationary qd transform,  LDLT - σ*I = L(+) D(+) L(+)T

2. Progressive qd transform, LDLT - σ*I = U(-) D(-) U(-)T,

3. Computation of the diagonal elements of the inverse of LDLT - σ*I by combining the 
above transforms, and choosing r as the index where the diagonal of the inverse is (one 
of the) largest in magnitude.

4. Computation of the (scaled) r-th column of the inverse using the twisted factorization 
obtained by combining the top part of the stationary and the bottom part of the 
progressive transform.

Input Parameters

n INTEGER. The order of the matrix LDLT.

b1 INTEGER. First index of the submatrix of LDLT.

bn INTEGER. Last index of the submatrix of LDLT.
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sigma REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The shift. Initially, when r = 0, sigma should be a good approximation to an 
eigenvalue of LDLT.

l REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1). The (n-1) subdiagonal elements of the unit 
bidiagonal matrix L, in elements 1 to n-1.

d REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n). The n diagonal elements of the diagonal matrix D.

ld REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1). The n-1 elements Li*Di.

lld REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1). The n-1 elements Li*Li*Di.

gersch REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (2n). The n Gerschgorin intervals. These are used to 
restrict the initial search for r, when r is input as 0.

r INTEGER. 
Initially r should be input to be 0 and is then output as the index where the 
diagonal element of the inverse is largest in magnitude. In later iterations, this 
same value of r should be input.

work REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Workspace array, DIMENSION (4n). 

Output Parameters

z REAL for slar1v 
DOUBLE PRECISION for dlar1v
COMPLEX for clar1v
COMPLEX*16 for zlar1v
Array, DIMENSION (n). The (scaled) r-th column of the inverse. z(r) is 
returned to be 1.
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ztz REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The square of the norm of z.

mingma REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The reciprocal of the largest (in magnitude) diagonal element of the inverse of 
LDLT - σ*I.

r On output, r is the index where the diagonal element of the inverse is largest in 
magnitude.

isuppz INTEGER.
Array, DIMENSION (2). The support of the vector in z, that is, the vector z is 
nonzero only in elements isuppz(1) through isuppz(2).

?lar2v
Applies a vector of plane rotations with real cosines 
and real/complex sines from both sides to a sequence of 
2-by-2 symmetric/Hermitian matrices.

Syntax
call slar2v ( n, x, y, z, incx, c, s, incc )

call dlar2v ( n, x, y, z, incx, c, s, incc )

call clar2v ( n, x, y, z, incx, c, s, incc )

call zlar2v ( n, x, y, z, incx, c, s, incc )

Description

The routine ?lar2v applies a vector of real/complex plane rotations with real cosines from both 
sides to a sequence of 2-by-2 real symmetric or complex Hermitian matrices, defined by the 
elements of the vectors  x, y and z. For i = 1,2,...,n

xi zi

conjg zi( ) yi
: c i( ) conjg s i( )( )

s i( )– c i( )

xi zi

conjg zi( ) yi

c i( ) conjg s i( )( )–

s i( ) c i( )
=
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Input Parameters

n INTEGER. The number of plane rotations to be applied.

x, y, z REAL for slar2v 
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Arrays, DIMENSION (1+(n-1)*incx) each. Contain the  vectors x, y and z, 
respectively. For all flavors of ?lar2v, elements of x and y are assumed to be 
real.

incx INTEGER. The increment between elements of x, y, and z. incx > 0.

c REAL for slar2v/clar2v
DOUBLE PRECISION for dlar2v/zlar2v
Array, DIMENSION (1+(n-1)*incc). The cosines of the plane rotations.

s REAL for slar2v 
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Array, DIMENSION (1+(n-1)*incc). The sines of the plane rotations.

incc INTEGER. The increment between elements of c and s. incc > 0.

Output Parameters

x, y, z Vectors x, y and z, containing the results of transform. 

?larf
Applies an elementary reflector to a general 
rectangular matrix.

Syntax
call slarf ( side, m, n, v, incv, tau, c, ldc, work )

call dlarf ( side, m, n, v, incv, tau, c, ldc, work )

call clarf ( side, m, n, v, incv, tau, c, ldc, work )

call zlarf ( side, m, n, v, incv, tau, c, ldc, work )
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Description

The routine applies a real/complex elementary reflector H to a real/complex m-by-n matrix C, from 
either the left or the right. H is represented in the form 
H = I - tau * v * v', 
where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then H is taken to be the unit matrix. 
For clarf/zlarf, to apply H′ (the conjugate transpose of H), supply conjg(tau) instead of 
tau.

Input Parameters

side CHARACTER*1.
If side = 'L': form  H *C
If side = 'R': form  C *H.

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

v REAL for slarf 
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION 
(1 + (m-1)*abs(incv)) if side = 'L' or 
(1 + (n-1)*abs(incv)) if side = 'R'. 
The vector v in the representation of H. v is not used if tau = 0.

incv INTEGER. The increment between elements of v. 
incv ≠ 0.

tau REAL for slarf 
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
The value tau in the representation of H.

c REAL for slarf 
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION (ldc,n). 
On entry, the m-by-n matrix C. 
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ldc INTEGER. The leading dimension of the array c. 
ldc ≥ max(1,m).

work REAL for slarf 
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Workspace array, DIMENSION 
(n) if side = 'L' or 
(m) if side = 'R'.  

Output Parameters

c On exit, c is overwritten by the matrix H*C if side = 'L', or C*H if side = 'R'.

?larfb
Applies a block reflector or its 
transpose/conjugate-transpose to a general rectangular 
matrix.

Syntax
call slarfb ( side, trans, direct, storev, m, n, k, v,

ldv, t, ldt, c, ldc, work, ldwork )

call dlarfb ( side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork )

call clarfb ( side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork )

call zlarfb ( side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork )

Description

The routine ?larfb applies a complex block reflector H or its transpose H′ to a complex m-by-n 
matrix C from either left or right.
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Input Parameters

side CHARACTER*1.
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right

trans CHARACTER*1.
If trans = 'N': apply H (No transpose)
If trans = 'C': apply H' (Conjugate transpose)

direct CHARACTER*1. Indicates how H is formed from a product of elementary 
reflectors
If direct = 'F': H = H(1) H(2) . . . H(k) (forward)
If direct = 'B': H = H(k) . . . H(2) H(1) (backward)

storev CHARACTER*1. Indicates how the vectors which define the elementary 
reflectors are stored:
If storev = 'C': Column-wise
If storev = 'R': Row-wise

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

k INTEGER. The order of the matrix T (equal to the number of elementary 
reflectors whose product defines the block reflector).

v REAL for slarfb 
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION
(ldv, k) if storev = 'C'
(ldv, m) if storev = 'R' and side = 'L'
(ldv, n) if storev = 'R' and side = 'R'
The matrix V.

ldv INTEGER.
The leading dimension of the array v.
If storev = 'C' and side = 'L', ldv ≥ max(1,m);
if storev = 'C' and side = 'R', ldv ≥ max(1,n);
if storev = 'R', ldv ≥ k.

t REAL for slarfb 
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
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COMPLEX*16 for zlarfb
Array, DIMENSION (ldt,k). 
Contains the triangular k-by-k matrix T in the representation of the block 
reflector.

ldt INTEGER. The leading dimension of the array t. 
ldt ≥ k.

c REAL for slarfb 
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION (ldc,n). 
On entry, the m-by-n matrix C.

ldc INTEGER. The leading dimension of the array c. 
ldc ≥ max(1,m).

work REAL for slarfb 
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Workspace array, DIMENSION (ldwork, k).  

ldwork INTEGER. The leading dimension of the array work.
If side = 'L', ldwork ≥ max(1, n);
if side = 'R', ldwork ≥ max(1, m).

Output parameters

c On exit, c is overwritten by H*C or H′*C or C*H or C*H′.

?larfg
Generates an elementary reflector (Householder 
matrix).

Syntax
call slarfg ( n, alpha, x, incx, tau )

call dlarfg ( n, alpha, x, incx, tau )
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call clarfg ( n, alpha, x, incx, tau )

call zlarfg ( n, alpha, x, incx, tau )

Description

The routine ?larfg generates a real/complex elementary reflector H of order n, such that

 ,    H′*H = I ,

where alpha and beta are scalars (with beta real for all flavors), and x is an (n-1)-element 
real/complex vector. H is represented in the form

where tau is a real/complex scalar and v is a real/complex (n-1)-element vector. Note that for 
clarfg/zlarfg, H is not Hermitian.

If the elements of x are all zero (and, for complex flavors, alpha is real), then tau = 0 and H is 
taken to be the unit matrix.

Otherwise,  1 ≤  tau ≤  2 (for real flavors),  or
                 1 ≤ Re(tau) ≤ 2  and  abs(tau-1) ≤ 1 (for complex flavors).

Input Parameters

n INTEGER. The order of the elementary reflector.

alpha REAL for slarfg 
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
On entry, the value alpha. 

x REAL for slarfg 
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg

H ′* alpha

x

beta

0
=

H I tau* 1

v
* 1 v ′–=
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COMPLEX*16 for zlarfg
Array, DIMENSION (1+(n-2)*abs(incx)). 
On entry, the vector x.

incx INTEGER. 
The increment between elements of x. incx > 0.

Output Parameters

alpha On exit, it is overwritten with the value beta.

x On exit, it is overwritten with the vector v.

tau REAL for slarfg 
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
The value tau.

?larft
Forms the  triangular factor T of a block reflector H = I 
- VTVH.

Syntax
call slarft ( direct, storev, n, k, v, ldv, tau, t, ldt )

call dlarft ( direct, storev, n, k, v, ldv, tau, t, ldt )

call clarft ( direct, storev, n, k, v, ldv, tau, t, ldt )

call zlarft ( direct, storev, n, k, v, ldv, tau, t, ldt )

Description

The routine ?larft forms the triangular factor T of a real/complex block reflector H of order n, 
which is defined as a product of k elementary reflectors.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column 
of the array v, and H  =  I - V*T*V' .
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If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of 
the array v, and H  =  I - V' *T*V.

Input Parameters

direct CHARACTER*1. Specifies the order in which the elementary reflectors are 
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (forward)
= 'B': H = H(k) . . . H(2) H(1) (backward)

storev CHARACTER*1. Specifies how the vectors which define the elementary 
reflectors are stored (see also Application Notes below):
= 'C': column-wise
= 'R': row-wise.

n INTEGER. The order of the block reflector H. n ≥ 0.

k INTEGER. The order of the triangular factor T (equal to the number of 
elementary reflectors). k ≥ 1.

v REAL for slarft 
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION 
(ldv, k)   if storev = 'C' or 
(ldv, n)   if storev = 'R'. 
The matrix V.

ldv INTEGER. The leading dimension of the array v. 
If storev = 'C', ldv ≥ max(1,n); 
if storev = 'R', ldv ≥ k.

tau REAL for slarft 
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION (k). tau(i) must contain the scalar factor of the elementary 
reflector H(i).

ldt INTEGER. The leading dimension of the output array t. ldt ≥ k.
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Output Parameters

t REAL for slarft 
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION (ldt,k). The k-by-k triangular factor T of the block 
reflector. If direct = 'F', T is upper triangular; if direct = 'B', T is lower 
triangular. The rest of the array is not used.

v The matrix V.

Application Notes

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by 
the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the 
corresponding  array elements are modified but restored on exit. The rest of the array is not used.
  direct = 'F' and storev = 'C':         direct = 'F' and storev = 'R':

                                        

  direct = 'B' and storev = 'C':        direct = 'B' and storev = 'R':

                                       

1

v1 1

v1 v2 1

v1 v2 v3

v1 v2 v3

1 v1 v1 v1 v1

1 v2 v2 v2

1 v3 v3

v1 v2 v3

v1 v2 v3

1 v2 v3

1 v3

1

v1 v1 1

v2 v2 v2 1

v3 v3 v3 v3 1
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?larfx
Applies an elementary reflector to a general 
rectangular matrix, with loop unrolling when the 
reflector has 
order ≤ 10.

Syntax
call slarfx ( side, m, n, v, tau, c, ldc, work )

call dlarfx ( side, m, n, v, tau, c, ldc, work )

call clarfx ( side, m, n, v, tau, c, ldc, work )

call zlarfx ( side, m, n, v, tau, c, ldc, work )

Description

The routine ?larfx applies a real/complex elementary reflector H to a real/complex m-by-n 
matrix C, from either the left or the right. 
H is represented in the form 
H = I - tau * v * v', where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then H is taken to be the unit matrix

Input Parameters

side CHARACTER*1.
If side = 'L': form   H*C
If side = 'R': form  C*H.

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

v REAL for slarfx 
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Array, DIMENSION 
(m) if side = 'L' or 
(n) if side = 'R'. 
The vector v in the representation of H.
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tau REAL for slarfx 
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
The value tau in the representation of H.

c REAL for slarfx 
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Array, DIMENSION (ldc,n). On entry, the m-by-n matrix C.

ldc INTEGER. The leading dimension of the array c. 
lda ≥ (1,m).

work REAL for slarfx 
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Workspace array, DIMENSION 
(n) if side = 'L' or 
(m) if side = 'R'. 
work is not referenced if H has order < 11. 

Output Parameters

c On exit, C is overwritten by the matrix H*C if side = 'L', or C*H  if side = 
'R'.

?largv
Generates a vector of plane rotations with real cosines 
and real/complex sines.

Syntax
call slargv ( n, x, incx, y, incy, c, incc )

call dlargv ( n, x, incx, y, incy, c, incc )

call clargv ( n, x, incx, y, incy, c, incc )

call zlargv ( n, x, incx, y, incy, c, incc )
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Description

The routine generates a vector of real/complex plane rotations with real cosines, determined by 
elements of the real/complex vectors x and y. 

For slargv/dlargv:

  , for i = 1,2,...,n

For clargv/zlargv:

  , for i = 1,2,...,n

where c(i)2 + abs(s(i))2 = 1 and the following conventions are used (these are the same as in 
clartg/zlartg but differ from the BLAS Level 1 routine crotg/zrotg):
If yi = 0, then c(i) = 1 and s(i) = 0;
If xi = 0, then c(i) = 0 and s(i) is chosen so that ri  is real.

Input Parameters

n INTEGER. The number of plane rotations to be generated.

x, y REAL for slargv 
DOUBLE PRECISION for dlargv
COMPLEX for clargv
COMPLEX*16 for zlargv
Arrays, DIMENSION (1+(n-1)*incx) and (1+(n-1)*incy), respectively. 
On entry, the vectors x and y.

incx INTEGER. The increment between elements of x. 
incx > 0.

incy INTEGER. The increment between elements of y. 
incy > 0.

incc INTEGER. The increment between elements of the output array c. incc > 0.

c i( ) s i( )
s i( )– c i( )

xi

yi

ai

0
=

c i( ) s i( )
conjg s i( )( )– c i( )

xi

yi

ri

0
=
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Output Parameters

x On exit, x(i) is overwritten by ai  (for real flavors), or by  ri  (for complex 
flavors),  for i = 1,...,n.

y On exit, the sines s(i) of the plane rotations.

c REAL for slargv/clargv 
DOUBLE PRECISION for dlargv/zlargv
Array, DIMENSION (1+(n-1)*incc). The cosines of the plane rotations.

?larnv
Returns a vector of random numbers from a uniform or 
normal distribution.

Syntax
call slarnv ( idist, iseed, n, x )

call dlarnv ( idist, iseed, n, x )

call clarnv ( idist, iseed, n, x )

call zlarnv ( idist, iseed, n, x )

Description

The routine ?larnv returns a vector of n random real/complex numbers from a uniform or 
normal distribution.

This routine calls the auxiliary routine ?laruv to generate random real numbers from a uniform 
(0,1) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is used 
to transform numbers from a uniform to a normal distribution.

Input Parameters

idist INTEGER. Specifies the distribution of the random numbers: 
for slarnv and dlanrv:
= 1:  uniform (0,1)
= 2:  uniform (-1,1)
= 3:  normal (0,1).
for clarnv and zlanrv:
= 1:  real and imaginary parts each uniform (0,1)
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= 2:  real and imaginary parts each uniform (-1,1)
= 3:  real and imaginary parts each normal (0,1)
= 4:  uniformly distributed on the disc abs(z) < 1
= 5:  uniformly distributed on the circle abs(z) = 1

iseed INTEGER.
Array, DIMENSION (4).  
On entry, the seed of the random number generator; the array elements must be 
between 0 and 4095, and iseed(4) must be odd.

n INTEGER. The number of random numbers to be generated.

Output Parameters

x REAL for slarnv 
DOUBLE PRECISION for dlarnv
COMPLEX for clarnv
COMPLEX*16 for zlarnv
Array, DIMENSION (n). The generated random numbers.

iseed On exit, the seed is updated.

?larrb
Provides limited bisection to locate eigenvalues for 
more accuracy.

Syntax
call slarrb ( n, d, l, ld, lld, ifirst, ilast, sigma,

reltol, w, wgap, werr, work, iwork, info )

call dlarrb ( n, d, l, ld, lld, ifirst, ilast, sigma,
reltol, w, wgap, werr, work, iwork, info )

Description

Given the relatively robust representation(RRR) LDLT, the routine does “limited” bisection to 
locate the eigenvalues of LDLT, w(ifirst) through w(ilast), to more accuracy. Intervals [left, 
right] are maintained by storing their mid-points and semi-widths in the arrays w and werr 
respectively.
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Input Parameters

n INTEGER. The order of the matrix.

d REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). The n diagonal elements of the diagonal matrix D.

l REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The n-1 subdiagonal elements of the unit bidiagonal 
matrix L.

ld REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The n-1 elements Li*Di.

lld REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The n-1 elements Li*Li*Di.

ifirst INTEGER. The index of the first eigenvalue in the cluster.

ilast INTEGER. The index of the last eigenvalue in the cluster.

sigma REAL for slarrb
DOUBLE PRECISION for dlarrb
The shift used to form LDLT (see ?larrf).

reltol REAL for slarrb
DOUBLE PRECISION for dlarrb
The relative tolerance.

w REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input, w(ifirst) through w(ilast) are estimates 
of the corresponding eigenvalues of LDLT .

wgap REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). The gaps between the eigenvalues of LDLT . 

werr REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input, werr(ifirst) through werr(ilast) are 
the errors in the estimates w(ifirst) through w(ilast).
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work REAL for slarrb
DOUBLE PRECISION for dlarrb
Workspace array. Note that this parameter is never used in the routine. 

iwork INTEGER.
Workspace array, DIMENSION (2n).

Output Parameters

w On output these estimates of the eigenvalues are “refined”.

wgap Very small gaps are changed on output.

werr On output, “refined” errors in the estimates w(ifirst) through w(ilast).

info INTEGER. 
Error flag. Note that this parameter is never set in the routine.

?larre
Given the tridiagonal matrix T, sets small off-diagonal 
elements to zero and  for each unreduced block Ti, finds 
base representations and eigenvalues.

Syntax
call slarre ( n, d, e, tol, nsplit, isplit, m, w, woff,

gersch, work, info )

call dlarre ( n, d, e, tol, nsplit, isplit, m, w, woff,
gersch, work, info )

Description

Given the tridiagonal matrix T, the routine sets "small" off-diagonal elements to zero, and for each 
unreduced block Ti, it finds 

• the numbers σi 

• the base Ti - σi I = Li Di Li
T representations and

• eigenvalues of each Li Di Li
T.
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The representations and eigenvalues found are then used by ?stegr to compute the eigenvectors 
of a symmetric tridiagonal matrix. Currently, the base representations are limited to being positive 
or negative definite, and the eigenvalues of the definite  matrices are found by the dqds algorithm 
(subroutine ?lasq2). As an added benefit, ?larre also outputs the n Gerschgorin intervals for 
each Li Di Li

T.

Input Parameters

n INTEGER. The order of the matrix.

d REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). On entry, the n diagonal elements of the tridiagonal 
matrix T.

e REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). On entry, the (n-1) subdiagonal elements of the 
tridiagonal matrix T; e(n) need not be set.

tol REAL for slarre
DOUBLE PRECISION for dlarre
The threshold for splitting. If on input |e(i)| < tol, then the matrix T is split 
into smaller blocks.

nsplit INTEGER. The number of blocks T splits into. 
1 ≤ nsplit ≤ n.

work REAL for slarre
DOUBLE PRECISION for dlarre
Workspace array, DIMENSION (4*n).

Output Parameters

d On exit, the n diagonal elements of the diagonal matrices Di .

e On exit, the subdiagonal elements of the unit bidiagonal matrices Li .

isplit INTEGER.
Array, DIMENSION (2n). The splitting points, at which T breaks up into 
submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the 
second of rows/columns isplit(1)+1 through isplit(2), etc., and the 
nsplit-th consists of rows/columns isplit(nsplit-1)+1 through 
isplit(nsplit)=n.
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 m INTEGER. The total number of eigenvalues (of all the 
Li Di Li

T) found.

w REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). The first m elements contain the eigenvalues. The 
eigenvalues of each of the blocks, Li Di Li

T, are sorted in ascending order.

woff REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n).The nsplit base points σi.

gersch REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (2n). The n Gerschgorin intervals.

info INTEGER. Output error code from ?lasq2.

?larrf
Finds a new relatively robust representation such that at 
least one of the eigenvalues is relatively isolated.

Syntax
call slarrf ( n, d, l, ld, lld, ifirst, ilast, w, dplus,

lplus, work, iwork, info )

call dlarrf ( n, d, l, ld, lld, ifirst, ilast, w, dplus,
lplus, work, iwork, info )

Description

 Given the initial representation LDLT and its cluster of close eigenvalues (in a relative measure),
w(ifirst), w(ifirst+1), ... w(ilast), the routine ?larrf finds a new relatively robust 
representation
         LDLT - σi I = L(+)D(+)L(+)T 
such that at least one of the eigenvalues of L(+)D(+)L(+)T is relatively isolated.

Input Parameters

n INTEGER. The order of the matrix.
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d REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The n diagonal elements of the diagonal matrix D.

l REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1). The (n-1) subdiagonal elements of the unit 
bidiagonal matrix L.

ld REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1). The n-1 elements Li*Di.

lld REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1). The n-1 elements Li*Li*Di.

ifirst INTEGER. The index of the first eigenvalue in the cluster.

ilast INTEGER. The index of the last eigenvalue in the cluster.

w REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n).  On input, the eigenvalues of LDLT in ascending order.
w(ifirst) through w(ilast) form the cluster of relatively close eigenvalues. 

sigma REAL for slarrf
DOUBLE PRECISION for dlarrf
The shift used to form L(+)D(+)L(+)T.

work REAL for slarrf
DOUBLE PRECISION for dlarrf
Workspace array.

Output Parameters

w On output, w(ifirst) through w(ilast) are estimates of the corresponding 
eigenvalues of L(+)D(+)L(+)T.

dplus REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The n diagonal elements of the diagonal matrix D(+).
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lplus REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The first (n-1) elements of lplus contain the 
subdiagonal elements of the unit bidiagonal matrix L(+). lplus(n) is set to 
sigma.

?larrv
Computes the eigenvectors of the tridiagonal matrix T 
= L D LT given L, D and the eigenvalues of L D LT.

Syntax
call slarrv ( n, d, l, isplit, m, w, iblock, gersch,

tol, z, ldz, isuppz, work, iwork, info )

call dlarrv ( n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info )

call clarrv ( n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info )

call zlarrv ( n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info )

Description

The routine ?larrv computes the eigenvectors of the tridiagonal matrix 
T = L D LT given L, D and the eigenvalues of L D LT. The input eigenvalues should have high 
relative accuracy with respect to the entries of L and D. The desired accuracy of the output can be 
specified by the input parameter tol.

Input Parameters

n INTEGER. The order of the matrix. n ≥ 0.

d REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). On entry, the n diagonal elements of the diagonal 
matrix D. 
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l REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n-1). On entry, the (n-1) subdiagonal elements of the unit 
bidiagonal matrix L are contained in elements 1 to n-1 of l. l(n) need not be 
set. 

isplit INTEGER.
Array, DIMENSION (n). The splitting points, at which T breaks up into 
submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the 
second of rows/columns isplit(1)+1 through isplit(2), etc.

tol REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
The absolute error tolerance for the eigenvalues/eigenvectors.
Errors in the input eigenvalues must be bounded by tol. The eigenvectors 
output have residual norms bounded by tol, and the dot products between 
different eigenvectors are bounded by tol. tol must be at least n*eps*|T|, 
where eps is the machine precision and |T| is the 1-norm of the tridiagonal 
matrix.

m INTEGER. The total number of eigenvalues found.  
0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu - il +1.

w REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). The first m elements of w contain the eigenvalues for 
which eigenvectors are to be computed.  The eigenvalues should be grouped by 
split-off block and ordered from smallest to largest within the block (The 
output array w  from ?larre is expected here). Errors in w must be bounded 
by tol.

iblock INTEGER.
Array, DIMENSION (n). The submatrix indices associated with the 
corresponding eigenvalues in w; iblock(i)=1 if eigenvalue w(i) belongs to 
the first submatrix from the top, =2 if w(i) belongs to the second submatrix, 
etc. 

ldz INTEGER. The leading dimension of the output array z.  ldz ≥ 1, and if jobz
= 'V', ldz ≥ max(1,n).

work REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Workspace array, DIMENSION (13n).
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iwork INTEGER.
Workspace array, DIMENSION (6n). 

Output Parameters

d On exit, d may be overwritten.

l On exit, l is overwritten.

z REAL for slarrv 
DOUBLE PRECISION for dlarrv
COMPLEX for clarrv
COMPLEX*16 for zlarrv
Array, DIMENSION (ldz, max(1,m) ). 
If jobz = 'V', then if info = 0, the first m columns of z contain the 
orthonormal eigenvectors of the matrix T corresponding to the selected 
eigenvalues, with the i-th column of z holding the eigenvector associated with
w(i).
If jobz = 'N', then z is not referenced.

isuppz INTEGER .
Array, DIMENSION (2*max(1,m)). The support of the eigenvectors in z, i.e., the 
indices indicating the nonzero elements in z. The i-th eigenvector is nonzero 
only in elements isuppz(2i-1) through isuppz(2i).

info INTEGER.
If info = 0:  successful exit
If info = -i < 0:  the i-th argument had an illegal value
info > 0:  if info = 1, there is an internal error in ?larrb;
if info = 2, there is an internal error in ?stein.

NOTE.  The user must ensure that at least max(1,m) columns are  
supplied in the array z; if range = 'V', the exact value of m is not 
known in advance and an upper bound must be used.
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?lartg
Generates a plane rotation with real cosine and 
real/complex sine.

Syntax
call slartg ( f, g, cs, sn, r )

call dlartg ( f, g, cs, sn, r )

call clartg ( f, g, cs, sn, r )

call zlartg ( f, g, cs, sn, r )

Description

The routine generates a plane rotation so that

where cs2 + |sn|2 = 1

This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the 
following differences.

For slartg/dlartg:

f and g are unchanged on return;
If g=0, then cs=1 and sn=0;
If f=0 and g ≠ 0, then cs=0 and sn=1 without doing any floating point operations
(saves work in ?bdsqr when there are zeros on the diagonal);
If f exceeds g in magnitude, cs will be positive.

For clartg/zlartg:

f and g are unchanged on return;
If g=0, then cs=1 and sn=0;
If f=0, then cs=0 and sn is chosen so that r is real.

cs sn

conjg sn( )– cs

f

g
⋅ r

0
=
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Input Parameters

f, g REAL for slartg

DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The first and second component of vector to be rotated.

Output Parameters

cs REAL for slartg/clartg

DOUBLE PRECISION for dlartg/zlartg
The cosine of the rotation.

sn REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg

The sine of the rotation.

r REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The nonzero component of the rotated vector.

?lartv
Applies a vector of plane rotations with real cosines 
and real/complex sines to the elements of a pair of 
vectors. 

Syntax
call slartv ( n, x, incx, y, incy, c, s, incc )

call dlartv ( n, x, incx, y, incy, c, s, incc )

call clartv ( n, x, incx, y, incy, c, s, incc )

call zlartv ( n, x, incx, y, incy, c, s, incc )
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Description

The routine applies a vector of real/complex plane rotations with real cosines to elements of the 
real/complex vectors x and y. For i = 1,2,...,n

Input Parameters

n INTEGER. The number of plane rotations to be applied.

x, y REAL for slartv 
DOUBLE PRECISION for dlartv
COMPLEX for clartv
COMPLEX*16 for zlartv
Arrays, DIMENSION (1+(n-1)*incx) and (1+(n-1)*incy), respectively. The 
input vectors x and y.

incx INTEGER. The increment between elements of x. 
incx > 0.

incy INTEGER. The increment between elements of y. 
incy > 0.

c REAL for slartv/clartv
DOUBLE PRECISION for dlartv/zlartv
Array,  DIMENSION (1+(n-1)*incc). The cosines of the plane rotations.

s REAL for slartv 
DOUBLE PRECISION for dlartv
COMPLEX for clartv
COMPLEX*16 for zlartv
Array, DIMENSION (1+(n-1)*incc). The sines of the plane rotations.

incc INTEGER. The increment between elements of c and s. incc > 0.

Output Parameters

x, y The rotated vectors x and y.

xi

yi
: c i( ) s i( )

conjg s i( )( )– c i( )

xi

yi
=
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?laruv
Returns a vector of n random real numbers from a 
uniform distribution.

Syntax
call slaruv ( iseed, n, x )

call dlaruv ( iseed, n, x )

Description

The routine ?laruv returns a vector of n random real numbers from a uniform (0,1) distribution 
(n ≤ 128).

This is an auxiliary routine called by ?larnv.

Input Parameters

iseed INTEGER.
Array, DIMENSION (4). On entry, the seed of the random number generator; the 
array elements must be between 0 and 4095, and iseed(4) must be odd. 

n INTEGER. The number of random numbers to be generated. n ≤ 128.

Output Parameters

x REAL for slaruv
DOUBLE PRECISION for dlaruv
Array,  DIMENSION (n). The generated random numbers.

seed On exit, the seed is updated.
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?larz
Applies an elementary reflector (as returned by 
?tzrzf) to a general matrix.

Syntax
call slarz ( side, m, n, l, v, incv, tau, c, ldc, work )

call dlarz ( side, m, n, l, v, incv, tau, c, ldc, work )

call clarz ( side, m, n, l, v, incv, tau, c, ldc, work )

call zlarz ( side, m, n, l, v, incv, tau, c, ldc, work )

Description

The routine ?larz applies a real/complex elementary reflector H to a real/complex m-by-n matrix 
C, from either the left or the right. 
H is represented in the form
H = I - tau * v * v',
where tau is a real/complex scalar and v  is a real/complex vector.
If tau = 0, then H is taken to be the unit matrix.
For complex flavors, to apply H′(the conjugate transpose of H), supply conjg(tau) instead of 
tau.
H is a product of k elementary reflectors as returned by ?tzrzf.

Input Parameters

side CHARACTER*1.
If side = 'L': form   H*C
If side = 'R': form  C*H

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

l INTEGER. The number of entries of the vector v containing the meaningful part 
of the Householder vectors. 
If side = 'L', m ≥ l ≥ 0, if side = 'R', n ≥ l ≥ 0.

v REAL for slarz 
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
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Array,  DIMENSION (1+(l-1)*abs(incv)). The vector v in the representation of 
H as returned by ?tzrzf. 
v is not used if tau = 0.

incv INTEGER. The increment between elements of v. 
incv ≠ 0.

tau REAL for slarz 
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
The value tau in the representation of H.

c REAL for slarz 
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Array, DIMENSION (ldc,n). 
On entry, the m-by-n matrix C. 

ldc INTEGER. The leading dimension of the array c. 
ldc ≥ max(1,m).

work REAL for slarz 
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Workspace array, DIMENSION 
(n) if side = 'L' or 
(m) if side = 'R'. 

Output Parameters

c On exit, c is overwritten by the matrix H*C if side = 'L', or C*H if side = 'R'.
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?larzb
Applies a block reflector or its 
transpose/conjugate-transpose to a general matrix.

call slarzb ( side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c,
ldc, work, ldwork )

call dlarzb ( side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c,
ldc, work, ldwork )

call clarzb ( side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c,
ldc, work, ldwork )

call zlarzb ( side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c,
ldc, work, ldwork )

Description

The routine applies a real/complex block reflector H or its transpose HT (or HH for complex 
flavors) to a real/complex distributed m-by-n matrix  C from the left or the right.
Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters 

side CHARACTER*1.
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right

trans CHARACTER*1.
If trans = 'N': apply H (No transpose)
If trans='C': apply H' (Transpose/conjugate transpose)

direct CHARACTER*1. Indicates how H is formed from a product of elementary 
reflectors
= 'F': H = H(1) H(2)... H(k) (forward, not supported yet)
= 'B': H = H(k)... H(2) H(1) (backward)

storev CHARACTER*1. Indicates how the vectors which define the elementary 
reflectors are stored:
= 'C': Column-wise (not supported yet)
= 'R': Row-wise.

m INTEGER. The number of rows of the matrix C.
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n INTEGER. The number of columns of the matrix C.

k INTEGER. The order of the matrix T (equal to the number of elementary 
reflectors whose product defines the block reflector).

l INTEGER. The number of columns of the matrix V containing the meaningful 
part of the Householder reflectors. 
If side = 'L', m ≥ l ≥ 0, if side = 'R', n ≥ l ≥ 0.

v REAL for slarzb 
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldv, nv). 
If storev = 'C', nv = k; if storev = 'R', nv = l.

ldv INTEGER. The leading dimension of the array v. 
If storev = 'C', ldv ≥ l; if storev = 'R', ldv ≥ k.

t REAL for slarzb 
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldt,k). The triangular k-by-k matrix T in the 
representation of the block reflector.

ldt INTEGER. The leading dimension of the array t. 
ldt ≥ k.

c REAL for slarzb 
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldc,n). On entry, the m-by-n matrix C.

ldc INTEGER. The leading dimension of the array c. 
ldc ≥ max(1,m).

work REAL for slarzb 
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Workspace array, DIMENSION (ldwork, k). 
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ldwork INTEGER. The leading dimension of the array work.
If side = 'L', ldwork ≥ max(1, n);
if side = 'R', ldwork ≥ max(1, m).

Output Parameters

c On exit, c is overwritten by H*C or H'*C or C*H or C*H'.

?larzt
Forms the triangular factor T of a block reflector H = I 
- VTVH.

Syntax
call slarzt ( direct, storev, n, k, v, ldv, tau, t, ldt )

call dlarzt ( direct, storev, n, k, v, ldv, tau, t, ldt )

call clarzt ( direct, storev, n, k, v, ldv, tau, t, ldt )

call zlarzt ( direct, storev, n, k, v, ldv, tau, t, ldt )

Description

The routine forms the triangular factor T of a real/complex block reflector H of order > n, which is 
defined as a product of k elementary reflectors.
If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular. 
If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column 
of the array v, and
H  =  I - V*T*V'
If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of 
the array v, and
H  =  I - V'*T*V
Currently, only storev = 'R' and direct = 'B' are supported.
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Input Parameters

direct CHARACTER*1. Specifies the order in which the elementary reflectors are 
multiplied to form the block reflector:
If direct = 'F': H = H(1) H(2) . . . H(k) (forward, not supported yet)
If direct = 'B': H = H(k) . . . H(2) H(1) (backward)

storev CHARACTER*1. Specifies how the vectors which define the elementary 
reflectors are stored (see also Application Notes below):
If storev = 'C': column-wise (not supported yet)
If storev = 'R': row-wise

n INTEGER. The order of the block reflector H. n ≥ 0.

k INTEGER. The order of the triangular factor T (equal to the number of 
elementary reflectors). k ≥ 1.

v REAL for slarzt 
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION
(ldv, k) if storev = 'C'
(ldv, n) if storev = 'R'
The matrix V.

ldv INTEGER. The leading dimension of the array v. 
If storev = 'C', ldv ≥ max(1,n); 
if storev = 'R', ldv ≥ k.

tau REAL for slarzt 
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION (k). tau(i) must contain the scalar factor of the elementary 
reflector H(i).

ldt INTEGER. The leading dimension of the output array t. 
ldt ≥ k.

Output Parameters

t REAL for slarzt 
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
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COMPLEX*16 for zlarzt
Array, DIMENSION (ldt,k). The k-by-k triangular factor T of the block 
reflector. If direct = 'F', T is upper triangular; if direct = 'B', T is lower 
triangular. The rest of the array is not used.

v The matrix V. See Application Notes below.

Application Notes

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by 
the following example with n = 5 and  k = 3. The elements equal to 1 are not stored; the 
corresponding  array elements are modified but restored on exit. The rest of the  array is not used.

  direct = 'F' and storev = 'C':        direct = 'F' and storev = 'R':

                                                                 ____V___  

                                                               /                 \

                              

                                                     

V

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

=

. . .

. . .

1 . .

1 .

1

v1 v1 v1 v1 v1 . . . . 1

v2 v2 v2 v2 v2 . . . 1

v3 v3 v3 v3 v3 . . 1
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direct = 'B' and storev = 'C':         direct = 'B' and storev = 'R':

                                                                              ____V___     

                                                                            /                 \ 

                                                             

                            

?las2
Computes singular values of a 2-by-2 triangular 
matrix.

Syntax
call slas2 ( f, g, h, ssmin, ssmax )

call dlas2 ( f, g, h, ssmin, ssmax )

Description

The routine ?las2 computes the singular values of the 2-by-2 matrix

            

On return, ssmin is the smaller singular value and ssmax is the larger singular value.

1

. 1

. . 1

. . .

. . .

V

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

=

1 . . . . v1 v1 v1 v1 v1

. 1 . . . v2 v2 v2 v2 v2

. . 1 . . v3 v3 v3 v3 v3

f g

0 h
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Input Parameters

f, g, h REAL for slas2

DOUBLE PRECISION for dlas2 
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix, respectively.

Output Parameters

ssmin, ssmax REAL for slas2
DOUBLE PRECISION for dlas2 
The smaller and the larger singular values, respectively.

Application Notes

Barring over/underflow, all output quantities are correct to within  a few units in the last place 
(ulps), even in the absence of a guard  digit in addition/subtraction.
In IEEE arithmetic, the code works correctly if one matrix element is  infinite.
Overflow will not occur unless the largest singular value itself  overflows, or is within a few ulps 
of overflow. (On machines with  partial overflow, like the Cray, overflow may occur if the largest  
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results  may correspond to a matrix 
modified by perturbations of size near  the underflow threshold.

?lascl
Multiplies a general rectangular matrix by a real scalar 
defined as  cto/cfrom.

Syntax
call slascl ( type, kl, ku, cfrom, cto, m, n, a, lda, info )

call dlascl ( type, kl, ku, cfrom, cto, m, n, a, lda, info )

call clascl ( type, kl, ku, cfrom, cto, m, n, a, lda, info )

call zlascl ( type, kl, ku, cfrom, cto, m, n, a, lda, info )
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Description

The routine ?lascl multiplies the m-by-n real/complex matrix A by the real scalar cto/cfrom. 
The operation is performed without over/underflow as long as the final result cto*A(i,j)/cfrom 
does not over/underflow. 
type specifies that A may be full, upper triangular, lower triangular, upper Hessenberg, or banded.

Input Parameters

type CHARACTER*1. type indices the storage type of the input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth kl and upper 
bandwidth ku and with the only the lower half stored
= 'Q': A is a symmetric band matrix with lower bandwidth kl and upper 
bandwidth ku and with the only the upper half stored.
= 'Z': A is a band matrix with lower bandwidth kl and upper bandwidth ku.

kl INTEGER. The lower bandwidth of A. Referenced only if type = 'B', 'Q' or 'Z'.

ku INTEGER. The upper bandwidth of A. Referenced only if type = 'B', 'Q' or 'Z'.

cfrom, cto REAL for slascl/clascl
DOUBLE PRECISION for dlascl/zlascl

The matrix A is multiplied by cto/cfrom. A(i,j) is computed without 
over/underflow if the final result 
cto*A(i,j)/cfrom can be represented without over/underflow.  cfrom must be 
nonzero.

m INTEGER. The number of rows of the matrix A. m ≥ 0.

n INTEGER. The number of columns of the matrix A. 
n ≥ 0.

a REAL for slascl 
DOUBLE PRECISION for dlascl
COMPLEX for clascl
COMPLEX*16 for zlascl
Array, DIMENSION (lda, m). The matrix to be multiplied by cto/cfrom. See 
type for the storage type.

lda INTEGER. The leading dimension of the array a.  
lda ≥ max(1,m).
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Output Parameters

a The multiplied matrix A.

info INTEGER.
If info = 0 - successful exit
If info = -i < 0, the i-th argument had an illegal value.

?lasd0
Computes the singular values of a real upper 
bidiagonal n-by-m matrix B with diagonal d and 
off-diagonal e. 
Used by ?bdsdc.

Syntax
call slasd0 ( n, sqre, d, e, u, ldu, vt, ldvt, smlsiz,

iwork, work, info )

call dlasd0 ( n, sqre, d, e, u, ldu, vt, ldvt, smlsiz,
iwork, work, info )

Description

Using a divide and conquer approach, the routine ?lasd0 computes the singular value 
decomposition (SVD) of a real upper bidiagonal n-by-m matrix B with diagonal d and 
offdiagonal e, where m = n + sqre.

The algorithm computes orthogonal matrices U and VT such that 
B = U*S*VT. The singular values S are overwritten on d.

A related subroutine, ?lasda, computes only the singular values, and optionally, the singular 
vectors in compact form.

Input Parameters

n INTEGER. On entry, the row dimension of the upper bidiagonal matrix. This is 
also the dimension of the main diagonal array d.

sqre INTEGER. Specifies the column dimension of the bidiagonal matrix.
If sqre = 0: The bidiagonal matrix has column dimension m = n;
If sqre = 1: The bidiagonal matrix has column dimension m = n+1;
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d REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION (n). On entry, d contains the main diagonal of the 
bidiagonal matrix.

e REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION (m-1). Contains the subdiagonal entries of the bidiagonal 
matrix. On exit, e is destroyed.

ldu INTEGER. On entry, leading dimension of the output array u.

ldvt INTEGER. On entry, leading dimension of the output array vt.

smlsiz INTEGER. On entry, maximum size of the subproblems at the bottom of the 
computation tree.

iwork INTEGER.
Workspace array, DIMENSION must be at least (8n).

work REAL for slasd0
DOUBLE PRECISION for dlasd0
Workspace array, DIMENSION must be at least 
(3m2 + 2m). 

Output Parameters

d On exit d, if info = 0, contains singular values of the bidiagonal matrix.

u REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least (ldq, n). On exit, u contains the left singular 
vectors.

vt REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least (ldvt, m). On exit, vt' contains the right singular 
vectors.

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info = 1, an singular value did not converge.
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?lasd1
Computes the SVD of an upper bidiagonal matrix B of 
the specified size. Used by ?bdsdc.

Syntax
call slasd1 ( nl, nr, sqre, d, alpha, beta, u, ldu, vt,

ldvt, idxq, iwork, work, info )

call dlasd1 ( nl, nr, sqre, d, alpha, beta, u, ldu, vt,
ldvt, idxq, iwork, work, info )

Description

This routine computes the SVD of an upper bidiagonal n-by-m matrix B, where n = nl + nr + 1 
and m = n + sqre. The routine ?lasd1 is called from ?lasd0.

A related subroutine ?lasd7 handles the case in which the singular values (and the singular 
vectors in factored form) are desired.
?lasd1 computes the SVD as follows:

   

where Z' = (Z1' a  Z2'  b) = u' VT', and u is a vector of dimension m with alpha and beta in the 
nl+1 and nl+2 -th entries and zeros elsewhere; and the entry b is empty if sqre = 0.

The left singular vectors of the original matrix are stored in u, and the transpose of the right 
singular vectors are stored in vt, and the singular values are in d. The algorithm consists of three 
stages: 

The first stage consists of deflating the size of the problem when there are multiple singular values 
or when there are zeros in the Z vector. For each such occurrence the dimension of the secular 
equation problem is reduced by one. This stage is performed by the routine ?lasd2.

B U in( )*

D1 in( ) 0 0 0

Z1 ′ a Z2 ′ b

0 0 D2 in( ) 0
*VT in( )=

U out( )* D out( ) 0( )*VT out( )=
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The second stage consists of calculating the updated singular values. This is done by finding the 
square roots of the roots of the secular equation via the routine ?lasd4 (as called by ?lasd3). 
This routine also calculates the singular vectors of the current problem.

The final stage consists of computing the updated singular vectors directly using the updated 
singular values. The singular vectors for the current problem are multiplied with the singular 
vectors from the overall problem.

Input Parameters

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.  
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square matrix.
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The 
bidiagonal matrix has row dimension n = nl + nr + 1, and column dimension
m = n + sqre.

d REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (n = nl+nr+1). On entry d(1:nl,1:nl) contains the 
singular values of the upper block; and d(nl+2:n) contains the singular values 
of the lower block.

alpha REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the diagonal element associated with the added row.

beta REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the off-diagonal element associated with the added row.

u REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (ldu, n). On entry u(1:nl, 1:nl) contains the left singular 
vectors of the upper block; u(nl+2:n, nl+2:n) contains the left singular 
vectors of the lower block.

ldu INTEGER. The leading dimension of the array u.  
ldu ≥ max(1, n).
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vt REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (ldvt, m), where m = n + sqre. 
On entry vt(1:nl+1, 1:nl+1)' contains the right singular vectors of the upper 
block; vt(nl+2:m, nl+2:m)' contains the right singular vectors of the lower 
block.

ldvt INTEGER. The leading dimension of the array vt.  
ldvt ≥ max(1, m).

iwork INTEGER.
Workspace array, DIMENSION (4n).

work REAL for slasd1
DOUBLE PRECISION for dlasd1
Workspace array, DIMENSION (3m2 + 2m).

Output Parameters

d On exit d(1:n) contains the singular values of the modified matrix.

u On exit u contains the left singular vectors of the bidiagonal matrix.

vt On exit vt' contains the right singular vectors of the bidiagonal matrix.

idxq INTEGER 
Array, DIMENSION (n). Contains the permutation which will reintegrate the 
subproblem just solved back into sorted order, that is, d(idxq( i = 1, n )) will 
be in ascending order.

info INTEGER.
If info = 0:  successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info  = 1, an singular value did not converge.
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?lasd2
Merges the two sets of singular values together into a 
single  sorted set.  
Used by ?bdsdc.

Syntax
call slasd2 ( nl, nr, sqre, k, d, z, alpha, beta, u, ldu,

vt, ldvt, dsigma, u2, ldu2, vt2, ldvt2,
idxp, idx, idxc, idxq, coltyp, info )

call dlasd2 ( nl, nr, sqre, k, d, z, alpha, beta, u, ldu,
vt, ldvt, dsigma, u2, ldu2, vt2, ldvt2,
idxp, idx, idxc, idxq, coltyp, info )

Description

The routine ?lasd2 merges the two sets of singular values together into a single  sorted set.  Then 
it tries to deflate the size of the problem. There are two ways in which deflation can occur:  when 
two or more singular values are close together or if there is a tiny entry in the Z vector. For each 
such occurrence the order of the related secular equation problem is reduced by one.

The routine ?lasd2 is called from ?lasd1.

Input Parameters

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.  
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square matrix
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The 
bidiagonal matrix has n = nl + nr + 1 rows and m = n + sqre ≥ n columns.

d REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). On entry d contains the singular values of the two 
submatrices to be combined.  
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alpha REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the diagonal element associated with the added row.

beta REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the off-diagonal element associated with the added row.

u REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldu, n). On entry u contains the left singular vectors of 
two submatrices in the two square blocks with corners at (1,1), (nl, nl), and 
(nl+2, nl+2), (n,n). 

ldu INTEGER. The leading dimension of the array u.  
ldu ≥ n.

ldu2 INTEGER. The leading dimension of the output array u2.  ldu2 ≥ n.

vt REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldvt, m). On entry vt' contains the right singular vectors 
of two submatrices in the two square blocks with corners at (1,1), (nl+1, 
nl+1), and (nl+2, nl+2), (m,m). 

ldvt INTEGER. The leading dimension of the array vt.  
ldvt ≥ m.

ldvt2 INTEGER. The leading dimension of the output array vt2.  ldvt2 ≥ m.

idxp INTEGER.
Workspace array, DIMENSION (n). This will contain the permutation used to 
place deflated values of d at the end of the array. On output idxp(2:k) points to 
the nondeflated d-values and idxp(k+1:n) points to the deflated singular 
values. 

idx INTEGER.
Workspace array, DIMENSION (n). This will contain the permutation used to 
sort the contents of d into ascending order. 

coltyp INTEGER.
Workspace array, DIMENSION (n). As workspace, this will contain a label 
which will indicate which of the following types a column in the u2 matrix or a 
row in the vt2 matrix is:
1 : non-zero in the upper half only
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2 : non-zero in the lower half only
3 : dense
4 : deflated.

idxq INTEGER.
Array, DIMENSION (n). This contains the permutation which separately sorts 
the two sub-problems in d into ascending order.  Note that entries in the first 
half of this permutation must first be moved one position backward; and entries 
in the second half must first have nl+1 added to their values.

Output Parameters

k INTEGER. Contains the dimension of the non-deflated matrix, This is the order 
of the related secular equation. 1 ≤ k ≤n.

d On exit d contains the trailing (n-k) updated singular values (those which were 
deflated) sorted into increasing order.

u On exit u contains the trailing (n-k) updated left singular vectors (those which 
were deflated) in its last n-k columns.

z REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). On exit z contains the updating row vector in the 
secular equation.

dsigma REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). Contains a copy of the diagonal elements (k-1 singular 
values and one zero) in the secular equation.

u2 REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldu2, n). Contains a copy of the first k-1 left singular 
vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to solve 
for the new left singular vectors. u2 is arranged into four blocks. The first 
block contains a column with 1 at nl+1 and zero everywhere else; the second 
block contains non-zero entries only at and above nl; the third contains 
non-zero entries only below nl+1; and the fourth is dense.

vt On exit vt' contains the trailing (n-k) updated right singular vectors (those 
which were deflated) in its last n-k columns. In case sqre =1, the last row of 
vt spans the right null space.
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vt2 REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldvt2, n). vt2' contains a copy of the first k right 
singular vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to 
solve for the new right singular vectors. vt2 is arranged into three blocks. The 
first block contains a row that corresponds to the special 0 diagonal element in 
sigma; the second block contains non-zeros only at and before nl +1; the third 
block contains non-zeros only at and after nl +2.

idxc INTEGER.
Array, DIMENSION (n). This will contain the permutation used to arrange the 
columns of the deflated U matrix into three groups:  the first group contains 
non-zero entries only at and above nl, the second contains non-zero entries 
only below nl+2, and the third is dense.

coltyp On exit, it is an array of dimension 4, with coltyp(i) being the dimension of 
the i-th type columns.

info INTEGER.
If info = 0:  successful exit
If info = -i < 0, the i-th argument had an illegal value.

?lasd3
Finds all square roots of the roots of the secular 
equation, as defined by the values in D and Z, and then 
updates the singular vectors by matrix multiplication. 
Used by ?bdsdc.

Syntax
call slasd3 ( nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu,

u2, ldu2, vt, ldvt, vt2, ldvt2, idxc, ctot,
z, info )

call dlasd3 ( nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu,
u2, ldu2, vt, ldvt, vt2, ldvt2, idxc, ctot,
z, info )
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Description

The routine ?lasd3 finds all the square roots of the roots of the secular equation, as defined by 
the values in D and Z. It makes the appropriate calls to ?lasd4 and then updates the singular 
vectors by matrix multiplication.

The routine ?lasd3 is called from ?lasd1.

Input Parameters

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.  
nr ≥ 1.

sqre INTEGER. 
If sqre = 0: the lower block is an nr-by-nr square matrix.
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The 
bidiagonal matrix has n = nl + nr + 1 rows and m = n + sqre ≥ n columns.

k INTEGER.The size of the secular equation, 1 ≤ k ≤ n.

q REAL for slasd3
DOUBLE PRECISION for dlasd3
Workspace array, DIMENSION at least (ldq, k). 

ldq INTEGER. The leading dimension of the array q.  
ldq ≥ k.

dsigma REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). The first k elements of this array contain the old roots 
of the deflated updating problem.  These are the poles of the secular equation.

u REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldu, n). The last n - k columns of this matrix contain the 
deflated left singular vectors.

ldu INTEGER. The leading dimension of the array u. 
 ldu ≥ n.
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u2 REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldu2, n). The first k columns of this matrix contain the 
non-deflated left singular vectors for the split problem.

ldu2 INTEGER. The leading dimension of the array u2.  
ldu2 ≥ n.

vt REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldvt, m). The last m - k columns of vt' contain the 
deflated right singular vectors.

ldvt INTEGER. The leading dimension of the array vt.  
ldvt ≥ n.

vt2 REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldvt2, n). The first k columns of vt2' contain the 
non-deflated right singular vectors for the split problem.

ldvt2 INTEGER. The leading dimension of the array vt2.  ldvt2 ≥ n.

idxc INTEGER.
Array, DIMENSION (n). The permutation used to arrange the columns of u (and 
rows of vt) into three groups:  the first group contains non-zero entries only at 
and above (or before) nl +1; the second contains non-zero entries only at and 
below (or after) nl+2; and the third is dense. The first column of u and the row 
of vt are treated separately, however. The rows of the singular vectors found 
by ?lasd4 must be likewise permuted before the matrix multiplies can take 
place.

ctot INTEGER.
Array, DIMENSION (4). A count of the total number of the various types of 
columns in u (or rows in vt), as described in idxc. The fourth column type is 
any column which has been deflated.

z REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). The first k elements of this array contain the 
components of the deflation-adjusted updating row vector.
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Output Parameters

d REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). On exit the square roots of the roots of the secular 
equation, in ascending order.

info INTEGER.
If info = 0:  successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info  = 1, an singular value did not converge.

Application Notes

This code makes very mild assumptions about floating point arithmetic. It will work on machines 
with a guard digit in add/subtract, or on those binary machines without guard digits which subtract 
like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or 
decimal machines without guard digits, but we know of none.

?lasd4
Computes the square root of the i-th updated 
eigenvalue of a positive symmetric rank-one 
modification to a positive diagonal matrix. 
Used by ?bdsdc.

Syntax
call slasd4 ( n, i, d, z, delta, rho, sigma, work, info )

call dlasd4 ( n, i, d, z, delta, rho, sigma, work, info )

Description

This routine computes the square root of the i-th updated eigenvalue of a positive symmetric 
rank-one modification to a positive diagonal matrix whose entries are given as the squares of the 
corresponding entries in the array d, and that 0 ≤ d(i) < d(j)  for i < j and that rho > 0. This is 
arranged by the calling routine, and is no loss in generality.  The rank-one modified system is thus 
           diag( d )* diag( d ) + rho *Z * Z_transpose 
where we assume the Euclidean norm of Z is 1.The method consists of approximating the rational 
functions in the secular equation by simpler interpolating rational functions.
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Input Parameters

n INTEGER. The length of all arrays.

i INTEGER. The index of the eigenvalue to be computed.  1 ≤ i ≤ n.

d REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
The original eigenvalues.  It is assumed that they are in   order, 0 ≤ d(i) < d(j)  
for i < j.

z REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
The components of the updating vector.

 rho REAL for slasd4
DOUBLE PRECISION for dlasd4
The scalar in the symmetric updating formula.

work REAL for slasd4
DOUBLE PRECISION for dlasd4
Workspace array, DIMENSION (n ).
If n ≠ 1, work contains (d(j) + sigma_i) in its  j-th component.  If n = 1, then 
work( 1 ) = 1.

Output Parameters

delta REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
If n ≠ 1, delta contains (d(j) - sigma_i) in its j-th    component.  If n = 1, then 
delta (1) = 1.  The vector delta contains the information necessary to 
construct the (singular) eigenvectors.

sigma REAL for slasd4
DOUBLE PRECISION for dlasd4
The computed λi, the i-th updated eigenvalue.

info INTEGER.
 = 0:  successful exit
 > 0:  if info = 1, the updating process failed.
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?lasd5
Computes the square root of the i-th eigenvalue of a 
positive symmetric rank-one modification of a 2-by-2 
diagonal matrix.Used by ?bdsdc.

Syntax
call slasd5 ( i, d, z, delta, rho, dsigma, work )

call dlasd5 ( i, d, z, delta, rho, dsigma, work )

Description

This routine computes the square root of the i-th eigenvalue of a positive symmetric rank-one 
modification of a 2-by-2 diagonal matrix 
    diag( d )* diag( d ) + rho *Z * Z_transpose 

The diagonal entries in the array d are assumed to satisfy 0 ≤ d(i) < d(j)  for  i < j .We also assume 
rho > 0 and that the Euclidean norm of the vector Z is one.

Input Parameters

i INTEGER.The index of the eigenvalue to be computed.  i = 1 or i = 2.

d REAL for slasd5
DOUBLE PRECISION for dlasd5
Array, DIMENSION ( 2 ).
The original eigenvalues. We assume 0 ≤ d(1) < d(2).

z REAL for slasd5
DOUBLE PRECISION for dlasd5
Array, DIMENSION ( 2 ).
The components of the updating vector.

rho REAL for slasd5 
DOUBLE PRECISION for dlasd5

The scalar in the symmetric updating formula.

work REAL for slasd5 
DOUBLE PRECISION for dlasd5.
Workspace array, DIMENSION ( 2 ).
Contains (d(j) + sigma_i) in its  j-th component.
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Output Parameters

delta REAL for slasd5 
DOUBLE PRECISION for dlasd5.
Array, DIMENSION ( 2 ). 
Contains (d(j) - λi) in its  j-th component. The vector delta contains the 
information necessary to construct the eigenvectors.

dsigma REAL for slasd5
DOUBLE PRECISION for dlasd5.
The computed λi, the i-th updated eigenvalue.

?lasd6
Computes the SVD of an updated upper bidiagonal 
matrix obtained by merging two smaller ones by 
appending a row. Used by ?bdsdc.

Syntax
call slasd6 ( icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr,

givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork,
info)

call dlasd6 ( icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr,
givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork,
info)

Description

The routine ?lasd6 computes the SVD of an updated upper bidiagonal matrix B obtained by 
merging two smaller ones by appending a row. This routine is used only for the problem which 
requires all singular values and optionally singular vector matrices in factored form. B is an n-by-m
matrix with 
n = nl + nr + 1 and m = n + sqre. A related subroutine, ?lasd1, handles the case in which all 
singular values and singular vectors of the bidiagonal matrix are desired. ?lasd6 computes the 
SVD as follows:
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where Z' = (Z1' a  Z2'  b) = u' VT', and u is a vector of dimension m with alpha and beta in the 
nl+1 and nl+2 -th entries and zeros elsewhere; and the entry b is empty if sqre = 0.

The singular values of B can be computed using D1, D2, the first components of all the right 
singular vectors of the lower block, and the last components of all the right singular vectors of the 
upper block. These components are stored and updated in vf and vl, respectively, in ?lasd6. 
Hence U and VT are not explicitly referenced.
The singular values are stored in D. The algorithm consists of two stages: 
the first stage consists of deflating the size of the problem when there are multiple singular values 
or if there is a zero in the Z vector. For each such occurrence the dimension of the secular equation 
problem is reduced by one. This stage is performed by the routine ?lasd7.

The second stage consists of calculating the updated singular values. This is done by finding the 
roots of the secular equation via the routine ?lasd4 (as called by ?lasd8). This routine also 
updates vf and vl and computes the distances between the updated singular values and the old 
singular values. ?lasd6 is called from ?lasda.

Input Parameters

icompq  INTEGER. Specifies whether singular vectors are to be computed in  factored 
form: 
= 0: Compute singular values only 
= 1: Compute singular vectors in factored form as well.

nl INTEGER.The row dimension of the upper block.  
nl ≥ 1. 

nr INTEGER.The row dimension of the lower block.  
nr ≥ 1.

B U in( )*

D1 in( ) 0 0 0

Z1 ′ a Z2 ′ b

0 0 D2 in( ) 0
*VT in( )=

U out( )* D out( ) 0( )*VT out( )=
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sqre INTEGER .  
= 0: the lower block is an nr-by-nr square matrix.       
= 1: the lower block is an nr-by-(nr+1) rectangular matrix.
The bidiagonal matrix has row dimension n=nl+nr+1, and column dimension 
m = n + sqre.

 d REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION ( nl+nr+1 ). On entry d(1:nl,1:nl) contains the singular 
values of the upper block, and d(nl+2:n) contains the singular values  of the 
lower block. 

 vf REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION ( m ). On entry, vf(1:nl+1) contains the first components 
of all right singular vectors of the upper block; and vf(nl+2:m)  contains the 
first components of all right singular vectors of the lower block. 

vl REAL for slasd6
DOUBLE PRECISION for dlasd6
Array,  DIMENSION ( m ). On entry, vl(1:nl+1) contains the  last components 
of all right singular vectors of the upper block; and vl(nl+2:m) contains the 
last components of all right singular vectors of the lower block.

 alpha REAL for slasd6
DOUBLE PRECISION for dlasd6
Contains the diagonal element associated with the added row.

 beta REAL for slasd6
DOUBLE PRECISION for dlasd6

Contains the off-diagonal element associated with the added row.

ldgcol INTEGER.The leading dimension of the output array givcol, must be at 
least n.

ldgnum INTEGER. The leading dimension of the output arrays givnum and poles, 
must be at least n.

 work REAL for slasd6 
DOUBLE PRECISION for dlasd6
Workspace array, DIMENSION ( 4m ). 

iwork INTEGER 
Workspace array,  DIMENSION ( 3n ). 
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Output Parameters

 d On exit d(1:n) contains the singular values of the modified matrix.

 vf On exit, vf contains the first components  of all right singular vectors of the 
bidiagonal matrix.

vl On exit, vl contains the last components of all right singular vectors of the 
bidiagonal matrix.

idxq INTEGER. 
Array, DIMENSION (n). This contains the permutation which will reintegrate 
the subproblem just solved back into sorted order, that is, d( idxq( i = 1, n ) ) 
will be in ascending order.

perm INTEGER. 
Array, DIMENSION (n). The permutations (from deflation and sorting) to be 
applied to each block. Not referenced if icompq = 0.

 givptr INTEGER. The number of Givens rotations which took place in this 
subproblem. Not referenced if icompq = 0.

 givcol  INTEGER.
Array,  DIMENSION ( ldgcol, 2 ). Each pair of numbers indicates a pair of 
columns to take place in a Givens rotation. Not referenced if icompq = 0.

givnum REAL for slasd6
DOUBLE PRECISION for dlasd6

Array,  DIMENSION ( ldgnum, 2 ). Each number indicates the C or S value to 
be used in the  corresponding Givens rotation. Not referenced if icompq = 0.

poles REAL for slasd6
DOUBLE PRECISION for dlasd6
Array,  DIMENSION ( ldgnum, 2 ). On exit, poles(1,*) is an array containing 
the new singular values obtained from solving the secular equation, and
poles(2,*) is an array containing the poles in the secular equation. Not 
referenced if icompq = 0.

difl REAL for slasd6
DOUBLE PRECISION for dlasd6
Array,  DIMENSION (n). On exit, difl(i) is the distance between i-th updated 
(undeflated) singular value and the i-th (undeflated) old singular value.

difr REAL for slasd6
DOUBLE PRECISION for dlasd6
Array,  
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DIMENSION (ldgnum, 2 ) if icompq = 1 and DIMENSION (n) if icompq = 0.
On exit, difr(i, 1) is the distance between i-th updated (undeflated) singular 
value and the i+1-th (undeflated) old  singular value.  If icompq = 1, 
difr(1:k, 2) is an array containing the normalizing factors for the right 
singular vector matrix.

   See ?lasd8 for details on difl and difr.

 z REAL for slasd6
DOUBLE PRECISION for dlasd6

Array, DIMENSION ( m ). 
The first elements of this array contain the components of the 
deflation-adjusted updating row vector.

 k INTEGER.   Contains the dimension of the non-deflated matrix. This is the 
order of the related secular equation. 1 ≤ k ≤ n.

 c REAL for slasd6
DOUBLE PRECISION for dlasd6
c  contains garbage if sqre =0 and the C-value of a Givens rotation related to 
the right null space if 
sqre = 1.

s REAL for slasd6
DOUBLE PRECISION for dlasd6

s contains garbage if sqre =0 and the S-value of a Givens  rotation related to 
the right null space if 
sqre = 1.

info INTEGER.   
= 0:  successful exit.
< 0:  if info = -i, the i-th argument  had  an illegal value.
>0:if info = 1, an singular value did not converge
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?lasd7
Merges the two sets of singular values together into a 
single sorted set. Then it tries to deflate the size of the 
problem. Used by ?bdsdc.

Syntax
call slasd7 ( icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta,

dsigma, idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s,
info )

call dlasd7 ( icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta,
dsigma, idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s,
info )

Description

The routine ?lasd7 merges the two sets of singular values together into a single  sorted set. Then 
it tries to deflate the size of the problem. There  are two ways in which deflation can occur:  when 
two or more singular  values are close together or if there is a tiny entry in the Z  vector. For each 
such occurrence the order of the related  secular equation problem is reduced by one. ?lasd7 is 
called from ?lasd6.

Input Parameters

icompq INTEGER.Specifies whether singular vectors are to be computed in compact 
form, as follows:
 = 0: Compute singular values only.
 = 1: Compute singular vectors of upper bidiagonal matrix in compact form.

nl INTEGER. The row dimension of the upper block.
 nl ≥ 1.

nr INTEGER. The row dimension of the lower block. 
nr ≥ 1.

sqre INTEGER.
 = 0: the lower block is an nr-by-nr square matrix.
 = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The bidiagonal 
matrix has n = nl + nr + 1 rows and m = n + sqre ≥ n columns.
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d REAL for slasd7
DOUBLE PRECISION for dlasd7

Array, DIMENSION (n). On entry d contains the singular values of the two 
submatrices  to be combined.

zw REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION ( m ). Workspace for z.

vf REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION ( m ). On entry, vf(1:nl+1) contains the first components 
of all right singular vectors of the upper block; and vf(nl+2:m) contains the 
first components of all right singular vectors of the lower block.

 vfw REAL for slasd7
DOUBLE PRECISION for dlasd7

Array, DIMENSION ( m ). Workspace for vf.

vl REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION ( m ). On entry, vl(1:nl+1) contains the  last components 
of all right singular vectors of the upper block; and vl(nl+2:m) contains the 
last components of all right singular vectors of the lower block.

vlw REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION ( m ). Workspace for vl.

alpha REAL for slasd7
DOUBLE PRECISION for dlasd7.
Contains the diagonal element associated with the added row.

beta REAL for slasd7
DOUBLE PRECISION for dlasd7
Contains the off-diagonal element associated with the added row.

idx INTEGER.
Workspace array, DIMENSION (n). This will contain the permutation used to 
sort the contents of d into ascending order.

idxp INTEGER.
Workspace array, DIMENSION (n). This will contain the permutation used to 
place deflated values of d at the end of the array. 
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idxq INTEGER.
Array, DIMENSION (n). This contains the permutation which separately sorts 
the two sub-problems in d into ascending order.  Note that entries in the first 
half of this permutation must first be moved one position backward; and entries 
in the second half must first have nl+1 added to their values.

ldgcol INTEGER.The leading dimension of the output array givcol, must be at least 
n.

ldgnum INTEGER. The leading dimension of the output array givnum, must be at least 
n.

Output Parameters

k INTEGER. Contains the dimension of the non-deflated matrix, this is the order 
of the related secular equation. 
1 ≤ k ≤n.

d On exit, d contains the trailing (n-k) updated singular values (those which were 
deflated) sorted into increasing order.

 z REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION ( m ). On exit, z contains the updating row vector in the 
secular equation.

vf On exit, vf contains the first components of all right singular vectors of the 
bidiagonal matrix.

vl On exit, vl contains the last components of all right singular vectors of the 
bidiagonal matrix.

dsigma REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (n). Contains a copy of the diagonal elements (k-1 singular 
values and one zero) in the secular equation.

idxp On output, idxp(2:k) points to the nondeflated d-values and idxp(k+1:n) 
points to the deflated singular values.

perm INTEGER. 
Array, DIMENSION (n). The permutations (from deflation and sorting) to be 
applied to each singular block. Not referenced if icompq = 0.

givptr INTEGER.The number of Givens rotations which took place in this 
subproblem. Not referenced if icompq = 0.
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givcol INTEGER.
Array, DIMENSION ( ldgcol, 2 ). Each pair of numbers indicates a pair of 
columns to take place in a Givens rotation. Not referenced if icompq = 0.

givnum REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION ( ldgnum, 2 ). Each number indicates the C or S value to be 
used in the        corresponding Givens rotation. Not referenced if icompq = 0.

c REAL for slasd7.

DOUBLE PRECISION for dlasd7.
c contains garbage if sqre =0 and the C-value of a Givens  rotation related to 
the right null space if 
sqre = 1.

s REAL for slasd7.
DOUBLE PRECISION for dlasd7.

s contains garbage if sqre =0 and the S-value of a Givens rotation related to 
the right null space if 
sqre = 1.

info INTEGER.
 = 0:  successful exit.
 < 0:  if info = -i, the i-th argument had an illegal value.

?lasd8
Finds the square roots of the roots of the secular 
equation, and stores, for each  element in D, the 
distance  to its two nearest poles. Used by ?bdsdc.

Syntax
call slasd8 ( icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info )

call dlasd8 ( icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info )
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Description

The routine ?lasd8 finds the square roots of the roots of the secular equation,  as defined by the 
values in dsigma and z. It makes the appropriate  calls to ?lasd4, and stores, for each  element in 
d, the distance  to its two nearest poles (elements in dsigma). It also updates  the arrays vf and 
vl, the first and last components of all the  right singular vectors of the original bidiagonal matrix.  
?lasd8 is called from ?lasd6.

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be computed in factored 
form in the calling routine:
 = 0: Compute singular values only.
 = 1: Compute singular vectors in factored form as well.

k INTEGER. The number of terms in the rational function to be solved by 
?lasd4. k ≥ 1.

z REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION ( k ). The first k elements of this array contain the 
components of the deflation-adjusted updating row vector.

vf REAL for slasd8
DOUBLE PRECISION  for dlasd8.
Array, DIMENSION ( k ). On entry, vf contains  information passed through 
dbede8.

vl REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION ( k ).On entry, vl contains  information passed through 
dbede8.

lddifr INTEGER.The leading dimension of the output array difr, must be at least k.

dsigma REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION ( k ). The first k elements of this array contain the old roots 
of the deflated updating problem.  These are the poles of the secular equation.

work REAL for slasd8
DOUBLE PRECISION for dlasd8.
Workspace array, DIMENSION at least (3k).
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Output Parameters

d REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION ( k ). On output, d contains the updated singular values.

vf On exit, vf contains the first k components of the first components of all right 
singular vectors of the bidiagonal matrix.

vl On exit, vl contains the first k components of the last components of all right 
singular vectors of the bidiagonal matrix.

difl REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION ( k ). On exit, difl(i) = d(i) - dsigma(i).

difr REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, 
DIMENSION ( lddifr, 2 ) if icompq = 1 and 
DIMENSION ( k ) if icompq = 0.
On exit, difr(i,1) = d(i) - dsigma(i+1), difr(k,1) is not  defined and will not 
be referenced. 
If icompq = 1, difr(1:k,2) is an array containing the normalizing factors for 
the right singular vector matrix.

info INTEGER.
= 0:  successful exit.
< 0:  if info = -i, the i-th argument had an illegal value.      > 0:  if info = 1, 
an singular value did not converge.

?lasd9
Finds the square roots of the roots of the secular 
equation, and stores, for each  element in D, the 
distance  to its two nearest poles. Used by ?bdsdc.

Syntax
call slasd9 ( icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info )

call dlasd9 ( icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info )
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Description

The routine ?lasd9 finds the square roots of the roots of the secular equation,  as defined by the 
values in dsigma and z.  It makes the  appropriate calls to ?lasd4, and stores, for each  element 
in d,  the distance to its two nearest poles (elements in dsigma). It also  updates the arrays vf and 
vl, the first and last components of all  the right singular vectors of the original bidiagonal matrix.  
?lasd9 is called from ?lasd7.

Input Parameters

icompq INTEGER.Specifies whether singular vectors are to be computed in  factored 
form in the calling routine:
If icompq = 0, compute singular values only;
If icompq = 1, compute singular vector matrices  in factored form also.

k INTEGER.The number of terms in the rational function to be solved by 
slasd4.  k ≥ 1.

dsigma REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). The first k elements of this array contain the old roots 
of the deflated updating problem.  These are the poles of the secular equation.

z REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION (k). The first k elements of this array contain the 
components of the deflation-adjusted updating row vector.

vf REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). On entry, vf contains  information passed through 
sbede8.

vl REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). On entry, vl contains  information passed through 
sbede8.

work REAL for slasd9
DOUBLE PRECISION for dlasd9.
Workspace array, DIMENSION at least (3k).
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Output Parameters

 d REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). d(i) contains the updated singular values. 

vf On exit, vf contains the first k components of the first components of all right 
singular vectors of the bidiagonal matrix.

vl On exit, vl contains the first k components of the last components of all right 
singular vectors of the bidiagonal matrix.

difl REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION (k). 
On exit, difl(i) = d(i) - dsigma(i).

difr REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, 
DIMENSION (ldu, 2)  if icompq =1 and 
DIMENSION (k)  if icompq = 0.
On exit, difr(i, 1) = d(i) - dsigma(i+1), difr(k, 1) is not defined and will 
not be referenced.
If icompq = 1, difr(1:k, 2) is an array containing the normalizing factors for 
the right singular vector matrix.

info INTEGER.
 = 0:  successful exit.
< 0:  if info = -i, the i-th argument had an illegal value.
> 0:  if info = 1, an singular value did not converge

?lasda
Computes the singular value decomposition (SVD) of a 
real upper bidiagonal matrix with diagonal d and 
off-diagonal e. Used by ?bdsdc.

Syntax
call slasda ( icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z,

poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info )
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call dlasda ( icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info )

Description

Using a divide and conquer approach, ?lasda computes the singular  value decomposition (SVD) 
of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e, where m = n + 
sqre. The  algorithm computes the singular values in the SVD  B = U*S*VT. The orthogonal 
matrices U and VT are optionally computed in  compact form. A related subroutine, ?lasd0, 
computes the singular values and the singular vectors in explicit form.

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be computed in compact 
form, as follows:
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal matrix in compact form.

smlsiz INTEGER. The maximum size of the subproblems at the bottom of the 
computation tree.

n INTEGER. The row dimension of the upper bidiagonal matrix. This is also the 
dimension of the main diagonal array d.

sqre INTEGER. Specifies the column dimension of the bidiagonal matrix.
If sqre = 0: The bidiagonal matrix has column dimension m = n;
If sqre = 1: The bidiagonal matrix has column dimension m = n + 1.

d REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (n). On entry d contains the main diagonal of the 
bidiagonal matrix. 

 e REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION ( m -1 ). Contains the subdiagonal entries of the bidiagonal 
matrix. On exit, e has been destroyed.

ldu INTEGER.  The leading dimension of arrays u, vt, difl, difr, poles,  
givnum, and z. ldu ≥ n. 

ldgcol INTEGER. The leading dimension of arrays givcol and perm. ldgcol ≥ n. 

work REAL for slasda
DOUBLE PRECISION for dlasda.
Workspace array, DIMENSION (6n + (smlsiz + 1)2).
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iwork INTEGER.
 Workspace array, DIMENSION must be at least (7n).

Output Parameters

d On exit d, if info = 0, contains the singular values of the bidiagonal matrix.

u REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, smlsiz) if icompq = 1.
Not referenced  if icompq = 0. 
If icompq = 1, on exit, u contains the left singular vector matrices of all 
subproblems at the bottom level.

vt REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION ( ldu, smlsiz+1 ) if icompq = 1, and not referenced  if 
icompq = 0. If icompq = 1, on exit, vt contains the right  singular vector 
matrices of all subproblems at the bottom level.

k INTEGER.
 Array, 
DIMENSION (n)  if icompq = 1  and
DIMENSION (1)     if icompq = 0. 
If icompq = 1, on exit, k(i) is the dimension of the i-th   secular equation on 
the computation tree.

difl REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION ( ldu, nlvl ),
where nlvl = floor (log2 (n/smlsiz))).

difr REAL for slasda
DOUBLE PRECISION for dlasda.
Array, 
DIMENSION ( ldu, 2  nlvl ) if icompq = 1 and 
DIMENSION (n) if icompq = 0.
If icompq = 1, on exit, difl(1:n, i) and difr(1:n,2i -1) record distances 
between singular values on the i-th        level and singular values on the (i 
-1)-th level, and difr(1:n, 2i ) contains the normalizing factors for the right 
singular vector matrix. See ?lasd8 for details.
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z REAL for slasda
DOUBLE PRECISION for dlasda.
Array, 
DIMENSION ( ldu, nlvl ) if icompq = 1 and 
DIMENSION (n) if icompq = 0.
The first k elements of z(1, i) contain the components of the deflation-adjusted 
updating row vector for subproblems on the i-th level.

poles REAL for slasda
DOUBLE PRECISION for dlasda
Array, DIMENSION ( ldu, 2*nlvl ) if icompq = 1, and not referenced if 
icompq = 0. If icompq = 1, on exit, poles(1, 2i - 1) and  poles(1, 2i) contain  
the new and old singular values  involved in the secular equations on the i-th 
level.

givptr INTEGER.
Array, DIMENSION (n) if icompq = 1, and not referenced if icompq = 0. If 
icompq = 1, on exit, givptr( i ) records the number of Givens rotations 
performed on the i-th problem on the computation tree.

givcol INTEGER .
Array, DIMENSION ( ldgcol, 2*nlvl ) if icompq = 1, and not referenced if 
icompq = 0. If icompq = 1, on exit, for each i, givcol(1, 2 i - 1) and 
givcol(1, 2 i) record the locations of Givens rotations performed on the i-th 
level on the computation tree.

perm INTEGER .
Array, DIMENSION ( ldgcol, nlvl ) if icompq = 1, and not referenced if 
icompq = 0. If icompq = 1, on exit, perm (1, i) records permutations done on 
the i-th level of the computation tree.

givnum REAL for slasda
DOUBLE PRECISION for dlasda.
Array DIMENSION ( ldu,  2*nlvl ) if icompq = 1, and not referenced if 
icompq = 0. If icompq = 1, on exit, for each i,  givnum(1, 2 i - 1) and 
givnum(1, 2 i) record the C- and S-values of Givens rotations performed on 
the i-th level on the computation tree.

c REAL for slasda
DOUBLE PRECISION for dlasda.
Array, 
DIMENSION (n) if icompq = 1, and 
DIMENSION (1) if icompq = 0. 
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If icompq = 1 and the i-th subproblem is not square, on exit, c(i) contains the 
C-value of a Givens rotation related to the right null space of the i-th 
subproblem.

s REAL for slasda
DOUBLE PRECISION for dlasda.
Array, 
DIMENSION (n) icompq = 1, and 
DIMENSION  (1) if icompq = 0. 
If icompq = 1 and the i-th subproblem is not square, on exit, s(i) contains the 
S-value of a Givens rotation related to the right null space of the i-th 
subproblem.

info INTEGER.
 = 0:  successful exit.
< 0:  if info = -i, the i-th argument had an illegal value > 0:  if info = 1, an 
singular value did not converge

?lasdq
Computes the SVD of a real  bidiagonal matrix with 
diagonal d and off-diagonal e. 
Used by ?bdsdc.

Syntax
call slasdq ( uplo, sqre, n, ncvt, nru, ncc, d, e, vt,

ldvt, u, ldu, c, ldc, work, info )

call dlasdq ( uplo, sqre, n, ncvt, nru, ncc, d, e, vt,
ldvt, u, ldu, c, ldc, work, info )

Description

The routine ?lasdq computes the singular value decomposition (SVD) of a real  (upper or lower) 
bidiagonal matrix with diagonal d and off-diagonal e, accumulating the transformations if desired. 
Letting B denote the input bidiagonal matrix, the algorithm computes orthogonal  matrices Q and 
P such that B = Q S P' (P' denotes the transpose  of P). The singular values S are overwritten on  d.
The input matrix U  is changed to UQ  if desired.
The input matrix VT is changed to P' VT if desired.
The input matrix C  is changed to Q' C  if desired.
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Input Parameters

uplo CHARACTER*1. On entry, uplo specifies whether the input bidiagonal matrix 
is upper or lower bidiagonal.  
If uplo = 'U' or 'u' ,  B is upper bidiagonal;
If uplo = 'L' or 'l' ,  B is lower bidiagonal.

sqre INTEGER.
 = 0: then the input matrix is n-by-n.
 = 1: then the input matrix is n-by-(n+1) if uplu = 'U' and (n+1)-by-n if uplu
= 'L'. The bidiagonal matrix has  n = nl + nr + 1 rows and  m = n + sqre ≥ 
n columns.

n INTEGER. On entry, n specifies the number of rows and columns  in the 
matrix. n must be at least 0.

 ncvt INTEGER. On entry, ncvt specifies the number of columns of the matrix VT. 
ncvt must be at least 0.

nru INTEGER. On entry, nru specifies the number of rows of the matrix U. nru 
must be at least 0.

ncc INTEGER. On entry, ncc specifies the number of columns of the matrix C. ncc 
must be at least 0.

d REAL for slasdq
DOUBLE PRECISION  for dlasdq.
Array, DIMENSION (n). On entry, d contains the diagonal entries of the  
bidiagonal matrix whose SVD is desired.

e REAL for slasdq
DOUBLE PRECISION  for dlasdq.
Array, DIMENSION is (n-1) if sqre = 0 and n if sqre = 1. On entry, the 
entries of e contain the off-diagonal entries of the  bidiagonal matrix 
whose SVD is desired.

vt REAL for slasdq
DOUBLE PRECISION  for dlasdq.
Array, DIMENSION (ldvt, ncvt). On entry, contains a matrix which on exit 
has been premultiplied by P', dimension n-by-ncvt if sqre = 0  and 
(n+1)-by-ncvt if sqre = 1 (not referenced if ncvt=0).

ldvt INTEGER. On entry, ldvt specifies the leading dimension of vt as declared in 
the calling (sub) program. ldvt must be at   least 1. If ncvt is nonzero, ldvt 
must also be at least n.
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u REAL for slasdq
DOUBLE PRECISION  for dlasdq.
Array, DIMENSION (ldu, n). On entry, contains a  matrix which on exit has 
been  postmultiplied by Q, dimension nru-by-n if sqre = 0  and 
nru-by-(n+1) if sqre = 1 (not referenced if nru=0).

ldu INTEGER.On entry, ldu  specifies the leading dimension of u as  declared in 
the calling (sub) program. ldu must be at least max( 1, nru ) .

c REAL for slasdq
DOUBLE PRECISION  for dlasdq.
Array, DIMENSION (ldc, ncc). On entry, contains an n-by-ncc matrix which 
on exit   has been premultiplied by Q',  dimension n-by-ncc if sqre = 0   and 
(n+1)-by-ncc if sqre = 1 (not referenced if ncc=0).

ldc INTEGER. On entry, ldc  specifies the leading dimension of c as declared in 
the calling (sub) program. ldc must be at least 1. If ncc is non-zero, ldc must 
also be at least n.

work REAL for slasdq
DOUBLE PRECISION  for dlasdq.
Array, DIMENSION (4n).This is a workspace array. Only referenced if one of 
ncvt, nru, or ncc is   nonzero, and if n is at least 2. 

Output Parameters

d On normal exit, d contains the singular values in ascending order.

e On normal  exit, e will contain 0. If the algorithm does not converge, d and e
will contain the diagonal and superdiagonal entries  of a bidiagonal matrix 
orthogonally equivalent to the one  given as input.

vt On exit, the matrix has been premultiplied by P'.

u On exit, the matrix has been postmultiplied by Q.

c On exit, the matrix has been premultiplied by Q'.

info INTEGER. On exit, a value of 0 indicates a successful exit.  If info < 0, 
argument number -info is illegal. If info > 0, the algorithm did not converge, 
and info        specifies how many superdiagonals did not converge.
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?lasdt
Creates a tree of subproblems for bidiagonal divide and 
conquer.
Used by ?bdsdc.

Syntax
call slasdt ( n, lvl, nd, inode, ndiml, ndimr, msub )

call dlasdt ( n, lvl, nd, inode, ndiml, ndimr, msub )

Description

The routine creates a tree of subproblems for bidiagonal divide and conquer.

Input Parameters

n INTEGER. On entry, the number of diagonal elements of the  bidiagonal matrix.

msub INTEGER. On entry, the maximum row dimension each subproblem at the 
bottom of the tree can be of.

Output Parameters

lvl INTEGER. On exit, the number of levels on the computation tree.

nd INTEGER. On exit, the number of nodes on the tree.

inode INTEGER.
Array, DIMENSION (n). On exit, centers of subproblems.

ndiml INTEGER .
Array, DIMENSION (n). On exit, row dimensions of left children.

ndimr INTEGER .
Array, DIMENSION (n).  On exit, row dimensions of right children.



5-238

5 Intel® Math Kernel Library Reference Manual

?laset
Initializes the off-diagonal elements  and the diagonal 
elements of a matrix to given values. 

Syntax
call slaset ( uplo, m, n, alpha, beta, a, lda )

call dlaset ( uplo, m, n, alpha, beta, a, lda )

call claset ( uplo, m, n, alpha, beta, a, lda )

call zlaset ( uplo, m, n, alpha, beta, a, lda )

Description

The routine initializes an m-by-n matrix A to beta on the diagonal and  alpha on the 
off-diagonals .

Input parameters

uplo CHARACTER*1. Specifies the part of the matrix A to be set.   
If uplo = 'U', upper triangular part is set; the strictly lower  triangular part of A 
is not changed. 
If uplo = 'L': lower triangular part is set; the strictly upper  triangular part of A 
is not changed. 
Otherwise:  all of the matrix A is set.

m INTEGER.  The number of rows of the matrix A.  m ≥ 0.

n INTEGER. The number of columns of the matrix A.  
n ≥ 0.

alpha, beta REAL for slaset 
DOUBLE PRECISION for dlaset
COMPLEX for claset
COMPLEX*16 for zlaset.
The constants to which the off-diagonal and diagonal elements are to be set, 
respectively.

a REAL for slaset 
DOUBLE PRECISION for dlaset
COMPLEX for claset
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COMPLEX*16 for zlaset.
Array, DIMENSION (lda, n).
On entry, the m-by-n matrix A.

lda INTEGER. The leading dimension of the array A.
lda ≥ max(1,m).

Output Parameters

a On exit, the leading m-by-n submatrix of A is set as follows:
 if uplo = 'U',  A(i,j) = alpha,    1≤  i ≤  j-1,  1≤  j ≤  n,
 if uplo = 'L',  A(i,j) = alpha,    j+1≤  i ≤  m, 1≤  j ≤  n,
otherwise,  A(i,j) = alpha,  1≤  i ≤  m,  1≤  j ≤  n, i ≠ j,

and, for all uplo,   A(i,i) = beta, 1≤  i ≤  min(m, n).

?lasq1
Computes the singular values of a real  square 
bidiagonal matrix. Used by ?bdsqr.

Syntax
call slasq1 ( n, d, e, work, info )

call dlasq1 ( n, d, e, work, info )

Description

The routine ?lasq1 computes the singular values of a real n-by-n bidiagonal  matrix with 
diagonal d and off-diagonal e. The singular values  are computed to high relative accuracy, in the 
absence of  denormalization, underflow and overflow. 

Input Parameters

n INTEGER.The number of rows and columns in the matrix. n ≥ 0.

d REAL for slasq1
DOUBLE PRECISION  for dlasq1.
Array, DIMENSION (n).  On entry, d contains the diagonal elements of the 
bidiagonal matrix whose SVD is desired. 
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e REAL for slasq1
DOUBLE PRECISION  for dlasq1.
Array, DIMENSION (n). On entry, elements e(1:n-1) contain the off-diagonal 
elements  of the bidiagonal matrix whose SVD is desired.

work REAL for slasq1
DOUBLE PRECISION  for dlasq1.
Workspace array, DIMENSION (4n).

Output Parameters

d On normal exit, d contains the singular values in decreasing order.

e On exit, e is overwritten.

info INTEGER.
 = 0: successful exit;
< 0: if info = -i, the i-th argument had an illegal value;    > 0: the algorithm 
failed: 
 = 1, a split was marked by a positive value in e;   
= 2, current block of z not diagonalized after 30*n iterations (in inner while 
loop); 
= 3, termination criterion of outer while loop not met  (program created more 
than n unreduced blocks.

?lasq2
Computes all the eigenvalues of the symmetric positive 
definite tridiagonal matrix associated with the qd array 
z to high relative accuracy. Used by ?bdsqr and 
?stegr.

Syntax
call slasq2 ( n, z, info )

call dlasq2 ( n, z, info )
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Description

The routine ?lasq2 computes all the eigenvalues of the symmetric positive  definite tridiagonal 
matrix associated with the qd array z to high relative accuracy, in the absence of denormalization, 
underflow and overflow. 

To see the relation of z to the tridiagonal matrix, let L be a unit lower bidiagonal matrix with 
subdiagonals z(2,4,6,,..) and  let U be an upper bidiagonal matrix with 1's above and diagonal  
z(1,3,5,,..). The tridiagonal is LU or, if you prefer, the symmetric tridiagonal to which it is similar.  

Input Parameters

n INTEGER. The number of rows and columns in the matrix. n ≥ 0.

z REAL for slasq2
DOUBLE PRECISION for dlasq2.
Array, DIMENSION (4n).  On entry, z holds the qd array.

Output Parameters

z On exit, entries 1 to n hold  the eigenvalues in decreasing order, z(2n+1) holds 
the  trace, and z(2n+2) holds the sum of the eigenvalues. If   n > 2, then 
z(2n+3) holds the iteration count, z(2n+4)   holds ndivs/nin2, and z(2n+5) 
holds the percentage of shifts that failed. 

info  INTEGER.
 = 0: successful exit;
< 0: if the i-th argument is a scalar and had an illegal   value, then info = -i, 
if the i-th argument is an  array and the j-entry had an illegal value, then
info = -(i*100+j);   
> 0: the algorithm failed:
    = 1, a split was marked by a positive value in e;
   = 2, current block of z not diagonalized after 30*n iterations (in inner while 
loop); 
   = 3, termination criterion of outer while loop not met       (program created 
more than n unreduced blocks).

Application Notes

The routine ?lasq2 defines a logical variable, ieee, which is .TRUE.  on machines which 
follow IEEE-754 floating-point standard in their  handling of infinities and NaNs, and .FALSE. 
otherwise. This variable  is passed to ?lasq3.
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?lasq3
Checks for deflation, computes a shift  and calls dqds. 
Used by ?bdsqr.

Syntax
call slasq3 ( i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv,

ieee )

call dlasq3 ( i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv,
ieee )

Description

The routine ?lasq3 checks for deflation, computes a shift (tau) and calls dqds.In case of failure, 
it changes shifts, and tries again until output is positive.

Input Parameters

i0 INTEGER. First index.

n0 INTEGER. Last index.

z REAL for slasq3
DOUBLE PRECISION for dlasq3.
Array, DIMENSION (4n). z holds the qd array.

pp INTEGER.
pp=0 for ping, pp=1 for pong.

desig REAL for slasq3
DOUBLE PRECISION for dlasq3.
Lower order part of sigma.

qmax REAL for slasq3

DOUBLE PRECISION for dlasq3.
Maximum value of q.

ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic (passed to ?lasq5).
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Output Parameters

 dmin REAL for slasq3

DOUBLE PRECISION for dlasq3.
Minimum value of d.

sigma REAL for slasq3
DOUBLE PRECISION for dlasq3.
Sum of shifts used in current segment.

desig Lower order part of sigma.

nfail INTEGER. Number of times shift was too big.

iter INTEGER. Number of iterations.

ndiv INTEGER. Number of divisions.

ttype INTEGER. Shift type.

?lasq4
Computes an approximation to the smallest eigenvalue 
using values of d from the previous transform. 
Used by ?bdsqr.

Syntax
call slasq4 ( i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau,

ttype )

call dlasq4 ( i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau,
ttype )

Description

The routine computes an approximation tau to the smallest eigenvalue using values of d from the 
previous transform.

 Input Parameters

i0 INTEGER. First index.

n0 INTEGER. Last index.
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z REAL for slasq4
DOUBLE PRECISION for dlasq4.
Array, DIMENSION (4n).  z holds the qd array.

pp INTEGER. pp=0 for ping, pp=1 for pong.

noin INTEGER. The value of n0 at start of eigtest.

dmin REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d.

dmin1 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0).

dmin2 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0) and d(n0-1).

dn REAL for slasq4
DOUBLE PRECISION for dlasq4.
Contains d(n).

dn1 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Contains d(n-1).

dn2 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Contains d(n-2).

Output Parameters

tau REAL for slasq4
DOUBLE PRECISION for dlasq4.
This is the shift.

ttype INTEGER. Shift type.



LAPACK Auxiliary and Utility Routines 5

5-245

?lasq5
Computes one dqds transform in ping-pong form. Used 
by ?bdsqr and ?stegr.

Syntax
call slasq5 ( i0, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2,

ieee )

call dlasq5 ( i0, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2,
ieee )

Description

The routine computes one dqds transform in ping-pong form, one  version for IEEE machines 
another for non-IEEE machines.

Input Parameters

i0 INTEGER First index.

n0 INTEGER Last index.

z REAL for slasq5
DOUBLE PRECISION  for dlasq5.
Array, DIMENSION (4n). z holds the qd array. emin is stored in z(4*n0) to 
avoid an extra argument.

pp INTEGER. pp=0 for ping, pp=1 for pong.

tau REAL for slasq5
DOUBLE PRECISION  for dlasq5.
This is the shift.

ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic.

Output Parameters

dmin REAL for slasq5
DOUBLE PRECISION  for dlasq5.
Minimum value of d.
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dmin1 REAL for slasq5
DOUBLE PRECISION  for dlasq5.
Minimum value of d, excluding d(n0).

dmin2 REAL for slasq5
DOUBLE PRECISION  for dlasq5.
Minimum value of d, excluding d(n0) and d(n0-1).

dn REAL for slasq5
DOUBLE PRECISION  for dlasq5.
Contains d(n0), the last value of d.

dnm1 REAL for slasq5
DOUBLE PRECISION  for dlasq5.
Contains d(n0-1).

dnm2 REAL for slasq5
DOUBLE PRECISION  for dlasq5.
Contains d(n0-2).

?lasq6
Computes one dqds transform in ping-pong form. Used 
by ?bdsqr and ?stegr.

Syntax
call slasq6 ( i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2 )

call dlasq6 ( i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2 )

Description

The routine ?lasq6 computes one dqd (shift equal to zero) transform in ping-pong form, with 
protection against underflow and overflow.

Input Parameters

i0 INTEGER. First index.

n0 INTEGER. Last index.
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z REAL for slasq6
DOUBLE PRECISION for dlasq6.
Array, DIMENSION (4n). z holds the qd array. emin is stored in z(4*n0) to 
avoid  an extra argument.

pp INTEGER. pp=0 for ping, pp=1 for pong.

Output Parameters

dmin REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of d.

dmin1 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of d, excluding d(n0).

dmin2 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of d, excluding d(n0) and d(n0-1).

dn REAL for slasq6
DOUBLE PRECISION for dlasq6.
Contains d(n0), the last value of d.

dnm1 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Contains d(n0-1).

dnm2 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Contains d(n0-2).

?lasr
Applies a sequence of plane rotations to a general 
rectangular matrix.

Syntax
call slasr ( side, pivot, direct, m, n, c, s, a, lda )

call dlasr ( side, pivot, direct, m, n, c, s, a, lda )
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call clasr ( side, pivot, direct, m, n, c, s, a, lda )

call zlasr ( side, pivot, direct, m, n, c, s, a, lda )

Description

The routine performs the transformation:
      A := P A,     when side = 'L' or 'l'  (  Left-hand side )
      A := A P',  when side = 'R' or 'r'  ( Right-hand side )

where A is an m-by-n real matrix and P is an orthogonal matrix, consisting of a sequence of plane 
rotations determined by the parameters pivot and direct as follows ( z = m when side = 'L' or 
'l' and z = n when side = 'R' or 'r' ):  

When  direct = 'F' or 'f'  ( Forward sequence ) then  
           P = P( z - 1 ) ... P( 2 ) P( 1 ), 
and when direct = 'B' or 'b'  ( Backward sequence ) then  
          P = P( 1 ) P( 2 ) ... P( z - 1 ), 

where  P( k ) is a plane rotation matrix for the following planes: 

when  pivot = 'V' or 'v'  ( Variable pivot ),    the plane ( k, k + 1 )
when  pivot = 'T' or 't'  ( Top pivot ),           the plane ( 1, k + 1 )
when  pivot = 'B' or 'b'  ( Bottom pivot ),   the plane ( k, z )

c(k) and s(k)  must contain the  cosine and sine that define the  matrix  
P(k).  The 2-by-2 plane rotation part of the matrix P(k), R(k), is assumed to be of the form:

Input Parameters

side CHARACTER*1. Specifies whether the plane rotation matrix P is applied to  A 
on the left or the right.
 = 'L':  Left, compute A := P A
= 'R':  Right, compute A:= A P'

direct CHARACTER*1. Specifies whether P is a forward or backward sequence of 
plane rotations.
 = 'F':  Forward, P = P( z - 1 ) ... P( 2 ) P( 1 )
 = 'B':  Backward, P = P( 1 ) P( 2 ) ... P( z - 1 )

R k( ) c k( ) s k( )
s k( )– c k( )

=
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 pivot CHARACTER*1. Specifies the plane for which P(k) is a plane rotation matrix.
 = 'V':  Variable pivot, the plane (k, k+1)
 = 'T':  Top pivot, the plane (1, k+1)
 = 'B':  Bottom pivot, the plane (k, z)

 m INTEGER. The number of rows of the matrix A. 
If m ≤ 1, an immediate return is effected.

n INTEGER. The number of columns of the matrix A. 
If n ≤ 1, an immediate return is effected.

 c, s REAL for slasr/clasr
DOUBLE PRECISION for dlasr/zlasr.
Arrays, DIMENSION
(m-1) if side = 'L',
(n-1) if side = 'R'.   
c(k) and s(k) contain the cosine and sine that define the  matrix P(k) as 
described above.  

a REAL for slasr 
DOUBLE PRECISION for dlasr
COMPLEX for clasr
COMPLEX*16 for zlasr.
Array, DIMENSION (lda, n).  The m-by-n matrix A. 

lda INTEGER. The leading dimension of the array A. 
lda ≥ max(1,m).

Output Parameters

a On exit, A is overwritten by PA if  side = 'R' or by AP' if side = 'L'.

?lasrt
Sorts numbers in increasing or decreasing order.

Syntax
call slasrt ( id, n, d, info )

call dlasrt ( id, n, d, info )
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Description

The routine ?lasrt sorts the numbers in d in increasing order (if id = 'I') or in decreasing order 
(if id = 'D' ). It uses Quick Sort, reverting to Insertion Sort on arrays of size ≤ 20. Dimension of 
stack limits n to about 232.

Input Parameters

id CHARACTER*1.
 = 'I': sort d in increasing order;
 = 'D': sort d in decreasing order.

n INTEGER. The length of the array d.

d REAL for slasrt
DOUBLE PRECISION for dlasrt. 
On entry, the array to be sorted.

Output Parameters

d On exit, d has been sorted into increasing order  
(d(1) ≤  ... ≤  d(n) ) or into decreasing order
(d(1) ≥ ... ≥ d(n) ), depending on id.

info INTEGER.
 = 0:  successful exit
< 0:  if info = -i, the i-th argument had an illegal value.

?lassq
Updates a sum of squares represented in scaled form.

Syntax
call slassq ( n, x, incx, scale, sumsq )

call dlassq ( n, x, incx, scale, sumsq )

call classq ( n, x, incx, scale, sumsq )

call zlassq ( n, x, incx, scale, sumsq )
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Description

The real routines slassq/dlassq return the values  scl  and  smsq  such that

      scl2 * smsq = x(1)2 +...+ x(n)2 + scale2 *sumsq,  

where x( i ) = x(1 + (i - 1) incx). 
The value of  sumsq  is  assumed to be non-negative and  scl  returns the value    
    scl = max( scale, abs(x(i)) ).  

Values scale and sumsq must be supplied in scale and sumsq, and  scl and smsq are overwritten 
on scale and sumsq, respectively.  

The complex routines classq/zlassq return the values  scl  and  ssq  such that

      scl2 * ssq = x(1)2 +...+ x(n)2 + scale2 *sumsq,  

where x( i ) = abs (x(1 + (i - 1) incx)). 
The value of  sumsq  is  assumed to be at least unity and the value of ssq will then satisfy
     1.0 ≤ ssq ≤ sumsq + 2n

scale is assumed to be non-negative and  scl  returns the value    

     scl = max( scale, abs(real(x(i))),   abs(aimag(x(i))) ).  
              i

Values scale and sumsq must be supplied in scale and sumsq, and  scl and ssq are overwritten 
on scale and sumsq, respectively.  

All routines ?lassq make only one pass through the vector x.

Input Parameters

n INTEGER. The number of elements to be used from the vector x.  

x REAL for slassq
DOUBLE PRECISION for dlassq
COMPLEX  for classq
COMPLEX*16 for zlassq.
The vector for which a scaled sum of squares is computed: x( i )  = x(1 + (i - 1) 
incx ), 1 ≤ i ≤ n.

incx INTEGER. The increment between successive values of the vector x. incx > 0.

scale REAL for slassq/classq
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value  scale  in the equation above.
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sumsq REAL for slassq/classq
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value  sumsq  in the equation above.

Output Parameters

scale On exit, scale is overwritten with  scl , the scaling factor  for the sum of 
squares.

sumsq For real flavors:
On exit, sumsq is overwritten with the value smsq in the equation above.
For complex flavors:
On exit, sumsq is overwritten with the value  ssq in the equation above.

?lasv2
Computes the singular value decomposition of a 2-by-2 
triangular matrix.

Syntax
call slasv2 ( f, g, h, ssmin, ssmax, snr, csr, snl, csl )

call dlasv2 ( f, g, h, ssmin, ssmax, snr, csr, snl, csl )

Description

The routine ?lasv2 computes the singular value decomposition of a 2-by-2  triangular matrix

          

On return, abs(ssmax) is the larger singular value, abs(ssmin) is the  smaller singular value, and 
(csl,snl) and (csr,snr) are the left and  right singular vectors for abs(ssmax), giving the 
decomposition

       

f g

0 h

csl snl

snl– csl

f g

0 h

csr snr–
snr csr

ssmax 0

0 ssmin
=
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Input Parameters

f, g, h REAL for slasv2

DOUBLE PRECISION for dlasv2. 
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix, respectively.

Output Parameters

ssmin, ssmax REAL for slasv2
DOUBLE PRECISION for dlasv2.
abs(ssmin) and abs(ssmax) is the smaller and the larger singular value, 
respectively.

snl, csl REAL for slasv2
DOUBLE PRECISION for dlasv2.
The vector (csl, snl) is a unit left singular vector for the singular value 
abs(ssmax).

snr, csr REAL for slasv2

DOUBLE PRECISION for dlasv2.
The vector (csr, snr) is a unit right singular vector for the singular value 
abs(ssmax).

Application Notes

Any input parameter may be aliased with any output parameter.  
Barring over/underflow and assuming a guard digit in subtraction, all  output quantities are correct 
to within a few units in the last  place (ulps).  

In IEEE arithmetic, the code works correctly if one matrix element is  infinite.  
Overflow will not occur unless the largest singular value itself  overflows or is within a few ulps of 
overflow. (On machines with  partial overflow, like the Cray, overflow may occur if the largest  
singular value is within a factor of 2 of overflow.)  
Underflow is harmless if underflow is gradual. Otherwise, results  may correspond to a matrix 
modified by perturbations of size near  the underflow threshold.
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?laswp
Performs a series of row interchanges on a general 
rectangular matrix.

Syntax
call slaswp ( n, a, lda, k1, k2, ipiv, incx )

call dlaswp ( n, a, lda, k1, k2, ipiv, incx )

call claswp ( n, a, lda, k1, k2, ipiv, incx )

call zlaswp ( n, a, lda, k1, k2, ipiv, incx )

Description

The routine performs a series of row interchanges on the matrix A.  One row interchange is 
initiated for each of rows k1 through k2 of A.

Input Parameters

n INTEGER.The number of columns of the matrix A.

a REAL  for slaswp
DOUBLE PRECISION for dlaswp
COMPLEX  for claswp
COMPLEX*16 for zlaswp.
Array, DIMENSION (lda, n).
On entry, the matrix of column dimension n to which the row interchanges 
will be applied.

lda INTEGER. The leading dimension of the array a.

k1 INTEGER. The first element of ipiv for which a row interchange will  be done.

k2 INTEGER. The last element of ipiv for which a row interchange will be done.

ipiv INTEGER. 
Array, DIMENSION (m * abs(incx)).
The vector of pivot indices.  Only the elements in positions k1 through k2 of 
ipiv are accessed.
ipiv(k) = l implies rows k and l are to be interchanged.

incx INTEGER. The increment between successive values of ipiv.  If ipiv is 
negative, the pivots are applied in reverse order.
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Output Parameters

a On exit, the permuted matrix.

?lasy2
Solves the Sylvester matrix equation where the matrices 
are of order 1 or 2. 

Syntax
call slasy2 ( ltranl, ltranr, isgn, n1, n2, tl, ldtl, tr,ldtr, b, ldb,

scale, x, ldx, xnorm, info )

call dlasy2 ( ltranl, ltranr, isgn, n1, n2, tl, ldtl, tr,ldtr, b, ldb,
scale, x, ldx, xnorm, info )

Description

The routine solves for the n1-by-n2 matrix X, 1 ≤ n1, n2 ≤ 2, in 

          op(TL) * X + isgn * X *op(TR) = scale *B,  

where 
  TL  is  n1-by-n1, 
  TR  is  n2- by-n2, 
  B    is  n1-by-n2, 
and isgn = 1 or  -1.  op(T) = T or T', where T' denotes the transpose of T.

Input Parameters

ltranl LOGICAL.
On entry, ltranl specifies the op(TL):
= .FALSE., op(TL) = TL,
= .TRUE.,   op(TL) = TL'.

ltranr LOGICAL.
On entry, ltranr specifies the op(TR):
= .FALSE., op(TR) = TR,
= .TRUE.,   op(TR) = TR'.

isgn INTEGER. On entry, isgn specifies the sign of the equation as described 
before. isgn may only be 1 or -1.
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n1 INTEGER. On entry, n1 specifies the order of matrix TL.
n1 may only be 0, 1 or 2.

n2 INTEGER.
On entry, n2 specifies the order of matrix TR.
n2 may only be 0, 1 or 2.

tl REAL for slasy2
DOUBLE PRECISION for dlasy2. 
Array, DIMENSION (ldtl,2). On entry, tl contains an n1-by-n1 matrix TL.

ldtl INTEGER.The leading dimension of the matrix tl. 
ldtl ≥ max(1,n1).

tr REAL for slasy2
DOUBLE PRECISION for dlasy2. 
Array, DIMENSION (ldtr,2). On entry, tr contains an n2-by-n2 matrix TR.

ldtr INTEGER.
The leading dimension of the matrix tr. 
ldtr ≥ max(1,n2).

b REAL for slasy2
DOUBLE PRECISION for dlasy2. 
Array, DIMENSION (ldb,2). On entry, the n1-by-n2 matrix b contains the 
right-hand side of the equation.

ldb INTEGER.
The leading dimension of the matrix b. 
ldb ≥ max(1,n1).

ldx INTEGER.
The leading dimension of the output matrix x. 
ldx ≥ max(1,n1).

Output Parameters

scale REAL for slasy2
DOUBLE PRECISION for dlasy2. 
On exit, scale contains the scale factor. 
scale is chosen less than or equal to 1 to prevent the solution overflowing.

x REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldx,2). On exit, x contains the 
n1-by-n2 solution.
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xnorm REAL for slasy2
DOUBLE PRECISION for dlasy2.
On exit, xnorm is the infinity-norm of the solution.

info INTEGER. On exit, info is set to
0: successful exit.
1: TL and TR have too close eigenvalues, so TL or TR is perturbed to get a 
nonsingular equation.

?lasyf
Computes a partial factorization of a real/complex 
symmetric matrix, using the diagonal pivoting method.

Syntax
call slasyf ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call dlasyf ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call clasyf ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call zlasyf ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

Description

The routine ?lasyf computes a partial factorization of a real/complex symmetric matrix A using 
the Bunch-Kaufman diagonal pivoting method. The partial  factorization has the form:

    if uplo = 'U', or

NOTE.  In the interests of speed, this routine does not check the 
inputs for errors.

A
I U12

0 U22

A11 0

0 D

I 0

U12′ U22′
=
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    if uplo = 'L'

where the order of D is at most nb. The actual order is returned in  the argument kb, and is either 
nb or nb-1, or n if n ≤ nb.

This is an auxiliary routine called by ?sytrf. It uses blocked code  (calling Level 3 BLAS) to 
update the submatrix A11 (if uplo = 'U') or  A22 (if uplo = 'L').

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix A 
is stored:
= 'U':  Upper triangular
= 'L':  Lower triangular

  n INTEGER.
The order of the matrix A.  n ≥ 0.

nb INTEGER.
The maximum number of columns of the matrix A that should be factored.  nb 
should be at least 2 to allow for 2-by-2 pivot blocks.

a REAL for slasyf
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Array, DIMENSION (lda, n). On entry, the symmetric matrix A.  If uplo = 'U', 
the leading n-by-n upper triangular part of a contains the upper triangular part 
of the matrix A, and the strictly lower triangular part of a is not referenced.  If 
uplo = 'L', the leading n-by-n lower triangular part of a contains the lower 
triangular part of the matrix A, and the strictly upper triangular part of a is not 
referenced.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).

A
L11 0

L21 I

D 0

0 A22

L11′ L21 ′

0 I
=
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w REAL for slasyf
DOUBLE PRECISION for dlasyf

COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Workspace array, DIMENSION (ldw, nb).

ldw INTEGER.
The leading dimension of the array w. ldw ≥ max(1,n).

Output Parameters

kb INTEGER.
The number of columns of A that were actually factored kb is either nb-1 or 
nb, or n if n ≤ nb.

  a On exit, a contains details of the partial factorization.

ipiv INTEGER.
Array, DIMENSION (n ). Details of the interchanges and the block structure of 
D.
If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first kb elements are set.

If ipiv(k) > 0, then rows and columns k and ipiv(k) were interchanged and 
D(k,k) is a 1-by-1 diagonal block. If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, 
then rows and columns k-1and -ipiv(k) were interchanged and D(k-1:k, k-1:k)
is a 2-by-2 diagonal block.  
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1 and 
-ipiv(k) were interchanged and D(k:k+1, k:k+1) is a 2-by-2 diagonal block.

  info INTEGER.
= 0: successful exit
> 0: if info = k, D(k,k) is exactly zero.  The factorization has been completed, 
but the block diagonal matrix D is exactly singular.
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?lahef
Computes a partial factorization of a complex 
Hermitian indefinite matrix, using the diagonal 
pivoting method.

Syntax
call clahef ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call zlahef ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

Description

The routine ?lahef computes a partial factorization of a complex Hermitian matrix A, using the 
Bunch-Kaufman diagonal pivoting method. The partial  factorization has the form:

    if uplo = 'U', or

    if uplo = 'L'

where the order of D is at most nb. The actual order is returned in  the argument kb, and is either 
nb or nb-1, or n if n ≤ nb.
Note that U′ denotes the conjugate transpose of U.

This is an auxiliary routine called by ?hetrf. It uses blocked code  (calling Level 3 BLAS) to 
update the submatrix A11 (if uplo = 'U') or  A22 (if uplo = 'L').

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix A 
is stored:
= 'U':  Upper triangular
= 'L':  Lower triangular

A
I U12

0 U22

A11 0

0 D

I 0

U12′ U22′
=

A
L11 0
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D 0
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0 I
=
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  n INTEGER.
The order of the matrix A.  n ≥ 0.

nb INTEGER.
The maximum number of columns of the matrix A that should be factored.  nb 
should be at least 2 to allow for 2-by-2 pivot blocks.

a COMPLEX for clahef
COMPLEX*16 for zlahef.
Array, DIMENSION (lda, n).
On entry, the Hermitian  matrix A.  If uplo = 'U', the leading n-by-n upper 
triangular part of a contains the upper triangular part of the matrix A, and the 
strictly lower triangular part of a is not referenced.  
If uplo = 'L', the leading n-by-n lower triangular part of a contains the lower 
triangular part of the matrix A, and the strictly upper triangular part of a is not 
referenced.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).

w COMPLEX for clahef
COMPLEX*16 for zlahef.
Workspace array, DIMENSION (ldw, nb).

ldw INTEGER.
The leading dimension of the array w. ldw ≥ max(1,n).

Output Parameters

kb INTEGER.
The number of columns of A that were actually factored kb is either nb-1 or 
nb, or n if n ≤ nb.

a On exit, a contains details of the partial factorization.

ipiv INTEGER.
Array, DIMENSION (n ). Details of the interchanges and the block structure of 
D.
If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first kb elements are set.

If ipiv(k) > 0, then rows and columns k and ipiv(k) were interchanged and 
D(k,k) is a 1-by-1 diagonal block. If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, 
then rows and columns k-1and -ipiv(k) were interchanged and D(k-1:k, k-1:k)
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is a 2-by-2 diagonal block.  
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1 and 
-ipiv(k) were interchanged and D(k:k+1, k:k+1) is a 2-by-2 diagonal block.

  info INTEGER.
= 0: successful exit
> 0: if info = k, D(k,k) is exactly zero.  The factorization has been completed, 
but the block diagonal matrix D is exactly singular.

?latbs
Solves a triangular banded system of equations.

Syntax
call slatbs ( uplo, trans, diag, normin, n, kd, ab, ldab, x, scale,

cnorm, info )

call dlatbs ( uplo, trans, diag, normin, n, kd, ab, ldab, x, scale,
cnorm, info )

call clatbs ( uplo, trans, diag, normin, n, kd, ab, ldab, x, scale,
cnorm, info )

call zlatbs ( uplo, trans, diag, normin, n, kd, ab, ldab, x, scale,
cnorm, info )

Description

The routine solves one of the triangular systems

Ax = s b  or  ATx = s b  or  AHx = s b (for complex flavors)

with scaling to prevent overflow, where A is an upper or lower  triangular band matrix.  Here AT 
denotes the transpose of A,  AH denotes the conjugate transpose of A, x and b  are n-element 
vectors, and s is a scaling factor, usually less than  or equal to 1, chosen so that the components of
x will be less than  the overflow threshold.  If the unscaled problem will not cause  overflow, the 
Level 2 BLAS routine ?tbsv is called.  If the matrix A  is singular (A(j, j) = 0 for some j), then s is 
set to 0 and a  non-trivial solution to  Ax = 0  is returned.
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Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U':  Upper triangular
= 'L':  Lower triangular

  trans CHARACTER*1.
Specifies the operation applied to A.
= 'N':  Solve Ax = s b  (no transpose)
= 'T':  Solve ATx  = s b  (transpose)
= 'C':  Solve AHx = s b  (conjugate transpose)

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular
 = 'N':  Non-unit triangular
= 'U':  Unit triangular

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y':  cnorm contains the column norms on entry;
= 'N':  cnorm  is not set on entry.  On exit, the norms will be computed and 
stored in cnorm.

  n INTEGER.
The order of the matrix A.  n ≥ 0.

kd INTEGER.
The number of subdiagonals or superdiagonals in the triangular matrix A.  kd 
≥ 0.

ab REAL for slatbs

DOUBLE PRECISION  for dlatbs
COMPLEX for clatbs
COMPLEX*16 for zlatbs.
Array, DIMENSION (ldab, n). The upper or lower triangular band matrix A, 
stored in the first kd+1 rows of the array. The j-th column of A is stored in the 
j-th column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for 
max(1,j-kd) ≤  i ≤ j;
if uplo = 'L', ab(1+i-j,j)    = A(i,j) for 
j ≤ i ≤ min(n,j+kd).

ldab INTEGER.
The leading dimension of the array ab.  ldab ≥ kd+1.
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x REAL for slatbs
DOUBLE PRECISION  for dlatbs
COMPLEX for clatbs
COMPLEX*16 for zlatbs.
Array, DIMENSION (n).
On entry, the right hand side b of the triangular system.

cnorm REAL for slatbs/clatbs
DOUBLE PRECISION for dlatbs/zlatbs.
Array, DIMENSION (n).
If normin = 'Y', cnorm is an input argument and cnorm(j) contains the norm 
of the off-diagonal part of the j-th column of A.  If trans = 'N', cnorm(j) 
must be greater than or equal to the infinity-norm, and if 
trans = 'T' or 'C', cnorm(j) must be greater than or equal to the 1-norm. 

Output Parameters

scale REAL for slatbs/clatbs
DOUBLE PRECISION for dlatbs/zlatbs.
The scaling factor s for the triangular system as described above.
If scale = 0, the matrix A is singular or badly scaled, and the vector x is an 
exact or approximate solution to Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and cnorm(j) returns the 
1-norm of the off-diagonal part of the j-th column of A.

info INTEGER.
= 0:  successful exit
< 0:  if info = -k, the k-th argument had an illegal value

?latdf
Uses the LU factorization of the n-by-n matrix 
computed by ?getc2 and computes a contribution to 
the reciprocal Dif-estimate.

Syntax
call slatdf ( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )

call dlatdf ( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )
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call clatdf ( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )

call zlatdf ( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )

Description

The routine ?latdf uses the LU factorization of the n-by-n matrix Z computed by  ?getc2 and 
computes a contribution to the reciprocal 
Dif-estimate  by solving  Zx = b  for x, and choosing the right-hand side b such that  the norm of x  
is as large as possible. On entry rhs = b holds the  contribution from earlier solved sub-systems, 
and on return rhs = x.  

The factorization of Z returned by ?getc2 has the form Z = P L U Q,  where P and Q are 
permutation matrices. L is lower triangular with  unit diagonal elements and U is upper triangular.

Input Parameters

ijob INTEGER.
ijob = 2: First compute an approximative null-vector e of Z using ?gecon, e 
is normalized, and solve for 
Zx = ±e - f   with the sign giving the greater value of 2-norm(x). This option is 
about 5 times as expensive as default.
ijob ≠ 2 (default): Local look ahead strategy where all entries of the 
right-hand side b is chosen as either +1 or -1 .

n INTEGER.
The number of columns of the matrix Z.

z REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION (ldz, n)
On entry, the LU part of the factorization of the n-by-n matrix Z computed by
?getc2:  Z = P L  U Q .

ldz INTEGER.
The leading dimension of the array z.  lda ≥ max(1, n).

rhs REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION (n).
On entry, rhs contains contributions from other subsystems.

rdsum REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
On entry, the sum of squares of computed contributions to the Dif-estimate 
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under computation by ?tgsyl, where the scaling factor rdscal has been 
factored out.
If trans = 'T' , rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl.

rdscal REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
On entry, scaling factor used to prevent overflow in rdsum. If trans = T', 
rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl.

ipiv INTEGER.
Array, DIMENSION (n).
The pivot indices; for 1 ≤ i ≤ n, row i of the matrix has been interchanged with 
row ipiv(i).

jpiv INTEGER.
Array, DIMENSION (n).
The pivot indices; for 1 ≤ j ≤ n, column j of the matrix has been interchanged 
with column jpiv(j).

Output Parameters

rhs On exit, rhs contains the solution of the subsystem with entries according to 
the value of ijob.

rdsum On exit, the corresponding sum of squares updated with the contributions from 
the current sub-system. 
If trans = 'T' , rdsum is not touched.

rdscal On exit, rdscal is updated with respect to the current contributions in rdsum.
If trans = 'T', rdscal is not touched.

?latps
Solves a triangular system of equations with the matrix 
held in packed storage.

Syntax
call slatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call dlatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
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call clatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call zlatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

Description 

The routine ?latps solves one of the triangular systems

Ax = s b  or  ATx = s b  or  AHx = s b (for complex flavors)

with scaling to prevent overflow, where A is an upper or lower  triangular matrix stored in packed 
form.  Here AT denotes the transpose of A,  AH denotes the conjugate transpose of A, x  and  b are 
n-element vectors, and s is a scaling  factor, usually less than or equal to 1, chosen so that the  
components of x will be less than the overflow threshold.  If the  unscaled problem will not cause 
overflow, the Level 2 BLAS routine  ?tpsv is called. If the matrix A is singular (A(j, j) = 0 for 
some j),  then s  is set to 0 and a non-trivial solution to  Ax = 0  is returned.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U':  Upper triangular
= 'L':  Lower triangular

trans CHARACTER*1.
Specifies the operation applied to A.
= 'N':  Solve Ax = s b  (no transpose)
= 'T':  Solve ATx  = s b  (transpose)
= 'C':  Solve AHx = s b  (conjugate transpose)

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N':  Non-unit triangular
= 'U':  Unit triangular

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N':  cnorm is not set on entry.  On exit, the norms will be computed and 
stored in cnorm.

n INTEGER.
The order of the matrix A.  n ≥ 0.



5-268

5 Intel® Math Kernel Library Reference Manual

ap REAL for slatps 
DOUBLE PRECISION for dlatps
COMPLEX  for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION (n(n+1)/2). The upper or lower triangular matrix A, packed 
columnwise in a linear array.  The j-th column of A is stored in the array ap as 
follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i ≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

x REAL for slatps 
DOUBLE PRECISION for dlatps
COMPLEX  for clatps
COMPLEX*16 for zlatps.
 Array, DIMENSION (n)
On entry, the right hand side b of the triangular system.

cnorm REAL for slatps/clatps 
DOUBLE PRECISION for dlatps/zlatps.
Array, DIMENSION (n).
If normin = 'Y', cnorm is an input argument and cnorm(j) contains the norm 
of the off-diagonal part of the j-th column of A.  If trans = 'N', cnorm(j) 
must be greater than or equal to the infinity-norm, and if 
trans = 'T' or 'C', cnorm(j) must be greater than or equal to the 1-norm. 

Output Parameters

x On exit, x is overwritten by the solution vector x.

scale REAL for slatps/clatps 
DOUBLE PRECISION for dlatps/zlatps.
The scaling factor s  for the triangular system as described above.
If scale = 0, the matrix A is singular or badly scaled, and the vector x is an 
exact or approximate solution to 
Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and cnorm(j) returns the 
1-norm of the off-diagonal part of the j-th column of A.

info INTEGER.
= 0:  successful exit
< 0:  if info = -k, the k-th argument had an illegal value
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?latrd
Reduces the first nb rows and columns of a 
symmetric/Hermitian matrix A to real tridiagonal form 
by an orthogonal/unitary similarity transformation.

Syntax
call slatrd ( uplo, n, nb, a, lda, e, tau, w, ldw )

call dlatrd ( uplo, n, nb, a, lda, e, tau, w, ldw )

call clatrd ( uplo, n, nb, a, lda, e, tau, w, ldw )

call zlatrd ( uplo, n, nb, a, lda, e, tau, w, ldw )

Description

The routine ?latrd reduces nb rows and columns of a real symmetric or complex Hermitian 
matrix A to symmetric/Hermitian tridiagonal form by an orthogonal/unitary similarity  
transformation Q'  A Q, and returns the matrices V and W which are  needed to apply the 
transformation to the unreduced part of A.
If uplo = 'U', ?latrd reduces the last nb rows and columns of a  matrix, of which the upper 
triangle is supplied;
if uplo = 'L', ?latrd reduces the first nb rows and columns of a  matrix, of which the lower 
triangle is supplied.  

This is an auxiliary routine called by ?sytrd/?hetrd.

Input Parameters

uplo CHARACTER

Specifies whether the upper or lower triangular part of the 
symmetric/Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A.

nb INTEGER.
The number of rows and columns to be reduced.



5-270

5 Intel® Math Kernel Library Reference Manual

a REAL  for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n) .
On entry, the symmetric/Hermitian matrix A 
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper 
triangular part of the matrix A, and the strictly lower triangular part of a is not 
referenced.  If uplo = 'L', the leading n-by-n lower triangular part of a 
contains the lower triangular part of the matrix A, and the strictly upper 
triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a.  lda ≥ (1,n).

 ldw INTEGER.
The leading dimension of the output array w.
ldw ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the last nb columns have been reduced to tridiagonal 
form, with the diagonal elements overwriting the diagonal elements of a; the 
elements above the diagonal with the array tau, represent the 
orthogonal/unitary matrix Q as a product of elementary reflectors;
 if uplo = 'L', the first nb columns have been reduced to tridiagonal form, with 
the diagonal elements overwriting the diagonal elements of a; the elements 
below the diagonal with the array tau, represent the  orthogonal/unitary matrix 
Q as a product of elementary reflectors.

e REAL for slatrd/clatrd
DOUBLE PRECISION for dlatrd/zlatrd.
If uplo = 'U', e(n-nb:n-1) contains the superdiagonal elements of the last nb 
columns of the reduced matrix;
 if uplo = 'L', e(1:nb) contains the subdiagonal elements of the first nb 
columns of the reduced matrix.

tau REAL  for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
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Array, DIMENSION (lda, n).
The scalar factors of the elementary reflectors, stored in tau(n-nb:n-1) if 
uplo = 'U', and in tau(1:nb) if uplo = 'L'.

w REAL  for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n).
 The n-by-nb matrix W required to update the unreduced part of A.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary  reflectors

     Q  = H(n) H(n-1) . . . H(n-nb+1)

Each H(i) has the form 
    H(i) = I - tau*v*v'  
where tau  is a real/complex scalar, and v is a real/complex vector with v(i:n) = 0 and v(i-1) = 
1; v(1:i-1) is stored on exit in a(1:i-1, i), and tau in tau(i-1).  

If uplo = 'L', the matrix Q is represented as a product of elementary  reflectors

     Q = H(1) H(2) . . . H(nb)  

Each H(i) has the form
     H(i) = I - tau*v*v'  
where tau is a real/complex scalar, and v is a real/complex vector with  v(1:i) = 0 and v(i+1) = 1; 
v(i+1:n) is stored on exit in a(i+1:n, i),  and tau in tau(i).  

The elements of the vectors v together form the n-by-nb matrix V  which is needed, with W, to 
apply the transformation to the unreduced  part of the matrix, using a symmetric/Hermitian 
rank-2k update of the form:  
A := A - VW' - WV'.  

The contents of a on exit are illustrated by the following examples  with 
n = 5 and nb = 2: 

if uplo = 'U':                             if uplo = 'L':
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where d denotes a diagonal element of the reduced matrix, a denotes  an element of the original 
matrix that is unchanged, and vi  denotes  an element of the vector defining H(i).

?latrs
Solves a triangular system of equations with the scale 
factor set to prevent overflow. 

Syntax
call slatrs ( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )

call dlatrs ( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )

call clatrs ( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )

call zlatrs ( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )

Description

The routine solves one of the triangular systems

Ax = s b  or  ATx = s b  or  AHx = s b (for complex flavors)

with scaling to prevent overflow.  Here A is an upper or lower  triangular matrix, AT denotes the 
transpose of A,  AH denotes the conjugate transpose of A, x and b are  n-element vectors, and s is a 
scaling factor, usually less than  or equal to 1, chosen so that the components of x will be less than  
the overflow threshold.  If the unscaled problem will not cause  overflow, the Level 2 BLAS 
routine ?trsv is called.  If the matrix A  is singular (A(j,j) = 0 for some j), then s is set to 0 and 
a  non-trivial solution to Ax = 0 is returned.

a a a v4 v5

a a v4 v5

a 1 v5

d 1

d

d

1 d

v1 1 a

v1 v2 a a

v1 v2 a a a
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Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U':  Upper triangular
= 'L':  Lower triangular

trans CHARACTER*1.
Specifies the operation applied to A.
= 'N':  Solve Ax = s b  (no transpose)
= 'T':  Solve ATx  = s b  (transpose)
= 'C':  Solve AHx = s b  (conjugate transpose)

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N':  Non-unit triangular
= 'U':  Unit triangular

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry.  On exit, the norms will be computed and 
stored in cnorm.

n INTEGER.
The order of the matrix A.  n ≥ 0

a REAL for slatrs
DOUBLE PRECISION for dlatrs
COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (lda, n). Contains the triangular matrix A.  If uplo = 'U', 
the leading n-by-n upper triangular part of the array a contains the upper 
triangular matrix, and the strictly lower triangular part of a is not referenced.  
If uplo = 'L', the leading n-by-n lower triangular part of the array a contains 
the lower triangular matrix, and the strictly upper triangular part of a is not 
referenced.  If diag = 'U', the diagonal elements of a are also not referenced 
and are assumed to be 1.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max (1, n).
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x REAL for slatrs
DOUBLE PRECISION for dlatrs

COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (n). On entry, the right hand side b of the triangular system.

cnorm REAL for slatrs/clatrs )
DOUBLE PRECISION  for dlatrs/zlatrs.
Array, DIMENSION (n). If normin = 'Y', cnorm is an input argument and 
cnorm (j) contains the norm of the off-diagonal part of the j-th column of A.  
If trans = 'N', cnorm (j) must be greater than or equal to the infinity-norm, 
and if trans = 'T' or 'C', cnorm(j) must be greater than or equal to the 1-norm.

Output Parameters

x On exit, x is overwritten by the solution vector x.

scale REAL for slatrs/clatrs )
DOUBLE PRECISION  for dlatrs/zlatrs.
Array, DIMENSION (lda, n). The scaling factor s for the triangular system as 
described above.
If scale = 0, the matrix A is singular or badly scaled, and the vector x is an 
exact or approximate solution to Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and cnorm(j) returns the 
1-norm of the off-diagonal part of the j-th column of A.

info INTEGER.
= 0:  successful exit
< 0:  if info = -k, the k-th argument had an illegal value

Application Notes

A rough bound on x is computed; if that is less than overflow, ?trsv   is called, otherwise, specific 
code is used which checks for possible overflow or divide-by-zero at every operation.  

A columnwise scheme is used for solving  Ax = b.  The basic algorithm  if A is lower triangular is

       x[1:n] := b[1:n]
       for j = 1, ..., n
       x(j) := x(j) / A(j,j)
       x[j+1:n] := x[j+1:n] - x(j)*A[j+1:n,j]
       end
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Define bounds on the components of x after j  iterations of the loop:
   M(j) = bound on x[1:j]
   G(j) = bound on x[j+1:n]
  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.

Then for iteration j+1 we have
  M(j+1) ≤  G(j) / | A(j+1,j+1) |
  G(j+1) ≤  G(j) + M(j+1)*| A[j+2:n,j+1] |
  ≤  G(j) (1 + cnorm(j+1) / | A(j+1,j+1) |  ,

where cnorm(j+1) is greater than or equal to the infinity-norm of column j+1 of A, not counting 
the diagonal.  Hence

and

Since |x(j)| ≤ M(j), we use the Level 2 BLAS routine ?trsv if the  reciprocal of the largest M(j), 
j=1,..,n, is larger than  
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the  columnwise method can be 
performed without fear of overflow.  If  the computed bound is greater than a large constant, x is 
scaled to  prevent overflow, but if the bound overflows, x is set to 0, x(j) to  1, and scale to 0, and a 
non-trivial solution to  Ax = 0 is found.  

Similarly, a row-wise scheme is used to solve ATx = b  or  AHx = b.  The basic  algorithm for A 
upper triangular is

       for j = 1, ..., n
       x(j) := ( b(j) - A[1:j-1,j]'  x[1:j-1] ) / A(j,j)
       end

We simultaneously compute two bounds
       G(j) = bound on ( b(i) - A[1:i-1,i]'*x[1:i-1] ),   1≤ i≤  j
       M(j) = bound on x(i),  1≤ i≤  j

G j( ) G 0( ) 1 cnorm i( ) A i i( , )⁄+( )
1 i j≤ ≤

∏≤

x j( ) G 0( ) A j j( , )⁄( ) 1 cnorm i( ) A i i( , )⁄+( )
1 i j≤ ≤

∏≤
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The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we  add the constraint G(j) ≥ 
G(j-1) and M(j) ≥ M(j-1) for j ≥ 1.
Then the bound on x(j) is

       M(j) ≤   M(j-1) *( 1 + cnorm(j) ) / | A(j,j) |

           

and we can safely call ?trsv if 1/M(n) and 1/G(n) are both greater  than max(underflow, 
1/overflow).

?latrz
Factors an upper trapezoidal matrix by means of 
orthogonal/unitary transformations.

Syntax
call slatrz ( m, n, l, a, lda, tau, work )

call dlatrz ( m, n, l, a, lda, tau, work )

call clatrz ( m, n, l, a, lda, tau, work )

call zlatrz ( m, n, l, a, lda, tau, work )

Description

The routine ?latrz factors the m-by-(m+l) real/complex upper trapezoidal matrix
[ A1  A2 ] = [ A(1:m,1:m)   A(1:m, n-l+1:n) ] 

as   ( R   0 )*Z,   by means  of orthogonal/unitary transformations.  Z is an (m+l)-by-(m+l) 
orthogonal/unitary  matrix and R and A1 are m-by-m upper triangular matrices.

Input Parameters

m INTEGER.
The number of rows of the matrix A.  m ≥ 0.

n INTEGER.
The number of columns of the matrix A.  n ≥ 0.

M 0( ) 1 cnorm i( ) A i i( , )⁄+( )
1 i j≤ ≤

∏≤
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l INTEGER.
The number of columns of the matrix A containing the meaningful part of the 
Householder vectors. 
n-m ≥ l ≥ 0.

a REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (lda, n).
On entry, the leading m-by-n upper trapezoidal part of the array a must contain 
the matrix to be factorized.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,m).

work REAL for slatrz

DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Workspace array, DIMENSION (m).

Output Parameters

a On exit, the leading m-by-m upper triangular part of a contains the upper 
triangular matrix R, and elements n-l+1 to n of the first m rows of a, with the 
array tau, represent the orthogonal/unitary matrix Z as a product of m
elementary reflectors.

tau REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (m). The scalar factors of the elementary reflectors.

Application Notes

The factorization is obtained by Householder's method.  The k-th  transformation matrix, Z(k), 
which is used to introduce zeros into the 
(m - k + 1)-th  row of A, is given in the form
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where
   

 T( k ) = I - tau* u( k )* u( k )',      

  tau is a scalar and z( k ) is an l-element vector. tau and z( k )
  are chosen to annihilate the elements of the k-th row of A2.
  The scalar tau is returned in the k-th element of tau and the vector
  u( k ) in the k-th row of A2, such that the elements of z( k ) are
  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
  the upper triangular part of A1.
  Z is given by

    Z =  Z( 1 ) Z( 2 ) ...  Z( m ).

?lauu2
Computes the product UUH or LHL, where U and L are 
upper or lower triangular matrices (unblocked 
algorithm).

Syntax
call slauu2 ( uplo, n, a, lda, info )

call dlauu2 ( uplo, n, a, lda, info )

call clauu2 ( uplo, n, a, lda, info )

call zlauu2 ( uplo, n, a, lda, info )

Z k( ) I 0

0 T k( )
=

u k( )
1

0

z k( )

=
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Description

The routine ?lauu2 computes the product UU' or L'L, where the triangular  factor U or L is stored 
in the upper or lower triangular part of  the array a.  
If uplo = 'U' or 'u' , then the upper triangle of the result is stored,  overwriting the factor U in  a.  
If uplo = 'L' or 'l' , then the lower  triangle of the result is stored,  overwriting the factor L in  a.  

This is the unblocked form of the algorithm, calling Level 2 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the triangular factor stored in the array a is upper or lower 
triangular:
= 'U':  Upper triangular
= 'L':  Lower triangular

n INTEGER.
The order of the triangular factor U or L.  n ≥ 0.

a REAL for slauu2
DOUBLE PRECISION  for dlauu2
COMPLEX  for clauu2
COMPLEX*16 for zlauu2.
Array, DIMENSION (lda, n).On entry, the triangular factor U or L.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the upper triangle of a is overwritten with the upper 
triangle of the product UU' ; if uplo = 'L', the lower triangle of a is 
overwritten with the lower triangle of the product L'L.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
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?lauum
Computes the product UUH or LHL, where U and L are 
upper or lower triangular matrices.

Syntax
call slauum ( uplo, n, a, lda, info )

call dlauum ( uplo, n, a, lda, info )

call clauum ( uplo, n, a, lda, info )

call zlauum ( uplo, n, a, lda, info )

Description

The routine ?lauum computes the product UU' or L'L, where the triangular  factor U or L is stored 
in the upper or lower triangular part of  the array a.

If uplo = 'U' or 'u' , then the upper triangle of the result is stored,  overwriting the factor U in  a.
If uplo = 'L' or 'l' , then the lower triangle of the result is stored,  overwriting the factor L in  a.  

This is the blocked form of the algorithm, calling Level 3 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the triangular factor stored in the array a is upper or lower 
triangular:
= 'U':  Upper triangular
= 'L':  Lower triangular

n INTEGER.
The order of the triangular factor U or L.  n ≥ 0.

a REAL for slauum
DOUBLE PRECISION for dlauum
COMPLEX  for clauum
COMPLEX*16  for zlauum .
Array, DIMENSION (lda, n). On entry, the triangular factor U or L.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).
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Output Parameters

a On exit, if uplo = 'U', the upper triangle of a is overwritten with the upper 
triangle of the product UU' ; if uplo = 'L', the lower triangle of a is 
overwritten with the lower triangle of the product L'L.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?org2l/?ung2l
Generates all or part of the orthogonal/unitary matrix 
Q from a QL factorization determined by ?geqlf 
(unblocked algorithm).

Syntax
call sorg2l ( m, n, k, a, lda, tau, work, info )

call dorg2l ( m, n, k, a, lda, tau, work, info )

call cung2l ( m, n, k, a, lda, tau, work, info )

call zung2l ( m, n, k, a, lda, tau, work, info )

Description

The routine ?org2l/?ung2l generates an m-by-n real/complex matrix Q with orthonormal 
columns,  which is defined as the last n columns of a product of k  elementary  reflectors of order 
m: 

Q  =  H(k) . . . H(2) H(1)  as returned by ?geqlf.

Input Parameters

m INTEGER.
The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. m ≥ n ≥ 0.
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k INTEGER.
The number of elementary reflectors whose product defines the matrix Q. n ≥ 
k ≥ 0.

a REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX  for cung2l
COMPLEX*16  for zung2l.
Array, DIMENSION (lda,n).
On entry, the (n-k+i)-th column must contain the vector which defines the 
elementary reflector H(i), for 
i = 1,2,...,k, as returned by ?geqlf in the last k columns of its array argument 
a.

lda INTEGER.
The first dimension of the array a. lda ≥ max(1,m).

tau REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX  for cung2l
COMPLEX*16  for zung2l.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as 
returned by ?geqlf.

work REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX  for cung2l
COMPLEX*16  for zung2l.
Workspace array, DIMENSION (n).

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value
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?org2r/?ung2r
Generates all or part of the orthogonal/unitary matrix 
Q from a QR factorization determined by ?geqrf 
(unblocked algorithm).

Syntax
call sorg2r ( m, n, k, a, lda, tau, work, info )

call dorg2r ( m, n, k, a, lda, tau, work, info )

call cung2r ( m, n, k, a, lda, tau, work, info )

call zung2r ( m, n, k, a, lda, tau, work, info )

Description

The routine ?org2r/?ung2r generates an m-by-n real/complex matrix Q with orthonormal 
columns,  which is defined as the first n columns of a product of k elementary  reflectors of order
m

        Q  =  H(1) H(2) . . . H(k)  

as returned by ?geqrf.

Input Parameters

m INTEGER.
The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. m ≥ n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix Q. n ≥ 
k ≥ 0.

a REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX  for cung2r
COMPLEX*16  for zung2r.
Array, DIMENSION (lda, n). 
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On entry, the i-th column must contain the vector which defines the elementary 
reflector H(i), for i = 1,2,...,k, as returned by ?geqrf in the first k columns of 
its array argument a.

lda INTEGER.
The first DIMENSION of the array a. lda ≥ max(1,m).

tau REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX  for cung2r
COMPLEX*16  for zung2r.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as 
returned by ?geqrf.

work REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX  for cung2r
COMPLEX*16  for zung2r.
Workspace array, DIMENSION (n).

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value

?orgl2/?ungl2
Generates all or part of the orthogonal/unitary matrix 
Q from an LQ factorization determined by ?gelqf 
(unblocked algorithm).

Syntax
call sorgl2 ( m, n, k, a, lda, tau, work, info )

call dorgl2 ( m, n, k, a, lda, tau, work, info )

call cungl2 ( m, n, k, a, lda, tau, work, info )

call zungl2 ( m, n, k, a, lda, tau, work, info )
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Description

The routine ?orgl2/?ungl2 generates a m-by-n real/complex matrix Q with orthonormal rows,  
which is defined as the first m rows of a product of k elementary  reflectors of order n

        Q  =  H(k) . . . H(2) H(1)  or  Q  =  H(k)′ . . . H(2)′ H(1)′

as returned by ?gelqf.

Input Parameters

m INTEGER.
The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. n ≥ m.

k INTEGER.
The number of elementary reflectors whose product defines the matrix Q. m ≥ 
k ≥ 0.

a REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX  for cungl2
COMPLEX*16  for zungl2.
Array, DIMENSION (lda, n). On entry, the i-th row must contain the vector 
which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by
?gelqf in the first k rows of its array argument a.

lda INTEGER.
The first dimension of the array a. lda ≥ max(1,m).

tau REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX  for cungl2
COMPLEX*16  for zungl2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as 
returned by ?gelqf.

work REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX  for cungl2
COMPLEX*16  for zungl2.
Workspace array, DIMENSION (m). 
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Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value.

?orgr2/?ungr2
Generates all or part of the orthogonal/unitary matrix 
Q from an RQ factorization determined by ?gerqf 
(unblocked algorithm).

Syntax
call sorgr2 ( m, n, k, a, lda, tau, work, info )

call dorgr2 ( m, n, k, a, lda, tau, work, info )

call cungr2 ( m, n, k, a, lda, tau, work, info )

call zungr2 ( m, n, k, a, lda, tau, work, info )

Description

The routine ?orgr2/?ungr2 generates an m-by-n real matrix Q with orthonormal rows,  which is 
defined as the last m rows of a product of k elementary  reflectors of order n
Q  =  H(1) H(2) . . . H(k)  or   Q  =  H(1)′ H(2)′ . . . H(k)′
as returned by ?gerqf.

Input Parameters

m INTEGER. The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. n ≥ m.

k INTEGER. 
The number of elementary reflectors whose product defines the matrix Q. m ≥ 
k ≥ 0.

a REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX  for cungr2
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COMPLEX*16  for zungr2.
Array, DIMENSION (lda, n).On entry, the (m-k+i)-th row must contain the 
vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned 
by ?gerqf in the last k rows of its array argument a.

lda INTEGER.
The first dimension of the array a. lda ≥ max(1,m).

tau REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX  for cungr2
COMPLEX*16  for zungr2. 
Array, DIMENSION (k).tau(i) must contain the scalar factor of the elementary 
reflector H(i), as returned by ?gerqf.

work REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX  for cungr2
COMPLEX*16  for zungr2. 
Workspace array, DIMENSION (m). 

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value

?orm2l/?unm2l
Multiplies a general matrix by the orthogonal/unitary 
matrix from a QL factorization determined by ?geqlf 
(unblocked algorithm).

Syntax
call sorm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call dorm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call cunm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call zunm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
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Description

The routine ?orm2l/?unm2l overwrites the general real/complex m-by-n matrix C with

        Q*C   if side = 'L' and trans = 'N', or 
       Q'*C   if side = 'L' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors), or 
       C*Q   if side = 'R' and trans = 'N', or   
       C*Q'  if side = 'R' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors) 

where Q is a real orthogonal or complex unitary matrix defined as the product of k  elementary 
reflectors

        Q = H(k) . . . H(2) H(1)  

as returned by ?geqlf. Q is of order m if side = 'L' and of order n  if side = 'R'.

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q  (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
                     flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines  the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sorm2l
DOUBLE PRECISION  for dorm2l
COMPLEX  for cunm2l
COMPLEX*16  for zunm2l.
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Array, DIMENSION (lda,k).The i-th column must contain the vector which 
defines the elementary reflector H(i), for i = 1,2,...,k, as returned by ?geqlf in 
the last k columns of its array argument a. The array a is modified by the 
routine but restored on exit.

lda INTEGER.
The leading dimension of the array a.
If side = 'L', lda ≥ max(1, m);
if side = 'R', lda ≥ max(1, n).

tau REAL for sorm2l
DOUBLE PRECISION  for dorm2l
COMPLEX  for cunm2l
COMPLEX*16  for zunm2l.
Array, DIMENSION (k). tau(i) must contain the scalar factor of the elementary 
reflector H(i), as returned by ?geqlf.

c REAL for sorm2l
DOUBLE PRECISION  for dorm2l
COMPLEX  for cunm2l
COMPLEX*16  for zunm2l.
Array, DIMENSION (ldc, n).On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array C. ldc ≥ max(1,m).

work REAL for sorm2l
DOUBLE PRECISION  for dorm2l
COMPLEX  for cunm2l
COMPLEX*16  for zunm2l.
Workspace array, DIMENSION:
(n) if side = 'L',
(m) if side = 'R'. 

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
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?orm2r/?unm2r
Multiplies a general matrix by the orthogonal/unitary 
matrix from a QR factorization determined by ?geqrf 
(unblocked algorithm).

Syntax
call sorm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call dorm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call cunm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call zunm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

Description

The routine ?orm2r/?unm2r overwrites the general real/complex m-by-n matrix C with

        Q*C   if side = 'L' and trans = 'N', or 
       Q'*C   if side = 'L' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors), or 
       C*Q   if side = 'R' and trans = 'N', or   
       C*Q'  if side = 'R' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors) 

where Q is a real orthogonal or complex unitary matrix defined as the product of k  elementary 
reflectors

        Q = H(1) H(2) . . . H(k)  

as returned by ?geqrf. Q is of order m if side = 'L' and of order n  if side = 'R'.

Input Parameters

 side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q  (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
                     flavors)
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m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sorm2r
DOUBLE PRECISION  for dorm2r
COMPLEX  for cunm2r
COMPLEX*16  for zunm2r.
Array, DIMENSION (lda,k).The i-th column must contain the vector which 
defines the elementary reflector H(i), for i = 1,2,...,k, as returned by ?geqrf in 
the first k columns of its array argument a. The array a is modified by the 
routine but restored on exit.

lda INTEGER.
The leading dimension of the array a.
If side = 'L', lda ≥ max(1, m);
if side = 'R', lda ≥ max(1, n).

tau REAL for sorm2r
DOUBLE PRECISION  for dorm2r
COMPLEX  for cunm2r
COMPLEX*16  for zunm2r.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as 
returned by ?geqrf.

c REAL for sorm2r
DOUBLE PRECISION  for dorm2r
COMPLEX  for cunm2r
COMPLEX*16  for zunm2r.
Array, DIMENSION (ldc, n). On entry, the m-by-n  matrix C.

ldc INTEGER.
The leading dimension of the array C. ldc ≥ max(1,m).

work REAL for sorm2r
DOUBLE PRECISION  for dorm2r
COMPLEX  for cunm2r
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COMPLEX*16  for zunm2r.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'. 

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?orml2/?unml2
Multiplies a general matrix by the orthogonal/unitary 
matrix from a LQ factorization determined by ?gelqf 
(unblocked algorithm).

Syntax
call sorml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call dorml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call cunml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call zunml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

Description

The routine ?orml2/?unml2 overwrites the general real/complex m-by-n matrix C with

        Q*C   if side = 'L' and trans = 'N', or 
       Q'*C   if side = 'L' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors), or 
       C*Q   if side = 'R' and trans = 'N', or   
       C*Q'  if side = 'R' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors) 

where Q is a real orthogonal or complex unitary matrix defined as the product of k  elementary 
reflectors

        Q = H(k) . . . H(2) H(1)  or   Q = H(k)′ . . . H(2)′ H(1)′
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as returned by ?gelqf. Q is of order m if side = 'L' and of order n  if side = 'R'.

Input Parameters

 side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q  (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
                     flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX  for cunml2
COMPLEX*16  for zunml2.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the elementary reflector 
H(i), for i = 1,2,...,k, as returned by ?gelqf in the first k rows of its array 
argument a. The array a is modified by the routine but restored on exit.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,k).

tau REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX  for cunml2
COMPLEX*16  for zunml2.
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Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as 
returned by ?gelqf.

c REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX  for cunml2
COMPLEX*16  for zunml2.
Array, DIMENSION (ldc, n)
On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array c. ldc ≥ max(1,m).

work REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX  for cunml2
COMPLEX*16  for zunml2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?ormr2/?unmr2
Multiplies a general matrix by the orthogonal/unitary 
matrix from a RQ factorization determined by ?gerqf 
(unblocked algorithm).

Syntax
call sormr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call dormr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

call cunmr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
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call zunmr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

Description

The routine ?ormr2/?unmr2 overwrites the general real/complex m-by-n matrix C with

        Q*C   if side = 'L' and trans = 'N', or 
       Q'*C   if side = 'L' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors), or 
       C*Q   if side = 'R' and trans = 'N', or   
       C*Q'  if side = 'R' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors) 

where Q is a real orthogonal or complex unitary matrix defined as the product of k  elementary 
reflectors

        Q = H(1) H(2) . . . H(k)  or   Q = H(1)′ H(2)′ . . . H(k)′

as returned by ?gerqf. Q is of order m if side = 'L' and of order n  if side = 'R'.

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q  (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
                     flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX  for cunmr2
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COMPLEX*16  for zunmr2.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the elementary reflector 
H(i), for i = 1,2,...,k, as returned by ?gerqf in the last k rows of its array 
argument a. The array a is modified by the routine but restored on exit.

 lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,k).

tau REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX  for cunmr2
COMPLEX*16  for zunmr2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary  reflector H(i), as 
returned by ?gerqf.

c REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX  for cunmr2
COMPLEX*16  for zunmr2.
Array, DIMENSION (ldc, n).
On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array C. ldc ≥ max(1,m).

work REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX  for cunmr2
COMPLEX*16  for zunmr2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
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?ormr3/?unmr3
Multiplies a general matrix by the orthogonal/unitary 
matrix from a RZ factorization determined by ?tzrzf 
(unblocked algorithm).

Syntax
call sormr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call dormr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call cunmr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call zunmr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

Description

The routine ?ormr3/?unmr3 overwrites the general real/complex m-by-n matrix C with

        Q*C   if side = 'L' and trans = 'N', or 
       Q'*C   if side = 'L' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors), or 
       C*Q   if side = 'R' and trans = 'N', or   
       C*Q'  if side = 'R' and trans = 'T' (for real flavors) or 

trans = 'C'  (for complex flavors) 

where Q is a real orthogonal or complex unitary matrix defined as the product of k  elementary 
reflectors

        Q = H(1) H(2) . . . H(k)  

as returned by ?tzrzf. Q is of order m if side = 'L' and of order n  if side = 'R'.

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q  (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
                     flavors)
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m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

l INTEGER.
The number of columns of the matrix A containing the meaningful part of the 
Householder reflectors.
If side = 'L', m ≥ l ≥ 0, 
if side = 'R', n ≥ l ≥ 0.

a REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX  for cunmr3
COMPLEX*16  for zunmr3.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the elementary reflector 
H(i), for i = 1,2,...,k, as returned by ?tzrzf in the last k rows of its array 
argument a. The array a is modified by the routine but restored on exit.

 lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,k).

tau REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX  for cunmr3
COMPLEX*16  for zunmr3.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary  reflector H(i), as 
returned by ?tzrzf.

c REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX  for cunmr3
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COMPLEX*16  for zunmr3.
Array, DIMENSION (ldc, n).
On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array c. ldc ≥ max(1,m).

work REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX  for cunmr3
COMPLEX*16  for zunmr3.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'. 

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?pbtf2
Computes the Cholesky factorization of a symmetric/ 
Hermitian positive definite band matrix (unblocked 
algorithm).

Syntax
call spbtf2 ( uplo, n, kd, ab, ldab, info )

call dpbtf2 ( uplo, n, kd, ab, ldab, info )

call cpbtf2 ( uplo, n, kd, ab, ldab, info )

call zpbtf2 ( uplo, n, kd, ab, ldab, info )
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Description

The routine computes the Cholesky factorization of a real symmetric or complex Hermitian  
positive definite band matrix A. The factorization has the form
A = U' U ,  if uplo = 'U', or
A = L L',  if uplo = 'L',  

where U is an upper triangular matrix, U' is the transpose of U, and  L is lower triangular.  
This is the unblocked version of the algorithm, calling Level 2 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the 
symmetric/Hermitian matrix A is stored:
= 'U':  Upper triangular
= 'L':  Lower triangular

n INTEGER.
The order of the matrix A.  n ≥ 0.

kd INTEGER.
The number of super-diagonals of the matrix A if uplo = 'U , or the number of 
sub-diagonals if uplo = 'L'.  
kd ≥ 0. 

ab REAL for spbtf2
DOUBLE PRECISION for dpbtf2
COMPLEX for cpbtf2
COMPLEX*16 for zpbtf2.
Array, DIMENSION (ldab, n).
On entry, the upper or lower triangle of the symmetric/ Hermitian band matrix 
A, stored in the first kd+1 rows of the array.  The j-th column of A is stored in 
the j-th column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for 
max(1,j-kd) ≤  i ≤ j;
if uplo = 'L', ab(1+i-j,j)    = A(i,j) for 
j ≤ i ≤ min(n,j+kd).

ldab INTEGER.
The leading dimension of the array ab.  ldab ≥ kd+1.
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Output Parameters

ab On exit, if info = 0, the triangular factor U or L from the Cholesky 
factorization A = U' U or A = L L' of the band matrix A, in the same storage 
format as A.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, the leading minor of order k is not positive definite, and the 
factorization could not be completed.

?potf2
Computes the Cholesky factorization of a 
symmetric/Hermitian positive definite matrix 
(unblocked algorithm).

Syntax
call spotf2 ( uplo, n, a, lda, info )

call dpotf2 ( uplo, n, a, lda, info )

call cpotf2 ( uplo, n, a, lda, info )

call zpotf2 ( uplo, n, a, lda, info )

Description

The routine ?potf2 computes the Cholesky factorization of a real symmetric or complex 
Hermitian  positive definite matrix A.  The factorization has the form
A = U' U ,  if uplo = 'U', or
A = L L',    if uplo = 'L',  
where U is an upper triangular matrix and L is lower triangular.  

This is the unblocked version of the algorithm, calling Level 2 BLAS.
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Input Parameters

 uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the 
symmetric/Hermitian matrix A is stored.
= 'U':  Upper triangular
= 'L':  Lower triangular

n INTEGER.
The order of the matrix A.  n ≥ 0.

a REAL for spotf2
DOUBLE PRECISION or dpotf2
COMPLEX  for cpotf2
COMPLEX*16 for zpotf2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian  matrix A.  
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper 
triangular part of the matrix A, and the strictly lower triangular part of a is not 
referenced.  If uplo = 'L', the leading n-by-n lower triangular part of a 
contains the lower triangular part of the matrix A, and the strictly upper 
triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).

Output Parameters

a On exit, if info = 0, the factor U or L from the Cholesky factorization A = U' 
U  or A = L L'.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, the leading minor of order k is not positive definite, and the 
factorization could not be completed.
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?ptts2
Solves a tridiagonal system of the form AX=B using the 
L D LH factorization computed by ?pttrf.

Syntax
call sptts2 ( n, nrhs, d, e, b, ldb )

call dptts2 ( n, nrhs, d, e, b, ldb )

call cptts2 ( iuplo, n, nrhs, d, e, b, ldb )

call zptts2 ( iuplo, n, nrhs, d, e, b, ldb )

Description

The routine ?ptts2 solves a tridiagonal system of the form
            A X = B  
Real flavors sptts2/dptts2 use the L D L’ factorization of A computed by spttrf/dpttrf,
and complex flavors cptts2/zptts2 use the U'D U or L D L'  factorization of A computed by 
cpttrf/zpttrf.  
D is a  diagonal matrix specified in the vector d,  U (or L) is a unit bidiagonal  matrix whose 
superdiagonal (subdiagonal) is specified in the vector e, and X and B  are n-by-nrhs matrices.

Input Parameters

iuplo INTEGER. Used with complex flavors only.
Specifies the form of the factorization and whether the          vector e is the 
superdiagonal of the upper bidiagonal factor U or the subdiagonal of the lower 
bidiagonal factor L.
= 1:  A = U' D U, e is the superdiagonal of U;
= 0:  A = L D L', e is the subdiagonal of L

n INTEGER.
The order of the tridiagonal matrix A.  n ≥ 0.

nrhs INTEGER.
The number of right hand sides, that is, the number of columns of the matrix B. 
nrhs ≥ 0.
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d REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (n).
The n diagonal elements of the diagonal matrix D from the factorization of A.

e REAL for sptts2
DOUBLE PRECISION  for dptts2
COMPLEX for cptts2
COMPLEX*16 for zptts2.
Array, DIMENSION (n-1).
Contains the (n-1) subdiagonal elements of the unit bidiagonal factor L from 
the LDL' factorization of A (for real flavors, or for complex flavors when 
iuplo = 0).  
For complex flavors when iuplo = 1, e  contains the (n-1) superdiagonal 
elements of the unit bidiagonal factor U from the factorization  A = U'DU.

b REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (ldb, nrhs).
On entry, the right hand side vectors B for the system of linear equations.

ldb INTEGER.
The leading dimension of the array B.  ldb ≥ max(1,n).

Output Parameters

b On exit, the solution vectors, X.

?rscl
Multiplies a vector by the reciprocal of a real scalar.

Syntax
call srscl ( n, sa, sx, incx )

call drscl ( n, sa, sx, incx )

call csrscl ( n, sa, sx, incx )

call zdrscl ( n, sa, sx, incx )
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Description

The routine ?rscl multiplies an n-element real/complex vector x by the real scalar 1/a.  This is 
done without overflow or underflow as long as  the final result x/a does not overflow or underflow.

Input Parameters

 n INTEGER.
The number of components of the vector x.

sa REAL for srscl/csrscl
DOUBLE PRECISION for drscl/zdrscl.
The scalar a which is used to divide each component of the vector x. sa must 
be ≥ 0, or the subroutine will divide by zero.

sx REAL for srscl
DOUBLE PRECISION for drscl
COMPLEX  for csrscl
COMPLEX*16  for zdrscl.
Array, DIMENSION (1+(n-1)*abs(incx )).
The n-element vector x.

incx INTEGER.
The increment between successive values of the vector sx.
If incx > 0,  sx(1) = x(1) and 
sx(1+(i-1)*incx) = x(i),   1< i ≤ n.

Output Parameters

sx On exit, the result x/a.

?sygs2/?hegs2
Reduces a symmetric/Hermitian definite generalized 
eigenproblem to standard form, using the factorization 
results obtained from ?potrf (unblocked algorithm).

Syntax
call ssygs2 ( itype, uplo, n, a, lda, b, ldb, info )

call dsygs2 ( itype, uplo, n, a, lda, b, ldb, info )
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call chegs2 ( itype, uplo, n, a, lda, b, ldb, info )

call zhegs2 ( itype, uplo, n, a, lda, b, ldb, info )

Description 

The routine ?sygs2/?hegs2 reduces a real symmetric-definite or a complex Hermitian-definite 
generalized eigenproblem  to standard form.  
If itype = 1, the problem is  
         Ax = λBx,  
and A is overwritten by  inv(U')*A*inv(U)  or   inv(L)*A*inv(L').

If itype = 2 or 3, the problem is 
       ABx = λx  or  B Ax =λx, 
and A is overwritten by UAU′ or L′AL.  B must have been previously factorized as  U' U or L L'  
by ?potrf.

Input Parameters

itype INTEGER.
= 1: compute inv(U')*A*inv(U)  or   inv(L)*A*inv(L');
= 2 or 3: compute UAU' or L' AL.

uplo CHARACTER
Specifies whether the upper or lower triangular part of the 
symmetric/Hermitian matrix A is stored, and how B has been factorized.
= 'U':  Upper triangular
= 'L':  Lower triangular

n INTEGER.
The order of the matrices A and B.  n ≥ 0.

a REAL for ssygs2
DOUBLE PRECISION  for dsygs2
COMPLEX  for chegs2
COMPLEX*16  for zhegs2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.  
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper 
triangular part of the matrix A, and the strictly lower triangular part of a is not 
referenced.  If uplo = 'L', the leading n-by-n lower triangular part of a 
contains the lower triangular part of the matrix A, and the strictly upper 
triangular part of a is not referenced.
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lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).

b REAL for ssygs2
DOUBLE PRECISION  for dsygs2
COMPLEX  for chegs2
COMPLEX*16  for zhegs2.
Array, DIMENSION (ldb, n).
The triangular factor from the Cholesky factorization of B as returned by 
?potrf.

ldb INTEGER.
The leading dimension of the array B.  ldb ≥ max(1,n).

Output Parameters

a On exit, if info = 0, the transformed matrix, stored in the same format as A.

info INTEGER.
= 0:  successful exit.
< 0:  if info = -i, the i-th argument had an illegal value.

?sytd2/?hetd2
Reduces a symmetric/Hermitian matrix to real 
symmetric tridiagonal form by an orthogonal/unitary 
similarity transformation (unblocked algorithm).

Syntax
call ssytd2 ( uplo, n, a, lda, d, e, tau, info )

call dsytd2 ( uplo, n, a, lda, d, e, tau, info )

call chetd2 ( uplo, n, a, lda, d, e, tau, info )

call zhetd2 ( uplo, n, a, lda, d, e, tau, info )

Description

The routine ?sytd2/?hetd2 reduces a real symmetric/complex Hermitian matrix A to real 
symmetric tridiagonal  form T by an orthogonal/unitary similarity transformation: Q' AQ = T.
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Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the 
symmetric/Hermitian matrix A is stored:
= 'U':  Upper triangular
= 'L':  Lower triangular

n INTEGER.
The order of the matrix A.  n ≥ 0.

a REAL for ssytd2
DOUBLE PRECISION  for dsytd2
COMPLEX  for chetd2
COMPLEX*16  for zhetd2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.  
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper 
triangular part of the matrix A, and the strictly lower triangular part of a is not 
referenced.  If uplo = 'L', the leading n-by-n lower triangular part of a 
contains the lower triangular part of the matrix A, and the strictly upper 
triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the diagonal and first superdiagonal of a are overwritten 
by the corresponding elements of the tridiagonal matrix T, and the elements 
above the first superdiagonal, with the array tau, represent the 
orthogonal/unitary matrix Q as a product of elementary reflectors; 
if uplo = 'L', the diagonal and first subdiagonal of a are overwritten by the 
corresponding elements of the tridiagonal matrix T, and the elements below the 
first subdiagonal, with the array tau, represent the orthogonal/unitary matrix 
Q as a product of elementary reflectors. 

d REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n).
The diagonal elements of the tridiagonal matrix T:
d(i) = a(i,i).
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e REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n-1).
The off-diagonal elements of the tridiagonal matrix T:
e(i) = a(i,i+1) if uplo = 'U', 
e(i) = a(i+1,i) if uplo = 'L'.

tau REAL for ssytd2
DOUBLE PRECISION  for dsytd2
COMPLEX  for chetd2
COMPLEX*16  for zhetd2.
Array, DIMENSION (n-1).
The scalar factors of the elementary reflectors .

info INTEGER.
= 0:  successful exit
< 0:  if info = -i, the i-th argument had an illegal value.

?sytf2
Computes the factorization of a real/complex symmetric 
indefinite matrix, using the diagonal pivoting method 
(unblocked algorithm).

Syntax
call ssytf2 ( uplo, n, a, lda, ipiv, info )

call dsytf2 ( uplo, n, a, lda, ipiv, info )

call ñsytf2 ( uplo, n, a, lda, ipiv, info )

call zsytf2 ( uplo, n, a, lda, ipiv, info )

Description

The routine ?sytf2  computes the factorization of a real/complex symmetric matrix A using  the 
Bunch-Kaufman diagonal pivoting method:
        A = U D U'  or  A = L D L' 

where U (or L) is a product of permutation and unit upper (lower)  triangular matrices, U' is the 
transpose of U, and D is symmetric and  block diagonal with 1-by-1 and 2-by-2 diagonal blocks.  
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This is the unblocked version of the algorithm, calling Level 2 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix A 
is stored
 = 'U':  Upper triangular
= 'L':  Lower triangular

n INTEGER.
The order of the matrix A.  n ≥ 0.

a REAL for ssytf2
DOUBLE PRECISION  for dsytf2
COMPLEX for csytf2
COMPLEX*16  for zsytf2.
Array, DIMENSION (lda, n).
On entry, the symmetric matrix A.  
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper 
triangular part of the matrix A, and the strictly lower triangular part of a is not 
referenced.  If uplo = 'L', the leading n-by-n lower triangular part of a 
contains the lower triangular part of the matrix A, and the strictly upper 
triangular part of a is not referenced.

  lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).

Output Parameters

a On exit, the block diagonal matrix D and the multipliers used to obtain the 
factor U or L.

ipiv INTEGER.
 Array, DIMENSION (n).
Details of the interchanges and the block structure of D If ipiv(k) > 0, then 
rows and columns k and ipiv(k) were interchanged and D(k,k) is a 1-by-1 
diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows and columns k-1 and 
-ipiv(k) were interchanged and D(k-1:k,k-1:k ) is a 2-by-2 diagonal block.  
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1 and 
-ipiv(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
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info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, D(k,k) is exactly zero.  The factorization has been 
completed, but the block diagonal matrix D is exactly singular, and division by 
zero will occur if it is used to solve a system of equations.

?hetf2
Computes the factorization of a complex Hermitian 
matrix, using the diagonal pivoting method (unblocked 
algorithm).

Syntax
call chetf2 ( uplo, n, a, lda, ipiv, info )

call zhetf2 ( uplo, n, a, lda, ipiv, info )

Description

The routine computes the factorization of a complex Hermitian matrix A  using the 
Bunch-Kaufman diagonal pivoting method:
       A = U D U'  or  A = L D L'  

where U (or L) is a product of permutation and unit upper (lower)  triangular matrices, U' is the 
conjugate transpose of U, and D is  Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal 
blocks. 

This is the unblocked version of the algorithm, calling Level 2 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix A 
is stored:
= 'U':  Upper triangular
= 'L':  Lower triangular

n INTEGER.
The order of the matrix A.  n ≥ 0.
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a COMPLEX for chetf2
COMPLEX*16 for zhetf2.
Array, DIMENSION (lda, n).
On entry, the Hermitian matrix A.  
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper 
triangular part of the matrix A, and the strictly lower triangular part of a is not 
referenced.  
If uplo = 'L', the leading n-by-n lower triangular part of a contains the lower 
triangular part of the matrix A, and the strictly upper triangular part of a is not 
referenced.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).

Output Parameters

a On exit, the block diagonal matrix D and the multipliers used to obtain the 
factor U or L.

ipiv INTEGER.
 Array, DIMENSION (n).
Details of the interchanges and the block structure of D If ipiv(k) > 0, then 
rows and columns k and ipiv(k) were interchanged and D(k,k) is a 1-by-1 
diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows and columns k-1 and 
-ipiv(k) were interchanged and D(k-1:k,k-1:k ) is a 2-by-2 diagonal block.  
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1 and 
-ipiv(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, D(k,k) is exactly zero.  The factorization has been completed, 
but the block diagonal matrix D is exactly singular, and division by zero will 
occur if it is used to solve a system of equations.
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?tgex2
Swaps adjacent diagonal blocks in an upper (quasi) 
triangular matrix pair by an orthogonal/unitary 
equivalence transformation.

Syntax
call stgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, n1,

n2, work, lwork, info )

call dtgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, n1,
n2, work, lwork, info )

call ctgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, info )

call ztgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, info )

Description

The real routines stgex2/dtgex2 swap adjacent diagonal blocks (A11, B11) and (A22, B22)  of 
size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair  (A, B)  by an orthogonal 
equivalence transformation.  (A, B) must be in generalized real Schur canonical form (as returned  
by sgges/dgges), that is,  A is block upper triangular with 1-by-1 and 2-by-2  diagonal blocks. B 
is upper triangular.  

The complex routines ctgex2/ztgex2 swap adjacent diagonal 1-by-1 blocks (A11, B11) and 
(A22, B22)  in an upper triangular matrix pair  (A, B)  by an unitary equivalence transformation.  
(A, B) must be in generalized  Schur canonical form, that is,  A and B are both upper triangular.  

All routines optionally update the matrices Q and Z of generalized Schur vectors:

Q(in) *A(in)*Z(in)' = Q(out)*A(out)* Z(out)'
Q(in)*B(in)*Z(in)' = Q(out)*B(out)*Z(out)'

Input Parameters

wantq LOGICAL.
If wantq = .TRUE. : update the left transformation matrix Q;
If wantq = .FALSE.: do not update Q.

wantz LOGICAL.
If wantz = .TRUE. : update the right transformation matrix Z;
If wantz =  .FALSE.: do not update Z.
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n INTEGER.
The order of the matrices A and B. n ≥ 0.

a, b REAL for stgex2 
DOUBLE PRECISION for dtgex2
COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (lda, n) and (ldb, n), respectively.
On entry, the matrices A and B in the pair (A, B).

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

 ldb INTEGER.
The leading dimension of the array b. ldb ≥ max(1,n).

q, z REAL for stgex2 
DOUBLE PRECISION for dtgex2

COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (ldq, n) and (ldz, n), respectively.
On entry, if wantq = .TRUE., q contains the orthogonal/unitary matrix Q, and 
if wantz = .TRUE., 
z contains the orthogonal/unitary matrix Z.

ldq INTEGER.
The leading dimension of the array q. ldq ≥ 1.
If wantq = .TRUE., ldq ≥ n.

ldz INTEGER.
The leading dimension of the array z. ldz ≥ 1.
If wantz = .TRUE., ldz ≥ n.

j1 INTEGER. 
The index to the first block (A11, B11). 1 ≤ j1 ≤ n.

n1 INTEGER. Used with real flavors only.
The order of the first block (A11, B11). n1 = 0, 1 or 2.

n2 INTEGER. Used with real flavors only.
The order of the second block (A22, B22). n2 = 0, 1 or 2.

work REAL for stgex2 
DOUBLE PRECISION for dtgex2.
Workspace array, DIMENSION (lwork). Used with real flavors only.
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lwork INTEGER.
The dimension of the array work.
lwork ≥  max( n*(n2+n1), 2*(n2+n1)2 )

Output Parameters

a On exit, the updated matrix A.

b On exit, the updated matrix B.

q On exit, the updated matrix Q. 
Not referenced if wantq = .FALSE..

z On exit, the updated matrix Z. 
Not referenced if wantz = .FALSE..

info INTEGER.
=0: Successful exit
For stgex2/dtgex2: if info = 1, the transformed matrix (A, B) would be too 
far from generalized Schur form; the blocks are not swapped and (A, B) and 
(Q, Z) are unchanged. The problem of swapping is too ill-conditioned. If info 
= -16: lwork is too small. Appropriate value for lwork is returned in work(1).

For ctgex2/ztgex2: if info = 1, the transformed matrix pair (A, B) would 
be too far from generalized Schur form; the problem is ill-conditioned. (A, B) 
may have been partially reordered, and ilst points to the first row of the 
current position of the block being moved.

?tgsy2
Solves the generalized Sylvester equation (unblocked 
algorithm).

Syntax
call stgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde,

f, ldf, scale, rdsum, rdscal, iwork, pq, info )

call dtgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde,
f, ldf, scale, rdsum, rdscal, iwork, pq, info )

call ctgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde,
f, ldf, scale, rdsum, rdscal, iwork, pq, info )



5-316

5 Intel® Math Kernel Library Reference Manual

call ztgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde,
f, ldf, scale, rdsum, rdscal, iwork, pq, info )

Description

The routine ?tgsy2 solves the generalized Sylvester equation:
                  AR - L B = scale*C                                                     (1)
               DR - L E = scale*F,  

using Level 1 and 2 BLAS, where R and L are unknown m-by-n matrices,  (A, D), (B, E) and (C, 
F) are given matrix pairs of size m-by-m,  n-by-n and m-by-n, respectively. 
For stgsy2/dtgsy2, pairs (A, D) and (B, E)  must be in generalized Schur canonical 
form, that is,  A, B are upper  quasi triangular and D, E are upper triangular. For
ctgsy2/ztgsy2, matrices A, B, D and  E  are upper triangular (that is, (A, D) and (B, E) in 
generalized Schur form). 

The solution (R, L)  overwrites (C, F). 0 ≤ scale ≤ 1 is an output scaling factor  chosen to avoid 
overflow.  

In matrix notation, solving equation (1) corresponds to solve  
           Zx = scale* b, 
where Z is defined as

                    (2)

Here Ik  is the identity matrix of size k and X' is the transpose of X.  
kron(X, Y) denotes the Kronecker product between the matrices X and Y.  

If trans = 'T' , solve the transposed (conjugate transposed) system 
            Z'y = scale* b 
for y,  which is equivalent to solve for R and L in 

           A' R  + D' L   = scale*C                                            (3) 
         R B' + L E'  = scale*(-F)  

This case is used to compute an estimate of Dif[(A, D), (B, E)] =  sigma_min(Z) using reverse 
communication with ?lacon.  

?tgsy2 also (for ijob ≥ 1) contributes to the computation in ?tgsyl  of an upper bound on the 
separation between two matrix pairs. Then  the input (A, D), (B, E) are sub-pencils of the 
matrix pair (two matrix pairs) in  ?tgsyl. See ?tgsyl for details.

Z
kron In, A( ) kron B ′ , Im( )–

kron In, D( ) kron E ′ , Im( )–
=
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Input Parameters

trans CHARACTER

If trans = 'N', solve the generalized Sylvester 
equation (1);
 If trans = 'T': solve the 'transposed' system (3).

ijob INTEGER.
Specifies what kind of functionality is to be performed.
If ijob = 0: solve (1) only.
If ijob = 1: a contribution from this subsystem to a Frobenius norm-based 
estimate of the separation between two matrix pairs is computed (look ahead 
strategy is used);
If ijob  = 2: a contribution from this subsystem to a Frobenius norm-based 
estimate of the separation between two matrix pairs is computed (?gecon on 
sub-systems is used). 
Not referenced if trans = 'T'.

m INTEGER.
On entry, m specifies the order of A and D, and the row
dimension of C, F, R and L.

n INTEGER.
On entry, n specifies the order of B and E, and the column dimension of C, F, 
R and L.

a, b REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX  for ctgsy2
COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (lda, m) and (ldb, n), respectively. On entry, a contains 
an upper (quasi) triangular matrix A and b contains an upper (quasi) triangular 
matrix B.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1, m).

ldb INTEGER. 
The leading dimension of the array b. ldb ≥ max(1, n).

c, f REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX  for ctgsy2
COMPLEX*16 for ztgsy2.
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Arrays, DIMENSION (ldc, n) and (ldf, n), respectively. On entry, c 
contains the right-hand-side of the first matrix equation in (1) and f contains 
the right-hand-side of the second matrix equation in (1).

ldc INTEGER.
The leading dimension of the array c. ldc ≥ max(1, m).

d, e REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX  for ctgsy2

COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (ldd, m) and (lde, n), respectively. On entry, d contains 
an upper triangular matrix D and e contains an upper triangular matrix E.

ldd INTEGER.
The leading dimension of the array d. ldd ≥ max(1, m).

lde INTEGER.
The leading dimension of the array e. lde ≥ max(1, n).

ldf INTEGER.
The leading dimension of the array f. ldf ≥ max(1, m).

rdsum REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, the sum of squares of computed contributions to the Dif-estimate 
under computation by ?tgsyl, where the scaling factor rdscal has been 
factored out.

rdscal REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, scaling factor used to prevent overflow in rdsum.

iwork INTEGER. Used with real flavors only.
Workspace array, DIMENSION (m+n+2).

Output Parameters

c On exit, if ijob = 0, c has been overwritten by the solution R.

f On exit, if ijob = 0, f has been overwritten by the solution L.

scale REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On exit, 0 ≤ scale ≤ 1. If 0 < scale < 1, the solutions R and L (C and F on 
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entry) will hold the solutions to a slightly perturbed system, but the input 
matrices A, B, D and E have not been changed. If scale = 0, R and L will hold 
the solutions to the homogeneous system with C = F = 0. Normally scale = 1.

rdsum On exit, the corresponding sum of squares updated with the contributions from 
the current sub-system. 
If trans = 'T', rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl.

rdscal On exit, rdscal is updated with respect to the current contributions in rdsum.
If trans = 'T', rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl.

pq INTEGER. Used with real flavors only.
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and 8-by-8) solved 
by the routine stgsy2/dtgsy2.

info INTEGER.
On exit, if info is set to
=0: Successful exit
<0: If info = -i, the i-th argument had an illegal value.
>0: The matrix pairs (A, D) and (B, E) have common or very close eigenvalues.

?trti2
Computes the inverse of a triangular matrix (unblocked 
algorithm).

Syntax
call strti2 ( uplo, diag, n, a, lda, info )

call dtrti2 ( uplo, diag, n, a, lda, info )

call ctrti2 ( uplo, diag, n, a, lda, info )

call ztrti2 ( uplo, diag, n, a, lda, info )

Description

The routine ?trti2 computes the inverse of a real/complex upper or lower triangular  matrix.  

This is the Level 2 BLAS version of the algorithm.
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Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U':  Upper triangular
= 'L':  Lower triangular

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N':  Non-unit triangular
= 'U':  Unit triangular

n INTEGER.
The order of the matrix A.  n ≥ 0.

a REAL for strti2
DOUBLE PRECISION for dtrti2
COMPLEX for ctrti2
COMPLEX*16  for ztrti2.
Array, DIMENSION (lda, n). 
On entry, the triangular matrix A.  If uplo = 'U', the leading n-by-n upper 
triangular part of the array a contains the upper triangular matrix, and the 
strictly lower triangular part of a is not referenced.  If uplo = 'L', the leading 
n-by-n lower triangular part of the array a contains the lower triangular matrix, 
and the strictly upper triangular part of a is not referenced.  If diag = 'U', the 
diagonal elements of a are also not referenced and are assumed to be 1.

lda INTEGER.
The leading dimension of the array a.  lda ≥ max(1,n).

Output Parameters

a On exit, the (triangular) inverse of the original matrix, in the same storage 
format.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
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Utility Functions and Routines
This section describes LAPACK utility functions and routines. Summary information about these 
routines is given in the following table: 

ilaenv
Environmental enquiry function which returns values 
for tuning algorithmic performance.

Syntax
value = ilaenv ( ispec, name, opts, n1, n2, n3, n4 )

Table 5-2 LAPACK Utility Routines

Routine 
Name

Data 
Types Description

ilaenv Environmental enquiry function which returns values for tuning algorithmic 
performance.

ieeeck Checks if the infinity and NaN arithmetic is safe. Called by ilaenv.

lsame Tests two characters for equality regardless of case.

lsamen Tests two character strings for equality regardless of case.

?labad s,d Returns the square root of the underflow and overflow thresholds if the 
exponent-range is very large.

?lamch s,d Determines machine parameters for floating-point arithmetic.

?lamc1 s,d Called from ?lamc2. Determines machine parameters given by beta, t,
rnd, ieee1.

?lamc2 s,d Used by ?lamch. Determines machine parameters specified in its arguments 
list.

?lamc3 s,d Called from ?lamc1-?lamc5. Intended to force a and b to be stored prior to 
doing the addition of a and b.

?lamc4 s,d This is a service routine for ?lamc2.

?lamc5 s,d Called from ?lamc2. Attempts to compute the largest machine floating-point 
number, without overflow.

second/
dsecnd

Return user time for a process.

xerbla Error handling routine called by LAPACK routines.
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Description

Enquiry function ilaenv is called from the LAPACK routines to choose problem-dependent 
parameters for the local environment.  See ispec  for a description of the parameters.

This version provides a set of parameters which should give good, but not optimal, performance on 
many of the currently available computers.  Users are encouraged to modify this subroutine to set 
the tuning parameters for their particular machine using the option and problem size information 
in the arguments.

This routine will not function correctly if it is converted to all lower case.  Converting it to all 
upper case is allowed.

Input Parameters

ispec INTEGER.  Specifies the parameter to be returned as the value of ilaenv:

= 1: the optimal blocksize; if this value is 1, an unblocked algorithm will give 
the best performance.

= 2: the minimum block size for which the block routine should be used; if the 
usable block size is less than this value, an unblocked routine should be used.

= 3: the crossover point (in a block routine, for N less than this value, an 
unblocked routine should be used)

= 4: the number of shifts, used in the nonsymmetric eigenvalue routines

= 5: the minimum column dimension for blocking to be used; rectangular 
blocks must have dimension at least k by m, where k is given by ilaenv(2,...) 
and m by ilaenv(5,...)

= 6: the crossover point for the SVD (when reducing an m by n matrix to 
bidiagonal form, if max(m,n)/min(m,n) exceeds this value, a QR factorization 
is used first to reduce the matrix to a triangular form.)

= 7: the number of processors

= 8: the crossover point for the multishift QR and QZ methods for 
nonsymmetric eigenvalue problems.

= 9: maximum size of the subproblems at the bottom of the computation tree in 
the divide-and-conquer algorithm (used by ?gelsd and ?gesdd)

=10: IEEE NaN arithmetic can be trusted not to trap

=11: infinity arithmetic can be trusted not to trap
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name CHARACTER*(*).The name of the calling subroutine, in either upper case or 
lower case. 

opts CHARACTER*(*).  The character options to the subroutine name, concatenated 
into a single character string.  For example, uplo = 'U', trans = 'T', and 
diag = 'N' for a triangular routine would be specified as opts = 'UTN'.

n1,n2,n3,n4 INTEGER.  Problem dimensions for the subroutine name;  these may not all be 
required.

Output Parameters

value INTEGER.  
If value ≥ 0: the value of the parameter specified by ispec;
If value = -k < 0: the k-th argument had an illegal value.

Application Notes

The following conventions have been used when calling ilaenv from the LAPACK routines:

 1)  opts is a concatenation of all of the character options to subroutine name, in the same order 
that they appear in the argument list for name, even if they are not used in determining the value of 
the parameter specified by ispec.

 2)  The problem dimensions n1,n2,n3,n4 are specified in the order that they appear in the 
argument list for name.  n1 is used first, n2 second, and so on, and unused problem dimensions are 
passed a value of -1.

 3)  The parameter value returned by ilaenv is checked for validity in the calling subroutine.  For 
example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:

nb = ilaenv( 1, 'strtri', uplo // diag, n, -1, -1, -1 )

if( nb.le.1 ) nb = max( 1, n )
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ieeeck
Checks if the infinity and NaN arithmetic is safe. 
Called by ilaenv.

Syntax
ival = ieeeck( ispec, zero, one )

Description

The function ieeeck is called from the ilaenv to verify that infinity and  possibly NaN 
arithmetic is safe, that is, will not trap.

Input Parameters

ispec INTEGER.  Specifies whether to test just for inifinity arithmetic or both for 
infinity and NaN arithmetic: 
If ispec = 0: Verify infinity arithmetic only. 
If ispec = 1: Verify infinity and NaN arithmetic. 

zero REAL.  Must contain the value 0.0  
This is passed to prevent the compiler from optimizing away this code. 

one REAL.  Must contain the value 1.0  
This is passed to prevent the compiler from optimizing away this code. 

Output Value

ival INTEGER.

If ival = 0: Arithmetic failed to produce the correct answers. 
If ival = 1: Arithmetic produced the correct answers. 
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lsame 
Tests two characters for equality regardless of case.

Syntax
val = lsame ( ca, cb )

Description

This logical function returns .TRUE. if ca is the same letter as cb regardless of case. 

Input Parameters

ca, cb CHARACTER*1.  Specify the single characters to be compared. 

Output Parameters

val LOGICAL.  Result of the comparison.

lsamen 
Tests two character strings for equality regardless of 
case.

Syntax
val = lsamen ( n, ca, cb )

Description

This logical function tests if the first n letters of the string ca are the same as the first n letters of 
cb, regardless of case. The function lsamen returns .TRUE. if ca and cb are equivalent except 
for case and .FALSE. otherwise.  lsamen also returns .FALSE. if len(ca) or len(cb) is less 
than n.

Input Parameters

n INTEGER.  The number of characters in ca and cb to be compared. 
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ca, cb CHARACTER*(*).  Specify two character strings of length at least n to be 
compared. Only the first n characters of each string will be accessed.

Output Parameters

val LOGICAL.  Result of the comparison.

?labad 
Returns the square root of the underflow and overflow 
thresholds if the exponent-range is very large.

Syntax
call slabad ( small, large )

call dlabad ( small, large )

Description

This routine takes as input the values computed by slamch/dlamch for underflow and overflow, 
and returns the square root of each of these values if the log of large is sufficiently large.  This 
subroutine is intended to identify machines with a large exponent range, such as the Crays, and 
redefine the underflow and overflow limits to be the square roots of the values computed by 
?lamch.  This subroutine is needed because ?lamch does not compensate for poor arithmetic in 
the upper half of the exponent range, as is found on a Cray.

Input Parameters

small REAL for slabad 
DOUBLE PRECISION for dlabad.  
The underflow threshold as computed by ?lamch. 

large REAL for slabad 
DOUBLE PRECISION for dlabad.  
The overflow threshold as computed by ?lamch. 

Output Parameters

small On exit, if log10(large) is sufficiently large, the square root of small, 
otherwise unchanged.
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large On exit, if log10(large) is sufficiently large, the square root of large, 
otherwise unchanged.

?lamch
Determines machine parameters for floating-point 
arithmetic.

Syntax
val = slamch ( cmach )

val = dlamch ( cmach )

Description

The function ?lamch determines single precision and double precision machine parameters.

Input Parameters

cmach CHARACTER*1. Specifies the value to be returned by ?lamch:
= 'E' or 'e', val = eps
= 'S' or 's , val  = sfmin
= 'B' or 'b', val = base
= 'P' or 'p', val = eps*base
= 'N' or 'n', val = t
= 'R' or 'r', val  = rnd
= 'M' or 'm', val = emin
= 'U' or 'u', val  = rmin
= 'L' or 'l', val  = emax
= 'O' or 'o', val  = rmax
where
eps   = relative machine precision;
sfmin = safe minimum, such that 1/sfmin does not overflow;
base  = base of the machine;
prec  = eps*base;
t     = number of (base) digits in the mantissa;
rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise;
emin  = minimum exponent before (gradual) underflow;
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rmin  = underflow_threshold - base**(emin-1);
emax  = largest exponent before overflow;
rmax  = overflow_threshold  - (base**emax)*(1-eps).

Output Parameters

val REAL for slamch
DOUBLE PRECISION for dlamch
Value returned by the function.

?lamc1
Called from ?lamc2.
Determines machine parameters given by beta, t,
rnd, ieee1.

Syntax
call slamc1 ( beta, t, rnd, ieee1 )

call dlamc1 ( beta, t, rnd, ieee1 )

Description

The routine ?lamc1 determines machine parameters given by beta, t, rnd, ieee1.

Output Parameters

beta INTEGER. The base of the machine.

t INTEGER. The number of (beta) digits in the mantissa.

rnd LOGICAL.
Specifies whether proper rounding  ( rnd = .TRUE. )  or chopping  ( rnd = 
.FALSE. ) occurs in addition. This may not be a reliable guide to the way in 
which the machine performs its arithmetic.

ieee1 LOGICAL.  
Specifies whether rounding appears to be done in the ieee 'round to nearest' 
style.
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?lamc2
Used by ?lamch.
Determines machine parameters specified in its 
arguments list.

Syntax
call slamc2 ( beta, t, rnd, eps, emin, rmin, emax, rmax )

call dlamc2 ( beta, t, rnd, eps, emin, rmin, emax, rmax )

Description

The routine ?lamc2 determines machine parameters specified in its arguments list.

Output Parameters

beta INTEGER. The base of the machine.

t INTEGER. The number of ( beta ) digits in the mantissa.

rnd LOGICAL. 
Specifies whether proper rounding  ( rnd = .TRUE. )  or chopping  ( rnd = 
.FALSE. )  occurs in addition. This may not be a reliable guide to the way in 
which the machine performs its arithmetic.

eps REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest positive number such that
  fl(1.0 - eps) < 1.0,
where fl denotes the computed value.

emin INTEGER. The minimum exponent before (gradual) underflow occurs.

rmin REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest normalized number for the machine, given by  base emin - 1 , 
where  base  is the floating point value of beta.

emax INTEGER.The maximum exponent before overflow occurs.
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rmax REAL for slamc2
DOUBLE PRECISION for dlamc2
The largest positive number for the machine, given by  baseemax (1 - eps), 
where  base  is the floating point value of beta.

?lamc3
Called from ?lamc1-?lamc5. Intended to force a and 
b to be stored prior to doing the addition of a and b.

Syntax
val = slamc3 (a, b)

val = dlamc3 (a, b)

Description

The routine is intended to force  a  and  b  to be stored prior to doing  the addition of  a  and  b,  for 
use in situations where optimizers  might hold one of these in a register.

 Input Parameters

a,b REAL for slamc3
DOUBLE PRECISION for dlamc3
The values a and b.

Output Parameters

val REAL for slamc3
DOUBLE PRECISION for dlamc3
The result of adding values a and b.
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?lamc4
This is a service routine for ?lamc2.

Syntax
call slamc4 (emin, start, base)

call dlamc4 (emin, start, base)

Description

This is a service routine for ?lamc2.

Input Parameters

start REAL for slamc4
DOUBLE PRECISION for dlamc4
The starting point for determining emin.

base INTEGER. The base of the machine.

Output Parameters

emin INTEGER. The minimum exponent before (gradual) underflow, computed by  
setting a = start and dividing by base until the previous a can not be 
recovered.

?lamc5
Called from ?lamc2.
Attempts to compute the largest machine floating-point 
number, without overflow.

Syntax
call slamc5 ( beta, p, emin, ieee, emax, rmax )

call dlamc5 ( beta, p, emin, ieee, emax, rmax )
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Description

The routine ?lamc5 attempts to compute rmax, the largest machine floating-point  number, 
without overflow.  It assumes that 
emax + abs(emin) sum approximately to a power of 2.  It will fail on machines where this 
assumption does not hold, for example, the Cyber 205 (emin = -28625, emax = 28718).  It will 
also fail if the value supplied for emin is  too large (that is, too close to zero), probably with 
overflow.

Input Parameters

beta INTEGER.The base of floating-point arithmetic.

p INTEGER.The number of base beta digits in the mantissa of a floating-point 
value.

emin INTEGER. The minimum exponent before (gradual) underflow.

ieee LOGICAL. A logical flag specifying whether or not the arithmetic  system is 
thought to comply with the IEEE standard.

Output Parameters.

emax INTEGER. The largest exponent before overflow.

rmax REAL for slamc5
DOUBLE PRECISION for dlamc5 
The largest machine floating-point number.

second/dsecnd
Return user time for a process.

Syntax
val = second()

val = dsecnd()
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Description

The functions second/dsecnd return the user time for a process in seconds. These
versions get the time from the system function etime. The difference is that dsecnd
returns the result with double presision.

Output Parameters

val REAL for second
DOUBLE PRECISION for dsecnd
User time for a process.

xerbla
Error handling routine called by LAPACK routines.

Syntax
call xerbla ( srname, info )

Description

The routine xerbla is an error handler for the LAPACK routines.  It is called by a LAPACK 
routine if an input parameter has an  invalid value.  
A message is printed and execution stops.
Installers may consider modifying the stop statement in order to call system-specific 
exception-handling facilities.

Input Parameters

srname CHARACTER*6
The name of the routine which called xerbla.

info INTEGER.
The position of the invalid parameter in the parameter list of the calling 
routine.
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ScaLAPACK Routines 6
This chapter describes the Intel® Math Kernel Library implementation of routines from the 
ScaLAPACK package for distributed-memory architectures.Routines are supported for both real 
and complex dense and band matrices to perform the tasks of solving systems of linear equations,  
solving linear least-squares problems, eigenvalue and singular value problems, as well as 
performing a number of related computational tasks. All routines are available in both single 
precision and double precision. 

Sections in this chapter include descriptions of ScaLAPACK computational routines that perform 
distinct computational tasks, as well as driver routines for solving standard types of problems in
one call.

Generally, ScaLAPACK runs on a network of computers using MPI as a message-passing layer 
and a set of prebuilt communication subprograms (BLACS), as well as a set of BLAS optimized 
for the target architecture. Intel Cluster MKL version of ScaLAPACK is optimized for Intel® 
processors and uses MPICH version of MPI. For the detailed system requirements, see Intel MKL 
Release Notes and Intel MKL Technical UserNotes.

For full reference on ScaLAPACK routines and related information see [SLUG].

NOTE.  ScaLAPACK routines are provided with Intel® Cluster MKL product 
only which is a superset of Intel MKL. 
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Overview
The model of the computing environment for ScaLAPACK is represented as a one-dimensional 
array of processes (for operations on band or tridiagonal matrices) or also a two-dimensional 
process grid (for operations on dense matrices). To use ScaLAPACK, all global matrices or vectors 
should be distributed on this array or grid prior to calling the ScaLAPACK routines. 

ScaLAPACK uses the two-dimensional block-cyclic data distribution as a layout for dense matrix 
computations.
This distribution provides good work balance between available processors, as well as gives the 
opportunity to use BLAS Level 3 routines for optimal local computations. Information about the 
data distribution that is required to establish the mapping between each global array and its 
corresponding process and memory location is contained in the so called array descriptor   
associated with each global array.
An example of an array descriptor structure is given in Table 6-1 

The number of rows and columns of a global dense matrix that a particular process in a grid 
receives after data distributing is denoted by LOCr() and LOCc(), respectively. To compute these 
numbers, you can use the ScaLAPACK tool routine numroc.

After the block-cyclic distribution of global data is done, you may choose to perform an operation 
on a submatrix of the global matrix A, which is contained in the global subarray sub(A), defined by 
the following 6 values (for dense matrices):

m The number of rows of sub(A)

Table 6-1 Content of the array descriptor for dense matrices

Array 
Element # Name Definition

1 dtype Descriptor type ( =1 for dense matrices)

2 ctxt BLACS context handle for the process grid 

3 m Number of rows in the global array

4 n Number of columns in the global array

5 mb Row blocking factor

6 nb Column blocking factor

7 rsrc Process row over which the first row of the global array is 
distributed

8 csrc Process column over which the first column of the global 
array is distributed

9 lld Leading dimension of the local array
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n The number of columns of sub(A)

a A pointer to the local array containing the entire global array A

ia The row index of sub(A) in the global array

ja The column index of sub(A) in the global array

desca The array descriptor for the global array

Routine Naming Conventions  
For each routine introduced in this chapter, you can use the ScaLAPACK name. The naming 
convention for ScaLAPACK routines is similar to that used for LAPACK routines (see page 4-2 in 
Chapter 4 and page 5-4 in Chapter 5). A general rule is that each routine name in ScaLAPACK, 
which has an LAPACK equivalent, is simply the LAPACK name prefixed by initial letter p.

ScaLAPACK names  have the structure pxyyzzz or pxyyzz, which is described below.

The initial letter p is a distinctive prefix of ScaLAPACK routines and is present in each such 
routine. 
The second letter x indicates the data type:
s real, single precision c complex, single precision
d real, double precision z complex, double precision

The second and third letters yy indicate the matrix type as:
ge general
gb general band
gg a pair of general matrices (for a generalized problem)
dt general tridiagonal (diagonally dominant-like)
db general band (diagonally dominant-like)
po symmetric or Hermitian positive-definite
pb symmetric or Hermitian positive-definite band
pt symmetric or Hermitian positive-definite tridiagonal
sy symmetric
st symmetric tridiagonal (real)
he Hermitian
or orthogonal
tr triangular (or quasi-triangular)
tz trapezoidal
un unitary

For computational routines, the last three letters zzz indicate the computation performed and have 
the same meaning as for LAPACK routines.
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For driver routines, the last two letters zz or three letters zzz have the following meaning:

sv a simple driver for solving a linear system
svx an expert driver for solving a linear system
ls a driver for solving a linear least squares problem
ev a simple driver for solving a symmetric eigenvalue problem
evx an expert driver for solving a symmetric eigenvalue problem
svd a driver for computing a singular value decomposition
gvx an expert driver for solving a generalized symmetric definite
          eigenvalue problem
Simple driver here mean that the driver just solves the general problem, whereas an expert driver is 
more versatile and can also optionally perform some related computations (such, for example, as 
refining the solution and computing error bounds after the linear system is solved).

Computational Routines
In the sections that follow, the descriptions of ScaLAPACK computational routines are given. 
These routines perform distinct computational tasks that can be used for:

• Solving Systems of Linear Equations

• Orthogonal Factorizations and LLS Problems

• Symmetric Eigenproblems

• Nonsymmetric Eigenvalue Problems

• Singular Value Decomposition

• Generalized Symmetric-Definite Eigenproblems

See also the respective driver routines.

Linear Equations

ScaLAPACK supports routines for the systems of equations with the following types of matrices:

• general
• general banded
• general diagonally dominant-like banded (including general tridiagonal)
• symmetric or Hermitian positive-definite 
• symmetric or Hermitian positive-definite banded
• symmetric or Hermitian positive-definite tridiagonal
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A diagonally dominant-like matrix is defined as a matrix for which it is known in advance that 
pivoting is not required in the LU factorization of this matrix. 

For the above matrix types, the library includes routines for performing the following 
computations: factoring the matrix; equilibrating the matrix; solving a system of linear equations; 
estimating the condition number of a matrix; refining the solution of linear equations and 
computing its error bounds; inverting the matrix. Note that for some of the listed matrix types only 
part of the computational routines are provided (for example, routines that refine the solution are 
not provided for band or tridiagonal matrices). See Table 6-2 for full list of available routines. 

To solve a particular problem, you can either call two or more computational routines or call a 
corresponding driver routine that combines several tasks in one call. Thus, to solve a system of 
linear equations with a general matrix, you can first call p?getrf (LU factorization) and then 
p?getrs (computing the solution). Then, you might wish to call p?gerfs to refine the solution 
and get the error bounds. Alternatively, you can just use the driver routine p?gesvx which 
performs all these tasks in one call.

Table 6-2 lists the ScaLAPACK computational routines for factorizing, equilibrating, and inverting 
matrices, estimating their condition numbers, solving systems of equations with real matrices, 
refining the solution, and estimating its error.  

Table 6-2 Computational Routines for Systems of Linear Equations    

Matrix type, 
storage scheme

Factorize
matrix

Equilibrate 
matrix

Solve 
system

Condition
number

Estimate
error

Invert 
matrix

general
(partial pivoting)

p?getrf p?geequ p?getrs p?gecon p?gerfs p?getri

general band
(partial pivoting)

p?gbtrf p?gbtrs

general band
(no pivoting)

p?dbtrf p?dbtrs

general tridiagonal
(no pivoting)

p?dttrf p?dttrs

symmetric/Hermitian 
positive-definite

p?potrf p?poequ p?potrs p?pocon p?porfs p?potri

symmetric/Hermitian 
positive-definite, 
band

p?pbtrf p?pbtrs

symmetric/Hermitian 
positive-definite,
tridiagonal

p?pttrf p?pttrs

triangular p?trtrs p?trcon p?trrfs p?trtri



6-6

6 Intel® Math Kernel Library Reference Manual

In this table ? stands for s (single precision real), d (double precision real), 
c (single precision complex), or z (double precision complex).

Routines for Matrix Factorization                

This section describes the ScaLAPACK routines for matrix factorization. The following 
factorizations are supported:

• LU factorization of general matrices

• LU factorization of diagonally dominant-like matrices

• Cholesky factorization of real symmetric or complex Hermitian positive-definite matrices

You can compute the factorizations using full and band storage of matrices.

p?getrf                 
Computes the LU factorization of a general m by n 
distributed matrix.

Syntax
call psgetrf ( m, n, a, ia, ja, desca, ipiv, info )

call pdgetrf ( m, n, a, ia, ja, desca, ipiv, info )

call pcgetrf ( m, n, a, ia, ja, desca, ipiv, info )

call pzgetrf ( m, n, a, ia, ja, desca, ipiv, info )

Description

The routine forms the LU factorization of a general m-by-n distributed matrix 
sub(A) = A(ia:ia+n-1, ja:ja+n-1) as

                    A = P L U

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower 
trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n). L and U are stored in 
sub(A).

The routine uses partial pivoting, with row interchanges.
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Input Parameters

m (global) INTEGER.  The number of rows in the distributed submatrix sub(A);  
m ≥ 0. 

n (global) INTEGER.  The number of columns in the distributed submatrix 
sub(A);  n ≥ 0. 

a (local) 

REAL for psgetrf 
DOUBLE PRECISION for pdgetrf 
COMPLEX for pcgetrf 
DOUBLE COMPLEX for pzgetrf.
Pointer into the local memory  to an array of local dimension (lld_a,
LOCc(ja+n-1)). 
Contains the local pieces of the distributed matrix sub(A) to be factored. 

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix A(ia:ia+n-1, 
ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

Output Parameters

a Overwritten by local pieces of the factors L and U from the factorization 
A = P L U. The unit diagonal elements of L are not stored. 

ipiv (local) INTEGER array. 
The dimension of ipiv  is (LOCr(m_a)+ mb_a).
This array contains the pivoting information: local row i was interchanged 
with global row ipiv(i). This array is tied to the distributed matrix A.

info (global) INTEGER. 

If info=0, the execution is successful.
info < 0: if the ith argument is an array and the jth entry had an illegal value, 
then  info = -(i*100+j); if the ith argument is a scalar and had an illegal 
value, then info = -i.
If info = i, uii is 0. The factorization has been completed, but the factor U is 
exactly singular. Division by zero will occur if you use the factor U for solving 
a system of linear equations.
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p?gbtrf                  
Computes the LU factorization of a general n-by-n 
banded distributed matrix.

Syntax
call psgbtrf ( n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork,

info )

call pdgbtrf ( n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork,
info )

call pcgbtrf ( n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork,
info )

call pzgbtrf ( n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork,
info )

Description

The routine computes the LU factorization of a general n-by-n  real/complex banded distributed  
matrix A(1:n, ja:ja+n-1) using partial pivoting with row interchanges. 

The resulting factorization is not the same factorization as returned from the LAPACK routine 
?gbtrf. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form 

A(1:n, ja:ja+n-1) = P L U Q

 where P and Q are permutation matrices, and L and U are banded lower and upper triangular 
matrices, respectively. The matrix Q represents reordering of columns for the sake of parallelism, 
while P represents reordering of rows for numerical stability using classic partial pivoting.

Input Parameters

n (global) INTEGER.  The number of rows and columns in the distributed 
submatrix A(1:n, ja:ja+n-1);  n ≥ 0. 

bwl (global) INTEGER.  The number of sub-diagonals within the band of A 
( 0 ≤  bwl  ≤  n-1 ). 

bwu (global) INTEGER.  The number of super-diagonals within the band of A 
( 0 ≤  bwu  ≤ n-1 ). 
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a (local) 

REAL for psgbtrf 
DOUBLE PRECISION for pdgbtrf 
COMPLEX for pcgbtrf 
DOUBLE COMPLEX for pzgbtrf.
Pointer into the local memory  to an array of local dimension (lld_a,
LOCc(ja+n-1))where 
lld_a ≥ 2*bwl + 2*bwu +1. 
Contains the local pieces of the n-by-n distributed banded matrix 
A(1:n, ja:ja+n-1) to be factored. 

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on ( which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ (NB+bwu)*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) .

  If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

work (local) Same type as a. Workspace array of dimension lwork .

lwork (local or global) INTEGER.  The size of the work array (lwork ≥ 1). If lwork  
is too small, the minimal acceptable size will be returned in work(1) and an 
error code is returned. 

Output Parameters

a On exit, this array contains details of the factorization.  Note that additional 
permutations are performed on the matrix, so that the factors returned are 
different from those returned by LAPACK. 

ipiv (local) INTEGER array. 
The dimension of ipiv  must be ≥ desca(NB).
Contains pivot indices for local factorizations. Note that you should not alter 
the contents of this array between factorization and solve.

af (local) 
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REAL for psgbtrf 
DOUBLE PRECISION for pdgbtrf 
COMPLEX for pcgbtrf 
DOUBLE COMPLEX for pzgbtrf.

Array, dimension (laf). 
Auxiliary Fillin space. Fillin is created during the factorization routine 
p?gbtrf and this is stored in af. 
Note that if a linear system is to be solved using p?gbtrs after the 
factorization routine, af must not be altered after the factorization.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 

If info=0, the execution is successful.
info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.
info > 0: 

If info = k ≤  NPROCS, the submatrix stored on processor info and factored 
locally was not nonsingular, and the factorization was not completed. If info 
= k>NPROCS, the submatrix stored on processor info-NPROCS representing 
interactions with other processors was not nonsingular, and the factorization 
was not completed.

p?dbtrf                  
Computes the LU factorization of a n-by-n diagonally 
dominant-like banded distributed matrix.

Syntax
call psdbtrf ( n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info )

call pddbtrf ( n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info )

call pcdbtrf ( n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info )

call pzdbtrf ( n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info )
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Description

The routine computes the LU factorization of a  n-by-n  real/complex diagonally dominant-like 
banded distributed matrix A(1:n, ja:ja+n-1) without pivoting. 

Note that the resulting factorization is not the same factorization as returned from LAPACK. 
Additional permutations are performed on the matrix for the sake of parallelism.

Input Parameters

n (global) INTEGER.  The number of rows and columns in the distributed 
submatrix A(1:n, ja:ja+n-1);  n ≥ 0. 

bwl (global) INTEGER.  The number of sub-diagonals within the band of A 
( 0 ≤  bwl  ≤ n-1 ). 

bwu (global) INTEGER.  The number of super-diagonals within the band of A 
( 0≤ bwu ≤ n-1 ). 

a (local) 

REAL for psdbtrf 
DOUBLE PRECISION for pddbtrf 
COMPLEX for pcdbtrf 
DOUBLE COMPLEX for pzdbtrf.
Pointer into the local memory  to an array of local dimension (lld_a,
LOCc(ja+n-1)). 
Contains the local pieces of the n-by-n distributed banded matrix 
A(1:n, ja:ja+n-1) to be factored. 

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on ( which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ NB*(bwl+bwu)+6*(max(bwl,bwu))2 .

  If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

work (local) Same type as a. Workspace array of dimension lwork .
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lwork (local or global) INTEGER.  The size of the work array, must be lwork ≥ 
(max(bwl,bwu))2. If lwork  is too small, the minimal acceptable size will be 
returned in work(1) and an error code is returned. 

Output Parameters

a On exit, this array contains details of the factorization.  Note that additional 
permutations are performed on the matrix, so that the factors returned are 
different from those returned by LAPACK. 

af (local) 

REAL for psdbtrf 
DOUBLE PRECISION for pddbtrf 
COMPLEX for pcdbtrf 
DOUBLE COMPLEX for pzdbtrf.

Array, dimension (laf). 
Auxiliary Fillin space. Fillin is created during the factorization routine 
p?dbtrf and this is stored in af. 
Note that if a linear system is to be solved using p?dbtrs after the 
factorization routine, af must not be altered after the factorization.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 

If info=0, the execution is successful.
info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.
info > 0: 

If info = k ≤  NPROCS, the submatrix stored on processor info and factored 
locally was not diagonally dominant-like, and the factorization was not 
completed. If info = k>NPROCS, the submatrix stored on processor 
info-NPROCS representing interactions with other processors was not 
nonsingular, and the factorization was not completed.
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p?potrf                           
Computes the Cholesky factorization of a symmetric 
(Hermitian) positive-definite distributed matrix.

Syntax
call pspotrf ( uplo, n, a, ia, ja, desca, info )

call pdpotrf ( uplo, n, a, ia, ja, desca, info )

call pcpotrf ( uplo, n, a, ia, ja, desca, info )

call pzpotrf ( uplo, n, a, ia, ja, desca, info )

Description

This routine computes the Cholesky factorization of a real symmetric or complex Hermitian  
positive-definite distributed n-by-n matrix A(ia:ia+n-1, ja:ja+n-1), denoted below as 
sub(A).

The factorization has the form

     sub(A) = UHU if uplo='U',  or

     sub(A) = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular. 

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of sub(A) is stored: 

If uplo = 'U', the array a stores the upper triangular part of the matrix sub(A), 
and  sub(A) is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix sub(A), 
and  sub(A) is factored as LLH.

n (global) INTEGER.  The order of the distributed submatrix sub(A) (n ≥ 0). 

a (local) 
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REAL for pspotrf
DOUBLE PRECISION for pdpotrf
COMPLEX for pcpotrf
DOUBLE COMPLEX for pzpotrf.

Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+n-1)).

On entry, this array contains the local pieces of the n-by-n
symmetric/Hermitian distributed matrix sub(A) to be factored.

Depending on uplo, the array a contains either the upper or the lower 
triangular part of the matrix sub(A) (see uplo). 

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

Output Parameters

a The upper or lower triangular part of a is overwritten by the Cholesky factor U 
or L, as specified by uplo. 

info (global) INTEGER.

If info=0, the execution is successful;
info < 0: if the ith argument is an array and the jth entry had an illegal value, 
then  info = -(i*100+j); if the ith argument is a scalar and had an illegal 
value, then info = -i.
If info = k >0, the leading minor of order k, A(ia:ia+k-1, ja:ja+k-1),  is 
not positive-definite, and the factorization could not be completed.  

p?pbtrf                           
Computes the Cholesky factorization of a symmetric 
(Hermitian) positive-definite banded distributed matrix.

Syntax
call pspbtrf ( uplo, n, bw, a, ja, desca, af, laf, work, lwork, info )
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call pdpbtrf ( uplo, n, bw, a, ja, desca, af, laf, work, lwork, info )

call pcpbtrf ( uplo, n, bw, a, ja, desca, af, laf, work, lwork, info )

call pzpbtrf ( uplo, n, bw, a, ja, desca, af, laf, work, lwork, info )

Description

This routine computes the Cholesky factorization of an n-by-n real symmetric or complex 
Hermitian positive-definite banded distributed matrix  A(1:n, ja:ja+n-1). 

The resulting factorization is not the same factorization as returned from LAPACK. Additional 
permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:

     A(1:n, ja:ja+n-1) = P U HU PT, if uplo='U', or

     A(1:n, ja:ja+n-1) = P L L H PT, if uplo='L',

where P is a permutation matrix and U and L are banded upper and lower triangular matrices, 
respectively.

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is stored;
If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is stored.

n (global) INTEGER.  The order of the distributed submatrix 
A(1:n, ja:ja+n-1) (n ≥ 0). 

bw (global) INTEGER.  The number of superdiagonals of the distributed matrix if 
uplo = 'U', or the number of subdiagonals if uplo = 'U' ( bw ≥ 0 ). 

a (local) 

REAL for pspbtrf
DOUBLE PRECISION for pdpbtrf
COMPLEX for pcpbtrf
DOUBLE COMPLEX for pzpbtrf.

Pointer into the local memory to an array of dimension 
(lld_a, LOCc(ja+n-1)).

On entry, this array contains the local pieces of the upper or lower triangle of 
the symmetric/Hermitian band distributed matrix A(1:n, ja:ja+n-1) to be 
factored.
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ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on ( which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ (NB+2*bw)*bw .

  If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

work (local) Same type as a. Workspace array of dimension lwork .

lwork (local or global) INTEGER.  The size of the work array, must be lwork ≥ bw 2.

Output Parameters

a On exit, if info=0, contains the permuted triangular factor U or L from the 
Cholesky factorization of the band matrix A(1:n, ja:ja+n-1), as specified by 
uplo.  

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 

If info=0, the execution is successful.
info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.
info > 0: 

If info = k ≤  NPROCS, the submatrix stored on processor info and factored 
locally was not positive definite, and the factorization was not completed.
If info = k>NPROCS, the submatrix stored on processor info-NPROCS 
representing interactions with other processors was not nonsingular, and the 
factorization was not completed.
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p?pttrf               
Computes the Cholesky factorization of a symmetric 
(Hermitian) positive-definite tridiagonal distributed 
matrix.

Syntax
call pspttrf ( n, d, e, ja, desca, af, laf, work, lwork, info )

call pdpttrf ( n, d, e, ja, desca, af, laf, work, lwork, info )

call pcpttrf ( n, d, e, ja, desca, af, laf, work, lwork, info )

call pzpttrf ( n, d, e, ja, desca, af, laf, work, lwork, info )

Description

This routine computes the Cholesky factorization of an n-by-n  real symmetric or complex  
Hermitian positive-definite tridiagonal distributed matrix A(1:n, ja:ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional 
permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:

     A(1:n, ja:ja+n-1) = P L D LH PT, or

     A(1:n, ja:ja+n-1) = P UH D U PT, 

where P is a permutation matrix, and U and L are tridiagonal upper and lower triangular matrices, 
respectively.

Input Parameters

n (global) INTEGER.  The order of the distributed submatrix 
A(1:n, ja:ja+n-1) (n ≥ 0). 

d, e (local) 

REAL for pspttrf
DOUBLE PRECISION for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.

Pointers into the local memory to arrays of dimension (desca(nb_)) each.
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On entry, the array d contains the local part of the global vector storing the 
main diagonal of the distributed matrix A.

On entry, the array e contains the local part of the global vector storing the 
upper diagonal of the distributed matrix A.

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on ( which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ NB+2 .

  If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

work (local) Same type as d and e. Workspace array of dimension lwork .

lwork (local or global) INTEGER.  The size of the work array, must be at least 
lwork ≥ 8*NPCOL. 

Output Parameters

d, e On exit, overwritten by the details of the factorization. 

af (local) 

REAL for pspttrf 
DOUBLE PRECISION for pdpttrf 
COMPLEX for pcpttrf 
DOUBLE COMPLEX for pzpttrf.

Array, dimension (laf). 
Auxiliary Fillin space. Fillin is created during the factorization routine 
p?pttrf and this is stored in af. 
Note that if a linear system is to be solved using p?pttrs after the 
factorization routine, af must not be altered.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 
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If info=0, the execution is successful.
info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.
info > 0: 

If info = k ≤  NPROCS, the submatrix stored on processor info and factored 
locally was not positive definite, and the factorization was not completed.
If info = k>NPROCS, the submatrix stored on processor info-NPROCS 
representing interactions with other processors was not nonsingular, and the 
factorization was not completed.

p?dttrf               
Computes the LU factorization of a diagonally 
dominant-like tridiagonal distributed matrix.

Syntax
call psdttrf ( n, dl, d, du, ja, desca, af, laf, work, lwork, info )

call pddttrf ( n, dl, d, du, ja, desca, af, laf, work, lwork, info )

call pcdttrf ( n, dl, d, du, ja, desca, af, laf, work, lwork, info )

call pzdttrf ( n, dl, d, du, ja, desca, af, laf, work, lwork, info )

Description

This routine computes the LU factorization of an n-by-n  real/complex diagonally dominant-like 
tridiagonal distributed matrix A(1:n, ja:ja+n-1) without pivoting for stability.

The resulting factorization is not the same factorization as returned from LAPACK. Additional 
permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:

     A(1:n, ja:ja+n-1) = P L U PT, 

where P is a permutation matrix, and L and U are banded lower and upper triangular matrices, 
respectively.
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Input Parameters

n (global) INTEGER.  The number of rows and columns to be operated on, that is, 
the order of the distributed submatrix A(1:n, ja:ja+n-1) (n ≥ 0). 

dl,d,du (local) 

REAL for pspttrf
DOUBLE PRECISION for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.

Pointers to the local arrays of dimension (desca(nb_)) each.

On entry, the array dl contains the local part of the global vector storing the 
subdiagonal elements of the matrix. Globally, dl(1) is not referenced, and dl
must be aligned with d.

On entry, the array d contains the local part of the global vector storing the 
diagonal elements of the matrix.

On entry, the array du contains the local part of the global vector storing the 
super-diagonal elements of the matrix.  du(n) is not referenced, and du must 
be aligned with d.

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on ( which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ 2*(NB+2) .

  If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

work (local) Same type as d. Workspace array of dimension lwork .

lwork (local or global) INTEGER.  The size of the work array, must be at least 
lwork ≥ 8*NPCOL. 

Output Parameters

dl,d,du On exit, overwritten by the information containing the factors of the matrix. 
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af (local) 

REAL for psdttrf 
DOUBLE PRECISION for pddttrf 
COMPLEX for pcdttrf 
DOUBLE COMPLEX for pzdttrf.

Array, dimension (laf). 
Auxiliary Fillin space. Fillin is created during the factorization routine 
p?dttrf and this is stored in af. 
Note that if a linear system is to be solved using p?dttrs after the 
factorization routine, af must not be altered.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 

If info=0, the execution is successful.
info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.
info > 0: 

If info = k ≤  NPROCS, the submatrix stored on processor info and factored 
locally was not diagonally dominant-like, and the factorization was not 
completed.
If info = k>NPROCS, the submatrix stored on processor info-NPROCS 
representing interactions with other processors was not nonsingular, and the 
factorization was not completed.

Routines for Solving Systems of Linear Equations    

This section describes the ScaLAPACK routines for solving systems of linear equations. Before 
calling most of these routines, you need to factorize the matrix of your system of equations (see 
Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if 
your system of equations has a triangular matrix.
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p?getrs                 
Solves a system of distributed linear equations with a 
general square matrix, using the LU factorization 
computed by p?getrf.

Syntax
call psgetrs (trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,

info)

call pdgetrs (trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)

call pcgetrs (trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)

call pzgetrs (trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)

Description

This routine solves a system of distributed linear equations with a general n-by-n distributed 
matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) using the LU factorization computed by p?getrf. 

The system has one of the following forms specified by trans:

sub(A)*X = sub(B) (no transpose), 

sub(A)T*X = sub(B) (transpose), 

sub(A)H *X = sub(B) (conjugate transpose),

where sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) .

Before calling this routine, you must call p?getrf to compute the LU factorization of sub(A).

Input Parameters

trans (global) CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.
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n (global) INTEGER. The number of linear equations;  the order of the submatrix 
sub(A) (n ≥ 0).

nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix sub(B)  (nrhs ≥ 0).

a, b (global)

REAL for psgetrs
DOUBLE PRECISION for pdgetrs
COMPLEX for pcgetrs
DOUBLE COMPLEX for pzgetrs.
Pointers into the local memory  to arrays of local dimension a(lld_a,
LOCc(ja+n-1)) and b(lld_b, LOCc(jb+nrhs-1)), respectively.
On entry, the array a contains the local pieces of the factors L and U from the 
factorization sub(A) = PLU ; the unit diagonal elements of L are not stored.
On entry, the array b contains the right hand sides sub(B).

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

ipiv (local) INTEGER array. 
The dimension of ipiv  is (LOCr(m_a)+ mb_a).
This array contains contains the pivoting information:   local row i of the 
matrix was interchanged with the global row ipiv(i).
This array is tied to the distributed matrix A.

ib,jb (global) INTEGER.  The row and column indices in the global array B 
indicating the first row and the first column of the submatrix sub(B), 
respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

Output Parameters

b On exit, overwritten by the solution distributed matrix X.

info INTEGER. If info=0, the execution is successful.
info < 0: 
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if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

p?gbtrs                  
Solves a system of distributed linear equations with a 
general band matrix, using the LU factorization 
computed by p?gbtrf.

Syntax
call psgbtrs (trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,

af, laf, work, lwork, info)

call pdgbtrs (trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)

call pcgbtrs (trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)

call pzgbtrs (trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)

Description

This routine solves a system of distributed linear equations with a general band distributed matrix 
sub(A) = A(1:n, ja:ja+n-1) using the LU factorization computed by p?gbtrf. 

The system has one of the following forms specified by trans:

sub(A)*X = sub(B) (no transpose), 

sub(A)T*X = sub(B) (transpose), 

sub(A)H *X = sub(B) (conjugate transpose),

where sub(B) = B(ib:ib+n-1, 1:nrhs) .

Before calling this routine, you must call p?gbtrf to compute the LU factorization of sub(A).

Input Parameters

trans (global) CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
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If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.

n (global) INTEGER. The number of linear equations;  the order of the distributed 
submatrix sub(A) (n ≥ 0).

bwl (global) INTEGER.  The number of sub-diagonals within the band of A 
( 0≤ bwl ≤ n-1 ). 

bwu (global) INTEGER.  The number of super-diagonals within the band of A 
( 0≤ bwu ≤ n-1 ). 

nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix sub(B)  (nrhs ≥ 0).

a, b (global)

REAL for psgbtrs
DOUBLE PRECISION for pdgbtrs
COMPLEX for pcgbtrs
DOUBLE COMPLEX for pzgbtrs.
Pointers into the local memory  to arrays of local dimension 
a(lld_a, LOCc(ja+n-1)) and b(lld_b, LOCc(nrhs)), respectively.

The array a contains details of the LU factorization of the distributed band 
matrix A.

On entry, the array b contains the local pieces of the right hand sides 
B(ib:ib+n-1, 1:nrhs).

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on ( which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

ib (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on ( which may be either all of A or a submatrix of A).

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.
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laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ NB*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) .

  If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

work (local) Same type as a. Workspace array of dimension lwork .

lwork (local or global) INTEGER.  The size of the work array, must be at least  
lwork ≥  nrhs*(NB+2*bwl+4*bwu) .

Output Parameters

ipiv (local) INTEGER array. 
The dimension of ipiv  must be ≥  desca(NB).
Contains pivot indices for local factorizations. Note that you should not alter 
the contents of this array between factorization and solve.

b On exit, overwritten by the local pieces of the solution distributed matrix X.

af (local) 

REAL for psgbtrs 
DOUBLE PRECISION for pdgbtrs 
COMPLEX for pcgbtrs 
DOUBLE COMPLEX for pzgbtrs.

Array, dimension (laf). 
Auxiliary Fillin space. Fillin is created during the factorization routine 
p?gbtrf and this is stored in af. 
Note that if a linear system is to be solved using p?gbtrs after the 
factorization routine, af must not be altered after the factorization.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info INTEGER. If info=0, the execution is successful.
info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.
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p?potrs                     
Solves a system of linear equations with a 
Cholesky-factored symmetric/Hermitian distributed 
positive-definite matrix.

Syntax
call pspotrs ( uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info )

call pdpotrs ( uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info )

call pcpotrs ( uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info )

call pzpotrs ( uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info )

Description

The routine p?potrs solves for X a system of distributed linear equations in the form:

              sub(A)*X = sub(B) ,

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian 
positive definite distributed matrix, and  sub(B) denotes the distributed matrix 
B(ib:ib+n-1, jb:jb+nrhs-1). 
This routine uses Cholesky factorization 

              sub(A) = UH U  or  sub(A) = L LH  

computed by p?potrf. 

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U', upper triangle of sub(A)  is stored;
If uplo = 'L', lower triangle of sub(A)  is stored.

n (global) INTEGER.  The order of the distributed submatrix sub(A) (n ≥ 0). 

nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix sub(B)  (nrhs ≥ 0).

a, b (local)



6-28

6 Intel® Math Kernel Library Reference Manual

REAL for pspotrs
DOUBLE PRECISION for pdpotrs
COMPLEX for pcpotrs
DOUBLE COMPLEX for pzpotrs.
Pointers into the local memory  to arrays of local dimension 
a(lld_a, LOCc(ja+n-1)) and b(lld_b, LOCc(jb+nrhs-1)), 
respectively.

The array a contains the factors L or U from the Cholesky factorization 
sub(A) = L LH  or sub(A) = UHU , as computed by p?potrf. 

On entry, the array b contains the local pieces of the right hand sides sub(B).

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

ib,jb (global) INTEGER.  The row and column indices in the global array B 
indicating the first row and the first column of the submatrix sub(B), 
respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

Output Parameters

b Overwritten by the local pieces of the solution matrix X.

info INTEGER. If info=0, the execution is successful.
info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.
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p?pbtrs    
Solves a system of linear equations with a  
Cholesky-factored symmetric/Hermitian 
positive-definite band matrix.

Syntax
call pspbtrs ( uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,

work, lwork, info )

call pdpbtrs ( uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info )

call pcpbtrs ( uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info )

call pzpbtrs ( uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info )

Description

The routine p?pbtrs solves for X a system of distributed linear equations in the form:

              sub(A)*X = sub(B) ,

where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian positive 
definite distributed band matrix, and  sub(B) denotes the distributed matrix 
B(ib:ib+n-1, 1:nrhs). 
This routine uses Cholesky factorization 

              sub(A) = P UH U PT  or  sub(A) =P L LH PT  

computed by p?pbtrf. 

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U', upper triangle of sub(A)  is stored;
If uplo = 'L', lower triangle of sub(A)  is stored.

n (global) INTEGER.  The order of the distributed submatrix sub(A) (n ≥ 0). 

bw (global) INTEGER. The number of superdiagonals of the distributed matrix if 
uplo = 'U', or the number of subdiagonals if uplo = 'L'  (bw ≥ 0).
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nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix sub(B)  (nrhs ≥ 0).

a, b (local)

REAL for pspbtrs
DOUBLE PRECISION for pdpbtrs
COMPLEX for pcpbtrs
DOUBLE COMPLEX for pzpbtrs.
Pointers into the local memory  to arrays of local dimension a(lld_a,
LOCc(ja+n-1)) and b(lld_b, LOCc(nrhs-1)), respectively.
The array a contains the permuted triangular factor U or L from the Cholesky 
factorization sub(A) = P UH U PT  or  sub(A) =P L LH PT  of  the band matrix A, 
as returned by p?pbtrf. 

On entry, the array b contains the local pieces of the n-by-nrhs right hand side 
distributed matrix sub(B).

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A. 
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

ib (global) INTEGER.  The row index in the global array B indicating the first row 
of the submatrix sub(B).

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

If  descb(dtype_) = 502, then dlen_ ≥ 7;
else if  descb(dtype_) = 1, then dlen_ ≥ 9.

af, work (local) Arrays, same type as a. 
The array af is of dimension (laf). It contains auxiliary Fillin space. Fillin is 
created during the factorization routine p?dbtrf and this is stored in af.

The array work is a workspace array of dimension lwork.

laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ nrhs*bw .

  If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).
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lwork (local or global) INTEGER.  The size of the array work, must be at least 
lwork ≥ bw2. 

Output Parameters

b On exit, if info=0, this array contains the local pieces of the n-by-nrhs 
solution distributed matrix X.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info INTEGER. If info=0, the execution is successful.
info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

p?pttrs                                         
Solves a system of linear equations with a symmetric 
(Hermitian) positive-definite tridiagonal distributed 
matrix using the factorization computed by p?pttrf .

Syntax
call pspttrs ( n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,

lwork, info )

call pdpttrs ( n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
lwork, info )

call pcpttrs ( uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
work, lwork, info )

call pzpttrs ( uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
work, lwork, info )

Description

The routine p?pttrs solves for X a system of distributed linear equations in the form:

               sub(A)*X = sub(B) ,
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where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian positive 
definite tridiagonal distributed matrix, and  sub(B) denotes the distributed matrix 
B(ib:ib+n-1, 1:nrhs). 
This routine uses the factorization 

                 sub(A) = P L D LH PT  or  sub(A) =P UHD U PT  

computed by p?pttrf. 

Input Parameters

uplo (global, used in complex flavors only) 
CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U', upper triangle of sub(A)  is stored;
If uplo = 'L', lower triangle of sub(A)  is stored.

n (global) INTEGER.  The order of the distributed submatrix sub(A) (n ≥ 0). 

nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix sub(B)  (nrhs ≥ 0).

d, e (local) 

REAL for pspttrs
DOUBLE PRECISION for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.

Pointers into the local memory to arrays of dimension (desca(nb_)) each.

These arrays contain details of the factorization as returned by p?pttrf

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on ( which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501 or 502, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

b (local) Same type as d, e.

Pointer into the local memory  to an array of local dimension 
b(lld_b, LOCc(nrhs)).
On entry, the array b contains the local pieces of the n-by-nrhs right hand side 
distributed matrix sub(B).
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ib (global) INTEGER.  The row index in the global array B that points to the first 
row of the matrix to be operated on ( which may be either all of B or a 
submatrix of B).

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

If  descb(dtype_) = 502, then dlen_ ≥ 7;
else if  descb(dtype_) = 1, then dlen_ ≥ 9.

af, work (local) 
REAL for pspttrs
DOUBLE PRECISION for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.

Arrays of dimension (laf) and (lwork), respectively 
The array af contains auxiliary Fillin space. Fillin is created during the 
factorization routine p?pttrf and this is stored in af.

The array work is a workspace array.

laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ NB+2 .

 If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

lwork (local or global) INTEGER.  The size of the array work, must be at least 
lwork ≥ (10+2*min(100,nrhs))*NPCOL+4*nrhs. 

Output Parameters

b On exit,  this array contains the local pieces of the  solution distributed 
matrix X.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info INTEGER. If info=0, the execution is successful.
info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.
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p?dttrs                                         
Solves a system of linear equations with a diagonally 
dominant-like tridiagonal distributed matrix using the 
factorization computed by p?dttrf .

Syntax
call psdttrs ( trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,

laf, work, lwork, info )

call pddttrs ( trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info )

call pcdttrs ( trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info )

call pzdttrs ( trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info )

Description

The routine p?dttrs solves for X one of the systems of equations:

              sub(A)*X = sub(B) ,

             (sub(A))T*X = sub(B) , or

             (sub(A))H*X = sub(B) ,

where sub(A) = A(1:n, ja:ja+n-1) is a diagonally dominant-like tridiagonal distributed matrix, 
and sub(B) denotes the distributed matrix B(ib:ib+n-1, 1:nrhs). 
This routine uses the LU factorization computed by p?dttrf. 

Input Parameters

trans (global) CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.

n (global) INTEGER.  The order of the distributed submatrix sub(A) (n ≥ 0). 
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nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix sub(B)  (nrhs ≥ 0).

dl,d,du (local) 

REAL for psdttrs
DOUBLE PRECISION for pddttrs
COMPLEX for pcdttrs
DOUBLE COMPLEX for pzdttrs.

Pointers to the local arrays of dimension (desca(nb_)) each.

On entry, these arrays contain details of the factorization. Globally, dl(1) and 
du(n) are not referenced; dl and du must be aligned with d.

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on ( which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501 or 502, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

b (local) Same type as d.

Pointer into the local memory  to an array of local dimension 
b(lld_b, LOCc(nrhs)).
On entry, the array b contains the local pieces of the n-by-nrhs right hand side 
distributed matrix sub(B).

ib (global) INTEGER.  The row index in the global array B that points to the first 
row of the matrix to be operated on ( which may be either all of B or a 
submatrix of B).

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

If  descb(dtype_) = 502, then dlen_ ≥ 7;
else if  descb(dtype_) = 1, then dlen_ ≥ 9.

af, work (local) 
REAL for psdttrs
DOUBLE PRECISION for pddttrs
COMPLEX for pcdttrs
DOUBLE COMPLEX for pzdttrs.
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Arrays of dimension (laf) and (lwork), respectively. 
The array af contains auxiliary Fillin space. Fillin is created during the 
factorization routine p?dttrf and this is stored in af. If a linear system is to 
be solved using  p?dttrs after the factorization routine, af must not be 
altered.

The array work is a workspace array.

laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ NB*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) .

   If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

lwork (local or global) INTEGER.  The size of the array work, must be at least 
lwork ≥ 10*NPCOL+4*nrhs. 

Output Parameters

b On exit,  this array contains the local pieces of the  solution distributed 
matrix X.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info INTEGER. If info=0, the execution is successful.
info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

p?dbtrs                                         
Solves a system of linear equations with a diagonally 
dominant-like banded distributed matrix using the 
factorization computed by p?dbtrf.

Syntax
call psdbtrs ( trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,

laf, work, lwork, info )
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call pddbtrs ( trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info )

call pcdbtrs ( trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info )

call pzdbtrs ( trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info )

Description

The routine p?dbtrs solves for X one of the systems of equations:

              sub(A)*X = sub(B) ,

              (sub(A))T*X = sub(B) , or

              (sub(A))H*X = sub(B) ,

where sub(A) = A(1:n, ja:ja+n-1) is a diagonally dominant-like banded distributed matrix, and  
sub(B) denotes the distributed matrix B(ib:ib+n-1, 1:nrhs). 
This routine uses the LU factorization computed by p?dbtrf. 

Input Parameters

trans (global) CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.

n (global) INTEGER.  The order of the distributed submatrix sub(A) (n ≥ 0). 

bwl (global) INTEGER.  The number of subdiagonals within the band of A 
( 0≤ bwl ≤ n-1 ). 

bwu (global) INTEGER.  The number of superdiagonals within the band of A 
( 0≤ bwu ≤ n-1 ). 

nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix sub(B)  (nrhs ≥ 0).

a, b (local) 
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REAL for psdbtrs
DOUBLE PRECISION for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.

Pointers into the local memory to arrays of local dimension a(lld_a,
LOCc(ja+n-1)) and b(lld_b, LOCc(nrhs)), respectively.

On entry, the array a contains details of the LU factorization of the band 
matrix A, as computed by p?dbtrf. 

On entry, the array b contains the local pieces of the right hand side distributed 
matrix sub(B).

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

ib (global) INTEGER.  The row index in the global array B that points to the first 
row of the matrix to be operated on ( which may be either all of B or a 
submatrix of B).

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

If  descb(dtype_) = 502, then dlen_ ≥ 7;
else if  descb(dtype_) = 1, then dlen_ ≥ 9.

af, work (local) 
REAL for psdbtrs
DOUBLE PRECISION for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.

Arrays of dimension (laf) and (lwork), respectively 
The array af contains auxiliary Fillin space. Fillin is created during the 
factorization routine p?dbtrf and this is stored in af. 

The array work is a workspace array.

laf (local) INTEGER. The dimension of the array af.   
Must be laf ≥ NB*(bwl+bwu)+6*(max(bwl,bwu))2 .
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   If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

lwork (local or global) INTEGER.  The size of the array work, must be at least 
lwork ≥ (max(bwl,bwu))2. 

Output Parameters

b On exit,  this array contains the local pieces of the  solution distributed 
matrix X.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info INTEGER. If info=0, the execution is successful.
info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

p?trtrs                             
Solves a system of linear equations with a triangular 
distributed matrix.

Syntax
call pstrtrs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,

descb, info)

call pdtrtrs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, info)

call pctrtrs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, info)

call pztrtrs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, info)

Description

This routine solves for X one of the following systems of linear equations:

             sub(A)*X = sub(B) ,
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             (sub(A))T*X = sub(B) , or

             (sub(A))H*X = sub(B) ,

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a triangular distributed matrix of order n, and  
sub(B) denotes the distributed matrix B(ib:ib+n-1, jb:jb+nrhs-1). 
A check is made to verify that sub(A) is nonsingular. 

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

Indicates whether sub(A) is upper or lower triangular: 

If uplo = 'U', then sub(A) is upper triangular.
If uplo = 'L', then sub(A) is lower triangular.

trans (global) CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.

diag (global) CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', then sub(A) is not a unit triangular matrix.

If diag = 'U', then sub(A) is unit triangular.

n (global) INTEGER. The order of the distributed submatrix sub(A)  (n ≥ 0). 

nrhs (global) INTEGER.  The number of right-hand sides; i.e., the number of 
columns of the distributed matrix sub(B) (nrhs ≥ 0). 

a, b (local) 
REAL for pstrtrs 
DOUBLE PRECISION for pdtrtrs 
COMPLEX for pctrtrs 
DOUBLE COMPLEX for pztrtrs. 

Pointers into the local memory to arrays of local dimension a(lld_a,
LOCc(ja+n-1)) and b(lld_b, LOCc(jb+nrhs-1)), respectively.

The array a contains the local pieces of the distributed triangular matrix 
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
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upper triangular matrix, and the strictly lower triangular part of sub(A) is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular matrix, and the strictly upper triangular part of sub(A) is not
referenced.
If diag = 'U', the diagonal elements of sub(A) are also not referenced and are
assumed to be 1.

On entry, the array b contains the local pieces of the right hand side distributed 
matrix sub(B).

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

ib,jb (global) INTEGER.  The row and column indices in the global array B 
indicating the first row and the first column of the submatrix sub(B), 
respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

Output Parameters

b On exit, if info=0, sub(B) is overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.

info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i;

info > 0: 

If info = i, the ith diagonal element of sub(A) is zero, indicating that the 
submatrix is singular and the solutions X have not been computed. 
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Routines for Estimating the Condition Number

This section describes the ScaLAPACK routines for estimating the condition number of a matrix. 
The condition number is used for analyzing the errors in the solution of a system of linear 
equations. Since the condition number may be arbitrarily large when the matrix is nearly singular, 
the routines actually compute the reciprocal condition number.

p?gecon                                    
Estimates the reciprocal of the condition number of a 
general distributed matrix in either the 1-norm or the 
infinity-norm.

Syntax
call psgecon ( norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,

iwork, liwork, info )

call pdgecon ( norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
iwork, liwork, info )

call pcgecon ( norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
rwork, lrwork, info )

call pzgecon ( norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
rwork, lrwork, info )

Description

This routine estimates the reciprocal of the condition number of a general distributed real/complex 
matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1)  in either the 1-norm or infinity-norm, using the LU 
factorization computed by p?getrf.

An estimate is obtained for ||(sub(A))-1|| , and the reciprocal of the condition number is 
computed as

   rcond =   

Input Parameters

norm (global) CHARACTER*1.  Must be '1' or 'O' or 'I'.

1

sub A( )  
sub A( )( ) 1–×

--------------------------------------------------------------------
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Specifies whether the 1-norm condition number or the infinity-norm condition  
number is required.

If norm = '1' or 'O', then the 1-norm is used;

If norm = 'I', then the infinity-norm is used.

n (global) INTEGER. The order of the distributed submatrix sub(A)  (n ≥ 0). 

a (local)
REAL for psgecon 
DOUBLE PRECISION for pdgecon 
COMPLEX for pcgecon 
DOUBLE COMPLEX for pzgecon. 

Pointer into the local memory to an array of dimension a(lld_a,
LOCc(ja+n-1)).

The array a contains the local pieces of the factors L and U from the 
factorization sub(A) = P L U; the unit diagonal elements of L are not stored.

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

anorm (global) REAL for single precision flavors,
DOUBLE PRECISION for double precision flavors. 
If norm = '1' or 'O',  the 1-norm of the original distributed matrix sub(A);

If norm = 'I', the infinity-norm of the original distributed matrix sub(A).

work (local)
REAL for psgecon 
DOUBLE PRECISION for pdgecon 
COMPLEX for pcgecon 
DOUBLE COMPLEX for pzgecon. 

The array work of dimension (lwork) is a workspace array.

lwork (local or global) INTEGER.  The dimension of the array work.
For real flavors: 
lwork must be at least 
lwork ≥  2*LOCr(n+mod(ia-1,mb_a))+
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            2*LOCc(n+mod(ja-1,nb_a))+
            max(2, max(nb_a*max(1, ceil(NPROW-1,NPCOL)),
          LOCc(n+mod(ja-1,nb_a))+nb_a*max(1, ceil(NPCOL-1, NPROW))).

For complex flavors: 
lwork must be at least 
lwork ≥  2*LOCr(n+mod(ia-1,mb_a))+
              max(2, max(nb_a*ceil(NPROW-1, NPCOL),
            LOCc(n+mod(ja-1,nb_a))+ nb_a*ceil(NPCOL-1, NPROW))).

LOCr  and LOCc values can be computed using the ScaLAPACK tool 
function numroc; NPROW and NPCOL can be determined by calling the 
subroutine blacs_gridinfo.

iwork (local) INTEGER.
Workspace array, DIMENSION  (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥  LOCr(n+mod(ia-1,mb_a)).

rwork (local) REAL for pcgecon 
DOUBLE PRECISION for pzgecon 
Workspace array, DIMENSION  (lrwork). Used in complex flavors only. 

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at 
least
lrwork ≥  2*LOCc(n+mod(ja-1,nb_a)).

Output Parameters

rcond (global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The reciprocal of the condition number of the distributed matrix sub(A). See 
Description.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for 
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for 
optimum performance (for complex flavors).
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info (global) INTEGER. If info=0, the execution is successful.

info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

p?pocon                                    
Estimates the reciprocal of the condition number (in the 
1 - norm) of a symmetric / Hermitian positive-definite 
distributed matrix.

Syntax
call pspocon ( uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,

iwork, liwork, info )

call pdpocon ( uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
iwork, liwork, info )

call pcpocon ( uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
rwork, lrwork, info )

call pzpocon ( uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
rwork, lrwork, info )

Description

This routine estimates the reciprocal of the condition number (in the 1 - norm) of a real symmetric 
or complex Hermitian positive definite distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1), 
using the Cholesky factorization sub(A) = UHU or  sub(A) = LLH computed by p?potrf.

An estimate is obtained for ||(sub(A))-1|| , and the reciprocal of the condition number is 
computed as

   rcond =   

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

1

sub A( )  
sub A( )( ) 1–×

--------------------------------------------------------------------



6-46

6 Intel® Math Kernel Library Reference Manual

Specifies whether the factor stored in sub(A) is upper or lower triangular. 

If uplo = 'U', sub(A) stores the upper triangular factor U of the Cholesky 
factorization sub(A) = UHU.
If uplo = 'L',  sub(A) stores the lower triangular factor L of the Cholesky 
factorization sub(A) = LLH.

n (global) INTEGER. The order of the distributed submatrix sub(A)  (n ≥ 0). 

a (local)
REAL for pspocon 
DOUBLE PRECISION for pdpocon 
COMPLEX for pcpocon 
DOUBLE COMPLEX for pzpocon. 

Pointer into the local memory to an array of dimension 
a(lld_a, LOCc(ja+n-1)).

The array a contains the local pieces of the factors L or U from the Cholesky 
factorization sub(A) = UHU or sub(A) = LLH , as computed by p?potrf.

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

anorm (global) REAL for single precision flavors,
DOUBLE PRECISION for double precision flavors. 
The 1-norm of the symmetric/Hermitian distributed matrix sub(A).

work (local)
REAL for pspocon 
DOUBLE PRECISION for pdpocon 
COMPLEX for pcpocon 
DOUBLE COMPLEX for pzpocon. 

The array work of dimension (lwork) is a workspace array.

lwork (local or global) INTEGER.  The dimension of the array work.
For real flavors: 
lwork must be at least 
lwork ≥  2*LOCr(n+mod(ia-1,mb_a))+
               2*LOCc(n+mod(ja-1,nb_a))+
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             max(2, max(nb_a*ceil(NPROW-1, NPCOL),
           LOCc(n+mod(ja-1,nb_a))+

nb_a*ceil(NPCOL-1, NPROW))).

For complex flavors: 
lwork must be at least 
lwork ≥  2*LOCr(n+mod(ia-1,mb_a))+
           max(2, max(nb_a*max(1,ceil(NPROW-1, NPCOL)),
          LOCc(n+mod(ja-1,nb_a))+

nb_a*max(1,ceil(NPCOL-1, NPROW)))).

iwork (local) INTEGER.
Workspace array, DIMENSION  (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥  LOCr(n+mod(ia-1,mb_a)).

rwork (local) REAL for pcpocon 
DOUBLE PRECISION for pzpocon 
Workspace array, DIMENSION  (lrwork). Used in complex flavors only. 

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at 
least  lrwork ≥  2*LOCc(n+mod(ja-1,nb_a)).

Output Parameters

rcond (global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The reciprocal of the condition number of the distributed matrix sub(A). 

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for 
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for 
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 
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if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

p?trcon                                    
Estimates the reciprocal of the condition number of a 
triangular distributed matrix in either 1-norm or 
infinity-norm.

Syntax
call pstrcon ( norm, uplo, diag, n, a, ia, ja, desca, rcond, work,

lwork, iwork, liwork, info )

call pdtrcon ( norm, uplo, diag, n, a, ia, ja, desca, rcond, work,
lwork, iwork, liwork, info )

call pctrcon ( norm, uplo, diag, n, a, ia, ja, desca, rcond, work,
lwork, rwork, lrwork, info )

call pztrcon ( norm, uplo, diag, n, a, ia, ja, desca, rcond, work,
lwork, rwork, lrwork, info )

Description

This routine estimates the reciprocal of the condition number of a triangular distributed matrix 
sub(A) = A(ia:ia+n-1, ja:ja+n-1), in either the 1 - norm or the infinity-norm.

The norm of sub(A) is computed and an estimate is obtained for ||(sub(A))-1|| , then the 
reciprocal of the condition number is computed as

   rcond =   

Input Parameters

norm (global) CHARACTER*1.  Must be '1' or 'O' or 'I'.

Specifies whether the 1-norm condition number or the infinity-norm condition 
number is required.

If norm = '1' or 'O', then the 1-norm is used;

1

sub A( )  
sub A( )( ) 1–×

--------------------------------------------------------------------
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If norm = 'I', then the infinity-norm is used.

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U', sub(A) is upper triangular.
If uplo = 'L', sub(A) is lower triangular.

diag (global) CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', sub(A) is non-unit triangular.
If diag = 'U', sub(A) is unit triangular.

n (global) INTEGER. The order of the distributed submatrix sub(A)  (n ≥ 0). 

a (local)
REAL for pstrcon 
DOUBLE PRECISION for pdtrcon 
COMPLEX for pctrcon 
DOUBLE COMPLEX for pztrcon. 

Pointer into the local memory to an array of dimension 
a(lld_a, LOCc(ja+n-1)).

The array a contains the local pieces of the triangular distributed matrix 
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of this distributed
matrix contains the upper triangular matrix, and its strictly lower triangular
part is not referenced.

If uplo = 'L', the leading n-by-n lower triangular part of this distributed
matrix contains the lower triangular matrix, and its strictly upper triangular
part is not referenced.
If diag = 'U', the diagonal elements of sub(A) are also not referenced and are
assumed to be 1.

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)
REAL for pstrcon 
DOUBLE PRECISION for pdtrcon 
COMPLEX for pctrcon 
DOUBLE COMPLEX for pztrcon. 
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The array work of dimension (lwork) is a workspace array.

lwork (local or global) INTEGER.  The dimension of the array work.
For real flavors: 
lwork must be at least 
lwork ≥  2*LOCr(n+mod(ia-1,mb_a))+
           LOCc(n+mod(ja-1,nb_a))+
           max(2, max(nb_a*max(1,ceil(NPROW-1, NPCOL)),
          LOCc(n+mod(ja-1,nb_a))+

nb_a*max(1,ceil(NPCOL-1, NPROW))).

For complex flavors: 
lwork must be at least 
lwork ≥  2*LOCr(n+mod(ia-1,mb_a))+
           max(2, max(nb_a*ceil(NPROW-1, NPCOL),
          LOCc(n+mod(ja-1,nb_a))+

nb_a*ceil(NPCOL-1, NPROW))).

iwork (local) INTEGER.
Workspace array, DIMENSION  (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥  LOCr(n+mod(ia-1,mb_a)).

rwork (local) REAL for pcpocon 
DOUBLE PRECISION for pzpocon 
Workspace array, DIMENSION  (lrwork). Used in complex flavors only. 

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at 
least  lrwork ≥  LOCc(n+mod(ja-1,nb_a)).

Output Parameters

rcond (global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
The reciprocal of the condition number of the distributed matrix sub(A). 

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for 
optimum performance (for real flavors).
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rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for 
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

Refining the Solution and Estimating Its Error

This section describes the ScaLAPACK routines for refining the computed solution of a system of 
linear equations and estimating the solution error. You can call these routines after factorizing the 
matrix of the system of equations and computing the solution (see “Routines for Matrix
Factorization” and “Routines for Solving Systems of Linear Equations”).

p?gerfs                                             
Improves the computed solution to a system of linear 
equations and provides error bounds and backward 
error estimates for the solution.

Syntax
call psgerfs (trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,

ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
iwork, liwork, info)

call pdgerfs (trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
iwork, liwork, info)

call pcgerfs (trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
rwork, lrwork, info)

call pzgerfs (trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
rwork, lrwork, info)
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Description

This routine improves the computed solution to one of the systems of linear equations 
                    sub(A)*sub(X) = sub(B) , 
                    sub(A)T*sub(X) = sub(B) , or
                    sub(A)T*sub(X) = sub(B)
and provides error bounds and backward error estimates for the solution.

Here sub(A) = A(ia:ia+n-1, ja:ja+n-1), sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) , and 
sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1).

Input Parameters

trans (global) CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form
 sub(A)*sub(X) = sub(B)  (No transpose);

If trans = 'T', the system has the form 
 sub(A)T*sub(X) = sub(B)  (Transpose);

If trans = 'C', the system has the form 
sub(A)H*sub(X) = sub(B)  (Conjugate transpose).

n (global) INTEGER. The order of the distributed submatrix sub(A)  (n ≥ 0). 

nrhs (global) INTEGER. The number of right-hand sides, i.e., the number of 
columns of the matrices sub(B) and sub(X) (nrhs ≥ 0). 

a, af, b, x (local)
REAL for psgerfs 
DOUBLE PRECISION for pdgerfs 
COMPLEX for pcgerfs 
DOUBLE COMPLEX for pzgerfs. 

Pointers into the local memory to arrays of local dimension a(lld_a,
LOCc(ja+n-1)), af(lld_af, LOCc(jaf+n-1)), b(lld_b,
LOCc(jb+nrhs-1)), and x(lld_x, LOCc(jx+nrhs-1)), respectively.

The array a contains the local pieces of the distributed matrix sub(A).

The array af contains the local pieces of the distributed factors of the matrix 
sub(A) = P L U as computed by p?getrf.
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The array b contains the local pieces of the distributed matrix of right hand 
sides sub(B).

On entry, the array x contains the local pieces of the distributed solution 
matrix sub(X).

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

iaf,jaf (global) INTEGER.  The row and column indices in the global array AF 
indicating the first row and the first column of the submatrix sub(AF), 
respectively.

descaf (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix AF.

ib,jb (global) INTEGER.  The row and column indices in the global array B 
indicating the first row and the first column of the submatrix sub(B), 
respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

ix,jx (global) INTEGER.  The row and column indices in the global array X 
indicating the first row and the first column of the submatrix sub(X), 
respectively.

descx (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix X.

ipiv (local) INTEGER. 
Array, dimension  LOCr(m_af)+ mb_af. 
This array contains pivoting information as computed by p?getrf. If 
ipiv(i)=j , then the local row i was swapped with the global row j. 
This array is tied to the distributed matrix A.

work (local)
REAL for psgerfs 
DOUBLE PRECISION for pdgerfs 
COMPLEX for pcgerfs 
DOUBLE COMPLEX for pzgerfs. 

The array work of dimension (lwork) is a workspace array.
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lwork (local or global) INTEGER.  The dimension of the array work.
For real flavors: 
lwork must be at least 
lwork ≥  3*LOCr(n+mod(ia-1,mb_a))

For complex flavors: 
lwork must be at least 
lwork ≥  2*LOCr(n+mod(ia-1,mb_a))

iwork (local) INTEGER.
Workspace array, DIMENSION  (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥  LOCr(n+mod(ib-1,mb_b)).

rwork (local) REAL for pcgerfs 
DOUBLE PRECISION for pzgerfs 
Workspace array, DIMENSION  (lrwork). Used in complex flavors only. 

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at 
least  lrwork ≥  LOCr(n+mod(ib-1,mb_b))).

Output Parameters

x On exit, contains the improved solution vectors.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, dimension LOCc(jb+nrhs-1) each. 

The array ferr contains the estimated forward error bound for each solution 
vector of sub(X). 
If XTRUE is the true solution corresponding to sub(X), ferr is an estimated 
upper bound for the magnitude of the largest element in (sub(X) - XTRUE) 
divided by the magnitude of the largest element in sub(X). The estimate is as 
reliable as the estimate for rcond, and is almost always a slight overestimate 
of the true error. 
This array is tied to the distributed matrix X.

The array berr contains the component-wise relative backward error of each 
solution vector (that is, the smallest relative change in any entry of sub(A) or 
sub(B) that makes sub(X) an exact solution). This array is tied to the distributed 
matrix X.
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work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for 
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for 
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

p?porfs                                             
Improves the computed solution to a system of linear 
equations with symmetric/Hermitian positive definite 
distributed matrix and provides error bounds and 
backward error estimates for the solution.

Syntax
call psporfs (uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,

ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork,
liwork, info)

call pdporfs (uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork,
liwork, info)

call pcporfs (uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork,
lrwork, info)

call pzporfs (uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork,
lrwork, info)
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Description

The routine p?porfs improves the computed solution to the system of linear equations 
                    sub(A)*sub(X) = sub(B) ,

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a real symmetric or complex Hermitian positive 
definite distributed matrix and 
                    sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) ,  
                    sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1) 
are right-hand side and solution submatrices, respectively.
This routine also provides error bounds and backward error estimates for the solution.

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

Specifies whether the upper or lower triangular part of the 
symmetric/Hermitian matrix sub(A) is stored.

If uplo = 'U', sub(A) is upper triangular.
If uplo = 'L', sub(A) is lower triangular.

n (global) INTEGER. The order of the distributed matrix sub(A)  (n ≥ 0). 

nrhs (global) INTEGER. The number of right-hand sides, i.e., the number of 
columns of the matrices sub(B) and sub(X) (nrhs ≥ 0). 

a, af, b, x (local)
REAL for psporfs 
DOUBLE PRECISION for pdporfs 
COMPLEX for pcporfs 
DOUBLE COMPLEX for pzporfs. 

Pointers into the local memory to arrays of local dimension a(lld_a,
LOCc(ja+n-1)), af(lld_af, LOCc(ja+n-1)), b(lld_b,
LOCc(jb+nrhs-1)), and x(lld_x, LOCc(jx+nrhs-1)), respectively.

The array a contains the local pieces of the n-by-n symmetric/Hermitian
distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular part of the matrix, and its strictly lower triangular part is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular part of the distributed matrix, and its strictly upper triangular
part is not referenced.
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The array af contains the factors L or U from the Cholesky factorization 
sub(A) = LLH or  sub(A) = UHU , as computed by p?potrf.

On entry, the array b contains the local pieces of the distributed matrix of right 
hand sides sub(B).

On entry, the array x contains the local pieces of the solution vectors sub(X).

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

iaf,jaf (global) INTEGER.  The row and column indices in the global array AF 
indicating the first row and the first column of the submatrix sub(AF), 
respectively.

descaf (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix AF.

ib,jb (global) INTEGER.  The row and column indices in the global array B 
indicating the first row and the first column of the submatrix sub(B), 
respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

ix,jx (global) INTEGER.  The row and column indices in the global array X 
indicating the first row and the first column of the submatrix sub(X), 
respectively.

descx (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix X.

work (local)
REAL for psporfs 
DOUBLE PRECISION for pdporfs 
COMPLEX for pcporfs 
DOUBLE COMPLEX for pzporfs. 

The array work of dimension (lwork) is a workspace array.
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lwork (local) INTEGER.  The dimension of the array work.
For real flavors: 
lwork must be at least 
lwork ≥  3*LOCr(n+mod(ia-1,mb_a))

For complex flavors: 
lwork must be at least 
lwork ≥  2*LOCr(n+mod(ia-1,mb_a))

iwork (local) INTEGER.
Workspace array, DIMENSION  (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥  LOCr(n+mod(ib-1,mb_b)).

rwork (local) REAL for pcporfs 
DOUBLE PRECISION for pzporfs 
Workspace array, DIMENSION  (lrwork). Used in complex flavors only. 

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at 
least  lrwork ≥  LOCr(n+mod(ib-1,mb_b))).

Output Parameters

x On exit, contains the improved solution vectors.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, dimension LOCc(jb+nrhs-1) each. 

The array ferr contains the estimated forward error bound for each solution 
vector of sub(X). 
If XTRUE is the true solution corresponding to sub(X), ferr is an estimated 
upper bound for the magnitude of the largest element in (sub(X) - XTRUE) 
divided by the magnitude of the largest element in sub(X). The estimate is as 
reliable as the estimate for rcond, and is almost always a slight overestimate 
of the true error. 
This array is tied to the distributed matrix X.

The array berr contains the component-wise relative backward error of each 
solution vector (that is, the smallest relative change in any entry of sub(A) or 
sub(B) that makes sub(X) an exact solution). This array is tied to the distributed 
matrix X.
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work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for 
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for 
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

p?trrfs                                             
Provides error bounds and backward error estimates 
for the solution to a system of linear equations with a 
distributed triangular coefficient matrix.

Syntax
call pstrrfs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,

descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)

call pdtrrfs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)

call pctrrfs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

call pztrrfs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

Description

The routine p?trrfs provides error bounds and backward error estimates for the solution to one 
of the systems of linear equations 

             sub(A)*sub(X) = sub(B) , 
             sub(A)T*sub(X) = sub(B) , or
           sub(A)T*sub(X) = sub(B) ,
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where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a triangular matrix, 
           sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) , and 
          sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1).

The solution matrix X must be computed by p?trtrs or some other means before entering this 
routine. The routine p?trrfs does not do iterative refinement because doing so cannot improve 
the backward error.

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

If uplo = 'U',  sub(A) is upper triangular.
If uplo = 'L',  sub(A) is lower triangular.

trans (global) CHARACTER*1.  Must be 'N' or 'T' or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form
 sub(A)*sub(X) = sub(B)  (No transpose);

If trans = 'T', the system has the form 
 sub(A)T*sub(X) = sub(B)  (Transpose);

If trans = 'C', the system has the form 
sub(A)H*sub(X) = sub(B)  (Conjugate transpose).

diag CHARACTER*1.  Must be 'N' or 'U'.

If diag = 'N', then sub(A) is non-unit triangular.

If diag = 'U', then sub(A) is unit triangular.

n (global) INTEGER. The order of the distributed matrix sub(A)  (n ≥ 0). 

nrhs (global) INTEGER. The number of right-hand sides, i.e., the number of 
columns of the matrices sub(B) and sub(X) (nrhs ≥ 0). 

a, b, x (local)
REAL for pstrrfs 
DOUBLE PRECISION for pdtrrfs 
COMPLEX for pctrrfs 
DOUBLE COMPLEX for pztrrfs. 
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Pointers into the local memory to arrays of local dimension a(lld_a,
LOCc(ja+n-1)), 
b(lld_b, LOCc(jb+nrhs-1)), and 
x(lld_x, LOCc(jx+nrhs-1)), respectively.

The array a contains the local pieces of the original triangular distributed 
matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular part of the matrix, and its strictly lower triangular part is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular part of the distributed matrix, and its strictly upper triangular
part is not referenced.
If diag = 'U', the diagonal elements of sub(A) are also not referenced and are
assumed to be 1.

On entry, the array b contains the local pieces of the distributed matrix of right 
hand sides sub(B).

On entry, the array x contains the local pieces of the solution vectors sub(X).

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

ib,jb (global) INTEGER.  The row and column indices in the global array B 
indicating the first row and the first column of the submatrix sub(B), 
respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

ix,jx (global) INTEGER.  The row and column indices in the global array X 
indicating the first row and the first column of the submatrix sub(X), 
respectively.

descx (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix X.
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work (local)
REAL for pstrrfs 
DOUBLE PRECISION for pdtrrfs 
COMPLEX for pctrrfs 
DOUBLE COMPLEX for pztrrfs. 

The array work of dimension (lwork) is a workspace array.

lwork (local) INTEGER.  The dimension of the array work.
For real flavors: 
lwork must be at least 
lwork ≥  3*LOCr(n+mod(ia-1,mb_a))

For complex flavors: 
lwork must be at least 
lwork ≥  2*LOCr(n+mod(ia-1,mb_a))

iwork (local) INTEGER.
Workspace array, DIMENSION  (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥  LOCr(n+mod(ib-1,mb_b)).

rwork (local) REAL for pctrrfs 
DOUBLE PRECISION for pztrrfs 
Workspace array, DIMENSION  (lrwork). Used in complex flavors only. 

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at 
least  lrwork ≥  LOCr(n+mod(ib-1,mb_b))).

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, dimension LOCc(jb+nrhs-1) each. 

The array ferr contains the estimated forward error bound for each solution 
vector of sub(X). 
If XTRUE is the true solution corresponding to sub(X), ferr is an estimated 
upper bound for the magnitude of the largest element in (sub(X) - XTRUE) 
divided by the magnitude of the largest element in sub(X). The estimate is as 
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reliable as the estimate for rcond, and is almost always a slight overestimate 
of the true error. 
This array is tied to the distributed matrix X.

The array berr contains the component-wise relative backward error of each 
solution vector (that is, the smallest relative change in any entry of sub(A) or 
sub(B) that makes sub(X) an exact solution). This array is tied to the distributed 
matrix X.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for 
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for 
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

Routines for Matrix Inversion

This sections describes ScaLAPACK routines that compute the inverse of a matrix based on the 
previously obtained factorization. Note that it is not recommended to solve a system of equations 
Ax = b by first computing A−1 and then forming the matrix-vector product x = A−1b. 
Call a solver routine instead (see “Routines for Solving Systems of Linear Equations”); this is 
more efficient and more accurate.
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p?getri                                       
Computes the inverse of a LU-factored distributed 
matrix.

Syntax
call psgetri (n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork,

info)

call pdgetri (n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork,
info)

call pcgetri (n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork,
info)

call pzgetri (n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork,
info)

Description

This routine computes the inverse of a general distributed matrix 
sub(A) = A(ia:ia+n-1, ja:ja+n-1)  using the LU factorization computed by p?getrf. This 
method inverts U and then computes the inverse of sub(A) denoted by InvA by solving the system 

          InvA * L = U-1  

for  InvA.

Input Parameters

n (global) INTEGER. The number of rows and columns to be operated on, that is, 
the order of the distributed submatrix sub(A)  (n ≥ 0). 

a (local)
REAL for psgetri 
DOUBLE PRECISION for pdgetri 
COMPLEX for pcgetri 
DOUBLE COMPLEX for pzgetri. 

Pointer into the local memory to an array of local dimension a(lld_a,
LOCc(ja+n-1)).

On entry, the array a contains the local pieces of the L and U obtained by the 
factorization  sub(A) = P L U computed by p?getrf.
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ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)
REAL for psgetri 
DOUBLE PRECISION for pdgetri 
COMPLEX for pcgetri 
DOUBLE COMPLEX for pzgetri. 

The array work of dimension (lwork) is a workspace array.

lwork (local) INTEGER.  The dimension of the array work.
lwork must be at least 
lwork ≥  LOCr(n+mod(ia-1,mb_a))*nb_a .
The array work  is used to keep at most an entire column block of sub(A).

iwork (local) INTEGER.
Workspace array used for physically transposing the pivots, DIMENSION  
(liwork). 

liwork (local or global) INTEGER.
The dimension of the array iwork. 
The minimal value liwork of is determined by the following code:
If NPROW == NPCOL then
liwork = LOCc(n_a + mod(ja-1,nb_a))+ nb_a
Else
liwork = LOCc(n_a + mod(ja-1,nb_a)) +

max(ceil(ceil(LOCr(m_a)/mb_a)/(lcm/NPROW)),nb_a)
End if
where lcm is the least common multiple of process rows and columns (NPROW 
and NPCOL).

Output Parameters

ipiv (local) INTEGER. 
Array, dimension ( LOCr(m_a)+ mb_a). 
This array contains the pivoting information. 
If ipiv(i)=j , then the local row i was swapped with the global row j. 
This array is tied to the distributed matrix A.
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work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for 
optimum performance.

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a  scalar and had an illegal value, 
then info = -i.

info > 0: 
if info = i, U(i,i) is exactly zero.  The factorization has been completed, but 
the factor U is exactly singular, and division by zero will occur if it is used to 
solve a system of equations.

p?potri                                       
Computes the inverse of a symmetric/Hermitian 
positive definite distributed matrix.

Syntax
call pspotri (uplo, n, a, ia, ja, desca, info)

call pdpotri (uplo, n, a, ia, ja, desca, info)

call pcpotri (uplo, n, a, ia, ja, desca, info)

call pzpotri (uplo, n, a, ia, ja, desca, info)

Description

This routine computes the inverse of a real symmetric or complex Hermitian positive definite 
distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1)  using the Cholesky factorization 
 sub(A) = UHU or sub(A) = LLH  computed by p?potrf.

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

Specifies whether the upper or lower triangular part of the 
symmetric/Hermitian matrix sub(A) is stored.
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If uplo = 'U',  upper triangle of sub(A) is stored.
If uplo = 'L',  lower triangle of sub(A) is stored.

n (global) INTEGER. The number of rows and columns to be operated on, that is, 
the order of the distributed submatrix sub(A)  (n ≥ 0). 

a (local)
REAL for pspotri 
DOUBLE PRECISION for pdpotri 
COMPLEX for pcpotri 
DOUBLE COMPLEX for pzpotri. 

Pointer into the local memory to an array of local dimension a(lld_a,
LOCc(ja+n-1)).

On entry, the array a contains the local pieces of the triangular factor U or L 
from the Cholesky factorization  sub(A) = UHU or sub(A) = LLH , as computed
by p?potrf.

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

Output Parameters

a On exit, overwritten by the local pieces of the upper or lower triangle of the 
(symmetric/Hermitian) inverse of  sub(A).

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a  scalar and had an illegal value, 
then info = -i.

info > 0: 
if info = i, the (i,i) element of the factor U or L is  zero, and the inverse 
could not be computed.
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p?trtri                                       
Computes the inverse of a triangular distributed matrix.

Syntax
call pstrtri (uplo, diag, n, a, ia, ja, desca, info)

call pdtrtri (uplo, diag, n, a, ia, ja, desca, info)

call pctrtri (uplo, diag, n, a, ia, ja, desca, info)

call pztrtri (uplo, diag, n, a, ia, ja, desca, info)

Description

This routine computes the inverse of a real or complex upper or lower triangular distributed matrix 
sub(A) = A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

uplo (global) CHARACTER*1.  Must be 'U' or 'L'.

Specifies whether the distributed matrix sub(A) is upper or lower triangular.

If uplo = 'U',  sub(A) is upper triangular.
If uplo = 'L',  sub(A) is lower triangular.

diag CHARACTER*1.  Must be 'N' or 'U'.
Specifies whether or not the distributed matrix sub(A) is unit triangular.

If diag = 'N', then sub(A) is non-unit triangular.

If diag = 'U', then sub(A) is unit triangular.

n (global) INTEGER. The number of rows and columns to be operated on, that is, 
the order of the distributed submatrix sub(A)  (n ≥ 0). 

a (local)
REAL for pstrtri 
DOUBLE PRECISION for pdtrtri 
COMPLEX for pctrtri 
DOUBLE COMPLEX for pztrtri. 

Pointer into the local memory to an array of local dimension a(lld_a,
LOCc(ja+n-1)).
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The array a contains the local pieces of the triangular distributed matrix 
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular matrix to be inverted, and the strictly lower triangular part of
sub(A) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular matrix, and the strictly upper triangular part of sub(A) is not
referenced.

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

Output Parameters

a On exit, overwritten by the (triangular) inverse of  the original matrix.

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a  scalar and had an illegal value, 
then info = -i.

info > 0: 
if info = k, A(ia+k-1, ja+k-1) is  exactly zero. The triangular matrix sub(A) 
is singular and its inverse can not be computed.

Routines for Matrix Equilibration

ScaLAPACK routines described in this section are used to compute scaling factors needed to 
equilibrate a matrix. Note that these routines do not actually scale the matrices.
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p?geequ                                 
Computes row and column scaling factors intended to 
equilibrate a general rectangular distributed matrix 
and reduce its condition number.

Syntax
call psgeequ (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

call pdgeequ (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

call pcgeequ (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

call pzgeequ (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

Description

This routine computes row and column scalings intended to equilibrate an  m-by-n distributed 
matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1) and reduce its condition number. The output array r 
returns the row scale factors and the array c the column scale factors. These factors are chosen to 
try to make the largest element in each row and column of the matrix B with elements 
bij=r(i)*aij*c(j) have absolute value 1.

r(i) and c(j) are restricted to be between SMLNUM = smallest safe number and BIGNUM = largest 
safe number.  Use of these scaling factors is not guaranteed to reduce the condition number of 
sub(A) but works well in practice.

Input Parameters

m (global) INTEGER. The number of rows  to be operated on, that is, the number 
of rows of the distributed submatrix sub(A)  (m ≥ 0). 

n (global) INTEGER. The number of columns  to be operated on, that is, the 
number of columns of the distributed submatrix sub(A)  (n ≥ 0). 

a (local)
REAL for psgeequ 
DOUBLE PRECISION for pdgeequ  
COMPLEX for pcgeequ  
DOUBLE COMPLEX for pzgeequ . 

Pointer into the local memory to an array of local dimension a(lld_a,
LOCc(ja+n-1)).
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The array a contains the local pieces of the m-by-n  distributed matrix whose
equilibration factors are to be computed.

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

Output Parameters

r, c (local) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension  LOCr(m_a) and LOCc(n_a), respectively. 
If info = 0, or info > ia+m-1, the array r (ia:ia+m-1) contains the row 
scale factors for sub(A).  r is aligned with the distributed matrix A, and 
replicated across every process column. r is tied to the distributed matrix A.
If info = 0 , the array c (ja:ja+n-1) contains the column scale factors for 
sub(A).  c is aligned with the distributed matrix A, and replicated down every 
process row. c is tied to the distributed matrix A.

rowcnd,colcnd (global) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > ia+m-1,  rowcnd contains the ratio of the smallest r(i) 
to the largest r(i) (ia ≤ i ≤ ia+m-1) .  If rowcnd ≥ 0.1 and  amax is neither 
too large nor too small, it is not worth scaling by r (ia:ia+m-1). 

If info = 0,  colcnd contains the ratio of the smallest c(j) to the largest c(j)  
(ja ≤  j ≤  ja+n-1). 
If colcnd ≥ 0.1 , it is not worth scaling by c (ja:ja+n-1).

amax (global) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest matrix element. If amax is very close to overflow 
or very close to underflow, the matrix should be scaled.

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a  scalar and had an illegal value, 
then info = -i.
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info > 0: 
If info = i and 

i≤  m, the ith row of the distributed matrix
                          sub(A) is exactly zero;
                 i > m, the (i-m)th column of the distributed
                         matrix sub(A) is exactly zero.

p?poequ                        
Computes row and column scaling factors intended to 
equilibrate a symmetric (Hermitian) positive definite 
distributed matrix and reduce its condition number.

Syntax
call pspoequ (n, a, ia, ja, desca, sr, sc, scond, amax, info)

call pdpoequ (n, a, ia, ja, desca, sr, sc, scond, amax, info)

call pcpoequ (n, a, ia, ja, desca, sr, sc, scond, amax, info)

call pzpoequ (n, a, ia, ja, desca, sr, sc, scond, amax, info)

Description

This routine computes row and column scalings intended to equilibrate a real symmetric or 
complex Hermitian positive definite distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) and 
reduce its condition number (with respect to the two-norm). The output arrays sr and sc return 
the row and column scale factors 

These factors are chosen so that the scaled distributed matrix B with elements bij=s(i)*aij*s(j) has 
ones on the diagonal.

This choice of sr and sc puts the condition number of B within a factor n of the smallest possible 
condition number over all possible diagonal scalings.

s i( ) 1

ai i,

---------------=
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Input Parameters

n (global) INTEGER. The number of rows  and columns to be operated on, that is, 
the order of the distributed submatrix sub(A)  (n ≥ 0). 

a (local)
REAL for pspoequ 
DOUBLE PRECISION for pdpoequ  
COMPLEX for pcpoequ  
DOUBLE COMPLEX for pzpoequ . 

Pointer into the local memory to an array of local dimension a(lld_a,
LOCc(ja+n-1)).

The array a contains the  n-by-n  symmetric/Hermitian positive definite 
distributed matrix sub(A) whose scaling factors are to be computed. Only the
diagonal elements of sub(A) are referenced.

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix sub(A), 
respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

Output Parameters

sr, sc (local) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension  LOCr(m_a) and LOCc(n_a), respectively. 
If info = 0, the array sr (ia:ia+n-1) contains the row scale factors for 
sub(A).  sr is aligned with the distributed matrix A, and replicated across 
every process column. sr is tied to the distributed matrix A.
If info = 0 , the array sc (ja:ja+n-1) contains the column scale factors for 
sub(A).  sc is aligned with the distributed matrix A, and replicated down every 
process row. sc is tied to the distributed matrix A.

scond (global) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0,  scond contains the ratio of the smallest sr(i) ( or sc(j) ) to the 
largest sr(i) ( or sc(j) ), with 
ia ≤ i ≤ ia+n-1  and  ja ≤ j ≤ ja+n-1.  
If scond ≥ 0.1 and  amax is neither too large nor too small, it is not worth 
scaling by sr ( or sc ). 
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amax (global) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest matrix element. If amax is very close to overflow 
or very close to underflow, the matrix should be scaled.

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a  scalar and had an illegal value, 
then info = -i.

info > 0: 
If info = k, the kth diagonal entry of sub(A) is nonpositive.
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Orthogonal Factorizations 

This section describes the ScaLAPACK routines for the QR (RQ) and LQ (QL) factorization of 
matrices. Routines for the RZ factorization as well as for generalized QR and RQ factorizations are 
also included. For the mathematical definition of the factorizations, see the respective LAPACK 
sections or refer to [SLUG].

Table 5-1 lists ScaLAPACK routines that perform orthogonal factorization of matrices.    

p?geqrf 
Computes the QR factorization of a general m by n 
matrix.

Syntax
call psgeqrf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pdgeqrf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pcgeqrf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pzgeqrf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

Table 6-3 Computational Routines for Orthogonal Factorizations     

Matrix type, factorization
Factorize 
without pivoting

Factorize 
with pivoting

Generate 
matrix Q

Apply 
matrix Q

general matrices,
QR factorization

p?geqrf p?geqpf p?orgqr
 p?ungqr 

p?ormqr
p?unmqr 

general matrices,
RQ factorization

p?gerqf p?orgrq
p?ungrq 

p?ormrq
p?unmrq   

general matrices,
LQ factorization

p?gelqf p?orglq
p?unglq

p?ormlq
p?unmlq 

general matrices,
QL factorization

p?geqlf p?orgql
p?ungql

p?ormql
p?unmql

trapezoidal matrices,
RZ factorization

p?tzrzf p?ormrz
p?unmrz 

pair of matrices, generalized 
QR factorization

p?ggqrf

pair of matrices, generalized 
RQ factorization

p?ggrqf
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Description

The routine forms the QR factorization of a general m by n distributed matrix 
sub(A)= A (ia:ia+m-1,ja:ja+n-1) as

               A=Q R

Input Parameters

m (global) INTEGER. The number of rows in the distributed submatrix sub(A);
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed submatrix 
sub(A); (n ≥ 0). 

a (local)

REAL for psgeqrf 
DOUBLE PRECISION for pdgeqrf 
COMPLEX for pcgeqrf 
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension 
(lld_a, LOCc(ja+n-1)). 
Contains the local pieces of the distributed matrix sub(A) to be factored.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix 
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A

work (local).
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least 
lwork ≥ nb_a * (mp0+nq0+nb_a), where 

iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 
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mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW), 

nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL), 
and numroc, indxg2p are ScaLAPACK tool functions; 
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the 
subroutine blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a The elements on and above the diagonal of 
sub(A) contain the min(m,n)-by-n upper trapezoidal matrix R (R is upper 
triangular if m ≥ n); the elements below the diagonal, with the array tau, 
represent the orthogonal/unitary matrix Q as a product of elementary reflectors 
(see Application Notes below).

tau (local)

REAL for psgeqrf 
DOUBLE PRECISION for pdgeqrf 
COMPLEX for pcgeqrf 
DOUBLE COMPLEX for pzgeqrf.
Array, DIMENSION LOCc(ja+min(m,n)-1). 
Contains the scalar factor tau of elementary reflectors. tau is tied to the 
distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0, the execution is successful.
 < 0, if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors 
 Q = H(ja) H(ja+1)... H(ja+k-1),

where k = min(m,n). 
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Each H(i) has the form 

H(j) = I - tau * v * v' 

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1; 
v(i+1:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1), and tau in tau(ja+i-1).

p?geqpf               
Computes the QR factorization of a general m by n 
matrix with pivoting.

Syntax
call psgeqpf ( m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info )

call pdgeqpf ( m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info )

call pcgeqpf ( m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info )

call pzgeqpf ( m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info )

Description

The routine forms the QR factorization with column pivoting of a general m by n distributed matrix 
sub(A)= A (ia:ia+m-1,ja:ja+n-1) as

            sub(A) P=Q R

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(A) (m ≥ 0). 

n (global) INTEGER. The number of columns in the submatrix sub(A) (n ≥ 0). 

a (local)

REAL for psgeqpf 
DOUBLE PRECISION for pdgeqpf 
COMPLEX for pcgeqpf 
DOUBLE COMPLEX for pzgeqpf.
Pointer into the local memory to an array of local dimension (lld_a,
LOCc(ja+n-1)). 
Contains the local pieces of the distributed matrix sub(A) to be factored.
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ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix 
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local).
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf.
COMPLEX for pcgeqpf.
DOUBLE COMPLEX for pzgeqpf
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least 
For real flavors:
lwork ≥ max (3,mp0+nq0) + LOCc (ja+n-1) + nq0.

For complex flavors:
lwork ≥ max (3,mp0+nq0) .

Here
iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW ), 

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL), 

LOCc (ja+n-1) = numroc(ja+n-1, nb_a, MYCOL,csrc_a, NPCOL), 
and  numroc, indxg2p are ScaLAPACK tool functions; 
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the 
subroutine blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.
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Output Parameters

a The elements on and above the diagonal of sub(A) contain the min(m,n)-by-n 
upper trapezoidal matrix R (R is upper triangular if m ≥ n); the elements below 
the diagonal, with the array tau, represent the orthogonal/unitary matrix Q as 
a product of elementary reflectors (see Application Notes below)

ipiv (local) INTEGER.
Array, DIMENSION LOCc (ja+n-1).

ipiv(i) = k, the local i-th column of sub(A)*P was the global k-th column of 
sub(A). ipiv is tied to the distributed matrix A. 

tau (local)

REAL for psgeqpf 
DOUBLE PRECISION for pdgeqpf 
COMPLEX for pcgeqpf 
DOUBLE COMPLEX for pzgeqpf.
Array, DIMENSION  LOCc(ja+min(m,n)-1)). 
Contains the scalar factor tau of elementary reflectors. tau is tied to the 
distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0, the execution is successful.
 < 0, if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors 
 Q = H(1) H(2)... H(n),

Each H(i) has the form 
H = I - tau * v * v' 

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1; 
v(i+1:m) is stored on exit in A(ia+i-1:ia+m-1,ja+i-1).

The matrix P is represented in jpvt as follows: if jpvt(j) = i  then the j-th column of P is the 
i-th canonical unit vector. 
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p?orgqr            
Generates the orthogonal matrix Q of the QR factorization 
formed by p?geqrf.

Syntax
call psorgqr ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

call pdorgqr ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine generates the whole or part of m by n real distributed matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the first n columns of a 
product of k elementary reflectors of order m

            Q= H(1) H(2)...H(k)

as returned by p?geqrf. 

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q) (m ≥ 0). 

n (global) INTEGER. The number of columns in the submatrix sub(Q) (m ≥n ≥ 
0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q (n ≥ k ≥0). 

a (local)

REAL for psorgqr 
DOUBLE PRECISION for pdorgqr 
Pointer into the local memory to an array of local dimension (lld_a,
LOCc(ja+n-1)).The j-th column must contain the vector which defines the 
elementary reflector H(j), ja < j< ja +k-1, as returned by p?geqrf in the k 
columns of its distributed matrix argument a(ia:*,ja:ja+k-1).

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix 
A(ia:ia+m-1,ja:ja+n-1), respectively.
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desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

REAL for psorgqr 
DOUBLE PRECISION for pdorgqr 
Array, DIMENSION  LOCc(ja+k-1)). 
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by
p?geqrf. tau is tied to the distributed matrix A.

work (local)

REAL for psorgqr 
DOUBLE PRECISION for pdorgqr 
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work.
Must be at least lwork ≥ nb_a* (nqa0 + mpa0 + nb_a), where

iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW), 

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) ;

indxg2p and numroc are ScaLAPACK tool functions; 
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the 
subroutine blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.
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info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?ungqr            
Generates the complex unitary matrix Q of the QR 
factorization formed by p?geqrf.

Syntax
call pcungqr ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

call pzungqr ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine generates the whole or part of m by n complex distributed matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the first n columns of a 
product of k elementary reflectors of order m

 Q = H(1) H(2)... H(k)

as returned by p?geqrf. 

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q);(m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q) (m ≥ n ≥ 
0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q (n ≥ k ≥ 0). 

a (local)

COMPLEX for pcungqr 
DOUBLE COMPLEX for pzungqr 
Pointer into the local memory to an array of dimension (lld_a,
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LOCc(ja+n-1)).The j-th column must contain the vector which defines the 
elementary reflector H(j), ja < j< ja +k-1, as returned by p?geqrf in the k 
columns of its distributed matrix argument a(ia:*,ja:ja+k-1).

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

COMPLEX for pcungqr 
DOUBLE COMPLEX for pzungqr 
Array, DIMENSION LOCc(ja+k-1)). 
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by 
p?geqrf. tau is tied to the distributed matrix A.

work (local)

COMPLEX for pcungqr 
DOUBLE COMPLEX for pzungqr 
 Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ 
nb_a* (nqa0 + mpa0 + nb_a), where

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW), 

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.
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Output Parameters

a Contains the local pieces of the m by n distributed matrix Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?ormqr         
Multiplies a general matrix by the orthogonal matrix Q of 
the QR factorization formed by p?geqrf.

Syntax
call psormqr ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call pdormqr ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general real m-by-n distributed matrix 
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

     side ='L'                    side ='R' 

trans = 'N':    Q sub(C)                        sub(C) Q 

trans = 'T':    QT sub(C)                       sub(C) QT 

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k) 

as returned by p?geqrf. Q is of order m if side ='L' and of order n if side ='R'.
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 Input Parameters

side (global) CHARACTER 
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) (m ≥ 
0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

a (local)

REAL for psormqr 
DOUBLE PRECISION for pdormqr.
Pointer into the local memory to an array of dimension 
(lld_a, LOCc(ja+k-1)).The j-th column must contain the vector which 
defines the elementary reflector H(j), ja < j< ja +k-1, as returned by
p?geqrf in the k columns of its distributed matrix argument 
a(ia:*,ja:ja+k-1).a(ia:*,ja:ja+k-1)is modified by the routine but 
restored on exit.

if side ='L', lld_a > max (1, LOCr(ia+m-1)

if side ='R', lld_a > max (1, LOCr(ia+n-1)

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)
REAL for psormqr 
DOUBLE PRECISION for pdormqr 
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Array, DIMENSION LOCc(ja+k-1).). 
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by 
p?geqrf. tau is tied to the distributed matrix A.

c (local)

REAL for psormqr 
DOUBLE PRECISION for pdormqr 
Pointer into the local memory to an array of local dimension 
(lld_c, LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating 
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)

REAL for psormqr 
DOUBLE PRECISION for pdormqr. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 
 if side ='L',

lwork ≥ max ((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a 

 else if side ='R',

lwork ≥ max ((nb_a* (nb_a-1))/2, (nqc0 + max
(npa0 + numroc (numroc(n+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), 
mpc0))*nb_a) + nb_a * nb_a 

end if 

where 

lcmq = lcm / NPCOL with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

npa0 = numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(ic-1, mb_c),
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icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

c Overwritten by the product Q* sub(C) or QT sub (C), or sub(C)* QT, or sub(C)* 
Q .

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
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p?unmqr         
Multiplies a complex matrix by the unitary matrix Q of the 
QR factorization formed by p?geqrf.

Syntax
call cunmqr ( side,trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call zunmqr ( side,trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general complex m-by-n distributed matrix sub   (C) = 
C(ic:ic+m-1,jc:jc+n-1) with

     side ='L'              side ='R' 

trans = 'N':    Q sub(C)                  sub(C) Q 

trans = 'T':  QH sub(C)                  sub(C) QH 

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k) 

as returned by p?geqrf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER 
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) (m ≥ 
0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C) (n 
≥ 0). 
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k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

a (local)

COMPLEX for pcunmqr 
DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+k-1)).The j-th column must contain the vector which defines the 
elementary reflector H(j), ja < j< ja +k-1, as returned by p?geqrf in the k 
columns of its distributed matrix argument a(ia:*,ja:ja+k-1).
a(ia:*,ja:ja+k-1)is modified by the routine but restored on exit.

if side ='L', lld_a > max (1, LOCr(ia+m-1)

if side ='R', lld_a > max (1, LOCr(ia+n-1)

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)
COMPLEX for pcunmqr 
DOUBLE COMPLEX for pzunmqr
Array, DIMENSION LOCc(ja+k-1)). 
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by
p?geqrf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmqr 
DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of local dimension (lld_c,
LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating 
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.
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work (local)

COMPLEX for pcunmqr 
DOUBLE COMPLEX for pzunmqr. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 
 if side ='L',

lwork ≥ max ((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a 

 else if side ='R',

lwork ≥   max ((nb_a* (nb_a-1))/2, (nqc0 + max
(npa0 + numroc (numroc(n+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), 
mpc0))*nb_a) + nb_a * nb_a 

end if 

where 

lcmq = lcm / NPCOL with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

npa0 = numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 
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Output Parameters

c Overwritten by the product Q* sub(C) or QH sub (C), or sub(C)* QH, or 
sub(C)* Q .

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?gelqf            
Computes the LQ factorization of a general rectangular 
matrix.

Syntax
call psgelqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pdgelqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pcgelqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pzgelqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine computes the LQ factorization of a real/complex distributed m by n matrix 
sub(A)= A(ia:ia+m-1,ia:ia+n-1) = L*Q

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q);(m ≥ 0). 

n (global) INTEGER. The number of columns in the submatrix sub(Q) (n ≥ 0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q (n ≥ k ≥0). 

a (local)
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REAL for psgelqf 
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Pointer into the local memory to an array of local dimension (lld_a,
LOCc(ja+n-1)).Contains the local pieces of the distributed matrix sub(A) to 
be factored.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix 
A((ia:ia+m-1,ia:ia+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)

REAL for psgelqf 
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ 
mb_a* (mp0 + nq0 + mb_a), where

iroff = mod(ia-1, mb_a), 

icoff = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW), 

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL) 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.
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Output Parameters

a The elements on and below the diagonal of 
sub(A) contain the m by min(m,n) lower trapezoidal matrix L (L is lower 
trapezoidal if m < n); the elements above the diagonal, with the array tau, 
represent the orthogonal/unitary matrix Q as a product of elementary reflectors 
(see Application Notes below)

tau (local)

REAL for psgelqf 
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Array, DIMENSION LOCr(ia+min(m,n)-1)). 
Contains the scalar factors of elementary reflectors. tau is tied to the 
distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors 

 Q = H(ia+k-1) H(ia+k-2)... H(ia),

where k = min(m,n)

Each H(i) has the form 

H(i) = I - tau * v * v' 

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1; 
v(i+1:n) is stored on exit in A(ia+i-1:ia+i-1,ja+n-1), and tau in tau (ia+i-1).
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p?orglq           
Generates the real orthogonal matrix Q of the LQ 
factorization formed by p?gelqf.

Syntax
call psorglq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

call pdorglq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine generates the whole or part of m by n real distributed matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a product 
of k elementary reflectors of order n

 Q = H(k)... H(2) H(1)

 as returned by p?gelqf. 

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q);(m ≥ 0). 

n (global) INTEGER. The number of columns in the submatrix sub(Q)
(n ≥ m ≥ 0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q (m ≥ k ≥0). 

a (local)

REAL for psorglq 
DOUBLE PRECISION for pdorglq
Pointer into the local memory to an array of local dimension (lld_a,
LOCc(ja+n-1)).On entry, the i-th row must contain the vector which defines 
the elementary reflector H(i), ia < i < ia+k-1, as returned by p?gelqf in 
the k rows of its distributed matrix argument A(ia:ia+k -1,ja:*). 

ia,ja (global) INTEGER.  The row and column indices in the global array a
indicating the first row and the first column of the submatrix 
A((ia:ia+m-1,ja:ja+n-1), respectively.
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desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)

REAL for psorglq 
DOUBLE PRECISION for pdorglq
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ 
mb_a* (mpa0 + nqa0 + mb_a), where

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW), 

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q to be factored.

tau (local)

REAL for psorglq 
DOUBLE PRECISION for pdorglq
Array, DIMENSION LOCr(ia+k-1).). 
Contains the scalar factors tau of elementary reflectors H(i). tau is tied to 
the distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.
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info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?unglq            
Generates the unitary matrix Q of the LQ factorization 
formed by p?gelqf. 

Syntax
call pcunglq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

call pzunglq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine generates the whole or part of m by n complex distributed matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a product 
of k elementary reflectors of order n

 Q = H(k)... H(2)' H(1)'

 as returned by p?gelqf. 

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q);(m ≥ 0). 

n (global) INTEGER. The number of columns in the submatrix sub(Q) (n ≥ m ≥ 
0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q (m ≥ k ≥0). 

a (local)

COMPLEX for pcunglq 
DOUBLE COMPLEX for pzunglq
Pointer into the local memory to an array of local dimension (lld_a,
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LOCc(ja+n-1)).On entry, the i-th row must contain the vector which defines 
the elementary reflector H(i), ia < i < ia+k-1, as returned by p?gelqf in 
the k rows of its distributed matrix argument A(ia:ia+k -1,ja:*). 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix 
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

COMPLEX for pcunglq 
DOUBLE COMPLEX for pzunglq
Array, DIMENSION LOCr(ia+k-1)). 
Contains the scalar factors tau of elementary reflectors H(i). tau is tied to 
the distributed matrix A.

work (local)

COMPLEX for pcunglq 
DOUBLE COMPLEX for pzunglq
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ 
mb_a* (mpa0 + nqa0 + mb_a), where

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW), 

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,

NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.
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Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q to be factored.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?ormlq         
Multiplies a general matrix by the orthogonal matrix Q of 
the LQ factorization formed by p?gelqf.

Syntax
call psormlq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

work, lwork, info )

call pdormlq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
work, lwork, info )

Description

The routine overwrites the general real m-by-n distributed matrix 
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

     side ='L'                      side ='R' 

trans = 'N':    Q sub(C)                         sub(C) Q 

trans = 'T':    QT sub(C)                        sub(C) QT 

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(k)...H(2) H(1) 

as returned by p?gelqf. Q is of order m if side ='L' and of order n if side ='R'.
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 Input Parameters

side (global) CHARACTER 
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) (m ≥ 
0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C) (n 
≥ 0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

a (local)

REAL for psormlq 
DOUBLE PRECISION for pdormlq.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+m-1)), if side ='L' and (lld_a, LOCc(ja+n-1)), if side 
='R'.The i-th row must contain the vector which defines the elementary 
reflector H(i), ia < i< ia +k-1, as returned by p?gelqf in the k rows of its 
distributed matrix argument a(ia:ia+k-1,ja:*).
a(ia:ia+k-1,ja:*)is modified by the routine but restored on exit.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

REAL for psormlq
DOUBLE PRECISION for pdormlq 
Array, DIMENSION LOCc(ja+k-1)). 
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gelqf. tau is tied to the distributed matrix A.

c (local)
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REAL for psormlq 
DOUBLE PRECISION for pdormlq 
Pointer into the local memory to an array of local dimension (lld_c,
LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating 
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)

REAL for psormlq 
DOUBLE PRECISION for pdormlq. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of the array work; must be at least: 
 if side ='L',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + max mqa0)+ numroc (numroc
(m + iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqc0)) * mb_a) + 
mb_a*mb_a

 else if side ='R',

lwork ≥   max ((mb_a* (mb_a-1))/2, (mpc0 + nqc0) *mb_a + mb_a*mb_a 

end if 

where 

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL), 

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 
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nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’, or sub(C)* 
Q 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
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p?unmlq          
Multiplies a general matrix by the unitary matrix Q of the 
LQ factorization formed by p?gelqf.

Syntax
call pcunmlq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call pzunmlq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general complex m-by-n  distributed matrix
sub   (C) = C (ic:ic+m-1,jc:jc+n-1) with

     side ='L'              side ='R' 

trans = 'N':   Q sub(C)                   sub(C) Q 

trans = 'T':  QH sub(C)                  sub(C) QH 

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(k)' ... H(2)' H(1)' 

as returned by p?gelqf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER 
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) 
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 
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k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

a (local)

COMPLEX for pcunmlq 
DOUBLE COMPLEX for pzunmlq.
Pointer into the local memory to an array of dimension 
(lld_a, LOCc(ja+m-1)), if side ='L', and 
(lld_a, LOCc(ja+n-1)), if side ='R', 
where lld_a > max (1, LOCr (ia+k-1)).The i-th column must contain the 
vector which defines the elementary reflector H(i), ia < i< ia +k-1, as 
returned by p?gelqf in the k rows of its distributed matrix argument 
a(ia:ia+k-1,ja:*).
a(ia:ia+k-1,ja:*)is modified by the routine but restored on exit.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

COMPLEX for pcunmlq 
DOUBLE COMPLEX for pzunmlq
Array, DIMENSION LOCc(ia+k-1)). 
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gelqf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmlq 
DOUBLE COMPLEX for pzunmlq.
Pointer into the local memory to an array of local dimension (lld_c,
LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c 
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.
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work (local)

COMPLEX for pcunmlq 
DOUBLE COMPLEX for pzunmlq. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of the array work; must be at least: 
 if side ='L',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + max mqa0)+ numroc (numroc
(m + iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqc0)) * mb_a) + 
mb_a*mb_a

 else if side ='R',

lwork ≥   max ((mb_a* (mb_a-1))/2, (mpc0 + nqc0) *mb_a + mb_a*mb_a 

end if 

where 

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(m + icoffa, nb_a, MYCOL, iacol, NPCOL), 

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 
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Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’, or sub(C)* 
Q 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?geqlf            
Computes the QL factorization of a general matrix.

Syntax
call psgeqlf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pdgeqlf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pcgeqlf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pzgeqlf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine forms the QL factorization of a real/complex distributed m-by-n matrix 
sub (A) = A (ia:ia+m-1,ja:ja+n-1) = Q * L.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q);(m ≥ 0). 

n (global) INTEGER. The number of columns in the submatrix sub(Q) (n ≥ 0). 

a (local)

REAL for psgeqlf 
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
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Pointer into the local memory to an array of local dimension (lld_a,
LOCc(ja+n-1)).Contains the local pieces of the distributed matrix sub(A) to 
be factored.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix 
A((ia:ia+m-1,ia:ia+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)

REAL for psgeqlf 
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ 
nb_a* (mp0 + nq0 + nb_a), where

iroff = mod(ia-1, mb_a), 

icoff = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW), 

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL) 

numroc and indxg2p are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if m > n, the lower triangle of the distributed submatrix 
A(ia+m-n:ia+m-1, ja:ja+n-1) contains the n-by-n lower triangular matrix L; 
if m < n, the elements on and below the (n-m)-th superdiagonal contain the m by 



6-108

6 Intel® Math Kernel Library Reference Manual

n lower trapezoidal matrix L; the remaining elements, with the array tau, 
represent the orthogonal/unitary matrix Q as a product of elementary reflectors 
(see Application Notes below)

tau (local)

REAL for psgeqlf 
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Array, DIMENSION LOCc(ja+n-1)). 
Contains the scalar factors of elementary reflectors. tau is tied to the 
distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors 

 Q = H(ja+k-1)... H(ja+1) H(ja),

where k = min(m,n)

Each H(i) has the form 

H(i) = I - tau * v * v' 

where tau is a real/complex scalar, and v is a real/complex vector with v(m-k+i+1:m) = 0 and 
v(m-k+i) = 1; v(m-k+i-1) is stored on exit in A(ia+ia+m-k+i-2, ja+n-k+i-1), and tau in tau 
(ja+n-k+i-1).
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p?orgql           
Generates the orthogonal matrix Q of the QL factorization 
formed by p?geqlf.

Syntax
call psorgql ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

call pdorgql ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine generates the whole or part of m by n real distributed matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a product 
of k elementary reflectors of order n

 Q = H(k)... H(2) H(1)

 as returned by p?gelqf. 

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q);(m ≥ 0). 

n (global) INTEGER. The number of columns in the submatrix sub(Q)
(m ≥ n ≥ 0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q (n ≥ k ≥0). 

a (local)

REAL for psorgql 
DOUBLE PRECISION for pdorgql
Pointer into the local memory to an array of local dimension (lld_a,
LOCc(ja+n-1)).On entry, the j-th column must contain the vector which 
defines the elementary reflector H(j), ja + n - k < j < ja+n-1, as returned 
by p?geqlf in the k columns of its distributed matrix argument 
A(ia:*ja+n-k:ja+n-1). 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix 
A((ia:ia+m-1,ja:ja+n-1), respectively.
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desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

REAL for psorgql 
DOUBLE PRECISION for pdorgql
Array, DIMENSION LOCc(ja+n-1)). 
Contains the scalar factors tau(j) of elementary reflectors H(j). tau is tied to 
the distributed matrix A.

work (local)

REAL for psorgql 
DOUBLE PRECISION for pdorgql
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ 
nb_a* (nqa0 + mpa0 + nb_a), where

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW), 

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,

NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q to be factored.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.
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info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?ungql           
Generates the unitary matrix Q of the QL factorization 
formed by p?geqlf.

Syntax
call pcungql ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

call pzungql ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine generates the whole or part of m by n complex distributed matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first n columns of a 
product of k elementary reflectors of order m

 Q = H(k)... H(2) H(1)

 as returned by p?geqlf. 

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q) (m ≥ 0). 

n (global) INTEGER. The number of columns in the submatrix sub(Q)
(m ≥ n ≥ 0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q (n ≥ k ≥ 0). 

a (local)

COMPLEX for pcungql 
DOUBLE COMPLEX for pzungql
Pointer into the local memory to an array of local dimension (lld_a,
LOCc(ja+n-1)).On entry, the j-th column must contain the vector which 
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defines the elementary reflector H(j), ja+n-k < j < ja+n-1, as returned by
p?geqlf in the k columns of its distributed matrix argument A(ia:*, ja+n-k: 
ja+n-1). 

ia,ja (global) INTEGER.  The row and column indices in the global array a
indicating the first row and the first column of the submatrix 
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

COMPLEX for pcungql 
DOUBLE COMPLEX for pzungql
Array, DIMENSION LOCr(ia+n-1)). 
Contains the scalar factors tau (j) of elementary reflectors H(j). tau is tied 
to the distributed matrix A.

work (local)

COMPLEX for pcungql 
DOUBLE COMPLEX for pzungql
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least 
lwork ≥ nb_a* (nqa0 + mpa0 + nb_a), where

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW), 

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,

NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.
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Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q to be factored.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?ormql         
Multiplies a general matrix by the orthogonal matrix Q of 
the QL factorization formed by p?geqlf.

Syntax
call psormql ( side, trans, m, n, k, a, ia, ja, desca, tau, c,ic, jc,

descc, work, lwork, info )

call pdormql ( side, trans, m, n, k, a, ia, ja, desca, tau, c,ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general real m-by-n  distributed matrix
sub(C) = C (ic:ic+m-1,jc:jc+n-1) with

     side ='L'                     side ='R' 

trans = 'N':     Q sub(C)                        sub(C) Q 

trans = 'T':     QT sub(C)                      sub(C) QT 

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(k)' ... H(2)' H(1)' 

as returned by p?geqlf. Q is of order m if side ='L' and of order n if side ='R'.
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Input Parameters

side (global) CHARACTER 
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) (m ≥ 
0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

a (local)

REAL for psormql 
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+k-1)).The j-th column must contain the vector which defines the 
elementary reflector H(j), ja < j< ja +k-1, as returned by p?gelqf in the k 
columns of its distributed matrix argument 
a(ia:*,ja:ja+k-1).a(ia:*,ja:ja+k-1)is modified by the routine but 
restored on exit.

if side ='L',lld_a > max (1, LOCr(ia+m-1)),

if side ='R',lld_a > max (1, LOCr(ia+n-1)).

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)
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REAL for psormql 
DOUBLE PRECISION for pdormql.
Array, DIMENSION LOCc(ja+n-1) ). 
Contains the scalar factor tau (j) of  elementary reflectors H(j) as returned by
p?geqlf . tau is tied to the distributed matrix A.

c (local)

REAL for psormql 
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of local dimension (lld_c,
LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating 
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)

REAL for psormql. 
DOUBLE PRECISION for pdormql. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 
 if side ='L',

lwork ≥   max ((nb_a* (nb_a-1))/2, (nqc0 + mpc0) *nb_a + nb_a*nb_a 

 else if side ='R',

lwork ≥ max ((nb_a*(nb_a-1))/2, (nqc0 + max npa0)+ numroc (numroc
(n + icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0)) * nb_a) + 
nb_a*nb_a

end if 

where 

lcmp = lcm / NPCOL with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

npa0 = numroc(n + iroffa, mb_a, MYROW, iarow, NPROW), 
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iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’, or sub(C)* 
Q 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 



ScaLAPACK Routines 6

6-117

p?unmql         
Multiplies a general matrix by the unitary matrix Q of the 
QL factorization formed by p?geqlf.

Syntax
call pcunmql ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call pzunmql ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general complex m-by-n  distributed matrix
sub(C) = C (ic:ic+m-1,jc:jc+n-1) with

     side ='L'                    side ='R' 

trans = 'N':    Q sub(C)                        sub(C) Q 

trans = 'C':    QH sub(C)                      sub(C) QH 

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(k)' ... H(2)' H(1)' 

as returned by p?geqlf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER 
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) 
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 
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k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

a (local)

COMPLEX for pcunmql 
DOUBLE COMPLEX for pzunmql.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+k-1)).The j-th column must contain the vector which defines the 
elementary reflector H(j), ja < j< ja +k-1, as returned by p?geqlf in the k 
columns of its distributed matrix argument a(ia:*,ja:ja+k-1).
a(ia:*,ja:ja+k-1)is modified by the routine but restored on exit.

if side ='L',lld_a > max (1, LOCr(ia+m-1)),

if side ='R',lld_a > max (1, LOCr(ia+n-1)).

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

COMPLEX for pcunmql 
DOUBLE COMPLEX for pzunmql
Array, DIMENSION LOCc(ia+n-1)). 
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by
p?geqlf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmql 
DOUBLE COMPLEX for pzunmql.
Pointer into the local memory to an array of local dimension (lld_c,
LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating 
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.
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work (local)

COMPLEX for pcunmql 
DOUBLE COMPLEX for pzunmql. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 
 if side ='L',

lwork ≥   max ((nb_a* (nb_a-1))/2, (nqc0 + mpc0) *nb_a + nb_a*nb_a 

 else if side ='R',

lwork ≥ max ((nb_a*(nb_a-1))/2, (nqc0 + max npa0)+ numroc (numroc
(n + icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0)) * nb_a) + 
nb_a*nb_a

end if 

where 

lcmp = lcm / NPCOL with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

npa0 = numroc (n + iroffa, mb_a, MYROW, iarow, NPROW), 

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 
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Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’, or sub(C)* 
Q 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?gerqf           
Computes the RQ factorization of a general rectangular 
matrix.

Syntax
call psgerqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pdgerqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pcgerqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pzgerqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine forms the QR factorization of a general m by n distributed matrix 
sub(A)= A (ia:ia+m-1,ja:ja+n-1) as

            A= R Q 

Input Parameters

m (global) INTEGER. The number of rows in the distributed submatrix sub(A);
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed submatrix 
sub(A);(n ≥ 0). 

a (local)
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REAL for psgeqrf 
DOUBLE PRECISION for pdgeqrf 
COMPLEX for pcgeqrf 
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension (lld_a,
LOCc(ja+n-1)). 
Contains the local pieces of the distributed matrix sub(A) to be factored.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix 
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A

work (local).
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ mb_a 
* (mp0+nq0+mb_a), where 

iroff = mod(ia-1, mb_a), 

icoff = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW), 

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL) and numroc, 
indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and 
NPCOL can be determined by calling the subroutine blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.
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Output Parameters

a On exit, if m < n, the upper triangle of A(ia:ia+m-1,ja:ja+n-1) contains the 
m by m upper triangular matrix R; if m > n, the elements on and above the (m - 
n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the 
remaining elements, with the array tau, represent the orthogonal/unitary 
matrix Q as a product of elementary reflectors (see Application Notes 
below)

tau (local)

REAL for psgeqrf 
DOUBLE PRECISION for pdgeqrf 
COMPLEX for pcgeqrf 
DOUBLE COMPLEX for pzgeqrf.
Array, DIMENSION LOCr(ia+m-1). 
Contains the scalar factor tau of elementary reflectors. tau is tied to the 
distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0, the execution is successful.
 < 0, if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors 
 Q = H(ia) H(ia+1)... H(ia+k-1),

where k = min(m,n). 

Each H(i) has the form 

H(i) = I - tau * v * v' 

where tau is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0 and 
v(n-k+i) = 1; v(1:n-k+i-1)/conjg (v(1:n-k+i-1)) is stored on exit in 
A(ia+m-k+i-1,ja:ja+n-k+i-2), and tau in tau(ia+m-k+i-1).
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p?orgrq            
Generates the orthogonal matrix Q of the RQ factorization 
formed by p?gerqf.

Syntax
call psorgrq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

call pdorgrq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine generates the whole or part of m by n real distributed matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the last m rows of a 
product of k elementary reflectors of order m

Q= H(1) H(2)...H(k)

as returned by p?gerqf. 

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q);(m ≥ 0). 

n (global) INTEGER. The number of columns in the submatrix sub(Q) (n ≥m ≥ 
0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q (m ≥ k ≥0). 

a (local)

REAL for psorgrq 
DOUBLE PRECISION for pdorgrq 
Pointer into the local memory to an array of local dimension (lld_a,
LOCc(ja+n-1)).The i-th column must contain the vector which defines the 
elementary reflector H(i), ja < j< ja +k-1, as returned by p?geqrf in the k 
columns of its distributed matrix argument a(ia:*,ja:ja+k-1).

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix 
A(ia:ia+m-1,ja:ja+n-1), respectively.
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desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

REAL for psorgrq 
DOUBLE PRECISION for pdorgrq 
Array, DIMENSION LOCc(ja+k-1)). 
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gerqf. tau is tied to the distributed matrix A.

work (local)

REAL for psorgrq 
DOUBLE PRECISION for pdorgrq 
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ 
mb_a* (mpa0 + nqa0 + mb_a), where

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW), 

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.
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info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?ungrq            
Generates the unitary matrix Q of the RQ factorization 
formed by p?gerqf.

Syntax
call pcungrq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

call pzungrq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )

Description

The routine generates the m by n complex distributed matrix Q denoting A(ia:ia+m-1,ja:ja+n-1) 
with orthonormal rows, which is defined as the last m rows of a product of k elementary reflectors 
of order n

 Q = H(1)' H(2)'... H(k)'

as returned by p?gerqf. 

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q);(m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q) (n ≥ m ≥ 
0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q (m ≥ k ≥ 0). 

a (local)

COMPLEX for pcungrq 
DOUBLE COMPLEX for pzungrq 
Pointer into the local memory to an array of dimension (lld_a,
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LOCc(ja+n-1)).The i-th row must contain the vector which defines the 
elementary reflector H(i), ia+m-k < i< ia +m-1, as returned by p?gerqf in 
the k rows of its distributed matrix argument a(ia+m-k:ia+m-1, ja:*).

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

COMPLEX for pcungrq 
DOUBLE COMPLEX for pzungrq 
Array, DIMENSION LOCr(ia+m-1)). 
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gerqf. tau is tied to the distributed matrix A.

work (local)

COMPLEX for pcungrq 
DOUBLE COMPLEX for pzungrq 
 Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ 
mb_a* (mpa0 +nqa0+mb_a), where

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW), 

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.
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Output Parameters

a Contains the local pieces of the m by n distributed matrix Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?ormrq         
Multiplies a general matrix by the orthogonal matrix Q of 
the RQ factorization formed by p?gerqf.

Syntax
call psormrq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call pdormrq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general real m-by-n distributed matrix sub(C) = 
C(ic:ic+m-1,jc:jc+n-1) with

     side ='L'             side ='R' 

trans = 'N':    Q sub(C)                 sub(C) Q 

trans = 'T':  QT sub(C)                  sub(C) QT 

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k) 

as returned by p?geqrf. Q is of order m if side ='L' and of order n if side ='R'.
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 Input Parameters

side (global) CHARACTER 
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) 
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

a (local)

REAL for psormqr 
DOUBLE PRECISION for pdormqr.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+m-1)) if side ='L', and (lld_a, LOCc(ja+n-1)) if side 
='R'.The i-th row must contain the vector which defines the elementary 
reflector H(i), ia < i< ia +k-1, as returned by p?gerqf in the k rows of its 
distributed matrix argument a(ia:ia +k-1,ja:*).a(ia:ia +k-1,ja:*)is 
modified by the routine but restored on exit.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

REAL for psormqr 
DOUBLE PRECISION for pdormqr 
Array, DIMENSION LOCc(ja+k-1)). 
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gerqf. tau is tied to the distributed matrix A.

c (local)
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REAL for psormrq 
DOUBLE PRECISION for pdormrq 
Pointer into the local memory to an array of local dimension (lld_c,
LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating 
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)

REAL for psormrq 
DOUBLE PRECISION for pdormrq. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 
 if side ='L',

lwork ≥ max ((mb_a* (mb_a-1))/2, (mpc0 + max
(mqa0 + numroc (numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), 
nqc0))*mb_a) + mb_a * mb_a 

 else if side ='R',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a *mb_a 

end if 
where 

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 
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nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

c Overwritten by the product Q* sub(C) or Q' sub (C), or sub(C)* Q’, or sub(C)* 
Q 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
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p?unmrq         
Multiplies a general matrix by the unitary matrix Q of the 
RQ factorization formed by p?gerqf.

Syntax
call pcunmrq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call pzunmrq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general complex m-by-n distributed matrix sub   (C) = 
C(ic:ic+m-1,jc:jc+n-1) with

     side ='L'              side ='R' 

trans = 'N':   Q sub(C)                   sub(C) Q 

trans = 'C':  QH sub(C)                  sub(C) QH 

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(1)' H(2)'... H(k)' 

as returned by p?gerqf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER 
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) 
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 
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k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

a (local)

COMPLEX for pcunmrq 
DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+m-1)) if side ='L', and (lld_a, LOCc(ja+n-1)) if side 
='R'.The i-th row must contain the vector which defines the elementary 
reflector H(i), ia < i< ia +k-1, as returned by p?gerqf in the k rows of its 
distributed matrix argument a(ia:ia +k-1,ja*).a(ia:ia +k-1,ja*)is 
modified by the routine but restored on exit.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

COMPLEX for pcunmrq 
DOUBLE COMPLEX for pzunmrq
Array, DIMENSION LOCc(ja+k-1)). 
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gerqf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmrq 
DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of local dimension (lld_c,
LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating 
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)
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COMPLEX for pcunmrq 
DOUBLE COMPLEX for pzunmrq. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 
 if side ='L',

lwork ≥   max ((mb_a* (mb_a-1))/2, (mpc0 + max
(mqa0 + numroc (numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), 
nqc0))*mb_a) + mb_a * mb_a 

 else if side ='R',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a * mb_a 

end if
where 

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 
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Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’, or sub(C)* 
Q 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?tzrzf           
Reduces the upper trapezoidal matrix A to upper 
triangular form.

Syntax
call pstzrzf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pdtzrzf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pctzrzf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

call pztzrzf ( m, n, a, ia, ja, desca, tau, work, lwork, info )

Description

This routine reduces the m-by-n (m ≤ n) real/complex upper trapezoidal matrix 
sub(A)=(ia:ia+m-1,ja:ja+n-1) to upper triangular form by means of orthogonal/unitary 
transformations. The upper trapezoidal matrix A is factored as

     A = (R 0) * Z,

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper triangular matrix.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(A);(m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(A) (n ≥ 0). 
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a (local)

REAL for pstzrzf 
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf. 
DOUBLE COMPLEX for pztzrzf.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+n-1)).Contains the local pieces of the m by n distributed matrix 
sub (A) to be factored.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)

REAL for pstzrzf 
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf. 
DOUBLE COMPLEX for pztzrzf.
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ 
mb_a* (mp0 +nq0+mb_a), where

iroff = mod(ia-1, mb_a), 

icoff = mod(ja-1, nb_a), 

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), 

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW), 

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL) 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.
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Output Parameters

a On exit, the leading m-by-m upper triangular part of 
sub(A) contains the upper triangular matrix R, and elements m+1 to n of the 
first m rows of 
sub (A), with the array tau, represent the orthogonal/unitary matrix Z as a 
product of m elementary reflectors. 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance. 

tau (local)

REAL for pstzrzf 
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf. 
DOUBLE COMPLEX for pztzrzf.
Array, DIMENSION LOCr(ia+m-1)). 
Contains the scalar factor of elementary reflectors. tau is tied to the 
distributed matrix A.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The factorization is obtained by the Householder's method. The k-th transformation matrix, Z(k), 
which is or whose conjugate transpose is used to introduce zeros into the (m - k + 1)-th row of 
sub(A), is given in the form

 Z(k) =

               
 where

T(k) = i - tau*u(k)*u(k)',

 u(k) = 

i 0

0 T k( )

1

0

z k( )
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tau is a scalar and Z(k) is an (n - m) element vector.tau and Z(k) are chosen to annihilate the 
elements of the k-th row of sub(A). The scalar tau is returned in the k-th element of tau and the 
vector u(k) in the k-th row of sub(A), such that the elements of Z(k) are in a(k, m + 1),..., a(k, n). 
The elements of R are returned in the upper triangular part of sub(A). Z is given by 

 Z = Z(1) * Z(2) *... * Z(m). 

p?ormrz         
Multiplies a general matrix by the orthogonal matrix from 
a reduction to upper triangular form formed by p?tzrzf.

Syntax
call psormrz ( side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call pdormrz ( side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general real m-by-n distributed matrix 
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

   side ='L'                side ='R' 

trans = 'N':   Q sub(C)                   sub(C) Q 

trans = 'T':  QT sub(C)                  sub(C) QT 

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k) 

as returned by p?tzrzf. Q is of order m if side ='L' and of order n if side ='R'.

 Input Parameters

side (global) CHARACTER 
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.
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trans (global) CHARACTER 
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) 
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 

k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

l (global)

The columns of the distributed submatrix sub(A) containing the meaningful 
part of the Householder reflectors.
if side ='L', m > l >0
if side ='R', n > l >0.

a (local)

REAL for psormrz 
DOUBLE PRECISION for pdormrz.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+m-1)) if side ='L', and (lld_a, LOCc(ja+n-1)) if side 
='R', where lld_a > max (1,LOCr (ia+k-1).The i-th row must contain the 
vector which defines the elementary reflector H(i), ia < i< ia+k-1, as 
returned by p?tzrzf in the k rows of its distributed matrix argument 
a(ia:ia+k-1,ja:*).a(ia:ia+k-1,ja:*)is modified by the routine but 
restored on exit.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)
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REAL for psormrz 
DOUBLE PRECISION for pdormrz 
Array, DIMENSION LOCc(ia+k-1)). 
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by 
p?tzrzf. tau is tied to the distributed matrix A.

c (local)

REAL for psormrz 
DOUBLE PRECISION for pdormrz 
Pointer into the local memory to an array of local dimension 
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating 
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)

REAL for psormrz 
DOUBLE PRECISION for pdormrz. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 
 if side ='L',

lwork ≥ max ((mb_a* (mb_a-1))/2, (mpc0 + max
(mqa0 + numroc (numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), 
nqc0))*mb_a) + mb_a * mb_a 

 else if side ='R',

lwork ≥  max ((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a *mb_a 

end if 
where 

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),
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icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

c Overwritten by the product Q* sub(C) or Q' sub (C), or sub(C)*Q’, 
or sub(C)*Q 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
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p?unmrz         
Multiplies a general matrix by the unitary transformation 
matrix from a reduction to upper triangular form 
determined by p?tzrzf.

Syntax
call pcunmrz ( side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call pzunmrz ( side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general complex m-by-n distributed matrix 
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

    side ='L'               side ='R' 

trans = 'N':   Q sub(C)                   sub(C) Q 

trans = 'C':  QH sub(C)                  sub(C) QH 

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(1)' H(2)'... H(k)' 

as returned by pctzrzf/pztzrzf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER 
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C) 
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 
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k (global) INTEGER. The number of elementary reflectors whose product defines 
the matrix Q. Constraints: 
if side ='L', m > k >0
if side ='R', n > k >0. 

a (local)

COMPLEX for pcunmrz 
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+m-1)) if side ='L', and (lld_a, LOCc(ja+n-1)) if side 
='R', where lld_a > max (1, LOCr (ja+k-1)The i-th row must contain the 
vector which defines the elementary reflector H(i), ia < i< ia +k-1, as 
returned by p?gerqf in the k rows of its distributed matrix argument 
a(ia:ia +k-1,ja*).
a(ia:ia +k-1,ja*)is modified by the routine but restored on exit.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)

COMPLEX for pcunmrz 
DOUBLE COMPLEX for pzunmrz
Array, DIMENSION LOCc(ia+k-1)). 
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by 
p?gerqf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmrz 
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of local dimension 
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)
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COMPLEX for pcunmrz 
DOUBLE COMPLEX for pzunmrz. Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 
 if side ='L',

lwork ≥   max ((mb_a* (mb_a-1))/2, (mpc0 + max
(mqa0 + numroc (numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), 
nqc0))*mb_a) + mb_a * mb_a 

 else if side ='R',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a * mb_a 

end if 

where 

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL), 

iroffa = mod(ia-1, mb_a), 

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW), 

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL), 

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 
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Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)*Q’, 
or sub(C)*Q 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?ggqrf           
Computes the generalized QR factorization.

Syntax
call psggqrf (n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,

work, lwork, info)

call pdggqrf (n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

call pcggqrf (n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

call pzggqrf (n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

Description

The routine forms the generalized QR factorization of an n-by-m matrix
          sub(A) = A (ia:ia+n-1, ja:ja+m-1) 
and an n-by-p matrix 
         sub(B) = B (ib:ib+n-1, jb:jb+p-1):

as 
         sub(A) = Q R,     sub(B) = Q T Z,

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R 
and T assume one of the forms:
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if n > m

  

               

or if n <m

           

where R11 is upper triangular, and                    

,    if n ≤ p, 

      

or     ,    if n > p

                      

where T12 or T21 is an upper triangular matrix.

In particular, if sub(B) is square and nonsingular, the GQR factorization of sub(A) and sub(B) 
implicitly gives the QR factorization of inv (sub(B))* sub (A):

        inv (sub(B)) * sub(A) = ZH (T -1 R)

Input Parameters

n (global) INTEGER. The number of rows in the distributed matrices sub (A) and 
sub(B) (n ≥ 0). 

m (global) INTEGER. The number of columns in the distributed matrix sub(A) (m 
≥ 0). 

p INTEGER. The number of columns in the distributed matrix sub(B) (p ≥ 0). 

R
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a (local)
REAL for psggqrf 
DOUBLE PRECISION for pdggqrf 
COMPLEX for pcggqrf 
DOUBLE COMPLEX for pzggqrf.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+m-1)).Contains the local pieces of the n-by-m matrix sub(A) to be 
factored. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

b (local)
REAL for psggqrf 
DOUBLE PRECISION for pdggqrf 
COMPLEX for pcggqrf 
DOUBLE COMPLEX for pzggqrf.
Pointer into the local memory to an array of dimension (lld_b,
LOCc(jb+p-1)).Contains the local pieces of the n-by-p matrix sub(B) to be 
factored. 

ib,jb (global) INTEGER.  The row and column indices in the global array b 
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

work (local)
REAL for psggqrf 
DOUBLE PRECISION for pdggqrf 
COMPLEX for pcggqrf 
DOUBLE COMPLEX for pzggqrf.Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ max 
(nb_a* (npa0 +mqa0+nb_a), max((nb_a*(nb_a-1))/2, (pqb0 + npb0)*nb_a) 
+ nb_a * nb_a, 
mb_b * (npb0 + pqb0 + mb_b)), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
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iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

npa0 = numroc (n+iroffa, mb_a, MYROW, iarow, NPROW),

mqa0 = numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)

iroffb = mod(ib-1, mb_b),

icoffb = mod(jb-1, nb_b),

ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),

ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),

npb0 = numroc (n+iroffa, mb_b, MYROW, ibrow, NPROW),

pqb0 = numroc (m+icoffb, nb_b, MYCOL, ibcol, NPCOL)

and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, the elements on and above the diagonal of sub (A) contain the 
min(n,m)-by-m upper trapezoidal matrix R (R is upper triangular if n ≥ m); the 
elements below the diagonal, with the array taua, represent the 
orthogonal/unitary matrix Q as a product of min(n,m) elementary reflectors. 
(See Application Notes below).

taua, taub (local)
REAL for psggqrf 
DOUBLE PRECISION for pdggqrf 
COMPLEX for pcggqrf 
DOUBLE COMPLEX for pzggqrf.
Arrays, DIMENSION LOCc(ja+min(n,m)-1)for taua and LOCr(ib+n-1) for 
taub. 
The array taua contains the scalar factors of the elementary reflectors which 
represent the orthogonal/unitary matrix Q.taua is tied to the distributed matrix 
A.(See Application Notes below).
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The array taub contains the scalar factors of the elementary reflectors which 
represent the orthogonal/unitary matrix Z.taub is tied to the distributed matrix 
B.(See Application Notes below).

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors 

Q = H(ja) H(ja+1)... H(ja+k-1),

where k = min(n,m).

Each H(i) has the form 

H(i) = i - taua * v * v'

where taua is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and 
v(i) = 1; v(i+1:n) is stored on exit in A(ia+i:ia+n-1,ja+i-1), and taua in taua(ja+i-1).To 
form Q explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqr. To use Q to update another 
matrix, use ScaLAPACK subroutine p?ormqr/p?unmqr.

The matrix Z is represented as a product of elementary reflectors

Z = H(ib) H(ib+1) . . . H(ib+k-1), 
where k = min(n,p).

Each H(i) has the form 

H(i) = i - taub * v * v'

where taub is a real/complex scalar, and v is a real/complex vector with v(p-k+i+1:p) = 0 and 
v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in B(ib+n-k+i-1,jb:jb+p-k+i-2), and taub in 
taub(ib+n-k+i-1).To form Z explicitly, use ScaLAPACK subroutine p?orgrq/p?ungrq.To use 
Z to update another matrix, use ScaLAPACK subroutine p?ormrq/p?unmrq. 
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p?ggrqf           
Computes the generalized RQ factorization.

Syntax
call psggrqf (m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,

work, lwork, info)

call pdggrqf (m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

call pcggrqf (m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

call pzggrqf (m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

Description

The routine forms the generalized RQ factorization of an m-by-n matrix 
sub(A)=(ia:ia+m-1, ja:ja+n-1) and a p-by-n matrix sub(B)=(ib:ib+p-1, ja:ja+n-1):

           sub(A) = R Q,    sub(B) = Z T Q, 

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R 
and T assume one of the forms:                    

,    if m ≤ n, 
                    

or

 

    ,    if m > n

               

where R11 or R21 is upper triangular, and

     ,    if p ≥ n
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or

,   if p < n,

                      

where T11 is upper triangular.

In particular, if sub(B) is square and nonsingular, the GRQ factorization of sub(A) and sub(B) 
implicitly gives the RQ factorization of sub (A)*inv(sub(B)):

       sub(A)*inv(sub(B)) = (R*inv(T))*Z' 

where inv(sub(B)) denotes the inverse of the matrix sub(B), and Z' denotes the transpose of matrix 
Z.

Input Parameters

m (global) INTEGER. The number of rows in the distributed matrices sub (A) (m≥ 
0). 

p INTEGER. The number of rows in the distributed matrix sub(B) (p ≥ 0). 

n (global) INTEGER. The number of columns in the distributed matrices sub(A)
and sub(B) (n ≥ 0). 

a (local)
REAL for psggrqf 
DOUBLE PRECISION for pdggrqf 
COMPLEX for pcggrqf 
DOUBLE COMPLEX for pzggrqf.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+n-1)).Contains the local pieces of the m-by-n distributed matrix 
sub(A) to be factored. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

b (local)
REAL for psggrqf 
DOUBLE PRECISION for pdggrqf 
COMPLEX for pcggrqf 
DOUBLE COMPLEX for pzggrqf.

T p= T11( T12 ) p

p n p–
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Pointer into the local memory to an array of dimension (lld_b,
LOCc(jb+n-1)).Contains the local pieces of the p-by-n matrix sub(B) to be 
factored. 

ib,jb (global) INTEGER.  The row and column indices in the global array b 
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

work (local)
REAL for psggrqf 
DOUBLE PRECISION for pdggrqf 
COMPLEX for pcggrqf 
DOUBLE COMPLEX for pzggrqf.Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ max 
(mb_a* (mpa0 +nqa0+mb_a), max((mb_a*(mb_a-1))/2, (ppb0 + nqb0)*mb_a) 
+ mb_a * mb_a, 
nb_b * (ppb0 + nqb0 + nb_b)), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)

iroffb = mod(ib-1, mb_b),

icoffb = mod(jb-1, nb_b),

ibrow = indxg2p (ib, mb_b, MYROW, rsrc_b,  NPROW ),

ibcol = indxg2p (jb, nb_b, MYCOL, csrc_b, NPCOL ), 

ppb0 = numroc (p+iroffb, mb_b, MYROW, ibrow, NPROW),

nqb0 = numroc (n+icoffb, nb_b, MYCOL, ibcol, NPCOL) 

and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 
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If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if m < n, the upper triangle of A(ia:ia+m-1, ja+n-m:ja+n-1) 
contains the m by m upper triangular matrix R; if m > n, the elements on and 
above the (m-n)-th subdiagonal contain the m by n upper trapezoidal matrix R; 
the remaining elements, with the array taua, represent the orthogonal/unitary 
matrix Q as a product of min(n,m) elementary reflectors. (See Application 
Notes below).

taua, taub (local)
REAL for psggqrf 
DOUBLE PRECISION for pdggqrf 
COMPLEX for pcggqrf 
DOUBLE COMPLEX for pzggqrf.
Arrays, DIMENSION LOCr(ia+m-1)for taua and LOCc(jb+min(p,n)-1) for 
taub. 
The array taua contains the scalar factors of the elementary reflectors which 
represent the orthogonal/unitary matrix Q.taua is tied to the distributed matrix 
A.(See Application Notes below).

The array taub contains the scalar factors of the elementary reflectors which 
represent the orthogonal/unitary matrix Z.taub is tied to the distributed matrix 
B.(See Application Notes below).

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors 

Q = H(ia) H(ia+1)... H(ia+k-1),
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where k = min(m,n).

Each H(i) has the form 

H(i) = i - taua * v * v'

where taua is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0 and 
v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(ia+m-k+i-1, ja:ja+n-k+i-2), and taua in 
taua(ia+m-k+i-1).To form Q explicitly, use ScaLAPACK subroutine p?orgrq/p?ungrq. To 
use Q to update another matrix, use ScaLAPACK subroutine p?ormrq/p?unmrq.

The matrix Z is represented as a product of elementary reflectors

Z = H(jb) H(jb+1)... H(jb+k-1), 
where k = min(p,n).

Each H(i) has the form 

H(i) = i - taub * v * v'

where taub is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i)= 1; 
v(i+1:p) is stored on exit in B(ib+i:ib+p-1,jb+i-1), and taub in taub(jb+i-1).To form Z 
explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqr.To use Z to update another matrix, 
use ScaLAPACK subroutine p?ormqr/p?unmqr. 
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Symmetric Eigenproblems   

To solve a symmetric eigenproblem with ScaLAPACK, you usually need to reduce the matrix to 
real tridiagonal form T and then find the eigenvalues and eigenvectors of the tridiagonal matrix T. 
ScaLAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or 
unitary) similarity transformation A = QTQH as well as for solving tridiagonal symmetric 
eigenvalue problems. These routines are listed in Table 6-4.

There are different routines for symmetric eigenproblems, depending on whether you need 
eigenvalues only or eigenvectors as well, and on the algorithm used (either the QR algorithm, or 
bisection followed by inverse iteration).    

*) This routine will be described as part of auxiliary ScaLAPACK routines.

p?sytrd          
Reduces a symmetric matrix to real symmetric tridiagonal 
form by an orthogonal similarity transformation.

Syntax
call pssytrd ( uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info )

Table 6-4 Computational Routines for Solving Symmetric Eigenproblems 

Operation
Dense 
symmetric/Hermitian 
matrix

Orthogonal/
unitary 
matrix

Symmetric 
tridiagonal 
matrix

Reduce to tridiagonal form 
A = QTQH 

p?sytrd/p?hetrd  

Multiply matrix after reduction  p?ormtr/p?unmtr 

Find all eigenvalues and 
eigenvectors of a tridiagonal 
matrix T by a QR method

p?steqr2*)

Find selected eigenvalues of a 
tridiagonal matrix T via 
bisection

p?stebz

Find selected eigenvectors of a 
tridiagonal matrix T by inverse 
iteration

p?stein
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call pdsytrd ( uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info )

Description

This routine reduces a real symmetric matrix sub(A) to symmetric tridiagonal form T by an 
orthogonal similarity transformation:

Q' sub(A) * Q = T, 

where sub(A) = A(ia:ia+n-1,ja:ja+n-1).

Input Parameters

uplo (global) CHARACTER. 

Specifies whether the upper or lower triangular part of the symmetric matrix 
sub(A) is stored:

If uplo = 'U', upper triangular 
If uplo = 'L', lower triangular 

n (global) INTEGER. The order of the distributed matrix sub(A) (n ≥ 0). 

a (local)

REAL for pssytrd 
DOUBLE PRECISION for pdsytrd.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)).On entry, this array contains the local pieces of the symmetric 
distributed matrix sub(A).
 If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the 
upper triangular part of the matrix, and its strictly lower triangular part is not 
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the 
lower triangular part of the matrix, and its strictly upper triangular part is not 
referenced.(See Application Notes below).

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)
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REAL for pssytrd 
DOUBLE PRECISION for pdsytrd.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 

lwork > max(NB * (np +1), 3 * NB) 

where NB = mb_a = nb_a, 

np = numroc(n, NB, MYROW, iarow, NPROW),

iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW). 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

a On exit, if uplo = 'U', the diagonal and first superdiagonal of sub(A) are 
overwritten by the corresponding elements of the tridiagonal matrix T, and the 
elements above the first superdiagonal, with the array tau, represent the 
orthogonal matrix Q as a product of elementary reflectors; if uplo = 'L', the 
diagonal and first subdiagonal of sub(A) are overwritten by the corresponding 
elements of the tridiagonal matrix T, and the elements below the first 
subdiagonal, with the array tau, represent the orthogonal matrix Q as a 
product of elementary reflectors. (See Application Notes below).

d (local)
REAL for pssytrd 
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCc(ja+n-1).The diagonal elements of the tridiagonal 
matrix T: 

 d(i) = A(i,i).

d is tied to the distributed matrix A. 
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e (local)
REAL for pssytrd 
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCc(ja+n-1) if uplo = 'U', LOCc(ja+n-2) otherwise. 
The off-diagonal elements of the tridiagonal matrix T: 

e(i) = A(i,i+1) if uplo = 'U', 
e(i) = A(i+1,i) if uplo = 'L'. 
e is tied to the distributed matrix A.

tau (local)
REAL for pssytrd 
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCc(ja+n-1).This array contains the scalar factors tau 
of the elementary reflectors. tau is tied to the distributed matrix A. 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

Q = H(n-1)... H(2) H(1).

Each H(i) has the form 

H(i) = i - tau * v * v',

where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored 
on exit in A(ia:ia+i-2,ja+i), and tau in tau (ja+i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors 

Q = H(1) H(2)... H(n-1). 

Each H(i) has the form

H(i) = i - tau * v * v',
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where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored 
on exit in A(ia+i+1:ia+n-1,ja+i-1), and tau in tau(ja+i-1).

The contents of sub(A) on exit are illustrated by the following examples with n = 5: 

if uplo = 'U': 

if uplo = 'L': 

where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the 
vector defining H(i). 

d e v2 v3 v4

d e v3 v4

d e v4

d e

d

d

e d

v1 e d

v1 v2 e d

v1 v2 v3 e d
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p?ormtr          
Multiplies a general matrix by the orthogonal 
transformation matrix from a reduction to tridiagonal form 
determined by p?sytrd.

Syntax
call psormtr ( side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call pdormtr ( side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

Description

The routine overwrites the general real distributed m-by-n matrix 
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

                      side = 'L'                   side = 'R' 

trans = 'N':    Q sub( C )                 sub( C ) Q  

trans = 'T':    QT sub( C )                sub( C ) QT 

where Q is a real orthogonal distributed matrix of order nq, with nq = m if side = 'L' and nq = n 
if side = 'R'. Q is defined as the product of nq elementary reflectors, as returned by p?sytrd

if uplo = 'U', Q = H(nq-1)... H(2) H(1);

if uplo = 'L', Q = H(1) H(2)... H(nq-1). 

Input Parameters

side (global) CHARACTER 
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

uplo (global) CHARACTER. 
= 'U': Upper triangle of A(ia:*,ja:*) contains elementary reflectors from 
p?sytrd; 
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= 'L': Lower triangle of A(ia:*,ja:*) contains elementary reflectors from 
p?sytrd

m (global) INTEGER. The number of rows in the distributed matrix sub(C) 
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 

a (local)
REAL for psormtr 
DOUBLE PRECISION for pdormtr.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+m-1)) if side='L', or (lld_a, LOCc(ja+n-1)) if side = 'R'. 
Contains the vectors which define the elementary reflectors, as returned by 
p?sytrd.
If side='L', lld_a > max(1,LOCr(ia+m-1)); 
if side ='R', lld_a > max(1,LOCr(ia+n-1)). 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)
REAL for psormtr 
DOUBLE PRECISION for pdormtr.
Array, DIMENSION of ltau where

if side = 'L' and uplo = 'U', ltau = LOCc(m_a), 
if side = 'L' and uplo = 'L', ltau = LOCc(ja+m-2),
if side = 'R' and uplo = 'U', ltau = LOCc(n_a), 
if side = 'R' and uplo = 'L', ltau = LOCc(ja+n-2).  tau(i) must contain the 
scalar factor of the elementary reflector H(i), as returned by p?sytrd. tau is 
tied to the distributed matrix A. 

c (local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)).Contains the local pieces of the distributed matrix sub (C).
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work (local)
REAL for psormtr 
DOUBLE PRECISION for pdormtr.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:

If uplo = 'U', 

iaa=ia; jaa=ja+1, icc=ic; jcc=jc; 

else uplo = 'L', 

 iaa=ia+1, jaa=ja; 

 if side = 'L',

icc=ic+1; jcc=jc; 

else icc=ic; jcc=jc+1; 

       end if

 end if 

If side = 'L', 

 mi=m-1; ni=n 

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a 

else if side = 'R',

mi=m; mi = n-1;

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 + 
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), * nb_a, 0, 0, lcmq), 
mpc0))*nb_a) + nb_a * nb_a 

 end if

where lcmq = lcm / NPCOL with lcm = ilcm(NPROW, NPCOL), 

iroffa = mod(iaa-1, mb_a), 

icoffa = mod(jaa-1, nb_a), 

iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW), 

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(icc-1, mb_c),
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icoffc = mod(jcc-1, nb_c), 

icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. If lwork = -1, then lwork is global input and a workspace 
query is assumed; the routine only calculates the minimum and optimal size for 
all work arrays. Each of these values is returned in the first entry of the 
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product Q sub(C), or Q'sub(C) or sub(C) Q' or sub(C) Q. 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?hetrd          
Reduces a Hermitian matrix to Hermitian tridiagonal form 
by a unitary similarity transformation.

Syntax
call pchetrd ( uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info )

call pzhetrd ( uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info )
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Description

This routine reduces a complex Hermitian matrix sub(A) to Hermitian tridiagonal form T by a 
unitary similarity transformation: 

              Q' sub(A) Q = T

where sub(A) = A(ia:ia+n-1,ja:ja+n-1).

Input Parameters
uplo (global) CHARACTER. 

Specifies whether the upper or lower triangular part of the Hermitian matrix 
sub(A) is stored:
If uplo = 'U', upper triangular 
If uplo = 'L', lower triangular 

n (global) INTEGER. The order of the distributed matrix sub(A) (n ≥ 0). 

a (local)

COMPLEX for pchetrd 
DOUBLE COMPLEX for pzhetrd.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)).On entry, this array contains the local pieces of the Hermitian 
distributed matrix sub(A).
 If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the 
upper triangular part of the matrix, and its strictly lower triangular part is not 
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the 
lower triangular part of the matrix, and its strictly upper triangular part is not 
referenced.(See Application Notes below).

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)

COMPLEX for pchetrd 
DOUBLE COMPLEX for pzhetrd.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 
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lwork > max(NB * (np +1), 3 * NB) 

where NB = mb_a = nb_a, 

np = numroc(n, NB, MYROW, iarow, NPROW),

iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW). 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

a On exit, if uplo = 'U', the diagonal and first superdiagonal of sub(A) are 
overwritten by the corresponding elements of the tridiagonal matrix T, and the 
elements above the first superdiagonal, with the array tau, represent the 
unitary matrix Q as a product of elementary reflectors; if uplo = 'L', the 
diagonal and first subdiagonal of sub(A) are overwritten by the corresponding 
elements of the tridiagonal matrix T, and the elements below the first 
subdiagonal, with the array tau, represent the unitary matrix Q as a product of 
elementary reflectors. (See Application Notes below).

d (local)
REAL for pchetrd 
DOUBLE PRECISION for pzhetrd.
Arrays, DIMENSION LOCc(ja+n-1).The diagonal elements of the tridiagonal 
matrix T: 

 d(i) = A(i,i).

d is tied to the distributed matrix A. 

e (local)
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays, DIMENSION LOCc(ja+n-1) if uplo = 'U', LOCc(ja+n-2) otherwise. 
The off-diagonal elements of the tridiagonal matrix T: 
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e(i) = A(i,i+1) if uplo = 'U',
e(i) = A(i+1,i) if uplo = 'L'. 
e is tied to the distributed matrix A.

tau (local)
COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Arrays, DIMENSION LOCc(ja+n-1).This array contains the scalar factors 
tau of the elementary reflectors. tau is tied to the distributed matrix A. 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

Q = H(n-1)... H(2) H(1).

Each H(i) has the form 

H(i) = i - tau * v * v',

where tau is a complex scalar, and v is a complex vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) 
is stored on exit in A(ia:ia+i-2,ja+i), and tau in tau (ja+i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors 

Q = H(1) H(2)... H(n-1). 

Each H(i) has the form

H(i) = i - tau * v * v',

where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) 
is stored on exit in A(ia+i+1:ia+n-1,ja+i-1), and tau in tau(ja+i-1).

The contents of sub(A) on exit are illustrated by the following examples with n = 5: 
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if uplo = 'U': 

if uplo = 'L': 

where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the 
vector defining H(i). 

p?unmtr         
Multiplies a general matrix by the unitary transformation 
matrix from a reduction to tridiagonal form determined by 
p?hetrd.

Syntax
call pcunmtr ( side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info )

call pzunmtr ( side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info )

d e v2 v3 v4

d e v3 v4

d e v4

d e

d

d

e d

v1 e d

v1 v2 e d

v1 v2 v3 e d
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Description

The routine overwrites the general complex distributed m-by-n matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

                      side = 'L'                   side = 'R' 

trans = 'N':    Q sub( C )                  sub( C ) Q  

trans = 'C':    QH sub( C )                sub( C ) QH 

where Q is a complex unitary distributed matrix of order nq, with nq = m if side = 'L' and nq = n 
if side = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by p?hetrd

if uplo = 'U', Q = H(nq-1)... H(2) H(1);

if uplo = 'L', Q = H(1) H(2)... H(nq-1). 

Input Parameters

side (global) CHARACTER 
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

uplo (global) CHARACTER. 
= 'U': Upper triangle of A(ia:*,ja:*) contains elementary reflectors from
p?hetrd; 
= 'L': Lower triangle of A(ia:*,ja:*) contains elementary reflectors from 
p?hetrd

m (global) INTEGER. The number of rows in the distributed matrix sub(C) 
(m ≥ 0). 

n (global) INTEGER. The number of columns in the distributed matrix sub(C)
(n ≥ 0). 

a (local)
REAL for pcunmtr 
DOUBLE PRECISION for pzunmtr.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+m-1)) if side='L', or (lld_a, LOCc(ja+n-1)) if side = 'R'. 
Contains the vectors which define the elementary reflectors, as returned by
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p?hetrd.
If side='L', lld_a > max(1,LOCr(ia+m-1)); 
if side ='R', lld_a > max(1,LOCr(ia+n-1)). 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)
COMPLEX for pcunmtr 
DOUBLE COMPLEX for pzunmtr.
Array, DIMENSION of ltau where

if side = 'L' and uplo = 'U', ltau = LOCc(m_a), 
if side = 'L' and uplo = 'L', ltau = LOCc(ja+m-2),
if side = 'R' and uplo = 'U', ltau = LOCc(n_a), 
if side = 'R' and uplo = 'L', ltau = LOCc(ja+n-2). tau(i) must contain the 
scalar factor of the elementary reflector H(i), as returned by p?hetrd. tau is 
tied to the distributed matrix A. 

c (local)
COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)).Contains the local pieces of the distributed matrix sub (C).

work (local)
COMPLEX for pcunmtr 
DOUBLE COMPLEX for pzunmtr.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:

If uplo = 'U', 

iaa=ia; jaa=ja+1, icc=ic; jcc=jc; 

else uplo = 'L', 

 iaa=ia+1, jaa=ja; 

 if side = 'L',

icc=ic+1; jcc=jc; 

else icc=ic; jcc=jc+1; 
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       end if

 end if 

If side = 'L', 

 mi=m-1; ni=n 

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a 

else if side = 'R',

mi=m; mi = n-1;

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 + 
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), * nb_a, 0, 0, lcmq), 
mpc0))*nb_a) + nb_a * nb_a 

 end if

where lcmq = lcm / NPCOL with lcm = ilcm(NPROW, NPCOL), 

iroffa = mod(iaa-1, mb_a), 

icoffa = mod(jaa-1, nb_a), 

iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW), 

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(icc-1, mb_c),

icoffc = mod(jcc-1, nb_c), 

icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. If lwork = -1, then lwork is global input and a workspace 
query is assumed; the routine only calculates the minimum and optimal size for 
all work arrays. Each of these values is returned in the first entry of the 
corresponding work array, and no error message is issued by pxerbla.
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Output Parameters

c Overwritten by the product Q sub(C), or Q'sub(C) or sub(C) Q' or sub(C) Q. 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - i

p?stebz         
Computes the eigenvalues of a symmetric tridiagonal 
matrix by bisection.

Syntax
call psstebz ( ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m,

nsplit, w, iblock, isplit, work, iwork, liwork, info)

call pdstebz ( ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m,
nsplit, w, iblock, isplit, work, iwork, liwork, info)

Description

This routine computes the eigenvalues of a symmetric tridiagonal matrix in parallel. These may be 
all eigenvalues, all eigenvalues in the interval 

, or the eigenvalues indexed il through iu. A static partitioning of work is done at the 
beginning of p?stebz which results in all processes finding an (almost) equal number of 
eigenvalues. 

Input Parameters

ictxt (global) INTEGER.
The BLACS context handle.

range (global) CHARACTER. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues in the
interval 

vl vu

vl vu
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If range ='I', the routine computes eigenvalues with indices il to iu.
order (global) CHARACTER. Must be 'B' or 'E'.

If order ='B', the eigenvalues are to be ordered from smallest to largest 
within each split-off block.
If order ='E', the eigenvalues for the entire matrix are to be ordered from 
smallest to largest.

n (global) INTEGER. The order of the tridiagonal matrix T (n ≥ 0). 

vl, vu (global)
REAL for psstebz
DOUBLE PRECISION for pdstebz. 
If range ='V', the routine computes the lower and the upper bounds for the 
eigenvalues on the interval .

If range ='A' or 'I', vl and vu are not referenced.

il, iu (global)
INTEGER. Constraint: 1 ≤ il ≤ iu ≤ n.
If range ='I', the index of the smallest eigenvalue is returned for il and of 
the largest eigenvalue for iu (assuming that the eigenvalues are in ascending 
order) must be returned.
il must be at least 1. iu must be at least il and no greater than n.

If range ='A' or 'V', il and iu are not referenced.

abstol (global)
REAL for psstebz
DOUBLE PRECISION for pdstebz. 
The absolute tolerance to which each eigenvalue is required. An eigenvalue (or 
cluster) is considered to have converged if it lies in an interval of width 
abstol. If abstol ≤ 0, then the tolerance is taken as ulp||T||, where ulp is 
the machine precision and ||T|| means the 1-norm of T

Eigenvalues will be computed most accurately when abstol is set to the 
underflow threshold slamch('U'), not 0.
Note that if eigenvectors are desired later by inverse iteration (p?stein), 
abstol should be set to 2*p?lamch('S').

d (global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.

Array, DIMENSION (n).

vl vu
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Contains n diagonal elements of the tridiagonal matrix T. To avoid overflow, 
the matrix must be scaled so that its largest entry is no greater than the 
overflow(1/2) * underflow(1/4) in absolute value, and for greatest accuracy, it 
should not be much smaller than that. 

e (global)
REAL for psstebz
DOUBLE PRECISION for pdstebz. 
Array, DIMENSION (n - 1).

Contains (n-1) off-diagonal elements of the tridiagonal matrix T. To avoid 
overflow, the matrix must be scaled so that its largest entry is no greater than 
overflow(1/2) * underflow(1/4) in absolute value, and for greatest accuracy, it 
should not be much smaller than that. 

work (local)
REAL for psstebz
DOUBLE PRECISION for pdstebz. 
Array, DIMENSION max(5n, 7). This is a workspace array.

lwork (local) INTEGER.
the size of the work array must be > max(5n, 7).

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

iwork (local) INTEGER.
Array, DIMENSION max(4n, 14). This is a workspace array.

liwork (local) INTEGER.
the size of the iwork array must be > max(4n, 14, NPROCS).

If liwork = -1, then liwork is global input and a workspace query is 
assumed; the routine only calculates the minimum and optimal size for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work array, and no error message is issued by pxerbla. 

Output Parameters

m (global) INTEGER. The actual number of eigenvalues found. 0 < m < n

nsplit (global) INTEGER. The number of diagonal blocks detected in T. 
1 < nsplit < n
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w (global) REAL for psstebz
DOUBLE PRECISION for pdstebz. 
Array, DIMENSION (n).
On exit, the first m elements of w contain the eigenvalues on all processes.

iblock (global)
INTEGER. 
Array, DIMENSION (n).
At each row/column j where e(j) is zero or small, the matrix T is considered 
to split into a block diagonal matrix. On exit iblock(i) specifies which block 
(from 1 to the number of blocks) the eigenvalue w(i) belongs to. 

isplit (global)
INTEGER. 
Array, DIMENSION (n).
Contains the splitting points, at which T breaks up into submatrices. The first 
submatrix consists of rows/columns 1 to isplit(1), the second of 
rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th 
consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n. 
(Only the first nsplit elements are used, but since the   nsplit values are 
not known, n words must be reserved for isplit.) 

info (global)
INTEGER. 
If info = 0, the execution is successful.
If info < 0, if info = -i, the i-th argument has an illegal value.
If info > 0, some or all of the eigenvalues fail to converge or not computed.
If info = 1, bisection fails to converge for some eigenvalues; these eigenvalues 
are flagged by a negative block number. The effect is that the eigenvalues may 
not be as accurate as the absolute and relative tolerances. 
If info = 2, mismatch between the number of eigenvalues output and the 
number desired. 
If info = 3: range='i', and the Gershgorin interval initially used is incorrect. 
No eigenvalues are computed. Probable cause: the machine has a sloppy 
floating point arithmetic. Increase the fudge parameter, recompile, and try 
again.

NOTE.  In the (theoretically impossible) event that bisection does not 
converge for some or all eigenvalues, info is set to 1 and the ones for 
which it did not are identified by a negative block number.
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p?stein         
Computes the eigenvectors of a tridiagonal matrix using 
inverse iteration.

Syntax
call psstein ( n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,

work, lwork, iwork, liwork, ifail, iclustr, gap, info)

call pdstein ( n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

call pcstein ( n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

call pzstein ( n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes the eigenvectors of a symmetric tridiagonal matrix T corresponding to 
specified eigenvalues, by inverse iteration. p?stein does not orthogonalize vectors that are on 
different processes. The extent of orthogonalization is controlled by the input parameter lwork. 
Eigenvectors that are to be orthogonalized are computed by the same process. p?stein decides 
on the allocation of work among the processes and then calls sstein2 (modified LAPACK 
routine) on each individual process. If insufficient workspace is allocated, the expected 
orthogonalization may not be done.

p = NPROW * NPCOL is the total number of processes.

Input Parameters

n (global) INTEGER. The order of the matrix T (n ≥ 0). 

m (global) INTEGER. The number of eigenvectors to be returned.

NOTE.  If the eigenvectors obtained are not orthogonal, increase lwork 
and run the code again.
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d, e, w (global)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
Arrays: 
d(*) contains the diagonal elements of T. 
DIMENSION (n).

e(*) contains the off-diagonal elements of T. 
DIMENSION (n-1).

w(*) contains all the eigenvalues grouped by split-off block.The eigenvalues 
are supplied from smallest to largest within the block. (Here the output array w 
from p?stebz with order = 'B' is expected. The array should be replicated in 
all processes.
DIMENSION(m) 

iblock (global) INTEGER. 
Array, DIMENSION (n).
The submatrix indices associated with the corresponding eigenvalues in w -- 1 
for eigenvalues belonging to the first submatrix from the top, 2 for those 
belonging to the second submatrix, etc. (The output array iblock from 
p?stebz is expected here). 

isplit (global) INTEGER. 
Array, DIMENSION (n).
The splitting points, at which T breaks up into submatrices. The first submatrix 
consists of rows/columns 1 to isplit (1), the second of rows/columns 
isplit(1)+1 through isplit(2), etc., and the nsplit-th consists of 
rows/columns isplit (nsplit-1)+1 through isplit(nsplit)=n (The 
output array isplit from p?stebz is expected here.) 

orfac (global)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. orfac specifies which 
eigenvectors should be orthogonalized. Eigenvectors that correspond to 
eigenvalues within orfac*||T|| of each other are to be orthogonalized. 
However, if the workspace is insufficient (see lwork), this tolerance may be 
decreased until all eigenvectors can be stored in one process. No 
orthogonalization is done if orfac is equal to zero. A default value of 103 is 
used if orfac is negative. orfac should be identical on all processes

iz, jz (global) INTEGER. The row and column indices in the global array z indicating 
the first row and the first column of the submatrix Z, respectively.
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descz (global and local) INTEGER array, dimension (dlen_). The array descriptor for 
the distributed matrix Z.

work (local).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Workspace array, 
DIMENSION (lwork).

lwork (local) INTEGER. 
lwork controls the extent of orthogonalization which can be done. The 
number of eigenvectors for which storage is allocated on each process is 

nvec = floor((lwork- max(5*n,np00*mq00))/n). Eigenvectors 
corresponding to eigenvalue clusters of size nvec- ceil(m/p) + 1 are 
guaranteed to be orthogonal (the orthogonality is similar to that obtained 
from?stein2). 

It is the minimum value of lwork input on different processes * that is 
significant.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

iwork (local) INTEGER. 
Workspace array, DIMENSION (3n+p+1).

liwork (local) INTEGER.The size of the array iwork. It must be > 3*n + p + 1. 

If liwork = -1, then liwork is global input and a workspace query is 
assumed; the routine only calculates the minimum and optimal size for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work array, and no error message is issued by pxerbla. 

NOTE.  lwork must be no smaller than:
max(5*n,np00*mq00) + ceil(m/p)*n,
and should have the same input value on all processes.
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Output Parameters

z (local)
REAL for psstein 
DOUBLE PRECISION for pdstein 
COMPLEX for pcstein 
DOUBLE COMPLEX for pzstein.
Array, DIMENSION (descz(dlen_), n/NPCOL + NB).z contains the computed 
eigenvectors associated with the specified eigenvalues. Any vector which fails 
to converge is set to its current iterate after MAXIT iterations  (See?stein2). 
On output, z is distributed across the p processes in block cyclic format. 

work(1) On exit, work(1) gives a lower bound on the workspace (lwork) that 
guarantees the user desired orthogonalization (see orfac). Note that this may 
overestimate the minimum workspace needed. 

iwork On exit, iwork(1) contains the amount of integer workspace required. 
On exit, the iwork(2) through iwork(p+2) indicate the eigenvectors 
computed by each process. Process i computes eigenvectors indexed 
iwork(i+2)+1 through iwork(i+3).

ifail (global).
INTEGER. Array, DIMENSION (m).
On normal exit, all elements of ifail are zero. If one or more eigenvectors 
fail to converge after MAXIT iterations (as in ?stein), then info > 0 is 
returned. If mod(info,m+1)>0, then for i=1 to mod(info,m+1), the 
eigenvector corresponding to the eigenvalue w (ifail(i)) failed to converge 
(w refers to the array of eigenvalues on output).

iclustr (global) INTEGER. Array, DIMENSION (2*p)
This output array contains indices of eigenvectors corresponding to a cluster of 
eigenvalues that could not be orthogonalized due to insufficient workspace (see 
lwork, orfac and info). Eigenvectors corresponding to clusters of 
eigenvalues indexed iclustr(2*I-1) to iclustr(2*I), i = 1 to info/(m+1), 
could not be orthogonalized due to lack of workspace. Hence the eigenvectors 
corresponding to these * clusters may not be orthogonal. iclustr is a zero 
terminated array --- (iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and 
only if k is the number of clusters. 

gap (global)

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
This output array contains the gap between eigenvalues whose eigenvectors 
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could not be orthogonalized. The info/m output values in this array 
correspond to the info/(m+1) clusters indicated by the array iclustr. As a 
result, the dot product between eigenvectors corresponding to the ith cluster 
may be as high as (O(n)*macheps) / gap(i). 

info (global) INTEGER. 
If info = 0, the execution is successful.
If info < 0: If the i-th argument is an array and the j-entry had an illegal 
value, then info = -(i*100+j),
 if the i-th argument is a scalar and had an illegal value, then info = -i.
If info < 0: if info = -i, the i-th argument had an illegal value.
If info> 0: if mod(info,m+1) = i, then i eigenvectors failed to converge in 
MAXIT iterations. Their indices are stored in the array ifail. if info/(m+1) 
= i, then eigenvectors corresponding to i clusters of eigenvalues could not be 
orthogonalized due to insufficient workspace. The indices of the clusters are 
stored in the array iclustr. 

Nonsymmetric Eigenvalue Problems                    

This section describes ScaLAPACK routines for solving nonsymmetric eigenvalue problems, 
computing the Schur factorization of general matrices, as well as performing a number of related 
computational tasks.  
For the definition of the nonsymmetric eigenproblem,  see Chapter 5.

To solve a nonsymmetric eigenvalue problem with ScaLAPACK, you usually need to reduce the 
matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg 
matrix obtained.

 Table 6-5 lists ScaLAPACK routines for reducing the matrix to the upper Hessenberg form by an 
orthogonal (or unitary) similarity transformation 
A = QHQH , as well as routines for solving eigenproblems with Hessenberg matrices, and 
multiplying the matrix after reduction.    

Table 6-5 Computational Routines for Solving Nonsymmetric Eigenproblems 

Operation performed
General 
matrix

Orthogonal/unitary
matrix

Hessenberg 
matrix

Reduce to Hessenberg form 
A = QHQH

p?gehrd

Multiply the matrix after reduction p?ormhr/p?unmhr

Find eigenvalues and Schur 
factorization 

p?lahqr
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p?gehrd          
Reduces a general matrix to upper Hessenberg form.

Syntax
call psgehrd ( n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,

info )

call pdgehrd ( n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
info )

call pcgehrd ( n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
info )

call pzgehrd ( n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
info )

Description

The routine reduces a real/complex general distributed matrix sub (A) to upper Hessenberg form H 
by an orthogonal or unitary similarity transformation 

           Q' sub(A) Q = H, 

where sub(A) = A(ia+n-1:ia+n-1,ja+n-1:ja+n-1). 

Input Parameters

n (global) INTEGER. The order of the distributed matrix sub(A) (n ≥ 0).

ilo, ihi (global) INTEGER. It is assumed that sub(A) is already upper triangular in rows 
ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja+ilo-2 and 
ja+ihi:ja+n-1. (See Application Notes below). 
If n > 0, 1 < ilo < ihi < n; otherwise set ilo = 1, ihi = n. 

a (local)
REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)). On entry, this array contains the local pieces of the n-by-n 
general distributed matrix sub(A) to be reduced.
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ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)
REAL for psgehrd 
DOUBLE PRECISION for pdgehrd 
COMPLEX for pcgehrd 
DOUBLE COMPLEX for pzgehrd.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of the array work. lwork is local 
input and must be at least

lwork > NB*NB + NB*max(ihip+1, ihlp+inlq) 

where NB = mb_a = nb_a, 
iroffa = mod(ia-1, NB), 
icoffa = mod(ja-1, NB), 
ioff = mod(ia+ilo-2, NB),
iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW), ihip = 
numroc(ihi+iroffa, NB, MYROW, iarow, NPROW),
ilrow = indxg2p(ia+ilo-1, NB, MYROW, rsrc_a, NPROW), 
ihlp = numroc(ihi-ilo+ioff+1, NB,MYROW, ilrow, NPROW), 
ilcol = indxg2p(ja+ilo-1, NB, MYCOL, csrc_a, NPCOL), 
inlq = numroc(n-ilo+ioff+1, NB, MYCOL, ilcol, NPCOL), 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

a On exit, the upper triangle and the first subdiagonal of sub(A) are overwritten 
with the upper Hessenberg matrix H, and the elements below the first 
subdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a 
product of elementary reflectors. (See Application Notes below). 
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tau (local).
REAL for psgehrd 
DOUBLE PRECISION for pdgehrd 
COMPLEX for pcgehrd 
DOUBLE COMPLEX for pzgehrd.
Array, DIMENSION at least max (ja+n-2). 
The scalar factors of the elementary reflectors (see Application Notes below). 
Elements ja:ja+ilo-2 and ja+ihi:ja+n-2 of tau are set to zero. tau is tied 
to the distributed matrix A. 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of (ihi-ilo) elementary reflectors 

Q = H(ilo) H(ilo+1)... H(ihi-1).

Each H(i) has the form

H(i) = i - tau * v * v' 

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0, v(i+1) = 1 and 
v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in a(ia+ilo+i:ia+ihi-1,ja+ilo+i-2), and tau in 
tau(ja+ilo+i-2). The contents of a(ia:ia+n-1,ja:ja+n-1) are illustrated by the following 
example, with n = 7, ilo = 2 and ihi = 6:
on entry

a a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a
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on exit 

where a denotes an element of the original matrix sub(A), H denotes a modified element of the 
upper Hessenberg matrix H, and vi denotes an element of the vector defining H(ja+ilo+i-2). 

p?ormhr          
Multiplies a general matrix by the orthogonal 
transformation matrix from a reduction to Hessenberg 
form determined by p?gehrd.

Syntax
call psormhr ( side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,

jc, descc, work, lwork, info )

call pdormhr ( side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,
jc, descc, work, lwork, info )

Description

The routine overwrites the general real distributed m-by-n matrix sub(C) = 
C(ic:ic+m-1,jc:jc+n-1) with

                      side = 'L'                   side = 'R' 

trans = 'N':    Q sub( C )                 sub( C ) Q  

trans = 'T':    QT sub( C )                sub( C ) QT 

a a h h h h a

a h h h h a

h h h h h h

v2 h h h h h

v2 v3 h h h h

v2 v3 v4 h h h

a
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where Q is a real orthogonal distributed matrix of order nq, with nq = m if side = 'L' and nq = n 
if side = 'R'. Q is defined as the product of ihi-ilo elementary reflectors, as returned by 
p?gehrd.

Q = H(ilo) H(ilo+1)... H(ihi-1). 

Input Parameters

side (global) CHARACTER 
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub (C)
(m ≥ 0). 

n (global) INTEGER. The number of columns in he distributed matrix sub (C)
(n ≥ 0). 

ilo, ihi (global) INTEGER.
ilo and ihi must have the same values as in the previous call of p?gehrd. Q 
is equal to the unit matrix except for the distributed submatrix 
Q(ia+ilo:ia+ihi-1,ia+ilo:ja+ihi-1). 

 If side = 'L', 1 < ilo < ihi < max(1,m); 
 if side = 'R', 1 < ilo <ihi < max(1,n); 
 ilo and ihi are relative indexes. 

a (local)
REAL for psormhr 
DOUBLE PRECISION for pdormhr 
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+m-1)) if side='L', and (lld_a, LOCc(ja+n-1)) if side = 'R'. 
Contains the vectors which define the elementary reflectors, as returned by
p?gehrd.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
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tau (local)
REAL for psormhr 
DOUBLE PRECISION for pdormhr 
Array, DIMENSION LOCc(ja+m-2),if side = 'L',
and LOCc(ja+n-2) if side = 'R'. 
This array contains the scalar factors tau(j) of the elementary reflectors H(j) 
as returned by p?gehrd. tau is tied to the distributed matrix A. 

c (local)
REAL for psormhr 
DOUBLE PRECISION for pdormhr 
Pointer into the local memory to an array of dimension 
(lld_c,LOCc(jc+n-1)). Contains the local pieces of the distributed matrix 
sub(C). 

ic,jc (global) INTEGER.  The row and column indices in the global array c 
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)
REAL for psormhr 
DOUBLE PRECISION for pdormhr 
Workspace array with dimension lwork.

lwork (local or global) INTEGER. 
The dimension of the array work. 
lwork must be at least 
iaa = ia + ilo; jaa = ja+ilo-1;
if side = 'L', 
mi = ihi-ilo; ni = n; icc = ic + ilo; jcc = jc; lwork > 
max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a 

else if side = 'R', 
mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo; lwork > 
max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 + numroc(numroc(ni+icoffc, 
nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a * nb_a 

 end if 

where lcmq = lcm / NPCOL with lcm = ilcm(NPROW, NPCOL),
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iroffa = mod(iaa-1, mb_a), 
icoffa = mod(jaa-1, nb_a), 
iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW), 
iroffc = mod(icc-1, mb_c), 
icoffc = mod(jcc-1, nb_c), 
icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW), 
iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL), 
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW), 
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

c sub(C) is overwritten by Q sub(C) or Q'sub(C) 
or sub(C)Q'  or sub(C)Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
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p?unmhr         
Multiplies a general matrix by the unitary 
transformation matrix from a reduction to Hessenberg 
form determined by p?gehrd.

Syntax
call pcunmhr ( side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,

jc, descc, work, lwork, info )

call pzunmhr ( side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,
jc, descc, work, lwork, info )

Description

The routine overwrites the general complex distributed m-by-n matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

                      side = 'L'                   side = 'R' 

trans = 'N':    Q sub( C )                 sub( C ) Q  

trans = 'C':    QH sub( C )               sub( C ) QH 

where Q is a complex unitary distributed matrix of order nq, with nq = m if side = 'L' and nq = n 
if side = 'R'. Q is defined as the product of ihi-ilo elementary reflectors, as returned by
p?gehrd

Q = H(ilo) H(ilo+1)... H(ihi-1). 

Input Parameters

side (global) CHARACTER 
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER 
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed submatrix sub (C)
 (m ≥ 0). 
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n (global) INTEGER. The number of columns in the distributed submatrix
 sub (C) (n ≥ 0).

ilo, ihi (global) INTEGER. These must be the same parameters ilo and ihi,
respectively, as supplied to p?gehrd.Q is equal to the unit matrix except in 
the distributed submatrix
Q (ia+ilo:ia+ihi-1,ia+ilo:ja+ihi-1).
If side ='L', then 1 ≤ ilo ≤ ihi ≤   max (1,m).
If side ='R', then 1 ≤ ilo ≤ ihi ≤ max (1,n)
ilo and ihi are relative indexes.

a (local)
COMPLEX for pcunmhr 
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+m-1)) if side='L', and (lld_a, LOCc(ja+n-1)) if side = 'R'. 
Contains the vectors which define the elementary reflectors, as returned by 
p?gehrd.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)
COMPLEX for pcunmhr 
DOUBLE COMPLEX for pzunmhr.
Array, DIMENSION LOCc(ja+m-2),if side = 'L',
and LOCc(ja+n-2) if side = 'R'. 
This array contains the scalar factors tau(j) of the elementary reflectors H(j) 
as returned by p?gehrd. tau is tied to the distributed matrix A. 

c (local)
COMPLEX for pcunmhr 
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of dimension (lld_c, 
LOCc(jc+n-1)). Contains the local pieces of the distributed matrix sub(C). 

ic,jc (global) INTEGER.  The row and column indices in the global array c 
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.
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work (local)
COMPLEX for pcunmhr 
DOUBLE COMPLEX for pzunmhr.
Workspace array with dimension lwork.

lwork (local or global)
The dimension of the array work. 
lwork must be at least 
iaa = ia + ilo; jaa = ja+ilo-1;
if side = 'L', 
mi = ihi-ilo; ni = n; icc = ic + ilo; jcc = jc; lwork > 
max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a 

else if side = 'R', 
mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo; lwork > 
max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 + numroc(numroc(ni+icoffc, 
nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq ), mpc0))*nb_a) + nb_a * nb_a 

 end if 

where lcmq = lcm / NPCOL with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(iaa-1, mb_a), 
icoffa = mod(jaa-1, nb_a), 
iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW), 
iroffc = mod(icc-1, mb_c), 
icoffc = mod(jcc-1, nb_c), 
icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW), 
iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL), 
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW), 
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 
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Output Parameters

c C is overwritten by Q* sub (C) or Q'*sub(C) or
 sub(C)*Q'  or sub(C)*Q. 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?lahqr 
Computes the Schur decomposition and/or eigenvalues 
of a matrix already in Hessenberg form.

Syntax
call pslahqr (wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z,

descz, work, lwork, iwork, ilwork, info )

call pdlahqr (wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z,
descz, work, lwork, iwork, ilwork, info)

Description

This is an auxiliary routine used to find the Schur decomposition and/or eigenvalues of a matrix 
already in Hessenberg form from columns ilo to ihi. 

Input Parameters

wantt (global) LOGICAL.
If wantt = .TRUE., the full Schur form T is required; 
If wantt = .FALSE., only eigenvalues are required.

wantz (global) LOGICAL.
If wantz = .TRUE., the matrix of Schur vectors z is required;  
If wantz= .FALSE., Schur vectors are not required.
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n (global) INTEGER. The order of the Hessenberg matrix A (and z if wantz). 
(n ≥ 0).

ilo, ihi (global) INTEGER. 
It is assumed that A is already upper quasi-triangular in rows and columns 
ihi+1:n, and that A(ilo,ilo-1) = 0 (unless  ilo = 1). p?lahqr works 
primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but 
applies transformations to all of h if wantt is .TRUE..1 < ilo < 
max(1,ihi);ihi < n. 

a (global)
REAL for pslahqr 
DOUBLE PRECISION for pdlahqr 
Array, DIMENSION (desca(lld_),*) .On entry, the upper Hessenberg matrix 
A.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

iloz,ihiz (global) INTEGER.  Specify the rows of z to which transformations must be 
applied if wantz is .TRUE.. 1 < iloz < ilo; ihi < ihiz < n.

z (global ) REAL for pslahqr 
DOUBLE PRECISION for pdlahqr 
Array. If wantz is .TRUE., on entry z must contain the current matrix Z of 
transformations accumulated by pdhseqr.  If wantz is .FALSE., z is not 
referenced.  

descz (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix Z.

work (local)
REAL for pslahqr 
DOUBLE PRECISION for pdlahqr 
Workspace array with dimension lwork.

lwork (local)
INTEGER. The dimension of work.  lwork is assumed big enough so that 
lwork > 3*n + max( 2*max(descz(lld_),desca(lld_)) + 2*LOCq(n),  
7*ceil(n/hbl)/lcm(NPROW,NPCOL)) ). 
If lwork = -1, then work(1) gets set to the above number and the code returns 
immediately.

iwork (global and local)
INTEGER array of size ilwork.
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ilwork (local) INTEGER.This holds some of the iblk integer arrays.

Output Parameters

a On exit, if wantt is .TRUE., A is upper quasi-triangular in rows and columns 
ilo:ihi, with any 2-by-2 or larger diagonal blocks not yet in standard form. If 
wantt is .FALSE., the contents of A are unspecified on exit.  

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance. 

wr,wi (global replicated output)
REAL for pslahqr 
DOUBLE PRECISION for pdlahqr 
Arrays, DIMENSION (n) each.
The real and imaginary parts, respectively, of the computed eigenvalues ilo to 
ihi are stored in the corresponding elements of wr and wi. If two eigenvalues 
are computed as a complex conjugate pair, they are stored in consecutive 
elements of wr and wi, say the i-th and (i+1)-th, with wi(i) > 0 and 
wi(i+1) < 0. If wantt is .TRUE., the eigenvalues are stored in the same order 
as on the diagonal of the Schur form returned in A. A may be returned with 
larger diagonal blocks until the next release. 

z On exit z has been updated; transformations are applied only to the submatrix 
z(iloz:ihiz, ilo:ihi).

info (global) INTEGER. 
 = 0: the execution is successful.
< 0: parameter number -info incorrect or inconsistent
> 0: p?lahqr failed to compute all the eigenvalues ilo to ihi in a total of 
30*(ihi-ilo+1) iterations; if info = i, elements i+1:ihi of wr and wi 
contain those eigenvalues which have been successfully computed.  

Singular Value Decomposition                   

This section describes ScaLAPACK routines for computing the singular value decomposition 
(SVD) of a general m by n matrix A (see <>).

To find the SVD of a general matrix A, this matrix is first reduced to a bidiagonal matrix B by a 
unitary (orthogonal) transformation, and then SVD of the bidiagonal matrix is computed. Note 
that the SVD of B is computed using the LAPACK routine ?bdsqr.
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 Table 6-6 lists ScaLAPACK computational routines for performing this decomposition.    

p?gebrd          
Reduces a general matrix to bidiagonal form.

Syntax
call psgebrd ( m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork,

info )

call pdgebrd ( m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork,
info )

call pcgebrd ( m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork,
info )

call pzgebrd ( m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork,
info )

Description

The routine reduces a real/complex general m-by-n distributed matrix sub(A) = 
A(ia:ia+m-1,ja:ja+n-1) to upper or lower bidiagonal form B by an orthogonal/unitary 
transformation:

          Q' * sub(A) * P = B.

If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. 

Input Parameters

m (global) INTEGER. The number of rows in the distributed matrix sub(A) 
(m ≥ 0). 

Table 6-6 Computational Routines for Singular Value Decomposition (SVD)

Operation
General 
matrix

Orthogonal/unitary
matrix

Reduce A to a bidiagonal matrix p?gebrd

Multiply matrix after reduction p?ormbr/p?unmbr
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n (global) INTEGER. The number of columns in the distributed matrix sub(A)
(n ≥ 0). 

a (local)
REAL for psgebrd 
DOUBLE PRECISION for pdgebrd 
COMPLEX for pcgebrd 
DOUBLE COMPLEX for pzgebrd.

Real pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)). On entry, this array contains the distributed matrix sub (A).

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

work (local)
REAL for psgebrd 
DOUBLE PRECISION for pdgebrd 
COMPLEX for pcgebrd 
DOUBLE COMPLEX for pzgebrd.Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 

lwork ≥   nb* (mpa0 + nqa0+1)+ nqa0 

 where NB = mb_a = nb_a,

iroffa = mod(ia-1, nb), 

icoffa = mod(ja-1, NB),

iarow = indxg2p (ia, nb, MYROW, rsrc_a, NPROW),

iacol = indxg2p (ja, NB, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m +iroffa, NB, MYROW, iarow, NPROW), 

nqa0 = numroc(n +icoffa, NB, MYCOL, iacol, NPCOL), 

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW 
and NPCOL can be determined by calling the subroutine blacs_gridinfo. 

if lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 
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Output Parameters

a On exit, if m > n, the diagonal and the first superdiagonal of sub(A) are 
overwritten with the upper bidiagonal matrix B; the elements below the 
diagonal, with the array tauq, represent the orthogonal/unitary matrix Q as a 
product of elementary reflectors, and the elements above the first 
superdiagonal, with the array taup, represent the orthogonal matrix P as a 
product of elementary reflectors. If m < n, the diagonal and the first 
subdiagonal are overwritten with the lower bidiagonal matrix B; the elements 
below the first subdiagonal, with the array tauq, represent the 
orthogonal/unitary matrix Q as a product of elementary reflectors, and the 
elements above the diagonal, with the array taup, represent the orthogonal 
matrix P as a product of elementary reflectors. (See Application Notes below)

d (local)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION 
LOCc(ja+min(m,n)-1) if m > n; LOCr(ia+min(m,n)-1) otherwise. The 
distributed diagonal elements of the bidiagonal matrix B: d(i) = a(i,i). 
d is tied to the distributed matrix A.

e (local)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION 
LOCr(ia+min(m,n)-1) if m > n; LOCc(ja+min(m,n)-2)otherwise. The 
distributed off-diagonal elements of the bidiagonal distributed matrix B: 

if m > n, 
e(i) = a(i,i+1) for i = 1,2,...,n-1; 
 if m < n, 
e(i) = a(i+1,i) for i = 1,2,...,m-1.
e is tied to the distributed matrix A. 

tauq,taup (local)
REAL for psgebrd 
DOUBLE PRECISION for pdgebrd 
COMPLEX for pcgebrd 
DOUBLE COMPLEX for pzgebrd.
Arrays, DIMENSION LOCc(ja+min(m,n)-1) for tauq and 
LOCr(ia+min(m,n)-1) for taup.
Contain the scalar factors of the elementary reflectors which represent the 
orthogonal/unitary matrices Q and P, respectively.tauq and taup are tied to 
the distributed matrix A. (See Application Notes below)
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work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrices Q and P are represented as products of elementary reflectors: 

If m > n,

Q = H(1) H(2)... H(n) and P = G(1) G(2)... G(n-1).

Each H(i) and G(i) has the form: 

H(i) = i - tauq * v * v' and G(i) = i - taup * u * u'

where tauq and taup are real/complex scalars, and v and u are real/complex vectors;

v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1); 

u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(ia+i-1,ja+i+1:ja+n-1); 

tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).

If m < n,

Q = H(1) H(2)... H(m-1) and P = G(1) G(2)... G(m) 

Each H(i) and G(i) has the form:

H(i) = i - tauq * v * v' and G(i) = i - taup * u * u' 

where tauq and taup are real/complex scalars, and v and u are real/complex vectors; 

v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1); u(1:i-1) = 0, 
u(i) = 1, and u(i+1:n) is stored on exit in A(ia+i-1,ja+i+1:ja+n-1);

tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1). 

The contents of sub(A) on exit are illustrated by the following examples:
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m = 6 and n = 5 (m > n):

m = 5 and n = 6 (m < n): 

where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the 
vector defining H(i), and ui an element of the vector defining G(i). 

d e u1 u1 u1

v1 d e u2 u2

v1 v2 d e u3

v1 v2 v3 d e

v1 v2 v3 v4 d

v1 v2 v3 v4 v5

d u1 u1 u1 u1 u1

e d u2 u2 u2 u2

v1 e d u3 u3 u3

v1 v2 e d u4 u4

v1 v2 v3 e d u5
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p?ormbr          
Multiplies a general matrix by one of the orthogonal 
matrices from a reduction to bidiagonal form 
determined by p?gebrd.

Syntax
call psormbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,

jc, descc, work, lwork, info)

call pdormbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,
jc, descc, work, lwork, info)

Description

If vect = 'Q', the routine overwrites the general real distributed m-by-n matrix 
sub(C) = C(c:ic+m-1,jc:jc+n-1) with

                      side = 'L'                   side = 'R' 

trans = 'N':    Q sub( C )                 sub( C ) Q  

trans = 'T':    QT sub( C )                sub( C ) QT 

 If vect = 'P', the routine overwrites sub(C) with 

                      side = 'L'                  side = 'R' 

trans = 'N':     P sub( C )                 sub( C )  P 

trans = 'T':     PTsub( C )                 sub( C )  PT

Here Q and PT are the orthogonal distributed matrices determined by p?gebrd when reducing a 
real distributed matrix A(ia:*,ja:*) to bidiagonal form: A(ia:*,ja:*) = Q B PT. Q and PT are 
defined as products of elementary reflectors H(i) and G(i) respectively. 

Let nq = m if side = 'L' and nq = n if side = 'R'. Thus nq is the order of the orthogonal matrix Q 
or PT that is applied. 

If vect = 'Q', A(ia:*,ja:*) is assumed to have been an nq-by-k matrix:

if nq > k, Q = H(1) H(2)... H(k); 

if nq < k, Q = H(1) H(2)... H(nq-1). 
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If vect = 'P', A(ia:*,ja:*) is assumed to have been a k-by-nq matrix:

if k < nq, P = G(1) G(2)... G(k); 

if k > nq, P = G(1) G(2)... G(nq-1).

Input Parameters

vect (global) CHARACTER. 
if vect ='Q', then Q or QT is applied.
if vect ='P', then P or PT is applied.

side (global) CHARACTER. 
if side ='L', then Q or QT, P or PT is applied from the left.
if side ='R', then Q or QT, P or PT is applied from the right.

trans (global) CHARACTER. 
if trans ='N', no transpose, Q or P is applied.
if trans ='T', then QT or PT is applied.

m (global)
INTEGER. The number of rows in the distributed matrix sub (C). 

n (global) INTEGER. The number of columns in the distributed matrix sub (C). 

k (global) INTEGER. 
If vect = 'Q', the number of columns in the original distributed matrix 
reduced by p?gebrd;
If vect = 'P', the number of rows in the original distributed matrix reduced 
by p?gebrd.

Constraints: k ≥ 0.

a (local)
REAL for psormbr 
DOUBLE PRECISION for pdormbr.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+min(nq,k)-1)) if vect='Q', 
and (lld_a, LOCc(ja+nq-1)) if vect = 'P'.
nq = m if side = 'L', and nq = n otherwise. 
The vectors which define the elementary reflectors H(i) and G(i), whose 
products determine the matrices Q and P, as returned by p?gebrd. 
If vect = 'Q', lld_a > max(1,LOCr(ia+nq-1)); 
if vect = 'P', lld_a > max(1,LOCr(ia+min(nq,k)-1)). 
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ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)
REAL for psormbr 
DOUBLE PRECISION for pdormbr.
Array, DIMENSION LOCc(ja+min(nq,k)-1), if vect = 'Q', and 
LOCr(ia+min(nq,k)-1), if vect = 'P'. 
tau(i) must contain the scalar factor of the elementary reflector H(i) or G(i), 
which determines Q or P, as returned by pdgebrd in its array argument tauq 
or taup. tau is tied to the distributed matrix A. 

c (local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(jc+n-1)). Contains the local pieces of the distributed matrix sub (C).

ic,jc (global) INTEGER. The row and column indices in the global array c
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)
REAL for psormbr 
DOUBLE PRECISION for pdormbr.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 

if side = 'L'

nq = m;

 if((vect = 'Q' and nq > k) or (vect is not equal to 'Q' and nq > k)), iaa=ia; 
jaa=ja; mi=m; ni=n; icc=ic; jcc=jc; 

else 

iaa=ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc=jc; 

 end if

else if side = 'R', nq = n;
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if((vect = 'Q' and nq > k) or (vect is not equal to 'Q' and nq > k)), 

iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc; 

 else

iaa=ia; jaa=ja+1; mi=m; ni=n-1; icc=ic; jcc=jc+1; 

     end if

end if 

If vect = 'Q', 

If side = 'L', lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + 
nb_a * nb_a 

else if side = 'R', 

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 + 
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), 
mpc0))*nb_a) + nb_a * nb_a * end if

else if vect is not equal to 'Q', if side = 'L', 

lwork > max((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 + 
numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), 
nqc0))*mb_a) + mb_a *mb_a 

else if side = 'R', 

lwork > max((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a * mb_a 

     end if

end if

where lcmp = lcm / NPROW, lcmq = lcm / NPCOL,
with lcm = ilcm(NPROW, NPCOL), 

iroffa = mod(iaa-1, mb_a), 

icoffa = mod(jaa-1, nb_a), 

iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p (jaa, nb_a, MYCOL, csrc_a, NPCOL), 

mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
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iroffc = mod(icc-1, mb_c), 

icoffc = mod(jcc-1, nb_c), 

icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL), 

mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW 
and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

c On exit, if vect='Q', sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or 
sub(C)*Q' or sub(C)*Q;
 if vect='P', sub(C) is overwritten by P*sub(C) or P'*sub(C) or sub(C)*P or 
sub(C)*P'.

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
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p?unmbr          
Multiplies a general matrix by one of the unitary 
transformation matrices from a reduction to bidiagonal 
form determined by p?gebrd.

Syntax
call cunmbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,

jc, descc, work, lwork, info)

call zunmbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,
jc, descc, work, lwork, info)

Description

If vect = 'Q', the routine overwrites the general complex distributed m-by-n matrix sub(C) = 
C(ic:ic+m-1,jc:jc+n-1) with

                      side = 'L'                   side = 'R' 

trans = 'N':    Q sub( C )                 sub( C ) Q  

trans = 'C':    QH sub( C )                sub( C ) QH 

 If vect = 'P', the routine overwrites sub(C) with 

                      side = 'L'                  side = 'R' 

trans = 'N':     P sub( C )                 sub( C )  P 

trans = 'C':     PHsub( C )                 sub( C )  PH

Here Q and PH are the unitary distributed matrices determined by p?gebrd when reducing a 
complex distributed matrix A(ia:*,ja:*) to bidiagonal form: A(ia:*,ja:*) = Q B PH. Q and PHare 
defined as products of elementary reflectors H(i) and G(i) respectively. 

Let nq = m if side = 'L' and nq = n if side = 'R'. Thus nq is the order of the unitary matrix Q or 
PH that is applied. 

If vect = 'Q', A(ia:*,ja:*) is assumed to have been an nq-by-k matrix:

if nq > k, Q = H(1) H(2)... H(k); 

if nq < k, Q = H(1) H(2)... H(nq-1). 
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If vect = 'P', A(ia:*,ja:*) is assumed to have been a k-by-nq matrix:

if k < nq, P = G(1) G(2)... G(k); 

if k > nq, P = G(1) G(2)... G(nq-1).

Input Parameters

vect (global) CHARACTER. 
if vect ='Q', then Q or QH is applied.
if vect ='P', then P or PH is applied.

side (global) CHARACTER. 
if side ='L', then Q or QH, P or PH is applied from the left.
if side ='R', then Q or QH, P or PH is applied from the right.

trans (global) CHARACTER. 
if trans ='N', no transpose, Q or P is applied.
if trans ='C', conjugate transpose, QH or PH is applied.

m (global)
INTEGER. The number of rows in the distributed matrix sub (C) m > 0. 

n (global) INTEGER. The number of columns in the distributed matrix sub (C) n
> 0. 

k (global) INTEGER. 
If vect = 'Q', the number of columns in the original distributed matrix 
reduced by p?gebrd;
If vect = 'P', the number of rows in the original distributed matrix reduced 
by p?gebrd.

Constraints: k ≥ 0.

a (local)
COMPLEX for psormbr 
DOUBLE COMPLEX for pdormbr.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+min(nq,k)-1)) if vect='Q', 
and (lld_a, LOCc(ja+nq-1)) if vect = 'P'.
nq = m if side = 'L', and nq = n otherwise. 
The vectors which define the elementary reflectors H(i) and G(i), whose 
products determine the matrices Q and P, as returned by p?gebrd. 
If vect = 'Q', lld_a > max(1,LOCr(ia+nq-1)); 
if vect = 'P', lld_a > max(1,LOCr(ia+min(nq,k)-1)). 
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ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

tau (local)
COMPLEX for pcunmbr 
DOUBLE COMPLEX for pzunmbr.
Array, DIMENSION LOCc(ja+min(nq,k)-1), if vect = 'Q', and 
LOCr(ia+min(nq,k)-1), if vect = 'P'. 
tau(i) must contain the scalar factor of the elementary reflector H(i) or G(i), 
which determines Q or P, as returned by p?gebrd in its array argument tauq 
or taup. tau is tied to the distributed matrix A. 

c (local)
COMPLEX for pcunmbr
DOUBLE COMPLEX for pzunmbr.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(jc+n-1)). Contains the local pieces of the distributed matrix sub (C).

ic,jc (global) INTEGER. The row and column indices in the global array c indicating 
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix C.

work (local)
COMPLEX for pcunmbr 
DOUBLE COMPLEX for pzunmbr.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least: 

if side = 'L'

nq = m;

 if((vect = 'Q' and nq > k) or (vect is not equal to 'Q' and nq > k)), iaa=ia; 
jaa=ja; mi=m; ni=n; icc=ic; jcc=jc; 

else 

iaa=ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc=jc; 

 end if

else if side = 'R', nq = n;
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if((vect = 'Q' and nq > k) or (vect is not equal to 'Q' and nq > k)), 

iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc; 

 else

iaa=ia; jaa=ja+1; mi=m; ni=n-1; icc=ic; jcc=jc+1; 

     end if

end if 

If vect = 'Q', 

If side = 'L', lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + 
nb_a * nb_a 

else if side = 'R', 

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 + 
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), 
mpc0))*nb_a) + nb_a * nb_a * end if

else if vect is not equal to 'Q', if side = 'L', 

lwork > max((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 + 
numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), 
nqc0))*mb_a) + mb_a *mb_a 

else if side = 'R', 

lwork > max((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a * mb_a 

     end if

end if

where lcmp = lcm / NPROW, lcmq = lcm / NPCOL,
with lcm = ilcm(NPROW, NPCOL), 

iroffa = mod(iaa-1, mb_a), 

icoffa = mod(jaa-1, nb_a), 

iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW), 

iacol = indxg2p (jaa, nb_a, MYCOL, csrc_a, NPCOL), 

mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
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iroffc = mod(icc-1, mb_c), 

icoffc = mod(jcc-1, nb_c), 

icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL), 

mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW 
and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

c On exit, if vect='Q', sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or 
sub(C)*Q' or sub(C)*Q;
 if vect='P', sub(C) is overwritten by P*sub(C) or P'*sub(C) or sub(C)*P or 
sub(C)*P'.

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance.

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

Generalized Symmetric-Definite Eigenproblems

This section describes ScaLAPACK routines that allow you to reduce the generalized 
symmetric-definite eigenvalue problems (see <>) to standard symmetric eigenvalue problem  
Cy = λy , which you can solve by calling ScaLAPACK routines described earlier in this chapter 
(see page 6-154).
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Table 6-7 lists these routines.   

p?sygst                     
Reduces a real symmetric-definite generalized 
eigenvalue problem to the standard form.

Syntax
call pssygst ( ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb,

scale, info )

call pdsygst ( ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
scale, info )

Description

This routine reduces real symmetric-definite generalized eigenproblems  to the standard form.

In the following sub(A) denotes A(ia:ia+n-1, ja:ja+n-1) and sub(B) denotes 
B(ib:ib+n-1, jb:jb+n-1). 

If ibtype = 1, the problem is

            sub(A)x = λsub(B)x, 

and sub(A) is overwritten by inv(UT) sub(A)inv(U) or inv(L)sub(A)inv(LT).

If ibtype = 2 or 3, the problem is 

            sub(A)sub(B)x = λx or sub(B)sub(A)x = λx, 

and sub(A) is overwritten by U sub(A)UT or LTsub(A)L. 

sub(B) must have been previously factorized as UTU or LLT by p?potrf. 

Table 6-7 Computational Routines for Reducing Generalized Eigenproblems to Standard 
Problems

Operation Real symmetric
matrices

Complex Hermitian 
matrices

Reduce to 
standard problems 

p?sygst p?hegst
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Input Parameters

ibtype (global) INTEGER. Must be 1 or 2 or 3. 
If itype = 1, compute inv(UT)sub(A)inv(U) or inv(L)sub(A)inv(LT); 
If itype = 2 or 3, compute Usub(A)UT or
 LTsub(A)L.

uplo (global)
CHARACTER. Must be 'U' or 'L'. 
If uplo = 'U', the upper triangle of sub(A) is stored and sub (B) is factored as 
UTU.
If uplo = 'L', the lower triangle of sub (A) is stored and sub (B) is factored as 
LLT.

n (global) INTEGER. The order of the matrices sub (A) and sub (B) (n ≥ 0). 

a (local)
REAL for pssygst
DOUBLE PRECISION for pdsygst. 
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)). On entry, the array contains the local pieces of the n-by-n 
symmetric distributed matrix sub(A). If uplo = 'U', the leading n-by-n upper 
triangular part of sub(A) contains the upper triangular part of the matrix, and its 
strictly lower triangular part is not referenced. If uplo = 'L', the leading n-by-n 
lower triangular part of sub(A) contains the lower triangular part of the matrix, 
and its strictly upper triangular part is not referenced. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

b (local)
REAL for pssygst
DOUBLE PRECISION for pdsygst. 
Pointer into the local memory to an array of dimension (lld_b, 
LOCc(jb+n-1)). On entry, the array contains the local pieces of the triangular 
factor from the Cholesky factorization of sub (B) as returned by p?potrf. 

ib,jb (global) INTEGER.  The row and column indices in the global array b 
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.
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Output Parameters

a On exit, if info = 0, the transformed matrix, stored in the same format as 
sub(A). 

scale (global)
REAL for pssygst
DOUBLE PRECISION for pdsygst. 

Amount by which the eigenvalues should be scaled to compensate for the 
scaling performed in this routine. At present, scale is always returned as 1.0, 
it is returned here to allow for future enhancement. 

info (global) INTEGER. 
If info = 0, the execution is successful.
If info <0, if the i-th argument is an array and the j-entry had an illegal 
value, then info = -(i100+j), if the i-th argument is a scalar and had an 
illegal value, then info = -i. 

p?hegst           
Reduces a Hermitian-definite generalized eigenvalue 
problem to the standard form.

Syntax
call pchegst ( ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb,

scale, info )

call pzhegst ( ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
scale, info )

Description

This routine reduces complex Hermitian-definite generalized eigenproblems to the standard form.

In the following sub(A) denotes A(ia:ia+n-1, ja:ja+n-1) and sub(B) denotes B(ib:ib+n-1, 
jb:jb+n-1). 

If ibtype = 1, the problem is

         sub(A)x = λsub(B)x, 

and sub(A) is overwritten by inv(UH) sub(A)inv(U) or inv(L)sub(A)inv(LH).
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If ibtype = 2 or 3, the problem is 

         sub(A)sub(B)x = λx or sub(B)sub(A)x = λx, 

and sub(A) is overwritten by Usub(A)UH or LHsub(A)L. 

sub(B) must have been previously factorized as UHU or LLHby p?potrf. 

Input Parameters

ibtype (global) INTEGER. Must be 1 or 2 or 3. 
If itype = 1, compute inv(UH)sub(A)inv(U) or inv(L)sub(A)inv(LH); 
If itype = 2 or 3, compute Usub(A)UH or
 LHsub(A)L.

uplo (global)
CHARACTER. Must be 'U' or 'L'. 
If uplo = 'U', the upper triangle of sub(A) is stored and sub (B) is factored as 
UHU.
If uplo = 'L', the lower triangle of sub (A) is stored and sub (B) is factored as 
LLH.

n (global) INTEGER. The order of the matrices sub (A) and sub (B) (n ≥ 0). 

a (local)
COMPLEX for pchegst
DOUBLE COMPLEX for pzhegst. 
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)). On entry, the array contains the local pieces of the n-by-n 
Hermitian distributed matrix sub(A). If uplo = 'U', the leading n-by-n upper 
triangular part of sub(A) contains the upper triangular part of the matrix, and its 
strictly lower triangular part is not referenced. If uplo = 'L', the leading n-by-n 
lower triangular part of sub(A) contains the lower triangular part of the matrix, 
and its strictly upper triangular part is not referenced. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

b (local)
COMPLEX for pchegst
DOUBLE COMPLEX for pzhegst. 
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Pointer into the local memory to an array of dimension (lld_b, 
LOCc(jb+n-1)). On entry, the array contains the local pieces of the triangular 
factor from the Cholesky factorization of sub (B) as returned by p?potrf. 

ib,jb (global) INTEGER.  The row and column indices in the global array b 
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

Output Parameters

a On exit, if info = 0, the transformed matrix, stored in the same format as 
sub(A). 

scale (global)
REAL for pchegst
DOUBLE PRECISION for pzhegst. 

Amount by which the eigenvalues should be scaled to compensate for the 
scaling performed in this routine. At present, scale is always returned as 1.0, 
it is returned here to allow for future enhancement. 

info (global) INTEGER. 
If info = 0, the execution is successful.
If info <0, if the i-th argument is an array and the j-entry had an illegal 
value, then info = -(i100+j), if the i-th argument is a scalar and had an 
illegal value, then info = -i. 
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Driver Routines 
Table 6-8 lists ScaLAPACK driver routines available for solving systems of linear equations, 
linear least-squares problems, standard eigenvalue and singular value problems, and generalized 
symmetric definite eigenproblems. 

Table 6-8 ScaLAPACK Driver Routines 

Type of Problem
Matrix type, 
storage scheme

Driver

Linear equations general
(partial pivoting)

p?gesv  (simple driver)
p?gesvx  (expert driver)

general band
(partial pivoting)

p?gbsv (simple driver)

general band
(no pivoting)

p?dbsv (simple driver)

general tridiagonal
(no pivoting)

p?dtsv (simple driver)

symmetric/Hermitian 
positive-definite

p?posv  (simple driver)
p?posvx  (expert driver)

symmetric/Hermitian 
positive-definite,
band

p?pbsv (simple driver)

symmetric/Hermitian 
positive-definite,
tridiagonal

p?ptsv (simple driver)

Linear least 
squares problem

general m-by-n p?gels

Symmetric 
eigenvalue problem

symmetric/Hermitian p?syev  (simple driver)
p?syevx / p?heevx 
(expert driver)

Singular value 
decomposition

general m-by-n p?gesvd

Generalized 
symmetric definite 
eigenvalue problem

symmetric/Hermitian, 
one matrix also
positive-definite

p?sygvx / p?hegvx 
(expert driver)
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p?gesv                          
Computes the solution to the system of linear equations 
with a square distributed matrix and multiple 
right-hand sides.

Syntax
call psgesv (n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pdgesv (n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pcgesv (n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pzgesv (n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

Description

The routine p?gesv computes the solution to a real or complex system of linear equations  
sub(A)* X = sub(B), where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is an n-by-n  distributed matrix 
and X and sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1)  are n-by-nrhs  distributed matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor sub(A) as   
sub(A) = P L U, where P is a permutation matrix, L is unit lower triangular, and U is upper 
triangular. L and U are stored in sub(A). The factored form of sub(A) is then used to solve the 
system of equations sub(A)* X = sub(B).

Input Parameters

n (global) INTEGER. The number of rows  and columns to be operated on, that is, 
the order of the distributed submatrix sub(A)  (n ≥ 0). 

nrhs (global) INTEGER. The number of right hand sides, that is,  the number of 
columns of the distributed submatrices B and X (nrhs ≥ 0).

a,b (local)
REAL for psgesv 
DOUBLE PRECISION for pdgesv 
COMPLEX for pcgesv 
DOUBLE COMPLEX for pzgesv.
Pointers into the local memory  to arrays of local dimension a(lld_a,
LOCc(ja+n-1)) and  b(lld_b, LOCc(jb+nrhs-1)), respectively.

On entry, the array a contains the local pieces of the n-by-n distributed matrix 
sub(A) to be factored. 
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On entry, the array b contains the right hand side distributed matrix sub(B). 

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of sub(A), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

ib,jb (global) INTEGER.  The row and column indices in the global array B 
indicating the first row and the first column of sub(B), respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

Output Parameters

a Overwritten by the factors L and U from the factorization sub(A) = P L U; the 
unit diagonal elements of L are not stored .

b Overwritten by the solution distributed matrix X.

ipiv (local) INTEGER array. 
The dimension of ipiv  is (LOCr(m_a)+ mb_a).
This array contains  the pivoting information. The (local) row i of the matrix 
was interchanged with the (global) row ipiv(i).
This array is tied to the distributed matrix A.

info (global) INTEGER. If info=0, the execution is successful.

info < 0: 
if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a  scalar and had an illegal value, 
then info = -i.

info > 0: 
If info = k, U(ia+k-1,ja+k-1) is exactly zero. The factorization has been 
completed, but the factor U is exactly singular, so the solution could not be 
computed.
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p?gesvx                                
Uses the LU factorization to compute the solution to the 
system of linear equations with a square matrix A and 
multiple right-hand sides, and provides error bounds on 
the solution.

Syntax
call psgesvx (fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,

descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, iwork, liwork, info)

call pdgesvx (fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, iwork, liwork, info)

call pcgesvx (fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, rwork, lrwork, info)

call pzgesvx (fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, rwork, lrwork, info)

Description

This routine uses the LU factorization to compute the solution to a real or complex system of 
linear equations  AX = B, where A denotes the n-by-n submatrix A(ia:ia+n-1, ja:ja+n-1), B 
denotes the n-by-nrhs submatrix B(ib:ib+n-1, jb:jb+nrhs-1) and X denotes the n-by-nrhs 
submatrix X(ix:ix+n-1, jx:jx+nrhs-1).

Error bounds on the solution and a condition estimate are also provided.

In the following description,  af stands for the subarray  af(iaf:iaf+n-1, jaf:jaf+n-1).

The routine p?gesvx performs the following steps:

1. If fact = 'E', real scaling factors R and C are computed to equilibrate
the system:

trans = 'N':    diag(R)*A*diag(C) *diag(C)-1*X = diag(R)*B

trans = 'T':   (diag(R)*A*diag(C))T *diag(R)-1*X = diag(C)*B
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trans = 'C':   (diag(R)*A*diag(C))H *diag(R)-1*X = diag(C)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if 
equilibration is used, A is overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if trans='N') or 
diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the matrix A (after equilibration if 
fact = 'E') as A = P L U, where P is a permutation matrix, L is a unit lower triangular matrix, and 
U is upper triangular.

3. The factored form of A is used to estimate the condition number of the matrix A. If the 
reciprocal of the condition number is less than relative machine precision, steps 4 - 6 are skipped.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(C) (if trans = 'N') or diag(R) (if 
trans = 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

fact (global) CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry, 
and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F' then, on entry, af and ipiv contain the factored form of A. If 
equed is not 'N', the matrix A has been equilibrated with scaling factors given 
by r and c. Arrays a, af, and ipiv are not modified.

If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to af 
and factored.

trans (global) CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form  A X = B  
(No transpose);
If trans = 'T', the system has the form  AT X = B  (Transpose);
If trans = 'C', the system has the form  AH X = B  (Conjugate transpose);

n (global) INTEGER. The number of linear equations;  the order of the submatrix 
A (n ≥ 0).
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nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrices B and X (nrhs ≥ 0).

a,af,b,work (local)
REAL for psgesvx 
DOUBLE PRECISION for pdgesvx 
COMPLEX for pcgesvx 
DOUBLE COMPLEX for pzgesvx.
Pointers into the local memory  to arrays of local dimension a(lld_a,
LOCc(ja+n-1)), af(lld_af, LOCc(ja+n-1)), b(lld_b,
LOCc(jb+nrhs-1)), work(lwork), respectively.

The array a contains the matrix A. If fact = 'F' and equed is not 'N', then A 
must have been equilibrated by the scaling factors in r and/or c. 

The array af is an input argument if fact = 'F' . In this case it contains on 
entry the factored form of the matrix A, i.e., the factors L and U from the 
factorization A = P L U as computed by p?getrf. If equed is not 'N', then af 
is the factored form of the equilibrated matrix A. 

The array b contains on entry the matrix B whose columns are the right-hand 
sides for the systems of equations. 

work(*) is a workspace array.
The dimension of work  is (lwork).

ia,ja (global) INTEGER.  The row and column indices in the global array A 
indicating the first row and the first column of the submatrix A(ia:ia+n-1, 
ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

iaf,jaf (global) INTEGER.  The row and column indices in the global array af 
indicating the first row and the first column of the subarray af(iaf:iaf+n-1, 
jaf:jaf+n-1), respectively.

descaf (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix AF.

ib,jb (global) INTEGER.  The row and column indices in the global array B 
indicating the first row and the first column of the submatrix B(ib:ib+n-1, 
jb:jb+nrhs-1), respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.
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ipiv (local) INTEGER array. 
The dimension of ipiv  is (LOCr(m_a)+ mb_a).
The array ipiv is an input argument if fact = 'F' . 
On entry, it contains  the pivot indices from the factorization  A = P L U as 
computed by p?getrf;  (local) row i of the matrix was interchanged with the 
(global) row ipiv(i).
This array must be aligned with A(ia:ia+n-1, *).

equed (global) CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = 'F' . It specifies the form of equilibration 
that was done: 
If equed = 'N', no equilibration was done (always 
true if fact = 'N');
If equed = 'R', row equilibration was done, that is, A has been premultiplied 
by diag(r);
If equed = 'C', column equilibration was done, that is,  A has been 
postmultiplied by diag(c);
If equed = 'B', both row and column equilibration was done; A has been 
replaced by diag(r)*A*diag(c).

r, c (local) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension  LOCr(m_a)and LOCc(n_a), respectively. 
The array r contains the row scale factors for A, and the array c contains the 
column scale factors for A. These arrays are input arguments if fact = 'F' only; 
otherwise they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by diag(r); if equed = 'N' 
or 'C', r is not accessed.   
If fact = 'F' and equed = 'R' or 'B', each element of r must be positive.

If equed = 'C' or 'B', A is multiplied on the right by diag(c); if equed = 'N' 
or 'R', c is not accessed.   
If fact = 'F' and equed = 'C' or 'B', each element of c must be positive.
Array r is replicated in every process column, and is aligned with the 
distributed matrix A.
Array c is replicated in every process row, and is aligned with the distributed 
matrix A.

ix,jx (global) INTEGER.  The row and column indices in the global array X 
indicating the first row and the first column of the submatrix X(ix:ix+n-1, 
jx:jx+nrhs-1), respectively.
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descx (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix X.

lwork (local or global) INTEGER.  The dimension of the array work ; must be at least 
max(p?gecon(lwork), p?gerfs(lwork)) + LOCr(n_a) .

iwork (local, psgesvx/pdgesvx only) INTEGER.  Workspace array.
The dimension of iwork  is (liwork).

liwork (local, psgesvx/pdgesvx only) INTEGER.  The dimension of the array 
iwork , must be at least LOCr(n_a) .

rwork (local) REAL for  pcgesvx;
DOUBLE PRECISION for pzgesvx.
Workspace array, used in complex flavors only. 
The dimension of rwork  is (lrwork).

lrwork (local or global, pcgesvx/pzgesvx only) INTEGER.  The dimension of the 
array rwork ; must be at least 2*LOCc(n_a) .

Output Parameters

x (local) 
REAL for psgesvx 
DOUBLE PRECISION for pdgesvx 
COMPLEX for pcgesvx 
DOUBLE COMPLEX for pzgesvx.
Pointer into the local memory to an array of local dimension x(lld_x,
LOCc(jx+nrhs-1)) .

If info = 0 , the array x contains the solution matrix X to the original system 
of equations. Note that A and B are modified on exit if equed ≠ 'N', and the 
solution to the equilibrated system is:
diag(C)-1*X,  if trans = 'N' and equed = 'C' or 'B';  and diag(R)-1*X,  if 
trans = 'T' or 'C' and equed = 'R' or 'B'.

a Array a is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and equed 
= 'N'. 
If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R':   A = diag(R)*A
equed = 'C':   A = A*diag(c)
equed = 'B':   A = diag(R)*A*diag(c)
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af If fact = 'N' or 'E', then af is an output argument  and on exit returns the 
factors L and U from the factorization A = P L U of the original matrix A (if 
fact = 'N') or of the equilibrated matrix A (if fact = 'E'). See the description 
of a for the form of the equilibrated matrix.

b Overwritten by diag(R)* B  if trans = 'N' and 
equed = 'R' or 'B'; 
overwritten by diag(c)*B if trans = 'T' and equed = 'C' or 'B'; 
not changed  if  equed = 'N'.

r, c These arrays are output arguments if fact ≠ 'F' .
See the description of r, c in Input Arguments section.

rcond (global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A after 
equilibration (if done). The routine sets rcond =0 if the estimate underflows; 
in this case the matrix is singular (to working precision). However, anytime 
rcond is small compared to 1.0, 
for the working precision, the matrix may be poorly conditioned or even 
singular.

ferr, berr (local) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION  LOCc(n_b) each. Contain the component-wise forward 
and relative backward errors, respectively, for each solution vector.

Arrays ferr and berr are both replicated in every process row, and are 
aligned with the matrices  B and X.

ipiv If fact = 'N' or 'E', then ipiv is an output argument  and on exit contains the 
pivot indices from the factorization A = P L U of the original matrix A (if fact 
= 'N') or of the equilibrated matrix A (if fact = 'E'). 

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of 
equilibration that was done (see the description of equed in Input Arguments 
section). 

work(1) If info=0, on exit work(1) returns the minimum value of lwork required for 
optimum performance. 

iwork(1) If info=0, on exit iwork(1) returns the minimum value of liwork required 
for optimum performance. 

rwork(1) If info=0, on exit rwork(1) returns the minimum value of lrwork required 
for optimum performance. 
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info INTEGER. If info=0, the execution is successful.

info < 0: if the ith argument is an array and the jth entry had an illegal value, 
then  info = -(i*100+j); if the ith argument is a scalar and had an illegal 
value, then info = -i.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The factorization has been 
completed, but the factor U is exactly singular, so the solution and error bounds 
could not be computed.
If info = i, and i = n +1, then U is nonsingular, but rcond is less than 
machine precision. The factorization has been completed, but the matrix is 
singular to working precision and the solution and error bounds have not been 
computed.

p?gbsv                         
Computes the solution to the system of linear equations 
with a general banded distributed matrix and multiple 
right-hand sides.

Syntax
call psgbsv (n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,

lwork, info)

call pdgbsv (n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
lwork, info)

call pcgbsv (n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
lwork, info)

call pzgbsv (n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
lwork, info)

Description

The routine p?gbsv computes the solution to a real or complex system of linear equations  
                 sub(A)* X = sub(B) , 
where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n  real/complex general banded distributed matrix 
with bwl subdiagonals and bwu superdiagonals, and X and sub(B) = B(ib:ib+n-1, 1:nrhs)  
are n-by-nrhs  distributed matrices.
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The LU decomposition with partial pivoting and row interchanges is used to factor sub(A) as   
sub(A) = P L U Q, where P and Q are permutation matrices, and L and U are banded lower and 
upper triangular matrices, respectively. The matrix Q represents reordering of columns for the sake 
of parallelism, while P represents reordering of rows for numerical stability using classic partial 
pivoting.

Input Parameters

n (global) INTEGER. The number of rows  and columns to be operated on, that is, 
the order of the distributed submatrix sub(A)  (n ≥ 0). 

bwl (global) INTEGER.  The number of subdiagonals within the band of A ( 0≤ bwl 
≤ n-1 ). 

bwu (global) INTEGER.  The number of superdiagonals within the band of A ( 0≤ 
bwu ≤ n-1 ). 

nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix sub(B)  (nrhs ≥ 0).

a, b (local) 

REAL for psgbsv
DOUBLE PRECISION for pdgbsv
COMPLEX for pcgbsv
DOUBLE COMPLEX for pzgbsv.

Pointers into the local memory to arrays of local dimension a(lld_a,
LOCc(ja+n-1)) and 
b(lld_b, LOCc(nrhs)), respectively.

On entry, the array a contains the local pieces of the global array A. 

On entry, the array b contains the right hand side distributed matrix sub(B). 

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
If  desca(dtype_) = 501, then dlen_ ≥ 7;
else if  desca(dtype_) = 1, then dlen_ ≥ 9.

ib (global) INTEGER.  The row index in the global array B that points to the first 
row of the matrix to be operated on ( which may be either all of B or a 
submatrix of B).
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descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

If  descb(dtype_) = 502, then dlen_ ≥ 7;
else if  descb(dtype_) = 1, then dlen_ ≥ 9.

work (local) 
REAL for psgbsv
DOUBLE PRECISION for pdgbsv
COMPLEX for pcgbsv
DOUBLE COMPLEX for pzgbsv.

Workspace array of dimension  (lwork). 

lwork (local or global) INTEGER.  The size of the array work, must be at least 
lwork ≥ (NB+bwu)*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) +
+ max(nrhs *(NB+2*bwl+4*bwu), 1).

Output Parameters

a On exit, contains details of the factorization.
Note that the resulting factorization is not the same factorization as returned 
from LAPACK. Additional permutations are performed on the matrix for the 
sake of parallelism.

b On exit,  this array contains the local pieces of the  solution distributed matrix 
X.

ipiv (local) INTEGER array. 
The dimension of ipiv must be at least  desca(NB).
This array contains  pivot indices for local factorizations. You should not alter 
the contents between factorization and solve.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum 
performance.

info INTEGER. If info=0, the execution is successful.
info < 0: 

if the ith argument is an array and the jth entry had an illegal value, then  
info = -(i*100+j); if the ith argument is a scalar and had an illegal value, 
then info = -i.

info > 0: 
If info = k ≤  NPROCS, the submatrix stored on processor info and factored 
locally was not nonsingular, and the factorization was not completed.
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If info = k>NPROCS, the submatrix stored on processor info-NPROCS 
representing interactions with other processors was not nonsingular, and the 
factorization was not completed.

p?dbsv
Solves a general band system of linear equations.

Syntax
call psdbsv (n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,

info)

call pddbsv (n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

call pcdbsv (n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

call pzdbsv (n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

Description

This routine solves the system of linear equations 

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs) 

where A(1:n, ja:ja+n-1) is an n-by-n real/complex banded diagonally dominant-like distributed 
matrix with bandwidth bwl, bwu.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into L U. 

Input Parameters

n (global) INTEGER. The order of the distributed submatrix A; (n ≥ 0).

bwl (global) INTEGER.
Number of subdiagonals. 0 < bwl < n-1.

bwu (global) INTEGER.
Number of subdiagonals. 0 < bwu < n-1.

nrhs (global) INTEGER. The number of right-hand sides; the number of columns of 
the distributed submatrix B (nrhs ≥ 0). 
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a (local).
REAL for psdbsv 
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array with first dimension lld_a 
>(bwl+bwu+1) (stored in desca). On entry, this array contains the local pieces 
of the distributed matrix.

ja (global) INTEGER.  The index in the global array a that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array of dimension dlen. 
if 1d type (dtype_a=501 or 502), dlen > 7; 
if 2d type (dtype_a=1), dlen > 9. 
The array descriptor for the distributed matrix A. Contains information of 
mapping of A to memory.

b (local)
REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array of local lead dimension lld_b>NB. 
On entry, this array contains the local pieces of the right hand sides 
B(ib:ib+n-1, 1:nrhs). 

ib (global) INTEGER.  The row index in the global array b that points to the first 
row of the matrix to be operated on (which may be either all of b or a 
submatrix of B).

desb (global and local) INTEGER array of dimension dlen. 
if 1d type (dtype_b =502), dlen >7; 
if 2d type (dtype_b =1), dlen > 9. 
The array descriptor for the distributed matrix B. Contains information of 
mapping of B to memory.

work (local).

REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
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DOUBLE COMPLEX for pzdbsv.
Temporary workspace. This space may be overwritten in between calls to 
routines. work must be the size given in lwork. 

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal 
acceptable size will be returned in work(1) and an error code is returned. 
lwork >  NB (bwl+bwu)+6 max(bwl,bwu)*max(bwl,bwu)  
+max((max(bwl,bwu)nrhs), max(bwl,bwu)max(bwl,bwu)) 

Output Parameters

a On exit, this array contains information containing details of the factorization. 
Note that permutations are performed on the matrix, so that the factors 
returned are different from those returned by LAPACK. 

b On exit, this contains the local piece of the solutions distributed matrix X.

work On exit, work(1) contains the minimal lwork.

info (local) INTEGER. If info=0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value, then 
info = -(i*100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
> 0: If info  = k < NPROCS, the submatrix stored on processor info and 
factored locally was not positive definite, and the factorization was not 
completed. 
If info = k > NPROCS, the submatrix stored on processor  info-NPROCS 
representing interactions with other processors was not positive definite, and 
the factorization was not completed. 

p?dtsv
Solves a general tridiagonal system of linear equations.

Syntax
call psdtsv (n, nrhs, dl, d, du, ja, desca, b, ib, descb, work,

lwork,info

call pddtsv (n, nrhs, dl, d, du, ja, desca, b, ib, descb, work,
lwork,info
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call pcdtsv (n, nrhs, dl, d, du, ja, desca, b, ib, descb, work,
lwork,info

call pzdtsv (n, nrhs, dl, d, du, ja, desca, b, ib, descb, work,
lwork,info

Description

This routine solves a system of linear equations 

 A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs) 

where A(1:n, ja:ja+n-1) is an n-by-n complex tridiagonal diagonally dominant-like distributed 
matrix.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into L U. 

Input Parameters

n (global) INTEGER. The order of the distributed submatrix A (n ≥ 0).

nrhs INTEGER. The number of right hand sides; the number of columns of the 
distributed matrix B (nrhs ≥ 0).

dl (local).
REAL for psdtsv 
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv 
DOUBLE COMPLEX for pzdtsv.

Pointer to local part of global vector storing the lower diagonal of the matrix. 
Globally, dl(1) is not referenced, and dl must be aligned with d. Must be of 
size > desca( nb_ ). 

d (local).
REAL for psdtsv 
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv 
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the main diagonal of the matrix. 

du (local).
REAL for psdtsv 
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv 
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DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the upper diagonal of the matrix. 
Globally, du(n) is not referenced, and du must be aligned with d. 

ja (global) INTEGER.  The index in the global array a that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array of dimension dlen. 
if 1d type (dtype_a=501 or 502), dlen >= 7; 
if 2d type (dtype_a=1), dlen >= 9. 
The array descriptor for the distributed matrix A. Contains information of 
mapping of A to memory.

b (local)
REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer into the local memory to an array of local lead dimension lld_b>NB. 
On entry, this array contains the  local pieces of the right hand sides 
B(ib:ib+n-1, 1:nrhs). 

ib (global) INTEGER.  The row index in the global array b that points to the first 
row of the matrix to be operated on (which may be either all of b or a 
submatrix of B).

desb (global and local) INTEGER array of dimension dlen. 
if 1d type (dtype_b =502), dlen >7; 
if 2d type (dtype_b =1), dlen > 9. 
The array descriptor for the distributed matrix B. Contains information of 
mapping of B to memory.

work (local).

REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Temporary workspace. This space may be overwritten in between calls to 
routines. work must be the size given in lwork. 



ScaLAPACK Routines 6

6-229

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal 
acceptable size will be returned in work(1) and an error code is returned. 
lwork >  (12*NPCOL+3*NB)+max((10+2*min(100,nrhs))*NPCOL+4*nrhs, 
8*NPCOL).  

Output Parameters

dl On exit, this array contains information containing the * factors of the matrix.

d On exit, this array contains information containing the * factors of the matrix. 
Must be of size > desca( nb_ ).

du On exit, this array contains information containing the * factors of the matrix. 
Must be of size > desca( nb_ ).

b On exit, this contains the local piece of the solutions distributed matrix X. 

work On exit, work( 1 ) contains the minimal lwork.

info (local) INTEGER. If info=0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value, then 
info = -(i*100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
> 0: If info  = k < NPROCS, the submatrix stored on processor info and 
factored locally was not  positive definite, and the factorization was not 
completed. 
If info = k > NPROCS, the submatrix stored on processor  info-NPROCS 
representing interactions with other processors was not positive definite, and 
the factorization was not completed. 

p?posv
Solves a symmetric positive definite system of linear 
equations.

Syntax
call psposv (uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pdposv (uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pcposv (uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
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call pzposv (uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

Description

This routine computes the solution to a real/complex system of linear equations

 sub(A) * X = sub(B), 

where sub(A) denotes A(ia:ia+n-1,ja:ja+n-1) and is an n-by-n symmetric/Hermitian distributed 
positive definite matrix and X and sub(B) denoting B(ib:ib+n-1,jb:jb+nrhs-1) are n-by-nrhs 
distributed matrices. The Cholesky decomposition is used to factor sub(A) as 

sub(A) = UT * U, if uplo = 'U', or

sub(A) = L * LT, if uplo = 'L', 

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of 
sub(A) is then used to solve the system of equations.

Input Parameters
uplo (global).CHARACTER. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of sub(A) is stored. 
n (global) INTEGER. The order of the distributed submatrix sub(A) (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides; the number of columns of the 
distributed submatrix sub(B) (nrhs ≥ 0). 

a (local)
REAL for psposv
DOUBLE PRECISION for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)). On entry, this array contains the local pieces of the n-by-n 
symmetric distributed matrix sub(A) to be factored. If uplo = 'U', the leading 
n-by-n upper triangular part of sub(A) contains the upper triangular part of the 
matrix, and its strictly lower triangular part is not referenced.If uplo = 'L', the 
leading n-by-n lower triangular part of sub(A) contains the lower triangular 
part of the distributed matrix, and its strictly upper triangular part is not 
referenced.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.



ScaLAPACK Routines 6

6-231

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

b (local)
REAL for psposv
DOUBLE PRECISION for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension 
(lld_b,LOC(jb+nrhs-1)). On entry, the local pieces of the right hand sides 
distributed matrix sub(B).

ib,jb (global) INTEGER.  The row and column indices in the global array b 
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

Output Parameters

a On exit, if info = 0, this array contains the local pieces of the factor U or L 
from the Cholesky factorization sub(A) = UHU or LLH.

b On exit, if info = 0, sub (B) is overwritten by the solution distributed matrix 
X.

info (global) INTEGER. 
If info =0, the execution is successful.
If info < 0: If the i-th argument is an array and the j-entry had an illegal 
value, then info = -(i*100+j), if the i-th argument is a scalar and had an 
illegal value, then info = -i. 
If info > 0: If info = k, the leading minor of order k,  
A(ia:ia+k-1,ja:ja+k-1) is not positive definite, and  the factorization could 
not be completed, and the solution has not been computed. 
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p?posvx
Solves a symmetric or Hermitian positive definite 
system of linear equations.

Syntax
call psposvx (fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf,

descaf, equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, iwork, liwork, info)

call pdposvx (fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
descaf, equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, iwork, liwork, info)

call pcposvx (fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
descaf, equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, iwork, liwork, info)

call pzposvx (fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
descaf, equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, iwork, liwork, info)

Description

This routine uses the Cholesky factorization A=UTU or A=LLT to compute the solution to a real or 
complex system of linear equations  

A(ia:ia+n-1,ja:ja+n-1) * X = B(ib:ib+n-1,jb:jb+nrhs-1),

 where A(ia:ia+n-1,ja:ja+n-1)  is a n-by-n  matrix and X and B(ib:ib+n-1,jb:jb+nrhs-1) are 
n-by-nrhs matrices. 

Error bounds on the solution and a condition estimate are also provided.

In the following comments y denotes Y(iy:iy+m-1,jy:jy+k-1) a m-by-k matrix where y can be a, 
af, b and x.

The routine p?posvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

  diag(sr)*A*diag(sc) *inv(diag(sc))*X = diag(sr)*B
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Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if 
equilibration is used, A is overwritten by diag(sr)*A*diag(sc) and B by diag(sr)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after 
equilibration if fact = 'E') as

A = UT U,  if uplo = ‘U’, or 
A = L LT ,  if uplo = ‘L’,
where U  is an upper triangular matrix and L is a lower triangular matrix.

3. The factored form of A is used to estimate the condition number of the matrix A. If the 
reciprocal of the condition number is less than machine precision, steps 4-6 are skipped

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error 
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(sr) so that it solves the original 
system before equilibration.

Input Parameters

fact (global) CHARACTER. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry, 
and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F': on entry, af contains the factored form of A. If equed = 'Y', 
the matrix A has been equilibrated with scaling factors given by s.
a and af will not be modified.

If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to af 
and factored.

uplo (global)
CHARACTER. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored. 

n (global) INTEGER. The order of the distributed submatrix sub(A) (n ≥ 0). 

nrhs (global) INTEGER. The number of right-hand sides; the number of columns of 
the distributed submatrices B and X.(nrhs ≥ 0). 

a (local)
REAL for psposvx 
DOUBLE PRECISION for pdposvx 
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COMPLEX for pcposvx 
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension ( lld_a, 
LOCc(ja+n-1) ).On entry, the symmetric/Hermitian matrix A, except if fact 
= 'F' and equed = 'Y', then A must contain the equilibrated matrix  
diag(sr)*A*diag(sc). If uplo = 'U', the leading n-by-n upper triangular part of 
A contains the upper triangular part of the matrix A, and the strictly lower 
triangular part of A is not referenced. If uplo = 'L', the leading n-by-n lower 
triangular part of A contains the lower triangular part of the matrix A, and the 
strictly upper triangular part of A is not referenced. A is not modified if  fact = 
'F' or 'N', or if fact = 'E' and equed = 'N' on exit. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

af (local)
REAL for psposvx 
DOUBLE PRECISION for pdposvx 
COMPLEX for pcposvx 
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension ( lld_af, 
LOCc(ja+n-1)).
If fact = 'F', then af is an input argument and on entry  contains the triangular 
factor U or L from the Cholesky  factorization A = UT*U or A = L*LT, in the 
same storage format as A. If equed .ne. 'N', then af is the factored form of the 
equilibrated matrix diag(sr)*A*diag(sc). 

 iaf,jaf (global) INTEGER. The row and column indices in the global array af 
indicating the first row and the first column of the submatrix AF, respectively.

descaf (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix AF.

equed (global).CHARACTER. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies the form of equilibration 
that was done: 
If equed = 'N', no equilibration was done (always 
true if fact = 'N');
If equed = 'Y',  equilibration was done and A has been replaced by 
diag(sr)*A*diag(sc).
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sr (local)
REAL for psposvx 
DOUBLE PRECISION for pdposvx 
COMPLEX for pcposvx 
DOUBLE COMPLEX for pzposvx.
Array, DIMENSION  (lld_a). 
The array s contains the scale factors for A. This array is an input argument if 
fact = 'F' only; otherwise it is an output argument.
If equed = 'N', s is not accessed.   
If fact = 'F' and equed = 'Y', each element of s must be positive.

b (local)
REAL for psposvx 
DOUBLE PRECISION for pdposvx 
COMPLEX for pcposvx 
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension ( lld_b, 
LOCc(jb+nrhs-1) ).On entry, the n-by-nrhs right-hand side matrix B. 

ib,jb (global) INTEGER.  The row and column indices in the global array b 
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

x (local)
REAL for psposvx 
DOUBLE PRECISION for pdposvx 
COMPLEX for pcposvx 
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension ( lld_x, 
LOCc(jx+nrhs-1) ).

ix,jx (global) INTEGER.  The row and column indices in the global array x 
indicating the first row and the first column of the submatrix X, respectively.

descx (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix X.

 work (local)
REAL for psposvx 
DOUBLE PRECISION for pdposvx 
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COMPLEX for pcposvx 
DOUBLE COMPLEX for pzposvx.
Workspace array, DIMENSION (lwork); 

lwork (local or global)
INTEGER.
The dimension of the array work. lwork is local input and must be at least 
lwork = max( p?pocon( lwork ), p?porfs( lwork) )  + LOCr( n_a ). 
lwork = 3*desca( lld_ ) 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.  

liwork (local or global)

INTEGER.

The dimension of the array iwork. liwork is local input and must be at least 
liwork = desca( lld_ ) liwork = LOCr(n_a). 
If liwork = -1, then liwork is global input and a workspace query is 
assumed; the routine only calculates the minimum and optimal size for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work array, and no error message is issued by pxerbla.  

Output Parameters

a On exit, if fact = 'E' and equed = 'Y', a is overwritten by  
diag(sr)*a*diag(sc).

af If fact = 'N', then af is an output argument and on exit  returns the triangular 
factor U or L from the Cholesky factorization A = UT*U or A = L*LT of the 
original  matrix A. 
If fact = 'E', then af is an output argument and on exit returns the triangular 
factor U or L from the Cholesky factorization A = UT*U or A = L*LT of the 
equilibrated matrix A (see the description of A for the form of the equilibrated 
matrix).

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of 
equilibration that was done (see the description of equed in Input Arguments 
section). 

sr This array  is an output argument if fact ≠ 'F' .
See the description of sr in Input Arguments section.
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sc This array is an output argument if fact ≠ 'F' .
See the description of sc in Input Arguments section.

b On exit, if equed = 'N', b is not modified; if trans = 'N'  and equed = 'R' or 'B',
b is overwritten by diag(r)*b; if  trans = 'T' or 'C' and equed = 'C' or 'B', b is 
overwritten by diag(c)*b. 

x (local)
REAL for psposvx 
DOUBLE PRECISION for pdposvx 
COMPLEX for pcposvx 
DOUBLE COMPLEX for pzposvx.

If info = 0 the n-by-nrhs solution matrix X to the original system of 
equations. Note that A and B are modified on exit if equed .ne. 'N', and the 
solution to the equilibrated system is inv(diag(sc))*X if trans = 'N' and 
equed = 'C' or 'B', or inv(diag(sr))*X if trans = 'T' or 'C' and equed = 'R' or 
'B'. 

rcond (global)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
An estimate of the reciprocal condition number of the matrix A after 
equilibration (if done). If rcond is less than the machine precision (in 
particular, if rcond = 0), the matrix is singular to working precision. This 
condition is indicated by a return code of info > 0.

ferr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(LOC,n_b). The estimated forward error 
bounds for each solution vector  X(j) (the j-th column of the solution matrix 
X). If xtrue is the true solution, ferr(j) bounds the magnitude of the largest 
entry in (X(j) - xtrue) divided by the magnitude of the largest entry in X(j). 
The quality of the error bound depends on the quality of the estimate of 
norm(inv(A)) computed in the code; if the estimate of norm(inv(A)) is accurate, 
the error bound is guaranteed.

berr (local)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. 
Arrays, DIMENSION at least max(LOC,n_b).
The componentwise relative backward error of each solution vector X(j)  (the 
smallest relative change in any entry of A or B that makes X(j) an exact 
solution).
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info (global) INTEGER. 
If info=0, the execution is successful.
< 0: if info = -i, the i-th argument had an illegal value 
> 0: if info = i, and i is <= n: if info = i, the leading minor of order i of a 
is not positive definite, so the factorization could not be completed, and the 
solution and error bounds could not be computed. 
= n+1: rcond is less than machine precision. The factorization has been 
completed, but the matrix is singular to working precision, and the solution and 
error bounds have not been computed. 

p?pbsv
Solves a symmetric/Hermitian positive definite banded 
system of linear equations.

Syntax
call pspbsv (uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,

info)

call pdpbsv (uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

call pcpbsv (uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

call pzpbsv (uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

Description

This routine solves a system of linear equations

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs) 

where A(1:n, ja:ja+n-1) is an n-by-n real/complex banded symmetric positive definite 
distributed matrix with bandwidth bw.

Cholesky factorization is used to factor a reordering of the matrix into L L'. 

Input Parameters
uplo (global) CHARACTER. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular of A is stored. 
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If uplo = 'U', the upper triangular A is stored
If uplo = 'L', the lower triangular of A is stored.

n (global) INTEGER. The order of the distributed matrix A (n ≥ 0). 
bw (global) INTEGER. The number of subdiagonals in L or U. 0< bw < n-1.

nrhs (global) INTEGER. The number of right-hand sides; the number of columns in 
B (nrhs ≥ 0). 

a (local).
REAL for pspbsv
DOUBLE PRECISION for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array with first dimension lld_a >(bw+1) 
(stored in desca).
On entry, this array contains the local pieces of the distributed matrix sub(A) to 
be factored.

ja (global) INTEGER.  The index in the global array a that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

b (local)
REAL for pspbsv
DOUBLE PRECISION for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array of local lead dimension lld_b>NB. 
On entry, this array contains the local pieces of the right hand sides 
B(ib:ib+n-1, 1:nrhs). 

ib (global) INTEGER. The row index in the global array b that points to the first 
row of the matrix to be operated on (which may be either all of b or a 
submatrix of B).

desb (global and local) INTEGER array of dimension dlen. 
if 1D type (dtype_b =502), dlen >7; 
if 2D type (dtype_b =1), dlen > 9. 
The array descriptor for the distributed matrix B. Contains information of 
mapping of B to memory.

work (local).
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REAL for pspbsv
DOUBLE PRECISION for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Temporary workspace. This space may be overwritten in between calls to 
routines. work must be the size given in lwork. 

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal 
acceptable size will be returned in work(1) and an error code is returned. 
lwork >  (NB+2*bw)*bw +max((bw*nrhs), bw*bw) 

Output Parameters

a On exit, this array contains information containing details of the factorization. 
Note that permutations are performed on the matrix, so that the factors 
returned are different from those returned by LAPACK.  

b On exit, contains the local piece of the solutions distributed matrix X.

work On exit, work(1) contains the minimal lwork. 

info (global).
INTEGER. If info=0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value, then 
info = -(i*100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
> 0: If info  = k < NPROCS, the submatrix stored on processor info and 
factored locally was not positive definite, and the factorization was not 
completed. 
If info = k > NPROCS, the submatrix stored on processor info-NPROCS 
representing interactions with other processors was not positive definite, and 
the factorization was not completed. 
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p?ptsv
Solves a symmetric or Hermitian positive definite 
tridiagonal system of linear equations.

Syntax
call psptsv (n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

call pdptsv (n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

call pcptsv (n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

call pzptsv (n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

Description

This routine solves a system of linear equations 

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs) 

where A(1:n, ja:ja+n-1) is an n-by-n real tridiagonal symmetric positive definite distributed 
matrix. 

Cholesky factorization is used to factor a reordering of the matrix into L L'.

Input Parameters
n (global) INTEGER. The order of matrix A (n ≥ 0). 

nrhs (global) INTEGER. The number of right-hand sides; the number of columns of 
the distributed submatrix B (nrhs ≥ 0). 

d (local)
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the main diagonal of the matrix. 

e (local)
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
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DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the upper diagonal of the matrix. 
Globally, du(n) is not referenced, and du must be aligned with d. 

ja (global) INTEGER.The index in the global array A that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array of dimension dlen. 
if 1d type (dtype_a=501 or 502), dlen >= 7; 
if 2d type (dtype_a=1), dlen >= 9. 
The array descriptor for the distributed matrix A. Contains information of 
mapping of A to memory.

b (local)
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer into the local memory to an array of local lead dimension lld_b>NB. 
On entry, this array contains the local pieces of the right hand sides 
B(ib:ib+n-1, 1:nrhs). 

ib (global) INTEGER. The row index in the global array b that points to the first 
row of the matrix to be operated on (which may be either all of b or a 
submatrix of B).

desb (global and local) INTEGER array of dimension dlen. 
if 1d type (dtype_b =502), dlen >7; 
if 2d type (dtype_b =1), dlen > 9. 
The array descriptor for the distributed matrix B. Contains information of 
mapping of B to memory.

work (local).

REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Temporary workspace. This space may be overwritten in between calls to 
routines. work must be the size given in lwork. 

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal 
acceptable size will be returned in work(1) and an error code is returned. 
lwork >  (12*NPCOL+3*NB)+max((10+2*min(100,nrhs))*NPCOL+4*nrhs, 
8*NPCOL).  
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Output Parameters

d On exit, this array contains information containing the factors of the matrix. 
Must be of size > desca( nb_ ). 

e On exit, this array contains information containing the factors of the matrix. 
Must be of size > desca( nb_ ).

b On exit, this contains the local piece of the solutions distributed matrix X.

work On exit, work(1) contains the minimal lwork. 

info (local) INTEGER. If info=0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value, then 
info = -(i*100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 
> 0: If info  = k < NPROCS, the submatrix stored on processor info and 
factored locally was not positive definite, and the factorization was not 
completed. 
If info = k > NPROCS, the submatrix stored on processor info-NPROCS 
representing interactions with other processors was not positive definite, and 
the factorization was not completed. 

p?gels 
Solves overdetermined or underdetermined linear 
systems involving a matrix of full rank.

Syntax
call psgels ( trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,

work, lwork, info )

call pdgels ( trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
work, lwork, info )

call pcgels ( trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
work, lwork, info )

call pzgels ( trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
work, lwork, info )
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Description

This routine solves overdetermined or underdetermined real/ complex linear systems involving an 
m-by-n matrix sub(A) = A(ia:ia+m-1,ja:ja+n-1), or its transpose/ conjugate-transpose, using a 
QR or LQ factorization of
sub(A). It is assumed that sub(A) has full rank.

The following options are provided: 

1. If trans = 'N' and m ≥ n: find the least squares solution of an overdetermined system, that is, 
solve the least squares problem 

minimize   || sub (B) -sub(A) X ||

2. If trans = 'N' and m < n: find the minimum norm solution of an underdetermined system   
sub(A) X = sub(B).

3. If trans = 'T' and m ≥ n: find the minimum norm solution of an undetermined system sub(A)T X 
= sub(B).

4. If trans = 'T' and m < n: find the least squares solution of an overdetermined system, that is, 
solve the least squares problem 

minimize   || sub(B) - sub(A)T X ||

where sub(B) denotes B(ib:ib+m-1, jb:jb+nrhs-1) when trans = 'N' and B(ib:ib+n-1, 
jb:jb+nrhs-1) otherwise. Several right hand side vectors b and solution vectors x can be handled 
in a single call; 
When when trans = 'N', the solution vectors are stored as the columns of the n-by-nrhs right 
hand side matrix sub(B) and the m-by-nrhs right hand side matrix sub(B) otherwise. 

Input Parameters

trans (global) CHARACTER. Must be 'N', or'T'.
If trans = 'N', the linear system involves matrix
sub(A);
If trans = 'T', the linear system involves the transposed matrix AT (for real
flavors only).

m (global) INTEGER. The number of rows in the distributed submatrix sub (A) (m 
≥ 0). 

n (global) INTEGER. The number of columns in the distributed submatrix sub (A) 
(n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides; the number of columns in 
the distributed submatrices sub(B) and X. (nrhs ≥ 0). 
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a (local)
REAL for psgels 
DOUBLE PRECISION for pdgels 
COMPLEX for pcgels 
DOUBLE COMPLEX for pzgels.
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)). On entry, contains the m-by-n matrix A.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

b (local)
REAL for psgels 
DOUBLE PRECISION for pdgels 
COMPLEX for pcgels 
DOUBLE COMPLEX for pzgels.
Pointer into the local memory to an array of local dimension (lld_b, 
LOCc(jb+nrhs-1)). On entry, this array contains the local pieces of the 
distributed matrix B of right-hand side vectors, stored columnwise;
sub(B) is m-by-nrhs if trans='N', and n-by-nrhs otherwise.

ib,jb (global) INTEGER.  The row and column indices in the global array b 
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B.

work (local)
REAL for psgels 
DOUBLE PRECISION for pdgels 
COMPLEX for pcgels 
DOUBLE COMPLEX for pzgels.
Workspace array with dimension lwork.

lwork (local or global)
INTEGER.The dimension of the array work
lwork is local input and must be at least 
lwork >= ltau + max(lwf, lws) where 
if m > n, then 
ltau = numroc(ja+min(m,n)-1, nb_a, MYCOL, csrc_a, NPCOL), 
lwf = nb_a * (mpa0 + nqa0 + nb_a) 
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lws = max((nb_a*(nb_a-1))/2, (nrhsqb0 + mpb0)*nb_a) + nb_a * nb_a 
else 
ltau = numroc(ia+min(m,n)-1, mb_a, MYROW, rsrc_a, NPROW), 
lwf = mb_a * (mpa0 + nqa0 + mb_a)
lws = max((mb_a*(mb_a-1))/2, (npb0 + max(nqa0 + 
numroc(numroc(n+iroffb, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), 
nrhsqb0))*mb_a) + mb_a * mb_a 

End if 
where lcmp = lcm / NPROW with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(ia-1, mb_a), 
icoffa = mod(ja-1, nb_a), 
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol= indxg2p(ja, nb_a, MYROW, rsrc_a, NPROW)
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL), 
iroffb = mod(ib-1, mb_b), 
icoffb = mod(jb-1, nb_b), 
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, 
NPROW), 
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL), 
mpb0 = numroc(m+iroffb, mb_b, MYROW, icrow, NPROW), 
nqb0 = numroc(n+icoffb, nb_b, MYCOL, ibcol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

a On exit, If m > n, sub(A) is overwritten by the details of its QR factorization as 
returned by p?geqrf; if m < n, sub(A) is overwritten by details of its LQ 
factorization as returned by p?gelqf. 

b On exit, sub(B) is overwritten by the solution vectors, stored columnwise: if 
trans = 'N' and m > n, rows 1 to n of sub(B) contain the least squares solution 
vectors; the residual sum of squares for the solution in each column is given by 
the sum of squares of elements n+1 to m in that column; 
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if trans = 'N' and m < n, rows 1 to n of sub(B) contain the minimum norm 
solution vectors;
if trans = 'T' and m > n, rows 1 to m of sub(B) contain the minimum norm 
solution vectors; 
if trans = 'T' and m < n, rows 1 to m of sub(B) contain the least squares 
solution vectors; the residual sum of squares for the solution in each column is 
given by the sum of squares of elements m+1 to n in that column. 

work(1) On exit work(1) contains the minimum value of lwork required for optimum 
performance. 

info (global) INTEGER. 
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, 
then info = -i. 

p?syev 
Computes selected eigenvalues and eigenvectors of a 
symmetric matrix.

Syntax
call pssyev ( jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work,

lwork, info )

call pdsyev ( jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work,
lwork, info )

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A 
by calling the recommended sequence of ScaLAPACK routines. 
In its present form, the routine assumes a homogeneous system and makes no checks for 
consistency of the eigenvalues or eigenvectors across the different processes. Because of this, it is 
possible that a heterogeneous system may return incorrect results without any error messages. 

Input Parameters

np = the number of rows local to a given process. 



6-248

6 Intel® Math Kernel Library Reference Manual

nq = the number of columns local to a given process. 

jobz (global).CHARACTER. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors: 
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo (global).CHARACTER. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric matrix A 
is stored: 
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n (global) INTEGER. The number of rows and columns of the matrix A (n ≥ 0). 

a (local)
REAL for pssyev.
DOUBLE PRECISION for pdsyev.
Block cyclic array of global dimension (n,n) and local dimension (lld_a, 
LOCc(ja+n-1)). On entry, the symmetric matrix A. If uplo = 'U', only the 
upper triangular part of A is used to define the elements of the symmetric 
matrix. If uplo = 'L', only the lower triangular part of A is used to define the 
elements of the symmetric matrix. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.

iz,jz (global) INTEGER.  The row and column indices in the global array z 
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix Z.

work (local)
REAL for pssyev.
DOUBLE PRECISION for pdsyev.
Array, DIMENSION (lwork).

lwork (local)
INTEGER. See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N') then lwork > 5*n + sizesytrd 
+ 1 where 
 sizesytrd = The workspace requirement for p?sytrd and is max(NB * (np 
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+1), 3 * NB).
If eigenvectors are requested (jobz = 'V') then the amount of workspace 
required to guarantee that all eigenvectors are computed is: 
qrmem = 2*n-2 
lwmin = 5*n + n*ldc + max(sizemqrleft, qrmem) + 1 

 Variable definitions: 
NB = desca(mb_) = desca(nb_) = * descz(mb_) = descz(nb_) 
nn = max(n, NB, 2) 
desca(rsrc_) = desca(rsrc_) = descz(rsrc_) = * descz(csrc_) = 0 
np = numroc(nn, NB, 0, 0, NPROW) 
nq = numroc(max(n, NB, 2), NB, 0, 0, NPCOL) 
nrc = numroc(n, NB, myprowc, 0, NPROCS) 
ldc = max(1, nrc) 
sizemqrleft = The workspace requirement for p?ormtr when it's side 
argument is 'L'. 
With myprowc defined when a new context is created as: 
call blacs_get(desca(ctxt_), 0, contextc) call
blacs_gridinit(contextc, 'R', NPROCS, 1) call
blacs_gridinfo(contextc, nprowc, npcolc, myprowc, mypcolc) 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla. 

Output Parameters

a On exit, the lower triangle (if uplo='L') or the upper triangle (if uplo='U') of 
A, including the diagonal, is destroyed. 

w (global).
REAL for pssyev 
DOUBLE PRECISION for pdsyev 
Array, DIMENSION (n).
On normal exit, the first m entries contain the selected eigenvalues in ascending 
order. 

z (local).
REAL for pssyev 
DOUBLE PRECISION for pdsyev 
Array, global dimension (n, n), local dimension (lld_z, LOCc(jz+n-1)).If 
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jobz = 'V', then on normal exit the first m columns of z contain the 
orthonormal eigenvectors of the matrix corresponding to the selected 
eigenvalues. If jobz = 'N', then z is not referenced. 

work(1) On output, work(1) returns the workspace needed to guarantee completion. If 
the input parameters are incorrect, work(1) may also be incorrect. 
If jobz = 'N' work(1) = minimal (optimal) amount of workspace
If jobz = 'V' work(1) = minimal workspace required to generate all the 
eigenvectors. 

info (global)
INTEGER. 
If info = 0, the execution is successful.

If info < 0: If the i-th argument is an array and the j-entry had an illegal 
value, then info = -(i*100+j),
 if the i-th argument is a scalar and had an illegal value, then info = -i. 

If info > 0: 
If info= 1 through n, the i-th eigenvalue did not converge in ?steqr2 after a 
total of 30n iterations. 
If info= n+1, then p?syev has detected heterogeneity by finding that 
eigenvalues were not identical across the process grid. In this case, the 
accuracy of the results from p?syev cannot be guaranteed. 

p?syevx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a symmetric matrix.

Syntax
call pssyevx (jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,

abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork,
ifail, iclustr, gap, info)

call pdsyevx (jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,
abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork,
ifail, iclustr, gap, info)
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Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric 
matrix A by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and 
eigenvectors can be selected by specifying either a range of values or a range of indices for the 
desired eigenvalues.

Input Parameters

np = the number of rows local to a given process.
nq = the number of columns local to a given process. 

jobz (global).CHARACTER*1. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors: 
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.

range (global).CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found. 
If range ='V', all eigenvalues in the half-open interval
 [vl, vu] will be found. 
If range ='I', the eigenvalues with indices il through iu will be found. 

uplo (global).CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric matrix A 
is stored: 
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n (global) INTEGER. The number of rows and columns of the matrix A (n ≥ 0). 

a (local).
REAL for pssyevx 
DOUBLE PRECISION for pdsyevx. 
Block cyclic array of global dimension (n,n) and local dimension (lld_a, 
LOCc(ja+n-1)). On entry, the symmetric matrix A. If uplo = 'U', only the 
upper triangular part of A is used to define the elements of the symmetric 
matrix. If uplo = 'L', only the lower triangular part of A is used to define the 
elements of the symmetric matrix. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
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vl, vu (global)
REAL for pssyevx 
DOUBLE PRECISION for pdsyevx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues; vl ≤ vu.
Not referenced if range ='A'or 'I'.

il, iu (global)
INTEGER. If range ='I', the indices of the smallest and largest eigenvalues 
to be returned.
Constraints: 
il > 1
min(il,n) < iu < n
Not referenced if range ='A'or 'V'.

abstol (global).
REAL for pssyevx 
DOUBLE PRECISION for pdsyevx. 
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most 
orthogonal eigenvectors. 

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is 
accepted as converged when it is determined to lie in an interval [a,b] of width 
less than or equal to
abstol + eps * max(|a|,|b|), 
where eps is the machine precision. If abstol is less than or equal to zero, 
then eps*norm(T) will be used in its place, where norm(T) is the 1-norm of the 
tridiagonal matrix obtained by reducing A to tridiagonal form. 

Eigenvalues will be computed most accurately when abstol is set to twice the 
underflow threshold 2*p?lamch('S') not zero.If this routine returns with 
((mod(info,2).ne.0).or. * (mod(info/8,2).ne.0)), indicating that some 
eigenvalues or eigenvectors did not converge, try setting abstol to 
2*p?lamch('S'). 

orfac (global).
REAL for pssyevx 
DOUBLE PRECISION for pdsyevx. 
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that 
correspond to eigenvalues which are within tol=orfac*norm(A) of each 
other are to be reorthogonalized. However, if the workspace is insufficient (see 
lwork), tol may be decreased until all eigenvectors to be reorthogonalized 
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can be stored in one process. No reorthogonalization will be done if orfac 
equals zero. A default value of 103 is used if orfac is negative. orfac should 
be identical on all processes. 

iz,jz (global) INTEGER.  The row and column indices in the global array z 
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix Z.descz( ctxt_ ) must equal desca( ctxt_ ).

work (local)
REAL for pssyevx.
DOUBLE PRECISION for pdsyevx.
Array, DIMENSION (lwork).

lwork (local) INTEGER. The dimension of the array work. 
See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N') then lwork > 5 * n + max(5 * nn, 
NB * (np0 + 1)).
If eigenvectors are requested (jobz = 'V') then the amount of workspace 
required to guarantee that all eigenvectors are computed is: 

lwork >= 5*n + max(5*nn, np0 * mq0 + 2 * NB * NB) +iceil(neig, 
NPROW*NPCOL)*nn

The computed eigenvectors may not be orthogonal if the minimal workspace is 
supplied and orfac is too small. If you want to guarantee orthogonality (at the 
cost of potentially poor performance) you should add the following to lwork:
 (clustersize-1)*n 
where clustersize is the number of eigenvalues in the largest cluster, where 
a cluster is defined as a set of close eigenvalues: 
{w(k),...,w(k+clustersize-1) | 
 w(j+1) < w(j)) + orfac*2*norm(A)} 

 Variable definitions: 
neig = number of eigenvectors requested 
NB = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_) 
nn = max(n, NB, 2) 
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0 
 np0 = numroc(nn, NB, 0, 0, NPROW) 
mq0 = numroc(max(neig, NB, 2), NB, 0, 0, NPCOL) iceil(x, y) is a 
ScaLAPACK function returning ceiling(x/y) 
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 When lwork is too small: 
If lwork is too small to guarantee orthogonality, p?syevx attempts to 
maintain orthogonality in the clusters with the smallest spacing between the 
eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no 
computation is performed and info=-23 is returned. Note that when 
range='V', p?syevx does not know how many eigenvectors are requested 
until the eigenvalues are computed. Therefore, when range='V' and as long as 
lwork is large enough to allow p?syevx to compute the eigenvalues,
p?syevx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality & performance: 
Greater performance can be achieved if adequate workspace is provided. On 
the other hand, in some situations, performance can decrease as the workspace 
provided increases above the workspace amount shown below: 

For optimal performance, greater workspace may be needed, that is,
lwork > max(lwork, 5*n + nsytrd_lwopt) 
Where:
lwork, as defined previously, depends upon the number of eigenvectors 
requested, and 
nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) + (nps + 3) * nps 

anb = pjlaenv(desca(ctxt_), 3, 'p?syttrd', 'L', 0, 0, 0, 0) 
sqnpc = int(sqrt(dble(NPROW * NPCOL))) 
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb) 

numroc is a ScaLAPACK tool functions; 
pjlaenv is a ScaLAPACK environmental inquiry function 
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

For large n, no extra workspace is needed, however the biggest boost in 
performance comes for small n, so it is wise to provide the extra workspace 
(typically less than a Megabyte per process).

If clustersize > n/sqrt(NPROW*NPCOL), then providing enough space to 
compute all the eigenvectors orthogonally will cause serious degradation in 
performance. In the limit (that is, clustersize = n-1) p?stein will perform 
no better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL) reorthogonalizing all 
eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the 
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square of the cluster size, all other factors remaining equal and assuming 
enough workspace. Less workspace means less reorthogonalization but faster 
execution. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the size required for optimal performance for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work arrays, and no error message is issued by pxerbla. 

iwork (local) INTEGER. Workspace array.

liwork (local) INTEGER, dimension of iwork.
liwork > 6 * nnp 
Where: nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a workspace query is 
assumed; the routine only calculates the minimum and optimal size for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = 
'U') of A, including the diagonal, is overwritten. 

m (global) INTEGER. The total number of eigenvalues found;
0 ≤ m ≤ n.

w (global).
REAL for pssyevx 
DOUBLE PRECISION for pdsyevx 
Array, DIMENSION (n).
The first m elements contain the selected eigenvalues in ascending order.

z (local).
REAL for pssyevx 
DOUBLE PRECISION for pdsyevx 
Array, global dimension (n, n), 
local dimension (lld_z, LOCc(jz+n-1))
If jobz ='V', then on normal exit the first m columns of z contain the 
orthonormal eigenvectors of the matrix corresponding to the selected 
eigenvalues. If an eigenvector fails to converge, then that column of z contains 
the latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz = 'N', then z is not referenced. 
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work(1) On exit, returns workspace adequate workspace to allow optimal performance. 

iwork(1) On return, iwork(1) contains the amount of integer workspace required

ifail (global) INTEGER.Array, DIMENSION (n).
If jobz ='V', then on normal exit, the first m elements of ifail are zero. If 
(mod(info,2).ne.0) on exit, then ifail contains the indices of the 
eigenvectors that failed to converge. 
If jobz = 'N', then ifail is not referenced. 

iclustr (global) INTEGER.
Array, DIMENSION (2*NPROW*NPCOL) 
This array contains indices of eigenvectors corresponding to a cluster of 
eigenvalues that could not be reorthogonalized due to insufficient workspace 
(see lwork, orfac and info).Eigenvectors corresponding to clusters of 
eigenvalues indexed iclustr(2*i-1) to iclustr(2*i), could not be 
reorthogonalized due to lack of workspace. Hence the eigenvectors 
corresponding to these clusters may not be orthogonal. iclustr() is a zero 
terminated array. (iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and 
only if k is the number of clusters.
iclustr is not referenced if jobz = 'N'

gap (global)
REAL for pssyevx 
DOUBLE PRECISION for pdsyevx 
Array, DIMENSION (NPROW*NPCOL) 
This array contains the gap between eigenvalues whose eigenvectors could not 
be reorthogonalized. The output values in this array correspond to the clusters 
indicated by the array iclustr. As a result, the dot product between 
eigenvectors corresponding to the ith cluster may be as high as (C * n) / 
gap(i) where C is a small constant. 

info (global) INTEGER. 
If info = 0, the execution is successful.
If info< 0: 
If the i-th argument is an array and the j-entry had an illegal value, then info 
= -(i*100+j), if the i-th argument is a scalar and had an illegal value, then 
info = -i. 
If info > 0: if (mod(info,2).ne.0), then one or more eigenvectors failed to 
converge. Their indices are stored in ifail. Ensure 
abstol=2.0*p?lamch('U') 
if (mod(info/2,2).ne.0),then eigenvectors corresponding to one or more 
clusters of eigenvalues could not be reorthogonalized because of insufficient 
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workspace.The indices of the clusters are stored in the array iclustr. 
if (mod(info/4,2).ne.0), then space limit prevented p?syevx from computing 
all of the eigenvectors between vl and vu. The number of eigenvectors 
computed is returned in nz.
if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues. Ensure 
abstol=2.0*p?lamch('U').

p?heevx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a Hermitian matrix.

Syntax
call pcheevx (jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,

abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork,
iwork, liwork, ifail, iclustr, gap, info)

call pzheevx (jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,
abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork,
iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian 
matrix A by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and 
eigenvectors can be selected by specifying either a range of values or a range of indices for the 
desired eigenvalues.

Input Parameters

np = the number of rows local to a given process.
nq = the number of columns local to a given process. 

jobz (global).CHARACTER*1. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors: 
If jobz ='N', then only eigenvalues are computed. 
If jobz ='V', then eigenvalues and eigenvectors are computed.
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range (global).CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found. 
If range ='V', all eigenvalues in the half-open interval
 [vl, vu] will be found. 
If range ='I', the eigenvalues with indices il through iu will be found. 

uplo (global).CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the Hermitian matrix A 
is stored: 
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n (global) INTEGER. The number of rows and columns of the matrix A (n ≥ 0). 

a (local).
COMPLEX for pcheevx 
DOUBLE COMPLEX for pzheevx. 
Block cyclic array of global dimension (n,n) and local dimension (lld_a, 
LOCc(ja+n-1)). On entry, the Hermitian matrix A. If uplo = 'U', only the 
upper triangular part of A is used to define the elements of the symmetric 
matrix. If uplo = 'L', only the lower triangular part of A is used to define the 
elements of the Hermitian matrix. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.If desca( ctxt_ ) is incorrect, p?heevx cannot 
guarantee correct error reporting

vl, vu (global)
REAL for pcheevx 
DOUBLE PRECISION for pzheevx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues; 
Not referenced if range ='A'or 'I'.

il, iu (global)
INTEGER. If range ='I', the indices of the smallest and largest eigenvalues 
to be returned.
Constraints: 
il > 1
min(il,n) < iu < n
Not referenced if range ='A'or 'V'.
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abstol (global).
REAL for pcheevx 
DOUBLE PRECISION for pzheevx. 
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most 
orthogonal eigenvectors. 

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is 
accepted as converged when it is determined to lie in an interval [a,b] of width 
less than or equal to
abstol + eps * max(|a|,|b|), 
where eps is the machine precision. If abstol is less than or equal to zero, 
then eps*norm(T) will be used in its place, where norm(T) is the 1-norm of the 
tridiagonal matrix obtained by reducing A to tridiagonal form. 

Eigenvalues will be computed most accurately when abstol is set to twice the 
underflow threshold 2*p?lamch('S') not zero.If this routine returns with 
((mod(info,2).ne.0).or. (mod(info/8,2).ne.0)), indicating that some 
eigenvalues or eigenvectors did not converge, try setting abstol to 
2*p?lamch('S'). 

orfac (global).
REAL for pcheevx 
DOUBLE PRECISION for pzheevx. 
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that 
correspond to eigenvalues which are within tol=orfac*norm(A) of each 
other are to be reorthogonalized. However, if the workspace is insufficient (see 
lwork), tol may be decreased until all eigenvectors to be reorthogonalized 
can be stored in one process. No reorthogonalization will be done if orfac 
equals zero. A default value of 103 is used if orfac is negative. orfac should 
be identical on all processes. 

iz,jz (global) INTEGER.  The row and column indices in the global array z 
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix Z.descz( ctxt_ ) must equal desca( ctxt_ ).

work (local)
COMPLEX for pcheevx 
DOUBLE COMPLEX for pzheevx. 
Array, DIMENSION (lwork).
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lwork (local).
INTEGER. The dimension of the array work. 
If only eigenvalues are requested: 
lwork > n + max(NB * (np0 + 1), 3)
If eigenvectors are requested: 
lwork > n + (np0+ mq0 + NB) * NB 
with nq0 = numroc(nn, NB, 0, 0, NPCOL).

lwork >= 5*n + max(5*nn, np0 * mq0 + 2 * NB * NB) +iceil(neig, 
NPROW*NPCOL)*nn

For optimal performance, greater workspace is needed, that is
lwork > max(lwork, nhetrd_lwork) 
where lwork is as defined above, and 
nhetrd_lwork = n + 2*(anb+1)*(4*nps+2) + (nps + 1) * nps 

ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'pchettrd', 'L', 0, 0, 0, 0) 
sqnpc = sqrt(dble(NPROW * NPCOL)) 
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the size required for optimal performance for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work arrays, and no error message is issued by pxerbla. 

rwork (local)
REAL for pcheevx 
DOUBLE PRECISION for pzheevx. 
Workspace array, DIMENSION (lrwork).

lrwork (local)
INTEGER.The dimension of the array work. 
See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N') then lrwork > 5 * nn + 4* n
If eigenvectors are requested (jobz = 'V') then the amount of workspace 
required to guarantee that all eigenvectors are computed is: 

lrwork > 4*n + max(5*nn, np0 * mq0 + 2 * NB * NB) +iceil(neig, 
NPROW*NPCOL)*nn

The computed eigenvectors may not be orthogonal if the minimal workspace is 
supplied and orfac is too small. If you want to guarantee orthogonality (at the 
cost of potentially poor performance) you should add the following to lrwork:
 (clustersize-1)*n  
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where clustersize is the number of eigenvalues in the largest cluster, where 
a cluster is defined as a set of close eigenvalues: 
{w(k),...,w(k+clustersize-1) | 
 w(j+1) < w(j) + orfac*2*norm(A)} 

 Variable definitions: 
neig = number of eigenvectors requested 
NB = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_) 
nn = max(n, NB, 2) 
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0 
 np0 = numroc(nn, NB, 0, 0, NPROW) 
mq0 = numroc(max(neig, NB, 2), NB, 0, 0, NPCOL) iceil(x, y) is a 
ScaLAPACK function returning ceiling(x/y) 

 When lrwork is too small: 
If lwork is too small to guarantee orthogonality, p?heevx attempts to 
maintain orthogonality in the clusters with the smallest spacing between the 
eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no 
computation is performed and info=-23 is returned. Note that when 
range='V', p?heevx does not know how many eigenvectors are requested 
until the eigenvalues are computed. Therefore, when range='V' and as long as 
lwork is large enough to allow p?heevx to compute the eigenvalues, 
p?heevx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality & performance: 
If clustersize > n/sqrt(NPROW*NPCOL), then providing enough space to 
compute all the eigenvectors orthogonally will cause serious degradation in 
performance. In the limit (that is, clustersize = n-1) p?stein will perform 
no better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL) reorthogonalizing all 
eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the 
square of the cluster size, all other factors remaining equal and assuming 
enough workspace. Less workspace means less reorthogonalization but faster 
execution. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the size required for optimal performance for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work arrays, and no error message is issued by pxerbla. 

iwork (local) INTEGER. Workspace array.
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liwork (local) INTEGER, dimension of iwork.
liwork > 6 * nnp 
Where: nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a workspace query is 
assumed; the routine only calculates the minimum and optimal size for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = 
'U') of A, including the diagonal, is overwritten. 

m (global) INTEGER. The total number of eigenvalues found;
0 ≤ m ≤ n.

nz (global) INTEGER.Total number of eigenvectors computed. 0 <nz <m. 
The number of columns of z that are filled.
If jobz.ne. 'V', nz is not referenced.
If jobz.eq. 'V', nz = m unless the user supplies insufficient space and
p?heevx is not able to detect this before beginning computation. To get all the 
eigenvectors requested, the user must supply both sufficient space to hold the 
eigenvectors in z (m.le. descz(n_)) and sufficient workspace to compute 
them. (See lwork).p?heevx is always able to detect insufficient space 
without computation unless range.eq. 'V'. 

w (global).
REAL for pcheevx 
DOUBLE PRECISION for pzheevx 
Array, DIMENSION (n).
The first m elements contain the selected eigenvalues in ascending order.

z (local).
COMPLEX for pcheevx 
DOUBLE COMPLEX for pzheevx 
Array, global dimension (n, n), 
local dimension (lld_z, LOCc(jz+n-1))
If jobz ='V', then on normal exit the first m columns of z contain the 
orthonormal eigenvectors of the matrix corresponding to the selected 
eigenvalues. If an eigenvector fails to converge, then that column of z contains 
the latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz = 'N', then z is not referenced. 
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work(1) On exit, returns workspace adequate workspace to allow optimal performance. 

rwork (local).

REAL for pcheevx 
DOUBLE PRECISION for pzheevx 
Array, DIMENSION (lrwork).
On return, rwork(1) contains the optimal amount of workspace required for 
efficient execution. 
if jobz='N' rwork(1) = optimal amount of workspace required to compute 
eigenvalues efficiently.
if jobz='V' rwork(1) = optimal amount of workspace required to compute 
eigenvalues and eigenvectors efficiently with no guarantee on orthogonality. 
If range='V', it is assumed that all eigenvectors may be required. 

iwork(1) (local)
On return, iwork(1) contains the amount of integer workspace required.

ifail (global) INTEGER.
Array, DIMENSION (n).
If jobz ='V', then on normal exit, the first m elements of ifail are zero. If 
(mod(info,2).ne.0) on exit, then ifail contains the indices of the 
eigenvectors that failed to converge. 
If jobz = 'N', then ifail is not referenced. 

iclustr (global) INTEGER.
Array, DIMENSION (2*NPROW*NPCOL) 
This array contains indices of eigenvectors corresponding to a cluster of 
eigenvalues that could not be reorthogonalized due to insufficient workspace 
(see lwork, orfac and info).Eigenvectors corresponding to clusters of 
eigenvalues indexed iclustr(2*i-1) to iclustr(2*i), could not be 
reorthogonalized due to lack of workspace. Hence the eigenvectors 
corresponding to these clusters may not be orthogonal. iclustr() is a zero 
terminated array. (iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and 
only if k is the number of clusters.
iclustr is not referenced if jobz = 'N'

gap (global)
REAL for pcheevx 
DOUBLE PRECISION for pzheevx 
Array, DIMENSION (NPROW*NPCOL) 
This array contains the gap between eigenvalues whose eigenvectors could not 
be reorthogonalized. The output values in this array correspond to the clusters 
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indicated by the array iclustr. As a result, the dot product between 
eigenvectors corresponding to the ith cluster may be as high as (C * n) / 
gap(i) where C is a small constant. 

info (global) INTEGER. 
If info = 0, the execution is successful.
If info< 0: 
If the i-th argument is an array and the j-entry had an illegal value, then info 
= -(i*100+j), if the i-th argument is a scalar and had an illegal value, then 
info = -i. 
If info > 0: 
if (mod(info,2).ne.0), then one or more eigenvectors failed to converge. Their 
indices are stored in ifail. Ensure abstol=2.0*p?lamch('U') 
if (mod(info/2,2).ne.0),then eigenvectors corresponding to one or more 
clusters of eigenvalues could not be reorthogonalized because of insufficient 
workspace.The indices of the clusters are stored in the array iclustr. 
if (mod(info/4,2).ne.0), then space limit prevented p?syevx from computing 
all of the eigenvectors between vl and vu. The number of eigenvectors 
computed is returned in nz.
if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues. Ensure 
abstol=2.0*p?lamch('U').

p?gesvd 
Computes the singular value decomposition of a 
general matrix, optionally computing the left and/or 
right singular vectors.

Syntax
call psgesvd ( jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu,

vt, ivt, jvt, descvt, work, lwork, info)

call pdgesvd ( jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu,
vt, ivt, jvt, descvt, work, lwork, info)

Description

This routine computes the singular value decomposition (SVD) of an m-by-n matrix A, optionally 
computing the left and/or right singular vectors. The SVD is written 

A = U Σ VT
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where Σ is an m-by-n matrix which is zero except for its min(m,n) diagonal elements, U is an 
m-by-m orthogonal matrix, and V is an n-by-n orthogonal matrix. The diagonal elements of Σ are 
the singular values of Aand the columns of U and V are the corresponding right and left singular 
vectors, respectively. The singular values are returned in array s in decreasing order and only the 
first min(m,n) columns of U and rows of vt = VT are computed.

Input Parameters

mp = number of local rows in A and U
nq = number of local columns in A and VT
size = min(m,n)
sizeq = number of local columns in U 
sizep = number of local rows in VT 

jobu (global).CHARACTER*1.
Specifies options for computing all or part of the 
matrix U.

If jobu ='V', the first size columns of U (the left singular vectors) are 
returned in the array u;
if jobu ='N', no columns of U (no left singular vectors) are computed.

jobvt (global) CHARACTER*1. 
Specifies options for computing all or part of the 
matrix VT.

If jobvt ='V', the first size rows of VT (the right singular vectors) are 
returned in the array vt;
if jobvt ='N', no rows of VT(no right singular vectors) are computed.

m (global) INTEGER. The number of rows of the matrix A (m ≥ 0). 

n (global) INTEGER. The number of columns in A (n ≥ 0). 

a (local).
DOUBLE PRECISION for psgesvd and pdgesvd 
Block cyclic array, global dimension (m, n), local dimension (mp, nq). 

work(lwork) is a workspace array.

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.
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iu,ju (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix U, respectively.

descu (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix U.

ivt,jvt (global) INTEGER. The row and column indices in the global array vt 
indicating the first row and the first column of the submatrix VT, respectively.

descvt (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix VT.

work (local)
DOUBLE PRECISION for psgesvd and pdgesvd 
Workspace array, dimension (lwork)

lwork (local)
INTEGER. The dimension of the array work;

lwork > 2 + 6*sizeb + max(watobd, wbdtosvd), 

where sizeb = max(m,n), and watobd and wbdtosvd refer, respectively, to 
the workspace required to bidiagonalize the matrix A and to go from the 
bidiagonal matrix to the singular value decomposition U S VT.

For watobd, the following holds:

watobd = max(max(wpslange,wpsgebrd), 
max(wpslared2d,wpslared1d)), 

where wpslange, wpslared1d, wpslared2d, wpsgebrd are the workspaces 
required respectively for the subprograms pslange, pslared1d, 
pslared2d, psgebrd. Using the standard notation 

mp = numroc(m, mb, MYROW, desca(ctxt_), NPROW), 
nq = numroc(n, NB, MYCOL, desca(lld_), NPCOL),

the workspaces required for the above subprograms are

wpslange = mp, 
wpslared1d = nq0, 
wpslared2d = mp0, 
wpsgebrd = NB*(mp + nq + 1) + nq, 

where nq0 and mp0 refer, respectively, to the values obtained at MYCOL = 0 and 
MYROW = 0. In general, the upper limit for the workspace is given by a 
workspace required on processor (0,0): 
 watobd < NB*(mp0 + nq0 + 1) + nq0.
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In case of a homogeneous process grid this upper limit can be used as an 
estimate of the minimum workspace for every processor.

For wbdtosvd, the following holds:

wbdtosvd = size*(wantu*nru + wantvt*ncvt) + max(wsbdsqr, 
max(wantu*wpsormbrqln, wantvt*wpsormbrprt)), 

where 

1, if left(right) singular vectors are wanted wantu(wantvt) = 0,otherwise
and wsbdsqr, wpsormbrqln and wpsormbrprt refer respectively to the 
workspace required for the subprograms sbdsqr, p?ormbr(qln), and 
p?ormbr(prt), where qln and prt are the values of the arguments vect, 
side, and trans in the call to p?ormbr. nru is equal to the local number of 
rows of the matrix U when distributed 1-dimensional "column" of processes. 
Analogously, ncvt is equal to the local number of columns of the matrix VT 
when distributed across 1-dimensional "row" of processes. Calling the 
LAPACK procedure sbdsqr requires 

wsbdsqr = max(1, 2*size + (2*size - 4)* max(wantu, wantvt)) 

on every processor. Finally, 

wpsormbrqln = max((NB*(NB-1))/2,
(sizeq+mp)*NB)+NB*NB,
wpsormbrprt = max((mb*(mb-1))/2,
(sizep+nq)*mb)+mb*mb, 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum size for the work array. The required 
workspace is returned as the first element of work and no error message is 
issued by pxerbla.

Output Parameters

a On exit, the contents of a are destroyed.

s (global).
DOUBLE PRECISION for psgesvd and pdgesvd. 
Array, DIMENSION (size).
Contains the singular values of A sorted so that 
s(i) ≥ s(i+1).
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u (local).
DOUBLE PRECISION for psgesvd and pdgesvd 
local dimension (mp, sizeq), global dimension (m, size)
if jobu = 'V', u contains the first min(m,n) columns of U If jobu ='N'or 'O', 
u is not referenced.

vt (local)
DOUBLE PRECISION for psgesvd and pdgesvd 
local dimension (sizep, nq), global dimension (size, n)
if jobvt = 'V',VT contains the first size rows of VT

If jobu ='N',VT is not referenced.

work On exit, if info = 0, then work(1) returns the required minimal size of 
lwork.

rwork On exit (for complex flavors), if info > 0, rwork(1:min(m,n)-1) contains the 
unconverged superdiagonal elements of an upper bidiagonal matrix B whose 
diagonal is in s (not necessarily sorted). B satisfies A = u * B * vt, so it has the 
same singular values as A, and singular vectors related by u and vt.

info (global) INTEGER.
If info = 0, the execution is successful.
If info < 0, If info= -i, the ith parameter had an illegal value.
If info >0 i, then if p?bdsqr did not converge,
If info = min(m,n) + 1, then p?gesvd has detected heterogeneity by finding 
that eigenvalues were not identical across the process grid. In this case, the 
accuracy of the results from p?gesvd cannot be guaranteed. 
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p?sygvx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a real generalized symmetric definite 
eigenproblem.

Syntax
call pssygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,

descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

call pdsygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,
descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized 
symmetric-definite eigenproblem, of the form 
             sub(A)x = λ sub(B)x,   sub(A) sub(B)x = λ  x,  or sub(B) sub(A)x = λ  x.

Here sub(A) denoting A(ia:ia+n-1, ja:ja+n-1) is assumed to symmetric and sub(B) denoting 
B(ib:ib+n-1, jb:jb+n-1) is also positive definite. 

Input Parameters

ibtype (global) INTEGER. Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if ibtype = 1, the problem type is 
 sub(A)x = λ  sub(B)x;
if ibtype = 2, the problem type is   
sub(A)sub(B)x = λ  x;
if ibtype = 3, the problem type is 
sub(B) sub(A)x = λ  x.

jobz (global).CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

range (global).
CHARACTER*1. Must be 'A' or 'V' or 'I'.
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If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues in the interval: [vl, vu]
If range ='I', the routine computes eigenvalues with indices il through iu.

uplo (global).
CHARACTER*1. Must be 'U' or 'L'. 
If uplo = 'U', arrays a and b store the upper triangles of sub(A) and sub (B);
If uplo = 'L', arrays a and b store the lower triangles of sub(A) and sub (B).

n (global).
INTEGER. The order of the matrices sub(A) and sub (B) n ≥ 0. 

a (local)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx. 
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)). On entry, this array contains the local pieces of the n-by-n 
symmetric distributed matrix sub(A). If uplo = 'U', the leading n-by-n upper 
triangular part of sub(A) contains the upper triangular part of the matrix.If 
uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the 
lower triangular part of the matrix. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.If desca( ctxt_ ) is incorrect, p?sygvx cannot 
guarantee correct error reporting.

b (local).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx. 
Pointer into the local memory to an array of dimension (lld_b, 
LOCc(jb+n-1)). On entry, this array contains the local pieces of the n-by-n 
symmetric distributed matrix sub(B). If uplo = 'U', the leading n-by-n upper 
triangular part of sub(B) contains the upper triangular part of the matrix.If 
uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the 
lower triangular part of the matrix.

ib,jb (global) INTEGER.  The row and column indices in the global array b 
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B. descb( ctxt_ ) must be equal to desca( ctxt_
).
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vl, vu (global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 

If range ='A' or 'I', vl and vu are not referenced.

il, iu (global)
INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: il> 1, min (il, n)< iu< n

If range ='A' or 'V', il and iu are not referenced.

abstol (global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx. 
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most 
orthogonal eigenvectors. 
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is 
accepted as converged when it is determined to lie in an interval [a,b] of width 
less than or equal to 

abstol + eps * max(|a|,|b|), 

where eps is the machine precision. If abstol is less than or equal to zero, 
then eps*norm(T) will be used in its place, where norm(T) is the 1-norm of the 
tridiagonal matrix obtained by reducing A to tridiagonal form. 

Eigenvalues will be computed most accurately when abstol is set to twice the 
underflow threshold 2*p?lamch('S') not zero. If this routine returns with 
((mod(info,2).ne.0).or. * (mod(info/8,2).ne.0)), indicating that some 
eigenvalues or eigenvectors did not converge, try setting abstol to 
2*p?lamch('S'). 

orfac (global).
REAL for pssygvx 
DOUBLE PRECISION for pdsygvx. 
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that 
correspond to eigenvalues which are within tol=orfac*norm(A) of each 
other are to be reorthogonalized. However, if the workspace is insufficient (see 
lwork), tol may be decreased until all eigenvectors to be reorthogonalized 



6-272

6 Intel® Math Kernel Library Reference Manual

can be stored in one process. No reorthogonalization will be done if orfac 
equals zero. A default value of 10-3 is used if orfac is negative. orfac should 
be identical on all processes. 

iz,jz (global) INTEGER.  The row and column indices in the global array z 
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix Z.descz( ctxt_ ) must equal desca( ctxt_ ).

work (local)
REAL for pssygvx 
DOUBLE PRECISION for pdsygvx. 
Workspace array, dimension of the (lwork)

lwork (local)
INTEGER.   
See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N') then lwork > 5 * n + max(5 * nn, 
NB * (np0 + 1)).
If eigenvectors are requested (jobz = 'V') then the amount of workspace 
required to guarantee that all eigenvectors are computed is: 

lwork >= 5*n + max(5*nn, np0 * mq0 + 2 * NB * NB) +iceil(neig, 
NPROW*NPCOL)*nn

The computed eigenvectors may not be orthogonal if the minimal workspace is 
supplied and orfac is too small. If you want to guarantee orthogonality (at the 
cost of potentially poor performance) you should add the following to lwork:
 (clustersize-1)*n 
where clustersize is the number of eigenvalues in the largest cluster, where 
a cluster is defined as a set of close eigenvalues: 
{w(k),...,w(k+clustersize-1) | 
 w(j+1) < w(j) + orfac*2*norm(A)} 

Variable definitions: 
neig = number of eigenvectors requested 
NB = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_) 
nn = max(n, NB, 2) 
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0 
 np0 = numroc(nn, NB, 0, 0, NPROW) 
mq0 = numroc(max(neig, NB, 2), NB, 0, 0, NPCOL) iceil(x, y) is a 
ScaLAPACK function returning ceiling(x/y) 
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 When lwork is too small: 
If lwork is too small to guarantee orthogonality, p?syevx attempts to 
maintain orthogonality in the clusters with the smallest spacing between the 
eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no 
computation is performed and info=-23 is returned. Note that when 
range='V', p?sygvx does not know how many eigenvectors are requested 
until the eigenvalues are computed. Therefore, when range='V'and as long as 
lwork is large enough to allow p?sygvx to compute the eigenvalues, 
p?sygvx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality & performance: 
Greater performance can be achieved if adequate workspace is provided. On 
the other hand, in some situations, performance can decrease as the workspace 
provided increases above the workspace amount shown below: 

For optimal performance, greater workspace may be needed, that is,
lwork > max(lwork, 5*n + nsytrd_lwopt, nsygst_lwopt) 
Where:
lwork, as defined previously, depends upon the number of eigenvectors 
requested, and 
nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) + (nps + 3) * nps 

nsygst_lwopt = 2*np0*NB + nq0*NB + NB*NB 
anb = pjlaenv(desca(ctxt_), 3, p?syttrd', 'L', 0, 0, 0, 0) 
sqnpc = int(sqrt(dble(NPROW * NPCOL))) 
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
NB = desca(mb_) 
np0 =numroc(n, NB, 0, 0, NPROW) 
nq0 = numroc(n, NB, 0, 0, NPCOL) 

numroc is a ScaLAPACK tool functions; 
pjlaenv is a ScaLAPACK environmental inquiry function 
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

For large n, no extra workspace is needed, however the biggest boost in 
performance comes for small n, so it is wise to provide the extra workspace 
(typically less than a Megabyte per process).

If clustersize > n/sqrt(NPROW*NPCOL), then providing enough space to 
compute all the eigenvectors orthogonally will cause serious degradation in 
performance. In the limit (that is, clustersize = n-1) p?stein will 
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perform no better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL) reorthogonalizing all 
eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the 
square of the cluster size, all other factors remaining equal and assuming 
enough workspace. Less workspace means less reorthogonalization but faster 
execution. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the size required for optimal performance for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work arrays, and no error message is issued by pxerbla.

 iwork (local) INTEGER. Workspace array.

liwork (local) INTEGER, dimension of iwork.
liwork > 6 * nnp 
Where:
 nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a workspace query is 
assumed; the routine only calculates the minimum and optimal size for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if jobz = 'V', then if info = 0, sub(A) contains the distributed matrix 
Z of eigenvectors. The eigenvectors are normalized as follows: 
if ibtype = 1 or 2, 
ZT*sub(B)*Z = i; 
if ibtype = 3, ZT*inv(sub(B))*Z = i. 
If jobz = 'N', then on exit the upper triangle (if uplo='U') or the lower triangle 
(if uplo='L') of sub(A), including the diagonal, is destroyed.

b  On exit, if info ≤ n, the part of sub(B) containing the matrix is overwritten by 
the triangular factor U or L from the Cholesky factorization sub(B) = UTU or
 sub(B) = L LT.

m (global)
INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. 
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nz (global)
INTEGER.
Total number of eigenvectors computed. 0 < nz < m. The number of columns 
of z that are filled. 
 If jobz.ne. 'V', nz is not referenced.
If jobz.eq. 'V', nz = m unless the user supplies insufficient space and
p?sygvx is not able to detect this before beginning computation. To get all the 
eigenvectors requested, the user must supply both sufficient space to hold the 
eigenvectors in z (m.le. descz(n_)) and sufficient workspace to compute 
them. (See lwork below.) p?sygvx is always able to detect insufficient space 
without computation unless 
range.eq. 'V'. 

w (global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx. 
Array, DIMENSION (n).
On normal exit, the first m entries contain the selected eigenvalues in 
ascending order.

z (local).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx. 
global dimension (n, n), local dimension (lld_z, LOCc(jz+n-1)).
If jobz = 'V', then on normal exit the first m columns of z contain the 
orthonormal eigenvectors of the matrix corresponding to the selected 
eigenvalues. If an eigenvector fails to converge, then that column of z contains 
the latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz = 'N', then z is not referenced.

work ifjobz='N' work(1) = optimal amount of workspace required to compute 
eigenvalues efficiently
if jobz = 'V' work(1) = optimal amount of workspace required to compute 
eigenvalues and eigenvectors efficiently with no guarantee on orthogonality. 
If range='V', it is assumed that all eigenvectors may be required. 

ifail (global)
INTEGER.
 Array, DIMENSION (n).
ifail provides additional information when info.ne. 0 
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If (mod(info/16,2).ne.0) then ifail(1) indicates the order of the smallest 
minor which is not positive definite. If (mod(info,2).ne.0) on exit, then ifail 
contains the indices of the eigenvectors that failed to converge.

If neither of the above error conditions hold and jobz = 'V', then the first m 
elements of ifail are set to zero.

iclustr (global)
INTEGER.
Array, DIMENSION (2*NPROW*NPCOL).This array contains indices of 
eigenvectors corresponding to a cluster of eigenvalues that could not be 
reorthogonalized due to insufficient workspace (see lwork, orfac and info). 
Eigenvectors corresponding to clusters of eigenvalues indexed 
iclustr(2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack 
of workspace. Hence the eigenvectors corresponding to these clusters may not 
be orthogonal. iclustr() is a zero terminated array. 
(iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and only if k is the 
number of clusters iclustr is not referenced if jobz = 'N'.

gap (global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx. 
Array, DIMENSION (NPROW*NPCOL).
This array contains the gap between eigenvalues whose eigenvectors could not 
be reorthogonalized. The output values in this array correspond to the clusters 
indicated by the array iclustr. As a result, the dot product between 
eigenvectors corresponding to the ith cluster may be as high as (C * n) / 
gap(i) where C is a small constant.

info (global)
INTEGER. 
If info = 0, the execution is successful.
If info <0: the ith argument is an array and the j-entry had an illegal value, 
then info = -(i*100+j), if the i-th argument is a scalar and had an illegal 
value, then info = -i. 
If info > 0:
if (mod(info,2).ne.0), then one or more eigenvectors failed to converge. Their 
indices are stored in ifail. 
if (mod(info,2,2).ne.0),then eigenvectors corresponding to one or more 
clusters of eigenvalues could not be reorthogonalized because of insufficient 
workspace. The indices of the clusters are stored in the array iclustr. 
if (mod(info/4,2).ne.0), then space limit prevented p?sygvx from computing 
all of the eigenvectors between vl and vu. The number of eigenvectors 
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computed is returned in nz. 
 if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues. 
 if (mod(info/16,2).ne.0), then B was not positive definite. ifail(1) 
indicates the order of the smallest minor which is not positive definite. 

p?hegvx 
Computes selected eigenvalues and, optionally, 
eigenvectors of a complex generalized Hermitian 
definite eigenproblem.

Syntax
call pchegvx ( ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,

descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr, gap, info)

call pzhegvx ( ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,
descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex 
generalized Hermitian-definite eigenproblem, of the form 
               sub (A)x = λ  sub(B)x,   sub (A)sub(B)x = λ  x,   or sub(B)sub (A)x = λ  x.

Here sub (A) denoting A(ia:ia+n-1, ja:ja+n-1) and sub(B) are assumed to be Hermitian and 
sub(B) denoting B(ib:ib+n-1, jb:jb+n-1) is also positive definite.

Input Parameters

ibtype (global) INTEGER. Must be 1 or 2 or 3. 
Specifies the problem type to be solved:
if ibtype = 1, the problem type is 
 sub(A)x = λ  sub(B)x;
if ibtype = 2, the problem type is   
sub(A)sub(B)x = λ  x;
if ibtype = 3, the problem type is 
sub(B) sub(A)x = λ  x.
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jobz (global).CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only. 
If jobz ='V', then compute eigenvalues and eigenvectors.

range (global).
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues in the interval: [vl, vu]
If range ='I', the routine computes eigenvalues with indices il through iu.

uplo (global).
CHARACTER*1. Must be 'U' or 'L'. 
If uplo = 'U', arrays a and b store the upper triangles of sub(A) and sub (B);
If uplo = 'L', arrays a and b store the lower triangles of sub(A) and sub (B).

n (global).
INTEGER. The order of the matrices sub(A) and sub (B) (n ≥ 0). 

a (local)
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx. 
Pointer into the local memory to an array of dimension (lld_a, 
LOCc(ja+n-1)). On entry, this array contains the local pieces of the n-by-n 
Hermitian distributed matrix sub(A). If uplo = 'U', the leading n-by-n upper 
triangular part of sub(A) contains the upper triangular part of the matrix.If 
uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the 
lower triangular part of the matrix. 

ia,ja (global) INTEGER.  The row and column indices in the global array a 
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix A.If desca( ctxt_ ) is incorrect, p?hegvx cannot 
guarantee correct error reporting.

b (local).
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx. 
Pointer into the local memory to an array of dimension (lld_b, 
LOCc(jb+n-1)). On entry, this array contains the local pieces of the n-by-n 
Hermitian distributed matrix sub(B). If uplo = 'U', the leading n-by-n upper 
triangular part of sub(B) contains the upper triangular part of the matrix.If 
uplo = 'L', the leading n-by-n lower triangular part of sub(B) contains the 
lower triangular part of the matrix.
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ib,jb (global) INTEGER.  The row and column indices in the global array b 
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix B. descb( ctxt_ ) must be equal to desca( ctxt_
).

vl, vu (global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx. 
If range ='V', the lower and upper bounds of the interval to be searched for 
eigenvalues. 

If range ='A' or 'I', vl and vu are not referenced.

il, iu (global)
INTEGER. 
If range ='I', the indices in ascending order of the smallest and largest 
eigenvalues to be returned.
Constraint: il> 1, min (il, n)< iu< n

If range ='A' or 'V', il and iu are not referenced.

abstol (global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx. 
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most 
orthogonal eigenvectors. 
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is 
accepted as converged when it is determined to lie in an interval [a,b] of width 
less than or equal to 

abstol + eps * max(|a|,|b|), 

where eps is the machine precision. If abstol is less than or equal to zero, 
then eps*norm(T) will be used in its place, where norm(T) is the 1-norm of the 
tridiagonal matrix obtained by reducing A to tridiagonal form. 

Eigenvalues will be computed most accurately when abstol is set to twice the 
underflow threshold 2*p?lamch('S') not zero. If this routine returns with 
((mod(info,2).ne.0).or. * (mod(info/8,2).ne.0)), indicating that some 
eigenvalues or eigenvectors did not converge, try setting abstol to 
2*p?lamch('S'). 
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orfac (global).
REAL for pchegvx 
DOUBLE PRECISION for pzhegvx. 
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that 
correspond to eigenvalues which are within tol=orfac*norm(A) of each 
other are to be reorthogonalized. However, if the workspace is insufficient (see 
lwork), tol may be decreased until all eigenvectors to be reorthogonalized 
can be stored in one process. No reorthogonalization will be done if orfac 
equals zero. A default value of 10-3 is used if orfac is negative. orfac should 
be identical on all processes. 

iz,jz (global) INTEGER.  The row and column indices in the global array z 
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_).  The array descriptor 
for the distributed matrix Z.descz( ctxt_ ) must equal desca( ctxt_ ).

work (local)
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx. 
Workspace array, dimension (lwork)

lwork (local).
INTEGER. The dimension of the array work. 
If only eigenvalues are requested: 
lwork > n + max(NB * (np0 + 1), 3)
If eigenvectors are requested: 
lwork > n + (np0+ mq0 + NB) * NB 
with nq0 = numroc(nn, NB, 0, 0, NPCOL).

For optimal performance, greater workspace is needed, that is
lwork > max(lwork, n, nhetrd_lwopt, nhegst_lwopt)
where lwork is as defined above, and 
nhetrd_lwork = 2*(anb+1)*(4*nps+2) + (nps + 1) * nps 
nhegst_lwopt = 2*np0*NB + nq0*NB + NB*NB

NB = desca(mb_)
np0 = numroc(n, NB, 0, 0, NPROW) 
nq0 = numroc(n, NB, 0, 0, NPCOL) 
ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'p?hettrd', 'L', 0, 0, 0, 0) 
sqnpc = sqrt(dble(NPROW * NPCOL)) 
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
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numroc is a ScaLAPACK tool functions; 
pjlaenv is a ScaLAPACK environmental inquiry function MYROW, MYCOL, 
NPROW and NPCOL can be determined by calling the subroutine 
blacs_gridinfo. 

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the size required for optimal performance for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work arrays, and no error message is issued by pxerbla. 

rwork (local)
REAL for pchegvx 
DOUBLE PRECISION for pzhegvx. 
Workspace array, DIMENSION (lrwork).

lrwork (local)
INTEGER.The dimension of the array rwork. 
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested (jobz = 'N') then lrwork > 5 * nn + 4* n
If eigenvectors are requested (jobz = 'V') then the amount of workspace 
required to guarantee that all eigenvectors are computed is: 

lrwork > 4*n + max(5*nn, np0 * mq0) +
iceil(neig, NPROW*NPCOL)*nn

The computed eigenvectors may not be orthogonal if the minimal workspace is 
supplied and orfac is too small. If you want to guarantee orthogonality (at the 
cost of potentially poor performance) you should add the following to lrwork:
 (clustersize-1)*n 
where clustersize is the number of eigenvalues in the largest cluster, where 
a cluster is defined as a set of close eigenvalues: 
{w(k),...,w(k+clustersize-1) | 
 w(j+1) < w(j) + orfac*2*norm(A)} 

 Variable definitions: 
neig = number of eigenvectors requested 
NB = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_) 
nn = max(n, NB, 2) 
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0 
 np0 = numroc(nn, NB, 0, 0, NPROW) 
mq0 = numroc(max(neig, NB, 2), NB, 0, 0, NPCOL) iceil(x, y) is a 
ScaLAPACK function returning ceiling(x/y) 
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 When lrwork is too small: 
If lwork is too small to guarantee orthogonality, p?hegvx attempts to 
maintain orthogonality in the clusters with the smallest spacing between the 
eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no 
computation is performed and info=-25 is returned. Note that when 
range='V', p?hegvx does not know how many eigenvectors are requested 
until the eigenvalues are computed. Therefore, when range='V'and as long as 
lwork is large enough to allow p?hegvx to compute the eigenvalues, 
p?hegvx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality & performance: 
If clustersize > n/sqrt(NPROW*NPCOL), then providing enough space to 
compute all the eigenvectors orthogonally will cause serious degradation in 
performance. In the limit (that is, clustersize = n-1) p?stein will perform 
no better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL) reorthogonalizing all 
eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the 
square of the cluster size, all other factors remaining equal and assuming 
enough workspace. Less workspace means less reorthogonalization but faster 
execution. 

If lwork = -1, then lrwork is global input and a workspace query is assumed; 
the routine only calculates the size required for optimal performance for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work arrays, and no error message is issued by pxerbla. 

iwork (local) INTEGER. Workspace array.

liwork (local) INTEGER, dimension of iwork.
liwork > 6 * nnp 
Where: nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a workspace query is 
assumed; the routine only calculates the minimum and optimal size for all 
work arrays. Each of these values is returned in the first entry of the 
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if jobz = 'V', then if info = 0, sub(A) contains the distributed matrix 
Z of eigenvectors. 
The eigenvectors are normalized as follows: 
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if ibtype = 1 or 2, ZH*sub(B)*Z = i; 
if ibtype = 3, ZH*inv(sub(B))*Z = i. 
If jobz = 'N', then on exit the upper triangle (if uplo='U') or the lower triangle 
(if uplo='L') of sub(A), including the diagonal, is destroyed.

b On exit, if info ≤ n, the part of sub(B) containing the matrix is overwritten by 
the triangular factor U or L from the Cholesky factorization sub(B) = UHU or
 sub(B) = L LH.

m (global)
INTEGER. The total number of eigenvalues found, 
0 ≤ m ≤ n. 

nz (global)
INTEGER.
Total number of eigenvectors computed. 0 < nz < m. The number of columns 
of z that are filled. 
 If jobz.ne. 'V', nz is not referenced.
If jobz.eq. 'V', nz = m unless the user supplies insufficient space and
p?hegvx is not able to detect this before beginning computation. To get all the 
eigenvectors requested, the user must supply both sufficient space to hold the 
eigenvectors in z (m.le. descz(n_)) and sufficient workspace to compute 
them. (See lwork below.) p?hegvx is always able to detect insufficient space 
without computation unless 
range.eq. 'V'. 

w (global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx. 
Array, DIMENSION (n).
On normal exit, the first m entries contain the selected eigenvalues in 
ascending order.

z (local).
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx. 
global dimension (n, n), local dimension (lld_z, LOCc(jz+n-1)).
If jobz = 'V', then on normal exit the first m columns of z contain the 
orthonormal eigenvectors of the matrix corresponding to the selected 
eigenvalues. If an eigenvector fails to converge, then that column of z contains 
the latest approximation to the eigenvector, and the index of the eigenvector is 
returned in ifail. 
If jobz = 'N', then z is not referenced.
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work On exit, work(1) returns the optimal amount of workspace.

rwork On exit, rwork(1) contains the amount of workspace required for optimal 
efficiency 
if jobz='N' rwork(1) = optimal amount of workspace required to compute 
eigenvalues efficiently
if jobz='V' rwork(1) = optimal amount of workspace required to compute 
eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range='V', it is assumed that all eigenvectors may be required when 
computing optimal workspace. 

ifail (global)
INTEGER.
 Array, DIMENSION (n).
ifail provides additional information when
info.ne. 0 
If (mod(info/16,2).ne.0) then ifail(1) indicates the order of the smallest 
minor which is not positive definite. If (mod(info,2).ne.0) on exit, then 
ifail(1) contains the indices of the eigenvectors that failed to converge.

If neither of the above error conditions hold and
jobz = 'V', then the first m elements of ifail are set to zero.

iclustr (global)
INTEGER.
Array, DIMENSION (2*NPROW*NPCOL).This array contains indices of 
eigenvectors corresponding to a cluster of eigenvalues that could not be 
reorthogonalized due to insufficient workspace (see lwork, orfac and info). 
Eigenvectors corresponding to clusters of eigenvalues indexed 
iclustr(2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack 
of workspace. Hence the eigenvectors corresponding to these clusters may not 
be orthogonal. iclustr() is a zero terminated array. 
(iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and only if k is the 
number of clusters iclustr is not referenced if jobz = 'N'.

gap (global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx. 
Array, DIMENSION (NPROW*NPCOL).
This array contains the gap between eigenvalues whose eigenvectors could not 
be reorthogonalized. The output values in this array correspond to the clusters 
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indicated by the array iclustr. As a result, the dot product between 
eigenvectors corresponding to the ith cluster may be as high as (C * n) / 
gap(i) where C is a small constant.

info (global)
INTEGER. 
If info = 0, the execution is successful.
If info <0: the ith argument is an array and the j-entry had an illegal value, 
then info = -(i*100+j), if the i-th argument is a scalar and had an illegal 
value, then info = -i. 
If info > 0: 
if (mod(info,2).ne.0), then one or more eigenvectors failed to converge. Their 
indices are stored in ifail. 
if (mod(info,2,2).ne.0), then eigenvectors corresponding to one or more 
clusters of eigenvalues could not be reorthogonalized because of insufficient 
workspace. The indices of the clusters are stored in the array iclustr. 
if (mod(info/4,2).ne.0), then space limit prevented p?sygvx from computing 
all of the eigenvectors between vl and vu. The number of eigenvectors 
computed is returned in nz. 
 if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues. 
 if (mod(info/16,2).ne.0), then B was not positive definite. ifail(1) 
indicates the order of the smallest minor which is not positive definite. 
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ScaLAPACK Auxiliary
and Utility Routines 7

This chapter describes the Intel® Math Kernel Library implementation of ScaLAPACK Auxiliary 
Routines and Utility Functions and Routines. The library includes routines for both real and 
complex data.  

Routine naming conventions, mathematical notation, and matrix storage schemes used for 
ScaLAPACK auxiliary and utility routines are the same as described in previous chapters. Some 
routines and functions may have combined character codes, such as sc or dz. For example, the 
routine pscsum1 uses a complex input array and returns a real value.

Auxiliary Routines

NOTE.  ScaLAPACK routines are provided with Intel® Cluster MKL product 
only which is a superset of Intel MKL. 

Table 7-1 ScaLAPACK Auxiliary Routines

Routine Name Data 
Types

Description

p?lacgv c,z Conjugates a complex vector.

p?max1 c,z Finds the index of the element whose real part has maximum 
absolute value (similar to the Level 1 PBLAS p?amax, but using 
the absolute value to the real part).

?combamax1 c,z Finds the element with maximum real part absolute value and its 
corresponding global index.
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p?sum1 sc,dz Forms the 1-norm of a complex vector similar to Level 1 PBLAS 
p?asum, but using the true absolute value.

p?dbtrsv s,d,c,z Computes an LU factorization of a general tridiagonal matrix 
with no pivoting. The routine is called by p?dbtrs.

p?dttrsv s,d,c,z Computes an LU factorization of a general band matrix, using 
partial pivoting with row interchanges. The routine is called by 
p?dttrs.

p?gebd2 s,d,c,z Reduces a general rectangular matrix to real bidiagonal form by 
an orthogonal/unitary transformation (unblocked algorithm).

p?gehd2 s,d,c,z Reduces a general matrix to upper Hessenberg form by an 
orthogonal/unitary similarity transformation (unblocked 
algorithm).

p?gelq2 s,d,c,z Computes an LQ factorization of a general rectangular matrix 
(unblocked algorithm).

p?geql2 s,d,c,z Computes a QL factorization of a general rectangular matrix 
(unblocked algorithm).

p?geqr2 s,d,c,z Computes a QR factorization of a general rectangular matrix 
(unblocked algorithm).

p?gerq2 s,d,c,z Computes an RQ factorization of a general rectangular matrix 
(unblocked algorithm).

p?getf2 s,d,c,z Computes an LU factorization of a general matrix, using partial 
pivoting with row interchanges (local blocked algorithm).

p?labrd s,d,c,z Reduces the first nb rows and columns of a general rectangular 
matrix A to real bidiagonal form by an orthogonal|unitary 
transformation, and returns auxiliary matrices that are needed to 
apply the transformation to the unreduced part of A.

p?lacon s,d,c,z Estimates the 1-norm of a square matrix, using the reverse 
communication for evaluating matrix-vector products.

p?laconsb s,d Looks for two consecutive small subdiagonal elements.

p?lacp2 s,d,c,z Copies all or part of a distributed matrix to another distributed 
matrix.

p?lacp3 s,d Copies from a global parallel array into a local replicated array or 
vice versa.

p?lacpy s,d,c,z Copies all or part of one two-dimensional array to another.

p?laevswp s,d,c,z Moves the eigenvectors from where they are computed to 
ScaLAPACK standard block cyclic array.

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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p?lahrd s,d,c,z Reduces the first nb columns of a general rectangular matrix A 
so that elements below the kth subdiagonal are zero, by an 
orthogonal/unitary transformation, and returns auxiliary matrices 
that are needed to apply the transformation to the unreduced 
part of A.

p?laiect s,d,c,z Exploits IEEE arithmetic to accelerate the computations of 
eigenvalues. (C interface function).

p?lange s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, 
or the largest absolute value of any element, of a general 
rectangular matrix.

p?lanhs s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, 
or the largest absolute value of any element, of an upper 
Hessenberg matrix.

p?lansy,
p?lanhe

s,d,c,z
/c,z

Returns the value of the 1-norm, Frobenius norm, infinity-norm, 
or the largest absolute value of any element of a real symmetric 
or complex Hermitian matrix.

p?lantr s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, 
or the largest absolute value of any element, of a triangular 
matrix.

p?lapiv s,d,c,z Applies a permutation matrix to a general distributed matrix, 
resulting in row or column pivoting.

p?laqge s,d,c,z Scales a general rectangular matrix, using row and column 
scaling factors computed by p?geequ.

p?laqsy s,d,c,z Scales a symmetric/Hermitian matrix, using scaling factors 
computed by p?poequ.

p?lared1d s,d Redistributes an array assuming that the input array bycol is 
distributed across rows and that all process columns contain the 
same copy of bycol.

p?lared2d s,d Redistributes an array assuming that the input array byrow is 
distributed across columns and that all process rows contain the 
same copy of byrow .

p?larf s,d,c,z Applies an elementary reflector to a general rectangular matrix.

p?larfb s,d,c,z Applies a block reflector or its transpose/conjugate-transpose to 
a general rectangular matrix.

p?larfc c,z Applies the conjugate transpose of an elementary reflector to a 
general matrix.

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description



7-4

7 Intel® Math Kernel Library Reference Manual

p?larfg s,d,c,z Generates an elementary reflector (Householder matrix).

p?larft s,d,c,z Forms the triangular vector T of a block reflector H=I-VTVH.

p?larz s,d,c,z Applies an elementary reflector as returned by p?tzrzf to a 
general matrix.

p?larzb s,d,c,z Applies a block reflector or its transpose/conjugate-transpose as 
returned by p?tzrzf to a general matrix.

p?larzc c,z Applies (multiplies by) the conjugate transpose of an elementary 
reflector as returned by p?tzrzf to a general matrix.

p?larzt s,d,c,z Forms the triangular factor T of a block reflector H=I-VTVH as 
returned by p?tzrzf.

p?lascl s,d,c,z Multiplies a general rectangular matrix by a real scalar defined 
as Cto/Cfrom .

p?laset s,d,c,z Initializes the off-diagonal elements of a matrix to  and the 
diagonal elements to .

p?lasmsub s,d Looks for a small subdiagonal element from the bottom of the 
matrix that it can safely set to zero.

p?lassq s,d,c,z Updates a sum of squares represented in scaled form.

p?laswp s,d,c,z Performs a series of row interchanges on a general rectangular 
matrix.

p?latra s,d,c,z Computes the trace of a general square distributed matrix.

p?latrd s,d,c,z Reduces the first nb rows and columns of a 
symmetric/Hermitian matrix A to real tridiagonal form by an 
orthogonal/unitary similarity transformation.

p?latrz s,d,c,z Reduces an upper trapezoidal matrix to upper triangular form by 
means of orthogonal/unitary transformations.

p?lauu2 s,d,c,z Computes the product UUH or LHL, where U and L are upper 
or lower triangular matrices (local unblocked algorithm).

p?lauum s,d,c,z Computes the product UUH or LHL, where U and L are upper 
or lower triangular matrices.

p?lawil s,d Forms the Wilkinson transform.

p?org2l/p?ung2l s,d,c,z Generates all or part of the orthogonal/unitary matrix Q from a 
QL factorization determined by p?geqlf (unblocked 
algorithm).

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description

α
β
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p?org2r/p?ung2r s,d,c,z Generates all or part of the orthogonal/unitary matrix Q from a 
QR factorization determined by p?geqrf (unblocked 
algorithm).

p?orgl2/p?ungl2 s,d,c,z Generates all or part of the orthogonal/unitary matrix Q from an 
LQ factorization determined by p?gelqf (unblocked 
algorithm).

p?orgr2/p?ungr2 s,d,c,z Generates all or part of the orthogonal/unitary matrix Q from an 
RQ factorization determined by p?gerqf (unblocked 
algorithm).

p?orm2l/p?unm2l s,d,c,z Multiplies a general matrix by the orthogonal/unitary matrix from 
a QL factorization determined by p?geqlf (unblocked 
algorithm).

p?orm2r/p?unm2r s,d,c,z Multiplies a general matrix by the orthogonal/unitary matrix from 
a QR factorization determined by p?geqrf (unblocked 
algorithm).

p?orml2/p?unml2 s,d,c,z Multiplies a general matrix by the orthogonal/unitary matrix from 
an LQ factorization determined by p?gelqf (unblocked 
algorithm).

p?ormr2/p?unmr2 s,d,c,z Multiplies a general matrix by the orthogonal/unitary matrix from 
an RQ factorization determined by p?gerqf (unblocked 
algorithm).

p?pbtrsv s,d,c,z Solves a single triangular linear system via frontsolve or 
backsolve where the triangular matrix is a factor of a banded 
matrix computed by p?pbtrf.

p?pttrsv s,d,c,z Solves a single triangular linear system via frontsolve or 
backsolve where the triangular matrix is a factor of a tridiagonal 
matrix computed by p?pttrf.

p?potf2 s,d,c,z Computes the Cholesky factorization of a symmetric/Hermitian 
positive definite matrix (local unblocked algorithm).

p?rscl s,d,cs,
zd

Multiplies a vector by the reciprocal of a real scalar.

p?sygs2/p?hegs2 s,d,c,z Reduces a symmetric/Hermitian definite generalized 
eigenproblem to standard form, using the factorization results 
obtained from p?potrf (local unblocked algorithm).

p?sytd2/p?hetd2 s,d,c,z Reduces a symmetric/Hermitian matrix to real symmetric 
tridiagonal form by an orthogonal/unitary similarity 
transformation (local unblocked algorithm).

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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p?lacgv
Conjugates a complex vector.

Syntax
call pclacgv (n, x, ix, jx, descx, incx)

call pzlacgv (n, x, ix, jx, descx, incx)

p?trti2 s,d,c,z Computes the inverse of a triangular matrix (local unblocked 
algorithm).

?lamsh s,d Sends multiple shifts through a small (single node) matrix to 
maximize the number of bulges that can be sent through.

?laref s,d Applies Householder reflectors to matrices on either their rows 
or columns.

?lasorte s,d Sorts eigenpairs by real and complex data types.

?lasrt2 s,d Sorts numbers in increasing or decreasing order.

?stein2 s,d Computes the eigenvectors corresponding to specified 
eigenvalues of a real symmetric tridiagonal matrix, using inverse 
iteration.

?dbtf2 s,d,c,z Computes an LU factorization of a general band matrix with no 
pivoting (local unblocked algorithm).

?dbtrf s,d,c,z Computes an LU factorization of a general band matrix with no 
pivoting (local blocked algorithm).

?dttrf s,d,c,z Computes an LU factorization of a general tridiagonal matrix 
with no pivoting (local blocked algorithm).

?dttrsv s,d,c,z Solves a general tridiagonal system of linear equations using the 
LU factorization computed by ?dttrf.

?pttrsv s,d,c,z Solves a symmetric (Hermitian) positive-definite tridiagonal 
system of linear equations, using the LDLH factorization 
computed by ?pttrf.

?steqr2 s,d Computes all eigenvalues and, optionally, eigenvectors of a 
symmetric tridiagonal matrix using the implicit QL or QR 
method.

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data 
Types

Description
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Description

The routine conjugates a complex vector of length n, sub(x), where sub(x) denotes 
X(ix,jx:jx+n-1) if incx = descx( m_ ) and X(ix:ix+n-1,jx) if incx = 1.

Input Parameters

n (global) INTEGER. The length of the distributed vector sub(x).

x (local). 
COMPLEX for pclacgv
COMPLEX*16 for pzlacgv.
Pointer into the local memory to an array of DIMENSION (lld_x,*). On entry the 
vector to be conjugated x(i)  = X(ix+(jx-1)*m_x +(i-1)*incx ), 1 < i < n.

ix (global) INTEGER.The row index in the global array x indicating the first row 
of sub(x).

jx (global) INTEGER. The column index in the global array x indicating the first 
column of sub(x).

descx (global and local)  INTEGER.
Array, DIMENSION (dlen_). The array descriptor for the distributed matrix X.

incx (global)  INTEGER.The global increment for the elements of X. Only two values of 
incx are supported in this version, namely 1 and m_x. incx must not be zero.

Output Parameters

x (local). On exit the conjugated vector.

p?max1
Finds the index of the element whose real part has 
maximum absolute value (similar to the Level 1 PBLAS 
p?amax, but using the absolute value to the real part).

Syntax
call pcmax1 (n, amax, indx, x, ix, jx, descx, incx)

call pzmax1 (n, amax, indx, x, ix, jx, descx, incx)
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Description

This routine computes the global index of the maximum element in absolute value of a distributed 
vector sub(x). The global index is returned in indx and the value is returned in amax,
where sub(x) denotes X(ix:ix+n-1,jx) if incx = 1,
                                        X(ix,jx:jx+n-1) if incx = m_x.

Input Parameters

 n (global) pointer to INTEGER.
The number of components of the distributed vector sub(x). n > 0.

x (local ) 
COMPLEX for pcmax1.

COMPLEX*16 for pzmax1
Array containing the local pieces of a distributed matrix of dimension of at least 
( (jx-1)*m_x + ix + ( n - 1 )*abs( incx ) ). This array contains the 
entries of the distributed vector sub (x).

ix (global) INTEGER.The row index in the global array X indicating the first row of 
sub(x).

jx (global) INTEGER. The column index in the global array X indicating the  first 
column of sub(x)

descx (global and local) INTEGER.
Array, DIMENSION (dlen_). The array descriptor for the distributed matrix X.

incx (global) INTEGER.The global increment for the elements of X. Only two values of 
incx are supported in this version, namely 1 and m_x. incx must not be zero.

Output Parameters

amax (global output) pointer to REAL.The absolute value of the largest entry of the 
distributed vector sub(x) only in the scope of sub(x).

indx  (global output) pointer to INTEGER.The global index of the element of the 
distributed vector sub(x) whose real part has maximum absolute value.
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?combamax1
Finds the element with maximum real part absolute 
value and its corresponding global index.

Syntax
call ccombamax1 (v1, v2)

call zcombamax1 (v1, v2)

Description

This routine finds the element having maximum real part absolute value as well as its 
corresponding global index.

Input Parameters

 v1 (local) 
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1

Array, DIMENSION 2.
The first maximum absolute value element and its global index. v1(1) = amax, 
v1(2) = indx. 

v2 (local) 
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1

Array, DIMENSION 2.
The second maximum absolute value element and its global index. v21(1) = amax, 
v2(2) = indx. 

Output Parameters

v1 (local). The first maximum absolute value element and its global index. 
v1(1) = amax, 
v1(2) = indx. 
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p?sum1
Forms the 1-norm of a complex vector similar to Level 1 
PBLAS p?asum, but using the true absolute value.

Syntax
call pscsum1 (n, asum, x, ix, jx, descx, incx)

call pdzsum1 (n, asum, x, ix, jx, descx, incx)

Description

This routine returns the sum of absolute values of a complex distributed vector sub(x) in asum,

 where sub(x) denotes X(ix:ix+n-1,jx:jx), if incx = 1,
                                         X(ix:ix, jx:jx+n-1), if incx = m_x.

Based on p?asum from the Level 1 PBLAS. The change is to use the 'genuine' absolute value.

Input Parameters

n (global) pointer to INTEGER.
The number of components of the distributed vector sub(x). n > 0.

x (local ) 
COMPLEX for pscsum1
COMPLEX*16 for pdzsum1.

Array containing the local pieces of a distributed matrix of dimension of at least 
( (jx-1)*m_x + ix + ( n - 1 )*abs( incx ) ). This array contains the 
entries of the distributed vector sub (x).

ix (global) INTEGER.The row index in the global array X indicating the first row of 
sub(x).

jx (global) INTEGER. The column index in the global array X indicating the  first 
column of sub(x)

descx (global and local) INTEGER.
Array, DIMENSION 8. The array descriptor for the distributed matrix X.

incx (global) INTEGER.The global increment for the elements of X. Only two values of 
incx are supported in this version, namely 1 and m_x. 
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Output Parameters

asum (local) Pointer to REAL.
The sum of absolute values of the distributed vector sub(x) only in its scope.

p?dbtrsv
Computes an LU factorization of a general tridiagonal 
matrix with no pivoting. The routine is called by 
p?dbtrs.

Syntax
call psdbtrsv (uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,

laf, work, lwork, info)

call pddbtrsv (uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pcdbtrsv (uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzdbtrsv (uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

Description

This routines solves a banded triangular system of linear equations 

 A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs) or

 A(1:n, ja:ja+n-1)T * X = B(ib:ib+n-1, 1:nrhs) (for real flavors);
 A(1:n, ja:ja+n-1)H * X = B(ib:ib+n-1, 1:nrhs) (for complex flavors),

 where A(1:n, ja:ja+n-1) is a banded triangular matrix factor produced by the Gaussian 
elimination code PD@(dom_pre)BTRF and is stored in A(1:n, ja:ja+n-1) and af. The matrix 
stored in A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo, and the choice 
of solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T is dictated by the user by the parameter 
trans.

Routine p?dbtrf must be called first.
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Input Parameters

uplo (global) CHARACTER.
If uplo= 'U', the upper triangle of A(1:n, ja:ja+n-1) is stored,
if uplo = 'L', the lower triangle of A(1:n, ja:ja+n-1) is stored.

trans (global) CHARACTER.

If trans ='N', solve with A(1:n, ja:ja+n-1),
if trans ='C', solve with conjugate transpose A(1:n, ja:ja+n-1).

n (global) INTEGER.  The order of the distributed submatrix A; (n ≥ 0).

bwl (global) INTEGER.
Number of subdiagonals. 0 < bwl < n-1.

bwu (global) INTEGER.
Number of subdiagonals. 0 < bwu < n-1.

nrhs (global) INTEGER. The number of right-hand sides; the number of columns of the 
distributed submatrix B (nrhs ≥ 0). 

a (local).
REAL for psdbtrsv 
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Pointer into the local memory to an array with first DIMENSION 
lld_a >(bwl+bwu+1) (stored in desca). On entry, this array contains the local 
pieces of the n-by-n unsymmetric banded distributed Cholesky factor L or 
LTA(1:n, ja:ja+n-1).
This local portion is stored in the packed banded format used in LAPACK. Please see 
the Application Notes below and the ScaLAPACK manual for more detail on the 
format of distributed matrices.

ja (global) INTEGER.  The index in the global array a that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
if 1d type (dtype_a = 501 or 502), dlen > 7; 
if 2d type (dtype_a = 1), dlen > 9. 
The array descriptor for the distributed matrix A. Contains information of mapping of 
A to memory.



ScaLAPACK Auxiliary and Utility Routines 7

7-13

b (local)
REAL for psdbtrsv 
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Pointer into the local memory to an array of local lead DIMENSION lld_b > nb. On 
entry, this array contains the local pieces of the right hand sides 
B(ib:ib+n-1, 1:nrhs). 

ib (global) INTEGER. The row index in the global array b that points to the first row of 
the matrix to be operated on (which may be either all of b or a submatrix of B).

desb (global and local) INTEGER array of DIMENSION (dlen_). 
if 1d type (dtype_b =502), dlen >7; 
if 2d type (dtype_b =1), dlen > 9. 
The array descriptor for the distributed matrix B. Contains information of mapping B 
to memory.

laf (local) INTEGER. Size of user-input Auxiliary Filling space af. 
laf must be > nb*(bwl+bwu)+6*max(bwl, bwu)*max(bwl, bwu). If laf is not large 
enough, an error code is returned  and the minimum acceptable size will be returned 
in af(1).

work (local).

REAL for psdbtrsv 
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Temporary workspace. This space may be overwritten in between calls to routines. 
work must be the size given in lwork. 

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal acceptable 
size will be returned in work(1) and an error code is returned. 
lwork > max(bwl, bwu)*nrhs.

Output Parameters

a (local).
This local portion is stored in the packed banded format used in LAPACK. Please see 
the Application Notes below and the ScaLAPACK manual for more detail on the 
format of distributed matrices.

b On exit, this contains the local piece of the solutions distributed matrix X.
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a (local).

REAL for psdbtrsv 
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Auxiliary Filling Space. Filling is created during the factorization routine p?dbtrf
and this is stored in af. If a linear system is to be solved using p?dbtrf after the 
factorization routine, af must not be altered after the factorization.

work On exit, work( 1 ) contains the minimal lwork.

info (local).INTEGER. If info = 0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i*100+j), if the i-th  argument is a scalar and had an illegal value, then 
info = -i.

p?dttrsv
Computes an LU factorization of a general band 
matrix, using partial pivoting with row interchanges. 
The routine is called by p?dttrs.

Syntax
call psdttrsv (uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,

laf, work, lwork, info)

call pddttrsv (uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pcdttrsv (uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzdttrsv (uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

Description

This routine solves a tridiagonal triangular system of linear equations

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs) or
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 A(1:n, ja:ja+n-1)T * X = B(ib:ib+n-1, 1:nrhs) for real flavors;
 A(1:n, ja:ja+n-1)H * X = B(ib:ib+n-1, 1:nrhs) for complex flavors,

 where A(1:n, ja:ja+n-1) is a tridiagonal matrix factor produced by the Gaussian elimination 
code PS@(dom_pre)TTRF and is stored in A(1:n, ja:ja+n-1) and af.

 The matrix stored in A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo,  
and the choice of solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T is dictated by the user by 
the parameter trans.

Routine p?dttrf must be called first.

Input Parameters

uplo (global) CHARACTER.
If uplo= 'U', the upper triangle of A(1:n, ja:ja+n-1) is stored, 
if uplo = 'L', the lower triangle of A(1:n, ja:ja+n-1) is stored.

trans (global) CHARACTER.

If trans ='N', solve with A(1:n, ja:ja+n-1),
if trans ='C', solve with conjugate transpose A(1:n, ja:ja+n-1).

n (global) INTEGER.  The order of the distributed submatrix A; (n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides; the number of columns of the 
distributed submatrix B(ib:ib+n-1, 1:nrhs). (nrhs ≥ 0). 

dl (local).
REAL for psdttrsv 
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the lower diagonal of the matrix. 
Globally, dl(1) is not referenced, and dl must be aligned with d.
Must be of size > desca( nb_ ).

d (local).
REAL for psdttrsv 
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the main diagonal of the matrix.
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du (local).
REAL for psdttrsv 
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the upper diagonal of the matrix. 
Globally, du(n) is not referenced, and du must be aligned with d.

ja (global) INTEGER.  The index in the global array a that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local). INTEGER array of DIMENSION (dlen_). 
if 1d type (dtype_a = 501 or 502), dlen > 7; 
if 2d type (dtype_a = 1), dlen > 9. 
The array descriptor for the distributed matrix A. Contains information of mapping of 
A to memory.

b (local)
REAL for psdttrsv 
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer into the local memory to an array of local lead DIMENSION lld_b > nb. On 
entry, this array contains the local pieces of the right hand sides B(ib:ib+n-1, 
1:nrhs). 

ib (global).INTEGER. The row index in the global array b that points to the first row of 
the matrix to be operated on (which may be either all of b or a submatrix of B).

desb (global and local).INTEGER array of DIMENSION (dlen_). 
if 1d type (dtype_b = 502), dlen >7; 
if 2d type (dtype_b = 1), dlen > 9. 
The array descriptor for the distributed matrix B. Contains information of mapping B 
to memory.

laf (local).INTEGER.Size of user-input Auxiliary Filling space af. 
laf must be >  2*(nb+2). If laf is not large enough, an error code is returned  and 
the minimum acceptable size will be returned in af(1).

work (local).

REAL for psdttrsv 
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
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COMPLEX*16 for pzdttrsv.
Temporary workspace. This space may be overwritten in between calls to routines. 
work must be the size given in lwork. 

lwork (local or global).INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal acceptable 
size will be returned in work(1) and an error code is returned. 
lwork > 10*npcol+4*nrhs. 

Output Parameters

dl (local).
On exit, this array contains information containing the factors of the matrix.

d On exit, this array contains information containing the factors of the matrix.
Must be of size > desca (nb_ ).

b On exit, this contains the local piece of the solutions distributed matrix X.

af (local).

REAL for psdttrsv 
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Auxiliary Filling Space. Filling is created during the factorization routine p?dttrf
and this is stored in af. If a linear system  is to be solved using p?dttrs after the 
factorization routine, af must not be altered after the factorization.

work On exit, work(1) contains the minimal lwork.

info (local).INTEGER.
If info=0, the execution is successful.
if info< 0: If the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i*100+j), if the i-th argument is a scalar and had an illegal value, then 
info = -i. 
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p?gebd2
Reduces a general rectangular matrix to real 
bidiagonal form by an orthogonal/unitary 
transformation (unblocked algorithm).

Syntax
call psgebd2 (m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pdgebd2 (m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pcgebd2 (m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pzgebd2 (m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

Description

This routine reduces a real/complex general m-by-n distributed matrix sub(A) = A(ia:ia+m-1, 
ja:ja+n-1) to upper or lower bidiagonal form B by an orthogonal/unitary transformation:

 Q' * sub(A) * P = B.

If m > n, B is the upper bidiagonal; if m  < n,  B is the lower bidiagonal.

Input Parameters

m (global) INTEGER.
The number of rows of the distributed submatrix sub(A). (m > 0).

n (global) INTEGER.  The order of the distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).          
On entry, this array contains the local pieces of the general distributed matrix 
sub(A).

ia,ja (global) INTEGER.  The row and column indices in the global array a indicating the 
first row and the first column of the submatrix A, respectively.
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desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

work (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least  lwork > max( mpa0, nqa0 ), where 
nb = mb_a = nb_a, iroffa = mod( ia-1, nb )
iarow = indxg2p ( ia, nb, myrow, rsrc_a, nprow ),
iacol = indxg2p ( ja, nb, mycol, csrc_a, npcol ),
mpa0 = numroc( m+iroffa, nb, myrow, iarow, nprow ),
nqa0 = numroc( n+icoffa, nb, mycol, iacol, npcol ).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.

Output Parameters

a (local).
On exit, if m > n, the diagonal and the first superdiagonal of sub(A) are          
overwritten with the upper bidiagonal matrix B; the elements  below the diagonal, 
with the array tauq, represent the orthogonal/unitary matrix Q as a product of 
elementary reflectors, and the elements above the first superdiagonal, with the array 
taup, represent the orthogonal matrix P as a product of elementary reflectors. 
If m < n, the diagonal and the first subdiagonal are overwritten with the lower 
bidiagonal  matrix B; the elements below the first subdiagonal, with the array tauq, 
represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and 
the elements above the diagonal, with the array taup, represent the orthogonal matrix 
P as a product of elementary reflectors. See Applications Notes below.
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d (local)
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array, DIMENSION LOCc(ja+min(m,n)-1) if m > n; LOCr(ia+min(m,n)-1) 
otherwise. The distributed diagonal elements of the bidiagonal matrix B: 
d(i) = a(i,i). d is tied to the distributed matrix A.

e (local)
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array, DIMENSION LOCc(ja+min(m,n)-1) if m > n; LOCr(ia+min(m,n)-2) 
otherwise. The distributed diagonal elements of the bidiagonal matrix B:
if m > n, e(i) = a(i, i+1) for i = 1, 2, ... , n-1;
if m > n, e(i) = a(i+1, i) for i = 1, 2, ..., m-1. e is tied to the distributed matrix A.

tauq (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array, DIMENSION LOCc(ja+min(m,n)-1). The scalar factors of the elementary          
reflectors which represent the orthogonal/unitary matrix Q. tauq is tied to the 
distributed matrix A.

taup (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array, DIMENSION LOCr(ia+min(m,n)-1). The scalar factors of the elementary          
reflectors which represent the orthogonal/unitary matrix P. taup is tied to the 
distributed matrix A.

work On exit, work(1) returns the minimal and optimal lwork.
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info (local) INTEGER.
If info = 0, the execution is successful.
if info <  0: If the i-th argument is an array and the j-entry had  an illegal value, 
then info = - (i*100+j), if the i-th  argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrices Q and P are represented as products of elementary reflectors:

If m > n,

 Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)

Each H(i) and G(i) has the form:

H(i) = I - tauq *v *v'  and G(i) = I - taup *u*u',

where tauq and taup are real/complex scalars, and v and u are real/complex vectors. 
v(1:i-1) = 0, v(i) = 1, and v(i+i:m) is stored on exit in

A(ia+i-ia+m-1,ja+i-1);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in 
A(ia+i-1,ja+i+1:ja+n-1); 
tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).

If m < n, 

v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in 
A(ia+i+1:ia+m-1, ja+i-1);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in 
A(ia+i-1,ja+i:ja+n-1);
tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1). 
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The contents of sub(A) on exit are illustrated by the following examples:

m = 6 and n = 5 (m > n):                                                             m = 5 and n = 6 (m < n):

                                                      

where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the 
vector defining H(i), and ui an element of the vector defining G(i).

p?gehd2
Reduces a general matrix to upper Hessenberg form by 
an orthogonal/unitary similarity transformation 
(unblocked algorithm).

Syntax
call psgehd2 (n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pdgehd2 (n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pcgehd2 (n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pzgehd2 (n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine reduces a real/complex general distributed matrix sub(A) to upper Hessenberg form H 
by an orthogonal/unitary similarity transformation:  Q' * sub(A) * Q = H, where  sub(A) = 
A(ia+n-1:ia+n-1,ja+n-1:ja+n-1).

Input Parameters

n (global) INTEGER.  The order of the distributed submatrix A. (n ≥ 0).

d e u1 u1 u1

v1 d e u2 u2
v1 v2 d e u3

v1 v2 v3 d e

v1 v2 v3 v4 d
v1 v2 v3 v4 v5

d u1 u1 u1 u1 u1
e d u2 u2 u2 u2

v1 e d u3 u3 u3

v1 v2 e d u4 u4
v1 v2 v3 e d u5
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ilo, ihi (global) INTEGER. It is assumed that sub(A) is already upper triangular in rows 
ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja+jlo-2 and 
ja+jhi:ja+n-1. See Application Notes for further information. 
If n > 0,  1 < ilo < ihi < n; otherwise set ilo = 1, ihi = n.

a (local).

REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).          
On entry, this array contains the local pieces of the n-by-n general distributed matrix 
sub(A) to be reduced.

ia,ja (global) INTEGER.  The row and column indices in the global array A indicating the 
first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

work (local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global). INTEGER.
The dimension of the array work.
lwork is local input and must be at least  lwork > nb + max( npa0, nb ), where 
nb = mb_a = nb_a, iroffa = mod( ia-1, nb )
iarow = indxg2p ( ia, nb, myrow, rsrc_a, nprow ),
npa0 = numroc (ihi+iroffa, nb, myrow, iarow, nprow ).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.
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Output Parameters

a (local).On exit, the upper triangle and the first subdiagonal of sub(A) are        
overwritten with the upper Hessenberg matrix H, and the elements below the first 
subdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a 
product of elementary reflectors. See Application Notes below.

tau (local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Array, DIMENSION LOCc(ja+n-2) The scalar factors of the elementary reflectors 
(see Application Notes below). Elements ja:ja+ilo-2 and ja+ihi:ja+n-2 of 
tau are set to zero. tau is tied to the distributed matrix A.

work On exit, work(1) returns the minimal and optimal lwork.

info (local).INTEGER.
If info = 0, the execution is successful.
if info <  0: If the i-th argument is an array and the j-entry had  an illegal value, 
then info = - (i*100+j), if the i-th  argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of (ihi-ilo) elementary reflectors

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Each H(i) has the form

H(i) = I - tau *v *v',

where tau is a real/complex scalar, and v is a real/complex vector with  v(1:i) = 0, v(i+1) = 1 
and v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in A(ia+ilo+i:ia+ihi-1,  ia+ilo+i-2), 
and tau in tau(ja+ilo+i-2).
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The contents of A(ia:ia+n-1,ja:ja+n-1) are illustrated by the following example, with n = 7, 
ilo = 2 and ihi = 6:

on entry on exit

                              

where a denotes an element of the original matrix sub(A), h denotes a modified element of the 
upper Hessenberg matrix H, and vi denotes an element of the vector defining H(ja+ilo+i-2).

p?gelq2
Computes an LQ factorization of a general rectangular 
matrix (unblocked algorithm).

Syntax
call psgelq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgelq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgelq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgelq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine computes an LQ factorization of a real/complex distributed m-by-n matrix 
sub(A) = A(ia:ia+m-1,ja:ja+n-1) = L *Q.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).

a a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a

a a h h h h a

a h h h h a

h h h h h h

v2 h h h h h

v2 v3 h h h h

v2 v3 v4 h h h

a
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n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).          
On entry, this array contains the local pieces of the m-by-n distributed matrix 
sub(A) which is to be factored.

ia,ja (global) INTEGER.  The row and column indices in the global array a indicating the 
first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

work (local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > nq0 + max( 1, mp0 ), where

          iroff = mod( ia-1, mb_a ), icoff = mod( ja-1, nb_a ),
iarow  = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mp0   = numroc( m+iroff, mb_a, myrow, iarow, nprow ),
nq0   = numroc( n+icoff, nb_a, mycol, iacol, npcol ),

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.
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Output Parameters

a (local).
On exit, the elements on and below the diagonal of sub(A) contain the m by min(m,n) 
lower trapezoidal matrix L (L is lower triangular if m < n); the elements above the 
diagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product 
of elementary reflectors (see Application Notes below).

tau (local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Array, DIMENSION LOCr(ia+min(m, n)-1).  This array contains the scalar factors          
of the elementary reflectors. tau is tied to the distributed  matrix A.

work On exit, work(1) returns the minimal and optimal lwork.

info (local).INTEGER.
If info = 0, the execution is successful.
if info <  0: If the i-th argument is an array and the j-entry had  an illegal value, 
then info = - (i*100+j), if the i-th  argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia+k-1) H(ia+k-2) . . . H(ia) for real flavors,
Q = H(ia+k-1)' H(ia+k-2)' . . . H(ia)' for complex flavors, 

where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1; 
v(i+1:n) (for real flavors) or conjg(v(i+1:n)) (for complex flavors) is stored on exit in 
A(ia+i-1,ja+i:ja+n-1), and tau in TAU(ia+i-1).
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p?geql2
Computes a QL factorization of a general rectangular 
matrix (unblocked algorithm).

Syntax
call psgeql2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeql2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeql2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeql2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine computes a QL factorization of a real/complex distributed m-by-n matrix 
sub(A) = A(ia:ia+m-1,ja:ja+n-1) = Q *L.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
Pointer into the local memory to an array of DIMENSION (lld_a,LOCc (ja+n-1)).          
On entry, this array contains the local pieces of the m-by-n distributed matrix 
sub(A) which is to be factored.

ia,ja (global) INTEGER.  The row and column indices in the global array a indicating the 
first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.
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work (local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > mp0 + max(1, nq0), where
iroff = mod( ia-1, mb_a ), icoff = mod( ja-1, nb_a ),
iarow  = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol ),
mp0   = numroc( m+iroff, mb_a, myrow, iarow, nprow ),
nq0   = numroc( n+icoff, nb_a, mycol, iacol, npcol ),

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.

Output Parameters

a (local).
On exit, if m > n, the lower triangle of the distributed submatrix 
A( ia+m-n:ia+m-1, ja:ja+n-1 ) contains the n-by-n lower triangular matrix L; 
if m < n, the elements on and below the (n-m)-th superdiagonal contain the m by n 
lower trapezoidal matrix L; the remaining elements, with the array tau, represent the 
orthogonal/ unitary matrix Q as a product of elementary reflectors (see Application 
Notes below).

tau (local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
Array, DIMENSION LOCc(ja+n-1). This array contains the scalar factors  of the 
elementary reflectors. tau is tied to the distributed matrix A.

work On exit, work(1) returns the minimal and optimal lwork.
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info (local).INTEGER.
If info = 0, the execution is successful.
if info < 0: If the i-th argument is an array and the j-entry had  an illegal value, 
then info = - (i*100+j), 
                       if the i-th  argument is a scalar and had an illegal value, then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ja+k-1) . . . H(ja+1) H(ja), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(ia:ia+m-k+i-2, 
ja+n-k+i-1), and tau in TAU(ja+n-k+i-1).

p?geqr2
Computes a QR factorization of a general rectangular 
matrix (unblocked algorithm).

Syntax
call psgeqr2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeqr2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeqr2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeqr2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine computes a QR factorization of a real/complex distributed m-by-n matrix 
sub(A) = A(ia:ia+m-1,ja:ja+n-1) = Q *R.
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Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).

n (global).INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc (ja+n-1)).          
On entry, this array contains the local pieces of the m-by-n distributed matrix 
sub(A) which is to be factored.

ia,ja (global) INTEGER.  The row and column indices in the global array a indicating the 
first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

work (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global). INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > mp0 + max(1, nq0), where
iroff = mod( ia-1, mb_a ), icoff = mod( ja-1, nb_a ),
iarow  = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mp0   = numroc( m+iroff, mb_a, myrow, iarow, nprow ),
nq0   = numroc( n+icoff, nb_a, mycol, iacol, npcol ),

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.
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If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.

Output Parameters

a (local).
On exit, the elements on and above the diagonal of sub(A) contain the min(m,n) by n 
upper trapezoidal matrix R (R is upper triangular if m > n);  the elements below the 
diagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product 
of elementary reflectors (see Application Notes below).

tau (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Array, DIMENSION LOCc(ja+min(m,n)-1).  This array contains the scalar factors  
of the elementary reflectors. tau is tied to the distributed  matrix A.

work On exit, work(1) returns the minimal and optimal lwork.

info (local).INTEGER.
If info = 0, the execution is successful.
if info <  0: 

If the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i*100+j), 
if the i-th argument is a scalar and had an illegal value, then 
info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors

 Q = H(ja) H(ja+1) . . . H(ja+k-1), where k = min(m,n).

Each H(i) has the form

H(j) = I - tau * v * v',

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and 
v(i) = 1; v(i+1:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1), and tau in TAU(ja+i-1).



ScaLAPACK Auxiliary and Utility Routines 7

7-33

p?gerq2
Computes an RQ factorization of a general rectangular 
matrix (unblocked algorithm).

Syntax
call psgerq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgerq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgerq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgerq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine computes an RQ factorization of a real/complex distributed m-by-n matrix 
sub(A) = A(ia:ia+m-1,ja:ja+n-1) = R*Q.

Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).

n (global).INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
Pointer into the local memory to an array of DIMENSION (lld_a,LOCc(ja+n-1)).          
On entry, this array contains the local pieces of the m-by-n distributed matrix 
sub(A) which is to be factored.

ia,ja (global) INTEGER.  The row and column indices in the global array a indicating the 
first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.
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work (local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global). INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > nq0 + max( 1, mp0 ), where

          iroff = mod (ia-1, mb_a ), icoff = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mp0   = numroc( m+iroff, mb_a, myrow, iarow, nprow ),
nq0   = numroc( n+icoff, nb_a, mycol, iacol, npcol ),

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.

Output Parameters

a (local).
On exit, if m < n, the upper triangle of A( ia+m-n:ia+m-1, ja:ja+n-1 ) contains 
the m-by-m upper triangular matrix R; if m > n, the elements on and above the 
(m-n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining 
elements, with the array tau, represent the orthogonal/ unitary matrix Q as a product 
of elementary reflectors (see Application Notes below).

tau (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Array, DIMENSION LOCr(ia+m -1).  This array contains the scalar factors of the 
elementary reflectors. tau is tied to the distributed  matrix A.

work On exit, work(1) returns the minimal and optimal lwork.
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info (local).INTEGER.
If info = 0, the execution is successful.
if info <  0: If the i-th argument is an array and the j-entry had  an illegal value, 
then info = - (i*100+j), if the i-th  argument is a scalar and had an illegal value, 
then info = -i. 

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia) H(ia+1) . . . H(ia+k-1) for real flavors,
Q = H(ia)' H(ia+1)' . . . H(ia+k-1)' for complex flavors, 

where k = min(m, n).

Each H(i) has the form

H(i) = I - tau *v *v',

where tau is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0 and 
v(n-k+i) = 1; v(1:n-k+i-1) for real flavors or conjg(v(1:n-k+i-1)) for complex flavors is 
stored on exit in A(ia+m-k+i-1, ja:ja+n-k+i-2), and tau in TAU(ia+m-k+i-1).

p?getf2
Computes an LU factorization of a general matrix, 
using partial pivoting with row interchanges (local 
blocked algorithm).

Syntax
call psgetf2 (m, n, a, ia, ja, desca, ipiv, info)

call pdgetf2 (m, n, a, ia, ja, desca, ipiv, info)

call pcgetf2 (m, n, a, ia, ja, desca, ipiv, info)

call pzgetf2 (m, n, a, ia, ja, desca, ipiv, info)

Description

This routine computes an LU factorization of a general m-by-n distributed matrix 
sub(A) = A(ia:ia+m-1,ja:ja+n-1) using partial pivoting with row interchanges. 
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The factorization has the form sub(A) = P * L * U, where P is a permutation matrix, L is lower 
triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular  
(upper trapezoidal if m < n). This is the right-looking Parallel Level 2 BLAS version of the 
algorithm.

Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).

n (global).INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (nb_a - mod(ja-1, nb_a) ≥ n ≥ 0).

a (local).
REAL for psgetf2
DOUBLE PRECISION for pdgetf2
COMPLEX for pcgetf2
COMPLEX*16 for pzgetf2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).          
On entry, this array contains the local pieces of the m-by-n distributed matrix 
sub(A).

ia,ja (global) INTEGER.  The row and column indices in the global array a indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

Output Parameters

ipiv (local).INTEGER.
Array, DIMENSION ( LOCr(m_a) + mb_a ). This array contains the pivoting 
information. ipiv(i) -> The global row that local row i was swapped with. This 
array is tied to the distributed matrix A.

info (local). INTEGER.
If info = 0:  successful exit.
If info < 0:  

• if the i-th argument is an array and the j-entry had an illegal value, then 
info = - (i*100+j), 

• if the i-th argument is a scalar and had an illegal value, then info = -i.
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If info  > 0:  If info = k, u(ia+k-1, ja+k-1) is exactly zero. The factorization 
has been completed, but the factor u is exactly singular, and division by zero will 
occur if it is used to solve a system of equations.

p?labrd
Reduces the first nb rows and columns of a general 
rectangular matrix A to real bidiagonal form by an 
orthogonal|unitary transformation, and returns 
auxiliary matrices that are needed to apply the 
transformation to the unreduced part of A.

call pslabrd (m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
iy, jy, descy, work)

call pdlabrd (m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
iy, jy, descy, work)

call pclabrd (m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
iy, jy, descy, work)

call pzlabrd (m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
iy, jy, descy, work)

Description

This routine reduces the first nb rows and columns of a real/complex general m-by-n distributed 
matrix sub(A) = A(ia:ia+m-1,ja:ja+n-1) to upper or lower bidiagonal form by an 
orthogonal/unitary transformation Q' * A * P, and returns the matrices X and Y necessary to apply 
the transformation to the unreduced part of sub(A).

If m > n, sub(A) is reduced to upper bidiagonal form; 
if m < n, sub(A) is reduced to lower bidiagonal form.

This is an auxiliary routine called by p?gebrd.

Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).
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n (global).INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

nb (global) INTEGER. The number of leading rows and columns of sub(A) to be          
reduced.

a (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).          
On entry, this array contains the local pieces of the general distributed matrix 
sub(A).

ia,ja (global) INTEGER.  The row and column indices in the global array a indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

ix,jx (global) INTEGER.  The row and column indices in the global array x indicating the 
first row and the first column of the submatrix sub(X), respectively.

descx (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix X.

iy,jy (global) INTEGER.  The row and column indices in the global array y indicating the 
first row and the first column of the submatrix sub(Y), respectively.

descy (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix Y.

work (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Workspace array, DIMENSION (lwork)
lwork > nb_a + nq, 
with  nq = numroc( n + mod(ia-1, nb_y), nb_y, mycol, iacol, npcol )
iacol = indxg2p (ja, nb_a, mycol, csrc_a, npcol )
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indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

Output Parameters

a (local)
On exit, the first nb rows and columns of the matrix are overwritten; the rest of the 
distributed matrix sub(A) is unchanged. 
If m > n, elements on and below the diagonal in the first nb columns, with the array 
tauq, represent the orthogonal/unitary matrix Q as a product of elementary 
reflectors; and elements above the diagonal in the first nb rows, with the  array taup, 
represent the orthogonal/unitary matrix P as a product of elementary reflectors. 

If m < n, elements below the diagonal in the first nb columns, with the array tauq, 
represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and 
elements on and above the diagonal in the first nb rows, with the array taup, 
represent the orthogonal/unitary matrix P as a product of elementary reflectors. See 
Application Notes below.

e (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Array, DIMENSION LOCr(ia+min(m,n)-1) if m > n; LOCc(ja+min(m,n)-2) 
otherwise. The distributed off-diagonal elements of the bidiagonal distributed matrix 
B:
if m > n, E(i) = A(ia+i-1, ja+i) for i = 1, 2, ..., n-1; 
if m < n, E(i) = A(ia+i, ja+i-1) for i = 1, 2, ..., m-1. 
E is tied to the distributed matrix A.

tauq, taup (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Array DIMENSION LOCc(ja+min(m, n)-1) for tauq, DIMENSION        
LOCr(ia+min(m, n)-1) for taup. The scalar factors of the elementary reflectors 
which represent the orthogonal/unitary matrix Q for tauq, P for taup. tauq and 
taup are tied to the distributed matrix A. See Application Notes below.
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x (local)
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Pointer into the local memory to an array of DIMENSION (lld_x, nb). On exit, the 
local pieces of the distributed m-by-nb matrix X(ix:ix+m-1, jx:jx+nb-1) required 
to update the unreduced part of sub(A).

y (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Pointer into the local memory to an array of DIMENSION (lld_y, nb).  On exit, the 
local pieces of the distributed n-by-nb matrix Y(iy:iy+n-1, jy:jy+nb-1) required 
to update the unreduced part of sub(A).

Application Notes

The matrices Q and P are represented as products of elementary reflectors:

 Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)

Each H(i) and G(i) has the form:

H(i) = I - tauq *v *v'  and G(i) = I - taup *u *u',

where tauq and taup are real/complex scalars, and v and u are real/complex vectors. 

If m > n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in

A(ia+i-1:ia+m-1, ja+i-1); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in 
A(ia+i-1, ja+i:ja+n-1); tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).

If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in

A(ia+i+1:ia+m-1, ja+i-1); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in 
A(ia+i-1, ja+i:ja+n-1); tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1). 
The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U' 
which are necessary, with X and Y, to apply the transformation to the unreduced part of the matrix, 
using a block update of the form: sub(A) := sub(A) - V*Y' - X*U'. The contents of sub(A) on exit 
are illustrated by the following examples with nb = 2:
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m = 6 and n = 5 (m > n):                                                   m = 5 and n = 6 (m < n):

                                                      

where a denotes an element of the original matrix which is unchanged, vi denotes an element of 
the vector defining H(i), and ui an element of the vector defining G(i).

p?lacon
Estimates the 1-norm of a square matrix, using the 
reverse communication for evaluating matrix-vector 
products.

Syntax
call pslacon (n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

call pdlacon (n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

call pclacon (n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

call pzlacon (n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

Description

This routine estimates the 1-norm of a square, real/unitary distributed matrix A. Reverse 
communication is used for evaluating matrix-vector products. x and v are aligned with the 
distributed matrix A, this information is implicitly contained within iv, ix, descv, and descx.

Input Parameters

n (global).INTEGER.
The length of the distributed vectors v and x.n > 0.

v (local).
REAL for pslacon
DOUBLE PRECISION for pdlacon

1 1 u1 u1 u1

v1 1 1 u2 u2

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

1 u1 u1 u1 u1 u1

1 1 u2 u2 u2 u2

v1 1 a a a a

v1 v2 a a a a

v1 v2 a a a a
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COMPLEX for pclacon
COMPLEX*16 for pzlacon
Pointer into the local memory to an array of DIMENSION 
LOCr(n+mod(iv-1, mb_v)). On the final return, v = a*w, 
where est = norm(v)/norm(w) (w is not returned).

iv,jv (global) INTEGER.  The row and column indices in the global array v indicating the 
first row and the first column of the submatrix V, respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix V.

x (local).
REAL for pslacon
DOUBLE PRECISION for pdlacon
COMPLEX for pclacon
COMPLEX*16 for pzlacon
Pointer into the local memory to an array of DIMENSION LOCr(n+mod(ix-1, mb_x)).

ix,jx (global) INTEGER.  The row and column indices in the global array x indicating the 
first row and the first column of the submatrix X, respectively.

descx (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix X.

isgn (local).INTEGER. 
Array, DIMENSION LOCr(n+mod(ix-1, mb_x)). isgn is aligned with x and v.

kase (local).INTEGER. 
On the initial call to p?lacon, kase should be 0.

Output Parameters

x (local).
On an intermediate return, X should be overwritten by
A *X,   if kase=1,
A' *X,  if kase=2,

p?lacon must be re-called with all the other parameters unchanged.

est (global).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors
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kase (local) INTEGER. 
On an intermediate return, kase will be 1 or 2, indicating whether X should be 
overwritten by A * X  or A' * X. On the final return from p?lacon, kase will again 
be 0.

p?laconsb
Looks for two consecutive small subdiagonal elements.

call pslaconsb (a, desca, i, l, m, h44, h33, h43h34, buf, lwork)

call pdlaconsb (a, desca, i, l, m, h44, h33, h43h34, buf, lwork)

Description

This routine looks for two consecutive small subdiagonal elements by seeing the effect of starting 
a double shift QR iteration given by h44, h33, and h43h34 and see if this would make a 
subdiagonal negligible.

Input Parameters

a (global).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
Array, DIMENSION (desca (lld_),*). On entry, the Hessenberg matrix whose 
tridiagonal part is being scanned. Unchanged on exit.

desca (global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.

i (global) INTEGER.
The global location of the bottom of the unreduced submatrix of A. Unchanged on 
exit.

l (global) INTEGER.
The global location of the top of the unreduced submatrix of A. Unchanged on exit.
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h44,

h33,

h43h34 (global).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
These three values are for the double shift QR iteration.

lwork (global).INTEGER.
This must be at least 7*ceil(ceil( (i-l)/hbl ) /lcm(nprow, npcol) ). Here lcm
is least common multiple and nprowxnpcol is the logical grid size.

Output Parameters

m (global).
On exit, this yields the starting location of the QR double shift. This will satisfy:
l < m  < i-2.

buf (local).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
Array of size lwork.

lwork (global).
On exit, lwork is the size of the work buffer.

p?lacp2
Copies all or part of a distributed matrix to another 
distributed matrix.

Syntax
call pslacp2 (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pdlacp2 (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pclacp2 (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pzlacp2 (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
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Description

This routine copies all or part of a distributed matrix A to another distributed matrix B. No 
communication is performed, p?lacp2 performs a local copy sub(A) := sub(B), where sub(A) 
denotes A(ia:ia+m-1,ja:ja+n-1) and sub(B) denotes B(ib:ib+m-1,jb:jb+n-1).

p?lacp2 requires that only dimension of the matrix operands is distributed.

Input Parameters

uplo (global) CHARACTER.
Specifies the part of the distributed matrix sub(A) to be copied:
 = 'U':   Upper triangular part is copied; the strictly lower triangular part of sub(A) is 
not referenced;
 = 'L':   Lower triangular part is copied; the strictly upper triangular part of sub(A) is 
not referenced.
Otherwise: all of the matrix sub(A) is copied.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).          
On entry, this array contains the local pieces of the m-by-n distributed matrix 
sub(A).

ia,ja (global) INTEGER.  The row and column indices in the global array A indicating the 
first row and the first column of sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

ib,jb (global) INTEGER.  The row and column indices in the global array B indicating the 
first row and the first column of sub(B), respectively.
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descb (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix B.

Output Parameters

b (local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of DIMENSION (lld_b, LOCc(jb+n-1)  ). 
This array  contains on exit the local pieces of the distributed matrix sub( B ) set as 
follows:

if uplo = 'U', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),  
1<i<j, 1<j<n;
if uplo = 'L', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
j<i<m, 1<j<n;

otherwise, B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
1<i<m, 1<j<n.

p?lacp3
Copies from a global parallel array into a local 
replicated array or vice versa.

Syntax
call pslacp3 (m, i, a, desca, b, ldb, ii, jj, rev)

call pdlacp3 (m, i, a, desca, b, ldb, ii, jj, rev)

Description

This is an auxiliary routine that copies from a global parallel array into a local replicated array or 
vise versa. Note that the entire submatrix that is copied gets placed on one node or more. The 
receiving node can be specified precisely, or all nodes can receive, or just one row or column of 
nodes.
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Input Parameters

m (global) INTEGER.m is the order of the square submatrix that is copied.
m > 0. Unchanged on exit.

i (global) INTEGER.
A(i, i) is the global location that the copying starts from. Unchanged on exit.

a (global).
REAL for pslacp3
DOUBLE PRECISION for pdlacp3
Array, DIMENSION (desca(lld_),*). On entry, the parallel matrix to be copied into 
or from.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

b (local).
REAL for pslacp3
DOUBLE PRECISION for pdlacp3
Array, DIMENSION (ldb, m). 
If rev = 0, this is the global portion of the array A(i:i+m-1, i:i+m-1).
If rev = 1, this is the unchanged on exit.

ldb (local)  INTEGER.
The leading dimension of B.

ii (global)  INTEGER
By using rev 0 and 1, data can be sent out and returned again. If rev = 0, then ii is 
destination row index for the node(s) receiving the replicated B. 
If ii > 0, jj > 0, then node (ii, jj) receives the data.
If ii = -1, jj > 0, then all rows in column jj receive the data.
If ii > 0, jj = -1, then all cols in row ii receive the data.
f ii = -1, jj = -1, then all nodes receive the data.
If rev !=0, then ii is the source row index for the node(s) sending the replicated B.

jj (global) INTEGER.Similar description as ii above.

rev (global) INTEGER. 
Use rev = 0 to send global A into locally replicated B (on node (ii,jj)). 
Use rev != 0 to send locally replicated B from node (ii,jj) to its owner (which 
changes depending on its location in A) into the global A.

Output Parameters

a (global). On exit, if rev = 1, the copied data. Unchanged on exit if rev = 0.
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b (local).  If rev = 1, this is unchanged on exit.

p?lacpy
Copies all or part of one two-dimensional array to 
another.

Syntax
call pslacpy (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pdlacpy (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pclacpy (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pzlacpy (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

Description

This routine copies all or part of a distributed matrix A to another distributed matrix B. No 
communication is performed, p?lacpy performs a local copy sub(A) := sub(B), where sub(A) 
denotes A(ia:ia+m-1,ja:ja+n-1) and sub(B) denotes B(ib:ib+m-1,jb:jb+n-1).

Input Parameters

uplo (global). CHARACTER.
Specifies the part of the distributed matrix sub(A) to be copied:
 = 'U':   Upper triangular part is copied; the strictly lower triangular part of sub(A) is 
not referenced;
 = 'L':   Lower triangular part is copied; the strictly upper triangular part of sub(A) is 
not referenced.
Otherwise: all of the matrix sub(A) is copied.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).
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a (local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).          
On entry, this array contains the local pieces of the distributed matrix 
sub(A).

ia,ja (global) INTEGER.  The row and column indices in the global array a indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

ib,jb (global) INTEGER.  The row and column indices in the global array B indicating the 
first row and the first column of sub(B) respectively.

descb (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

Output Parameters

b (local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of DIMENSION (lld_b, LOCc(jb+n-1) ). 
This array  contains on exit the local pieces of the distributed matrix sub( B ) set as 
follows:

if uplo = 'U', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1), 
1<i<j, 1<j<n;
if uplo = 'L', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
j<i<m, 1<j<n;

otherwise, B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
1<i<m, 1<j<n.
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p?laevswp
Moves the eigenvectors from where they are computed 
to ScaLAPACK standard block cyclic array.

Syntax
call pslaevswp (n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,

lrwork)

call pdlaevswp (n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
lrwork)

call pclaevswp (n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
lrwork)

call pzlaevswp (n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
lrwork)

Description

This routine moves the eigenvectors (potentially unsorted) from where they are computed, to a 
ScaLAPACK standard block cyclic array, sorted so that the corresponding eigenvalues are sorted.

Input Parameters

np = the number of rows local to a given process.

nq = the number of columns local to a given process.

n (global). INTEGER.
The order of the matrix A.  n > 0.

zin (local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, DIMENSION (ldzi, nvs(iam) ). The eigenvectors on input. Each eigenvector 
resides entirely in one process. Each process holds a contiguous set of nvs(iam) 
eigenvectors. The first eigenvector which the process holds is:  
sum for i=[0, iam-1) of nvs(i).

ldzi (local) INTEGER.The leading dimension of the zin array.
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iz, jz (global) INTEGER.The row and column indices in the global array Z indicating the 
first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix Z.

nvs (global) INTEGER.
Array, DIMENSION( nprocs+1 ) 
nvs(i) = number of processes number of eigenvectors held by processes [0, i-1) 
nvs(1) = number of eigen vectors held by [0, 1-1) = 0
nvs(nprocs+1) = number of eigen vectors held by [0, nprocs) = total number of 
eigenvectors.

key (global) INTEGER.
Array, DIMENSION (n). Indicates the actual index (after sorting) for each of the    
eigenvectors.

rwork (local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, DIMENSION (lrwork).

lrwork (local) INTEGER.
Dimension of work.

Output Parameters

z (local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, global DIMENSION (n, n), local DIMENSION (descz(dlen_), nq). The 
eigenvectors on output.  The eigenvectors are distributed in a block cyclic manner in 
both dimensions, with a block size of nb.
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p?lahrd
Reduces the first nb columns of a general rectangular 
matrix A so that elements below the kthsubdiagonal are 
zero, by an orthogonal/unitary transformation, and 
returns auxiliary matrices that are needed to apply the 
transformation to the unreduced part of A.

Syntax
call pslahrd (n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

call pdlahrd (n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

call pclahrd (n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

call pzlahrd (n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

Description

The routines reduces the first nb columns of a real general n-by-(n-k+1) distributed matrix 
A(ia:ia+n-1, ja:ja+n-k) so that elements below the k-th subdiagonal are zero. The reduction 
is performed by an orthogonal/unitary similarity transformation Q' * A * Q. The routine returns the 
matrices V and T which determine Q as a block reflector I - V*T*V', and also the matrix 
Y = A * V * T.

This is an auxiliary routine called by p?gehrd. In the following comments sub(A) denotes 
A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

n (global) INTEGER. The order of the distributed submatrix sub(A). n ≥ 0.

k (global) INTEGER. The offset for the reduction. Elements below the k-th subdiagonal 
in the first nb columns are reduced to zero.

nb (global) INTEGER. The number of columns to be reduced.

a (local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd

COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
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Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-k)).
On entry, this array contains the the local pieces of the n-by-(n-k+1) general 
distributed matrix  A(ia:ia+n-1, ja:ja+n-k).

ia,ja (global) INTEGER.  The row and column indices in the global array A indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

iy,jy (global) INTEGER.  The row and column indices in the global array Y indicating the 
first row and the first column of the submatrix sub(Y), respectively.

descy (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix Y.

work (local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd

COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION (nb).

Output Parameters

a (local).
On exit, the elements on and above  the k-th subdiagonal in the first nb columns are 
overwritten with the corresponding elements of the reduced distributed matrix; the 
elements below the k-th subdiagonal, with the array tau,  represent the matrix Q as a 
product of elementary reflectors. The other columns of A(ia:ia+n-1, ja:ja+n-k) 
are  unchanged. See Application Notes below.

tau (local)

REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION LOCc(ja+n-2).
The scalar factors of the elementary reflectors (see Application Notes below). tau is 
tied to the distributed matrix A.

t (local)
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
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COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.

Array, DIMENSION (nb_a, nb_a)
The upper triangular matrix T.

y (local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd

COMPLEX*16 for pzlahrd.
Pointer into the local memory to an array of DIMENSION (lld_y, nb_a). On exit, this 
array contains the local pieces of the n-by-nb distributed matrix Y. 
lld_y > LOCr(ia+n-1).

Application Notes

The matrix Q is represented as a product of nb elementary reflectors

 Q = H(1) H(2) . . . H(nb).

Each H(i) has the form

H(i) = i - tau *v * v',

where tau is a real/complex scalar, and v is a real/complex vector with  v(1:i+k-1) = 0, v(i+k) = 
1; v(i+k+1:n) is stored on exit in A(ia+i+k:ia+n-1, ja+i-1), and tau in TAU(ja+i-1).

The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with T 
and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form:  
A(ia:ia+n-1, ja:ja+n-k) := (I-V*T*V')*(A(ia:ia+n-1, ja:ja+n-k)-Y*V'). The contents of 
A(ia:ia+n-1, ja:ja+n-k) on exit are illustrated by the following example with n = 7, k = 3, and 
nb = 2:

a h a a a

a h a a a

a h a a a

h h a a a

v1 h a a a

v1 v2 a a a

v1 v2 a a a
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where a denotes an element of the original matrix A(ia:ia+n-1, ja:ja+n-k),  h  denotes a 
modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector   
defining H(i).

p?laiect
Exploits IEEE arithmetic to accelerate the 
computations of eigenvalues. (C interface function).

Syntax
void pslaiect (float *sigma, int *n, float *d, int *count);

void pdlaiectb (float *sigma, int *n, float *d, int *count);

void pdlaiectl (float *sigma, int *n, float *d, int *count);

Description

This routine computes the number of negative eigenvalues of (A- σI). This implementation of the 
Sturm Sequence loop exploits IEEE arithmetic and has no conditionals in the innermost loop. The 
signbit for real routine pslaiect is assumed to be bit 32. Double precision routines pdlaiectb 
and pdlaiectl differ in the order of the double precision word storage and, consequently, in the 
signbit location. For pdlaiectb, the double precision word is stored in the big-endian word order 
and the signbit is assumed to be bit 32. For pdlaiectl, the double precision word is stored in the 
little-endian word order and the signbit is assumed to be bit 64.

Note that all arguments are call-by-reference so that this routine can be directly called from 
Fortran code. 

This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values.

Input Parameters

sigma REAL for pslaiect
DOUBLE PRECISION for pdlaiectb/pdlaiectl.
The shift. p?laiect finds the number of eigenvalues less than equal to sigma.

n INTEGER.
The order of the tridiagonal matrix T.  n > 1.
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d REAL for pslaiect
DOUBLE PRECISION for pdlaiectb/pdlaiectl.

Array of DIMENSION (2n - 1).
On entry, this array contains the diagonals and the squares of the off-diagonal 
elements of the tridiagonal matrix T. These elements are assumed to be interleaved in 
memory for better cache performance. The diagonal entries of T are in the entries 
d(1), d(3), ..., d(2n-1), while the squares of the off-diagonal entries are 
d(2), d(4), ..., d(2n-2). To avoid overflow, the matrix must be scaled so that its largest 
entry is no greater than overflow(1/2) * underflow(1/4) in absolute value, and for 
greatest accuracy, it should not be much smaller than that.

Output Parameters

n INTEGER.
The count of the number of eigenvalues of T less than or equal to sigma.

p?lange
Returns the value of the 1-norm, Frobenius norm, 
infinity-norm, or the largest absolute value of any 
element, of a general rectangular matrix.

Syntax
val = pslange (norm, m, n, a, ia, ja, desca, work)

val = pdlange (norm, m, n, a, ia, ja, desca, work)

val = pclange (norm, m, n, a, ia, ja, desca, work)

val = pzlange (norm, m, n, a, ia, ja, desca, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the 
element of largest absolute value of a distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1).

p?lange returns the value

( max(abs(A(i,j))),  norm = 'M' or 'm' with ia < i < ia+m-1,
(                                                                   and  ja < j < ja+n-1,

(
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( norm1( sub(A) ),  norm = '1', 'O' or 'o'

(

( normI( sub(A) ),  norm = 'I' or 'i'

(

( normF( sub(A) ),  norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the 
infinity norm of a matrix (maximum row sum) and normF  denotes the Frobenius norm of a matrix 
(square root of sum of squares). Note that  max(abs(A(i,j)))  is not a matrix norm.

Input Parameters

norm (global) CHARACTER.
Specifies the value to be returned in p?lange as described above.

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). When m = 0, p?lange  is set to zero. m > 0.

n (global). INTEGER.
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). When n = 0, p?lange is set to zero. n > 0.

a (local).
REAL for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.
Pointer into the local memory  to an array of DIMENSION (lld_a, LOCc(ja+n-1)) 
containing the local pieces of the distributed matrix sub(A).

ia,ja (global) INTEGER.  The row and column indices in the global array A indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

work (local).
REAL for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.
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Array DIMENSION (lwork).
lwork >  0 if norm = 'M' or 'm' (not referenced),
 nq0 if norm = '1', 'O' or 'o',
            mp0 if norm = 'I' or 'i',
                  0 if norm = 'F', 'f', 'E' or 'e' (not referenced),

       where 
iroffa = mod( ia-1, mb_a ), icoffa = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mp0 = numroc( m+iroffa, mb_a, myrow, iarow, nprow ),
nq0 = numroc( n+icoffa, nb_a, mycol, iacol, npcol ),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, 
and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters

val The value returned by the fuction.

p?lanhs
Returns the value of the 1-norm, Frobenius norm, 
infinity-norm, or the largest absolute value of any 
element, of an upper Hessenberg matrix.

Syntax
val = pslanhs (norm, n, a, ia, ja, desca, work)

val = pdlanhs (norm, n, a, ia, ja, desca, work)

val = pclanhs (norm, n, a, ia, ja, desca, work)

val = pzlanhs (norm, n, a, ia, ja, desca, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the 
element of largest absolute value of a distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1).

p?lanhs returns the value
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( max(abs(A(i,j))),  norm = 'M' or 'm' with ia < i < ia+m-1,
(                                                                   and  ja < j < ja+n-1,

(

( norm1( sub(A) ),  norm = '1', 'O' or 'o'

(

( normI( sub(A) ),  norm = 'I' or 'i'

(

( normF( sub(A) ),  norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the 
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix 
(square root of sum of squares). Note that  max(abs(A(i,j))) is not a matrix norm.

Input Parameters

norm (global) CHARACTER.
Specifies the value to be returned in p?lange as described above.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). When n = 0, p?lanhs is set to zero. n > 0.

a (local).
REAL for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs

COMPLEX*16 for pzlanhs
Pointer into the local memory  to an array of DIMENSION (lld_a, LOCc(ja+n-1)) 
containing the local pieces of the distributed matrix sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array A indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

work (local).
REAL for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs
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COMPLEX*16 for pzlanh.
Array, DIMENSION (lwork).
lwork >  0 if norm = 'M' or 'm' (not referenced),
 nq0 if norm = '1', 'O' or 'o',
            mp0 if norm = 'I' or 'i',
                0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
where 
iroffa = mod( ia-1, mb_a ), icoffa = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mp0 = numroc( m+iroffa, mb_a, myrow, iarow, nprow ),
nq0 = numroc( n+icoffa, nb_a, mycol, iacol, npcol ),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, 
and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters

val The value returned by the fuction.

p?lansy, p?lanhe
Returns the value of the 1-norm, Frobenius norm, 
infinity-norm, or the largest absolute value of any 
element, of a real symmetric or a complex Hermitian 
matrix.

Syntax
val = pslansy (norm, uplo, n, a, ia, ja, desca, work)

val = pdlansy (norm, uplo, n, a, ia, ja, desca, work)

val = pclansy (norm, uplo, n, a, ia, ja, desca, work)

val = pzlansy (norm, uplo, n, a, ia, ja, desca, work)

val = pclanhe (norm, uplo, n, a, ia, ja, desca, work)

val = pzlanhe (norm, uplo, n, a, ia, ja, desca, work)
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Description

The functions return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the 
element of largest absolute value of a distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1).

p?lansy, p?lanhe return the value

( max(abs(A(i,j))),  norm = 'M' or 'm' with ia < i < ia+m-1,
(                                                                    and  ja < j < ja+n-1,

(

( norm1( sub(A) ),  norm = '1', 'O' or 'o'

(

( normI( sub(A) ),  norm = 'I' or 'i'

(

( normF( sub(A) ),  norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the 
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix 
(square root of sum of squares). Note that  max(abs(A(i,j))) is not a matrix norm.

Input Parameters

norm (global) CHARACTER.
Specifies the value to be returned in p?lange as described above.

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the  symmetric matrix
sub(A) is to be referenced.

 = 'U':  Upper triangular part of sub(A) is referenced,

 = 'L':  Lower triangular part of sub(A) is referenced.

n (global) INTEGER.
The number of columns to be operated on i.e the number of columns of the 
distributed submatrix sub(A). When n = 0, p?lansy is set to zero. n > 0.

a (local).
REAL for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe
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COMPLEX*16 for pzlansy, pzlanhe.
Pointer into the local memory  to an array of DIMENSION (lld_a, LOCc(ja+n-1)) 
containing the local pieces of the distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the upper 
triangular matrix which norm is to be computed, and the strictly lower triangular part 
of this matrix is not referenced.  
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the lower 
triangular matrix which norm is to be computed, and the  strictly upper triangular part 
of sub(A) is not referenced.

ia,ja (global) INTEGER.  The row and column indices in the global array A indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

work (local).
REAL for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe
COMPLEX*16 for pzlansy, pzlanhe.
Array DIMENSION (lwork).
lwork >   0 if norm = 'M' or 'm' (not referenced),
 2*nq0+np0+ldw  if norm = '1', 'O' or 'o',  'I' or 'i',

where ldw is given by:
if( nprow.ne.npcol ) then

ldw = mb_a*ceil(ceil(np0/mb_a)/(lcm/nprow))
else

ldw = 0
end if

                   0 if norm = 'F', 'f', 'E' or 'e' (not referenced),

       where lcm is the least common multiple of nprow and npcol
lcm = ilcm( nprow, npcol ) and ceil denotes the ceiling operation (iceil).
iroffa = mod( ia-1, mb_a ), icoffa = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mp0 = numroc( m+iroffa, mb_a, myrow, iarow, nprow ),
nq0 = numroc( n+icoffa, nb_a, mycol, iacol, npcol ),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, 
and npcol can be determined by calling the  subroutine blacs_gridinfo.
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Output Parameters

val The value returned by the fuction.

p?lantr
Returns the value of the 1-norm, Frobenius norm, 
infinity-norm, or the largest absolute value of any 
element, of a triangular matrix.

Syntax
val = pslantr (norm, uplo, diag, m, n, a, ia, ja, desca, work)

val = pdlantr (norm, uplo, diag, m, n, a, ia, ja, desca, work)

val = pclantr (norm, uplo, diag, m, n, a, ia, ja, desca, work)

val = pzlantr (norm, uplo, diag, m, n, a, ia, ja, desca, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the 
element of largest absolute value of a trapezoidal or triangular distributed matrix 
sub(A) = A(ia:ia+m-1, ja:ja+n-1).

p?lantr returns the value

( max(abs(A(i,j))),  norm = 'M' or 'm' with ia < i < ia+m-1,
(                                                                   and  ja < j < ja+n-1,

(

( norm1( sub(A) ),  norm = '1', 'O' or 'o'

(

( normI( sub(A) ),  norm = 'I' or 'i'

(

( normF( sub(A) ),  norm = 'F', 'f', 'E' or 'e',
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where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the 
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix 
(square root of sum of squares). Note that  max(abs(A(i,j))) is not a matrix norm.

Input Parameters

norm (global) CHARACTER.
Specifies the value to be returned in p?lantr as described above.

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric matrix
sub(A) is to be referenced.

 = 'U':  Upper trapezoidal,
 = 'L':  Lower trapezoidal.

Note that sub(A) is triangular instead of trapezoidal if m = n.

diag (global). CHARACTER.
Specifies whether or not the distributed matrix sub(A) has unit diagonal.
= 'N':  Non-unit diagonal.
= 'U':  Unit diagonal.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). When m = 0, p?lantr  is set to zero. m > 0.

n (global) INTEGER.
The number of columns to be operated on i.e the number of columns of the 
distributed submatrix sub(A). When n = 0, p?lantr is set to zero. n > 0.

a (local).
REAL for pslantr
DOUBLE PRECISION for pdlantr

COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Pointer into the local memory  to an array of DIMENSION (lld_a, LOCc(ja+n-1)) 
containing the local pieces of the distributed matrix sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array a indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.
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work (local).
REAL for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Array DIMENSION (lwork).
lwork >   0 if norm = 'M' or 'm' (not referenced),
 nq0 if norm = '1', 'O' or 'o',
              mp0 if norm = 'I' or 'i',
                    0 if norm = 'F', 'f', 'E' or 'e' (not referenced),

       where lcm is the least common multiple of nprow and npcol
lcm = ilcm( nprow, npcol ) and ceil denotes the ceiling operation (iceil).
iroffa = mod( ia-1, mb_a ), icoffa = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mp0 = numroc( m+iroffa, mb_a, myrow, iarow, nprow ),
nq0 = numroc( n+icoffa, nb_a, mycol, iacol, npcol ),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, 
and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters

val The value returned by the fuction.

p?lapiv
Applies a permutation matrix to a general distributed 
matrix, resulting in row or column pivoting.

Syntax
call pslapiv (direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,

descip, iwork)

call pdlapiv (direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)

call pclapiv (direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)
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call pzlapiv (direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)

Description

This routine applies either P (permutation matrix indicated by ipiv) or inv(P) to a general m-by-n 
distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1), resulting in row or column pivoting. The 
pivot vector may be distributed across a process row or a column. The pivot vector should be 
aligned with the distributed matrix A. This routine will transpose the pivot vector, if necessary.

For example, if the row pivots should be applied to the columns of sub(A), pass rowcol='C' and 
pivroc='C'.

Input Parameters

direc (global) CHARACTER*1.

Specifies in which order the permutation is applied:
= 'F' (Forward). Applies pivots Forward from top of matrix.
      Computes P*sub(A).
= 'B' (Backward) Applies pivots Backward from bottom of matrix. 
       Computes inv(P)*sub(A).

rowcol (global) CHARACTER*1.
Specifies if the rows or columns are to be permuted:

 = 'R' Rows will be permuted,
 = 'C' Columns will be permuted.

pivroc (global) CHARACTER*1.
Specifies whether ipiv is distributed over a process row or column:
= 'R' ipiv is distributed over a process row,
= 'C' ipiv is distributed over a process column.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). When m = 0, p?lapiv  is set to zero. m > 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). When n = 0, p?lapiv is set to zero. n > 0.

a (local).
REAL for pslapiv
DOUBLE PRECISION for pdlapiv

COMPLEX for pclapiv
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COMPLEX*16 for pzlapiv.
Pointer into the local memory  to an array of DIMENSION (lld_a, LOCc(ja+n-1)) 
containing the local pieces of the distributed matrix sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array A indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

ipiv (local).INTEGER.
Array, DIMENSION (lipiv) where lipiv is  when rowcol='R' or 'r':

> LOCr( ia+m-1 ) + mb_a       if pivroc='C' or 'c',
> LOCc( m + mod(jp-1, nb_p) )  if pivroc='R' or 'r', and,

when rowcol='C' or 'c':

> LOCr ( n + mod(ip-1, mb_p) ) if pivroc='C' or 'c',
> LOCc ( ja+n-1 ) + nb_a          if pivroc='R' or 'r'.

This array contains the pivoting information. ipiv(i) is the global row (column), 
local row (column) i was swapped with. When rowcol='R' or 'r' and pivroc='C' or 
'c', or rowcol='C' or 'c' and pivroc='R' or 'r', the last piece of this array of size mb_a 
(resp. nb_a) is used as workspace. In those cases, this array is tied to the distributed 
matrix A.

ip,jp (global) INTEGER.  The row and column indices in the global array P indicating the 
first row and the first column of the submatrix sub(P), respectively.

descip (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed vector ipiv.

iwork (local). INTEGER.
Array, DIMENSION (ldw), where ldw is equal to the workspace necessary for 
transposition, and the storage of the tranposed ipiv :

Let lcm be the least common multiple of nprow and npcol.

If( rowcol.eq.'r' .and. pivroc.eq.'r' ) then
      If( nprow.eq.npcol ) then

ldw = LOCr( n_p + mod(jp-1, nb_p) ) + nb_p
else

ldw = LOCr( n_p + mod(jp-1, nb_p) ) + 
nb_p * ceil( ceil(LOCc(n_p)/nb_p) / (lcm/npcol) )

end if
else if( rowcol.eq.'c' .and. pivroc.eq.'c' ) then
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      if( nprow.eq.npcol ) then
ldw = LOCc( m_p + mod(ip-1, mb_p) ) + mb_p

else
ldw = LOCc( m_p + mod(ip-1, mb_p) ) +

mb_p * ceil(ceil(LOCr(m_p)/mb_p) / (lcm/nprow) )
end if

else
iwork is not referenced.

end if.

Output Parameters

a (local).
On exit, the local pieces of the permuted distributed submatrix.

p?laqge
Scales a general rectangular matrix, using row and 
column scaling factors computed by p?geequ .

Syntax
call pslaqge (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

call pdlaqge (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

call pclaqge (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

call pzlaqge (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

Description

This routine equilibrates a general m-by-n distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1) 
using the row and scaling factors in the vectors r and c computed by p?geequ.

Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).
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n (global).INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16COMPLEX*16 for pzlaqge.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).          
On entry, this array contains the distributed matrix sub(A).

ia,ja (global) INTEGER.  The row and column indices in the global array A indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

r (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSION LOCr(m_a). The row scale factors for sub(A). r is aligned with 
the distributed matrix A, and replicated across every process column. r is tied to the 
distributed matrix A.

c (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSION LOCc(n_a). The row scale factors for sub(A). c is aligned with 
the distributed matrix A, and replicated across every process column. c is tied to the 
distributed matrix A.

rowcnd (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest r(i) to the largest r(i), ia < i < ia+m-1.
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colcnd (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest c(i) to the largest r(i), ia < i < ia+n-1.

amax (global).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Absolute value of largest distributed submatrix entry.

Output Parameters

a (local).
On exit, the equilibrated distributed matrix.  See equed for the form of the 
equilibrated distributed submatrix.

equed (global) CHARACTER.

Specifies the form of equilibration that was done.

= 'N': No equilibration
= 'R': Row equilibration, that is, sub(A) has been pre-multiplied by   
diag(r(ia:ia+m-1)),
= 'C':  Column equilibration, that is, sub(A) has been post-multiplied by 
diag(c(ja:ja+n-1)),
= 'B':  Both row and column equilibration, that is, sub(A) has been replaced by     
diag(r(ia:ia+m-1)) * sub(A) * diag(c(ja:ja+n-1)).

p?laqsy
Scales a symmetric/Hermitian matrix, using scaling 
factors computed by p?poequ .

Syntax
call pslaqsy (uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

call pdlaqsy (uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
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call pclaqsy (uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

call pzlaqsy (uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

Description

This routine equilibrates a symmetric distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) 
using the scaling factors in the vectors sr and sc. The scaling factors are computed by p?poequ .

Input Parameters

uplo (global) CHARACTER.
Specifies the upper or lower triangular part of the symmetric distributed matrix 
sub(A)is to be referenced:
 = 'U':   Upper triangular part;
 = 'L':  Lower triangular part.

n (global) INTEGER. The order of the distributed submatrix sub(A). n ≥ 0.

a (local).
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Pointer into the local memory to an array of DIMENSION (lld_a,LOCc(ja+n-1)).          
On entry, this array contains the local pieces of the distributed matrix sub(A). On 
entry, the local pieces of the distributed symmetric matrix sub(A). 

If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the upper 
triangular part of the matrix, and the strictly lower triangular part of sub(A) is not 
referenced. 

If uplo = 'L', the leading  n-by-n lower triangular part of sub(A) contains the lower 
triangular part of the matrix, and the strictly upper triangular part of sub(A) is not 
referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A indicating the 
first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

sr (local)
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
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COMPLEX*16 for pzlaqsy.
Array, DIMENSION LOCr(m_a). The scale factors for A(ia:ia+m-1, ja:ja+n-1). 
sr is aligned with the distributed matrix A, and replicated across every process 
column. sr is tied to the distributed matrix A.

sc (local)
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Array, DIMENSION LOCc(m_a). The scale factors for A (ia:ia+m-1, ja:ja+n-1). 
sr is aligned with the distributed matrix A, and replicated across every process 
column. sr is tied to the distributed matrix A.

scond (global).
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Ratio of the smallest sr(i) (respectively sc(j)) to the  largest sr(i) (respectively 
sc(j)), with ia < i < ia+n-1 and ja < j < ja+n-1.

amax (global).
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Absolute value of largest distributed submatrix entry.

Output Parameters

a On exit, if equed = 'Y', the equilibrated matrix:
diag(sr(ia:ia+n-1)) * sub(A) * diag(sc(ja:ja+n-1)).

equed (global) CHARACTER*1.

Specifies whether or not equilibration was done.
= 'N':  No equilibration.
= 'Y':  Equilibration was done, that is, sub(A) has been replaced by:
diag(sr(ia:ia+n-1)) * sub(A) * diag(sc(ja:ja+n-1)).
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p?lared1d
Redistributes an array assuming that the input array, 
bycol, is distributed across rows and that all process 
columns contain the same copy of bycol.

Syntax
call pslared1d (n, ia, ja, desc, bycol, byall, work, lwork)

call pdlared1d (n, ia, ja, desc, bycol, byall, work, lwork)

Description

This routine redistributes a 1D array. It assumes that the input array bycol is distributed across 
rows and that all process column contain the same copy of  bycol. The output array byall is 
identical on all processes and contains the entire array.

Input Parameters

np = Number of local rows in bycol()

n (global). INTEGER.
The number of elements to be redistributed.  n > 0.

ia,ja (global) INTEGER.  ia, ja must be equal to 1.

desc (global and local) INTEGER array, DIMENSION 8. A 2d array descirptor, which 
describes bycol.

bycol (local).
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
Distributed block cyclic array global DIMENSION (n), local DIMENSION np. bycol is 
distributed across the process rows. All process columns are assumed to contain the 
same value.

work (local).
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
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COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
DIMENSION (lwork). Used to hold the buffers sent from one process to another.

lwork (local) INTEGER.
The size of the work array. lwork > numroc(n, desc( nb_ ), 0, 0, npcol).

Output Parameters

byall (global).
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
Global DIMENSION(n), local DIMENSION (n). byall is exactly duplicated on all 
processes. It contains the same values as bycol, but it is replicated across all 
processes rather than being distributed.

p?lared2d
Redistributes an array assuming that the input array 
byrow is distributed across columns and that all 
process rows contain the same copy of byrow.

Syntax
call pslared2d (n, ia, ja, desc, byrow, byall, work, lwork)

call pdlared2d (n, ia, ja, desc, byrow, byall, work, lwork)

Description

This routine redistributes a 1D array.

It assumes that the input array byrow is distributed across columns and that all process rows 
contain the same copy of  byrow. The output array byall will be identical on all processes and 
will contain the entire array.

Input Parameters

np = Number of local rows in byrow()
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n (global) INTEGER.
The number of elements to be redistributed.  n > 0.

ia,ja (global) INTEGER.  ia, ja must be equal to 1.

desc (global and local) INTEGER array, DIMENSION (dlen_). A 2d array descirptor, 
which describes byrow.

byrow (local).
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
Distributed block cyclic array global DIMENSION (n), local DIMENSION np. bycol is 
distributed across the process columns. All process rows are assumed to contain the 
same value.

work (local).
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
DIMENSION (lwork). Used to hold the buffers sent from one process to another.

lwork (local).INTEGER.
The size of the work array. lwork > numroc(n, desc( nb_ ), 0, 0, npcol).

Output Parameters

byall (global).
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
Global DIMENSION(n), local DIMENSION (n). byall is exactly duplicated on all 
processes. It contains the same values as bycol, but it is replicated across all 
processes rather than being distributed.
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p?larf
Applies an elementary reflector to a general 
rectangular matrix.

Syntax
call pslarf (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pdlarf (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pclarf (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pzlarf (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

Description

This routine applies a real/complex elementary reflector Q (or QT) to a real/complex m-by-n
distributed matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is 
represented in the form

Q = I - tau * v * v',

where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Input Parameters

side (global). CHARACTER.
 = 'L': form  Q * sub(C),
 = 'R': form  sub(C) * Q, Q = QT.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

v (local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
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COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of DIMENSION (lld_v,*) containing the 
local pieces of the distributed vectors V representing the Householder transformation 
Q,

v(iv:iv+m-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+m-1) if side = 'L' and incv = m_v,
v(iv:iv+n-1, jv) if side = 'R' and  incv = 1,
v(iv, jv:jv+n-1) if side = 'R' and  incv = m_v.

The vector v is the representation of Q. v is not used if tau = 0.

iv,jv (global) INTEGER.  The row and column indices in the global array V indicating the 
first row and the first column of the submatrix sub(V), respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix V.

incv (global) INTEGER. The global increment for the elements of v. Only two values of 
incv are supported in this version, namely 1 and m_v. 
incv must not be zero.

tau (local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION  LOCc(jv) if incv = 1, and LOCr(iv) otherwise. This array 
contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix v.

c (local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of DIMENSION (lld_c, LOCc(jc+n-1) ), 
containing the local pieces of sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array c indicating the 
first row and the first column of the submatrix sub(C), respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix C.

work (local).
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REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION (lwork).

 If incv = 1,
if side = 'L',

if ivcol = iccol,
lwork > nqc0

else
lwork > mpc0 + max( 1, nqc0 )

  end if
else if side = 'R',
lwork > nqc0 + max( max(1,mpc0), numroc(  numroc(n+

icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq ) )
end if

else if  incv = m_v,
if side = 'L', 

lwork > mpc0 + max( max( 1, nqc0 ), numroc(
numroc(m+iroffc,mb_v,0,0,nprow ),mb_v,0,0, lcmp ) )

else if side = 'R',
if  ivrow = icrow,

lwork > mpc0
else

lwork > nqc0 + max( 1, mpc0 )

end if
end if

end if,

where lcm is the least common multiple of nprow and npcol and  lcm = ilcm( 
nprow, npcol ), lcmp = lcm / nprow, lcmq = lcm / npcol,

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),

icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
mpc0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
nqc0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.
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Output Parameters

c (local).
On exit, sub(C) is overwritten by the Q * sub(C) if side = 'L', 
                                                             or sub(C) * Q if side = 'R'.

p?larfb
Applies a block reflector or its 
transpose/conjugate-transpose to a general rectangular 
matrix.

Syntax
call pslarfb (side, trans, direct, storev, m, n, k, v, iv, jv, descv, t,c, ic,

jc, descc, work)

call pdlarfb (side, trans, direct, storev, m, n, k, v, iv, jv, descv, t,c, ic,
jc, descc, work)

call pclarfb (side, trans, direct, storev, m, n, k, v, iv, jv, descv, t,c, ic,
jc, descc, work)

call pzlarfb (side, trans, direct, storev, m, n, k, v, iv, jv, descv, t,c, ic,
jc, descc, work)

Description

This routine applies a real/complex block reflector Q or its transpose QT/conjugate transpose QH 
to a real/complex distributed m-by-n matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1) from the left or 
the right.

Input Parameters

side (global).CHARACTER.

if side  = 'L': apply Q or QT for real flavors/QH for complex flavors from the Left;

if side  = 'R': apply Q or QTfor real flavors/QH for complex flavors from the Right.

trans (global).CHARACTER.

if trans= 'N':  No transpose, apply Q;
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for real flavors, if trans= 'T': Transpose, apply QT

for complex flavors, if trans= 'C': Conjugate transpose, apply QH;

direct (global) CHARACTER.
Indicates how Q is formed from a product of elementary reflectors.

if direct = 'F': Q = H(1) H(2) . . . H(k) (Forward)
if direct = 'B': Q = H(k) . . . H(2) H(1) (Backward)

storev (global) CHARACTER.
Indicates how the vectors that define the elementary reflectors are stored:
if storev = 'C': Columnwise
if storev = 'R': Rowwise.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(C). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(C). (n ≥ 0).

k (global) INTEGER.
The order of the matrix T.

v (local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION ( lld_v, LOCc(jv+k-1) ) if

storev = 'C', ( lld_v, LOCc(jv+m-1)) if storev = 'R' and

side = 'L', ( lld_v, LOCc(jv+n-1) ) if storev = 'R' and

side = 'R'. It contains the local pieces of the distributed vectors V representing the 
Householder transformation. 

If storev = 'C' and side = 'L', lld_v >max(1,LOCr(iv+m-1));

if storev = 'C' and side = 'R', lld_v > max(1,LOCr(iv+n-1));

if storev = 'R', lld_v > LOCr(jv+k-1).

iv,jv (global) INTEGER. The row and column indices in the global array V indicating the 
first row and the first column of the submatrix sub(V), respectively.
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descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix V.

c (local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION (lld_c, LOCc(jc+n-1) ), 
containing the local pieces of sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array C indicating the 
first row and the first column of the submatrix sub(C), respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix C.

work (local).

REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Workspace array, DIMENSION (lwork).

If storev = 'C',
if side = 'L',

         lwork  > ( nqc0 + mpc0 ) * k
else if  side = 'R',

         lwork > ( nqc0 + max( npv0 + numroc( numroc( n + icoffc,
                           nb_v, 0, 0, npcol ), nb_v, 0, 0, lcmq ),
                             mpc0 ) ) * k

     end if
else if storev = 'R',
      if side = 'L',
     lwork > ( mpc0 + max( mqv0 + numroc( numroc( m+iroffc,
                             mb_v, 0, 0, nprow ), mb_v, 0, 0, lcmp ),
                               nqc0 ) ) * k

      else if side = 'R',
lwork > ( mpc0 + nqc0 ) * k

end if
end if,

where lcmq = lcm / npcol with lcm = iclm( nprow, npcol ),
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iroffv = mod( iv-1, mb_v ), icoffv = mod( jv-1, nb_v ),
ivrow = indxg2p( iv, mb_v, myrow, rsrc_v, nprow ),

ivcol = indxg2p( jv, nb_v, mycol, csrc_v, npcol ),
MqV0 = numroc( m+icoffv, nb_v, mycol, ivcol, npcol ),
NpV0 = numroc( n+iroffv, mb_v, myrow, ivrow, nprow ),

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),

MpC0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
NpC0 = numroc( n+icoffc, mb_c, myrow, icrow, nprow ),
NqC0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

Output Parameters

c (local).
On exit, sub(C) is overwritten by the Q * sub(C), or Q' *sub(C) or sub( C )*Q or 
sub(C)*Q'.

p?larfc
Applies the conjugate transpose of an elementary 
reflector to a general matrix.

Syntax
call pclarfc (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pzlarfc (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

Description

This routine applies a complex elementary reflector QH to a complex m-by-n distributed matrix 
sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is represented in the 
form

Q = i - tau * v * v',
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where tau is a complex scalar and v is a complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Input Parameters

side (global).CHARACTER.

if side  = 'L': form QH*sub (C) ;

if side  = 'R': form sub (C)*QH .

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(C). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(C). (n ≥ 0).

v (local).

COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Pointer into the local memory to an array of DIMENSION (lld_v,*) containing the 
local pieces of the distributed vectors v representing the Householder transformation 
Q,

v(iv:iv+m-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+m-1) if side = 'L' and incv = m_v,
v(iv:iv+n-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+n-1) if side = 'R' and incv = m_v.

The vector v is the representation of Q. v is not used if tau = 0.

iv,jv (global) INTEGER. The row and column indices in the global array V indicating the 
first row and the first column of the submatrix sub(V), respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix V.

 incv (global) INTEGER.
The global increment for the elements of v. Only two values of incv are supported in 
this version, namely 1 and m_v. 
incv must not be zero.
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tau (local)
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Array, DIMENSION  LOCc(jv) if incv = 1, and LOCr(iv) otherwise. This array 
contains the Householder scalars related to the Householder vectors.

tau is tied to the distributed matrix V.

c (local).
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Pointer into the local memory to an array of DIMENSION (lld_c, LOCc(jc+n-1) ), 
containing the local pieces of sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array C indicating the 
first row and the first column of the submatrix sub(C), respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix C.

work (local).

COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Workspace array, DIMENSION (lwork).

If incv = 1,
     if side = 'L',
          if ivcol = iccol,
               lwork > nqc0
           else
               lwork > mpc0 + max( 1, nqc0 )

end if
else if side = 'R',

           lwork > nqc0 + max( max( 1, mpc0 ), numroc( numroc(
                          n+icoffc,nb_v,0,0,npcol ),nb_v,0,0,lcmq ) )

end if
else if  incv = m_v,

if  side = 'L',
               lwork >  mpc0 + max( max( 1, nqc0 ), numroc( numroc(
                                 m+iroffc,mb_v,0,0,nprow ),mb_v,0,0,lcmp ) )

else if side = 'R',
         if ivrow = icrow,
                      lwork > mpc0
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 else
lwork > nqc0 + max( 1, mpc0 )

end if
end if

end if,

where lcm is the least common multiple of nprow and npcol and
lcm = ilcm( nprow, npcol ), lcmp = lcm / nprow,
lcmq = lcm / npcol,

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
mpc0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
nqc0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

Output Parameters

c (local). On exit, sub(C) is overwritten by the QH * sub(C)  if side = 'L', 
                                                                           or sub(C) *  QH if side = 'R'.

p?larfg
Generates an elementary reflector (Householder 
matrix).

Syntax
call pslarfg (n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

call pdlarfg (n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

call pclarfg (n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

call pzlarfg (n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

Description

This routine generates a real/complex elementary reflector H of order n, such that
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H * sub(X) = H * ( x(iax, jax) ) = ( alpha ),   H' * H = i,
                                (            x         )     (     0       )

where alpha is a scalar (a real scalar - for complex flavors), and sub(X) is an (n-1)-element  
real/complex distributed vector X(ix:ix+n-2, jx) if incx = 1 and X(ix, jx:jx+n-2) if incx = 
descx(m_).  H is represented in the form

H = I - tau * (1) * (1 v' ) ,

( v )

where tau is a real/complex scalar and v is a real/complex (n-1)-element vector. Note that H is not 
Hermitian.

If the elements of sub(X) are all zero (and X(iax, jax) is real for complex flavors), then tau = 0 
and H is taken to be the unit matrix.

Otherwise  1 < real(tau) < 2 and abs(tau-1) < 1.

Input Arguments

n (global) INTEGER. 
The global order of the elementary reflector. n > 0.

iax, jax (global) INTEGER.
The global row and column indices in x of X(iax, jax).

x (local).

REAL for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.

Pointer into the local memory to an array of DIMENSION (lld_x, *). This array          
contains the local pieces of the distributed vector sub(X). Before entry, the 
incremented array sub(X) must contain vector x.

ix,jx (global) INTEGER.
The row and column indices in the global array X indicating the first row and the first 
column of sub(X), respectively.

 descx (global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed matrix X.

incx (global) INTEGER.
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The global increment for the elements of x. Only two values of incx are supported in 
this version, namely 1 and m_x.  
incx must not be zero.

Output Arguments

alpha (local) 

REAL for pslafg
DOUBLE PRECISION for pdlafg
COMPLEX for pclafg

COMPLEX*16 for pzlafg.

On exit, alpha is computed in the process scope having the vector sub(X).

x (local).

On exit, it is overwritten with the vector v.

tau (local).

REAL for pslarfg

DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.

Array, DIMENSION  LOCc(jx) if incx = 1, and LOCr(ix) otherwise. This array 
contains the Householder scalars related to the Householder vectors.

tau is tied to the distributed matrix X.

p?larft
Forms the triangular vector T of a block reflector 
H=I-VTVH.

Syntax
call pslarft (direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pdlarft (direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pclarft (direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pzlarft (direct, storev, n, k, v, iv, jv, descv, tau, t, work)
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Description

This routine forms the triangular factor T of a real/complex block reflector H of order n, which is 
defined as a product of k elementary reflectors.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column 
of the distributed matrix V, and

H  =  I - V * T * V'

If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of 
the distributed matrix V, and

H  =  I - V' * T * V.

Input Arguments

 direct (global) CHARACTER*1.
Specifies the order in which the elementary reflectors are multiplied to form the block 
reflector:

if direct = 'F': H = H(1) H(2) . . . H(k) (Forward)

if direct = 'B': H = H(k) . . . H(2) H(1) (Backward).

storev (global) CHARACTER*1.
Specifies how the vectors that define the elementary reflectors are stored (See 
Application Notes below):

if storev = 'C': columnwise;
if storev = 'R': rowwise.

n (global) INTEGER.
The order of the block reflector H. n > 0.

k (global) INTEGER.
The order of the triangular factor T (= the number of elementary reflectors). 
1 < k < mb_v (= nb_v).

 v REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
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COMPLEX*16 for pzlarft.
Pointer into the local memory to an array of local DIMENSION (LOCr(iv+n-1), 
LOCc(jv+k-1))

if storev = 'C', and (LOCr(iv+k-1), LOCc(jv+n-1)) 
if storev = 'R'. The distributed matrix V contains the Householder vectors. (See 
Application Notes below).

iv,jv (global) INTEGER. The row and column indices in the global array v indicating the 
first row and the first column of the submatrix sub(V), respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix V.

tau (local)
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array, DIMENSION  LOCr(iv+k-1) if incv = m_v, and LOCc(jv+k-1) otherwise. 
This array contains the Householder scalars related to the Householder vectors.

tau is tied to the distributed matrix V.

work (local).

REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
 Workspace array,  DIMENSION (k*(k-1)/2).

Output Arguments

v REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.

t (local)

REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array, DIMENSION (nb_v,nb_v) if storev = 'Col', and (mb_v,mb_v) otherwise. It 



7-90

7 Intel® Math Kernel Library Reference Manual

contains the k-by-k triangular factor of the block reflector associated with v. If 
direct = 'F', t is upper triangular;
if direct = 'B', t is lower triangular.

Application Notes

The shape of the matrix V and the storage of the vectors that define the H(i) is best illustrated by 
the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the 
corresponding array elements are modified but restored on exit. The rest of the array is not used. 

direct = 'F' and storev = 'C':                       direct = 'F' and storev = 'R':

V(iv:iv+n-1,                                               V(iv:iv+k-1,
    jv:jv+k-1) =                               jv:jv+n-1) = 

direct = 'B' and storev = 'C':                       direct = 'B' and storev = 'R':

V(iv:iv+n-1,                                               V(iv:iv+k-1,
    jv:jv+k-1) =                               jv:jv+n-1) = 

p?larz
Applies an elementary reflector as returned by
p?tzrzf to a general matrix.

Syntax
call pslarz (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,

work)

call pdlarz (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

1

v1 1

v1 v2 1

v1 v2 v3

v1 v2 v3

1 v1 v1 v1 v1

1 v2 v2 v2

1 v3 v3

v1 v2 v3

v1 v2 v3

1 v2 v3

1 v3

1

v1 v1 1

v2 v2 v2 1

v3 v3 v3 v3 1
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call pclarz (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

call pzlarz (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

Description

This routine applies a real/complex elementary reflector Q (or QT) to a real/complex m-by-n 
distributed matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is 
represented in the form

Q = I - tau * v * v',

where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Input Arguments

side (global) CHARACTER.

if side  = 'L': form Q* sub(C) ,

if side  = 'R': form sub (C)*Q, Q=QT (for real flavors).

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(C). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(C). (n ≥ 0).

l (global). INTEGER.

The columns of the distributed submatrix sub(A) containing the meaningful part of 
the Householder reflectors. If side = 'L', m > l > 0, if side = 'R', n > l > 0.

v (local).

REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.



7-92

7 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of DIMENSION (lld_v,*) containing the 
local pieces of the distributed vectors v representing the Householder transformation 
Q,

v(iv:iv+l-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+l-1) if side = 'L' and incv = m_v,
v(iv:iv+l-1, jv) if side = 'R' and  incv = 1,
v(iv, jv:jv+l-1) if side = 'R' and  incv = m_v.

The vector v in the representation of Q. v is not used if tau = 0.

iv,jv (global) INTEGER. The row and column indices in the global array V indicating the 
first row and the first column of the submatrix sub(V), respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix V.

 incv (global) INTEGER.
The global increment for the elements of v. Only two values of incv are supported in 
this version, namely 1 and m_v.

incv must not be zero.

tau (local)
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array, DIMENSION  LOCc(jv) if incv = 1, and LOCr(iv) otherwise. This array 
contains the Householder scalars related to the Householder vectors.

tau is tied to the distributed matrix V.

c (local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of DIMENSION (lld_c, LOCc(jc+n-1) ), 
containing the local pieces of sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array C indicating the 
first row and the first column of the submatrix sub(C), respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix C.
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work (local). 

REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array, DIMENSION (lwork)

If incv = 1,
if side = 'L',

if ivcol = iccol,
             lwork > NqC0

else
             lwork > MpC0 + max( 1, NqC0 )

end if
else if side = 'R',
    lwork > NqC0 + max( max( 1, MpC0 ), numroc( numroc(
                     n+icoffc,nb_v,0,0,npcol ),nb_v,0,0,lcmq ) )
 end if
else if incv = m_v,
if side = 'L',

      lwork > MpC0 + max( max( 1, NqC0 ), numroc( numroc( 
m+iroffc,mb_v,0,0,nprow ),mb_v,0,0,lcmp ) )
else if side = 'R',

if ivrow = icrow,
        lwork > MpC0

else

        lwork > NqC0 + max( 1, MpC0 )
end if

end if
end if,
where lcm is the least common multiple of nprow and npcol and
lcm = ilcm( nprow, npcol ), lcmp = lcm / nprow,
lcmq = lcm / npcol,

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
mpc0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
nqc0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),
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ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

Output Arguments

c (local). On exit, sub(C) is overwritten by the Q * sub(C) if side = 'L', or sub(C) * Q 
if side = 'R'.

p?larzb
Applies a block reflector or its 
transpose/conjugate-transpose as returned by
p?tzrzf to a general matrix.

Syntax
call pslarzb (side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,

ic, jc, descc, work)

call pdlarzb (side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pclarzb (side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pzlarzb (side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

Description

This routine applies a real/complex block reflector Q or its transpose QT (conjugate transpose QH 
for complex flavors) to a real/complex distributed m-by-n matrix 
sub(C) = C(ic:ic+m-1, jc:jc+n-1) from the left or the right.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Currently, only storev = 'R' and direct = 'B' are supported.

Input Arguments

side (global) CHARACTER.

if side  = 'L': apply Q or QT (QH for complex flavors) from the Left;
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if side  = 'R': apply Q or QT (QH for complex flavors) from the Right.

trans (global) CHARACTER.

if trans= 'N':  No transpose, apply Q; 
if trans= 'T':  Transpose, apply QT(real flavors); 
if trans= 'C':  Conjugate transpose, apply QH (complex flavors).

direct (global) CHARACTER. 
Indicates how H is formed from a product of elementary reflectors.

if direct = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
if direct = 'B': H = H(k) . . . H(2) H(1) (Backward)

storev (global) CHARACTER. 
Indicates how the vectors that define the elementary reflectors are stored:

if storev = 'C': Columnwise (not supported yet).
if storev = 'R': Rowwise.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(C). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(C). (n ≥ 0).

k (global) INTEGER.
The order of the matrix T. (= the number of elementary reflectors whose product 
defines the block reflector).

l (global) INTEGER.
The columns of the distributed submatrix sub(A) containing the meaningful part of 
the Householder reflectors.

If side = 'L', m > l > 0, if side = 'R', n > l > 0.

v (local).

REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Pointer into the local memory to an array of DIMENSION 
( lld_v, LOCc(jv+m-1) ) if side = 'L', 
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( lld_v, LOCc(jv+m-1)) if side = 'R'. 
It contains the local pieces of the distributed vectors V representing the Householder 
transformation as returned by p?tzrzf. 

lld_v > LOCr(iv+k-1).

iv,jv (global) INTEGER. The row and column indices in the global array V indicating the 
first row and the first column of the submatrix sub(V), respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix V.

t (local)

REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array, DIMENSION mb_v by mb_v.

The lower triangular matrix T in the representation of the block reflector.

c (local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array 
of DIMENSION (lld_c, LOCc(jc+n-1)). 
On entry, the m-by-n distributed matrix sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array c indicating the 
first row and the first column of the submatrix sub(C), respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix C.

work (local). 

REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array, DIMENSION (lwork).
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If storev = 'C',
if side = 'L',

           lwork >( NqC0 + MpC0 ) * k
else if side = 'R',

                        lwork > ( NqC0 + max( NpV0 + numroc( numroc( n+icoffc,
nb_v, 0, 0, npcol ), nb_v, 0, 0, lcmq ), mpc0 ) ) * k

end if
else if storev = 'R',
if side = 'L',

           lwork > ( mpc0 + max( mqv0 + numroc( numroc( m+iroffc,

mb_v, 0, 0, nprow ), mb_v, 0, 0, lcmp ),

nqc0 ) ) * k
else if side = 'R',

lwork > ( MpC0 + NqC0 ) * k
end if
end if,

where lcmq = lcm / npcol with lcm = iclm( nprow, npcol ),

iroffv = mod( iv-1, mb_v ), icoffv = mod( jv-1, nb_v ),
ivrow = indxg2p( iv, mb_v, myrow, rsrc_v, nprow ),
ivcol = indxg2p( jv, nb_v, mycol, csrc_v, npcol ),
MqV0 = numroc( m+icoffv, nb_v, mycol, ivcol, npcol ),
NpV0 = numroc( n+iroffv, mb_v, myrow, ivrow, nprow ),

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),

icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
MpC0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
NpC0 = numroc( n+icoffc, mb_c, myrow, icrow, nprow ),
NqC0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.
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p?larzc
Applies (multiplies by) the conjugate transpose of an 
elementary reflector as returned by p?tzrzf to a 
general matrix.

Syntax
call pclarzc (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc,

descc, work)

call pzlarzc (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc,
descc, work)

Description

This routine applies a complex elementary reflector QH to a complex m-by-n distributed matrix 
sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is represented in the 
form

Q = i - tau * v * v',

where tau is a complex scalar and v is a complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Input Arguments

side (global) CHARACTER.

if side  = 'L': form QH *sub (C);
if side  = 'R': form sub (C)*QH .

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(C). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(C). (n ≥ 0).

l (global) INTEGER.
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The columns of the distributed submatrix sub(A) containing the meaningful part of 
the Householder reflectors.

If side = 'L', m > l > 0, if side = 'R', n > l > 0.

v (local).

COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of DIMENSION (lld_v,*) containing the 
local pieces of the distributed vectors v representing the Householder transformation 
Q,

v(iv:iv+l-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+l-1) if side = 'L' and incv = m_v,
v(iv:iv+l-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+l-1) if side = 'R' and incv = m_v.

The vector v in the representation of Q. v is not used if tau = 0.

iv,jv (global) INTEGER. The row and column indices in the global array V indicating the 
first row and the first column of the submatrix sub(V), respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix V.

 incv (global). INTEGER.
The global increment for the elements of v. Only two values of incv are supported in 
this version, namely 1 and m_v.

incv must not be zero.

tau (local)
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Array, DIMENSION  LOCc(jv) if incv = 1, and LOCr(iv) otherwise. This array 
contains the Householder scalars related to the Householder vectors.

tau is tied to the distributed matrix V.

c (local).
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of DIMENSION (lld_c, LOCc(jc+n-1) ), 
containing the local pieces of sub(C).
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ic,jc (global) INTEGER. The row and column indices in the global array C indicating the 
first row and the first column of the submatrix sub(C), respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix C.

work (local).

If incv = 1,
    if side = 'L',
   if ivcol = iccol,
             lwork > NqC0

else
              lwork > MpC0 + max( 1, NqC0 )

end if
else if side = 'R',

         lwork > nqc0 + max( max( 1, mpc0 ), numroc( numroc(

                          n+icoffc,nb_v,0,0,npcol ),nb_v,0,0,lcmq ) )
end if

else if incv = m_v,
if side = 'L',

                   lwork > mpc0 + max( max( 1, nqc0 ), numroc( numroc(

m+iroffc,mb_v,0,0,nprow ),mb_v,0,0,lcmp ) )
else if side = 'R',

if ivrow = icrow,
lwork > mpc0

else
lwork > nqc0 + max( 1, mpc0 )

end if
end if

end if,

where lcm is the least common multiple of nprow and npcol and 
lcm = ilcm( nprow, npcol ), lcmp = lcm / nprow,
lcmq = lcm / npcol,

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),

iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
MpC0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
NqC0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
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myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

p?larzt
Forms the triangular factor T of a block reflector 
H=I-VTVH as returned by p?tzrzf.

Syntax
call pslarzt (direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pdlarzt (direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pclarzt (direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pzlarzt (direct, storev, n, k, v, iv, jv, descv, tau, t, work)

Description

This routine forms the triangular factor T of a real/complex block reflector H of order > n, which is 
defined as a product of k elementary reflectors as returned by p?tzrzf.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column 
of the array v, and

H  =  i - v * t * v'

If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of 
the array v, and

H  = i - v' * t * v

Currently, only storev = 'R' and direct = 'B' are supported.

Input Arguments

 direct (global) CHARACTER.
Specifies the order in which the elementary reflectors are multiplied to form the block 
reflector:
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if direct = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
if direct = 'B': H = H(k) . . . H(2) H(1) (Backward).

storev (global) CHARACTER.
Specifies how the vectors which define the elementary reflectors are stored:

if storev = 'C': columnwise (not supported yet);
if storev = 'R': rowwise.

n (global). INTEGER.
The order of the block reflector H. n > 0.

k (global). INTEGER.
The order of the triangular factor T (= the number of elementary reflectors). 
1 < k < mb_v (= nb_v).

 v REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Pointer into the local memory to an array of local DIMENSION 
(LOCr(iv+k-1), LOCc(jv+n-1)).

The distributed matrix V contains the Householder vectors. See Application Notes 
below.

iv,jv (global) INTEGER. The row and column indices in the global array V indicating the 
first row and the first column of the submatrix sub(V), respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix V.

tau (local)
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array, DIMENSION  LOCr(iv+k-1) if incv = m_v, and LOCc(jv+k-1) otherwise. 
This array contains the Householder scalars related to the Householder vectors.

tau is tied to the distributed matrix V.

work (local).
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REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Workspace array,  DIMENSION (k*(k-1)/2).

Output Arguments

v REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.

t (local)

REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array, DIMENSION (mb_v, mb_v). It contains the k-by-k triangular factor of the block   
reflector associated with v. t is lower triangular.

Application Notes

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by 
the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the 
corresponding array elements are modified but restored on exit. The rest of the array is not used.

direct = 'F' and storev = 'C':

 

v

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

. . .

. . .

1 . .

1 .

1

=
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direct = 'F' and storev = 'R':

direct = 'B' and storev = 'C':

direct = 'B' and storev = 'R':

V

v1 v1 v1 v1 v1

v2 v2 v2 v2 v2

v3 v3 v3 v3 v3

. . . . 1

. . . 1

. . 1

� � � � � � � � �

v

1

. 1

. . 1

. . .

. . .

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

=

V

1 . . . .

. 1 . . .

. . 1 . .

v1 v1 v1 v1 v1

v2 v2 v2 v2 v2

v3 v3 v3 v3 v3

� � � � � � � � �
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p?lascl
Multiplies a general rectangular matrix by a real scalar 
defined as Cto/Cfrom .

Syntax
call pslascl (type, cfrom, cto, m, n, a, ia, ja, desca, info)

call pdlascl (type, cfrom, cto, m, n, a, ia, ja, desca, info)

call pclascl (type, cfrom, cto, m, n, a, ia, ja, desca, info)

call pzlascl (type, cfrom, cto, m, n, a, ia, ja, desca, info)

Description

This routine multiplies the m-by-n real/complex distributed matrix sub(A) denoting 
A(ia:ia+m-1, ja:ja+n-1) by the real/complex scalar cto/cfrom. This is done without 
over/underflow as long as the final result cto * A(i,j) / cfrom does not over/underflow. 
type specifies that sub(A) may be full, upper triangular, lower triangular or upper Hessenberg.

Input Arguments

type (global) CHARACTER.

type indices of the storage type of the input distributed matrix.
if type  = 'G':  sub(A) is a full matrix,
if type  = 'L':  sub(A) is a lower triangular matrix,
if type  = 'U':  sub(A) is an upper triangular matrix,
if type  = 'H':  sub(A) is an upper Hessenberg matrix.

cfrom,cto (global) 

REAL for pslascl/pclascl
DOUBLE PRECISION for pdlascl/pzlascl.

The distributed matrix sub(A) is multiplied by cto/cfrom . A(i,j) is computed 
without over/underflow if the final result cto * A(i,j) / cfrom can be represented 
without over/underflow.  cfrom must be nonzero.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).
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n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

a (local input/local output) 

REAL for pslascl
DOUBLE PRECISION for pdlascl
COMPLEX for pclascl
COMPLEX*16 for pzlascl.

Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).

This array contains the local pieces of the distributed matrix sub(A). 

ia, ja (global) INTEGER.
The column and row indices in the global array A indicating the first row and column 
of the submatrix sub(A), respectively.

desca (global and local) INTEGER .

Array of DIMENSION (dlen_).The array descriptor for the distributed matrix A.

Output Arguments

a (local). On exit, this array contains the local pieces of the distributed matrix 
multiplied by cto/cfrom.

info (local) INTEGER.

if info  = 0:  the execution is successful.

if info  < 0:  If the i-th argument is an array and the j-entry had an illegal value,   
then info = -(i*100+j), 
                      if the i-th  argument is a scalar and had an illegal value, 
then info = -i.
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p?laset
Initializes the off-diagonal elements of a matrix to  
and the diagonal elements to .

Syntax
call pslaset (uplo, m, n, alpha, beta, a, ia, ja, desca)

call pdlaset (uplo, m, n, alpha, beta, a, ia, ja, desca)

call pclaset (uplo, m, n, alpha, beta, a, ia, ja, desca)

call pzlaset (uplo, m, n, alpha, beta, a, ia, ja, desca)

Description

This routine initializes an m-by-n distributed matrix sub(A) denoting A(ia:ia+m-1,ja:ja+n-1) 
to beta on the diagonal and alpha on the offdiagonals.

Input Arguments

uplo (global) CHARACTER.

Specifies the part of the distributed matrix sub(A) to be set:

if uplo = 'U':  upper triangular part is set; the strictly lower triangular part of sub(A) is 
not changed;

if uplo = 'L':  lower triangular part is set; the strictly upper triangular part of sub(A) is 
not changed. 

Otherwise: all of the matrix sub(A) is set.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A). (m > 0).

n (global) INTEGER.  
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A). (n ≥ 0).

alpha (global). 

α
β
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REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.

The constant to which the offdiagonal elements are to be set.

beta (global).

REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.

The constant to which the diagonal elements are to be set.

Output Parameters

a (local).

REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.

Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).  
This array contains the local pieces of the distributed matrix sub(A) to be set. On exit, 
the leading m-by-n submatrix sub(A) is set as follows:

if uplo = 'U', A(ia+i-1,ja+j-1) = alpha, 1 < i < j-1, 1 < j< n,
if uplo  = 'L', A(ia+i-1,ja+j-1) = alpha, j+1 < i < m, 1 < j < n,
otherwise, A(ia+i-1,ja+j-1) = alpha, 1 < i < m, 1 < j < n, ia+i.ne.ja+j,
and, for all uplo, A(ia+i-1,ja+i-1) = beta, 1 < i < min(m,n).

ia, ja (global) INTEGER.
The column and row indices in the global array A indicating the first row and column 
of the submatrix sub(A), respectively.

desca (global and local) INTEGER .

Array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.
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p?lasmsub
Looks for a small subdiagonal element from the bottom 
of the matrix that it can safely set to zero.

Syntax
call pslasmsub (a, desca, i, l, k, smlnum, buf, lwork)

call pdlasmsub (a, desca, i, l, k, smlnum, buf, lwork)

Description

This routine looks for a small subdiagonal element from the bottom of the matrix that it can safely 
set to zero. This routine does a global maximum and must be called by all processes.

Input Arguments

a (global)

REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array, DIMENSION (desca(lld_),*).
On entry, the Hessenberg matrix whose tridiagonal part is being scanned. Unchanged 
on exit.

desca (global and local) INTEGER.
Array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A.

i (global) INTEGER. The global location of the bottom of the unreduced submatrix of 
A. Unchanged on exit.

l (global) INTEGER. The global location of the top of the unreduced submatrix of A. 
Unchanged on exit.

smlnum (global)

REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
On entry, a “small number” for the given matrix. Unchanged on exit.
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lwork (global) INTEGER.
On exit,  lwork is the size of the work buffer.
This must be at least 2*ceil(ceil( (i-l)/hbl ) /lcm(nprow,npcol) ). Here lcm
is least common multiple, and nprow x npcol is the logical grid size.

Output Parameters

k (global) INTEGER.
On exit, this yields the bottom portion of the unreduced submatrix. This will satisfy: 
l < m  < i-1. 

buf (local).

REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array of size lwork.

p?lassq
Updates a sum of squares represented in scaled form.

Syntax
call pslassq (n, x, ix, jx, descx, incx, scale, sumsq)

call pdlassq (n, x, ix, jx, descx, incx, scale, sumsq)

call pclassq (n, x, ix, jx, descx, incx, scale, sumsq)

call pzlassq (n, x, ix, jx, descx, incx, scale, sumsq)

Description

This routine returns the values scl and smsq such that

      scl2 * smsq = x(1)2 + ... + x(n)2 + scale2 *sumsq,  

where x( i ) = sub(x) = x(ix + (jx-1)*descx(m_) + (i - 1)*incx) for pslassq/pdlassq and  
x( i ) = sub(x) = abs(x(ix + (jx-1)*descx(m_) + (i - 1)*incx) for pclassq/pzlassq.
For real routines pslassq/pdlassq the value of sumsq is assumed to be non-negative and  scl  
returns the value    
    scl = max( scale, abs(x(i)) ).  
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For complex routines pclassq/pzlassq the value of  sumsq is assumed to be at least unity and 
the value of ssq will then satisfy
     1.0 ≤ ssq ≤ sumsq + 2n

Value scale is assumed to be non-negative and  scl  returns the value    

     scl = max( scale, abs(real(x(i))),   abs(aimag(x(i))) ).  
                  i

For all routines p?lassq values scale and sumsq must be supplied in scale and sumsq
respectively, and  scale and sumsq are overwritten by scl and ssq respectively.  

All routines p?lassq make only one pass through the vector sub(x).

Input Parameters

n (global) INTEGER. The length of the distributed vector sub(x ).  

x REAL for pslassq
DOUBLE PRECISION for pdlassq
COMPLEX  for pclassq
COMPLEX*16 for pzlassq.
The vector for which a scaled sum of squares is computed: 
x(ix + (jx-1)*m_x + (i - 1)*incx), 1 ≤ i ≤ n.

ix (global) INTEGER. 
The row index in the global array X indicating the first row of sub(X). 

jx (global) INTEGER. 
The column index in the global array X indicating the first column of sub(X). 

descx (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix X. 

incx (global) INTEGER. 
The global increment for the elements of X. Only two values of incx are 
supported in this version, namely 1 and m_x. The argument incx must not 
equal zero.

scale (local). 
REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.
On entry, the value  scale  in the equation above.

sumsq (local) REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.
On entry, the value  sumsq  in the equation above.
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Output Parameters

scale (local). On exit, scale is overwritten with  scl , the scaling factor for the sum 
of squares.

sumsq (local). 
On exit, sumsq is overwritten with the value smsq, the basic sum of squares 
from which scl has been factored out.

p?laswp
Performs a series of row interchanges on a general 
rectangular matrix.

Syntax
call pslaswp (direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

call pdlaswp (direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

call pclaswp (direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

call pzlaswp (direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

Description

This routine performs a series of row or column interchanges on the distributed matrix 
sub(A)=A(ia:ia+n-1, ja:ja+n-1). One interchange is initiated for each of rows or columns k1 
through k2 of sub(A). This routine assumes that the pivoting information has already been 
broadcast along the process row or column. Also note that this routine will only work for k1-k2 
being in the same mb (or nb) block. If you want to pivot a full matrix, use p?lapiv.

Input Parameters

direc (global) CHARACTER.

Specifies in which order the permutation is applied:
= 'F' (Forward) 
= 'B' (Backward).

rowcol (global) CHARACTER.
Specifies if the rows or columns are permuted: 
 = 'R' (Rows)
 = 'C' (Columns).
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n (global) INTEGER.

If rowcol='R', the length of the rows of the distributed 
matrix A(*, ja:ja+n-1) to be permuted;
If rowcol='C', the length of the columns of the distributed 
matrix A(ia:ia+n-1, *) to be permuted;

a (local) REAL  for pslaswp
DOUBLE PRECISION for pdlaswp
COMPLEX  for pclaswp
COMPLEX*16 for pzlaswp.
Pointer into the local memory to an array of DIMENSION (lld_a, *).
On entry, this array contains the local pieces of the distributed matrix to which the 
row/columns interchanges will be applied.

ix (global) INTEGER. 
The row index in the global array A indicating the first row of sub(A). 

jx (global) INTEGER. 
The column index in the global array A indicating the first column of sub(A). 

desca (global and local) INTEGER array of  DIMENSION  (dlen_).
The array descriptor for the distributed matrix A.

k1 (global) INTEGER. The first element of ipiv for which a row or column interchange 
will be done.

k2 (global) INTEGER. The last element of ipiv for which a row or column interchange 
will be done.

ipiv (local) INTEGER. 
Array, DIMENSION LOCr(m_a)+mb_a for row pivoting and LOCr(n_a)+nb_a for 
column pivoting. This array is tied to the matrix A, ipiv(k)=l implies rows (or 
columns) k and l are to be interchanged.

Output Parameters

a (local) REAL  for pslaswp
DOUBLE PRECISION for pdlaswp
COMPLEX  for pclaswp
COMPLEX*16 for pzlaswp.
On exit, the permuted distributed matrix.
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p?latra
Computes the trace of a general square distributed 
matrix.

Syntax
val = pslatra (n, a, ia, ja, desca)

val = pdlatra (n, a, ia, ja, desca)

val = pclatra (n, a, ia, ja, desca)

val = pzlatra (n, a, ia, ja, desca)

Description

This function computes the trace of an n-by-n  distributed matrix sub(A) denoting 
A(ia:ia+n-1, ja:ja+n-1). The result is left on every process of the grid.

Input Parameters

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the 
distributed submatrix sub(A).  n > 0.

a (local).
REAL for pslatra
DOUBLE PRECISION for pdlatra
COMPLEX for pclatra

COMPLEX*16 for pzlatra.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)) 
containing the local pieces of the distributed matrix, the trace of which is to be 
computed.

ia,ja (global) INTEGER.  The row and column indices respectively in the global array A 
indicating the first row and the first column of the submatrix sub(A), respectively.

desca (global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for 
the distributed matrix A.

Output Parameters

val The value returned by the fuction.
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p?latrd
Reduces the first nb rows and columns of a 
symmetric/Hermitian matrix A to real tridiagonal form 
by an orthogonal/unitary similarity transformation.

Syntax
call pslatrd (uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,

work)

call pdlatrd (uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)

call pclatrd (uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)

call pzlatrd (uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)

Description

This routine reduces nb rows and columns of a real symmetric or complex Hermitian matrix 
sub(A)= A(ia:ia+n-1, ja:ja+n-1) to symmetric/complex tridiagonal form by an 
orthogonal/unitary similarity transformation Q' * sub(A)* Q, and returns the matrices V and W, 
which are needed to apply the transformation to the unreduced part of sub(A).
If uplo = 'U',  p?latrd reduces the last nb rows and columns of a matrix, of which the upper 
triangle is supplied;
if uplo = 'L',  p?latrd reduces the first nb rows and columns of a matrix, of which the lower 
triangle is supplied. 

This is an auxiliary routine called by p?sytrd/p?hetrd.

Input Parameters

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/Hermitian 
matrix sub(A) is stored:
= 'U': Upper triangular
= 'L': Lower triangular.

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the 
distributed submatrix sub(A). n > 0.
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nb (global) INTEGER.
The number of rows and columns to be reduced.

a REAL  for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the symmetric/Hermitian distributed 
matrix sub(A). 
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the upper 
triangular part of the matrix, and its strictly lower triangular part is not referenced. 
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the lower 
triangular part of the matrix, and its strictly upper triangular part is not referenced.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for 
the distributed matrix A.

iw (global) INTEGER.
The row index in the global array W indicating the first row of sub(W).

jw (global) INTEGER.
The column index in the global array W indicating the first column of sub(W).

descw (global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for 
the distributed matrix W.

work (local)
REAL  for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Workspace array of DIMENSION (nb_a).

Output Parameters

a (local) On exit, if uplo = 'U', the last nb columns have been reduced to tridiagonal 
form, with the diagonal elements overwriting the diagonal elements of sub(A); the 
elements above the diagonal with the array tau represent the orthogonal/unitary 
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matrix Q as a product of elementary reflectors;
if uplo = 'L', the first nb columns have been reduced to tridiagonal form, with the 
diagonal elements overwriting the diagonal elements of sub(A); the elements below 
the diagonal with the array tau represent the orthogonal/unitary matrix Q as a 
product of elementary reflectors.

d (local) REAL for pslatrd/pclatrd
DOUBLE PRECISION for pdlatrd/pzlatrd.
Array, DIMENSION LOCc(ja+n-1).
The diagonal elements of the tridiagonal matrix T: d(i) = a(i,i). d is tied to the 
distributed matrix A.

e (local) REAL for pslatrd/pclatrd
DOUBLE PRECISION for pdlatrd/pzlatrd.
Array, DIMENSION LOCc(ja+n-1) if uplo = 'U', LOCc(ja+n-2) otherwise. 
The off-diagonal elements of the tridiagonal matrix T:
e(i) = a(i, i +1) if uplo = 'U', 
e(i) = a(i +1, i) if uplo = 'L'.
e is tied to the distributed matrix A.

tau (local) REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Array, DIMENSION LOCc(ja+n-1).
This array contains the scalar factors tau of the elementary reflectors. tau is tied to 
the distributed matrix A.

w (local) REAL  for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Pointer into the local memory to an array of DIMENSION (lld_w, nb_w).
This array contains the local pieces of the n-by-nb_w matrix W required to update the 
unreduced part of sub(A).

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

     Q  = H(n) H(n-1) . . . H(n-nb+1)

Each H(i) has the form 
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    H(i) = I - tau*v*v' ,

where tau  is a real/complex scalar, and v is a real/complex vector with v(i:n) = 0 and 
v(i-1) = 1; v(1:i-1) is stored on exit in A(ia:ia+i-1, ja+i), and tau in tau(ja+i-1). 

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(nb)  

Each H(i) has the form
     H(i) = I - tau*v*v' ,
where tau  is a real/complex scalar, and v is a real/complex vector with  v(1:i) = 0 and v(i+1) = 
1; v(i+2:n) is stored on exit in A(ia+i+1:ia+n-1, ja+i-1), and tau in tau(ja+i-1). 

The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to 
apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank-2k 
update of the form: 
sub(A) := sub(A) - vw' - wv'.

The contents of a on exit are illustrated by the following examples with 
n = 5 and nb = 2: 

if uplo = 'U':                             if uplo = 'L':

                   

where  denotes a diagonal element of the reduced matrix,  denotes an element of the original 
matrix that is unchanged, and vi  denotes an element of the vector defining H(i).

a a a v4 v5

a a v4 v5

a 1 v5

d 1

d

d

1 d

v1 1 a

v1 v2 a a

v1 v2 a a a

d a
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p?latrs
Solves a triangular system of equations with the scale 
factor set to prevent overflow. 

Syntax
call pslatrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,

scale, cnorm, work)

call pdlatrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

call pclatrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

call pzlatrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

Description

This routine solves a triangular system of equations Ax = σb,  ATx = σb, or AHx = σb, where σ is a  
scale factor set to prevent overflow. The description of the routine will be extended in the future 
releases.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U':  Upper triangular
= 'L':  Lower triangular

trans CHARACTER*1.
Specifies the operation applied to A.
= 'N':  Solve Ax = σ b  (no transpose)
= 'T':  Solve ATx  = σ b  (transpose)
= 'C':  Solve AHx = σ b  (conjugate transpose)

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N':  Non-unit triangular
= 'U':  Unit triangular
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normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry.  On exit, the norms will be computed and stored in 
cnorm.

n INTEGER.
The order of the matrix A.  n ≥ 0

a REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs
Array, DIMENSION (lda, n). Contains the triangular matrix A. If uplo = 'U', the 
leading n-by-n upper triangular part of the array a contains the upper triangular 
matrix, and the strictly lower triangular part of a is not referenced. If uplo = 'L', the 
leading n-by-n lower triangular part of the array a contains the lower triangular 
matrix, and the strictly upper triangular part of a is not referenced. If diag = 'U', the 
diagonal elements of a are also not referenced and are assumed to be 1.

ia,ja (global) INTEGER.  The row and column indices in the global array a indicating the 
first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

x REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs
Array, DIMENSION (n). On entry, the right hand side b of the triangular system.

ix (global) INTEGER.The row index in the global array x indicating the first row 
of sub(x).

jx (global) INTEGER. The column index in the global array x indicating the first 
column of sub(x).

descx (global and local)  INTEGER.
Array, DIMENSION (dlen_). The array descriptor for the distributed matrix X.

cnorm REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs.
Array, DIMENSION (n). If normin = 'Y', cnorm is an input argument and cnorm (j) 
contains the norm of the off-diagonal part of the j-th column of A. If trans = 'N', 
cnorm (j) must be greater than or equal to the infinity-norm, and if trans = 'T' or 
'C', cnorm(j) must be greater than or equal to the 1-norm.

work  (local).
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REAL for pslatrs 
DOUBLE PRECISION for pdlatrs
COMPLEX for pclatrs
COMPLEX*16 for pzlatrs.
Temporary workspace.

Output Parameters

x On exit, x is overwritten by the solution vector x.

scale REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs.
Array, DIMENSION (lda, n). The scaling factor s for the triangular system as 
described above.
If scale = 0, the matrix A is singular or badly scaled, and the vector x is an exact or 
approximate solution to Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and cnorm(j) returns the 1-norm of 
the off-diagonal part of the j-th column of A.

p?latrz
Reduces an upper trapezoidal matrix to upper 
triangular form by means of orthogonal/unitary 
transformations.

Syntax
call pslatrz (m, n, l, a, ia, ja, desca, tau, work)

call pdlatrz (m, n, l, a, ia, ja, desca, tau, work)

call pclatrz (m, n, l, a, ia, ja, desca, tau, work)

call pzlatrz (m, n, l, a, ia, ja, desca, tau, work)

Description

This routine reduces the m-by-n (m ≤   n) real/complex upper trapezoidal matrix
sub(A) = [ A(ia:ia+m-1, ja:ja+m-1)  A(ia:ia+m-1, ja+n-l:ja+n-1)] 
to upper triangular form by means of orthogonal/unitary transformations.

The upper trapezoidal matrix sub(A) is factored as 
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sub(A) = ( R   0 )*Z, 

where Z is an n-by-n  orthogonal/unitary matrix and R is an m-by-m  upper triangular matrix.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(A).  m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(A).  n ≥ 0.

l (global) INTEGER.
The number of columns of the distributed submatrix sub(A) containing the 
meaningful part of the Householder reflectors. l > 0.

a (local) 

REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Pointer into the local memory to an array 
of DIMENSION (lld_a, LOCc(ja+n-1)).
On entry, the local pieces of the m-by-n distributed matrix sub(A), which is to be 
factored.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

work (local)
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Workspace array, DIMENSION (lwork).
lwork > nq0 + max( 1, mp0 ), where
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          iroff = mod( ia-1, mb_a ), icoff = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),

iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mp0   = numroc( m+iroff, mb_a, myrow, iarow, nprow ),
nq0   = numroc( n+icoff, nb_a, mycol, iacol, npcol ),

numroc, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

Output Parameters

a On exit, the leading m-by-m upper triangular part of sub(A) contains the upper 
triangular matrix R, and elements n-l+1 to n of the first m rows of sub(A), with the 
array tau,  represent the orthogonal/unitary matrix Z as a product of m elementary 
reflectors.

tau (local) REAL for pslatrz

DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Array, DIMENSION (LOCr(ja+m-1)). This array contains the scalar factors of the 
elementary reflectors. tau is tied to the distributed matrix A.

Application Notes

The factorization is obtained by Householder's method. The k-th transformation matrix, Z(k), 
which is used (or, in case of complex routines, whose conjugate transpose is used) to introduce 
zeros into the (m - k + 1)-th row of sub(A), is given in the form

    ,

where
   

 T( k ) = I - tau* u( k )* u( k )',      

Z k( ) I 0

0 T k( )
=

u k( )
1

0

z k( )

=
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  tau is a scalar and z( k ) is an (n-m)-element vector. tau and z( k )
  are chosen to annihilate the elements of the k-th row of sub(A).
  The scalar tau is returned in the k-th element of tau and the vector
  u( k ) in the k-th row of sub(A), such that the elements of z( k ) are
  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
  the upper triangular part of sub(A).

  Z is given by

    Z =  Z( 1 ) Z( 2 ) ...  Z( m ).

p?lauu2
Computes the product UUH or LHL, where U and L are 
upper or lower triangular matrices (local unblocked 
algorithm).

Syntax
call pslauu2 (uplo, n, a, ia, ja, desca)

call pdlauu2 (uplo, n, a, ia, ja, desca)

call pclauu2 (uplo, n, a, ia, ja, desca)

call pzlauu2 (uplo, n, a, ia, ja, desca)

Description

This routine computes the product UU' or L'L, where the triangular factor U or L is stored in the 
upper or lower triangular part of the distributed matrix 
sub(A)= A(ia:ia+n-1, ja:ja+n-1).

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U in 
sub(A). 
If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L in 
sub(A). 

This is the unblocked form of the algorithm, calling BLAS Level 2 Routines. No communication 
is performed by this routine, the matrix to operate on should be strictly local to one process. 
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Input Parameters

uplo (global) CHARACTER*1.
Specifies whether the triangular factor stored in the matrix sub(A) is upper or 
lower triangular:
= 'U':  Upper triangular
= 'L':  Lower triangular.

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the 
triangular factor U or L.  n ≥ 0.

a (local) REAL for pslauu2
DOUBLE PRECISION  for pdlauu2
COMPLEX  for pclauu2
COMPLEX*16 for pzlauu2.
Pointer into the local memory to an array of DIMENSION 
(lld_a, LOCc(ja+n-1). On entry, the local pieces of the triangular factor U or 
L.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

Output Parameters

a (local) On exit, if uplo = 'U', the upper triangle of the distributed matrix 
sub(A) is overwritten with the upper triangle of the product UU'; if uplo = 'L', 
the lower triangle of sub(A) is overwritten with the lower triangle of the 
product L'L.
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p?lauum
Computes the product UUH or LHL, where U and L are 
upper or lower triangular matrices.

Syntax
call pslauum (uplo, n, a, ia, ja, desca)

call pdlauum (uplo, n, a, ia, ja, desca)

call pclauum (uplo, n, a, ia, ja, desca)

call pzlauum (uplo, n, a, ia, ja, desca)

Description

This routine computes the product UU' or L'L, where the triangular factor U or L is stored in the 
upper or lower triangular part of the matrix sub(A)= A(ia:ia+n-1, ja:ja+n-1).

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U in 
sub(A). 
If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L in 
sub(A). 

This is the blocked form of the algorithm, calling Level 3 PBLAS.

Input Parameters

uplo (global) CHARACTER*1.
Specifies whether the triangular factor stored in the matrix sub(A) is upper or 
lower triangular:
= 'U':  Upper triangular
= 'L':  Lower triangular.

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the 
triangular factor U or L.  n ≥ 0.

a (local) REAL for pslauum
DOUBLE PRECISION  for pdlauum
COMPLEX  for pclauum
COMPLEX*16 for pzlauum.
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Pointer into the local memory to an array of DIMENSION 
(lld_a, LOCc(ja+n-1). On entry, the local pieces of the triangular factor U or 
L.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

Output Parameters

a (local) On exit, if uplo = 'U', the upper triangle of the distributed matrix 
sub(A) is overwritten with the upper triangle of the product UU' ; if uplo = 'L', 
the lower triangle of sub(A) is overwritten with the lower triangle of the 
product L'L.

p?lawil
Forms the Wilkinson transform.

Syntax
call pslawil (ii, jj, m, a, desca, h44, h33, h43h34, v)

call pdlawil (ii, jj, m, a, desca, h44, h33, h43h34, v)

Description

This routine gets the transform given by h44, h33, and h43h34 into v starting at row m.

Input Parameters

ii (global) INTEGER.
Row owner of h(m+2, m+2).

jj (global) INTEGER.
Column owner of h(m+2, m+2).

m (global) INTEGER.
On entry, the location from where the transform starts (row m). Unchanged on exit. 
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a (global)
REAL for pslawil
DOUBLE PRECISION for pdlawil
Array, DIMENSION (desca(lld_),*). On entry, the Hessenberg matrix. Unchanged 
on exit.

desca (global and local) INTEGER
Array of DIMENSION (dlen_). The array descriptor for the distributed matrix A. 
Unchanged on exit.

h44,

h33,

h43h34 (global)
REAL for pslawil
DOUBLE PRECISION for pdlawil
These three values are for the double shift QR iteration. Unchanged on exit.

Output Parameters

v (global)
REAL for pslawil
DOUBLE PRECISION for pdlawil
Array of size 3 that contains the transform on output.

p?org2l/p?ung2l
Generates all or part of the orthogonal/unitary matrix 
Q from a QL factorization determined by p?geqlf 
(unblocked algorithm).

Syntax
call psorg2l (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorg2l (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcung2l (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzung2l (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
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Description

The routine p?org2l/p?ung2l generates an m-by-n real/complex distributed matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the last n columns of 
a product of k elementary reflectors of order m: 

Q  =  H(k) . . . H(2) H(1)  as returned by p?geqlf.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the 
distributed submatrix Q. m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of 
the distributed submatrix Q. m ≥ n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q. 
n ≥ k ≥ 0.

a REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX  for pcung2l
COMPLEX*16  for pzung2l.
Pointer into the local memory to an array, 
DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the j-th column must contain the vector that defines the elementary 
reflector H(j),  ja+n-k ≤ j ≤ ja+n-k, as returned by p?geqlf in the k 
columns of its distributed matrix argument A(ia:*,ja+n-k:ja+n-1).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

tau (local)
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX  for pcung2l
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COMPLEX*16  for pzung2l.
Array, DIMENSION LOCc(ja+n-1).
This array contains the scalar factor tau(j) of the elementary reflector H(j), as 
returned by p?geqlf.

work (local)
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX  for pcung2l
COMPLEX*16  for pzung2l.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least  lwork > mpa0 + max( 1, nqa0 ), 
where iroffa = mod( ia-1, mb_a ), icoffa = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mpa0 = numroc( m+iroffa, mb_a, myrow, iarow, nprow ),
nqa0 = numroc( n+icoffa, nb_a, mycol, iacol, npcol ).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the 
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, this array contains the local pieces of the m-by-n distributed matrix Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.
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p?org2r/p?ung2r
Generates all or part of the orthogonal/unitary matrix 
Q from a QR factorization determined by p?geqrf 
(unblocked algorithm).

Syntax
call psorg2r (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorg2r (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcung2r (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzung2r (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine p?org2r/p?ung2r generates an m-by-n real/complex matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the first n columns of 
a product of k elementary reflectors of order m

        Q  =  H(1) H(2) . . . H(k)  

as returned by p?geqrf.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the 
distributed submatrix Q. m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of 
the distributed submatrix Q. m ≥ n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q. 
n ≥ k ≥ 0.

a REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX  for pcung2r
COMPLEX*16  for pzung2r.
Pointer into the local memory to an array, 
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DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the j-th column must contain the vector that defines the elementary 
reflector H(j),  ja ≤ j ≤ ja+k-1, as returned by p?geqrf in the k columns 
of its distributed matrix argument A(ia:*,ja:ja+k-1).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

tau (local)
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX  for pcung2r
COMPLEX*16  for pzung2r.
Array, DIMENSION LOCc(ja+k-1).
This array contains the scalar factor tau(j) of the elementary reflector H(j), as 
returned by p?geqrf. This array is tied to the distributed matrix A.

work (local)
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX  for pcung2r
COMPLEX*16  for pzung2r.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least  lwork > mpa0 + max( 1, nqa0 ), 
where iroffa = mod( ia-1, mb_a ), icoffa = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mpa0 = numroc( m+iroffa, mb_a, myrow, iarow, nprow ),
nqa0 = numroc( n+icoffa, nb_a, mycol, iacol, npcol ).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the 
subroutine blacs_gridinfo.
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If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, this array contains the local pieces of the m-by-n distributed matrix Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.

p?orgl2/p?ungl2
Generates all or part of the orthogonal/unitary matrix 
Q from an LQ factorization determined by p?gelqf 
(unblocked algorithm).

Syntax
call psorgl2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgl2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcungl2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungl2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine p?orgl2/p?ungl2 generates a m-by-n real/complex matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a 
product of k elementary reflectors of order n

        Q  =  H(k) . . . H(2) H(1) (for real flavors),
        Q  =  H(k)' . . . H(2)' H(1)' (for complex flavors)

as returned by p?gelqf.
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Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the 
distributed submatrix Q. m ≥ 0.

n (global ) INTEGER.
The number of columns to be operated on, that is, the number of columns of 
the distributed submatrix Q. n ≥ m ≥ 0.

k (global ) INTEGER.
The number of elementary reflectors whose product defines the matrix Q. 
m ≥ k ≥ 0.

a REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX  for pcungl2
COMPLEX*16  for pzungl2.
Pointer into the local memory to an array, 
DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the i-th row must contain the vector that defines the elementary 
reflector H(i),  ia ≤ i ≤ ia+k-1, as returned by p?gelqf in the k rows of 
its distributed matrix argument A(ia:ia+k-1,ja:*).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

tau (local)
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX  for pcungl2
COMPLEX*16  for pzungl2.
Array, DIMENSION LOCr(ja+k-1).
This array contains the scalar factors tau(i) of the elementary reflectors H(i), 
as returned by p?gelqf. This array is tied to the distributed matrix A.

work (local)
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
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COMPLEX  for pcungl2
COMPLEX*16  for pzungl2.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least  lwork > nqa0 + max( 1, mpa0 ), 
where iroffa = mod( ia-1, mb_a ), icoffa = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mpa0 = numroc( m+iroffa, mb_a, myrow, iarow, nprow ),
nqa0 = numroc( n+icoffa, nb_a, mycol, iacol, npcol ).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow and npcol can be determined by calling the 
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a On exit,  this array contains the local pieces of the m-by-n distributed matrix Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.
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p?orgr2/p?ungr2
Generates all or part of the orthogonal/unitary matrix 
Q from an RQ factorization determined by p?gerqf 
(unblocked algorithm).

Syntax
call psorgr2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgr2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcungr2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungr2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine p?orgr2/p?ungr2 generates an m-by-n real/complex matrix Q denoting 
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the last m rows of a 
product of k elementary reflectors of order n

Q  =  H(1) H(2) . . . H(k) (for real flavors)
Q  =  H(1)' H(2)' . . . H(k)' (for complex flavors)

as returned by p?gerqf.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the 
distributed submatrix Q. m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of 
the distributed submatrix Q. n ≥ m ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q. 
m ≥ k ≥ 0.

a REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX  for pcungr2
COMPLEX*16  for pzungr2.
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Pointer into the local memory to an array, 
DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the i-th row must contain the vector that defines the elementary 
reflector H(i),  ia+m-k ≤ i ≤ ia+m-1, as returned by p?gerqf in the k 
rows of its distributed matrix argument A(ia+m-k:ia+m-1,ja:*).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

tau (local)
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX  for pcungl2
COMPLEX*16  for pzungl2.
Array, DIMENSION LOCr(ja+m-1).
This array contains the scalar factors tau(i) of the elementary reflectors H(i), 
as returned by p?gerqf. This array is tied to the distributed matrix A.

work (local)
REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX  for pcungr2
COMPLEX*16  for pzungr2.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least  lwork > nqa0 + max( 1, mpa0 ), 
where iroffa = mod( ia-1, mb_a ), icoffa = mod( ja-1, nb_a ),
iarow = indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mpa0 = numroc( m+iroffa, mb_a, myrow, iarow, nprow ),
nqa0 = numroc( n+icoffa, nb_a, mycol, iacol, npcol ).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow and npcol can be determined by calling the 
subroutine blacs_gridinfo.
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If lwork = -1, then lwork is global input and a workspace query is assumed; 
the routine only calculates the minimum and optimal size for all work arrays. 
Each of these values is returned in the first entry of the corresponding work 
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, this array contains the local pieces of the m-by-n distributed matrix Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.

p?orm2l/p?unm2l
Multiplies a general matrix by the orthogonal/unitary 
matrix from a QL factorization determined by p?geqlf 
(unblocked algorithm).

Syntax
call psorm2l (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,

work, lwork, info)

call pdorm2l (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunm2l (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunm2l (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)
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Description

The routine p?orm2l/p?unm2l overwrites the general real/complex m-by-n distributed matrix 
sub (C)=C(ic:ic+m-1,jc:jc+n-1) with

where Q is a real orthogonal or complex unitary matrix defined as the product of k  elementary 
reflectors

        Q = H(k) . . . H(2) H(1)  

as returned by p?geqlf . Q is of order m if side = 'L' and of order n  if side = 'R'.

Input Parameters

side (global) CHARACTER.
= 'L': apply Q or QT (for real flavors)/QH(for complex flavors) from the left,
= 'R': apply Q or QT (for real flavors)/QH(for complex flavors) from the right.

trans (global) CHARACTER.
= 'N': apply Q  (No transpose)
= 'T': apply QT (Transpose, for real flavors)
= 'C': apply QH (Conjugate transpose, for complex flavors)

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(C). m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(C). n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side = 'L', m ≥  k ≥  0;
if side = 'R', n ≥ k ≥ 0.

a (local)
REAL for psorm2l
DOUBLE PRECISION  for pdorm2l

side = 'L' side = 'R'

trans = 'N' Q*sub (C) sub (C)*Q

trans = 'T' (for real flavors) QT * sub(C) sub(C)*QT

trans = 'C'  (for complex flavors) QH * sub(C) sub(C)*QH
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COMPLEX  for pcunm2l
COMPLEX*16  for pzunm2l.
Pointer into the local memory to an array, DIMENSION (lld_a, LOCc(ja+k-1).
On entry, the j-th row must contain the vector that defines the elementary reflector 
H(j),  ja ≤ j ≤ ja+k-1, as returned by p?geqlf in the k columns of its 
distributed matrix argument A(ia:*,ja:ja+k-1). The argument 
A(ia:*,ja:ja+k-1) is modified by the routine but restored on exit.
If side = 'L', lld_a ≥   max(1, LOCr(ia+m-1)),
If side = 'R', lld_a ≥  max(1, LOCr(ia+n-1)).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

tau (local) 
REAL for psorm2l
DOUBLE PRECISION  for pdorm2l
COMPLEX  for pcunm2l
COMPLEX*16  for pzunm2l.
Array, DIMENSION LOCc(ja+n-1). This array contains the scalar factor tau(j) of 
the elementary reflector H(j), as returned by p?geqlf. This array is tied to the 
distributed matrix A.

c (local)
REAL for psorm2l
DOUBLE PRECISION  for pdorm2l
COMPLEX  for pcunm2l
COMPLEX*16  for pzunm2l.
Pointer into the local memory to an array, DIMENSION (lld_c, LOCc(jc+n-1)).On 
entry, the local pieces of the distributed matrix sub (C).

ic (global) INTEGER.
The row index in the global array C indicating the first row of sub(C).

jc (global) INTEGER.
The column index in the global array C indicating the first column of sub(C).

descc (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix C. 
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work (local)
REAL for psorm2l
DOUBLE PRECISION  for pdorm2l
COMPLEX  for pcunm2l
COMPLEX*16  for pzunm2l.
Workspace array, DIMENSION (lwork).
On exit, work(1) returns the minimal and optimal lwork.

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least
if side = 'L', lwork ≥   mpc0 + max( 1, nqc0 ),
if side = 'R', lwork ≥   nqc0 + max( max( 1, mpc0 ), numroc 
(numroc(n+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),

where lcmq = lcm / npcol with lcm = iclm( nprow,  npcol ),

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
Mqc0 = numroc( m+icoffc, nb_c, mycol, icrow, nprow ),
Npc0 = numroc( n+iroffc, mb_c, myrow, iccol, npcol ),

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.

Output Parameters

c On exit, sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q' or sub(C)*Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j),  
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.
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p?orm2r/p?unm2r
Multiplies a general matrix by the orthogonal/unitary 
matrix from a QR factorization determined by p?geqrf 
(unblocked algorithm).

Syntax
call psorm2r (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,

work, lwork, info)

call pdorm2r (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunm2r (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunm2r (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?orm2r/p?unm2r overwrites the general real/complex m-by-n distributed matrix 
sub (C)=C(ic:ic+m-1,jc:jc+n-1) with

NOTE.  The distributed submatrices A(ia:*, ja:*) and 
C(ic:ic+m-1,jc:jc+n-1) must verify some alignment properties, 
namely the following expressions should be true:                                   
If side = 'L', ( mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND.
iarow.eq.icrow )                                                                                         
If side = 'R', (  mb_a.eq.nb_c .AND. iroffa.eq.iroffc ).

side = 'L' side = 'R'

trans = 'N' Q*sub (C) sub (C)*Q

trans = 'T' (for real flavors) QT * sub(C) sub(C)*QT

trans = 'C'  (for complex flavors) QH * sub(C) sub(C)*QH
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where Q is a real orthogonal or complex unitary matrix defined as the product of k  elementary 
reflectors

        Q = H(k) . . . H(2) H(1)  

as returned by p?geqrf . Q is of order m if side = 'L' and of order n  if side = 'R'.

Input Parameters

side (global) CHARACTER.
= 'L': apply Q or QT (for real flavors)/QH(for complex flavors) from the left,
= 'R': apply Q or QT (for real flavors)/QH(for complex flavors) from the right.

trans (global) CHARACTER.
= 'N': apply Q  (No transpose)
= 'T': apply QT (Transpose, for real flavors)
= 'C': apply QH (Conjugate transpose, for complex flavors)

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(C). m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(C). n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side = 'L', m ≥  k ≥  0;
if side = 'R', n ≥ k ≥ 0.

a (local)
REAL for psorm2r
DOUBLE PRECISION  for pdorm2r
COMPLEX  for pcunm2r
COMPLEX*16  for pzunm2r.
Pointer into the local memory to an array, DIMENSION (lld_a, LOCc(ja+k-1).
On entry, the j-th column must contain the vector that defines the elementary 
reflector H(j),  ja ≤ j ≤ ja+k-1, as returned by p?geqrf in the k columns of its 
distributed matrix argument A(ia:*,ja:ja+k-1). The argument 
A(ia:*,ja:ja+k-1) is modified by the routine but restored on exit.
If side = 'L', lld_a ≥  max(1, LOCr(ia+m-1)),
If side = 'R', lld_a ≥  max(1, LOCr(ia+n-1)).
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ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

tau (local) 
REAL for psorm2r
DOUBLE PRECISION  for pdorm2r
COMPLEX  for pcunm2r
COMPLEX*16  for pzunm2r.
Array, DIMENSION LOCc(ja+k-1). This array contains the scalar factors tau(j) of 
the elementary reflector H(j), as returned by p?geqrf. This array is tied to the 
distributed matrix A.

c (local)
REAL for psorm2r
DOUBLE PRECISION  for pdorm2r
COMPLEX  for pcunm2r
COMPLEX*16  for pzunm2r.
Pointer into the local memory to an array, DIMENSION (lld_c, LOCc(jc+n-1)). On 
entry, the local pieces of the distributed matrix sub (C).

ic (global) INTEGER.
The row index in the global array C indicating the first row of sub(C).

jc (global) INTEGER.
The column index in the global array C indicating the first column of sub(C).

descc (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix C. 

work (local)
REAL for psorm2r
DOUBLE PRECISION  for pdorm2r
COMPLEX  for pcunm2r
COMPLEX*16  for pzunm2r.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least
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if side = 'L', lwork ≥   mpc0 + max( 1, nqc0 ),
if side = 'R', lwork ≥   nqc0 + max( max( 1, mpc0 ), numroc 
(numroc(n+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),

where lcmq = lcm / npcol with lcm = iclm( nprow,  npcol ),

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
Mqc0 = numroc( m+icoffc, nb_c, mycol, icrow, nprow ),

Npc0 = numroc( n+iroffc, mb_c, myrow, iccol, npcol ),

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.

Output Parameters

c On exit, sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q' or sub(C)*Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.

NOTE.  The distributed submatrices A(ia:*, ja:*) and 
C(ic:ic+m-1,jc:jc+n-1) must verify some alignment properties, 
namely the following expressions should be true:                                   
If side = 'L', ( mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND.
iarow.eq.icrow )                                                                                         
If side = 'R', (  mb_a.eq.nb_c .AND. iroffa.eq.iroffc ).
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p?orml2/p?unml2
Multiplies a general matrix by the orthogonal/unitary 
matrix from an LQ factorization determined by 
p?gelqf (unblocked algorithm).

Syntax
call psorml2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,

work, lwork, info)

call pdorml2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunml2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunml2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?orml2/p?unml2 overwrites the general real/complex m-by-n distributed matrix 
sub (C)=C(ic:ic+m-1,jc:jc+n-1) with

where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k  
elementary reflectors

        Q = H(k) . . . H(2) H(1) (for real flavors)
        Q = H(k)' . . . H(2)' H(1)' (for complex flavors)

as returned by p?gelqf . Q is of order m if side = 'L' and of order n  if side = 'R'.

Input Parameters

side (global) CHARACTER.
= 'L': apply Q or QT (for real flavors)/QH(for complex flavors) from the left,
= 'R': apply Q or QT (for real flavors)/QH(for complex flavors) from the right.

side = 'L' side = 'R'

trans = 'N' Q*sub (C) sub (C)*Q

trans = 'T' (for real flavors) QT * sub(C) sub(C)*QT

trans = 'C'  (for complex flavors) QH * sub(C) sub(C)*QH
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trans (global) CHARACTER.
= 'N': apply Q  (No transpose)
= 'T': apply QT (Transpose, for real flavors)
= 'C': apply QH (Conjugate transpose, for complex flavors)

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(C). m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(C). n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side = 'L', m ≥  k ≥  0;
if side = 'R', n ≥ k ≥ 0.

a (local)
REAL for psorml2
DOUBLE PRECISION  for pdorml2
COMPLEX  for pcunml2
COMPLEX*16  for pzunml2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+m-1) if side=’L’,
(lld_a, LOCc(ja+n-1) if side=’R’,
where lld_a ≥   max (1, LOCr(ia+k-1)).
On entry, the i-th row must contain the vector that defines the elementary reflector 
H(i),  ia ≤ i ≤ ia+k-1, as returned by p?gelqf in the k rows of its distributed 
matrix argument A(ia:ia+k-1, ja:*). The argument A(ia:ia+k-1, ja:*) is 
modified by the routine but restored on exit.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

tau (local) 
REAL for psorml2
DOUBLE PRECISION  for pdorml2
COMPLEX  for pcunml2
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COMPLEX*16  for pzunml2.
Array, DIMENSION LOCc(ia+k-1). This array contains the scalar factors tau(i) of 
the elementary reflector H(i), as returned by p?gelqf. This array is tied to the 
distributed matrix A.

c (local)
REAL for psorml2
DOUBLE PRECISION  for pdorml2
COMPLEX  for pcunml2
COMPLEX*16  for pzunml2.
Pointer into the local memory to an array, DIMENSION (lld_c, LOCc(jc+n-1)). On 
entry, the local pieces of the distributed matrix sub (C).

ic (global) INTEGER.
The row index in the global array C indicating the first row of sub(C).

jc (global) INTEGER.
The column index in the global array C indicating the first column of sub(C).

descc (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix C. 

work (local)
REAL for psorml2
DOUBLE PRECISION  for pdorml2
COMPLEX  for pcunml2
COMPLEX*16  for pzunml2.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least
if side = 'L', lwork ≥   mqc0 + max( max( 1, npc0 ), numroc 
(numroc(m+icoffc, mb_a, 0, 0, nprow), mb_a, 0, 0, lcmp)),
if side = 'R', lwork ≥   npc0 + max( 1, mqc0 ),

where lcmp = lcm / nprow with lcm = iclm( nprow,  npcol ),

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),

icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
Mpc0 = numroc( m+icoffc, mb_c, mycol, icrow, nprow ),
Nqc0 = numroc( n+iroffc, nb_c, myrow, iccol, npcol ),
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ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.

Output Parameters

c On exit, sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q' or sub(C)*Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.

NOTE.  The distributed submatrices A(ia:*, ja:*) and 
C(ic:ic+m-1,jc:jc+n-1) must verify some alignment properties, 
namely the following expressions should be true:                                   
If side = 'L', ( nb_a.eq.mb_c.AND.icoffa.eq.iroffc )                                                                                         
If side = 'R', (  nb_a.eq.nb_c .AND. icoffa.eq.icoffc .AND.
iacol.eq.iccol  ).
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p?ormr2/p?unmr2
Multiplies a general matrix by the orthogonal/unitary 
matrix from an RQ factorization determined by 
p?gerqf (unblocked algorithm).

Syntax
call psormr2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,

work, lwork, info)

call pdormr2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunmr2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunmr2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?ormr2/p?unmr2 overwrites the general real/complex m-by-n distributed matrix 
sub (C)=C(ic:ic+m-1,jc:jc+n-1) with

where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k  
elementary reflectors

        Q = H(1) H(2) . . . H(k) (for real flavors)
        Q = H(1)' H(2)' . . . H(k)' (for complex flavors)

as returned by p?gerqf . Q is of order m if side = 'L' and of order n  if side = 'R'.

Input Parameters

side (global) CHARACTER.
= 'L': apply Q or QT (for real flavors)/QH(for complex flavors) from the left,
= 'R': apply Q or QT (for real flavors)/QH(for complex flavors) from the right.

side = 'L' side = 'R'

trans = 'N' Q*sub (C) sub (C)*Q

trans = 'T' (for real flavors) QT * sub(C) sub(C)*QT

trans = 'C'  (for complex flavors) QH * sub(C) sub(C)*QH
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trans (global) CHARACTER.
= 'N': apply Q  (No transpose)
= 'T': apply QT (Transpose, for real flavors)
= 'C': apply QH (Conjugate transpose, for complex flavors)

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed 
submatrix sub(C). m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the 
distributed submatrix sub(C). n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side = 'L', m ≥  k ≥  0;
if side = 'R', n ≥ k ≥ 0.

a (local)
REAL for psormr2
DOUBLE PRECISION  for pdormr2
COMPLEX  for pcunmr2
COMPLEX*16  for pzunmr2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+m-1) if side=’L’,
(lld_a, LOCc(ja+n-1) if side=’R’,
where lld_a ≥   max (1, LOCr(ia+k-1)).
On entry, the i-th row must contain the vector that defines the elementary reflector 
H(i),  ia ≤ i ≤ ia+k-1, as returned by p?gerqf in the k rows of its distributed 
matrix argument A(ia:ia+k-1, ja:*). The argument A(ia:ia+k-1, ja:*) is 
modified by the routine but restored on exit.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix A. 

tau (local) 
REAL for psormr2
DOUBLE PRECISION  for pdormr2
COMPLEX  for pcunmr2
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COMPLEX*16  for pzunmr2.
Array, DIMENSION LOCc(ia+k-1). This array contains the scalar factors tau(i) of 
the elementary reflector H(i), as returned by p?gerqf. This array is tied to the 
distributed matrix A.

c (local)
REAL for psormr2
DOUBLE PRECISION  for pdormr2
COMPLEX  for pcunmr2
COMPLEX*16  for pzunmr2.
Pointer into the local memory to an array, DIMENSION (lld_c, LOCc(jc+n-1)). On 
entry, the local pieces of the distributed matrix sub (C).

ic (global) INTEGER.
The row index in the global array C indicating the first row of sub(C).

jc (global) INTEGER.
The column index in the global array C indicating the first column of sub(C).

descc (global and local) INTEGER array of DIMENSION (dlen_). 
The array descriptor for the distributed matrix C. 

work (local)
REAL for psormr2
DOUBLE PRECISION  for pdormr2
COMPLEX  for pcunmr2
COMPLEX*16  for pzunmr2.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least
if side = 'L', lwork ≥   mpc0 + max( max( 1, nqc0 ), numroc 
(numroc(m+iroffc, mb_a, 0, 0, nprow), mb_a, 0, 0, lcmp)),
if side = 'R', lwork ≥   nqc0 + max( 1, mpc0 ),

where lcmp = lcm / nprow with lcm = iclm( nprow,  npcol ),

iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),

icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
Mpc0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
Nqc0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),
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ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine 
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.

Output Parameters

c On exit, sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q' or sub(C)*Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.

NOTE.  The distributed submatrices A(ia:*, ja:*) and 
C(ic:ic+m-1,jc:jc+n-1) must verify some alignment properties, 
namely the following expressions should be true:                                   
If side = 'L', ( nb_a.eq.mb_c.AND.icoffa.eq.iroffc )                                                                                         
If side = 'R', (  nb_a.eq.nb_c .AND. icoffa.eq.icoffc .AND.
iacol.eq.iccol  ).
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p?pbtrsv
Solves a single triangular linear system via frontsolve 
or backsolve where the triangular matrix is a factor of a 
banded matrix computed by p?pbtrf.

Syntax
call pspbtrsv (uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,

laf, work, lwork, info)

call pdpbtrsv (uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pcpbtrsv (uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzpbtrsv (uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

Description

The routine p?pbtrsv solves a banded triangular system of linear equations 

              A(1:n, ja:ja+n-1)*X = B(jb:jb+n-1, 1:nrhs)
                                                  or
               A(1:n, ja:ja+n-1)T *X = B(jb:jb+n-1, 1:nrhs) for real flavors,
                A(1:n, ja:ja+n-1)H *X = B(jb:jb+n-1, 1:nrhs) for complex flavors,

where A(1:n, ja:ja+n-1) is a banded triangular matrix factor produced by the Cholesky 
factorization code p?pbtrf and is stored in A(1:n, ja:ja+n-1) and af. The matrix stored in 
A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo, and the choice of 
solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T  for real flavors and A(1:n, ja:ja+n-1)H for 
complex flavors respectively is dictated by the user by the parameter trans. 

Routine p?pbtrf must be called first.

Input Parameters

uplo (global) CHARACTER.  Must be 'U' or 'L'.

If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is stored;
If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is stored.

trans (global) CHARACTER.  Must be 'N' or 'T' or 'C'.
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If trans = 'N', solve with A(1:n, ja:ja+n-1);

If trans = 'T' or 'C' for real flavors, solve with A(1:n, ja:ja+n-1)T.

If trans = 'C' for complex flavors, solve with 
conjugate_transpose ( A(1:n, ja:ja+n-1) ).

n (global) INTEGER.  The number of rows and columns to be operated on, that is, 
the order of the distributed submatrix A(1:n, ja:ja+n-1). n ≥ 0. 

bw (global) INTEGER. The number of subdiagonals in 'L' or 'U',  0 ≤ bw ≤ 
n-1.

nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix B(jb:jb+n-1, 1:nrhs);  nrhs ≥ 0.

a (local)

REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array with the first DIMENSION 
lld_a ≥  (bw+1), stored in desca.

On entry, this array contains the local pieces of the n-by-n symmetric banded 
distributed Cholesky factor L or LTA(1:n, ja:ja+n-1).

This local portion is stored in the packed banded format used in LAPACK. 
Please see the Application Notes below and the ScaLAPACK manual for more 
detail on the format of distributed matrices.

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array,  DIMENSION (dlen_).   The array descriptor 
for the distributed matrix A. 
If  1D type (dtype_a = 501),  then dlen ≥  7;
If  2D type (dtype_a = 1),  then dlen ≥  9.
Contains information on mapping of A to memory. Please, see ScaLAPACK 
manual for full description and options.

b (local)

REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
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COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array of local lead DIMENSION 
lld_b ≥  nb.
On entry,  this array contains the local pieces of the right hand sides 
B(jb:jb+n-1, 1:nrhs).

ib (global) INTEGER.  The row index in the global array B that points to the first 
row of the matrix to be operated on (which may be either all of B or a 
submatrix of B).

descb (global and local) INTEGER array, DIMENSION (dlen_).  The array descriptor 
for the distributed matrix B.

If 1D type (dtype_b = 502), then dlen ≥  7;
If 2D type (dtype_b = 1), then dlen ≥  9.
Contains information on mapping of B to memory. Please, see ScaLAPACK 
manual for full description and options.

laf (local) INTEGER. The size of user-input auxiliary Fillin space af.   
Must be laf ≥  (nb+2*bw)*bw .  
If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

work (local)
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
The array work is a temporary workspace array of DIMENSION lwork. This 
space may be overwritten in between calls to routines.

lwork (local or global) INTEGER.  The size of the user-input workspace work,  must 
be at least lwork ≥ bw*nrhs. If lwork is too small, the minimal acceptable 
size will be returned in work(1) and an error code is returned.

Output Parameters

af (local) 
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
The array af is of DIMENSION laf. It contains auxiliary Fillin space. Fillin is 
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created during the factorization routine p?pbtrf and this is stored in af. If a 
linear system is to be solved using p?pbtrs after the factorization routine, af 
must not be altered after the factorization.

b On exit, this array contains the local piece of the solutions distributed matrix X.

work(1) On exit, work(1) contains the minimum value of lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j),  
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.

Application Notes

If the factorization routine and the solve routine are to be called separately to solve various sets of 
right-hand sides using the same coefficient matrix, the auxiliary space af must not be altered 
between calls to the factorization routine and the solve routine. 

The best algorithm for solving banded and tridiagonal linear systems depends on a variety of 
parameters, especially the bandwidth. Currently, only algorithms designed for the case 
N/P >> bw are implemented. These algorithms go by many names, including Divide and Conquer, 
Partitioning, domain decomposition-type, etc. 

Algorithm description: Divide and Conquer. * 

The Divide and Conquer algorithm assumes the matrix is narrowly banded compared with the 
number of equations. In this situation, it is best to distribute the input matrix A one-dimensionally, 
with columns atomic and rows divided amongst the processes. The basic algorithm divides the 
banded matrix up into P pieces with one stored on each processor, and then proceeds in 2 phases 
for the factorization or 3 for the solution of a linear system. 

5. Local Phase: The individual pieces are factored independently and in parallel. These 
factors are applied to the matrix creating fill-in, which is stored in a non-inspectable way 
in auxiliary space af. Mathematically, this is equivalent to reordering the matrix A as
 P A PT and then factoring the principal leading submatrix of size equal to the sum of the 
sizes of the matrices factored on each processor. The factors of these submatrices 
overwrite the corresponding parts of A in memory. 
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6. Reduced System Phase: A small (bw* (P-1)) system is formed representing interaction 
of the larger blocks and is stored (as are its factors) in the space af. A parallel Block 
Cyclic Reduction algorithm is used. For a linear system, a parallel front solve followed 
by an analogous backsolve, both using the structure of the factored matrix, are 
performed. 

7. Backsubsitution Phase: For a linear system, a local backsubstitution is performed on 
each processor in parallel. 

p?pttrsv     
Solves a single triangular linear system via frontsolve 
or backsolve where the triangular matrix is a factor of a 
tridiagonal matrix computed by p?pttrf .

Syntax
call pspttrsv (uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,

work, lwork, info)

call pdpttrsv (uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pcpttrsv (uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzpttrsv (uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

Description

This routine solves a tridiagonal triangular system of linear equations 

              A(1:n, ja:ja+n-1)*X = B(jb:jb+n-1, 1:nrhs)
                                                  or
               A(1:n, ja:ja+n-1)T *X = B(jb:jb+n-1, 1:nrhs) for real flavors,
                A(1:n, ja:ja+n-1)H *X = B(jb:jb+n-1, 1:nrhs) for complex flavors,

where A(1:n, ja:ja+n-1) is a tridiagonal triangular matrix factor produced by the Cholesky 
factorization code p?pttrf and is stored in A(1:n, ja:ja+n-1) and af. The matrix stored in 
A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo, and the choice of 
solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T  for real flavors and A(1:n, ja:ja+n-1)H for 
complex flavors respectively is dictated by the user by the parameter trans. 
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Routine p?pttrf must be called first.

Input Parameters

uplo (global) CHARACTER.  Must be 'U' or 'L'.

If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is stored;
If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is stored.

trans (global) CHARACTER.  Must be 'N' or 'C'.

If trans = 'N', solve with A(1:n, ja:ja+n-1);

If trans = 'C' (for complex flavors), solve with 
conjugate_transpose ( A(1:n, ja:ja+n-1) ).

n (global) INTEGER.  The number of rows and columns to be operated on, that is, 
the order of the distributed submatrix A(1:n, ja:ja+n-1). n ≥ 0. 

nrhs (global) INTEGER. The number of right hand sides; the number of columns of 
the distributed submatrix B(jb:jb+n-1, 1:nrhs);  nrhs ≥ 0.

d (local) 

REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.

Pointer to the local part of the global vector storing the main diagonal of the 
matrix; must be of size ≥ desca(nb_).

e (local) 

REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.

Pointer to the local part of the global vector storing the upper diagonal of the 
matrix; must be of size ≥ desca(nb_). Globally, du(n) is not referenced, and 
du must be aligned with d. 

ja (global) INTEGER.  The index in the global array A that points to the start of the 
matrix to be operated on (which may be either all of A or a submatrix of A).
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desca (global and local) INTEGER array,  DIMENSION (dlen_).   The array descriptor 
for the distributed matrix A. 
If  1D type (dtype_a = 501 or 502),  then dlen ≥  7;
If  2D type (dtype_a = 1),  then dlen ≥  9.
Contains information on mapping of A to memory. Please, see ScaLAPACK 
manual for full description and options.

b (local)

REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer into the local memory to an array of local lead DIMENSION 
lld_b ≥  nb.
On entry,  this array contains the local pieces of the right hand sides 
B(jb:jb+n-1, 1:nrhs).

ib (global) INTEGER.  The row index in the global array B that points to the first 
row of the matrix to be operated on (which may be either all of B or a 
submatrix of B).

descb (global and local) INTEGER array, DIMENSION (dlen_).  The array descriptor 
for the distributed matrix B.

If  1D type (dtype_b = 502),  then dlen ≥  7;
If  2D type (dtype_b = 1),  then dlen ≥  9.
Contains information on mapping of B to memory. Please, see ScaLAPACK 
manual for full description and options.

laf (local) INTEGER. The size of user-input auxiliary Fillin space af.   
Must be laf ≥  (nb+2*bw)*bw .  
If laf is not large enough, an error code will be returned and the minimum 
acceptable size will be returned in af(1).

work (local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array work is a temporary workspace array of DIMENSION lwork. This 
space may be overwritten in between calls to routines.
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lwork (local or global) INTEGER.  The size of the user-input workspace work,  must 
be at least lwork ≥ (10+2*min(100, nrhs))*npcol+4*nrhs. If lwork is 
too small, the minimal acceptable size will be returned in work(1) and an error 
code is returned.

Output Parameters

d, e (local).  
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
On exit, these arrays contain information containing the factors of the matrix.

af (local) 
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array af is of DIMENSION laf. It contains auxiliary Fillin space. Fillin is 
created during the factorization routine p?pbtrf and this is stored in af. If a 
linear system is to be solved using p?pttrs after the factorization routine, af 
must not be altered after the factorization.

b On exit, this array contains the local piece of the solutions distributed matrix X.

work(1) On exit, work(1) contains the minimum value of lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j),  
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.
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p?potf2
Computes the Cholesky factorization of a 
symmetric/Hermitian positive definite matrix (local 
unblocked algorithm).

Syntax
call pspotf2 (uplo, n, a, ia, ja, desca, info)

call pdpotf2 (uplo, n, a, ia, ja, desca, info)

call pcpotf2 (uplo, n, a, ia, ja, desca, info)

call pzpotf2 (uplo, n, a, ia, ja, desca, info)

Description

This routine computes the Cholesky factorization of a real symmetric or complex Hermitian 
positive definite distributed matrix sub (A)=A(ia:ia+n-1,ja:ja+n-1). 

The factorization has the form
sub (A) = U' U ,  if uplo = 'U', or
sub (A) = L L',    if uplo = 'L',  
where U is an upper triangular matrix and L is lower triangular.

Input Parameters

 uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/Hermitian 
matrix A is stored.
= 'U':  Upper triangle of sub (A) is stored;
= 'L':  Lower triangle of sub (A) is stored.

n (global) INTEGER.  The number of rows and columns to be operated on, that is, the 
order of the distributed submatrix sub (A). n ≥ 0. 

a (local)
REAL for pspotf2
DOUBLE PRECISION or pdpotf2
COMPLEX  for pcpotf2
COMPLEX*16 for pzpotf2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc(ja+n-1)) 
containing the local pieces of the n-by-n symmetric distributed matrix sub(A) to be 
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factored.
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the upper 
triangular matrix and the strictly lower triangular part of this matrix is not referenced. 
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the lower 
triangular matrix and the strictly upper triangular part of sub(A) is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A indicating the 
first row and the first column of the sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

Output Parameters

a (local) On exit, 
if uplo = 'U', the upper triangular part of the distributed matrix contains the Cholesky 
factor U; 
if uplo = 'L', the lower triangular part of the distributed matrix contains the Cholesky 
factor L.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100+j), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.
> 0: if info = k, the leading minor of order k is not positive definite, and the 
factorization could not be completed.

p?rscl
Multiplies a vector by the reciprocal of a real scalar.

Syntax
call psrscl (n, sa, sx, ix, jx, descx, incx)

call pdrscl (n, sa, sx, ix, jx, descx, incx)

call pcsrscl (n, sa, sx, ix, jx, descx, incx)

call pzdrscl (n, sa, sx, ix, jx, descx, incx)
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Description

This routine multiplies an n-element real/complex vector sub(x) by the real scalar 1/a. This is 
done without overflow or underflow as long as the final result sub(x)/a does not overflow or 
underflow.

sub(x) denotes x(ix:ix+n-1, jx:jx), if incx = 1,
                   and x(ix:ix, jx:jx+n-1), if incx = m_x.

Input Parameters

 n (global) INTEGER.
The number of components of the distributed vector sub(x). n ≥ 0.

sa REAL for psrscl/pcsrscl
DOUBLE PRECISION for pdrscl/pzdrscl.
The scalar a that is used to divide each component of the vector x. This argument 
must be ≥ 0, or the subroutine will divide by zero.

sx REAL for psrscl
DOUBLE PRECISION for pdrscl
COMPLEX  for pcsrscl
COMPLEX*16  for pzdrscl.
Array containing the local pieces of a distributed matrix of DIMENSION of at least
((jx-1)*m_x + ix + (n-1)*abs(incx )).
This array contains the entries of the distributed vector sub(x).

ix (global) INTEGER.The row index of the submatrix of the distributed matrix X to 
operate on.

jx (global) INTEGER. The column index of the submatrix of the distributed matrix X to 
operate on.

descx (global and local). INTEGER.
Array of DIMENSION 8. The array descriptor for the distributed matrix X.

incx (global) INTEGER.
The increment for the elements of X. This version supports only two values of incx, 
namely 1 and  m_x.

Output Parameters

sx On exit, the result x/a.
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p?sygs2/p?hegs2
Reduces a symmetric/Hermitian definite generalized 
eigenproblem to standard form, using the factorization 
results obtained from p?potrf (local unblocked 
algorithm).

Syntax
call pssygs2 (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

call pdsygs2 (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

call pchegs2 (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

call pzhegs2 (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

Description 

The routine p?sygs2/p?hegs2 reduces a real symmetric-definite or a complex 
Hermitian-definite generalized eigenproblem to standard form. 

sub(A) denotes A(ia:ia+n-1, ja:ja+n-1) and sub(B) denotes B(ib:ib+n-1, jb:jb+n-1).

If ibtype = 1, the problem is 

         sub(A)x = λsub(B)x, 

and sub(A) is overwritten by 

inv(UT)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LT) for real flavors and 
inv(UH)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LH) for complex flavors.

If ibtype = 2 or 3, the problem is 

       sub(A)sub(B)x = λx  or  sub(B)sub(A)x =λx, 

and sub(A) is overwritten 

by U*sub(A)*UT or L**T*sub(A)*L for real flavors and 
by U*sub(A)*UH or L**H*sub(A)*L for complex flavors. 

sub(B) must have been previously factorized as UTU  or L L T (for real flavors) or as UHU  or LL H 
(for complex flavors) by p?potrf.
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Input Parameters

ibtype (global) INTEGER.
= 1: compute inv(UT)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LT) for real subroutines 
and inv(UH)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LH) for complex subroutines;
= 2 or 3: compute U*sub(A)*UT or LT*sub(A)*L for real subroutines and by 
U*sub(A)*UH or LH*sub(A)*L for complex subroutines.

uplo (global) CHARACTER
Specifies whether the upper or lower triangular part of the symmetric/Hermitian 
matrix sub(A) is stored, and how sub(B) is factorized.
= 'U':  Upper triangular of sub(A) is stored and sub(B) is factorized as UTU  (for real 
subroutines) or as UHU (for complex subroutines).
= 'L':  Lower triangular of sub(A) is stored and sub(B) is factorized as L LT  (for real 
subroutines) or as L LH (for complex subroutines)

n (global) INTEGER.
The order of the matrices sub(A) and sub(B).  n ≥ 0.

a (local) 
REAL for pssygs2
DOUBLE PRECISION  for pdsygs2
COMPLEX  for pchegs2
COMPLEX*16  for pzhegs2.
Pointer into the local memory to 
an array, DIMENSION (lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n symmetric/Hermitian 
distributed matrix sub(A). 
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the upper 
triangular part of the matrix, and the strictly lower triangular part of sub(A) is not 
referenced. If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains 
the lower triangular part of the matrix, and the strictly upper triangular part of sub(A) 
is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A indicating the 
first row and the first column of the sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

b (local) 
REAL for pssygs2
DOUBLE PRECISION  for pdsygs2
COMPLEX  for pchegs2
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COMPLEX*16  for pzhegs2.
Pointer into the local memory to 
an array, DIMENSION (lld_b, LOCc(jb+n-1)).
On entry, this array contains the local pieces of the triangular factor from the 
Cholesky factorization of sub(B) as returned by p?potrf.

ib,jb (global) INTEGER. The row and column indices in the global array B indicating the 
first row and the first column of the sub(B), respectively.

descb (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix B.

Output Parameters

a (local) On exit, if info = 0, the transformed matrix is stored in the same format as 
sub(A).

info INTEGER.
= 0:  successful exit.
< 0:  if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100),  
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.

p?sytd2/p?hetd2
Reduces a symmetric/Hermitian matrix to real 
symmetric tridiagonal form by an orthogonal/unitary 
similarity transformation (local unblocked algorithm).

Syntax
call pssytd2 (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pdsytd2 (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pchetd2 (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pzhetd2 (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
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Description

The routine p?sytd2/p?hetd2 reduces a real symmetric/complex Hermitian matrix sub(A) to 
symmetric/Hermitian tridiagonal form T by an orthogonal/unitary similarity transformation:
Q' sub(A)Q = T, where sub(A) = A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/Hermitian 
matrix sub(A) is stored:
= 'U':  Upper triangular
= 'L':  Lower triangular

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the 
distributed submatrix sub(A).  n ≥ 0.

a (local)
REAL for pssytd2
DOUBLE PRECISION  for pdsytd2
COMPLEX  for pchetd2
COMPLEX*16  for pzhetd2.
Pointer into the local memory to 
an array, DIMENSION (lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n symmetric/Hermitian 
distributed matrix sub(A). 
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the upper 
triangular part of the matrix, and the strictly lower triangular part of sub(A) is not 
referenced. If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains 
the lower triangular part of the matrix, and the strictly upper triangular part of sub(A) 
is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A indicating the 
first row and the first column of the sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

work (local)
REAL for pssytd2
DOUBLE PRECISION  for pdsytd2
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COMPLEX  for pchetd2
COMPLEX*16  for pzhetd2.
The array work is a temporary workspace array of DIMENSION lwork.

Output Parameters

a On exit, if uplo = 'U', the diagonal and first superdiagonal of sub(A) are overwritten 
by the corresponding elements of the tridiagonal matrix T, and the elements above the 
first superdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a 
product of elementary reflectors; 
if uplo = 'L', the diagonal and first subdiagonal of a are overwritten by the 
corresponding elements of the tridiagonal matrix T, and the elements below the first 
subdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a 
product of elementary reflectors. See the Application Notes below.

d (local)
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION (LOCc(ja+n-1)).
The diagonal elements of the tridiagonal matrix T:
d(i) = a(i,i); d is tied to the distributed matrix A.

e (local)
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION (LOCc(ja+n-1)), if uplo = 'U', LOCc(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix T:
e(i) = a(i,i+1) if uplo = 'U', 
e(i) = a(i+1,i) if uplo = 'L'.
e is tied to the distributed matrix A.

tau (local)
REAL for pssytd2
DOUBLE PRECISION  for pdsytd2
COMPLEX  for pchetd2
COMPLEX*16  for pzhetd2.
Array, DIMENSION (LOCc(ja+n-1)).
The scalar factors of the elementary reflectors. 
tau is tied to the distributed matrix A.

work(1) On exit, work(1) returns the minimal and optimal value of lwork.
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lwork (local or global) INTEGER.  
The dimension of the workspace array work.
lwork is local input and must be at least lwork ≥ 3n .

If lwork = -1, then lwork is global input and a workspace query is assumed; the 
routine only calculates the minimum and optimal size for all work arrays. Each of 
these values is returned in the first entry of the corresponding work array, and no error 
message is issued by pxerbla.

info (local) INTEGER.
= 0:  successful exit
< 0:  if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

     Q  = H(n-1) . . . H(2) H(1)

Each H(i) has the form 

    H(i) = I - tau*v*v',

where tau  is a real/complex scalar, and v is a real/complex vector with v(i+1:n) = 0 and 
v(i) = 1; v(1:i-1) is stored on exit in A(ia:ia+i-2, ja+i), and tau in TAU(ja+i-1).  

If uplo = 'L',  the matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(n-1).

Each H(i) has the form
     H(i) = I - tau*v*v' ,
where tau  is a real/complex scalar, and v is a real/complex vector with  v(1:i) = 0 and 
v(i+1) = 1; v(i+2:n) is stored on exit in A(ia+i+1:ia+n-1, ja+i-1), and tau in TAU(ja+i-1). 



ScaLAPACK Auxiliary and Utility Routines 7

7-171

The contents of sub (A) on exit are illustrated by the following examples with 
n = 5: 

if uplo = 'U':                             if uplo = 'L':

                   

where  and  denotes diagonal and off-diagonal elements of T, and  denotes an element of 
the vector defining H(i).

p?trti2
Computes the inverse of a triangular matrix (local 
unblocked algorithm).

Syntax
call pstrti2 (uplo, diag, n, a, ia, ja, desca, info)

call pdtrti2 (uplo, diag, n, a, ia, ja, desca, info)

call pctrti2 (uplo, diag, n, a, ia, ja, desca, info)

call pztrti2 (uplo, diag, n, a, ia, ja, desca, info)

NOTE.  The distributed submatrix sub(A) must verify some alignment 
properties, namely the following expression should be true:                                    
( mb_a.eq.nb_a . AND. iroffa.eq.icoffa ) with                                                                                        
iroffa = mod(ia - 1, mb_a) and  icoffa = mod(ja - 1, nb_a).

d e v2 v3 v4

d e v3 v4

d e v4

d e

d

d

e d

v1 e d

v1 v2 e d

v1 v2 v3 e d

d e vi
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Description

This routine computes the inverse of a real/complex upper or lower triangular block matrix sub (A) 
= A(ia:ia+n-1, ja:ja+n-1). 

This matrix should be contained in one and only one process memory space (local operation).

Input Parameters

uplo (global) CHARACTER*1.
Specifies whether the matrix sub (A) is upper or lower triangular.
= 'U':  sub (A) is upper triangular
= 'L':  sub (A) is lower triangular.

diag (global) CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N':  sub (A) is non-unit triangular
= 'U':  sub (A) is unit triangular.

n (global) INTEGER.
The number of rows and columns to be operated on, i.e., the order of the distributed 
submatrix sub(A).  n ≥ 0.

a (local)
REAL for pstrti2
DOUBLE PRECISION for pdtrti2
COMPLEX for pctrti2
COMPLEX*16  for pztrti2.
Pointer into the local memory to 
an array, DIMENSION (lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the triangular matrix sub(A). 
If uplo = 'U', the leading n-by-n upper triangular part of the matrix sub(A) contains 
the upper triangular part of the matrix, and the strictly lower triangular part of sub(A) 
is not referenced. 
If uplo = 'L', the leading n-by-n lower triangular part of the matrix sub(A) contains 
the lower triangular part of the matrix, and the strictly upper triangular part of sub(A) 
is not referenced. 
If diag = 'U', the diagonal elements of sub(A) are not referenced either and are 
assumed to be 1.

ia,ja (global) INTEGER. The row and column indices in the global array A indicating the 
first row and the first column of the sub(A), respectively.
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desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the 
distributed matrix A.

Output Parameters

a On exit, the (triangular) inverse of the original matrix, in the same storage format.

info INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value, 
        then info = - (i*100), 
        if the i-th argument is a scalar and had an illegal value, 
         then info = -i.

?lamsh
Sends multiple shifts through a small (single node) 
matrix to maximize the number of bulges that can be 
sent through.

Syntax
call slamsh (s, lds, nbulge, jblk, h, ldh, n, ulp)

call dlamsh (s, lds, nbulge, jblk, h, ldh, n, ulp)

Description

This routine sends multiple shifts through a small (single node) matrix to see how small 
consecutive subdiagonal elements are modified by subsequent shifts in an effort to maximize the 
number of bulges that can be sent through. The subroutine should only be called when there are 
multiple shifts/bulges (nbulge > 1) and the first shift is starting in the middle of an unreduced 
Hessenberg matrix because of two or more small consecutive subdiagonal elements.

Input Parameters

s (local) INTEGER. 
REAL for slamsh 
DOUBLE PRECISION for dlamsh
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Array, DIMENSION (lds,*).
On entry, the matrix of shifts. Only the 2x2 diagonal of s is referenced. It is 
assumed that s has jblk double shifts (size 2).

lds (local) INTEGER. 
On entry, the leading dimension of S; unchanged on exit.
1  <  nbulge  ≤  jblk  ≤  lds/2.

nbulge (local) INTEGER. 
On entry, the number of bulges to send through h ( > 1).
nbulge should be less than the maximum determined (jblk).
1  <  nbulge  ≤  jblk  ≤  lds/2.

jblk (local) INTEGER. 
On entry, the leading dimension of S; unchanged on exit.

h (local) INTEGER. 
REAL for slamsh 
DOUBLE PRECISION for dlamsh
Array, DIMENSION (lds, n).
On entry, the local matrix to apply the shifts on.
h should be aligned so that the starting row is 2.

ldh (local) INTEGER. 
On entry, the leading dimension of H; unchanged on exit.

n (local) INTEGER. 
On entry, the size of H. If all the bulges are expected to go through, n should be 
at least 4nbulge+2. Otherwise, nbulge may be reduced by this routine.

ulp (local) 
REAL for slamsh 
DOUBLE PRECISION for dlamsh
On entry, machine precision. Unchanged on exit.

Output Parameters

s On exit, the data is rearranged in the best order for applying.

nbulge On exit, the maximum number of bulges that can be sent through.

h On exit, the data is destroyed.
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?laref
Applies Householder reflectors to matrices on either 
their rows or columns.

Syntax
call slaref (type, a, lda, wantz, z, ldz, block, irow1, icol1, istart, istop,

itmp1, itm2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)

call dlaref (type, a, lda, wantz, z, ldz, block, irow1, icol1, istart, istop,
itmp1, itm2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)

Description

This routine applies one or several Householder reflectors of size 3 to one or two matrices (if 
column is specified) on either their rows or columns.

Input Parameters

type (global) CHRACTER*1.
If type = 'R',  apply reflectors to the rows of the matrix (apply from left).
Otherwise, apply reflectors to the columns of the matrix. Unchanged on exit.

a (global) 
REAL for slaref 
DOUBLE PRECISION for dlaref
Array, DIMENSION (lda, *). On entry, the matrix to receive the reflections.

lda (local) INTEGER. 
On entry, the leading dimension of A; unchanged on exit.

wantz (global) LOGICAL. 
If wantz =.TRUE., apply any column reflections to Z as well.
If wantz =.FALSE., do no additional work on Z.

z (global)
REAL for slaref 
DOUBLE PRECISION for dlaref
Array, DIMENSION (ldz, *). On enrty, the second matrix to receive column 
reflections.

ldz (local) INTEGER. 
On entry, the leading dimension of Z; unchanged on exit.
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block (global). LOGICAL.
= .TRUE. : apply several reflectors at once and read their data from the vecs 
array;
= .FALSE.: apply the single reflector given by v2, v3, t1, t2, and t3.

 ipow1  (local) INTEGER.
On entry, the local row element of the matrix A.

 icol1 (local) INTEGER.
On entry, the local column element of the matrix A.

istart (global) INTEGER.
Specifies the "number" of the first reflector. 
istart is used as an index into vecs if block is set. istart is ignored if 
block is .FALSE..

istop (global) INTEGER.
Specifies the "number" of the last reflector. 
istop is used as an index into vecs if block is set. istop is ignored if 
block is .FALSE..

 itmp1 (local) INTEGER.
Starting range into A. For rows, this is the local first column. For columns, this 
is the local first row.

 itmp2 (local) INTEGER.
Ending range into A. For rows, this is the local last column. For columns, this is 
the local last row.

liloz , lihiz (local). INTEGER.
Serve the same purpose as itmp1, itmp2 but for Z when wantz is set.

vecs (global)
REAL  for slaref
DOUBLE PRECISION for dlaref.
Array of size 3*n (matrix size). This array holds the size 3 reflectors one after 
another and is only accessed when block is .TRUE.

v2,v3,t1,t2,t3 (global). INTEGER.
REAL  for slaref
DOUBLE PRECISION for dlaref.
These parameters hold information on a single size 3 Householder reflector 
and are read when block is .FALSE., and overwritten when block is 
.TRUE..
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Output Parameters

a On exit, the updated matrix.

z Changed only if wantz is set. If wantz is .FALSE., z is not referenced.

ipow1 Undefined.

icol1 Undefined.

v2,v3,t1,t2,t3 These parameters are read when block is .FALSE., and overwritten when 
block is .TRUE..

?lasorte
Sorts eigenpairs by real and complex data types.

Syntax
call slasorte (s, lds, j, out, info)

call dlasorte (s, lds, j, out, info)

Description

This routine sorts eigenpairs so that real eigenpairs are together and complex eigenpairs are 
together. This helps to employ 2x2 shifts easily since every 2nd subdiagonal is guaranteed to be 
zero. This routine does no parallel work and makes no calls.

Input Parameters

s (local) INTEGER. 
REAL for slasorte 
DOUBLE PRECISION for dlasorte

Array, DIMENSION (lds).
On entry, a matrix already in Schur form.

lds (local) INTEGER. 
On entry, the leading dimension of the array s; unchanged on exit.

j (local) INTEGER. 
On entry, the order of the matrix S; unchanged on exit.
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out (local) INTEGER. 
REAL for slasorte 
DOUBLE PRECISION for dlasorte

Array, DIMENSION (jx2).
The work buffer required by the routine.

info (local) INTEGER. 
Set, if the input matrix had an odd number of real eigenvalues and things could 
not be paired or if the input matrix S was not originally in Schur form. 
0 indicates successful completion.

Output Parameters

s On exit, the diagonal blocks of S have been rewritten to pair the eigenvalues. 
The resulting matrix is no longer similar to the input.

out Work buffer.

?lasrt2
Sorts numbers in increasing or decreasing order.

Syntax
call slasrt2 (id, n, d, key, info)

call dlasrt2 (id, n, d, key, info)

Description

This routine is modified LAPACK routine ?lasrt, which sorts the numbers in d in increasing 
order (if id = 'I') or in decreasing order (if id = 'D' ). It uses Quick Sort, reverting to Insertion 
Sort on arrays of size ≤ 20. Dimension of stack limits n to about 232.

Input Parameters

id CHARACTER*1.
 = 'I': sort d in increasing order;
 = 'D': sort d in decreasing order.

n INTEGER. The length of the array d.
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d REAL for slasrt2
DOUBLE PRECISION for dlasrt2. 
Array, DIMENSION (n).
On entry, the array to be sorted.

key INTEGER.
Array, DIMENSION (n).
On entry, key contains a key to each of the entries in d(). 
Typically, key(i) = i for all i .

Output Parameters

d On exit, d has been sorted into increasing order 
(d(1) ≤  ... ≤  d(n) ) or into decreasing order
(d(1) ≥ ... ≥ d(n) ), depending on id.

info INTEGER.
 = 0:  successful exit
< 0:  if info = -i, the i-th argument had an illegal value.

key On exit, key is permuted in exactly the same manner as d() was permuted from 
input to output. Therefore, if key(i) = i for all i upon input, then * d_out(i) = 
d_in(key(i)).

?stein2         
Computes the eigenvectors corresponding to specified 
eigenvalues of a real symmetric tridiagonal matrix, 
using inverse iteration.

Syntax
call sstein2 (n, d, e, m, w, iblock, isplit, orfac, z, ldz,

work, iwork, ifail, info)

call dstein2 (n, d, e, m, w, iblock, isplit, orfac, z, ldz,
work, iwork, ifail, info)

Description

This routine is a modified LAPACK routine ?stein. It computes the eigenvectors of a real 
symmetric tridiagonal matrix T corresponding to specified eigenvalues, using inverse iteration.
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The maximum number of iterations allowed for each eigenvector is specified by an internal 
parameter maxits (currently set to 5).

Input Parameters

n INTEGER. The order of the matrix T (n ≥ 0). 

m INTEGER. The number of eigenvectors to be found (0 ≤  m ≤  n).

d, e, w REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
Arrays: 
d(*), DIMENSION (n). 
The n diagonal elements of the tridiagonal matrix T.

e(*), DIMENSION (n). 
The (n-1) subdiagonal elements of the tridiagonal matrix T, in elements 1 to 
n-1. e(n) need not be set.

w(*), DIMENSION (n). 
The first m elements of w contain the eigenvalues for which eigenvectors are to 
be computed. The eigenvalues should be grouped by split-off block and 
ordered from smallest to largest within the block. (The output array w from 
?stebz with ORDER = 'B' is expected here).

The dimension of w must be at least max(1, n).

iblock INTEGER. 
Array, DIMENSION (n).
The submatrix indices associated with the corresponding eigenvalues in w ; 
iblock(i) = 1, if eigenvalue w(i) belongs to the first submatrix from the top, 
iblock(i) = 2, if eigenvalue w(i) belongs to the second submatrix, etc. (The 
output array iblock from ?stebz is expected here).

isplit INTEGER. 
Array, DIMENSION (n).
The splitting points, at which T breaks up into submatrices. The first submatrix 
consists of rows/columns 1 to isplit(1), the second submatrix consists of 
rows/columns isplit(1)+1 through isplit( 2 ), etc. (The output array 
isplit from ?stebz is expected here).
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orfac REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
orfac specifies which eigenvectors should be orthogonalized. Eigenvectors 
that correspond to eigenvalues which are within orfac*|| T || of each other are 
to be orthogonalized. 

ldz INTEGER. The leading dimension of the output array z; ldz ≥ max(1, n).

work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
Workspace array, DIMENSION (5n).

iwork INTEGER. 
Workspace array, DIMENSION (n).

Output Parameters

z REAL for sstein2 
DOUBLE PRECISION for dstein2 
Array, DIMENSION (ldz, m). 
The computed eigenvectors. The eigenvector associated with the eigenvalue 
w(i) is stored in the i-th column of z. Any vector that fails to converge is set to 
its current iterate after maxits iterations.

ifail INTEGER. Array, DIMENSION (m).
On normal exit, all elements of ifail are zero. If one or more eigenvectors 
fail to converge after maxits iterations, then their indices are stored in the 
array ifail.

info INTEGER. 
info = 0, the exit is successful.
info < 0: if info = -i, the i-th had an illegal value.
info > 0: if info = i, then i eigenvectors failed to converge in maxits 
iterations. Their indices are stored in the array ifail.
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?dbtf2
Computes an LU factorization of a general band matrix 
with no pivoting (local unblocked algorithm).

Syntax
call sdbtf2 (m, n, kl, ku, ab, ldab, info)

call ddbtf2 (m, n, kl, ku, ab, ldab, info)

call cdbtf2 (m, n, kl, ku, ab, ldab, info)

call zdbtf2 (m, n, kl, ku, ab, ldab, info)

Description

This routine computes an LU factorization of a general real/complex m-by-n band matrix A 
without using partial pivoting with row interchanges.

This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0). 

n INTEGER. The number of columns in A  (n ≥ 0). 

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0). 

ku INTEGER. The number of super-diagonals within the band of A (ku ≥ 0). 

ab REAL for sdbtf2 
DOUBLE PRECISION for ddbtf2
COMPLEX for cdbtf2
COMPLEX*16 for zdbtf2.
Array, DIMENSION (ldab,n).
The matrix A in band storage, in rows kl+1 to 2kl+ku+1; rows 1 to kl of the array 
need not be set. The j-th column of A is stored in the j-th column of the array ab as 
follows: ab(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku) < i < min(m,j+kl).

ldab INTEGER. The leading dimension of the array ab. 
(ldab ≥ 2kl + ku +1)
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Output Parameters

ab On exit, details of the factorization: U is stored as an upper triangular band matrix 
with kl+ku superdiagonals in rows 1 to kl+ku+1, and the multipliers used during 
the factorization are stored in rows kl+ku+2 to 2*kl+ku+1. See the Application 
Notes below for further details.

info INTEGER. 
= 0:  successful exit
< 0: if info = - i, the i-th argument had an illegal value, 
> 0: if info = + i, u(i,i) is 0. The factorization has been completed, but the factor U 
is exactly singular. Division by 0 will occur if you use the factor U for solving a 
system of linear equations. 

Application Notes

The band storage scheme is illustrated by the following example, when  m = n = 6,  kl = 2,      
 ku = 1:

                 on entry                                       on exit

                              

The routine does not use array elements marked *; elements marked + need not be set on entry, but 
the routine requires them to store elements of U, because of fill-in resulting from the row 
interchanges.

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 *

a31 a42 a53 a64 * *

* u12 u23 u34 u45 u56

u11 u22 u33 u44 u55 u66

m21 m32 m43 m54 m65 *

m31 m42 m53 m64 * *
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?dbtrf                  
Computes an LU factorization 
of a general band matrix with no pivoting (local 
blocked algorithm).

Syntax
call sdbtrf (m, n, kl, ku, ab, ldab, info)

call ddbtrf (m, n, kl, ku, ab, ldab, info)

call cdbtrf (m, n, kl, ku, ab, ldab, info)

call zdbtrf (m, n, kl, ku, ab, ldab, info)

Description

This routine computes an LU factorization of a real m-by-n band matrix A without using partial 
pivoting or row interchanges.

This is the blocked version of the algorithm, calling BLAS Level 3 Routines.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0). 

n INTEGER. The number of columns in A  (n ≥ 0). 

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0). 

ku INTEGER. The number of super-diagonals within the band of A (ku ≥ 0). 

ab REAL for sdbtrf 
DOUBLE PRECISION for ddbtrf
COMPLEX for cdbtrf
COMPLEX*16 for zdbtrf.
Array, DIMENSION (ldab,n).
The matrix A in band storage, in rows kl+1 to 2kl+ku+1; rows 1 to kl of the array 
need not be set. The j-th column of A is stored in the j-th column of the array ab as 
follows: ab(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku) < i < min(m,j+kl).

ldab INTEGER. The leading dimension of the array ab. 
(ldab ≥ 2kl + ku +1)
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Output Parameters

ab On exit, details of the factorization: U is stored as an upper triangular band matrix 
with kl+ku superdiagonals in rows 1 to kl+ku+1, and the multipliers used during 
the factorization are stored in rows kl+ku+2 to 2*kl+ku+1. See the Application 
Notes below for further details.

info INTEGER. 
= 0:  successful exit
< 0: if info = - i, the i-th argument had an illegal value, 
> 0: if info = + i, u(i,i) is 0. The factorization has been completed, but the factor U 
is exactly singular. Division by 0 will occur if you use the factor U for solving a 
system of linear equations.

Application Notes

The band storage scheme is illustrated by the following example, when  m = n = 6,  kl = 2,  
ku = 1:
                 on entry                                      on exit

                              

The routine does not use array elements marked *.

?dttrf               
Computes an LU factorization of a general tridiagonal 
matrix with no pivoting (local blocked algorithm).

Syntax
call sdttrf (n, dl, d, du, info)

call ddttrf (n, dl, d, du, info)

call cdttrf (n, dl, d, du, info)

call zdttrf (n, dl, d, du, info)

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 *

a31 a42 a53 a64 * *

* u12 u23 u34 u45 u56

u11 u22 u33 u44 u55 u66

m21 m32 m43 m54 m65 *

m31 m42 m53 m64 * *
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Description

This routine computes an LU factorization of a real or complex tridiagonal matrix A using 
elimination without partial pivoting.

The factorization has the form A = LU, where L is a product of unit lower bidiagonal matrices and 
U is upper triangular with nonzeros only in the main diagonal and first superdiagonal.

Input Parameters

n INTEGER. The order of the matrix A  (n ≥ 0). 

dl, d, du REAL for sdttrf 
DOUBLE PRECISION for ddttrf
COMPLEX for cdttrf
COMPLEX*16 for zdttrf.
Arrays containing elements of A.
The array dl of DIMENSION (n - 1) contains the sub-diagonal elements of A. 
The array d of DIMENSION n  contains the diagonal elements of A. 
The array du of DIMENSION (n - 1) contains the super-diagonal elements of A.

Output Parameters

dl Overwritten by the (n-1) multipliers that define the matrix L from the LU 
factorization of A. 

d Overwritten by the n diagonal elements of the upper triangular matrix U from 
the LU factorization of A. 

du Overwritten by the (n-1) elements of the first super-diagonal of U. 

info INTEGER. 
= 0:  successful exit
< 0: if info = - i, the i-th argument had an illegal value, 
> 0: if info = i, u(i,i) is exactly 0. The factorization has been completed, but 
the factor U is exactly singular. Division by 0 will occur if you use the factor U 
for solving a system of linear equations.
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?dttrsv                 
Solves a general tridiagonal system of linear equations 
using the LU factorization computed by ?dttrf.

Syntax
call sdttrsv (uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

call ddttrsv (uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

call cdttrsv (uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

call zdttrsv (uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

Description

This routine solves one of the following systems of linear equations:

LX = B , LTX = B,         or       LHX = B, 

UX = B , UTX = B,        or       U HX = B

with factors of the tridiagonal matrix A from the LU factorization computed by ?dttrf.

Input Parameters
uplo CHARACTER*1.

Specifies whether to solve with L or U.

trans CHARACTER. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', then AX = B is solved for X (no transpose).
If trans = 'T', then ATX = B is solved for X (transpose).
If trans = 'C', then AHX = B is solved for X (conjugate transpose).

n INTEGER. The order of the matrix A (n ≥ 0). 

nrhs INTEGER. The number of right-hand sides, i.e., the number of columns in the 
matrix B (nrhs ≥ 0). 

dl,d,du,b REAL for sdttrsv 
DOUBLE PRECISION for ddttrsv
COMPLEX for cdttrsv
COMPLEX*16 for zdttrsv.
Arrays of DIMENSIONs: dl(n - 1), d(n ), du(n - 1), b(ldb,nrhs).
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The array dl  contains the (n - 1) multipliers that define the matrix L from the 
LU factorization of A. 
The array d contains n diagonal elements of the upper triangular matrix U from 
the LU factorization of A. 
The array du contains the (n - 1) elements of the first super-diagonal of U.
On entry, the array b contains the right-hand side matrix B.

ldb INTEGER. The leading dimension of the array b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

?pttrsv               
Solves a symmetric (Hermitian) positive-definite 
tridiagonal system of linear equations, using the LDLH 
factorization computed by ?pttrf.

Syntax
call spttrsv (trans, n, nrhs, d, e, b, ldb, info)

call dpttrsv (trans, n, nrhs, d, e, b, ldb, info)

call cpttrsv (uplo, trans, n, nrhs, d, e, b, ldb, info)

call zpttrsv (uplo, trans, n, nrhs, d, e, b, ldb, info)

Description

This routine solves one of the triangular systems:

                               LTX = B,  or  LX = B    for real flavors,
                                                  or
                               LX = B,  or  LHX = B,
                                  UX = B,  or  UHX = B     for complex flavors,

where L (or U for complex flavors) is the Cholesky factor of a Hermitian positive-definite 
tridiagonal matrix A such that
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A = LDLH (computed by spttrf/dpttrf) 

                       or

A = UHDU or A = LDLH (computed by cpttrf/zpttrf). 

Input Parameters

uplo CHARACTER*1.  Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal 
matrix A is stored and the form of the factorization:

If uplo = 'U', e is the superdiagonal of U, and A = U'DU;
If uplo  = 'L', e is the subdiagonal of L, and A = LDL'.

The two forms are equivalent, if A is real.

trans CHARACTER.
Specifies the form of the system of equations: 

for real flavors: 
if trans = 'N':  LX = B  (no transpose)
if trans = 'T':  LTX = B  (transpose)

for complex flavors:
if trans = 'N':  LX = B  (no transpose)
if trans = 'N':  LX = B  (no transpose)
if trans = 'C':  UHX = B  (conjugate transpose)
if trans = 'C':  LHX = B  (conjugate transpose)

n INTEGER.  The order of the tridiagonal matrix A. n ≥ 0. 

nrhs INTEGER. The number of right hand sides, that is, the number of columns of 
the matrix B. nrhs ≥ 0.

d REAL array, DIMENSION (n). The n diagonal elements of the diagonal matrix D 
from the factorization computed by ?pttrf.

e COMPLEX array, DIMENSION (n-1). The (n-1) off-diagonal elements of the unit 
bidiagonal factor U or L from the factorization computed by ?pttrf. See 
uplo.

b COMPLEX array, DIMENSION (ldb, nrhs).
On entry, the right hand side matrix B.
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ldb INTEGER.
The leading dimension of the array b. 
ldb ≥  max(1, n).

Output Parameters

b On exit,  the solution matrix X.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value. 

?steqr2
Computes all eigenvalues and, optionally, eigenvectors 
of a symmetric tridiagonal matrix using the implicit QL 
or QR method.

Syntax
call ssteqr2 (compz, n, d, e, z, ldz, nr, work, info)

call dsteqr2 (compz, n, d, e, z, ldz, nr, work, info)

Description

This routine is a modified version of LAPACK routine ?steqr. The routine ?steqr2 computes 
all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit 
QL or QR method. ?steqr2 is modified from ?steqr to allow each ScaLAPACK process 
running ?steqr2 to perform updates on a distributed matrix Q. Proper usage of ?steqr2 can be 
gleaned from examination of ScaLAPACK routine p?syev.

Input Parameters

compz CHARACTER*1. Must be 'N' or 'I'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues and eigenvectors of the 
tridiagonal matrix T.
z must be initialized to the identity matrix by p?laset or ?laset  prior to entering 
this subroutine.
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n INTEGER. The order of the matrix T (n ≥ 0). 

d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. 
Arrays: 
d contains the diagonal elements of T. 
The dimension of d must be at least max(1, n).

e contains the (n-1) subdiagonal elements of T. 
The dimension of e must be at least max(1, n-1).

work is a workspace array.
The dimension of work is max(1, 2*n-2).
If compz = 'N', then work is not referenced.

z (local)
REAL for ssteqr2 
DOUBLE PRECISION for dsteqr2 
Array, global DIMENSION (n, n), local DIMENSION (ldz, nr). 
If compz ='V', then z contains the orthogonal matrix used in the reduction to 
tridiagonal form.

ldz INTEGER. The leading dimension of the array z. Constrains:
ldz ≥ 1, 
ldz ≥ max(1, n), if eigenvectors are desired.

nr INTEGER.  nr = max(1, numroc(n, nb, myprow, 0, nprocs)).
If compz = 'N', then nr is not referenced.

Output Parameters

d REAL array, DIMENSION (n), for ssteqr2.
DOUBLE PRECISION array, DIMENSION (n), for dsteqr2.
On exit, the eigenvalues in ascending order, if info = 0.
See also info.

e REAL array, DIMENSION (n-1), for ssteqr2.
DOUBLE PRECISION array, DIMENSION (n-1), for dsteqr2.
On exit, e has been destroyed.

z (local)
REAL for ssteqr2 
DOUBLE PRECISION for dsteqr2 
Array, global DIMENSION (n, n), local DIMENSION (ldz, nr). 
On exit, if info = 0, then, if compz = 'V', z contains the orthonormal eigenvectors 
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of the original symmetric matrix, and if compz = 'I', z contains the orthonormal 
eigenvectors of the symmetric tridiagonal matrix.
If compz = 'N', then z is not referenced.

info INTEGER. 
info = 0, the exit is successful.
info < 0: if info = -i, the i-th had an illegal value.
info > 0: the algorithm has failed to find all the eigenvalues in a total of 30n 
iterations; if info = i, then i elements of e have not converged to zero; on exit, d 
and e contain the elements of a symmetric tridiagonal matrix, which is orthogonally 
similar to the original matrix.

Utility Functions and Routines
This section describes ScaLAPACK utility functions and routines. Summary information about 
these routines is given in the following table: 

Table 7-2 ScaLAPACK Utility Functions and Routines

Routine 
Name

Data 
Types Description

p?labad s,d Returns the square root of the underflow and overflow thresholds if 
the exponent-range is very large.

p?lachkieee s,d Performs a simple check for the features of the IEEE standard. (C 
interface function).

p?lamch s,d Determines machine parameters for floating-point arithmetic.

p?lasnbt s,d Computes the position of the sign bit of a floating-point number. (C 
interface function).

pxerbla Error handling routine called by ScaLAPACK routines.
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p?labad
Returns the square root of the underflow and overflow 
thresholds if the exponent-range is very large.

Syntax
call pslabad (ictxt, small, large)

call pdlabad (ictxt, small, large)

Description

This routine takes as input the values computed by p?lamch for underflow and overflow, and 
returns the square root of each of these values if the log of large is sufficiently large. This 
subroutine is intended to identify machines with a large exponent range, such as the Crays, and 
redefine the underflow and overflow limits to be the square roots of the values computed by  
p?lamch. This subroutine is needed because p?lamch does not compensate for poor arithmetic in 
the upper half of the exponent range, as is found on a Cray.

In addition, this routine performs a global minimization and maximization on these values, to 
support heterogeneous computing networks.

Input Parameters

ictxt (global) INTEGER.
The BLACS context handle in which the computation takes place.

small (local).
REAL PRECISION for pslabad.
DOUBLE PRECISION for pdlabad.
On entry, the underflow threshold as computed by p?lamch.

large (local).
REAL PRECISION for pslabad.
DOUBLE PRECISION for pdlabad.
On entry, the overflow threshold as computed by p?lamch.

Output Parameters

small (local).
On exit, if log10(large) is sufficiently large, the square root of small, otherwise 
unchanged.
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large (local).
On exit, if log10(large) is sufficiently large, the square  root of large, otherwise 
unchanged.

p?lachkieee
Performs a simple check for the features of the IEEE 
standard. (C interface function).

Syntax
void pslachkieee (int *isieee, float *rmax, float *rmin);

void pdlachkieee (int *isieee, float *rmax, float *rmin);

Description

This routine performs a simple check to make sure that the features of the IEEE standard are 
implemented. In some implementations, p?lachkieee may not return.

Note that all arguments are call-by-reference so that this routine can be directly called from 
Fortran code. 

This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values. 

Input Parameters

rmax (local).
REAL for pslachkieee
DOUBLE PRECISION for pdlachkieee
The overflow threshold ( = ?lamch ('O') ).

rmin (local).
REAL for pslachkieee
DOUBLE PRECISION for pdlachkieee
The underflow threshold ( = ?lamch ('U') ).
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Output Parameters

isieee (local).INTEGER. 
On exit,  isieee = 1 implies that all the features of the IEEE standard that we rely on 
are implemented. 
On exit,  isieee = 0 implies that some the features of the IEEE standard that we rely 
on are missing.                                                                                                                                                                         

p?lamch
Determines machine parameters for floating-point 
arithmetic.

Syntax
val = pslamch (ictxt, cmach)

val = pdlamch (ictxt, cmach)

Description

This function determines single precision machine parameters.

Input Parameters.

ictxt (global). INTEGER.The BLACS context handle in which the computation takes   
place.

cmach (global) CHARACTER*1.
Specifies the value to be returned by p?lamch:
= 'E' or 'e',   p?lamch := eps
= 'S' or 's ,   p?lamch := sfmin
= 'B' or 'b',   p?lamch := base
= 'P' or 'p',   p?lamch := eps*base
= 'N' or 'n',   p?lamch := t
= 'R' or 'r',   p?lamch := rnd
= 'M' or 'm',   p?lamch := emin
= 'U' or 'u',   p?lamch := rmin

= 'L' or 'l',   p?lamch := emax
= 'O' or 'o',   p?lamch := rmax

where
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eps   = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base  = base of the machine
prec  = eps*base
t     = number of (base) digits in the mantissa
rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise
emin  = minimum exponent before (gradual) underflow
rmin  = underflow threshold - base(emin-1)

emax  = largest exponent before overflow
rmax  = overflow threshold - (baseemax)*(1-eps)

Output Parameter

val the value returned by the fuction.

p?lasnbt
Computes the position of the sign bit of a floating-point 
number. (C interface function).

Syntax
void pslasnbt (int *ieflag);

void pdlasnbt (int *ieflag);

Description

This routine finds the position of the signbit of a single/double precision floating point number. 
This routine assumes IEEE arithmetic, and hence, tests only the 32nd bit (for single precision) or 
32nd and 64th bits (for double precision) as a possibility for the signbit. sizeof(int) is assumed 
equal to 4 bytes.

If a compile time flag (NO_IEEE) indicates that the machine does not have IEEE arithmetic, 
ieflag = 0 is returned.

Output Parameters

ieflag INTEGER. 
This flag indicates the position of the signbit of any single/double precision 
floating point number. 
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ieflag = 0, if the compile time flag NO_IEEE indicates that the machine does 
not have IEEE arithmetic, or if sizeof(int) is different from 4 bytes.  
ieflag = 1 indicates that the signbit is the 32nd bit for a single precision 
routine. 
In the case of a double precision routine:
ieflag = 1 indicates that the signbit is the 32nd bit (Big Endian). 
ieflag = 2 indicates that the signbit is the 64th bit (Little Endian). 

pxerbla
Error handling routine called by ScaLAPACK routines.

Syntax
call pxerbla (ictxt, srname, info)

Description

This routine is an error handler for the ScaLAPACK routines. It is called by a ScaLAPACK routine 
if an input parameter has an invalid value. 
A message is printed. Program execution is not terminated. For the ScaLAPACK driver and 
computational routines, a RETURN statement is issued following the call to pxerbla. Control 
returns to the higher-level calling routine, and it is left to the user to determine how the program 
should proceed. However, in the specialized low-level ScaLAPACK routines (auxiliary routines 
that are Level 2 equivalents of computational routines), the call to pxerbla() is immediately 
followed by a call to BLACS_ABORT() to terminate program execution since recovery from an 
error at this level in the computation is not possible. 

It is always good practice to check for a nonzero value of info on return from a ScaLAPACK 
routine.
Installers may consider modifying this routine in order to call system-specific exception-handling 
facilities.

Input Parameters

ictxt (global) INTEGER
The BLACS context handle, indicating the global context of the operation. The 
context itself is global.

srname (global) CHARACTER*6
The name of the routine which called pxerbla.
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info (global) INTEGER.
The position of the invalid parameter in the parameter list of the calling 
routine.
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Sparse Solver Routines 8
Intel® Math Kernel Library (Intel® MKL) provides a user-callable direct sparse solver software to 
solve symmetric and symmetrically-structured matrices with real or complex coefficients. For 
sparse symmetric matrices, this solver can solve both positive definite and indefinite systems.

The terms and concepts required to understand the use of the Intel MKL direct sparse solver 
subroutines are discussed in the Linear Solvers Basics appendix. If you are familiar with direct 
sparse solvers and sparse matrix storage schemes, you can omit reading these sections and go 
directly to the interface descriptions. The direct sparse solver PARDISO* is described in the 
section that follows. After that, an alternative interface (referred to here as DSS interface) that 
consists of several Intel MKL routines implementing the step-by-step solution process is 
described.

PARDISO - Parallel Direct Sparse Solver Interface
This section describes the interface to the shared-memory multiprocessing parallel direct sparse 
solver known as PARDISO. The interface is Fortran, but can be called from C programs by 
observing Fortran parameter passing and naming conventions used by the supported compilers and 
operating systems. A discussion of the algorithms used in PARDISO and more information on the 
solver can be found at http://www.computational.unibas.ch/cs/scicomp. 

The PARDISO package is a high-performance, robust, memory efficient and easy to use software 
for solving large sparse symmetric and unsymmetric linear systems of equations on shared 
memory multiprocessors. The solver uses a combination of left- and right-looking Level-3 BLAS 
supernode techniques [10]. In order to improve sequential and parallel sparse numerical 
factorization performance, the algorithms are based on a Level-3 BLAS update and pipelining 
parallelism is exploited with a combination of left- and right-looking supernode techniques [6, 7, 
8, 9]. The parallel pivoting methods allow complete supernode pivoting in order to compromise 
numerical stability and scalability during the factorization process. For sufficiently large problem 
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sizes, numerical experiments demonstrate that the scalability of the parallel algorithm is nearly 
independent of the shared-memory multiprocessing architecture and a speedup of up to seven 
using eight processors has been observed. 

PARDISO supports, as illustrated in Figure 1, a wide range of sparse matrix types and computes 
the solution of real or complex, symmetric, structurally symmetric or unsymmetric, positive 
definite, indefinite or Hermitian sparse linear system of equations on shared-memory 
multiprocessing architectures. 

You can find example code that uses PARDISO interface routine to solve systems of linear 
equations in PARDISO Code Examples section in the appendix.

Figure 8-1 Sparse Matrices That Can be Solved With PARDISO 

PARDISO

Symmetric

Indefinite Pos.definite Indefinite Pos.definite

Unsymmetric

Real Hermitian Complex Real Complex
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pardiso
Calculates the solution of a set of sparse linear 
equations with multiple right-hand sides.

Syntax

Fortran:
call pardiso(pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

perm, nrhs, iparm, msglvl, b, x, error)

C:
pardiso(pt, &maxfct, &mnum, &mtype, &phase, &n, a, ia, ja, perm, &nrhs,

iparm, &msglvl, b, x, &error);

(An underscore may or may not be required after “pardiso“ depending on the OS and compiler 
conventions for that OS).

Interface:
SUBROUTINE pardiso(pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

perm, nrhs, iparm, msglvl, b, x, error)

INTEGER*4 pt(64)

INTEGER*4 maxfct, mnum, mtype, phase, n, nrhs, error,

ia(*), ja(*), perm(*), iparm(*)

REAL*8 a(*), b(n,nrhs), x(n,nrhs)

Note that the above interface is given for the 32-bit architectures. For 64-bit architectures, the 
argument pt(64) must be defined as INTEGER*8 type.

Description

PARDISO calculates the solution of a set of sparse linear equations

                               AX = B

with multiple right-hand sides, using a parallel LU, LDL or LLT factorization, where A is an n-by-n 
matrix and X and B are n-by-nrhs matrices. PARDISO performs the following analysis steps 
depending on the structure of the input matrix A.
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Symmetric Matrices:  The solver first computes a symmetric fill-in reducing permutation P 
based on either the minimum degree algorithm [5] or the nested dissection algorithm from the 
METIS package [2] (included with Intel MKL), followed by the parallel left-right looking 
numerical Cholesky factorization [10] of PAPT = LLT for symmetric positive-definite matrices or 
PAPT = LDLT for symmetric, indefinite matrices. The solver uses no pivoting in these steps and an 
approximation of X is found by forward and backward substitution and iterative refinements.

Structurally Symmetric Matrices:  The solver first computes a symmetric fill-in reducing 
permutation P followed by the parallel numerical factorization of PAPT = QLUT . The solver uses 
partial pivoting in the supernodes and an approximation of X is found by forward and backward 
substitution and iterative refinements.

Unsymmetric Matrices:  The solver first computes a non-symmetric permutation PMPS and 
scaling matrices Dr and Dc with the aim to place large entries on the diagonal which enhances 
greatly the reliability of the numerical factorization process [1]. In the next step the solver 
computes a fill-in reducing permutation P based on the matrix PMPSA + (PMPSA)T followed by the 
parallel numerical factorization 
                                          QLUR = PPMPSDrADcP 
with supernode pivoting matrices Q and R. When the factorization algorithm reaches a point where 
it cannot factorize the supernodes with this pivoting strategy, it uses a pivoting perturbation 
strategy similar to [4]. The magnitude of the potential pivot is tested against a constant threshold of 
ε = α ⋅ ||A2||∞  , where ε is the machine precision A2 = PPMPSDrADc, and ||A2||∞  is the infinity 
norm of the scaled and permuted matrix A. Therefore any tiny pivots encountered during 
elimination are set to the sign(lii) ⋅ ε ⋅ ||A2||∞  — this trades off some numerical stability for the 
ability to keep pivots from getting too small. Although many failures could render the factorization 
well-defined but essentially useless, in practice it is observed that the diagonal elements are rarely 
modified for a large class of matrices. The result of this pivoting approach is that the factorization 
is, in general, not exact and iterative refinement may be needed.

Direct-Iterative Preconditioning for Unsymmetric Linear Systems.  The solver also allows 
a combination of direct and iterative methods [11] in order to accelerate the linear solution process 
for transient simulation. A majority of applications of sparse solvers require solutions of systems 
with gradually changing values of the nonzero coefficient matrix, but the same identical sparsity 
pattern. In these applications, the analysis phase of the solvers has to be performed only once and 
the numerical factorizations are the important time-consuming steps during the simulation. 
PARDISO uses a numerical factorization A = LU for the first system and applies these exact 
factors L and U for the next steps in a preconditioned Krylow-Subspace iteration. If the iteration 
does not converge, the solver will automatically switch back to the numerical factorization. This 
method can be applied for unsymmetric matrices in PARDISO and the user can select the method 
using only one input parameter. For further details see the parameter description (iparm(4), 
iparm(20)).
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The sparse data storage in PARDISO follows the scheme described in Sparse Matrix Storage 
Format section with ja standing for columns,  ia  for rowIndex, and a for values. 
The algorithms in PARDISO require column indices ja to be increasingly ordered per row and the 
presence of the diagonal element per row for any symmetric or structurally symmetric matrix. The 
unsymmetric matrices need no diagonal elements in the PARDISO solver.

There are four tasks that PARDISO is capable of performing, namely analysis and symbolic 
factorization, numerical factorization, forward and backward substitution including iterative 
refinement and finally the termination to release all internal solver memory. When an input data 
structure is not accessed in a call, a NULL pointer or any valid address can be passed as a place 
holder for that argument.

Input Parameters

pt INTEGER*4 for 32-bit operating systems
INTEGER*8 for 64-bit operating systems.
Array, DIMENSION (64). 
On entry, this is the solver internal data address pointer. Theses addresses are passed 
to the solver and all related internal memory management is organized through this 
pointer. 

maxfct INTEGER. 
Maximal number of factors with identical nonzero sparsity structure that the user 
would like to keep at the same time in memory. It is possible to store several different 
factorizations with the same nonzero structure at the same time in the internal data 
management of the solver. In most of the applications this value is equal to 1. 
Note that PARDISO can process several matrices with identical matrix sparsity 
pattern and is able to store the factors of these matrices at the same time. Matrices 
with different sparsity structure can be kept in memory with different memory 
address pointers pt.

NOTE.  pt is an integer array with 64 entries. It is very important that the 
pointer is initialized with zero at the first call of PARDISO. After that first call 
you should never modify the pointer, as a serious memory leak can occur. 
The integer length should be 4-byte on 32-bit operating systems and 8-byte 
on 64-bit operating systems.



8-6

8 Intel® Math Kernel Library Reference Manual

mnum INTEGER. 
Actual matrix for the solution phase. With this scalar you can define the matrix that 
you would like to factorize. The value must be: 1 ≤  mnum ≤  maxfct. 
In most of the applications this value is equal to 1. 

mtype INTEGER. 
This scalar value defines the matrix type. The solver PARDISO supports the 
following matrices: 

mtype = 1 real and structurally symmetric matrix
= 2 real and symmetric positive definite matrix
= -2 real and symmetric indefinite matrix
= 3 complex and structurally symmetric matrix
= 4 complex and Hermitian positive definite matrix
= -4 complex and Hermitian indefinite matrix
= 6 complex and symmetric matrix

          = 11 real and unsymmetric matrix
          = 13 complex and unsymmetric matrix

Note that this parameter influences the pivoting method.

phase INTEGER. 
Controls the execution of the solver. It is a two-digit integer i j  (10i +j, 1 ≤  i ≤  3, 
i < j ≤  3 for normal execution modes). The i digit indicates the starting phase of 
execution, and j indicates the ending phase. PARDISO has the following phases of 
execution:

• Phase 1: Fill-reduction analysis and symbolic factorization

• Phase 2: Numerical factorization

• Phase 3: Forward and Backward solve including iterative refinements

• Termination and Memory Release Phase (phase ≤  0)

If a previous call to the routine has computed information from previous phases, 
execution may start at any phase. The phase parameter can have the following 
values:

 phase Solver Execution Steps

11 Analysis, symbolic factorization

12 Analysis, symbolic factorization, numerical factorization

13 Analysis, symbolic factorization, numerical factorization, solve

22 Numerical factorization

23 Numerical factorization, solve



Sparse Solver Routines 8

8-7

n INTEGER. 
Number of equations. This is the number of equations in the sparse linear systems of 
equations   A X = B. Constraint: n > 0.

a REAL/COMPLEX 
Array. Contains the nonzero values of the coefficient matrix A corresponding to the 
indices in ja. The size of a is the same as that of ja and the coefficient matrix can be 
either real or complex. The matrix must be stored in compressed sparse row format 
with increasing values of ja for each row. Refer to values array description in 
Sparse Matrix Storage Format for more details.

ia INTEGER. 
Array, dimension (n+1). For i≤ n, ia(i) points to the first column index of row i in 
the array ja in compressed sparse row format. That is, ia(i) gives the index of the 
element in array a that contains the first non-zero element from row i of A. The last 
element ia(n+1) is taken to be equal to the number of non-zeros in A, plus one. Refer 
to rowIndex array description in Sparse Matrix Storage Format for more details.
The array ia is also accessed in all phases of the solution process. Note that the row 
and columns numbers start from 1.

ja INTEGER 
Array.  ja(*)contains column indices of the sparse matrix A stored in compressed 
sparse row format. The indices in each row must be sorted in increasing order.
The array ja is also accessed in all phases of the solution process. For symmetric 
and structurally symmetric matrices it is assumed that zero diagonal elements are also 
stored in the list of nonzeros in a and ja. For symmetric matrices, the solver needs 
only the upper triangular part of the system as is shown for columns array in Sparse 
Matrix Storage Format.

33 Solve

0 Release internal memory for L and U matrix number mnum

-1 Release all internal memory for all matrices

NOTE.  The nonzeros of each row of the matrix A must be stored in 
increasing order. For symmetric or structural symmetric matrices it is also 
important that the diagonal elements are also available and stored in the 
matrix. If the matrix is symmetric, then the array a is only accessed in the 
factorization phase, in the triangular solution and iterative refinement phase. 
Unsymmetric matrices are accessed in all phases of the solution process.

 phase Solver Execution Steps
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perm INTEGER 
Array, dimension (n). Holds the permutation vector of size n. 
The array perm is defined as follows. Let A be the original matrix and B = PAPT be 
the permuted matrix. Row (column) i of A is the perm(i) row (column) of B. The 
numbering of the array must start by 1 and it must describe a permutation.

On entry, you can apply your own fill-in reducing ordering to the solver. The 
permutation vector perm is only accessed if iparm(5) = 1.

nrhs INTEGER. 
Number of right-hand sides that need to be solved for.

iparm INTEGER 
Array, dimension (64). This array is used to pass various parameters to PARDISO 
and to return some useful information after the execution of the solver. 
If iparm(1) = 0, then PARDISO fills iparm(2), and iparm(4) through iparm(64) 
with default values and uses them. Note that there is no default values for iparm(3) 
and this value must always be supplied by the user, whether iparm(1) is 0 or 1.

Individual components of the iparm array are described below (some of them in the 
Output Parameters section).

iparm(1) 

If iparm(1) = 0 on entry, then iparm(2) and iparm(4) through iparm(64) are filled 
with default values, otherwise the user has to supply all values in iparm from 
iparm(2) to iparm(64).

iparm(2) 

iparm(2) controls the fill-in reducing ordering for the input matrix. If iparm(2) is 0, 
then the minimum degree algorithm is applied [5], if iparm(2) is 2, the solver uses 
the nested dissection algorithm from the METIS package [2]. 
The default value of iparm(2) is 2.

iparm(3) 

iparm(3) must contain the number of processors that are available for the parallel 
execution. The number must be equal to the OpenMP environment variable 
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OMP_NUM_THREADS.

There is no default value for iparm(3).

iparm(4) 

This parameter controls preconditioned CGS [11] for unsymmetric or structural 
symmetric matrices and Conjugate-Gradients for symmetric matrices. 
iparm(4) has the form 

iparm(4)= 10*L + K             
The values K and L have the following meaning

Value K:

Value L:

The value L controls the stopping criterion of the Krylow-Subspace iteration:

εCGS = 10-L is used in the stopping criterion 
                      ||dxi|| / ||dx1|| < εCGS  

with ||dxi|| = ||(LU)-1ri||  and ri is the residuum at iteration i of the preconditioned 
Krylow-Subspace iteration.

Strategy: A maximum number of 150 iterations is fixed by expecting that the iteration 

CAUTION.  If the user has not explicitly set OMP_NUM_THREADS, then this 
value can be set by the operating system to the maximal numbers of 
processors on the system. It is therefore always recommended to control 
the parallel execution of the solver by explicitly setting OMP_NUM_THREADS. If 
less processors are available than specified, the execution may slow down 
instead of speeding up.

Value of K Description

0 The factorization is always computed as required by phase

1 CGS iteration replaces the computation of LU. The preconditioner is LU 
that was computed at a previous step (the first step or last step with a 
failure) in a sequence of solutions needed for identical sparsity 
patterns.

2 CG iteration for symmetric matrices replaces the computation of LU. 
The preconditioner is LU that was computed at a previous step (the first 
step or last step with a failure) in a sequence of solutions needed for 
identical sparsity patterns.
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will converge before consuming half the factorization time. Intermediate convergence 
rates and residuum excursions are checked and can terminate the iteration process. 
If phase =23, then the factorization for a given A is automatically recomputed in 
these cases where the Krylow-Subspace iteration failed, and the corresponding direct 
solution is returned. Otherwise the solution from the preconditioned 
Krylow-Subspace iteration is returned. Using phase =33 results in an error message 
(error =4) if the stopping criteria for the Krylow-Subspace iteration can not be 
reached. More information on the failure can be obtained from iparm(20).

The default is iparm(4)=0, and other values are only recommended for an advanced 
user. iparm(4) must be greater or equal to zero.

Examples:

iparm(5) 

In iparm(5), the user can apply his own fill reducing permutation instead of the 
integrated multiple-minimum degree or nested dissection algorithms.

This option may be useful for testing reordering algorithms or adapting the code to 
special applications problems (for instance, to move zero diagonal elements to the 
end PAPT ). For definition of the permutation, see description of the perm parameter.

The default value of iparm(5) is 0.

iparm(6) 

On entry, if iparm(6) is 0 (which is the default), then the array x contains the solution 
and the value of b is not changed. If iparm(6) is 1, then the solver will store the 
solution on the right hand side b.

Note that the array x is always used. The default value of iparm(6) is 0.

iparm(7) 

This value is not referenced. Reserved for future use. 

iparm(4) Description

31 LU-preconditioned CGS iteration with a stopping criterion of 10 -3 for 
unsymmetric matrices 

61 LU-preconditioned CGS iteration with a stopping criterion of 10 -6 for 
unsymmetric matrices 

62 LU-preconditioned CGS iteration with a stopping criterion of 10 -6 for 
symmetric matrices 
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iparm(8) 

On input to the iterative refinement step, iparm(8) should be set to the maximum 
number of iterative refinement steps that the solver will perform. Iterative refinement 
will stop if a satisfactory level of accuracy of the solution in terms of backward error 
has been achieved. The solver will not perform more than the absolute value of 
iparm(8) steps of iterative refinement and will stop the process if a satisfactory level 
of accuracy of the solution in terms of backward error has been achieved. 
The default value for iparm(8) is 0.

Note that if iparm(8) < 0, the accumulation of the residuum is using enhanced 
precision real and complex data types. Perturbed pivots result in iterative refinement 
(independent of iparm(8)=0) and the iteration number executed is reported on 
iparm(20).

iparm(9) 

This value is reserved for future use. Value must be set to 0.

iparm(10) 

On entry, iparm(10) instructs PARDISO how to handle small pivots or zero pivots 
for unsymmetric matrices (mtype =11 or mtype =13). For these matrices the solver 
uses a complete supernode pivoting approach. When the factorization algorithm 
reaches a point where it cannot factorize the supernodes with this pivoting strategy, it 
uses a pivoting perturbation strategy similar to [4]. The magnitude of the potential 
pivot is tested against a constant threshold of 
                              ε = α ⋅ ||A2||∞ , 

where ε = 10 -iparm(10) and   ||PPMPSDrADcP||∞  is the infinity norm of the scaled and 
permuted matrix A. Any tiny pivots encountered during elimination are set to the 
sign(lii) ⋅ ε ⋅ ||A2||∞   -  this trades off some numerical stability for the ability to keep 
pivots from getting too small. Small pivots are therefore perturbed with 
ε = 10 -iparm(10) . 
The default value of iparm(10) is 13 and therefore ε = 10 -13. 

iparm(11) 

PARDISO uses a maximum weight matching algorithm to permute large elements on 
the diagonal and to scale the matrix so that the diagonal elements are equal to 1 and 
the absolute value of the off-diagonal entries are less or equal to 1. This method is 
only applied to unsymmetric matrices (mtype =11 or mtype =13) and, by default, 
indicated with iparm(11)=1, this option is always turned on. Otherwise, the scalings 
are omitted. 
The default value of iparm(11) is 1.
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iparm(12) 

This value is reserved for future use. Value must be set to 0.

iparm(13) 

This value is reserved for future use. Value must be set to 0.

iparm(18) 

The solver will report the numbers of nonzeros on the factors if iparm(18) < 0 on 
entry.

The default value of iparm(18) is 0.

iparm(19) 

If iparm(19)< 0 on entry, the solver will report MFlop (10 6) that are necessary to 
factor the matrix A. This will increase the reordering time.

The default value of iparm(19) is 0.

msglvl INTEGER. 
Message level information. If msglvl = 0 then PARDISO generates no output, 
if msglvl = 1 the solver prints statistical information in the file pardiso.stat.#nproc.

b REAL/COMPLEX 
Array, dimension (n,nrhs). On entry, contains the right hand side vector/matrix B.
Note that  b is only accessed in the solution phase.

Output Parameters

pt On exit, contains internal address pointers. 

iparm On output, some iparm values will contain useful information, for example, numbers 
of nonzeros in the factors, and so on. 

iparm(14) 

After factorization, iparm(14) contains the number of perturbed pivots during the 
elimination process for mtype =11 or mtype =13.

iparm(15) 

On output, iparm(15) provides the user with the total peak memory in KBytes that 
the solver needed during the analysis and symbolic factorization phase. This value is 
only computed in phase 1.

iparm(16) 

On output, iparm(16) provides the user with the permanent memory in KBytes that 
the solver needed from the analysis and symbolic factorization phase in the 
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factorization and solve phases. This value is only computed in phase 1.

iparm(17) 

On output, iparm(17) provides the user with the total double precision memory 
consumption (KBytes) of the solver for the factorization and solve phases. This value 
is only computed in phase 2.

Note that the total peak memory solver consumption is 
max(iparm(15), iparm(16)+iparm(17)).

iparm(18) 

On output, the numbers of nonzeros on the factors are returned to the user.

iparm(19) 

Number of operations in MFlop (10 6 operations) that are necessary to factor the 
matrix A are returned to the user.

iparm(20) 

The value is used to give CG/CGS diagnostics (for example, the number of iterations 
and cause of failure):

If iparm(20) > 0,  CGS succeeded, and the number of iterations executed are 
reported in iparm(20).

If iparm(20) < 0, iterations executed, but CG/CGS failed. The error report details in 
iparm(20) are of the form:

iparm(20) = - it_cgs*10 - cgs_error.

If phase was 23, then the factors L, U have been recomputed for the matrix A and the 
error flag error should be zero in case of a successful factorization. If phase was 
33, then error = -4 will signal the failure.

Description of cgs_error is given in the below table:

iparm(21) to iparm(64)

cgs_error Description

1 too large fluctuations of the residuum

2 ||dxmax_it_cgs/2|| too large (slow convergence)

3 stopping criterion not reached at max_it_cgs

4 perturbed pivots caused iterative refinement

5 factorization is too fast for this matrix. It is better to use the 
factorization method with iparm(4) = 0
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These values are reserved for future use. Value must be set to 0.

b On output, the array is replaced with the solution if iparm(6) = 1.

x REAL/COMPLEX 
Array, dimension (n,nrhs). On output, contains solution if iparm(6)= 0.
Note that  x is only accessed in the solution phase.

error INTEGER. 
The error indicator according to the below table:

error Information

0 no error

-1 input inconsistent

-2 not enough memory

-3 reordering problem

-4 zero pivot, numerical factorization problem

-5 unclassified (internal) error

-6  preordering failed (matrix types 11, 13 only)

-7 diagonal matrix problem
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Direct Sparse Solver (DSS) Interface Routines 
The Intel MKL supports an alternative to PARDISO interface for the direct sparse solver referred 
to here as DSS interface. The DSS interface implements a group of user-callable routines that are 
used in the step-by-step solving process and exploits the general scheme described in Linear 
Solvers Basics for solving sparse systems of linear equations. This interface also includes one 
routine for gathering statistics related to the solving process and an auxiliary routine for passing 
character strings from Fortran routines to C routines. 

The solving process is conceptually divided into six phases, as shown in Table 8-1 which lists the 
names of the routines, grouped by phase, and describes their general use. 

Table 8-1 DSS Interface Routines

Routine Description

dss_create Initializes the solver and creates the basic data structures necessary 
for the solver. This routine must be called before any other DSS 
routine.

dss_define_structure Used to inform the solver of the locations of the non-zero elements of 
the array.

dss_reorder Based on the non-zero structure of the matrix, this routine computes 
a permutation vector to reduce fill-in during the factoring process.

dss_factor_real
dss_factor_complex

Computes the LU, LDTt or LLT factorization of a real or complex 
matrix.

dss_solve_real
dss_solve_complex

Computes the solution vector for a system of equations based on the 
factorization computed by the previous phase.

dss_delete Deletes all of the data structures created during the solutions 
process.

dss_statistics Returns statistics about various phases of the solving process. Used 
to gather statistics in the following areas: time taken to do reordering, 
time taken to do factorization, problem solving duration, determinant 
of a matrix, inertia of a matrix, and number of floating point 
operations taken during factorization. Can be invoked at any phase 
of the solving process after the "reorder" phase, but before the 
"delete" phase. Note that appropriate argument(s) must be supplied 
to this routine to correspond to phase at which it is invoked. 

mkl_cvt_to_null_term
inated_str

Used to pass character strings from Fortran routines to C routines
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To find a single solution vector for a single system of equations with a single right hand side, the 
Intel MKL DSS interface routines are invoked in the order in which they are listed in Table 8-1, 
with the exception of dss_statistics, which is invoked as described in the table.

However, in certain applications it is necessary to produce solution vectors for multiple right-hand 
sides for a given factorization and/or factor several matrices with the same non-zero structure. 
Consequently, it is necessary to be able to invoke the Intel MKL sparse routines in an order other 
than listed in the table. The following diagram in Figure 8-2 indicates the typical order(s) in which 
the DSS interface routines can be invoked.

Figure 8-2 Typical order for invoking DSS interface routines

You can find example code that uses DSS interface routines to solve systems of linear equations in 
Direct Sparse Solver Examples section in the appendix.
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Interface Description

As noted in Memory Allocation and Handles section, each DSS routine either reads or writes an 
opaque data object called a handle. Because the declaration of a handle varies from language to 
language, it is declared as being of type MKL_DSS_HANDLE in this documentation. You can refer to 
Memory Allocation and Handles to determine the correct method for declaring a handle argument.

All other types in this documentation refer to the standard Fortran types, INTEGER, REAL, 
COMPLEX, DOUBLE PRECISION, and DOUBLE COMPLEX.

C and C++ programmers should refer to Calling Direct Sparse Solver Routines From C/C++ for 
information on mapping Fortran types to C/C++ types.

Routine Options

All of the DSS routines have an integer argument (below referred to as opt) for passing various 
options to the routines. The permissible values for opt should be specified using only the symbol 
constants defined in the language-specific header files (see Implementation Details). All of the 
routines accept options for setting the message and termination level as described in Table 8-2. 
Additionally, all routines accept the option MKL_DSS_DEFAULTS, which establishes the 
documented default options for each DSS routine.

The settings for message and termination level can be set on any call to a DSS routine. However, 
once set to a particular level, they remain at that level until they are changed in another call to a 
DSS routine.

Users can specify multiple options to a DSS routine by adding the options together. For example, 
to set the message level to debug and the termination level to error for all DSS routines, use the 
call:

CALL dss_create( handle, MKL_DSS_MSG_LVL_INFO + MKL_DSS_TERM_LVL_ERROR)

Table 8-2 Symbolic Names for the Message and Termination Level Options

Message Level Termination Level

MKL_DSS_MSG_LVL_SUCCESS MKL_DSS_TERM_LVL_SUCCESS

MKL_DSS_MSG_LVL_INFO MKL_DSS_TERM_LVL_INFO

MKL_DSS_MSG_LVL_WARNING MKL_DSS_TERM_LVL_WARNING

MKL_DSS_MSG_LVL_ERROR MKL_DSS_TERM_LVL_ERROR

MKL_DSS_MSG_LVL_FATAL MKL_DSS_TERM_LVL_FATAL
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User Data Arrays

Many of the DSS routines take arrays of user data as input. For example, user arrays are passed to 
the routine dss_define_structure to describe the location of the non-zero entries in the 
matrix. In order to minimize storage requirements and improve overall run-time efficiency, the 
Intel MKL DSS routines do not make copies of the user input arrays.

dss_create
Initializes the solver.

Syntax
dss_create (handle, opt)

Input Arguments

opt INTEGER. Options passing argument. The default value is 
MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR .

Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

The routine dss_create is called to initialize the solver. After the call to dss_create, all 
subsequent invocations of Intel MKL DSS routines should use the value of handle returned by 
dss_create.

WARNING.  Users cannot modify the contents of these arrays after they 
are passed to one of the solver routines.

WARNING.  Do not write the value of handle directly.
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Return Values
MKL_DSS_SUCCESS

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

dss_define_structure
Communicates to the solver locations of non-zero 
elements in the matrix.

Syntax
dss_define_structure (handle, opt, rowIndex, nRows, nCols, columns,

nNonZeros);

Input Arguments

opt INTEGER. Option passing argument. The default option for the matrix 
structure is MKL_DSS_SYMMETRIC.

rowIndex INTEGER. Array of size  min(nRows, nCols)+1. Defines the location 
of non-zero entries in the matrix.

nRows INTEGER. Number of rows in the matrix.

nCols INTEGER. Number of columns in the matrix.

columns INTEGER. Array of size nNonZeros. Defines the location of non-zero 
entries in the matrix.

nNonZeros INTEGER. Number of non-zero elements in the matrix.

Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

The routine dss_define_structure communicates to the solver the locations of the 
nNonZeros  number of non-zero elements in a matrix of size nRows by nCols. 
Note that currently Intel MKL DSS software only operates on square matrices, so nRows must be 
equal to nCols.
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To communicate the locations of non-zeros in the matrix, do the following: 

1. Define the general non-zero structure of the matrix by specifying one of the following 
values for the options argument opt:

MKL_DSS_SYMMETRIC_STRUCTURE

MKL_DSS_SYMMETRIC

MKL_DSS_NON_SYMMETRIC

2. Provide the actual locations of the non-zeros by means of the arrays rowIndex and 
columns (see Sparse Matrix Storage Format).

Return Values
MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_COL_ERR

MKL_DSS_NOT_SQUARE

MKL_DSS_TOO_FEW_VALUES

MKL_DSS_TOO_MANY_VALUES

dss_reorder
Computes permutation vector that minimizes the fill-in 
during the factorization phase.

Syntax
dss_reorder (handle, opt, perm)

NOTE.   Currently, DSS software in Intel MKL does not directly support 
non-symmetric matrices. Instead, when the MKL_DSS_NON_SYMMETRIC 
option is specified, the solver will convert non-symmetric matrices into 
symmetrically structured matrices by adding zeros in the appropriate 
place.
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Input Arguments

opt INTEGER. Option passing argument. The default option for the 
permutation type is MKL_DSS_AUTO_ORDER.

perm INTEGER. Array of length nRows. Contains a user-defined permutation 
vector (accessed only if opt contains MKL_DSS_MY_ORDER).

Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

If opt contains the options MKL_DSS_AUTO_ORDER, then dss_reorder computes a permutation 
vector that minimizes the fill-in during the factorization phase. For this option, the perm array is 
never accessed.

If opt contains the option MKL_DSS_MY_ORDER, then the array perm is considered to be a 
permutation vector supplied by the user. In this case, the array perm is of length nRows, where 
nRows is the number of rows in the matrix as defined by the previous call to 
dss_define_structure.

Return Values
MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

dss_factor_real
dss_factor_complex
Compute the factorization of the matrix with previously 
specified location. 

Syntax
dss_factor_real (handle, opt, rValues)

dss_factor_complex (handle, opt, cValues)
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Input Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

opt INTEGER. Option passing argument. The default option for the matrix 
type is MKL_DSS_POSITIVE_DEFINITE.

rValues DOUBLE PRECISION. Array of size nNonZeros. Contains real 
non-zero elements of the matrix.

cValues DOUBLE COMPLEX. Array of size nNonZeros. Contains complex 
non-zero elements of the matrix.

Description

These routines compute the factorization of the matrix whose non-zero locations were previously 
specified by a call to dss_define_structure and whose non-zero values are given in the array 
rValues or cValues. The arrays rValues and cValues are assumed to be of length 
nNonZeros as defined in a previous call to dss_define_structure.

The opt argument should contain one of the following options: 

MKL_DSS_POSITIVE_DEFINITE, 
MKL_DSS_INDEFINITE, 
MKL_DSS_HERMITIAN_POSITIVE_DEFINITE,
MKL_DSS_HERMITIAN_INDEFINITE , 

depending on whether the non-zero values in rValues and cValues describe a positive definite, 
indefinite, or Hermitian matrix.

Return Values
MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_OPTION_CONFLICT

MKL_DSS_OUT_OF_MEMORY

MKL_DSS_ZERO_PIVOT
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dss_solve_real
dss_solve_complex
Compute the corresponding solutions vector and place 
it in the output array.

Syntax
dss_solve_real (handle, opt, rRhsValues, nRhs, rSolValues)

dss_solve_complex (handle, opt, cRhsValues, nRhs, cSolValues)

Input Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

opt INTEGER. Option passing argument. 

nRhs INTEGER. Number of the right-hand sides in the linear equation.

rRhsValues DOUBLE PRECISION. Array of size nRows by nRhs. Contains real 
right-hand side vectors.

cRhsValues DOUBLE COMPLEX. Array of size nRows by nRhs. Contains complex 
right-hand side vectors.

Output Arguments

rSolValues DOUBLE PRECISION. Array of size nCols by nRhs. Contains real 
solution vectors.

cSolValues DOUBLE COMPLEX. Array of size nCols by nRhs. Contains complex 
solution vectors.

Description

For each right hand side column vector defined in ?RhsValues (where ? is one of r or c), these 
routines compute the corresponding solutions vector and place it in the array ?SolValues.

The lengths of the right-hand side and solution vectors, nCols and nRows respectively, are 
assumed to have been defined in a previous call to dss_define_structure.

Return Values
MKL_DSS_SUCCESS
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MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

dss_delete
Deletes all of data structures created during the 
solutions process.

Syntax
dss_delete (handle, opt)

Input Arguments

opt INTEGER. Options passing argument. The default value is 
MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.

Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

The routine dss_delete is called to delete all of the data structures created during the solutions 
process.

Return Values
MKL_DSS_SUCCESS

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY



Sparse Solver Routines 8

8-25

dss_statistics
Returns statistics about various phases of the solving 
process.

Syntax
dss_statistics (handle, opt, statArr, retValues)

Input Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

opt INTEGER. Options passing argument. 

statArr STRING. Input string that defines the type of the returned statistics. Can 
include one or more of the following string constants (case of the input 
string has no effect):

ReorderTimeAmount of time taken to do the reordering.

FactorTime Amount of time taken to do the factorization.

SolveTime Amount of time taken to solve the problem after 
factorization.

DeterminantDeterminant of the matrix A. For real matrices, 
determinant is returned as det_pow, det_base in two 
consecutive return array locations, where:

 and 
.

For complex matrices, determinant is returned as 
det_pow, det_re, det_im in three consecutive return 
array locations, where: 

 and 
.

Inertia Inertia of a real symmetric matrix is defined to be a triplet 
of nonnegative integers (p,n,z) where p is a number of 
positive eigenvalues, n is number of negative eigenvalues, 
and z is number of zero eigenvalues.

1.0 abs det_base( ) 10.0<≤
determinant det_base 10

det_pow⋅=

1.0 abs det_re( ) abs det_im( ) 10.0<+≤
determinant det_re, det_im( ) 10

det_pow⋅=



8-26

8 Intel® Math Kernel Library Reference Manual

Inertia will be returned as three consecutive return 
array locations as p,n,z.

Computing Inertia is only recommended for stable 
matrices. Unstable matrices can lead to incorrect results.

Inertia of a kxk real symmetric positive definite matrix 
is always (k,0,0). Therefore Inertia is returned only in 
cases of real symmetric indefinite matrices. For all other 
matrix types, an error message is returned.

Flops Number of floating point operations performed during 
factorization.

Output Arguments

retValues DOUBLE PRECISION. Value of the statistics returned.

Description

The dss_statistics routine returns statistics about various phases of the solving process. 
Use this routine to gather statistics in the following areas: 

— time taken to do reordering, 

— time taken to do factorization, 

— problem solving duration, 

— determinant of a matrix, 

— inertia of a matrix, 

— number of floating point operations taken during factorization.

Statistics are returned corresponding to the specified input string. The value of the statistics is 
returned in double precision in a return array allocated by user.

For multiple statistics, string constants separated by commas can be used as input. Return values 
are put into the return array in the same order as specified in the input string.

NOTE.  To avoid problems in passing strings from Fortran to C, Fortran 
users must call the mkl_cvt_to_null_terminated_str routine 
before calling dss_statistics. Refer to the description of 
mkl_cvt_to_null_terminated_str for details.
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Statistics should only be requested at appropriate stages of the solving process. For example, 
inquiring about FactorTime before a matrix is factored will lead to errors.

The following table shows the point at which each statistic can be called: 

The example below illustrates the use of the dss_statistics routine.

Return Values

MKL_DSS_SUCCESS 

MKL_DSS_STATISTICS_INVALID_MATRIX

Table 8-3 Statistics Calling Sequences

Type of 
Statistics When to Call

ReorderTime After dss_reorder is completed successfully.

FactorTime After dss_factor_real or dss_factor_complex is completed 
successfully.

SolveTime After dss_solve_real or dss_solve_complex is completed 
successfully.

Determinant After dss_factor_real or dss_factor_complex is completed 
successfully.

Inertia After dss_factor_real is completed successfully and matrix is real, 
symmetric, and indefinite.

Flops After dss_factor_real or dss_factor_complex is completed 
successfully.

Example 8-1 Finding "time used to reorder" and "inertia" of a matrix.

To find these values, call 
dss_statistics(handle, opt, statArr, retValues), 
where statArr is "ReorderTime,Inertia"

In this example, retValues will have the following values:

retValue[0] Time to reorder.

retValue[1] Positive Eigenvalues.

retValue[2] Negative Eigenvalues.

retValue[3] Zero Eigenvalues.
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MKL_DSS_STATISTICS_INVALID_STATE

MKL_DSS_STATISTICS_INVALID_STRING

mkl_cvt_to_null_terminated_str
Passes character strings from Fortran routines to C 
routines.

Syntax
mkl_cvt_to_null_terminated_str (destStr, destLen, srcStr)

Input Arguments

destLen INTEGER. Length of the output array destStr.

srcStr STRING. Input string.

Output Arguments

destStr INTEGER. One-dimensional array of integer.

Description

The routine mkl_cvt_to_null_terminated_str is used to pass character strings from Fortran 
routines to C routines. The strings are converted into integer arrays before being passed to C. 
Using this routine avoids the problems that can occur on some platforms when passing strings 
from Fortran to C. The use of this routine is highly recommended.
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Implementation Details

Several aspects of the Intel MKL DSS interface are platform-specific and language-specific. In 
order to promote portability across platforms and ease of use across different languages, users are 
encouraged to include one of the Intel MKL DSS language-specific header files. Currently, there 
are three language specific header files:

• mkl_dss.f77 for F77 programs

• mkl_dss.f90 for F90 programs

• mkl_dss.h for C programs

These language-specific header files define symbolic constants for error returns, function options, 
certain defined data types, and function prototypes.

Memory Allocation and Handles

In order to make the Intel MKL DSS routines as easy to use as possible, the routines do not require 
the user to allocate any temporary working storage. Any storage required by the solver (that is not 
a user input) is allocated by the solver itself. In order to allow multiple users to access the solver 
simultaneously, the solver keeps track of the storage allocated for a particular application by using 
an opaque data object called a handle.

Each of the Intel MKL DSS routines either creates, uses or deletes a handle. Consequently, user 
programs must be able to allocate storage for a handle. The exact syntax for allocating storage for 
a handle varies from language to language. To help standardize the handle declarations, the 
language-specific header files declare constants and defined data types that should be used when 
declaring a handle object in user code.

Fortran 90 programmers should declare a handle as:

INCLUDE "mkl_dss.f90"

TYPE(MKL_DSS_HANDLE) handle

NOTE.  It is strongly recommended that you refer to the constants for 
options, error returns, and message severities only by the symbolic 
names that are defined in the header files. Use of the Intel MKL DSS 
software without including one of the above header files is not 
supported.
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C and C++ programmers should declare a handle as:

#include "mkl_dss.h"

_MKL_DSS_HANDLE_t handle;

Fortran 77 programmers using compilers that support eight byte integers, should declare a handle 
as:

INCLUDE "mkl_dss.f77"

INTEGER*8 handle

Otherwise they should replace INTEGER*8 with DOUBLE PRECISION.

In addition to the necessary definition for the correct declaration of a handle, the include file also 
defines the following:

• function prototypes for languages that support prototypes

• symbolic constants that are used for the error returns

• user options for the solver routines

• message severity

Calling Direct Sparse Solver Routines From C/C++

The calling interface for all of the Intel MKL DSS routines is designed to be used easily from 
Fortran 77 or Fortran 90. However, any of the DSS routines can be invoked directly from C or C++ 
if users are familiar with the inter-language calling conventions of their platforms. These 
conventions include, but are not limited to, the argument passing mechanisms for the language, the 
data type mappings from Fortran to C/C++ and how Fortran external names are decorated on the 
platform.

In order to promote portability and to avoid having most users deal with these issues, the C header 
file  mkl_dss.h  provides a set of macros and type definitions that are intended to hide the 
inter-language calling conventions and provide an interface to the DSS that appears natural for 
C/C++.

For example, consider a hypothetical library routine, foo, that takes real vector of length n, and 
returns an integer status. Fortran users would access such a function as:

INTEGER n, status, foo

REAL x(*)

status = foo(x, n)
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As noted above, for C users to invoke foo, they would need to know what C data types correspond 
to Fortran types INTEGER and REAL; what argument passing mechanism the Fortran compiler 
uses; and what, if any, name decoration the is performed by the Fortran compiler when generating 
the external symbol foo.

However, by using the C specific header file mkl_dss.h, the invocation of foo, within a C 
program would look like:

#include "mkl_dss.h"

_INTEGER_t i, status;

_REAL_t x[];

status = foo( x, i );

Note that in the above example, the header file mkl_dss.h provides definitions for the types 
_INTEGER_t and _REAL_t that correspond to the Fortran types INTEGER and REAL.

In order to ease the use of DSS routines from C and C++, the general approach of providing C 
definitions of Fortran types is used throughout the library. Specifically, if an argument or result 
from a direct sparse solver is documented as having the Fortran language specific type XXX, then 
the C and C++ header files provide an appropriate C language type definitions for the name 
_XXX_t.

Caveat for C Users 

One of the key differences between C/C++ and Fortran is the argument passing mechanisms for 
the languages: Fortran programs use pass-by-reference semantics and C/C++ programs use 
pass-by-value semantics. In the example in the previous section, the header file, mkl_dss.h, 
attempts to hide this difference, by defining a macro, foo that takes the address of the appropriate 
arguments. For example, on Tru64 UNIX, mkl_dss.h would define the macro as:

#define foo(a,b) foo_((a), &(b))

An important point to note when using the macro form of foo is how it deals with constants. If we 
write foo( x, 10 ), this is translated into foo_( x, &10 ). In a strictly ANSI compliant C 
compiler, it is not permissible to take the address of a constant, so a strictly conforming program 
would look like:

_INTEGER_t iTen = 10;

_REAL_t * x;

status = foo( x, iTen );

However, some C compilers in a non-ANSI standard mode allow taking the address of a constant 
for ease of use with Fortran programs. Thus, the form shown as foo( x, 10 ) is acceptable for 
these compilers.
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This chapter describes Vector Mathematical Functions Library (VML), which is designed to 
compute elementary functions on vector arguments. VML is an integral part of the Intel® MKL 
Kernel Library and the VML terminology is used here for simplicity in discussing this group of 
functions.

VML includes a set of highly optimized implementations of certain computationally expensive 
core mathematical functions (power, trigonometric, exponential, hyperbolic etc.) that operate on 
vectors.

Application programs that might significantly improve performance with VML include nonlinear 
programming software, integrals computation, and many others.

VML functions are divided into the following groups according to the operations they perform:

• “VML Mathematical Functions” compute values of elementary functions (such as sine, 
cosine, exponential, logarithm and so on) on vectors with unit increment indexing.

• “VML Pack/Unpack Functions” convert to and from vectors with positive increment 
indexing, vector indexing and mask indexing (see Appendix B for details on vector 
indexing methods). 

• “VML Service Functions”   allow the user to set /get the accuracy mode, and set/get the 
error code. 

VML mathematical functions take an input vector as argument, compute values of the respective 
elementary function element-wise, and return the results in an output vector. 
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Data Types and Accuracy Modes    
Mathematical and pack/unpack vector functions in VML have been implemented for vector 
arguments of single and double precision real data. Both Fortran- and C-interfaces to all functions, 
including VML service functions, are provided in the library. The differences in naming and 
calling the functions for Fortran- and C-interfaces are detailed in the “Function Naming 
Conventions”  section below.

Each vector function from VML (for each data format) can work in two modes: High Accuracy 
(HA) and Low Accuracy (LA). For many functions, using the LA version will improve 
performance at the cost of accuracy. 
For some cases, the advantage of relaxing the accuracy improves performance very little so the 
same function is employed for both versions. Error behavior depends not only on whether the HA 
or LA version is chosen, but also depends on the processor on which the software runs. 
In addition, special value behavior may differ between the HA and LA versions of the functions. 
Any information on accuracy behavior can be found in the Intel MKL Release Notes.

Switching between the two modes (HA and LA) is accomplished by using vmlSetMode(mode) 
(see Table 9-11). The function vmlGetMode()will return the currently used mode. The High 
Accuracy mode is used by default.

Function Naming Conventions       
Full names of all VML functions include only lowercase letters for Fortran-interface, whereas for 
C-interface names the lowercase letters are mixed with uppercase.

VML mathematical and pack/unpack function full names have the following structure: 

v <p> <name> <mod>

The initial letter v is a prefix indicating that a function belongs to VML.
The <p> field is a precision prefix that indicates the data type:

s REAL for Fortran–interface, or float for C–interface 

d DOUBLE PRECISION for Fortran–interface, or double for C–interface.

The <name> field indicates the function short name, with some of its letters in uppercase for 
C-interface (see Tables 7-2, 7-8).
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The <mod> field (written in uppercase for C-interface) is present in pack/unpack functions only; it 
indicates the indexing method used:

i indexing with positive increment

v indexing with index vector

m indexing with mask vector.

VML service function full names have the following structure: 

vml <name>

where vml is a prefix indicating that a function belongs to VML, and <name> is the function 
short name, which includes some uppercase letters for C-interface (see Table 9-10).
To call VML functions from an application program, use conventional function calls. For example, 
the VML exponential function for single precision data can be called as

call vsexp ( n, a, y )for Fortran–interface, or

vsExp ( n, a, y );          for C–interface.

Functions Interface

The interface to VML functions includes function full names and the arguments list. The Fortran- 
and C-interface descriptions for different groups of VML functions are given below. Note that 
some functions (Div, Pow, and Atan2) have two input vectors a and b as their arguments, 
while SinCos function has two output vectors y and z.

VML Mathematical Functions:

Fortran:

call v<p><name>( n, a, y )

call v<p><name>( n, a, b, y )

call v<p><name>( n, a, y, z )

C:

v<p><name>( n, a, y );

v<p><name>( n, a, b, y );

v<p><name>( n, a, y, z );
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Pack Functions:

Fortran:

call v<p>packi( n, a, inca, y )

call v<p>packv( n, a, ia, y )

call v<p>packm( n, a, ma, y )

C:

v<p>PackI( n, a, inca, y );

v<p>PackV( n, a, ia, y );

v<p>PackM( n, a, ma, y );

Unpack Functions:

Fortran:

call v<p>unpacki( n, a, y, incy )

call v<p>unpackv( n, a, y, iy )

call v<p>unpackm( n, a, y, my )

C:

v<p>UnpackI( n, a, y, incy );

v<p>UnpackV( n, a, y, iy );

v<p>UnpackM( n, a, y, my );

Service Functions:

Fortran:

oldmode = vmlsetmode( mode )

mode = vmlgetmode( )

olderr = vmlseterrstatus ( err )

err = vmlgeterrstatus( )

olderr = vmlclearerrstatus( )

oldcallback = vmlseterrorcallback( callback )

callback = vmlgeterrorcallback( )

oldcallback = vmlclearerrorcallback( )



Vector Mathematical Functions 9

9-5

C:

oldmode = vmlSetMode( mode );

mode = vmlGetMode( void);

olderr = vmlSetErrStatus ( err );

err = vmlGetErrStatus(void);

olderr = vmlClearErrStatus(void);

oldcallback = vmlSetErrorCallBack(callback );

callback = vmlGetErrorCallBack( void );

oldcallback = vmlClearErrorCallBack(void );

Input Parameters:

n number of elements to be calculated

a first input vector

b second input vector

inca vector increment for the input vector a

ia index vector for the input vector a

ma mask vector for the input vector a

incy vector increment for the output vector y

iy index vector for the output vector y

my mask vector for the output vector y

err error code

mode VML mode

callback address of the callback function

Output Parameters:

y first output vector

z second output vector

err error code

mode VML mode

olderr former error code
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oldmode former VML mode

oldcallback address of the former callback function

The data types of the parameters used in each function are specified in the respective function 
description section. All VML mathematical functions can perform in-place operations, which 
means that the same vector can be used as both input and output parameter. This holds true for 
functions with two input vectors as well, in which case one of them may be overwritten with the 
output vector. For functions with two output vectors, one of them may coincide with the input 
vector.

Vector Indexing Methods   
Current VML mathematical functions work only with unit increment. Arrays with other 
increments, or more complicated indexing, can be accommodated by gathering the elements into a 
contiguous vector and then scattering them after the computation is complete. 
Three following indexing methods are used to gather/scatter the vector elements in VML:

• positive increment

• index vector

• mask vector.

The indexing method used in a particular function is indicated by the indexing modifier  (see the 
description of the  <mod>  field  in  “Function Naming Conventions”). For more information on 
indexing methods see Vector Arguments in VML in Appendix B.

Error Diagnostics   
The VML library has its own error handler. The only difference for C- and Fortran- interfaces is 
that the Intel MKL error reporting routine XERBLA can be called after the Fortran- interface VML 
function encounters an error, and this routine gets information on VML_STATUS_BADSIZE and

VML_STATUS_BADMEM input errors (see Table 9-13).

The VML  error handler has the following properties:

1. The Error Status (vmlErrStatus) global variable is set after each VML function call. 
The possible values of this variable are shown in the Table 9-13.

2. Depending on the VML mode, the error handler function invokes:

• errno variable setting. The possible values are shown in the Table 9-1.

• writing error text information to the stderr stream 
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• raising the appropriate exception on error, if necessary

• calling the additional error handler callback function.

Table 9-1 Set Values of the errno Variable

VML Mathematical Functions   
This section describes VML functions which compute values of  elementary mathematical 
functions on real vector arguments with unit increment. 
Each function group is introduced by its short name, a brief description of its purpose, and the 
calling sequence for each type of data both for Fortran- and C-interfaces, as well as a description 
of the input/output arguments.

For all VML mathematical functions, the input range of parameters is equal to the mathematical 
range of definition in the set of defined values for the respective data type. Several VML functions, 
specifically Div, Exp, Sinh, Cosh, and Pow, can result in an overflow. For these functions, the 
respective input threshold values that mark off the precision overflow are specified in the function 
description section. Note that in these specifications, FLT_MAX denotes the maximum number 
representable in single precision data type, while DBL_MAX denotes the maximum number 
representable in double precision data type.

Table 9-2 lists available mathematical functions and data types associated with them.

Value of errno Description

0 No errors are detected. 

EINVAL The array dimension is not positive.

EACCES NULL pointer is passed.

EDOM At least one of array values is out of a 
range of definition.

ERANGE At least one of array values caused a 
singularity, overflow or underflow.

Table 9-2 Continuous Distribution Generators

Type of 
Distribution

Data 
Types

Description

   Power and Root Functions

Inv s, d Inversion of the vector elements

Div s, d Divide elements of one vector by elements of second 
vector



9-8

9 Intel® Math Kernel Library Reference Manual

Sqrt s, d Square root of vector elements

InvSqrt s, d Inverse square root of vector elements

Cbrt s, d Cube root of vector elements

InvCbrt s, d Inverse cube root of vector elements

Pow s, d Each vector element raised to the specified power

Powx s, d Each vector element raised to the constant power

   Exponential and Logarithmic Functions

Exp s, d Exponential of vector elements

Ln s, d Natural logarithm of vector elements

Log10 s, d Denary logarithm of vector elements

   Trigonometric Functions

Cos s, d Cosine of vector elements

Sin s, d Sine of vector elements

SinCos s, d Sine and cosine of vector elements

Tan s, d Tangent of vector elements

Acos s, d Inverse cosine of vector elements

Asin s, d Inverse sine of vector elements

Atan s, d Inverse tangent of vector elements

Atan2 s, d Four-quadrant inverse tangent of elements of two 
vectors 

   Hyperbolic Functions

Cosh s, d Hyperbolic cosine of vector elements

Sinh s, d Hyperbolic sine of vector elements

Tanh s, d Hyperbolic tangent of vector elements

Acosh s, d Inverse hyperbolic cosine (nonnegative) of vector 
elements

Asinh s, d Inverse hyperbolic sine of vector elements

   Special Functions

Erf s, d Error function value of vector elements

Erfc s, d Complementary error function value of vector 
elements

Table 9-2 Continuous Distribution Generators (continued)

Type of 
Distribution

Data 
Types

Description
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Inv      
Performs element by element inversion of the vector. 

Syntax

Fortran: 

call vsinv( n, a, y )

call vdinv( n, a, y )

C: 

vsInv( n, a, y );

vdInv( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsinv
DOUBLE PRECISION, INTENT(IN)   for vdinv 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsInv
const double*   for vdInv 

Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vsinv
DOUBLE PRECISION   for vdinv                                                                     
Array, specifies the output vector y.
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C:

y float*     for vsInv
double*   for vdInv 
Pointer to an array that contains the output vector y.

Div      
Performs element by element division of vector a by 
vector b. 

Syntax

Fortran: 

call vsdiv( n, a, b, y )

call vddiv( n, a, b, y )

C: 

vsDiv( n, a, b, y );

vdDiv( n, a, b, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a, b REAL, INTENT(IN)     for vsdiv
DOUBLE PRECISION, INTENT(IN)   for vddiv 
Arrays, specify the input vectors a and b.

C:

n int. Specifies the number of elements to be calculated. 

a, b const float*     for vsDiv
const double*   for vdDiv 
Pointers to arrays that contain the input vectors a and b.
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Table 9-3 Precision Overflow Thresholds for Div Function

Output Parameters

Fortran:

y REAL     for vsdiv
DOUBLE PRECISION   for vddiv 
Array, specifies the output vector y.

C:

y float*     for vsDiv
double*   for vdDiv 
Pointer to an array that contains the output vector y.

Sqrt      
Computes a square root 
of vector elements. 

Syntax

Fortran: 

call vssqrt( n, a, y )

call vdsqrt( n, a, y )

C: 

vsSqrt( n, a, y );

vdSqrt( n, a, y );

Input Parameters

Fortran:

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < abs(b[i]) * FLT_MAX

double precision abs(a[i]) < abs(b[i]) * DBL_MAX
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n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vssqrt
DOUBLE PRECISION, INTENT(IN)   for vdsqrt 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsSqrt
const double*   for vdSqrt 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vssqrt
DOUBLE PRECISION   for vdsqrt 
Array, specifies the output vector y.

C:

y float*     for vsSqrt
double*   for vdSqrt 
Pointer to an array that contains the output vector y.

InvSqrt      
Computes an inverse square root 
of vector elements. 

Syntax

Fortran: 

call vsinvsqrt( n, a, y )

call vdinvsqrt( n, a, y )
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C: 

vsInvSqrt( n, a, y );

vdInvSqrt( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsinvsqrt
DOUBLE PRECISION, INTENT(IN)   for vdinvsqrt 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsInvSqrt
const double*   for vdInvSqrt 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vsinvsqrt
DOUBLE PRECISION   for vdinvsqrt 
Array, specifies the output vector y.

C:

y float*     for vsInvSqrt
double*   for vdInvSqrt 
Pointer to an array that contains the output vector y.
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Cbrt      
Computes a cube root 
of vector elements. 

Syntax

Fortran: 

call vscbrt( n, a, y )

call vdcbrt( n, a, y )

C: 

vsCbrt( n, a, y );

vdCbrt( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vscbrt
DOUBLE PRECISION, INTENT(IN)   for vdcbrt 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsCbrt
const double*   for vdCbrt 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vscbrt
DOUBLE PRECISION   for vdcbrt 
Array, specifies the output vector y.
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C:

y float*     for vsCbrt
double*   for vdCbrt 
Pointer to an array that contains the output vector y.

InvCbrt      
Computes an inverse cube root 
of vector elements. 

Syntax

Fortran: 

call vsinvcbrt( n, a, y )

call vdinvcbrt( n, a, y )

C: 

vsInvCbrt( n, a, y );

vdInvCbrt( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsinvcbrt
DOUBLE PRECISION, INTENT(IN)   for vdinvcbrt 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsInvCbrt
const double*   for vdInvCbrt 
Pointer to an array that contains the input vector a.



9-16

9 Intel® Math Kernel Library Reference Manual

Output Parameters

Fortran:

y REAL     for vsinvcbrt
DOUBLE PRECISION   for vdinvcbrt 
Array, specifies the output vector y.

C:

y float*     for vsInvCbrt
double*   for vdInvCbrt 
Pointer to an array that contains the output vector y.

Pow      
Computes a to the power b 
for elements of two vectors. 

Syntax

Fortran: 

call vspow( n, a, b, y )

call vdpow( n, a, b, y )

C: 

vsPow( n, a, b, y );

vdPow( n, a, b, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated. 

a, b REAL, INTENT(IN)     for vspow
DOUBLE PRECISION, INTENT(IN)   for vdpow 
Arrays, specify the input vectors a and b.
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C:

n int. Specifies the number of elements to be calculated. 

a, b const float*     for vsPow
const double*   for vdPow 
Pointers to arrays that contain the input vectors a and b.

Table 9-4 Precision Overflow Thresholds for Pow Function 

Output Parameters

Fortran:

y REAL     for vspow
DOUBLE PRECISION   for vdpow 
Array, specifies the output vector y.

C:

y float*     for vsPow
double*   for vdPow 
Pointer to an array that contains the output vector y.

Description

The function Pow has certain limitations on the input range of a and b parameters. Specifically, if 
a[i] is positive, then b[i] may be arbitrary. For negative or zero a[i], the value of b[i] must 
be integer (either positive or negative).

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < ( FLT_MAX ) 1/b[i]

double precision abs(a[i]) < ( DBL_MAX ) 1/b[i]
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Powx      
Raises each element of a vector 
to the constant power. 

Syntax

Fortran: 

call vspowx( n, a, b, y )

call vdpowx( n, a, b, y )

C: 

vsPowx( n, a, b, y );

vdPowx( n, a, b, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated. 

a, b REAL, INTENT(IN)     for vspowx
DOUBLE PRECISION, INTENT(IN)   for vdpowx 
Array a specifies the input vector;
scalar value b is the constant power.

C:

n int. Specifies the number of elements to be calculated. 

a const float*     for vsPowx
const double*   for vdPowx 
Pointer to an array that contains the input vector a.

b const float     for vsPowx
const double   for vdPowx 
Constant value for power b.
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Table 9-5 Precision Overflow Thresholds for Powx Function

Output Parameters

Fortran:

y REAL     for vspowx
DOUBLE PRECISION   for vdpowx 
Array, specifies the output vector y.

C:

y float*     for vsPowx
double*   for vdPowx 
Pointer to an array that contains the output vector y.

Description

The function Powx has certain limitations on the input range of a and b parameters. Specifically, 
if a[i] is positive, then b may be arbitrary. For negative or zero a[i], the value of b must be 
integer (either positive or negative).

Exp      
Computes an exponential 
of vector elements. 

Syntax

Fortran: 

call vsexp( n, a, y )

call vdexp( n, a, y )

C: 

vsExp( n, a, y );

vdExp( n, a, y );

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < ( FLT_MAX ) 1/b

double precision abs(a[i]) < ( DBL_MAX ) 1/b
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Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsexp
DOUBLE PRECISION, INTENT(IN)   for vdexp 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsExp
const double*   for vdExp 
Pointer to an array that contains the input vector a.

Table 9-6 Precision Overflow Thresholds for Exp Function

Output Parameters

Fortran:

y REAL     for vsexp
DOUBLE PRECISION   for vdexp 
Array, specifies the output vector y.

C:

y float*     for vsExp
double*   for vdExp 
Pointer to an array that contains the output vector y.

Data Type Threshold Limitations on Input Parameters

single precision a[i] < Ln( FLT_MAX ) 

double precision a[i] < Ln( DBL_MAX )
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Ln      
Computes natural logarithm 
of vector elements.

Syntax

Fortran: 

call vsln( n, a, y )
call vdln( n, a, y )

C: 

vsLn( n, a, y );
vdLn( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsln
DOUBLE PRECISION, INTENT(IN)   for vdln 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsLn
const double*   for vdLn 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vsln
DOUBLE PRECISION   for vdln 
Array, specifies the output vector y.

C:
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y float*     for vsLn
double*   for vdLn 
Pointer to an array that contains the output vector y.

Log10      
Computes denary logarithm 
of vector elements. 

Syntax

Fortran: 

call vslog10( n, a, y )

call vdlog10( n, a, y )

C: 

vsLog10( n, a, y );

vdLog10( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vslog10
DOUBLE PRECISION, INTENT(IN)   for vdlog10 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsLog10
const double*   for vdLog10 
Pointer to an array that contains the input vector a.
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Output Parameters

Fortran:

y REAL     for vslog10
DOUBLE PRECISION   for vdlog10 
Array, specifies the output vector y.

C:

y float*     for vsLog10
double*   for vdLog10 
Pointer to an array that contains the output vector y.

Cos      
Computes cosine of vector elements. 

Syntax

Fortran: 

call vscos( n, a, y )

call vdcos( n, a, y )

C: 

vsCos( n, a, y );

vdCos( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vscos
DOUBLE PRECISION, INTENT(IN)   for vdcos 
Array, specifies the input vector a.
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C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsCos
const double*   for vdCos 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vscos
DOUBLE PRECISION   for vdcos 
Array, specifies the output vector y.

C:

y float*     for vsCos
double*   for vdCos 
Pointer to an array that contains the output vector y.

Sin      
Computes sine of vector elements.

Syntax

Fortran: 

call vssin( n, a, y )

call vdsin( n, a, y )

C: 

vsSin( n, a, y );

vdSin( n, a, y );
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Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vssin
DOUBLE PRECISION, INTENT(IN)   for vdsin 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsSin
const double*   for vdSin 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vssin
DOUBLE PRECISION   for vdsin 
Array, specifies the output vector y.

C:

y float*     for vsSin
double*   for vdSin 
Pointer to an array that contains the output vector y.

SinCos      
Computes sine and cosine 
of vector elements. 

Syntax

Fortran: 

call vssincos( n, a, y, z )
call vdsincos( n, a, y, z )
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C: 

vsSinCos( n, a, y, z );
vdSinCos( n, a, y, z );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vssincos
DOUBLE PRECISION, INTENT(IN)   for vdsincos 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsSinCos
const double*   for vdSinCos 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y, z REAL     for vssincos
DUBLE PRECISION   for vdsincos 
Arrays, specify the output vectors y (for sine values) and z (for cosine values).

C:

y, z float*     for vsSinCos
double*   for vdSinCos 
Pointers to arrays that contain the output vectors y (for sine                       
values) and z (for cosine values).
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Tan      
Computes tangent of vector elements. 

Syntax

Fortran: 

call vstan( n, a, y )

call vdtan( n, a, y )

C: 

vsTan( n, a, y );

vdTan( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vstan
DOUBLE PRECISION, INTENT(IN)   for vdtan 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsTan
const double*   for vdTan 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vstan
DOUBLE PRECISION   for vdtan 
Array, specifies the output vector y.
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C:

y float*     for vsTan
double*   for vdTan 
Pointer to an array that contains the output vector y.

Acos      
Computes inverse cosine 
of vector elements. 

Syntax

Fortran: 

call vsacos( n, a, y )

call vdacos( n, a, y )

C: 

vsAcos( n, a, y );

vdAcos( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsacos
DOUBLE PRECISION, INTENT(IN)   for vdacos 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsAcos
const double*   for vdAcos 
Pointer to an array that contains the input vector a.
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Output Parameters

Fortran:

y REAL     for vsacos
DOUBLE PRECISION   for vdacos 
Array, specifies the output vector y.

C:

y float*     for vsAcos
double*   for vdAcos 
Pointer to an array that contains the output vector y.

Asin      
Computes inverse sine 
of vector elements. 

Syntax

Fortran: 

call vsasin( n, a, y )

call vdasin( n, a, y )

C: 

vsAsin( n, a, y );

vdAsin( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsasin
DOUBLE PRECISION, INTENT(IN)   for vdasin 
Array, specifies the input vector a.

C:
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n int. Specifies the number of elements to be calculated.

a const float*     for vsAsin
const double*   for vdAsin 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vsasin
DOUBLE PRECISION   for vdasin 
Array, specifies the output vector y.

C:

y float*     for vsAsin
double*   for vdAsin 
Pointer to an array that contains the output vector y.

Atan      
Computes inverse tangent 
of vector elements. 

Syntax

Fortran: 

call vsatan( n, a, y )

call vdatan( n, a, y )

C: 

vsAtan( n, a, y );

vdAtan( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.



Vector Mathematical Functions 9

9-31

a REAL, INTENT(IN)     for vsatan
DOUBLE PRECISION, INTENT(IN)   for vdatan 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsAtan
const double*   for vdAsin 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vsatan
DOUBLE PRECISION   for vdatan 
Array, specifies the output vector y.

C:

y float*     for vsAtan
double*   for vdAtan 
Pointer to an array that contains the output vector y.

Atan2      
Computes four-quadrant inverse tangent of elements of 
two vectors. 

Syntax

Fortran: 

call vsatan2( n, a, b, y )

call vdatan2( n, a, b, y )

C: 

vsAtan2( n, a, b, y );

vdAtan2( n, a, b, y );
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Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated. 

a, b REAL, INTENT(IN)     for vsatan2
DOUBLE PRECISION, INTENT(IN)   for vdatan2 
Arrays, specify the input vectors a and b.

C:

n int. Specifies the number of elements to be calculated. 

a, b const float*     for vsAtan2
const double*   for vdAtan2 
Pointers to arrays that contain the input vectors a and b.

Output Parameters

Fortran:

y REAL     for vsatan2
DOUBLE PRECISION   for vdatan2 
Array, specifies the output vector y.

C:

y float*     for vsAtan2
double*   for vdAtan2 
Pointer to an array that contains the output vector y.

The elements of the output vector y are computed as the four-quadrant arctangent of a[i] /
b[i]. 
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Cosh      
Computes hyperbolic cosine 
of vector elements. 

Syntax

Fortran: 

call vscosh( n, a, y )

call vdcosh( n, a, y )

C: 

vsCosh( n, a, y );

vdCosh( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vscosh
DOUBLE PRECISION, INTENT(IN)   for vdcosh 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsCosh
const double*   for vdCosh 
Pointer to an array that contains the input vector a.
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Table 9-7 Precision Overflow Thresholds for Cosh Function

Output Parameters

Fortran:

y REAL     for vscosh
DOUBLE PRECISION   for vdcosh 
Array, specifies the output vector y.

C:

y float*     for vsCosh
double*   for vdCosh 
Pointer to an array that contains the output vector y.

Sinh      
Computes hyperbolic sine 
of vector elements.

Syntax

Fortran: 

call vssinh( n, a, y )

call vdsinh( n, a, y )

C: 

vsSinh( n, a, y );

vdSinh( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

Data Type Threshold Limitations on Input Parameters

single precision -Ln(FLT_MAX)-Ln2 < a[i] < Ln(FLT_MAX)+Ln2 

double precision -Ln(DBL_MAX)-Ln2 < a[i] < Ln(DBL_MAX)+Ln2
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a REAL, INTENT(IN)     for vssinh
DOUBLE PRECISION, INTENT(IN)   for vdsinh 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsSinh
const double*   for vdSinh 
Pointer to an array that contains the input vector a.

Table 9-8 Precision Overflow Thresholds for Sinh Function

Output Parameters

Fortran:

y REAL     for vssinh
DOUBLE PRECISION   for vdsinh 
Array, specifies the output vector y.

C:

y float*     for vsSinh
double*   for vdSinh 
Pointer to an array that contains the output vector y.

Data Type Threshold Limitations on Input Parameters

single precision -Ln(FLT_MAX)-Ln2 < a[i] < Ln(FLT_MAX)+Ln2 

double precision -Ln(DBL_MAX)-Ln2 < a[i] < Ln(DBL_MAX)+Ln2
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Tanh      
Computes hyperbolic tangent 
of vector elements.

Syntax

Fortran: 

call vstanh( n, a, y )

call vdtanh( n, a, y )

C: 

vsTanh( n, a, y );

vdTanh( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)   for vstanh
DOUBLE PRECISION, INTENT(IN)   for vdtanh 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsTanh
const double*   for vdTanh 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vstanh
DOUBLE PRECISION   for vdtanh 
Array, specifies the output vector y.
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C:

y float*     for vsTanh
double*   for vdTanh 
Pointer to an array that contains the output vector y.

Acosh      
Computes inverse hyperbolic cosine 
(nonnegative) of vector elements. 

Syntax

Fortran: 

call vsacosh( n, a, y )

call vdacosh( n, a, y )

C: 

vsAcosh( n, a, y );

vdAcosh( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsacosh
DOUBLE PRECISION, INTENT(IN)   for vdacosh 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsAcosh
const double*   for vdAcosh 
Pointer to an array that contains the input vector a.
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Output Parameters

Fortran:

y REAL     for vsacosh
DOUBLE PRECISION   for vdacosh 
Array, specifies the output vector y.

C:

y float*     for vsAcosh
double*   for vdAcosh 
Pointer to an array that contains the output vector y.

Asinh      
Computes inverse hyperbolic sine 
of vector elements.

Syntax

Fortran: 

call vsasinh( n, a, y )

call vdasinh( n, a, y )

C: 

vsAsinh( n, a, y );

vdAsinh( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsasinh
DOUBLE PRECISION, INTENT(IN)   for vdasinh 
Array, specifies the input vector a.
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C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsAsinh
const double*   for vdAsinh 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vsasinh
DOUBLE PRECISION   for vdasinh 
Array, specifies the output vector y.

C:

y float*     for vsAsinh
double*   for vdAsinh 
Pointer to an array that contains the output vector y.

Atanh      
Computes inverse hyperbolic tangent 
of vector elements.

Syntax

Fortran: 

call vsatanh( n, a, y )

call vdatanh( n, a, y )

C: 

vsAtanh( n, a, y );

vdAtanh( n, a, y );
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Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vsatanh
DOUBLE PRECISION, INTENT(IN)   for vdatanh 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsAtanh
const double*   for vdAtanh 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vsatanh
DOUBLE PRECISION   for vdatanh 
Array, specifies the output vector y.

C:

y float*     for vsAtanh
double*   for vdAtanh 
Pointer to an array that contains the output vector y.

Erf      
Computes the error function value 
of vector elements.

Syntax

Fortran: 

call vserf( n, a, y )

call vderf( n, a, y )
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C: 

vsErf( n, a, y );

vdErf( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vserf
DOUBLE PRECISION, INTENT(IN)   for vderf 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsErf
const double*   for vdErf 
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL     for vserf
DOUBLE PRECISION   for vderf 
Array, specifies the output vector y.

C:

y float*     for vsErf
double*   for vdErf 
Pointer to an array that contains the output vector y.

Description

The function Erf computes the error function values for elements of the input vector a and writes 
them to the output vector y.

The error function is defined as given by:
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Erfc      
Computes the complementary error function value of 
vector elements.

Syntax

Fortran: 

call vserfc( n, a, y )

call vderfc( n, a, y )

C: 

vsErfc( n, a, y );

vdErfc( n, a, y );

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN)     for vserfc
DOUBLE PRECISION, INTENT(IN)   for vderfc 
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float*     for vsErfc
const double*   for vdErfc 
Pointer to an array that contains the input vector a.

erf x( ) 2

π
------- e t
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Output Parameters

Fortran:

y REAL     for vserfc
DOUBLE PRECISION   for vderfc 
Array, specifies the output vector y.

C:

y float*     for vsErfc
double*   for vdErfc 
Pointer to an array that contains the output vector y.

Description

The function Erfc computes the error function values for elements of the input vector a and 
writes them to the output vector y.

The error function is defined as given by:

or, in other words,

.

VML Pack/Unpack Functions 
This section describes VML functions which convert vectors with unit increment to and from 
vectors with positive increment indexing, vector indexing and mask indexing (see Appendix B  for 
details on vector indexing methods). 

Table 9-9 lists available VML Pack/Unpack functions, together with data types and indexing 
methods associated with them.
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Table 9-9 VML Pack/Unpack Functions   

Pack      
Copies elements of an array 
with specified indexing to 
a vector with unit increment.

Syntax

Fortran: 

call vspacki( n, a, inca, y )

call vspackv( n, a, ia, y )

call vspackm( n, a, ma, y )

call vdpacki( n, a, inca, y )

call vdpackv( n, a, ia, y )

call vdpackm( n, a, ma, y )

C: 

vsPackI( n, a, inca, y );

vsPackV( n, a, ia, y );

vsPackM( n, a, ma, y );

vdPackI( n, a, inca, y );

vdPackV( n, a, ia, y );

vdPackM( n, a, ma, y );

Function Short 
Name

Data 
Types

Indexing
Methods

Description

Pack s, d I,V,M Gathers elements of arrays, indexed by different 
methods.

Unpack s, d I,V,M Scatters vector elements to arrays with different 
indexing. 
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Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements to be                       
calculated.

a REAL, INTENT(IN)     for vspacki, vspackv, vspackm
DOUBLE PRECISION, INTENT(IN)   for vdpacki, vdpackv, vdpackm 
Array, DIMENSION  at least (1 + (n-1)*inca) for vspacki,
at least max( n,max(ia[j]) ),j=0,…,n-1, for vspackv,
at least n for vspackm
Specifies the input vector a.

inca INTEGER, INTENT(IN) for vspacki, vdpacki.                                   
Specifies the increment for the elements of a.

ia INTEGER, INTENT(IN) for vspackv, vdpackv. 
Array,  DIMENSION at least  n
Specifies the index vector for the elements of a.

ma INTEGER, INTENT(IN) for vspackm, vdpackm. 
Array,  DIMENSION  at least  n
Specifies the mask vector for the elements of a.

C:

n int. Specifies the number of elements to be  calculated 

a const float*   for vsPackI, vsPackV, vsPackM
const double* for vdPackI, vdPackV, vdPackM 
Specifies the pointer to an array that contains the input vector a.
Size of the array must be:
at least (1 + (n-1)*inca)  for vsPackI,
at least max( n,max(ia[j]) ),j=0,…,n-1, for vsPackV,
at least n for vsPackM.

inca int for vsPackI, vdPackI. 
Specifies the increment for the elements of a.

ia const int* for vsPackV, vdPackV. Specifies the pointer to
an array of size at least n that contains the index vector 
for the elements of a.

ma const int* for vsPackM, vdPackM. Specifies the pointer to
an array of size at least n that contains the mask vector 
for the elements of a.
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Output Parameters

Fortran:

y REAL     for vspacki, vspackv, vspackm
DOUBLE PRECISION   for vdpacki, vdpackv, vdpackm 
Array, DIMENSION at least n, specifies the output vector y.

C:

y float*   for vsPackI, vsPackV, vsPackM
double* for vdPackI, vdPackV, vdPackM 
Specifies the pointer to an array of size at least n  that contains 
the output vector y.

Unpack      
Copies elements of a vector with unit increment to an 
array with specified indexing.

Syntax

Fortran: 

call vsunpacki( n, a, y, incy )

call vsunpackv( n, a, y, iy )

call vsunpackm( n, a, y, my )

call vdunpacki( n, a, y, incy )

call vdunpackv( n, a, y, iy )

call vdunpackm( n, a, y, my )

C: 

vsUnpackI( n, a, y, incy );

vsUnpackV( n, a, y, iy );

vsUnpackM( n, a, y, my );

vdUnpackI( n, a, y, incy );

vdUnpackV( n, a, y, iy );

vdUnpackM( n, a, y, my );
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Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements to be calculated.

a REAL, INTENT(IN) for vsunpacki, vsunpackv, vsunpackm
DOUBLE PRECISION, INTENT(IN)   for vdunpacki,
vdunpackv,  vdunpackm.
Array, DIMENSION at least n, specifies the input vector a.

incy INTEGER, INTENT(IN) for vsunpacki, vdunpacki. 
Specifies the increment for the elements of y.

iy INTEGER, INTENT(IN) for vsunpackv, vdunpackv. 
Array, DIMENSION at least n, specifies the index vector 
for the elements of y.

my INTEGER, INTENT(IN) for vsunpackm, vdunpackm. 
Array, DIMENSION at least n, specifies the mask vector
for the elements of y.

C:

n int. Specifies the number of elements to be calculated.

a const float*   for vsUnpackI, vsUnpackV, vsUnpackM
const double* for vdUnpackI, vdUnpackV, vdUnpackM
Specifies the pointer to an array of size at least n  that contains 
the input vector a.

incy int for vsUnpackI, vdUnpackI. 
Specifies the increment for the elements of y.

iy const int* for vsUnpackV, vdUnpackV.   Specifies the
pointer to an array of size at least n that contains the index
vector for the elements of a.

my const int* for vsUnpackM, vdUnpackM. Specifies the
pointer to an array of size at least n that contains the mask
vector for the elements of a.
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Output Parameters

Fortran:

y REAL     for vsunpacki, vsunpackv, vsunpackm
DOUBLE PRECISION   for vdunpacki, vdunpackv,
vdunpackm. 
Array, DIMENSION
at least (1 + (n-1)*incy) for vsunpacki,
at least max( n,max(iy[j]) ),j=0,…,n-1, for vsunpackv,
at least n for vsunpackm
Specifies the output vector y.

C:

y float*   for vsUnpackI, vsUnpackV, vsUnpackM
double* for vdUnpackI, vdUnpackV, vdUnpackM 
Specifies the pointer to an array that contains the output vector y.
Size of the array must be:
at least (1 + (n-1)*incy) for vsUnPackI,
at least max( n,max(ia[j]) ),j=0,…,n-1, for vsUnPackV,
at least n for vsUnPackM.

VML Service Functions  
This section describes VML functions which allow the user to set /get the accuracy mode, and 
set/get the error code. All these functions are available both in Fortran- and C- interfaces.
Table 9-10 lists available VML Service functions and their short description.

Table 9-10 VML Service Functions  

Function Short Name Description

SetMode Sets the  VML mode

GetMode Gets the  VML mode

“SetErrStatus” Sets the VML error status

GetErrStatus Gets the VML error status

ClearErrStatus Clears the VML error status

SetErrorCallBack Sets the additional error handler callback 
function

GetErrorCallBack Gets the additional error handler callback 
function
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SetMode    
Sets a new mode for VML functions according to mode 
parameter and stores the previous VML mode to 
oldmode.

Syntax

Fortran: 

oldmode = vmlsetmode( mode )

C: 

oldmode = vmlSetMode( mode );

Input Parameters

Fortran:

mode INTEGER, INTENT(IN). Specifies the VML mode to be   set.

C:

mode int. Specifies the VML mode to be set.

Output Parameters

Fortran:

oldmode INTEGER. Specifies the former VML mode.

C:

oldmode int. Specifies the former VML mode.

ClearErrorCallBack Deletes the additional error handler callback 
function

Table 9-10 VML Service Functions   (continued)

Function Short Name Description
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Description

The mode parameter is designed to control accuracy, FPU and error handling options. Table 9-11 
lists values of the mode parameter. All other possible values of the mode parameter may be 
obtained from these values by using bitwise OR ( | ) operation to combine one value for accuracy, 
one for FPU, and one for error control options. The default value of the mode parameter is VML_HA
| VML_ERRMODE_DEFAULT. Thus, the current FPU control word (FPU precision and the rounding 
method) is used by default. 

If any VML mathematical function requires different FPU precision, or rounding method, it 
changes these options automatically and then restores the former values. The mode parameter 
enables you to minimize switching the internal FPU mode inside each VML mathematical 
function that works with similar precision and accuracy settings. To accomplish this, set the mode 
parameter to VML_FLOAT_CONSISTENT for single precision functions, or to 
VML_DOUBLE_CONSISTENT for double precision functions. These values of the mode parameter 
are the optimal choice for the respective function groups, as they are required for most of the VML 
mathematical functions. After the execution is over, set the mode to VML_RESTORE if you need to 
restore the previous FPU mode. 

Table 9-11 Values of the mode Parameter  

Value of mode Description

Accuracy Control

VML_HA High accuracy versions of VML functions will be 
used

VML_LA Low accuracy versions of VML functions will be 
used

Additional FPU Mode Control

VML_FLOAT_CONSISTE
NT

The optimal FPU mode (control word) for single 
precision functions is set, and the previous FPU 
mode is saved

VML_DOUBLE_CONSIST
ENT

The optimal FPU mode (control word) for double 
precision functions is set, and the previous FPU 
mode is saved

VML_RESTORE The previously saved FPU mode is restored

Error Mode Control

VML_ERRMODE_IGNORE No action is set for computation errors

VML_ERRMODE_ERRNO On error, the errno variable is set 

VML_ERRMODE_STDERR On error, the error text information is written to 
stderr 
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Examples

Several examples of calling the function vmlSetMode() with different values of the mode 
parameter are given below:

Fortran:

oldmode = vmlsetmode( VML_LA )

call vmlsetmode( IOR(VML_LA, IOR(VML_FLOAT_CONSISTENT,
VML_ERRMODE_IGNORE )))

call vmlsetmode( VML_RESTORE)

C:

vmlSetMode( VML_LA );

vmlSetMode( VML_LA | VML_FLOAT_CONSISTENT | VML_ERRMODE_IGNORE );

vmlSetMode( VML_RESTORE);

GetMode    
Gets the VML mode. 

Syntax

Fortran: 

mod = vmlgetmode()

C: 

mod = vmlGetMode( void );

VML_ERRMODE_EXCEPT On error, an exception is raised

VML_ERRMODE_CALLBA
CK

On error, an additional error handler function is 
called

VML_ERRMODE_DEFAUL
T

On error, the errno variable is set, an 
exception is raised, and an additional error 
handler function is called

Table 9-11 Values of the mode Parameter   (continued)

Value of mode Description
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Output Parameters

Fortran:

mod INTEGER. Specifies the packed mode parameter.

C:

mod int. Specifies the packed mode parameter.

Description

The function vmlGetMode() returns the VML mode parameter which controls accuracy, FPU  
and error handling options. The mod variable value is some combination of the values listed in the 
Table 9-11. You can obtain some of these values using  the respective mask from the Table 9-12, 
for example: 

Fortran:

mod = vmlgetmode()

accm = IAND(mod, VML_ACCURACY_MASK)

fpum = IAND(mod, VML_FPUMODE_MASK)

errm = IAND(mod, VML_ERRMODE_MASK)

C:

accm = vmlGetMode(void )& VML_ACCURACY_MASK;

fpum = vmlGetMode(void )& VML_FPUMODE _MASK;

errm = vmlGetMode(void )& VML_ERRMODE _MASK;

Table 9-12 Values of Mask for the mode Parameter  

Value of mask Description

VML_ACCURACY_MASK Specifies mask for accuracy mode selection.

VML_FPUMODE_MASK Specifies mask for FPU mode selection.

VML_ERRMODE_MASK Specifies mask for error mode selection.
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SetErrStatus    
Sets the new VML error status according to err and 
stores the previous VML error status to olderr.

Syntax

Fortran: 

olderr = vmlseterrstatus( err )

C: 

olderr = vmlSetErrStatus( err );

Input Parameters

Fortran:

err INTEGER, INTENT(IN). Specifies the VML error status 
to be set.

C:

err  int. Specifies the VML error status to be set.

Output Parameters

Fortran:

olderr INTEGER. Specifies the former VML error status.

C:

olderr  int. Specifies the former VML error status.

Table 9-13 lists possible values of the err parameter.
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Table 9-13 Values of the VML Error Status

Examples:
vmlSetErrStatus( VML_STATUS_OK );

vmlSetErrStatus( VML_STATUS_ERRDOM );

vmlSetErrStatus( VML_STATUS_UNDERFLOW );

GetErrStatus    
Gets the VML error status. 

Syntax

Fortran: 

err = vmlgeterrstatus( )

C: 

err = vmlGetErrStatus( void );

Output Parameters

Fortran:

err INTEGER. Specifies the VML error status.

Error Status Description

VML_STATUS_OK The execution was completed successfully. 

VML_STATUS_BADSIZE The array dimension is not positive.

VML_STATUS_BADMEM NULL pointer is passed.

VML_STATUS_ERRDOM At least one of array values is out of a range 
of definition.

VML_STATUS_SING At least one of array values caused a 
singularity.

VML_STATUS_OVERFLOW An overflow has happened during the 
calculation process.

VML_STATUS_UNDERFLOW An underflow has happened during the 
calculation process.



Vector Mathematical Functions 9

9-55

C:

err  int. Specifies the VML error status.

ClearErrStatus    
Sets the VML error status to VML_STATUS_OK and 
stores the previous VML error status to olderr.

Syntax

Fortran: 

olderr = vmlclearerrstatus( )

C: 

olderr = vmlClearErrStatus( void );

Output Parameters

Fortran:

olderr INTEGER. Specifies the former VML error status.

C:

olderr  int. Specifies the former VML error status.

SetErrorCallBack    
Sets the additional error handler callback function and 
gets the old callback function.

Syntax

Fortran: 

oldcallback = vmlseterrorcallback( callback )
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C: 

oldcallback = vmlSetErrorCallBack( callback );

Input Parameters

Fortran:

callback Address of the callback function.
The callback function has the following format:

INTEGER FUNCTION ERRFUNC(par)

TYPE (ERROR_STRUCTURE) par

! ...

! user error processing

! ...

ERRFUNC = 0

! if ERRFUNC = 0 - standard VML error handler
! is called after the callback

! if ERRFUNC != 0 - standard VML error handler
! is not called

END

The passed error structure is defined as follows:

TYPE ERROR_STRUCTURE
SEQUENCE

INTEGER*4 ICODE

INTEGER*4 IINDEX

REAL*8 DBA1

REAL*8 DBA2

REAL*8 DBR1

REAL*8 DBR2

CHARACTER(64) CFUNCNAME

INTEGER*4 IFUNCNAMELEN

END TYPE ERROR_STRUCTURE

C:

callback  Pointer to the callback function.
The callback function has the following format: 

static int __stdcall MyHandler(DefVmlErrorContext*
pContext)
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{
/* Handler body */

};

The passed error structure is defined as follows:

typedef struct _DefVmlErrorContext

{

int iCode; /* Error status value */

int iIndex; /* Index for bad array
element, or bad array
dimension, or bad
array pointer */

double dbA1; * Error argument 1 */

double dbA2; /* Error argument 2 */

double dbR1; /* Error result 1 */

double dbR2; /* Error result 2 */

char cFuncName[64]; /* Function name */

int iFuncNameLen; /* Length of function name*/

} DefVmlErrorContext;

Output Parameters

Fortran:

oldcallback  Address of the former callback function.

C:

oldcallback  Pointer to the former callback function.

Description

The callback function is called on each VML mathematical function error if 
VML_ERRMODE_CALLBACK error mode is set (see Table 9-11). 

Use the vmlSetErrorCallBack() function if you need to define your own callback function 
instead of default empty callback function. 

The input structure for a callback function contains the following information 
about the encountered error:

•  the input value which caused an error

•  location (array index) of this value
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•  the computed result value

•  error code 

•  name of the function in which the error occurred. 

You can insert your own error processing into the callback function. This may include correcting 
the passed result values in order to pass them back and resume computation. The standard error 
handler is called after the callback function only if it returns 0.

GetErrorCallBack    
Gets the additional error handler 
callback function.

Syntax

Fortran: 

fun = vmlgeterrorcallback( )

C: 

fun = vmlGetErrorCallBack( void );

Output Parameters

Fortran:

fun Address of the callback function.

C:

fun Pointer to the callback function.



Vector Mathematical Functions 9

9-59

ClearErrorCallBack    
Deletes the additional error handler callback function 
and retrieves the former callback function.

Syntax

Fortran: 

oldcallback = vmlclearerrorcallback( )

C: 

oldcallback = vmlClearErrorCallBack( void );

Output Parameters

Fortran:

oldcallback INTEGER. Address of the former callback function.

C:

oldcallback  int. Pointer to the former callback function.
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Vector Generators of 
Statistical Distributions 10

This chapter describes the part of Intel® MKL that is known as Vector Statistical Library (VSL) 
and is designed for the purpose of generating vectors of pseudorandom and quasi-random 
numbers. 

VSL provides a set of subroutines implementing commonly used pseudo- or quasi-random 
number generators with continuous and discrete distribution. To speed up performance, all these 
subroutines were developed using the calls to the highly optimized Basic Random Number 
Generators (BRNGs) and the library of vector mathematical functions (VML, see Chapter 9, 
“Vector Mathematical Functions”).

All VSL subroutines can be classified into three major categories:

• Transformation subroutines for different types of statistical distributions, for example, 
uniform, normal (Gaussian), binomial, etc. These subroutines indirectly call basic random 
number generators, which are either pseudorandom number generators or quasi-random 
number generators. Detailed description of the generators can be found in “Distribution 
Generators” section.

• Service subroutines to handle random number streams: create, initialize, delete, copy, get the 
index of a basic generator. The description of these subroutines can be found in “Service 
Subroutines” section.

• Registration subroutines for basic pseudorandom generators and subroutines that obtain 
properties of the registered generators (see  “Advanced Service Subroutines” section).

The last two categories will be referred to as service subroutines.
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Conventions
In this chapter no specific differentiation is made between random, pseudorandom, and 
quasi-random numbers, as well as between random, pseudorandom, and quasi-random number 
generators unless the context requires otherwise. For details, refer to ‘Random Numbers’ section in  
VSL Notes document provided with Intel MKL. 

All generators of nonuniform distributions, both discrete and continuous, are built on the basis of 
the uniform distribution generators, called Basic Random Number Generators (BRNGs). The 
pseudorandom numbers with nonuniform distribution are obtained through an appropriate 
transformation of the uniformly distributed pseudorandom numbers. Such transformations are 
referrred to as generation methods. For a given distribution, several generation methods can be 
used. See VSL Notes for the description of methods available for each generator.

The stream descriptor specifies which BRNG should be used in a given transformation method. 
See ‘Random Streams and RNGs in Parallel Computation’ secton of  VSL Notes.

The term computational node means a logical or physical unit that can process data in parallel.

Mathematical Notation

The following notation is used throughout the text:

N The set of natural numbers .

Z The set of integers .

R The set of real numbers.

The floor of a (the largest integer less than or equal to a).

 ⊕  or xor Bitwise exclusive OR.

 or Binomial coefficient or combination ( , ; 
). . For  binomial coefficient is 

defined as

 . If , then .

N 1, 2, 3...{ }=

Z ... -3, -2, -1, 0, 1, 2, 3 ...{ }=

a

Cα
k α

k� �
� � α R∈ α 0≥

k N∈ 0{ }∪ Cα
0 1= α k≥

Cα
k α α 1–( ) ... α k– 1+( )

k!
-----------------------------------------------------------= α k< Cα

k 0=
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Naming Conventions

The names of all VSL functions in FORTRAN are lowercase; names in C may contain both 
lowercase and uppercase letters.

The names of generator subroutines have the following structure:

where v is the prefix of a VSL vector function, and the field <type of result>  is either s , d , 
or i and specifies one of the following types:

Cumulative Gaussian distribution function

  , defined over

 .

 , .

LCG(a,c,m) Linear Congruential Generator , 
where a is called the multiplier, c is called the increment and m is 
called the modulus of the generator.

MCG(a,m) Multiplicative Congruential Generator  is 
a special case of Linear Congruential Generator, where the increment 
c is taken to be 0.

GFSR(p,q) Generalized Feedback Shift Register Generator 
.

v<type of result>rng<distribution> for FORTRAN-interface

v<type of result>Rng<distribution> for C-interface

s REAL for FORTRAN-interface

float for C-interface

d DOUBLE PRECISION for FORTRAN-interface

double for C-interface

Φ x( )

Φ x( ) 1

2π
---------- exp

y
2

2
------–

� �
� � yd

∞–

x

�=

∞– x +∞< <

Φ ∞–( ) 0= Φ +∞( ) 1=

xn 1+ axn c+( ) mod m=

xn 1+ axn( ) mod m=

xn xn p– xn q–⊕=
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Prefixes s and d apply to continuous distributions only, prefix i applies only to discrete case. The 
prefix rng indicates that the subroutine is a random generator, and the <distribution> field 
specifies the type of statistical distribution.

Names of service subroutines follow the template below:

vsl<name> ,

where vsl is the prefix of a VSL service function. The field <name> contains a short function 
name. For a more detailed description of service subroutines refer to “Service Subroutines” and 
“Advanced Service Subroutines” sections.

Prototype of each generator subroutine corresponding to a given probability distribution fits the 
following structure:

<function name>( method, stream, n, r, [<distribution parameters>] ), 
where

• method is the number specifying the method of generation. A detailed description of this 
parameter can be found in “Distribution Generators” section.

• stream defines the random stream descriptor and must have a nonzero value. Random 
streams and their usage are discussed further in “Random Streams” and “Service 
Subroutines”.

• n defines the number of random values to be generated. If n is less than or equal to zero, no 
values are generated. Furthermore, if n is negative, an error condition is set. 

• r defines the destination array for the generated numbers. The dimension of the array must be 
large enough to store at least n random numbers.

Additional parameters included into  <distribution parameters>  field are individual for 
each generator subroutine and are described in detail in “Distribution Generators” section.

To invoke a distribution generator, use a call to the respective VSL subroutine. For example, to 
obtain a vector r, composed of n independent and identically distributed random numbers with 
normal (Gaussian) distribution, that have the mean value a and standard deviation sigma, write 
the following:

for FORTRAN-interface

call vsrnggaussian( method, stream, n, r, a, sigma )

i INTEGER for FORTRAN-interface

int for C-interface
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for C-interface

vsRngGaussian( method, stream, n, r, a, sigma )

Basic Generators
VSL provides the following BRNGs, which differ in speed and other properties:

• the 32-bit multiplicative congruential pseudorandom number generator MCG(1132489760, 
231 - 1) [L’Ecuyer99], 

• the 32-bit generalized feedback shift register pseudorandom number generator 
GFSR(250,103) [Kirkpatrick81],

• the combined multiple recursive pseudorandom number generator MRG-32k3a 
[L’Ecuyer99a], 

• the 59-bit multiplicative congruential pseudorandom number generator MCG(1313, 259)from 
NAG Numerical Libraries [NAG],

• Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG 
Numerical Libraries [NAG]. 

Besides these pseudorandom number generators, VSL provides two basic quasi-random number 
generators: 

• Sobol quasi-number generator [Sobol76], [Bratley88], which works in dimensions from 1 up 
to 40, 

• Niederreiter quasi-random number generator [Bratley92], which works in dimensions from 1 
up to 318.

Comparative performance analysis of the generators and some testing results can be found in VSL 
Notes.

VSL provides means of registration of such user-designed generators through the steps described 
in “Advanced Service Subroutines” section.
For some basic generators, VSL provides two methods of creating independent random streams in 
multiprocessor computations, which are the leapfrog method and the block-splitting method. 
Nevertheless, these sequence splitting methods are also useful in sequential Monte Carlo. In 
addition, Wichmann-Hill basic generator is a set of 273 pseudorandom number generators 
designed to create up to 273 independent random sequences, which might be used in parallel. The 
properties of the generators designed for parallel computations are discussed in detail in 
[Coddington94].
For a more detailed description of the generator properties and testing results refer to VSL Notes.

vslnotes.pdf
vslnotes.pdf
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Random Streams

Random stream (or stream) is an abstract source of pseudo- and quasi-random sequences of 
uniform distribution. Users have no direct access to these sequences and operate with stream state 
descriptors only. A stream state descriptor, which holds state descriptive information for a 
particular BRNG, is a neccesary parameter in each subroutine of a distribution generator.  Only 
subroutines of the distribution generator operate with random streams directly. See VSL Notes for 
details.

User can create unlimited number of random streams by VSL Service Subroutines like 
NewStream and utilize them in any distribution generator to get the sequence of numbers of given 
probability distribution. When they are no longer needed, the streams should be deleted calling 
service subroutine DeleteStream.

Data Types

FORTRAN:

TYPE VSL_STREAM_STATE

INTEGER*4 descriptor1
INTEGER*4 descriptor2

END TYPE VSL_STREAM_STATE

C:

typedef (void*) VSLStreamStatePtr;

See “Advanced Service Subroutines” for the format of the stream state structure for user-designed 
generators.

Service Subroutines
Stream handling comprises subroutines for creating, deleting, or copying the streams and getting 
the index of a basic generator. 

Table 10-1 lists all available service subroutines 

Table 10-1 Service Subroutines 

Subroutine Short Description

NewStream Creates and initializes a random stream.

NewStreamEx Creates and initializes a random stream for the 
generators with multiple initial conditions.

vslnotes.pdf
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Most of the generator-based work comprises three basic steps:

1. Creating and initializing a stream (NewStream, NewStreamEx, CopyStream,
CopyStreamState, LeapfrogStream, SkipAheadStream).

2. Generating random numbers with given distribution, see “Distribution Generators”.

3. Deleting the stream (DeleteStream).

Note that you can concurrently create multiple streams and obtain random data from one or several 
generators by using the stream state. You must use the DeleteStream function to delete all the 
streams afterwards.

DeleteStream Deletes previously created stream.

CopyStream Copies a stream to another stream.

CopyStreamState Creates a copy of a random stream state.

LeapfrogStream Initializes the stream by the leapfrog method to 
generate a subsequnce of the original sequence.

SkipAheadStream Initializes the stream by the skip-ahead method.

GetStreamStateBrng Obtains the index of the basic generator 
responsible for the generation of a given random 
stream.

GetNumRegBrng Obtains the number of currently registered basic 
generators.

NOTE.  In the above table, the vsl prefix in the function names is 
omitted. In the function reference this prefix is always used in function 
prototypes and code examples. 

Table 10-1 Service Subroutines  (continued)

Subroutine Short Description
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NewStream    
Creates and initializes a random stream.

Syntax

Fortran: c

all vslnewstream( stream, brng, seed )

C: 

vslNewStream( stream, brng, seed )

Description

For a basic generator with number brng , this function creates a new stream and initializes it with 
a 32-bit seed. The seed is an initial value used to select a particular sequence generated by the 
basic generator brng. The function is also applicable for generators with multiple initial 
conditions. See VSL Notes for a more detailed description of stream initialization for different 
basic generators.

Input Parameters

FORTRAN:

C:

brng INTEGER, INTENT(IN). Index of the basic 
generator to initialize the stream.

seed INTEGER, INTENT(IN). Initial condition of the 
stream. In the case of a quasi-random number 
generator seed parameter is used to set the 
dimension. If the dimension is greater than the 
dimension that brng can support or is less than 1, 
then the dimension is assumed to be equal to 1.

brng int. Index of the basic generator to initialize the 
stream.

seed unsigned int. Initial condition of the stream.

vslnotes.pdf
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Output Parameters 

FORTRAN:

C:

NewStreamEx   
Creates and initializes a random stream for generators 
with multiple initial conditions.

Syntax

Fortran: 

call vslnewstreamex( stream, brng, n, params )

C: 

vslNewStreamEx( stream, brng, n, params )

Description

This function provides an advanced tool to set the initial conditions for a basic generator if its 
input arguments imply several initialization parameters. Initial values are used to select a 
particular sequence generated by the basic generator brng. Whenever possible, use NewStream,
which is analogous to vslNewStreamEx except that it takes only one 32-bit initial condition. In 
particular, vslNewStreamEx may be used to initialize the state table in Generalized Feedback 
Shift Register Generators (GFSRs). A more detailed description of this issue can be found in  VSL 
Notes.

stream TYPE(VSL_STREAM_STATE), INTENT(OUT). 
Stream state descriptor.

stream VSLStreamStatePtr*. Pointer to the stream state 
structure.

vslnotes.pdf


10-10

10 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

Output Parameters 

FORTRAN:

C:

brng INTEGER, INTENT(IN). Index of the basic 
generator to initialize the stream.

n INTEGER, INTENT(IN). Number of initial 
conditions contained in params.

params INTEGER, INTENT(IN). Array of initial conditions 
necessary for the basic generator brng to initialize 
the stream. In the case of a quasi-random number 
generator only the first element in params parameter 
is used to set the dimension. If the dimension is 
greater than the dimension that brng can support or 
is less than 1, then the dimension is assumed to be 
equal to 1.

brng int. Index of the basic generator to initialize the 
stream.

n int. Number of initial conditions contained in 
params.

params const unsigned int[]. Array of initial 
conditions necessary for the basic generator brng to 
initialize the stream.

stream TYPE(VSL_STREAM_STATE), INTENT(OUT). 
Stream state descriptor.

stream VSLStreamStatePtr*. Pointer to the stream state 
structure.



Vector Generators of Statistical Distributions 10

10-11

DeleteStream    
Deletes a random stream.

Syntax

Fortran: 

call vsldeletestream( stream )

C: 

vslDeleteStream( stream )

Description

This function deletes the random stream created by one of the initialization functions. 

Input/Output Parameters

FORTRAN:

C:

stream TYPE(VSL_STREAM_STATE), INTENT(INOUT). 
Descriptor of the stream to be deleted; must have 
non-zero value.

stream VSLStreamStatePtr*. Pointer to the stream state 
structure; must have non-zero value. After the stream 
is successfully deleted, the stream pointer is set to 
NULL.
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CopyStream   
Creates a copy of a random stream.

Syntax

Fortran: 

call vslcopystream( newstream, srcstream )

C: 

vslCopyStream( newstream, srcstream )

Description

The function creates an exact copy of srcstream and stores its descriptor to newstream.

Input Parameters

FORTRAN:

C:

Output Parameters 

FORTRAN:

C:

scrstream TYPE(VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream to be copied.

srcstream VSLStreamStatePtr. Pointer to the stream state 
structure to be copied.

newstream TYPE(VSL_STREAM_STATE), INTENT(OUT). 
Descriptor of the stream copy.

newstream VSLStreamStatePtr*. Pointer to the copy of the 
stream state structure.
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CopyStreamState   
Creates a copy of a random stream state.

Syntax

Fortran: 

call vslcopystreamstate( deststream, srcstream )

C: 

vslCopyStreamState( deststream, srcstream )

Description

The function copies a stream state from srcstream to the existing deststream stream. Both the 
streams should be generated by the same basic generator. En error message is generated when the 
index of the BRNG that produced deststream stream differs from the index of the BRNG that 
generated srcstream stream.

Unlike CopyStream function, which creates a new stream and copies both the stream state and 
other data from srcstream, the function CopyStreamState copies only srcstream stream 
state data to the generated deststream stream.

Input Parameters

FORTRAN:

C:

scrstream TYPE(VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream with the state to be copied.

srcstream VSLStreamStatePtr. Pointer to the stream state 
structure, from which the stream state is copied.
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Output Parameters 

FORTRAN:

C:

LeapfrogStream   
Initializes a stream using the leapfrog method.

Syntax

Fortran: 

call vslleapfrogstream( stream, k, nstreams )

C: 

vslLeapfrogStream( stream, k, nstreams )

Description

The function allows generating random numbers in a random stream with non-unit stride. This 
feature is particularly useful in distributing random numbers from original stream across 
nstreams buffers without generating the original random sequence with subsequent manual 
distribution. One of the important applications of the leapfrog method is slitting the original 
sequence into non-overlapping subsequences across nstreams computational nodes. The 

deststream TYPE(VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the destination stream where the state 
of scrstream stream is copied.

deststream VSLStreamStatePtr. Pointer to the stream state 
structure where the stream state is copied.
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function initializes the original random stream (see Figure 10-1) to generate random numbers for 
the computational node k, , where nstreams is the largest number of 
computational nodes used.  

The leapfrog method is supported only for those basic generators that allow splitting elements by 
the leapfrog method, which is more efficient than simply generating them by a generator with 
subsequent manual distribution across computational nodes. See  VSL Notes for details.

For quasi-random basic generators the leapfrog method allows generating individual components 
of quasi-random vectors instead of whole quasi-random vectors. In this case nstreams parameter 
should be equal to the dimension of the quasi-random vector while k parameter should be the 
index of a component to be generated ( ). Other parameters values are not 
allowed.

The following code examples illustrate the initialization of three independent streams using the 
leapfrog method:

Figure 10-1 Leapfrog Method

Example 10-1 FORTRAN Code for Leapfrog Method

…
type(VSL_STREAM_STATE)stream1
type(VSL_STREAM_STATE)stream2
type(VSL_STREAM_STATE)stream3

! Creating 3 identical streams
call vslnewstream(stream1, VSL_BRNG_MCG31, 174)
call vslcopystream(stream2, stream1)
call vslcopystream(stream3, stream1)

0 k nstreams<≤

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st node stream

2nd node stream

3rd node stream

nstream = 3

At node1 the streamcontains 1, 4, 7, 10, 13, 16, 19, …
At node2 the streamcontains 2, 5, 8, 11, 14, 17, 20, …
At node3 the streamcontains 3, 6, 9, 12, 15, 18, 21, …

0 k nstreams<≤

vslnotes.pdf
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Input Parameters

FORTRAN:

! Leapfrogging the streams
call vslleapfrogstream(stream1, 0, 3)
call vslleapfrogstream(stream2, 1, 3)
call vslleapfrogstream(stream3, 2, 3)

! Generating random numbers
…
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)
…

Example 10-2 C Code for Leapfrog Method 

…
VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;

/* Creating 3 identical streams */
vslNewStream(&stream1, VSL_BRNG_MCG31, 174);
vslCopyStream(&stream2, stream1);
vslCopyStream(&stream3, stream1);

/* Leapfrogging the streams */
vslLeapfrogStream(stream1, 0, 3);
vslLeapfrogStream(stream2, 1, 3);
vslLeapfrogStream(stream3, 2, 3);

/* Generating random numbers */
…
/* Deleting the streams */
vslDeleteStream(&stream1);
vslDeleteStream(&stream2);
vslDeleteStream(&stream3);
…

stream TYPE(VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream to which the leapfrog 
method is applied.

Example 10-1 FORTRAN Code for Leapfrog Method (continued)
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C:

SkipAheadStream   
Initializes a stream using the block-splitting method.

Syntax

Fortran: 

call vslskipaheadstream( stream, nskip )

C: 

vslSkipAheadStream( stream, nskip )

Description

This function skips a given number of elements in a random stream. This feature is particularly 
useful in distributing random numbers from original random stream across different computational 
nodes. If the largest number of random numbers used by a computational node is nskip, then the 
original random sequence may be split by SkipAheadStream into non-overlapping blocks of 

k INTEGER, INTENT(IN). Index of the 
computational node, or stream number.

nstreams INTEGER, INTENT(IN). Largest number of 
computational nodes, or stride.

stream VSLStreamStatePtr. Pointer to the stream state 
structure to which the leapfrog method is applied.

k int. Index of the computational node, or stream 
number.

nstreams int. Largest number of computational nodes, or 
stride.
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nskip size so that each block corresponds to the respective computational node. The number of 
computational nodes is unlimited. This method is known as the block-splitting method or as the 
skip-ahead method. (see Figure 10-2). 

The skip-ahead method is supported only for those basic generators that allow skipping elements 
by the skip-ahead method, which is more efficient than simply generating them by generator with 
subsequent manual skipping. See  VSL Notes for details.

Please note that for quasi-random basic generators the skip-ahead method works with components 
of quasi-random vectors rather than with whole quasi-random vectors. Thus to skip NS 
quasi-random vectors, set nskip parameter equal to the NS*DIMEN, where DIMEN is the 
dimension of quasi-random vector.

The following code examples illustrate how to initialize three independent streams using  
SkipAheadStream function: 

Figure 10-2 Block-Splitting Method

Example 10-3 FORTRAN Code for Block-Splitting Method 

…
TYPE(VSL_STREAM_STATE)stream1
TYPE(VSL_STREAM_STATE)stream2
TYPE(VSL_STREAM_STATE)stream3

! Creating the 1st stream
call vslnewstream(stream1, VSL_BRNG_MCG31, 174)

! Skipping ahead by 7 elements the 2nd stream
call vslcopystream(stream2, stream1);

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st node stream

2nd node stream

3rd node stream

At node1 the streamcontains 1, 2, 3, 4, 5, 6, 7.
At node2 the streamcontains 8, 9, 10, 11, 12, 13, 14.
At node3 the streamcontains 15, 16, 17, 18, 19, 20, 21.

nskip=7

vslnotes.pdf
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Input Parameters

FORTRAN:

call vslskipaheadstream(stream2, 7);

! Skipping ahead by 7 elements the 3rd stream
call vslcopystream(stream3, stream2);
call vslskipaheadstream(stream3, 7);

! Generating random numbers
…
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)
…

Example 10-4 C Code for Block-Splitting Method

VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;

/* Creating the 1st stream */
vslNewStream(&stream1, VSL_BRNG_MCG31, 174);

/* Skipping ahead by 7 elements the 2nd stream */
vslCopyStream(&stream2, stream1);
vslSkipAheadStream(stream2, 7);

/* Skipping ahead by 7 elements the 3rd stream */
vslCopyStream(&stream3, stream2);
vslSkipAheadStream(stream3, 7);

/* Generating random numbers */
…
/* Deleting the streams */
vslDeleteStream(&stream1);
vslDeleteStream(&stream2);
vslDeleteStream(&stream3);
…

stream TYPE(VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream to which the block-splitting 
method is applied.

Example 10-3 FORTRAN Code for Block-Splitting Method  (continued)
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C:

GetStreamStateBrng   
Returns index of a basic generator used for generation 
of a given random stream.

Syntax

Fortran: 

brng = vslgetstreamstatebrng( stream )

C: 

brng = vslGetStreamStateBrng( stream )

Description

This function retrieves the index of a basic generator used for generation of a given random 
stream.

Input Parameters

FORTRAN:

C:

nskip INTEGER, INTENT(IN). Number of skipped 
elements.

stream VSLStreamStatePtr. Pointer to the stream state 
structure to which the block-splitting method is 
applied.

nskip int. Number of skipped elements.

stream TYPE(VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.
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Output Parameters 

FORTRAN:

C:

GetNumRegBrng   
Obtains the number of currently registered basic 
generators.

Syntax

Fortran: 

nregbrng = vslgetnumregbrngs( )

C: 

nregbrng = vslGetNumRegBrngs( void )

Description

This function obtains the number of currently registered basic generators. Whenever user registers 
a user-designed basic generator the number of registered basic generators is incremented. The 
maximum number of basic generators that can be registered is determined by 
VSL_MAX_REG_BRNGS parameter.

Output Parameters 

FORTRAN:

brng INTEGER. Index of the basic generator assigned for 
the generation of stream ; negative in case of an 
error.

brng int. Index of the basic generator assigned for the 
generation of stream ; negative in case of an error.

nregbrngs INTEGER. The number of basic generators registered 
at the moment of the function call.



10-22

10 Intel® Math Kernel Library Reference Manual

C:

Distribution Generators
This section contains description of VSL subroutines for generating random numbers with 
different types of distribution. Each function group is introduced by the type of underlying 
distribution and contains a short description of its functionality, as well as specifications of the call 
sequence for both FORTRAN and C-interface and the explanation of input and output parameters.
Table 10-2 and Table 10-3 list the random number generator subroutines, together with used data 
types and output distributions.

nregbrngs int. The number of basic generators registered at the 
moment of the function call.

Table 10-2 Continuous Distribution Generators

Type of 
Distribution

Data 
Types

Description

Uniform s, d Uniform continuous distribution on the interval [a,b].

Gaussian s, d Normal (Gaussian) distribution.

GaussianMV s, d Multivariate normal (Gaussian) distribution.

Exponential s, d Exponential distribution.

Laplace s, d Laplace distribution (double exponential distribution).

Weibull s, d Weibull distribution.

Cauchy s, d Cauchy distribution.

Rayleigh s, d Rayleigh distribution.

Lognormal s, d Lognormal distribution.

Gumbel s, d Gumbel (extreme value) distribution.

Table 10-3 Discrete Distribution Generators

Type of Distribution
Data 
Types Description

Uniform i Uniform discrete distribution on the interval [a,b).

UniformBits i Generator of integer random values with uniform bit 
distribution.

Bernoulli i Bernoulli distribution.

Geometric i Geometric distribution.
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Continuous Distributions

This section describes routines for generating random numbers with continuous distribution.

Uniform   
Generates random numbers with uniform distribution.

Syntax

Fortran: 

call vsrnguniform( method, stream, n, r, a, b )

call vdrnguniform( method, stream, n, r, a, b )

C: 

vsRngUniform( method, stream, n, r, a, b )

vdRngUniform( method, stream, n, r, a, b )

Description

This function generates random numbers uniformly distributed over the interval [a, b], where  a, b  
are the left and right bounds of the interval, respectively, and  ;  .

The probability density function is given by:

, .

Binomial i Binomial distribution.

Hypergeometric i Hypergeometric distribution.

Poisson i Poisson distribution.

PoissonV i Poisson distribution with varying mean.

NegBinomial i Negative binomial distribution, or Pascal distribution.

Table 10-3 Discrete Distribution Generators (continued)

Type of Distribution
Data 
Types Description

a b, R∈ a b<

fa b, x( )
1

b a–
-------------, x a b,[ ]∈

0, x a b,[ ]∉�
�
�
�
�

= ∞– x +∞< <
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The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method; 
dummy and set to 0 in case of uniform distribution.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a REAL, INTENT(IN)for vsrnguniform.

DOUBLE PRECISION, INTENT(IN)for 
vdrnguniform. 

Left bound a.

b REAL, INTENT(IN)for vsrnguniform.

DOUBLE PRECISION, INTENT(IN)for 
vdrnguniform. 

Right bound b.

method int. Generation method; dummy and set to 0 in case 
of uniform distribution.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

Fa b, x( )

0, x a<
x a–
b a–
-------------, a x≤ b<

1, x b≥�
�
�
�
�

= ∞– x +∞< <
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Output Parameters 

FORTRAN:

C:

Gaussian   
Generates normally distributed random numbers.

Syntax

Fortran: 

call vsrnggaussian( method, stream, n, r, a, sigma )

call vdrnggaussian( method, stream, n, r, a, sigma )

a float for vsRngUniform.

double for vdRngUniform. 

Left bound a.

b float for vsRngUniform.

double for vdRngUniform. 

Right bound b.

r REAL, INTENT(OUT)for vsrnguniform.

DOUBLE PRECISION, INTENT(OUT)for 
vdrnguniform. 

Vector of n random numbers uniformly distributed 
over the interval [a,b].

r float* for vsRngUniform.

double* for vdRngUniform. 

Vector of n random numbers uniformly distributed 
over the interval [a,b].
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C: 

vsRngGaussian( method, stream, n, r, a, sigma )

vdRngGaussian( method, stream, n, r, a, sigma )

Description

This function generates random numbers with normal  (Gaussian) distribution with mean value  
and standard deviation , where

;  .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

The cumulative distribution function  can be expressed in terms of standard normal 
distribution  as

 .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a
σ

a σ, R∈ σ 0>

fa σ, x( )
1

2πσ
-------------- x a–( )2

2σ2
--------------------–

� �
� �
	 


exp= ∞– x +∞< <

Fa σ, x( )
1

2πσ
-------------- y a–( )2

2σ2
--------------------–

� �
� �
	 


exp yd
∞–

x

�= ∞– x +∞< <

Fa σ, x( )
Φ x( )

Fa σ, x( ) Φ x a–( ) σ⁄( )=
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C:

Output Parameters 

FORTRAN:

a REAL, INTENT(IN)for vsrnggaussian.

DOUBLE PRECISION, INTENT(IN)for 
vdrnggaussian. 

Mean value a.

sigma REAL, INTENT(IN)for vsrnggaussian.

DOUBLE PRECISION, INTENT(IN)for 
vdrnggaussian. 

Standard deviation .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

a float for vsRngGaussian.

double for vdRngGaussian. 

Mean value a.

sigma float for vsRngGaussian.

double for vdRngGaussian. 

Standard deviation .

r REAL, INTENT(OUT)for vsrnggaussian.

DOUBLE PRECISION, INTENT(OUT)for 
vdrnggaussian. 

Vector of n normally distributed random numbers.

σ

σ
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C:

GaussianMV   
Generates random numbers from multivariate normal 
distribution.

Syntax

Fortran: 

call vsrnggaussianmv( method, stream, n, r, dimen, mstorage, a, t )

call vdrnggaussianmv( method, stream, n, r, dimen, mstorage, a, t )

C: 

vsRngGaussianMV( method, stream, n, r, dimen, mstorage, a, T )

vdRngGaussianMV( method, stream, n, r, dimen, mstorage, a, T )

Description

This function generates random numbers with d-variate normal (Gaussian) distribution with mean 
value  and variance-covariance matrix C, where

; C is a symmetric positive-definite matrix.

The probability density function is given by:

, where .

Matrix C can be represented as , where T is a lower triangular matrix - Cholesky factor 
of C.

r float* for vsRngGaussian.

double* for vdRngGaussian. 

Vector of n normally distributed random numbers.

a

a R
d∈ d d×

fa C, x( )
1

det 2πC( )
-------------------------- 1/2 x a–( )TC 1–

x a–( )–( )exp= x R
d∈

C TTT=
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Instead of variance-covariance matrix C the generation subroutines require Cholesky factor of C in 
input. To compute Cholesky factor of the matrix C, a user may call MKL LAPACK routines for 
matrix factorization: ?potrf or ?pptrf for v?RngGaussianMV/v?rnggaussianmv 
subroutines (? means either s or d for single and double precision respectively). See Application 
Notes below for more details.

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of d-dimensional 
random vectors to be generated in a call.

dimen INTEGER, INTENT(IN). Dimension d ( ) of 
output random vectors.

mstorage INTEGER, INTENT(IN). Matrix storage scheme 
for upper triangular matrix  . Subroutine supports 
three matrix storage schemes:

VSL_MATRIX_STORAGE_FULL – all d ×d 
elements of the matrix  are passed, 
however, only the upper triangle part is 
actually used in the subroutine.

VSL_MATRIX_STORAGE_PACKED – upper 
triangle elements of  are packed by rows 
into a one-dimensional array.

VSL_MATRIX_STORAGE_DIAGONAL – only 
diagonal elements of  are passed.

a REAL, INTENT(IN)for vsrnggaussianmv.

DOUBLE PRECISION, INTENT(IN)for 
vdrnggaussianvm. 

Mean vector a of dimension d.

d 1≥

TT

TT

TT

TT
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C:

t REAL, INTENT(IN)for vsrnggaussianmv.

DOUBLE PRECISION, INTENT(IN)for 
vdrnggaussianmv. 

Elements of the upper triangular matrix  passed 
according to the matrix storage scheme mstorage.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

dimen int. Dimension d ( ) of output random 
vectors.

mstorage int. Matrix storage scheme for lower triangular 
matrix  . Subroutine supports three matrix storage 
schemes:

VSL_MATRIX_STORAGE_FULL – all d ×d 
elements of the matrix  are passed, 
however, only the lower triangle part is 
actually used in the subroutine.

VSL_MATRIX_STORAGE_PACKED – lower 
triangle elements of  are packed by 
columns into a one-dimensional array.

VSL_MATRIX_STORAGE_DIAGONAL – only 
diagonal elements of  are passed.

a float* for vsRngGaussianMV.

double* for vdRngGaussianMV. 

Mean vector a of dimension d.

sigma float* for vsRngGaussianMV.

double* for vdRngGaussianMV. 

Elements of the lower triangular matrix  passed 
according to the matrix storage scheme mstorage.

TT

d 1≥

T

T

T

T

T
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Output Parameters 

FORTRAN:

C:

Application Notes

Since matrices are stored in Fortran by columns, while in C they are stored by rows, the usage of 
MKL factorization subroutines (assuming Fortran matrices storage) in combination with 
multivariate normal RNG (assuming C matrix storage) is slightly different in C and Fortran. The 
following tables help in using these subroutines in C and Fortran. For further information please 
refer to the appropriate VSL example file.

r REAL, INTENT(OUT)for vsrnggaussianmv.

DOUBLE PRECISION, INTENT(OUT)for 
vdrnggaussianmv. 

Array of n  random vectors of dimension dimen.

r float* for vsRngGaussianMV.

double* for vdRngGaussianMV. 

Array of n  random vectors of dimension dimen.

Table 10-4 Using Cholesky Factorization Subroutines in Fortran

Matrix Storage Scheme Variance-Covariance 
Matrix Argument

Factorization 
Subroutine

UPLO 
Parameter in 
Factorization 
Subroutine

Result of 
Factorization 
as Input 
Argument for 
RNG

VSL_MATRIX_STORAGE_FULL C in Fortran 
two-dimentional array

spotrf for 
vsrnggaussianmv

dpotrf for 
vdrnggaussianmv

‘U’ Upper triangle 
of . Lower 
triangle is not 
used.

VSL_MATRIX_STORAGE_PACKED Lower triangle of C 
packed by columns 
into one-dimensional 
array

spptrf for 
vsrnggaussianmv

dpptrf for 
vdrnggaussianmv

‘L’ Upper triangle 
of packed 
by rows into 
one-

dimentional 
array.

TT

TT
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Exponential   
Generates exponentially distributed random numbers.

Syntax

Fortran: 

call vsrngexponential( method, stream, n, r, a, beta )

call vdrngexponential( method, stream, n, r, a, beta )

C: 

vsRngExponential( method, stream, n, r, a, beta )

vdRngExponential( method, stream, n, r, a, beta )

Description

This function generates random numbers with exponential distribution that has the displacement  
 and scalefactor  , where ; .

Table 10-5 Using Cholesky Factorization Subroutines in C

Matrix Storage Scheme Variance-Covariance 
Matrix Argument

Factorization 
Subroutine

UPLO 
Parameter in 
Factorization 
Subroutine

Result of 
Factorization 
as Input 
Argument for 
RNG

VSL_MATRIX_STORAGE_FULL C in C two-dimentional 
array

spotrf for 
vsRngGaussianMV

dpotrf for 
vdRngGaussianMV

‘U’ Upper triangle 
of . Lower 
triangle is not 
used.

VSL_MATRIX_STORAGE_PACKED Lower triangle of C 
packed by columns into 
one-dimensional array

spptrf for 
vsRngGaussianMV

dpptrf for 
vdRngGaussianMV

‘L’ Upper triangle 
of packed 
by rows into 
one-

dimentional 
array.

TT

TT

a β a β, R∈ β 0>
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The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a REAL, INTENT(IN)for vsrngexponential.

DOUBLE PRECISION, INTENT(IN)for 
vdrngexponential. 

Displacement a.

beta REAL, INTENT(IN)for vsrngexponential.

DOUBLE PRECISION, INTENT(IN)for 
vdrngexponential. 

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

fa β, x( )
1
β
--- x a–( )–( ) β⁄( ), x a≥exp

0, x a<�
�
�
�
�

= ∞– x +∞< <

Fa β, x( )
1 x a–( )–( ) β⁄( ), x a≥exp–

0, x a<�
�
�

= ∞– x +∞< <

β
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Output Parameters 

FORTRAN:

C:

n int. Number of random values to be generated.

a float for vsRngExponential.

double for vdRngExponential. 

Displacement a.

beta float for vsRngExponential.

double for vdRngExponential. 

Scalefactor .

r REAL, INTENT(OUT)for vsrngexponential.

DOUBLE PRECISION, INTENT(OUT)for 
vdrngexponential. 

Vector of n exponentially distributed random 
numbers.

r float* for vsRngExponential.

double* for vdRngExponential. 

Vector of n exponentially distributed random 
numbers.

β
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Laplace   
Generates random numbers with Laplace distribution.

Syntax

Fortran: 

call vsrnglaplace( method, stream, n, r, a, beta )

call vdrnglaplace( method, stream, n, r, a, beta )

C: 

vsRngLaplace( method, stream, n, r, a, beta )

vdRngLaplace( method, stream, n, r, a, beta )

Description

This function generates random numbers with Laplace distribution with mean value (or average) 
 and scalefactor  , where

;  . The scalefactor value determines the standard deviation as

 .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

a β

a β, R∈ β 0>

σ β 2=

fa β, x( )
1

2β
---------- x a–

β
----------------–� �

	 
exp= ∞– x +∞< <

Fa β, x( )

1
2
--- x a–

β
----------------–

� �
	 
 , x a<exp

1
1
2
--- x a–

β
----------------–

� �
	 
exp– , x a≥

�
�
�
�
�
�
�

= ∞– x +∞< <
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Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a REAL, INTENT(IN)for vsrnglaplace.

DOUBLE PRECISION, INTENT(IN)for 
vdrnglaplace. 

Mean value a.

beta REAL, INTENT(IN)for vsrnglaplace.

DOUBLE PRECISION, INTENT(IN)for 
vdrnglaplace. 

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
descriptor.

n int. Number of random values to be generated.

a float for vsRngLaplace.

double for vdRngLaplace. 

Mean value a.

beta float for vsRngLaplace.

double for vdRngLaplace. 

Scalefactor .

β

β
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Output Parameters 

FORTRAN:

C:

Weibull   
Generates Weibull distributed random numbers.

Syntax

Fortran: 

call vsrngweibull( method, stream, n, r, alpha, a, beta )

call vdrngweibull( method, stream, n, r, alpha, a, beta )

C: 

vsRngWeibull( method, stream, n, r, alpha, a, beta )

vdRngWeibull( method, stream, n, r, alpha, a, beta )

Description

This function generates Weibull distributed random numbers with displacement  , scalefactor  
, and shape , where ; ; .

The probability density function is given by:

r REAL, INTENT(OUT)for vsrnglaplace.

DOUBLE PRECISION, INTENT(OUT)for 
vdrnglaplace. 

Vector of n Laplace distributed random numbers.

r float* for vsRngLaplace.

double* for vdRngLaplace. 

Vector of n Laplace distributed random numbers.

a
β α α β a, , R∈ α 0> β 0>
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The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

alpha REAL, INTENT(IN)for vsrngweibull.

DOUBLE PRECISION, INTENT(IN)for 
vdrngweibull. 

Shape .

a REAL, INTENT(IN)for vsrngweibull.

DOUBLE PRECISION, INTENT(IN)for 
vdrngweibull. 

Displacement a.

fa α β, , x( )

α
βα
------ x a–( )α 1– x a–

β
-------------
� �
	 


α
–� �
	 
 , x a≥exp

0, x a<�
�
�
�
�

=

Fa α β, , x( )
1

x a–
β

-------------
� �
	 


α
–� �
	 
 , x a≥exp–

0, x a<�
�
�
�
�

= ∞– x +∞< <

α
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C:

Output Parameters 

FORTRAN:

beta REAL, INTENT(IN)for vsrngweibull.

DOUBLE PRECISION, INTENT(IN)for 
vdrngweibull. 

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

alpha float for vsRngWeibull.

double for vdRngWeibull. 

Shape .

a float for vsRngWeibull.

double for vdRngWeibull. 

Displacement a.

beta float for vsRngWeibull.

double for vdRngWeibull. 

Scalefactor .

r REAL, INTENT(OUT)for vsrngweibull.

DOUBLE PRECISION, INTENT(OUT)for 
vdrngweibull. 

Vector of n Weibull distributed random numbers.

β

α

β
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C:

Cauchy   
Generates Cauchy distributed random values.

Syntax

Fortran: 

call vsrngcauchy( method, stream, n, r, a, beta )

call vdrngcauchy( method, stream, n, r, a, beta )

C: 

vsRngCauchy( method, stream, n, r, a, beta )

vdRngCauchy( method, stream, n, r, a, beta )

Description

This function generates Cauchy distributed random numbers with displacement  and scalefactor  
, where  ; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

r float* for vsRngWeibull.

double* for vdRngWeibull. 

Vector of n Weibull distributed random numbers.

a
β a β, R∈ β 0>

fa β, x( )
1

πβ 1
x a–

β
-------------
� �
	 


2
+� �

	 

-------------------------------------------= ∞– x +∞< <
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, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a REAL, INTENT(IN)for vsrngcauchy.

DOUBLE PRECISION, INTENT(IN)for 
vdrngcauchy. 

Displacement a.

beta REAL, INTENT(IN)for vsrngcauchy.

DOUBLE PRECISION, INTENT(IN)for 
vdrngcauchy. 

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

a float for vsRngCauchy.

double for vdRngCauchy. 

Displacement a.

beta float for vsRngCauchy.

double for vdRngCauchy. 

Scalefactor .

Fa β, x( )
1
2
--- 1

π
---arctan

x a–
β

-------------
� �
	 
+= ∞– x +∞< <

β

β
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Output Parameters 

FORTRAN:

C:

Rayleigh   
Generates Rayleigh distributed random values.

Syntax

Fortran: 

call vsrngrayleigh( method, stream, n, r, a, beta )

call vdrngrayleigh( method, stream, n, r, a, beta )

C: 

vsRngRayleigh( method, stream, n, r, a, beta )

vdRngRayleigh( method, stream, n, r, a, beta )

Description

This function generates Rayleigh distributed random numbers with displacement  and 
scalefactor  , where  ; .

Rayleigh distribution is a special case of Weibull distribution, where the shape parameter  = 2.

r REAL, INTENT(OUT)for vsrngcauchy.

DOUBLE PRECISION, INTENT(OUT)for 
vdrngcauchy. 

Vector of n Cauchy distributed random numbers.

r float* for vsRngCauchy.

double* for vdRngCauchy. 

Vector of n Cauchy distributed random numbers.

a
β a β, R∈ β 0>

α
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The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a REAL, INTENT(IN)for vsrngrayleigh.

DOUBLE PRECISION, INTENT(IN)for 
vdrngrayleigh. 

Displacement a.

beta REAL, INTENT(IN)for vsrngrayleigh.

DOUBLE PRECISION, INTENT(IN)for 
vdrngrayleigh. 

Scalefactor .

method int. Generation method.

fa β, x( )

2 x a–( )
β2

--------------------- x a–( )
β2

------------------
2

–� �
	 
 , x a≥exp

0, x a<�
�
�
�
�

= ∞– x +∞< <

Fa β, x( )
1

x a–( )
β2

------------------
2

–� �
	 
 , x a≥exp–

0, x a<�
�
�
�
�

= ∞– x +∞< <

β
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Output Parameters 

FORTRAN:

C:

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

a float for vsRngRayleigh.

double for vdRngRayleigh. 

Displacement a.

beta float for vsRngRayleigh.

double for vdRngRayleigh. 

Scalefactor .

r REAL, INTENT(OUT)for vsrngrayleigh.

DOUBLE PRECISION, INTENT(OUT)for 
vdrngrayleigh. 

Vector of n Rayleigh distributed random numbers.

r float* for vsRngRayleigh.

double* for vdRngRayleigh. 

Vector of n Rayleigh distributed random numbers.

β
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Lognormal   
Generates lognormally distributed random numbers.

Syntax

Fortran: 

call vsrnglognormal( method, stream, n, r, a, sigma, b, beta )

call vdrnglognormal( method, stream, n, r, a, sigma, b, beta )

C: 

vsRngLognormal( method, stream, n, r, a, sigma, b, beta )

vdRngLognormal( method, stream, n, r, a, sigma, b, beta )

Discussion

This function generates lognormally distributed random numbers with average of distribution  
and standard deviation of subject normal distribution, displacement , and scalefactor , 
where 

; ; .

The probability density function is given by:

The cumulative distribution function is as follows:

a
σ b β

a σ b β, , , R∈ σ 0> β 0>

fa σ b β, , , x( )
1

σ x b–( ) 2π
--------------------------------- x b–( ) β⁄( ) a–ln[ ] 2

2σ2
----------------------------------------------------–

� �
� �
	 


, x b>exp

0, x b≤�
�
�
�
�

=

Fa σ b β, , , x( )
Φ x b–( ) β⁄( ) a–ln( ) σ⁄( ), x b>
0, x b≤�

�
�

=
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Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a REAL, INTENT(IN)for vsrnglognormal.

DOUBLE PRECISION, INTENT(IN)for 
vdrnglognormal. 

Average a of the subject normal distribution.

sigma REAL, INTENT(IN)for vsrnglognormal.

DOUBLE PRECISION, INTENT(IN)for 
vdrnglognormal. 

Standard deviation  of the subject normal 
distribution.

b REAL, INTENT(IN)for vsrnglognormal.

DOUBLE PRECISION, INTENT(IN)for 
vdrnglognormal. 

Displacement b.

beta REAL, INTENT(IN)for vsrnglognormal.

DOUBLE PRECISION, INTENT(IN)for 
vdrnglognormal. 

Scalefactor value .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

σ

β
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Output Parameters 

FORTRAN:

C:

a float for vsRngLognormal.

double for vdRngLognormal. 

Average a of the subject normal distribution.

sigma float for vsRngLognormal.

double for vdRngLognormal. 

Standard deviation  of the subject normal 
distribution.

b float for vsRngLognormal.

double for vdRngLognormal. 

Displacement b.

beta float for vsRngLognormal.

double for vdRngLognormal. 

Scalefactor value .

r REAL, INTENT(OUT)for vsrnglognormal.

DOUBLE PRECISION, INTENT(OUT)for 
vdrnglognormal. 

Vector of n lognormally distributed random numbers.

r float* for vsRngLognormal.

double* for vdRngLognormal. 

Vector of n lognormally distributed random numbers.

σ

β
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Gumbel   
Generates Gumbel distributed random values.

Syntax

Fortran: 

call vsrnggumbel( method, stream, n, r, a, beta )

call vdrnggumbel( method, stream, n, r, a, beta )

C: 

vsRngGumbel( method, stream, n, r, a, beta )

vdRngGumbel( method, stream, n, r, a, beta )

Description

This function generates Gumbel distributed random numbers with displacement  and scalefactor  
, where  ; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a
β a β, R∈ β 0>

fa β, x( )
1
β
--- x a–

β
-------------
� �
	 
 x a–( ) β⁄( )exp–( )expexp= ∞– x +∞< <

Fa β, x( ) 1 x a–( ) β⁄( )exp–( )exp–= ∞– x +∞< <
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C:

Output Parameters 

FORTRAN:

a REAL, INTENT(IN)for vsrnggumbel.

DOUBLE PRECISION, INTENT(IN)for 
vdrnggumbel. 

Displacement a.

beta REAL, INTENT(IN)for vsrnggumbel.

DOUBLE PRECISION, INTENT(IN)for 
vdrnggumbel. 

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

a float for vsRngGumbel.

double for vdRngGumbel. 

Displacement a.

beta float for vsRngGumbel.

double for vdRngGumbel. 

Scalefactor .

r REAL, INTENT(OUT)for vsrnggumbel.

DOUBLE PRECISION, INTENT(OUT)for 
vdrnggumbel. 

Vector of n random values with Gumbel distribution.

β

β
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C:

Discrete Distributions

This section describes routines for generating random numbers with discrete distribution.

Uniform   
Generates random numbers uniformly distributed over 
the interval .

Syntax

Fortran: 

call virnguniform( method, stream, n, r, a, b )

C: 

viRngUniform( method, stream, n, r, a, b )

Description

This function generates random numbers uniformly distributed over the interval , where  
a, b  are the left and right bounds of the interval, respectively, and  ;  .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

r float* for vsRngGumbel.

double* for vdRngGumbel. 

Vector of n random values with Gumbel distribution.

a b ),[

a b ),[
a b, Z∈ a b<

P X k=( ) 1
b a–
-------------= k a a 1, … , b 1–+,{ }∈



Vector Generators of Statistical Distributions 10

10-51

, .

Input Parameters

FORTRAN:

C:

Output Parameters 

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a INTEGER, INTENT(IN). Left interval bound a.

b INTEGER, INTENT(IN). Right interval bound b.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

a int. Left interval bound a.

b int. Right interval bound b.

r INTEGER, INTENT(OUT). Vector of n random 
values uniformly distributed over the interval [a,b).

r int*. Vector of n random values uniformly 
distributed over the interval [a,b).

Fa b, x( )

0, x a<
x a– 1+
b a–

-----------------------------, a x b<≤

1, x b≥�
�
�
�
�

= x R∈
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UniformBits   
Generates integer random values with uniform bit 
distribution.

Syntax

Fortran: 

call virnguniformbits( method, stream, n, r )

C: 

viRngUniformBits( method, stream, n, r )

Description

This function generates integer random values with uniform bit distribution.The generators of 
uniformly distributed numbers can be represented as recurrence relations over integer values in 
modular arithmetic. Apparently, each integer can be treated as a vector of several bits. In a truly 
random generator, these bits are random, while in pseudorandom generators this randomness can 
be violated. For example, a well known drawback of linear congruential generators is that lower 
bits are less random than higher bits (for example, see [Knuth81]). For this reason, care should be 
taken when using this function. Typically, in a 32-bit LCG only 24 higher bits of an integer value 
can be considered random. See VSL Notes for details.

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method. A 
dummy argument in virnguniformbits. Should 
be zero.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

method int. Generation method. A dummy argument in 
viRngUniformBits. Should be zero.

vslnotes.pdf
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Output Parameters 

FORTRAN:

C:

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

r INTEGER, INTENT(OUT). Vector of n random 
integer numbers. If the stream was generated by a 
64 or a 128-bit generator, each integer value is 
represented by two or four elements of r respectively. 
The number of bytes occupied by each integer is 
contained in the field wordsize of the structure 
VSL_BRNG_PROPERTIES. The total number of bits 
that are actually used to store the value are contained 
in the field nbits of the same structure. See 
“Advanced Service Subroutines” for a more detailed 
discussion of VSL_BRNG_PROPERTIES.

r unsigned int*. Vector of n random integer 
numbers. If the stream was generated by a 64 or a 
128-bit generator, each integer value is represented 
by two or four elements of r respectively. The 
number of bytes occupied by each integer is 
contained in the field WordSize of the structure 
VSLBrngProperties. The total number of bits that 
are actually used to store the value are contained in 
the field NBits of the same structure. See “Advanced 
Service Subroutines” for a more detailed discussion 
of VSLBrngProperties.
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Bernoulli   
Generates Bernoulli distributed random values.

Syntax

Fortran: 

call virngbernoulli( method, stream, n, r, p )

C: 

viRngBernoulli( method, stream, n, r, p )

Description

This function generates Bernoulli distributed random numbers with probability  of a single trial 
success, where

 ; .

A variate is called Bernoulli distributed, if after a trial it is equal to 1 with probability of success p, 
and to 0 with probability 1–p.

The probability distribution is given by:

,

.

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

p

p R∈ 0 p 1≤ ≤

P X 1=( ) p=

P X 0=( ) 1 p–=

Fp x( )

0, x 0<
1 p– , 0 x 1<≤

1, x 1≥�
�
�
�
�

= x R∈
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C:

Output Parameters 

FORTRAN:

C:

Geometric   
Generates geometrically distributed random values.

Syntax

Fortran: 

call virnggeometric( method, stream, n, r, p )

C: 

viRngGeometric( method, stream, n, r, p )

n INTEGER, INTENT(IN). Number of random 
values to be generated.

p DOUBLE PRECISION, INTENT(IN). Success 
probability p of a trial.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

p double. Success probability p of a trial.

r INTEGER, INTENT(OUT). Vector of n Bernoulli 
distributed random values.

r int*. Vector of n Bernoulli distributed random 
values.
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Description

This function generates geometrically distributed random numbers with probability  of a single 
trial success, where ; .

A geometrically distributed variate represents the number of independent Bernoulli trials 
preceding the first success. The probability of a single Bernoulli trial success is p. 

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

p DOUBLE PRECISION, INTENT(IN). Success 
probability p of a trial.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

p double. Success probability p of a trial.

p
p R∈ 0 p 1< <

P X k=( ) p 1 p–( )k⋅= k 0 1, 2, …,{ }∈

Fp x( )
0, x 0<

1 1 p–( ) x 1+
– , x 0≥�

�
�

= x R∈
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Output Parameters 

FORTRAN:

C:

Binomial   
Generates binomially distributed random numbers.

Syntax

Fortran: 

call virngbinomial( method, stream, n, r, ntrial, p )

C: 

viRngBinomial( method, stream, n, r, ntrial, p )

Discussion

This function generates binomially distributed random numbers with number of independent 
Bernoulli trials , and with probability  of a single trial success, where ; , 

.

A binomially distributed variate represents the number of successes in m independent Bernoulli 
trials with probability of a single trial success p.

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

r INTEGER, INTENT(OUT). Vector of n 
geometrically distributed random values.

r int*. Vector of n geometrically distributed random 
values.

m p p R∈ 0 p 1≤ ≤
m N∈

P X k=( ) Cm
kp

k
1 p–( )m k–

= k 0 1, … m,,{ }∈



10-58

10 Intel® Math Kernel Library Reference Manual

, .

Input Parameters

FORTRAN:

C:

Output Parameters 

FORTRAN:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

ntrial INTEGER, INTENT(IN). Number of independent 
trials m.

p DOUBLE PRECISION, INTENT(IN). Success 
probability p of a single trial.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

ntrial int. Number of independent trials m.

p double. Success probability p of a single trial.

r INTEGER, INTENT(OUT). Vector of n binomially 
distributed random values.

Fm p, x( )

0, x 0<

Cm
kp

k
1 p–( )m k–

k 0=

x

� , 0 x m<≤
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�
�
�
�
�
�

= x R∈
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C:

Hypergeometric   
Generates hypergeometrically distributed random 
values.

Syntax

Fortran: 

call virnghypergeometric( method, stream, n, r, l, s, m )

C: 

viRngHypergeometric( method, stream, n, r, l, s, m )

Description

This function generates hypergeometrically distributed random values with lot size , size of 
sampling , and number of marked elements in the lot , where ; 

.

Consider a lot of l elements comprising m “marked” and l-m “unmarked“ elements. A trial 
sampling without replacement of exactly s elements from this lot helps to define the 
hypergeometric distribution, which is the probability that the group of s elements contains exactly 
k marked elements.

The probability distribution is given by:

,  .

The cumulative distribution function is as follows:

r int*. Vector of n binomially distributed random 
values.

l
s m l m s, , N 0{ }∪∈

l max s m,( )≥

P X k=( )
Cm
kCl m–

s k–

Cl
s

---------------------= k max 0, s m l–+( ), … min s m,( ),{ }∈
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Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

l INTEGER, INTENT(IN). Lot size l.

s INTEGER, INTENT(IN). Size of sampling without 
replacement s.

m INTEGER, INTENT(IN). Number of marked 
elements m.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

l int. Lot size l.

s int. Size of sampling without replacement s.

m int. Number of marked elements m.

Fl s m, , x( )

0, x max 0, s m l–+( )<

Cm
kCl m–

s k–

Cl
s

---------------------

k max 0 s m l–+,( )=
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Output Parameters 

FORTRAN:

C:

Poisson   
Generates Poisson distributed random values.

Syntax

Fortran: 

call virngpoisson( method, stream, n, r, lambda )

C: 

viRngPoisson( method, stream, n, r, lambda )

Description

This function generates Poisson distributed random numbers with distribution parameter , where  
; .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

r INTEGER, INTENT(OUT). Vector of n 
hypergeometrically distributed random values.

r int*. Vector of n hypergeometrically distributed 
random values.

λ
λ R∈ λ 0>

P X k=( ) λke λ–

k!
---------------= k 0, 1, 2, …{ }∈
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, .

Input Parameters

FORTRAN:

C:

Output Parameters 

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

lambda DOUBLE PRECISION, INTENT(IN). Distribution 
parameter .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

lambda double. Distribution parameter .

r INTEGER, INTENT(OUT). Vector of n Poisson 
distributed random values.

r int*. Vector of n Poisson distributed values.

Fλ x( )
λke λ–

k!
---------------
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PoissonV   
Generates Poisson distributed random values with 
varying mean.

Syntax

Fortran: 

call virngpoissonv( method, stream, n, r, lambda )

C: 

viRngPoissonV( method, stream, n, r, lambda )

Description

This function generates n Poisson distributed random numbers  with 
distribution parameter , where  ; .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

xi i 1, …, n=( )
λi λi R∈ λ i 0>

P Xi k=( )
λi
k
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C:

Output Parameters 

FORTRAN:

C:

NegBinomial   
Generates random numbers with negative binomial 
distribution.

Syntax

Fortran: 

call virngnegbinomial( method, stream, n, r, a, p )

C: 

viRngNegBinomial( method, stream, n, r, a, p )

n INTEGER, INTENT(IN). Number of random 
values to be generated.

lambda DOUBLE PRECISION, INTENT(IN). Array of n 
distribution parameters .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

n int. Number of random values to be generated.

lambda double*. Array of n distribution parameters .

r INTEGER, INTENT(OUT). Vector of n Poisson 
distributed random values.

r int*. Vector of n Poisson distributed random 
values.

λi

λi
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Description

This function generates random numbers with negative binomial distribution and distribution 
parameters  and ., where  ; ;  .

If the first distribution parameter , this distribution is the same as Pascal distribution. If 
, the distribution can be interpreted as the expected time of -th success in a sequence of 

Bernoulli trials, when the probability of success is .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). 
Descriptor of the stream state structure.

n INTEGER, INTENT(IN). Number of random 
values to be generated.

a DOUBLE PRECISION, INTENT(IN). The first 
distribution parameter a.

p DOUBLE PRECISION, INTENT(IN). The second 
distribution parameter p.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream state 
structure.

a p p a, R∈ 0 p 1< < a 0>
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Output Parameters 

FORTRAN:

C:

Advanced Service Subroutines
This section describes service subroutines for registering a user-designed basic generator 
(RegisterBrng) and for obtaining properties of the previously registered basic generators 
(GetBrngProperties).  See VSL Notes (“Basic Generators” section of VSL Structure chapter) 
for substantiation of the need for several basic generators including user-defined BRNGs. 

Data types

The subroutines of this section refer to a structure defining the properties of the basic generator. 
This structure is described in Fortran as follows:

TYPE VSL_BRNG_PROPERTIES

INTEGER streamstatesize

INTEGER nseeds

INTEGER includeszero

INTEGER wordsize

INTEGER nbits

INTEGER initstream

INTEGER sbrng

INTEGER dbrng

INTEGER ibrng

n int. Number of random values to be generated.

a double. The first distribution parameter a.

p double. The second distribution parameter p.

r INTEGER, INTENT(OUT). Vector of n random 
values with negative binomial distribution.

r int*. Vector of n random values with negative 
binomial distribution.
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END TYPE VSL_BRNG_PROPERTIES

The C version is as follows:

typedef struct _VSLBRngProperties {

int StreamStateSize;

int NSeeds;

int IncludesZero;

int WordSize;

int NBits;

InitStreamPtr InitStream;

sBRngPtr sBRng;

dBRngPtr dBRng;

iBRngPtr iBRng;

} VSLBRngProperties;

The following table provides brief descriptions of the fields engaged in the above structure:

Table 10-6 Field Descriptions 

Field Short Description

FORTRAN:

streamstatesize

C:

StreamStateSize

The size, in bytes, of the stream state structure 
for a given basic generator.

FORTRAN:

nseeds

C:

NSeeds

The number of 32-bit initial conditions (seeds) 
necessary to initialize the stream state structure 
for a given basic generator.

FORTRAN:

includeszero

C:

IncludesZero

Flag value indicating whether the generator can 
produce a random 01.

FORTRAN:

wordsize

C:

WordSize

Machine word size, in bytes, used in 
integer-value computations. Possible values: 4, 
8, and 16 for 32, 64, and 128-bit generators, 
respectively.
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FORTRAN:

nbits

C:

NBits

The number of bits required to represent a 
random value in integer arithmetic. Note that, for 
instance, 48-bit random values are stored to 
64-bit (8 byte) memory locations. In this case, 
WordSize is equal to 8 (number of bytes used 
to store the random value), while NBits 
contains the actual number of bits occupied by 
the value (in this example, 48).

FORTRAN:

initstream

C:

InitStream

Contains the pointer to the initialization 
subroutine of a given basic generator. 

FORTRAN:

sbrng

C:

sBRng

Contains the pointer to the basic generator of 
single precision real numbers uniformly 
distributed over the interval (a,b) (REAL in 
FORTRAN and float in C).

FORTRAN:

dbrng

C:

dBRng

Contains the pointer to the basic generator of 
double precision real numbers uniformly 
distributed over the interval (a,b) (DOUBLE
PRECISION in FORTRAN and double in C).

FORTRAN:

ibrng

C:

iBRng

Contains the pointer to the basic generator of 
integer numbers with uniform bit distribution2 
(INTEGER in FORTRAN and unsigned int 
in C).

1. Certain types of generators, for example, generalized feedback shift registers can potentially 
generate a random 0. On the other hand, generators like multiplicative congruential generators never 
generate such a number. In most cases this information is irrelevant because the chance of 
generating a zero value is small. However, in certain non-uniform distribution generators the 
possibility for a basic generator to produce a random zero may lead to generation of an infinitely 
large number (overflow). Even though the software handles overflows correctly, so that they may be 
interpreted as +∞ and −∞, the user has to be careful and verify the final results. If an infinitely large 
number may affect the computation, the user should either remove such numbers from the 
generated vector, or use safe generators, which do not produce random 0.

2. A specific generator that permits operations over single bits and bit groups of random numbers.

Table 10-6 Field Descriptions  (continued)

Field Short Description
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RegisterBrng    
Registers user-defined basic generator.

Syntax

Fortran: 

brng = vslregisterbrng( properties )

C: 

brng = vslRegisterBrng( properties )

Description

An example of a registration procedure can be found in the respective directory of VSL examples.

Input Parameters

FORTRAN:

C:

Output Parameters 

FORTRAN:

properties TYPE (VSL_BRNG_PROPERTIES),
INTENT(IN). Structure containing properties of 
the basic generator to be registered.

properties VSLBrngProperties*. Structure containing 
properties of the basic generator to be registered.

brng INTEGER. The number (index) of the registered 
basic generator; used for identification. Negative 
values indicate the registration error.
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C:

GetBrngProperties   
Returns structure with properties of a given basic 
generator.

Syntax

Fortran: 

call vslgetbrngproperties( brng, properties )

C: 

call vslGetBrngProperties( brng, properties )

Input Parameters

FORTRAN:

C:

Output Parameters 

FORTRAN:

brng int. The number (index) of the registered basic 
generator; used for identification. Negative values 
indicate the registration error.

brng INTEGER, INTENT(IN). Number (index) of the 
registered basic generator.

brng int. Number (index) of the registered basic 
generator.

properties TYPE (VSL_BRNG_PROPERTIES),

INTENT(OUT). Structure containing properties 
of the generator with number brng.
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C:

Formats for User-Designed Generators
To register a user-designed basic generator using RegisterBrng function, you need to pass the 
pointer iBrng to the integer-value implementation of the generator; the pointers sBrng and 
dBrng to the generator implementations for single and double precision values, respectively; and 
pass the pointer InitStream to the stream initialization subroutine. This section contains 
recommendations on defining such functions with input and output arguments. An example of the 
registration procedure for a user-designed generator can be found in the respective directory of 
VSL examples.

The respective pointers are defined as follows:

typedef int (*InitStreamPtr)( int method, void * stream, int n,

const unsigned int params[] );

typedef void (*sBRngPtr)( void * stream, int n, float r[],

float a, float b );

typedef void (*dBRngPtr)( void * stream, int n, double r[],

double a, double b );

typedef void (*iBRngPtr)( void * stream, int n,

unsigned int r[] );

InitStream

FORTRAN:

INTEGER FUNCTION mybrnginitstream( method, stream, n, params )

INTEGER, INTENT (IN) :: method

TYPE(MYSTREAM_STATE), INTENT (INOUT):: stream

INTEGER, INTENT (IN) :: n

INTEGER, INTENT (IN) :: params

! Initialize the stream

…

properties VSLBrngProperties*. Structure containing 
properties of the generator with number brng.
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END SUBROUTINE mybrnginitstream

C:

int MyBrngInitStream( int method, VSLStreamStatePtr stream,

int n, const unsigned int params[] )

{

/* Initialize the stream */

…

} /* MyBrngInitStream */

Description

The initialization subroutine of a user-designed generator must initialize stream according to the 
specified initialization method, initial conditions params and the argument n. The value of 
method determines the initialization method to be used. 

• If method is equal to 0, the initialization is by the standard generation method, which must be 
supported by all basic generators. In this case the function assumes that the stream structure 
was not previously initialized. The value of n is used as the actual number of 32-bit values 
passed as initial conditions through params. Note, that the situation when the actual number 
of initial conditions passed to the function is not sufficient to initialize the generator is not an 
error. Whenever it occurs, the basic generator must initialize the missing conditions using 
default settings.

• If method is equal to 1, the generation is by the leapfrog method, where n specifies the 
number of computational nodes (independent streams). Here the function assumes that the 
stream was previously initialized by the standard generation method. In this case params 
contains only one element, which identifies the computational node. If the generator does not 
support the leapfrog method, the function must return the error code 
VSL_ERROR_LEAPFROG_UNSUPPORTED. 

• If method is equal to 2, the generation is by the block-splitting method. Same as above, the 
stream is assumed to be previously initialized by the standard generation method; params is 
not used, n identifies the number of skipped elements. If the generator does not support the 
block-splitting method, the function must return the error code 
VSL_ERROR_SKIPAHEAD_UNSUPPORTED.

For a more detailed description of the leapfrog and the block-splitting methods, refer to the 
description of LeapfrogStream and SkipAheadStream, respectively.
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Stream state structure is individual for every generator. However, each structure has a number of 
fields that are the same for all the generators:

FORTRAN:

type(mystream_state)

INTEGER*4 reserved1

INTEGER*4 reserved2

INTEGER*4 reserved3

INTEGER*4 reserved4

[ fields specific for the given generator ]

end type mystream_state

C:

typedef struct

{

uint64Reserved1;

uint64Reserved2;

[ fields specific for the given generator ]

} MyStreamState

The fields Reserved1 and Reserved2 are reserved for private needs only, and must not be 
modified by the user. When including specific fields into the structure, follow the rules below:

• The fields must fully describe the current state of the generator. For example, the state of a 
linear congruential generator can be identified by only one initial condition;

• If the generator can use both the leapfrog and the block-splitting methods, additional fields 
should be introduced to identify the independent streams. For example, in , 
apart from the initial conditions, two more fields should be specified: the value of the 
multiplier  and the value of the increment . 

For a more detailed discussion, refer to [Knuth81], and [Gentle98]. An example of the registration 
procedure can be found in the respective directory of VSL examples.

iBRng

FORTRAN:

SUBROUTINE imybrng( stream, n, r )

LCG a c m, ,( )

ak ak 1–( )c a 1–( )⁄
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TYPE(MYSTREAM_STATE), INTENT(INOUT):: stream

INTEGER, INTENT(IN) :: n

INTEGER, DIMENSION(*), INTENT(OUT) :: r

! Generating integer random numbers

! Pay attention to word size needed to

! store one random number

DO i = 1, n

R(I) = …

END DO

! Update stream state

END SUBROUTINE imybrng

C:

void iMyBrng( VSLStreamStatePtr stream, int n,

unsigned int r[] )

{

int i; /* Loop variable */

/* Generating integer random numbers */

/* Pay attention to word size needed to

store only random number */

for( i = 0; i < n; i++ )

{

r[i] = …

}

/* Update stream state */

…

} /* iMyBrng */
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sBRng

FORTRAN:

SUBROUTINE smybrng( stream, n, r, a, b )

TYPE(MYSTREAM_STATE), INTENT(INOUT):: stream

INTEGER, INTENT(IN) :: n

REAL, DIMENSION(n), INTENT(OUT) :: r

REAL, INTENT(IN) :: a

REAL, INTENT(IN) :: b

! Generating real (a,b) random numbers

DO i = 1, n

R(I) = …

END DO

! Update stream state

END SUBROUTINE smybrng

C:

void sMyBrng( VSLStreamStatePtr stream, int n, float r[],

float a, float b )

{

int i; /* Loop variable */

/* Generating float (a,b) random numbers */

for ( i = 0; i < n; i++ )

{

r[i] = …

}

NOTE.  When using 64 and 128-bit generators, consider digit 
capacity to store the numbers to the random vector r correctly. For 
example, storing one 64-bit value requires two elements of r , the first 
to store the lower 32 bits and the second to store the higher 32 bits. 
Similarly, use 4 elements of r to store a 128-bit value. 
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/* Update stream state */

…

} /* sMyBrng */

dBRng

FORTRAN:

SUBROUTINE dmybrng( stream, n, r, a, b )

TYPE(MYSTREAM_STATE), INTENT(INOUT) :: stream

INTEGER, INTENT(IN) :: n

DOUBLE PRECISION, DIMENSION(n), INTENT(OUT) :: r

REAL, INTENT(IN) :: a

REAL, INTENT(IN) :: b

! Generating double precision (a,b) random numbers

DO i = 1, n

R(I) = …

END DO

! Update stream state

…

END SUBROUTINE dmybrng

C:

void dMyBrng( VSLStreamStatePtr stream, int n, double r[],

double a, double b )

{

int i; /* Loop variable */

/* Generating double (a,b) random numbers */

for ( i = 0; i < n; i++ )

{

r[i] = …

}

/* Update stream state */

…

} /* dMyBrng */



11-1

Discrete Fourier Transform 
Functions 11

This chapter describes the set of Discrete Fourier ransform (DFT) functions implemented in 
Intel MKL, which present a uniform and easy-to-use Applications Programmer Interface  
providing fast computation of DFT via the Fast Fourier Transform (FFT) algorithm.

The Discrete Fourier Transform function library of Intel MKL provides one-dimensional, 
two-dimensional, and multi-dimensional (up to the order of 7) routines and both Fortran- and 
C-interfaces for all transform functions. 

For compatibility with previous versions, Intel MKL still supports the older FFT interface  
described in chapter 12 of this manual, but users of this code are encouraged to migrate to the new 
advanced DFT functions in their application programs for both performance and flexibility. Unlike 
the older FFT routines, the DFT functions support transform lengths of other than powers of 2 
mixed radix.

The full list of DFT functions implemented in Intel MKL is given in the table below:

Table 11-1 DFT Functions in Intel MKL

Function Name Operation

    Descriptor Manipulation Functions

DftiCreateDescriptor Allocates memory for the descriptor data structure and 
instantiates it with  default configuration settings.

DftiCommitDescriptor Performs all initialization that facilitates the actual DFT 
computation.

DftiCopyDescriptor Copies an existing descriptor.

DftiFreeDescriptor Frees memory allocated for a descriptor.

    DFT Computation Functions

DftiComputeForward Computes the forward DFT.

DftiComputeBackward Computes the backward DFT.
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Description of DFT functions is followed by discussion of configuration settings (see 
Configuration Settings) and various configuration parameters used.

Computing DFT
DFT functions described later in this chapter are implemented  in Fortran and C interface. Fortran 
stands for Fortran 95. DFT interface relies critically on many modern features offered in Fortran 
95 that have no counterpart in Fortran 77 

The materials presented in this chapter assume the availability of native complex types in C as they 
are specified in C9X. 

You can find example code that uses DFT interface functions to compute transform results in 
“DFT Code Examples” section in the appendix.

For most common situations, we expect a DFT computation can be effected by four function calls. 
The approach adopted in Intel MKL for DFT computation uses one single data structure, the 
descriptor, to record flexible configuration whose parameters can be changed independently. This 
results in enhanced functionality and ease of use.

The record of type DFTI_DESCRIPTOR, when created, contains information about the length and 
domain of the DFT to be computed, as well as the setting of a rather large number of configuration 
parameters. The default settings for all of these parameters include, for example, the following:

    Descriptor Configuration Functions

DftiSetValue Sets one particular configuration parameter with the 
specified configuration value.

DftiGetValue Gets the configuration value of one particular configuration 
parameter.

    Status Checking Functions

DftiErrorClass Checks if the status reflects an error of a predefined class.

DftiErrorMessage Generates an error message.

NOTE.  Following the explicit function interface in Fortran, data array 
must be defined as one-dimensional for any transformation type.

Table 11-1 DFT Functions in Intel MKL (continued)

Function Name Operation
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• the DFT to be computed does not have a scale factor; 

• there is only one set of data to be transformed; 

• the data is stored contiguously in memory; 

• the forward transform is defined to be the formula using  rather than

  ; 

• complex data is stored in the native complex data type; 

• the computed result overwrites (in place) the input data; etc.

Should any one of these many default settings be inappropriate, they can be changed one-at-a-time 
through the function DftiSetValue as illustrated in the Example C-17 and Example C-18. 

DFT Interface
To use the DFT functions, you need to access the module MKL_DFTI through the "use" statement 
in Fortran; or access the header file mkl_dfti.h through "include" in C. 

The Fortran interface provides a derived type DFTI_DESCRIPTOR; a number of named constants 
representing various names of configuration parameters and their possible values; and a number of 
overloaded functions through the generic functionality of Fortran 95. 

The C interface provides a structure type DFTI_DESCRIPTOR, a macro definition

#define DFTI_DESCRIPTOR_HANDLE DFTI_DESCRIPTOR *;

a number of named constants of two enumeration types DFTI_CONFIG_PARAM and 
DFTI_CONFIG_VALUE; 
and a number of functions, some of which accept different number of input arguments.

NOTE.  Some of the functions and/or functionality described in the 
subsequent sections of this chapter may not be supported by the 
currently available implementation of the library. You can find the 
complete list of the implementation-specific exceptions in the release 
notes to your version of the library.

e i2πjk n⁄–

e+i2πjk n⁄
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There are four main categories of DFT functions in Intel MKL:

1. Descriptor Manipulation. There are four functions in this category. The first one, 
DftiCreateDescriptor, creates a DFT descriptor whose storage is allocated dynamically 
by the routine. This function configures the descriptor with default settings corresponding to a 
few input values supplied by the user.

The second, DftiCommitDescriptor, "commits" the descriptor to all its setting. In 
practice, this usually means that all  the necessary precomputation will be performed. This 
may include factorization of the input length and computation of all the required twiddle 
factors. The third function, DftiCopyDescriptor, makes an extra copy of a descriptor, and 
the fourth function, DftiFreeDescriptor, frees up all the memory allocated for the 
descriptor information.

2. DFT Computation. There are two functions in this category. The first, 
DftiComputeForward, effects a forward DFT computation, and the second function, 
DftiComputeBackward, performs a backward DFT computation.

3. Descriptor configuration. There are two functions in this category. One function, 
DftiSetValue, sets one specific value to one of the many configuration parameters that are 
changeable (a few are not); the other, DftiGetValue, gets the current value of any one of 
these configuration parameters (all are readable). These parameters, though many, are 
handled one-at-a-time.

4. Status Checking. The functions described in the three categories above return an integer 
value denoting the status of the operation. 
In particular, a non-zero return value always indicates a problem of some sort. Envisioned to 
be further enhanced in later releases of Intel MKL, DFT interface at present provides for one 
logical status class function, DftiErrorClass, and a simple status message generation 
function, DftiErrorMessage.

Status Checking Functions
All of the descriptor manipulation, DFT computation, and descriptor configuration functions 
return an integer value denoting the status of the operation. Two functions serve to check the 
status. The first function is a logical function that checks if the status reflects an error of a 
predefined class, and the second is an error message function that returns a character string.
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ErrorClass   
Checks if the status reflects an error of a predefined 
class.

Syntax
! Fortran

Predicate = DftiErrorClass( Status, Error_Class )

/* C */

predicate = DftiErrorClass( status, error_class );

Description

DFT interface in Intel MKL provides a set of predefined error class listed in Table 11-2. These are 
named constants and have the type INTEGER in Fortran and long in C. 

Note that the correct usage is to check if the status returns .TRUE. or .FALSE. through the use of 
DFTI_ERROR_CLASS with a specific error class. Direct comparison of a status with the predefined 
class is an incorrect usage. See Example C-19 on a correct use of the status checking functions.

Table 11-2 Predefined Error Class

Named Constants Comments

DFTI_NO_ERROR No error

DFTI_MEMORY_ERROR Usually associated with memory allocation

DFTI_INVALID_CONFIGURATION Invalid settings of one or more configuration parameters

DFTI_INCONSISTENT_CONFIGURATION Inconsistent configuration or input parameters

DFTI_NUMBER_OF_THREADS_ERROR Number of OMP threads in the computation function is 
not equal to the number of OMP threads in the 
initialization stage (commit function)

DFTI_MULTITHREADED_ERROR Usually associated with OMP routine’s error return 
value

DFTI_BAD_DESCRIPTOR Descriptor is unusable for computation

DFTI_UNIMPLEMENTED Unimplemented legitimate settings; implementation 
dependent

DFTI_MKL_INTERNAL_ERROR Internal library error
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Interface and prototype
//Fortran interface

INTERFACE DftiErrorClass

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_8( Status, Error_Class )

LOGICAL some_actual_function_8

INTEGER, INTENT(IN) :: Status, Error_Class

END FUNCTION some_actual_function_8

END INTERFACE DftiErrorClass

/* C prototype */

long DftiErrorClass( long , long );

ErrorMessage   
Generates an error message.

Syntax
! Fortran

ERROR_MESSAGE = DftiErrorMessage( Status )

/* C */

error_message = DftiErrorMessage( status );

Description

The error message function generates an error message character string. The maximum length of 
the string in Fortran is given by the named constant DFTI_MAX_MESSAGE_LENGTH. The actual 
error message is implementation dependent. In Fortran, the user needs to use a character string of 
length DFTI_MAX_MESSAGE_LENGTH as the target. In C, the function returns a pointer to a 
character string, that is, a character array with the delimiter ' 0'.
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Example C-19 shows how this function can be implemented. 

Interface and prototype
//Fortran interface

INTERFACE DftiErrorMessage

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_9( Status, Error_Class )

CHARACTER(LEN=DFTI_MAX_MESSAGE_LENGTH) some_actual_function_9( Status )

INTEGER, INTENT(IN) :: Status

END FUNCTION some_actual_function_9

END INTERFACE DftiErrorMessage

/* C prototype */

char *DftiErrorMessage( long );

Descriptor Manipulation
There are four functions in this category: create a descriptor, commit a descriptor, copy a 
descriptor, and free a descriptor.

CreateDescriptor   
Allocates memory for the descriptor data structure and 
instantiates it with  default configuration settings.

Syntax
! Fortran
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Status = DftiCreateDescriptor( Desc_Handle, &
Precision, &
Forward_Domain, &
Dimension, &
Length )

/* C */

status = DftiCreateDescriptor( &desc_handle,
precision,
forward_domain,
dimension,
length );

Description

This function allocates memory for the descriptor data structure and instantiates it with all the 
default configuration settings with respect to the precision, domain, dimension, and length of the 
desired transform. The domain is understood to be the domain of the forward transform. Since 
memory is allocated dynamically, the result is actually a pointer to the created descriptor. This 
function is slightly different from the "initialization" routine in more traditional software packages 
or libraries used for computing DFT. In all likelihood, this function will not perform any 
significant computation work such as twiddle factors computation, as the default configuration 
settings can still be changed upon user's request through the value setting function 
DftiSetValue.

The precision and (forward) domain are specified through named constants provided in DFT 
interface for the configuration values. The choices for precision are DFTI_SINGLE and 
DFTI_DOUBLE; and the choices for (forward) domain are DFTI_COMPLEX, DFTI_REAL, and 
DFTI_CONJUGATE_EVEN. See Table 11-5 for the complete table of named constants for 
configuration values.

Dimension is a simple positive integer indicating the dimension of the transform. Length is either 
a simple positive integer for one-dimensional transform, or an integer array (pointer in C) 
containing the positive integers corresponding to the lengths dimensions for multi-dimensional 
transform.

The function returns DFTI_NO_ERROR when completes successfully. See 
Status Checking Functions for more information on returned status.

Interface and prototype
!Fortran interface.

INTERFACE DftiCreateDescriptor



Discrete Fourier Transform Functions 11

11-9

!Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the keyword INTERFACE

FUNCTION some_actual_function_1D( Desc_Handle, Prec, Dom, Dim, Length )

INTEGER :: some_actual_function_1D

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Prec, Dom

INTEGER, INTENT(IN) :: Dim, Length

END FUNCTION some_actual_function_1D

FUNCTION some_actual_function_HIGHD( Desc_Handle, Prec, Dom, Dim, Length )

INTEGER :: some_actual_function_HIGHD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Prec, Dom

INTEGER, INTENT(IN) :: Dim, Length(*)

END FUNCTION some_actual_function_HIGHD

END INTERFACE DftiCreateDescriptor

Note that the function is overloaded as the actual argument for Length can be a scalar or a a 
rank-one array.

/* C prototype */

long DftiCreateDescriptor( DFTI_DESCRIPTOR_HANDLE *,
DFTI_CONFIG_PARAM ,
DFTI_CONFIG_PARAM ,
long ,
... );

The variable arguments facility is used to cope with the argument for lengths that can be a scalar 
(long), or an array (long *).
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CommitDescriptor   
Performs all initialization that facilitates the actual 
DFT computation.

Syntax
! Fortran

Status = DftiCommitDescriptor( Desc_Handle )

/* C */

status = DftiCommitDescriptor( desc_handle );

Description

The interface requires a function that commits a previously created descriptor be invoked before 
the descriptor can be used for DFT computations. Typically, this committal performs all 
initialization that facilitates the actual DFT computation. For a modern implementation, it may 
involve exploring many different factorizations of the input length to search for highly efficient 
computation method.

Any changes of configuration parameters of a committed descriptor via the set value function (see 
Descriptor Configuration) requires a re-committal of the descriptor before a computation function 
can be invoked. Typically, this committal function call is immediately followed by a computation 
function call (see DFT Computation).

The function returns DFTI_NO_ERROR when completes successfully. See 
Status Checking Functions for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiCommitDescriptor

!Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the

!keyword INTERFACE

FUNCTION some_actual function_1 ( Desc_Handle )

INTEGER :: some_actual function_1
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TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

END FUNCTION some_actual function_1

END INTERFACE DftiCommitDescriptor

/* C prototype */

long DftiCommitDescriptor( DFTI_DESCRIPTOR_HANDLE );

CopyDescriptor   
Copies an existing descriptor.

Syntax
! Fortran

Status = DftiCopyDescriptor( Desc_Handle_Original,
Desc_Handle_Copy )

/* C */

status = DftiCopyDescriptor( desc_handle_original,
&desc_handle_copy );

Description

This function makes a copy of an existing descriptor and provides a pointer to it. The purpose is 
that all information of the original descriptor will be maintained even if the original is destroyed 
via the free descriptor function DftiFreeDescriptor.

The function returns DFTI_NO_ERROR when completes successfully. See 
Status Checking Functions for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiCopyDescriptor

! Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the

!keyword INTERFACE
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FUNCTION some_actual_function_2( Desc_Handle_Original,
Desc_Handle_Copy )

INTEGER :: some_actual_function_2

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Original, Desc_Handle_Copy

END FUNCTION some_actual_function_2

END INTERFACE DftiCopyDescriptor

/* C prototype */

long DftiCopyDescriptor( DFTI_DESCRIPTOR_HANLDE, DFTI_DESCRIPTOR_HANDLE * );

FreeDescriptor   
Frees memory allocated for a descriptor.

Syntax
! Fortran

Status = DftiFreeDescriptor( Desc_Handle )

/* C */

status = DftiFreeDescriptor( &desc_handle );

Description

This function frees up all memory space allocated for a descriptor. 

The function returns DFTI_NO_ERROR when completes successfully. See 
Status Checking Functions for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiFreeDescriptor

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE
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FUNCTION some_actual_function_3( Desc_Handle )

INTEGER :: some_actual_function_3

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

END FUNCTION some_actual_function_3

END INTERFACE DftiFreeDescriptor

/* C prototype */

long DftiFreeDescriptor( DFTI_DESCRIPTOR_HANDLE * );

DFT Computation
There are two functions in this category: compute the forward transform, and compute the 
backward transform.

ComputeForward   
Computes the forward DFT.

Syntax
! Fortran

Status = DftiComputeForward( Desc_Handle, X_inout )

Status = DftiComputeForward( Desc_Handle, X_in, X_out )

Status = DftiComputeForward( Desc_Handle, X_inout, Y_inout )

Status = DftiComputeForward( Desc_Handle, X_in, Y_in, X_out, Y_out )

/* C */

status = DftiComputeForward( desc_handle, x_inout );

status = DftiComputeForward( desc_handle, x_in, x_out );

status = DftiComputeForward( desc_handle, x_inout, y_inout );

status = DftiComputeForward( desc_handle, x_in, y_in, x_out, y_out );
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Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT can 
be performed. The DftiComputeForward function computes the forward DFT. By default, this 
is the transform using the factor  (instead of the one with a positive sign). Because of the 
flexibility in configuration, input data can be represented in various ways as well as output result 
can be placed differently. Consequently, the number of input parameters as well as their type vary. 
This variation is accommodated by the generic function facility of Fortran 95. Data and result 
parameters are all declared as assumed-size rank-1 array DIMENSION(0:*).

The function returns DFTI_NO_ERROR when completes successfully. See 

Status Checking Functions for more information on returned status.

Interface and prototype
//Fortran interface.

INTERFACE DftiComputeFoward

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

// One argument single precision complex

FUNCTION some_actual_function_4_C( Desc_Handle, X )

INTEGER :: some_actual_function_4_C

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_4_C

// One argument double precision complex

FUNCTION some_actual_function_4_Z( Desc_Handle, X )

INTEGER :: some_actual_function_4_Z

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_4_Z

// One argument single precision real

FUNCTION some_actual_function_4_R( Desc_Handle, X )

e i2π n⁄–
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INTEGER :: some_actual_function_4_R

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_4_R

// One argument double precision real

...

// Two argument single precision complex

...

...

// Four argument double precision real

FUNCTION some_actual_function_4_DDDD( Desc_Handle, X1_In, X2_In,
Y1_Out, Y2_Out )

INTEGER :: some_actual_function_4_DDDD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL (Kind(0D0)), INTENT(IN) :: X1_In(*), X2_In(*)

REAL (Kind(0D0)), INTENT(OUT) :: Y1_Out(*), Y2_Out(*)

END FUNCTION some_actual_function_4_DDDD

END INTERFACE DftiComputeFoward

/* C prototype */

long DftiComputeForward( DFTI_DESCRIPTOR_HANDLE,
void *,

... );

The implementations of DFT interface expect the data be treated as data stored linearly in memory 
with a regular "stride" pattern (discussed more fully in Strides,  see also [3]). The function expects 
the starting address of the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments 
and of what type should be present. The implementation could use this information to check 
against possible input inconsistency.
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ComputeBackward   
Computes the backward DFT.

Syntax
! Fortran

Status = DftiComputeBackward( Desc_Handle, X_inout )

Status = DftiComputeBackward( Desc_Handle, X_in, X_out )

Status = DftiComputeBackward( Desc_Handle, X_inout, Y_inout )

Status = DftiComputeBackward( Desc_Handle, X_in, Y_in, X_out, Y_out )

/* C */

status = DftiComputeBackward( desc_handle, x_inout );

status = DftiComputeBackward( desc_handle, x_in, x_out );

status = DftiComputeBackward( desc_handle, x_inout, y_inout );

status = DftiComputeBackward( desc_handle, x_in, y_in, x_out, y_out );

Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT can 
be performed. The DftiComputeBackward function computes the backward DFT. 

By default, this is the transform using the factor  (instead of the one with a negative 
sign). Because of the flexibility in configuration, input data can be represented in various ways as 
well as output result can be placed differently. Consequently, the number of input parameters as 
well as their type vary. This variation is accommodated by the generic function facility of Fortran 
95. Data and result parameters are all declared as assumed-size rank-1 array DIMENSION(0:*).
The function returns DFTI_NO_ERROR when completes successfully. See 
Status Checking Functions for more information on returned status.

Interface and prototype
//Fortran interface.

INTERFACE DftiComputeBackward

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

ei2π n⁄
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//keyword INTERFACE

// One argument single precision complex

FUNCTION some_actual_function_5_C( Desc_Handle, X )

INTEGER :: some_actual_function_5_C

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_5_C

// One argument double precision complex

FUNCTION some_actual_function_5_Z( Desc_Handle, X )

INTEGER :: some_actual_function_5_Z

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_5_Z

// One argument single precision real

FUNCTION some_actual_function_5_R( Desc_Handle, X )

INTEGER :: some_actual_function_5_R

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_5_R

// One argument double precision real

...

// Two argument single precision complex

...

...

// Four argument double precision real

FUNCTION some_actual_function_5_DDDD( Desc_Handle, X1_In, X2_In,
Y1_Out, Y2_Out )

INTEGER :: some_actual_function_5_DDDD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL (Kind(0D0)), INTENT(IN) :: X1_In(*), X2_In(*)

REAL (Kind(0D0)), INTENT(OUT) :: Y1_Out(*), Y2_Out(*)

END FUNCTION some_actual_function_5_DDDD
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END INTERFACE DftiComputeBackward

/* C prototype */

long DftiComputeBackward( DFTI_DESCRIPTOR_HANDLE,
void *,

... );

The implementations of DFT interface expect the data be treated as data stored linearly in memory 
with a regular "stride" pattern (discussed more fully in Strides,  see also [3]). The function expects 
the starting address of the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments 
and of what type should be present. The implementation could use this information to check 
against possible input inconsistency.

Descriptor Configuration
There are two functions in this category: the value setting function DftiSetValue sets one 
particular configuration parameter to an appropriate value, and the value getting function 
DftiGetValue reads the values of one particular configuration parameter. While all 
configuration parameters are readable, a few of them cannot be set by user. Some of these contain 
fixed information of a particular implementation such as version number, or dynamic information, 
but nevertheless are derived by the implementation during execution of one of the functions. See 
Configuration Settings for details.

SetValue   
Sets one particular configuration parameter with the 
specified configuration value.

Syntax
! Fortran

Status = DftiSetValue( Desc_Handle, &
Config_Param, &
Config_Val )

/* C */
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status = DftiSetValue( desc_handle,
config_param,

config_val );

Description

This function sets one particular configuration parameter with the specified configuration value. 
The configuration parameter is one of the named constants listed in Table 11-3, and the 
configuration value is the corresponding appropriate type, which can be a named constant or a 
native type. See  Configuration Settings  for details of the meaning of the setting.

The function returns DFTI_NO_ERROR when completes successfully. See 
Status Checking Functions for more information on returned status.

Interface and prototype

! Fortran interface

INTERFACE DftiSetValue

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_6_INTVAL( Desc_Handle, Config_Param, INTVAL )

INTEGER :: some_actual_function_6_INTVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(IN) :: INTVAL

END FUNCTION some_actual_function_6_INTVAL

FUNCTION some_actual_function_6_SGLVAL( Desc_Handle, Config_Param, SGLVAL )

INTEGER :: some_actual_function_6_SGLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL, INTENT(IN) :: SGLVAL

END FUNCTION some_actual_function_6_SGLVAL
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FUNCTION some_actual_function_6_DBLVAL( Desc_Handle, Config_Param, DBLVAL )

INTEGER :: some_actual_function_6_DBLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL (KIND(0D0)), INTENT(IN) :: DBLVAL

END FUNCTION some_actual_function_6_DBLVAL

FUNCTION some_actual_function_6_INTVEC( Desc_Handle, Config_Param, INTVEC )

INTEGER :: some_actual_function_6_INTVEC

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(IN) :: INTVEC(*)

END FUNCTION some_actual_function_6_INTVEC

FUNCTION some_actual_function_6_CHARS( Desc_Handle, Config_Param, CHARS )

INTEGER :: some_actual_function_6_CHARS

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

CHARCTER(*), INTENT(IN) :: CHARS

END FUNCTION some_actual_function_6_CHARS

END INTERFACE DftiSetValue

/* C prototype */

long DftiSetValue( DFTI_DESCRIPTOR_HANDLE,
DFTI_CONFIG_PARAM ,
... );
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GetValue    
Gets the configuration value of one particular 
configuration parameter.

Syntax
! Fortran

Status = DftiGetValue( Desc_Handle, &
Config_Param, &
Config_Val )

/* C */

status = DftiGetValue( desc_handle,
config_param,
&config_val );

Description

This function gets the configuration value of one particular configuration parameter. The 
configuration parameter is one of the named constants listed in Table 11-3 and Table 11-4, and the 
configuration value is the corresponding appropriate type, which can be a named constant or a 
native type.

The function returns DFTI_NO_ERROR when completes successfully. See 
Status Checking Functions for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiGetValue

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_7_INTVAL( Desc_Handle, Config_Param, INTVAL )

INTEGER :: some_actual_function_7_INTVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param
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INTEGER, INTENT(OUT) :: INTVAL

END FUNCTION DFTI_GET_VALUE_INTVAL

FUNCTION some_actual_function_7_SGLVAL( Desc_Handle, Config_Param, SGLVAL )

INTEGER :: some_actual_function_7_SGLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL, INTENT(OUT) :: SGLVAL

END FUNCTION some_actual_function_7_SGLVAL

FUNCTION some_actual_function_7_DBLVAL( Desc_Handle, Config_Param, DBLVAL )

INTEGER :: some_actual_function_7_DBLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL (KIND(0D0)), INTENT(OUT) :: DBLVAL

END FUNCTION some_actual_function_7_DBLVAL

FUNCTION some_actual_function_7_INTVEC( Desc_Handle, Config_Param, INTVEC )

INTEGER :: some_actual_function_7_INTVEC

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(OUT) :: INTVEC(*)

END FUNCTION some_actual_function_7_INTVEC

FUNCTION some_actual_function_7_INTPNT( Desc_Handle, Config_Param, INTPNT )

INTEGER :: some_actual_function_7_INTPNT

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, DIMENSION(*), POINTER :: INTPNT

END FUNCTION some_actual_function_7_INTPNT

FUNCTION some_actual_function_7_CHARS( Desc_Handle, Config_Param, CHARS )

INTEGER :: some_actual_function_7_CHARS

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
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INTEGER, INTENT(IN) :: Config_Param

CHARCTER(*), INTENT(OUT):: CHARS

END FUNCTION some_actual_function_7_CHARS

END INTERFACE DftiGetValue

/* C prototype */

long DftiGetValue( DFTI_DESCRIPTOR_HANDLE,
DFTI_CONFIG_PARAM ,
... );
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Configuration Settings
Each of the configuration parameters is identified by a named constant in the MKL_DFTI module. 
In C, these named constants have the enumeration type DFTI_CONFIG_PARAM. The list of 
configuration parameters whose values can be set by user is given in Table 11-3; the list of 
configuration parameters that are read-only is given in Table 11-4. All parameters are readable. 
Most of these parameters are self-explanatory, while some others are discussed more fully in the 
description of the relevant functions

Table 11-3 Settable Configuration Parameters

Named Constants  Value Type Comments

Most common configurations, no default, must be set explicitly

DFTI_PRECISION Named constant Precision of computation

DFTI_FORWARD_DOMAIN Named constant Domain for the forward transform

DFTI_DIMENSION Integer scalar Dimension of the transform

DFTI_LENGTHS Integer scalar/array Lengths of each dimension

Common configurations including multiple transform and data representation

DFTI_NUMBER_OF_TRANSFORMS Integer scalar For multiple number of transforms

DFTI_FORWARD_SIGN Named constant The definition for forward transform

DFTI_FORWARD_SCALE Floating-point 
scalar

Scale factor for forward transform

DFTI_BACKWARD_SCALE Floating-point 
scalar

Scale factor for backward 
transform

DFTI_PLACEMENT Named constant Placement of the computation 
result

DFTI_COMPLEX_STORAGE Named constant Storage method, complex domain 
data

DFTI_REAL_STORAGE Named constant Storage method, real domain data

DFTI_CONJUGATE_EVEN_STORAGE Named constant Storage method, conjugate even 
domain data

DFTI_DESCRIPTOR_NAME Character string No longer than 
DFTI_MAX_NAME_LENGTH

DFTI_PACKED_FORMAT Named constant Packed format, real domain data

DFTI_NUMBER_OF_USER_THREADS Integer scalar Number of user threads employing 
the same descriptor for DFT 
computation
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The configuration parameters are set by various values. Some of these values are specified by 
native data types such as an integer value (for example, number of simultaneous transforms 
requested), or a single-precision number (for example, the scale factor one would like to apply on 
a forward transform). 

Configurations regarding stride of data

DFTI_INPUT_DISTANCE Integer scalar Multiple transforms, distance of 
first elements

DFTI_OUTPUT_DISTANCE Integer scalar Multiple transforms, distance of 
first elements

DFTI_INPUT_STRIDES Integer array Stride information of input data

DFTI_OUTPUT_STRIDES Integer array Stride information of output data

Advanced configuration

DFTI_INITIALIZATION_EFFORT Named constant Dynamic search for computation 
method

DFTI_ORDERING Named constant Scrambling of data order

DFTI_WORKSPACE Named constant Computation without auxiliary 
storage

DFTI_TRANSPOSE Named constant Scrambling of dimension

Table 11-4 Read-Only Configuration Parameters

Named Constants Value Type Comments

DFTI_COMMIT_STATUS Name constant Whether descriptor has been committed

DFTI_VERSION String Intel MKL library version number

DFTI_FORWARD_ORDERING Integer pointer Pointer to an integer array (see Ordering)

DFTI_BACKWARD_ORDERING Integer pointer Pointer to an integer array (see Ordering)

Table 11-3 Settable Configuration Parameters (continued)

Named Constants  Value Type Comments
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Other configuration values are discrete in nature (for example, the domain of the forward 
transform) and are thus provided in the DFTI module as named constants. In C, these named 
constants have the enumeration type DFTI_CONFIG_VALUE. The complete list of named constants 
used for this kind of configuration values is given in Table 11-5.  

Table 11-5 Named Constant Configuration Values

Named Constant Comments

DFTI_SINGLE Single precision

DFTI_DOUBLE Double precision

DFTI_COMPLEX Complex domain

DFTI_REAL Real domain

DFTI_CONJUGATE_EVEN Conjugate even domain

DFTI_NEGATIVE Sign used to define the forward transform

DFTI_POSITIVE Sign used to define the forward transform

DFTI_INPLACE Output overwrites input

DFTI_NOT_INPLACE Output does not overwrite input

DFTI_COMPLEX_COMPLEX Storage method (see Storage schemes)

DFTI_REAL_REAL Storage method (see Storage schemes)

DFTI_COMPLEX_REAL Storage method (see Storage schemes)

DFTI_REAL_COMPLEX Storage method (see Storage schemes)

DFTI_HIGH A high setting, related to initialization effort

DFTI_MEDIUM A medium setting, related to initialization effort

DFTI_LOW A low setting, related to initialization effort

DFTI_COMMITTED Committal status of a descriptor

DFTI_UNCOMMITTED Committal status of a descriptor

DFTI_ORDERED Data ordered in both forward and backward domains

DFTI_BACKWARD_SCRAMBLED Data scrambled in backward domain (by forward transform)

DFTI_FORWARD_SCRAMBLED Data scrambled in forward domain (by backward transform)

DFTI_ALLOW Allow certain request or usage if useful

DFTI_AVOID Avoid certain request or usage if practical

DFTI_NONE Used to specify no transposition

DFTI_CCS_FORMAT Packed format, real data (see “Packed formats”)

DFTI_PACK_FORMAT Packed format, real data (see “Packed formats”)

DFTI_PERM_FORMAT Packed format, real data (see “Packed formats”)
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Table 11-6 lists the possible values for those configuration parameters that are discrete in nature.

Table 11-7 lists the default values of the settable configuration parameters.

DFTI_VERSION_LENGTH Number of characters for library version length

DFTI_MAX_NAME_LENGTH Maximum descriptor name length

DFTI_MAX_MESSAGE_LENGTH Maximum status message length

Table 11-6 Settings for Discrete Configuration Parameters

Named Constant Possible Values

DFTI_PRECISION DFTI_SINGLE, or

DFTI_DOUBLE (no default)

DFTI_FORWARD_DOMAIN DFTI_COMPLEX, or

DFTI_REAL, or

DFTI_CONJUGATE_EVEN (no default)

DFTI_FORWARD_SIGN DFTI_NEGATIVE (default), or

DFTI_POSITIVE

DFTI_PLACEMENT DFTI_INPLACE (default), or

DFTI_NOT_INPLACE

DFTI_COMPLEX_STORAGE DFTI_COMPLEX_COMPLEX (default), or

DFTI_COMPLEX REAL, or

DFTI_REAL_REAL

DFTI_REAL_STORAGE DFTI_REAL_REAL (default), or

DFTI_REAL_COMPLEX

DFTI_CONJUGATE_EVEN_STORAGE DFTI_COMPLEX_COMPLEX, or

DFTI_COMPLEX_REAL (default), or

DFTI_REAL_REAL (1-D transform only)

DFTI_PACKED_FORMAT DFTI_CCS_FORMAT (default) or, 

DFTI_PACK_FORMAT or,

DFTI_PERM_FORMAT

Table 11-5 Named Constant Configuration Values (continued)

Named Constant Comments
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Precision of transform

The configuration parameter DFTI_PRECISION denotes the floating-point precision in which the 
transform is to be carried out. A setting of DFTI_SINGLE stands for single precision, and a setting 
of DFTI_DOUBLE stands for double precision. The data is meant to be presented in this precision; 
the computation will be carried out in this precision; and the result will be delivered in this 
precision. This is one of the four settable configuration parameters that do not have default values. 
The user must set them explicitly, most conveniently at the call to descriptor creation function 
DftiCreateDescriptor.

Forward domain of transform
The general form of the discrete Fourier transform is 

Table 11-7 Default Configuration Values of Settable Parameters

Named Constants Default Value

DFTI_NUMBER_OF_TRANSFORMS 1

DFTI_NUMBER_OF_USER_THREADS 1

DFTI_FORWARD_SIGN DFTI_NEGATIVE

DFTI_FORWARD_SCALE 1.0

DFTI_BACKWARD_SCALE 1.0

DFTI_PLACEMENT DFTI_INPLACE

DFTI_COMPLEX_STORAGE DFTI_COMPLEX_COMPLEX

DFTI_REAL_STORAGE DFTI_REAL_REAL

DFTI_CONJUGATE_EVEN_STORAGE DFTI_COMPLEX_REAL

DFTI_PACKED_FORMAT DFTI_CCS_FORMAT

DFTI_DESCRIPTOR_NAME no name, string of zero length

DFTI_INPUT_DISTANCE 0

DFTI_OUTPUT_DISTANCE 0

DFTI_INPUT_STRIDES Tightly packed according to dimension, lengths, and storage

DFTI_OUTPUT_STRIDES Same as above. See Strides for details

DFTI_INITIALIZATION_EFFORT DFTI_MEDIUM

DFTI_ORDERING DFTI_ORDERED

DFTI_WORKSPACE DFTI_ALLOW

DFTI_TRANSPOSE DFTI_NONE
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 (7.1)

for , where  is an arbitrary real-valued scale factor and . By default, the 
forward transform is defined by  and .  In most common situations, the domain of the 
forward transform, that is, the set where the input (periodic) sequence   

belongs, can be either the set of complex-valued sequences, real-valued sequences, and 
complex-valued conjugate even sequences. The configuration parameter 
DFTI_FORWARD_DOMAIN indicates the domain for the forward transform. Note that this implicitly 
specifies the domain for the backward transform because of mathematical property of the DFT. 
See Table 11-8 for details.

On transforms in the real domain, some software packages only offer one "real-to-complex" 
transform. This in essence omits the conjugate even domain for the forward transform. The 
forward domain configuration parameter DFTI_FORWARD_DOMAIN is the second of four 
configuration parameters without default value.

Transform dimension and lengths

The dimension of the transform is a positive integer value represented in an integer scalar of type 
Integer. For one-dimensional transform, the transform length is specified by a positive integer 
value represented in an integer scalar of type Integer. For multi-dimensional (≥ 2) transform, the 
lengths of each of the dimension is supplied in an integer array. DFTI_DIMENSION and 
DFTI_LENGTHS are the remaining two of four configuration parameters without default.

As mentioned, these four configuration parameters do not have default value. They are most 
conveniently set at the descriptor creation function. For dimension and length configuration, they 
can only be set in the descriptor creation function, and not by the function DftiSetValue. 

Table 11-8 Correspondence of Forward and Backward Domain

Forward Domain Implied Backward Domain

Complex (DFTI_COMPLEX) Complex

Real (DFTI_REAL) Conjugate Even

Conjugate Even (DFTI_CONJUGATE_EVEN) Real

zk1 k2 … kd, , , σ … wj1 j2 … jd, , ,
j1 0=

n1 1–

�
j2 0=

n2 1–

�
jd 0=

nd 1–

�× δi2π jlkl nl⁄
l 1=

d

�
� �
� �
� �
� �

exp=

kl 0 1 2 …,±,±,= σ δ 1±=
σ 1= δ 1–=

wj1 j2 … jd, , ,{ }
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The other two configuration values can be changed through the function DftiSetValue, 
although this is not deemed common.   

Number of transforms

In some situations, the user may need to perform a number of DFT transforms of the same 
dimension and lengths. The most common situation would be to transform a number of 
one-dimensional data of the same length. This parameter has the default value of 1, and can be set 
to positive integer value by an Integer data type in Fortran and long data type in C. Data sets 
have no common elements. The distance parameter is obligatory if multiple number is more than 
one.

Sign and scale

The general form of the discrete Fourier transform is given by (7.1), for , where 
 is an arbitrary real-valued scale factor and . By default, the forward transform is defined 

by  and ,  and the backward transform is defined by  and . The user can 
change the definition of forward transform via setting the sign  to be DFTI_NEGATIVE (default) 
or DFTI_POSITIVE. The sign of the backward transform is implicitly defined to be the negative of 
the sign for the forward transform.

The forward transform and backward transform are each associated with a scale factor  of its 
own with default value of 1. The user can set one or both of them via the two configuration 
parameters DFTI_FORWARD_SCALE and DFTI_BACKWARD_SCALE. For example, for a 
one-dimensional transform of length n, one can use the default scale of 1 for the forward transform 
while setting the scale factor for backward transform to be 1/n, making the backward transform the 
inverse of the forward transform.

The scale factor configuration parameter should be set by a real floating-point data type of the 
same precision as the value for DFTI_PRECISION.

CAUTION.  Changing the dimension and length would likely render 
the stride value inappropriate. Unless certain of otherwise, the user is 
advised to reconfigure the stride (see Strides).

NOTE.  The sign configuration is not supported. The forward 
transform is defined as .

kl 0 1 2 …,±,±,=
σ δ 1±=

σ 1= δ 1–= σ 1= δ 1=

δ

σ

δ 1–=
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Placement of result

By default, the computational functions overwrite the input data with the output result. That is, the 
default setting of the configuration parameter DFTI_PLACEMENT is DFTI_INPLACE. The user can 
change that by setting it to DFTI_NOT_INPLACE. Data sets have no common elements.

Packed formats

The result of the forward transform (i.e. in the frequency-domain) of real data is represented in 
several possible packed formats: Pack, Perm, or CCS. The data can be packed due to the symmetry 
property of the DFT transform of a real data.

The CCS format stores the values of the first half of the output complex signal resulted from the 
forward DFT. Note that the signal stored in CCS format is one complex element longer. In CCS 
format, the output samples of the DFT are arranged as shown in Table 11-9 for one-dimensional 
DFT and in Table 11-10 for two-dimensional DFT. 

The Pack format is a compact representation of a complex conjugate-symmetric sequence. The 
disadvantage of this format is that it is not the natural format used by the real DFT algorithms 
(“natural” in the sense that array is natural for complex DFTs). In Pack format, the output samples 
of the DFT are arranged as shown in Table 11-9 for one-dimensional DFT and in Table 11-11 for 
two-dimensional DFT.  

The Perm format is an arbitrary permutation of the Pack format for even lengths and one is the 
same as the Pack format for odd lengths.  In Perm format, the output samples of the DFT are 
arranged as shown in Table 11-9 for one-dimensional DFT and in Table 11-12 for 
two-dimensional DFT.   

Table 11-9 Packed Format Output Samples 

For (n = s*2)

DFT Real 0 1 2 3 ... n-2 n-1 n n+1

CCS R0 0 R1 I1 ... Rn/2-1 In/2-1 Rn/2 0

Pack R0 R1 I1 R2 ... In/2-1 Rn/2

Perm R0 Rn/2 R1 I1 ... Rn/2-1 In/2-1

For (n = s*2 + 1)

DFT Real 0 1 2 3 ... n-4 n-3 n-2 n-1 n n+1

CCS R0 0 R1 I1 ... Is-2 Rs-1 Is-1 Rs Is
Pack R0 R1 I1 R2 ... Rs-1 Is-1 Rs-1 Is
Perm R0 R1 I1 R2 ... Rs-1 Is-1 Rs-1 Is
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Note that Table 11-9 uses the following notation for complex data entries:

Rj = Re zj

Ij = Im zj

See also Table 11-13  and Table 11-14.  

* n/u - not used

Note that in the Table 11-10  (n+2) columns are used for even  n = k*2, while n columns are used 
for odd  n = k*2+1. In the latter case the first row is 
z(1,1) 0 REz(1,2) IMz(1,2) … REz(1,k) IMz(1,k)

If m is even, the (m+1)-th  row is
z(m/2+1,1) 0 REz(m/2+1,2) IMz(m/2+1,2) … REz(m/2+1,k) IMz(m/2+1,k)

Table 11-10 CCS Format Output Samples (Two-Dimensional Matrix (m+2)-by-(n+2))

For (m = s*2)

z(1,1) 0 REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k) z(1,k+1) 0

0 0 0 0 ... 0 0 0 0

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n) n/u n/u

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n) n/u n/u

... ... ... ... ... ... ... n/u n/u

REz(m/2,1) REz(m/2,2) REz(m/2,3) REz(m/2,4) ... REz(m/2,n-1) REz(m/2,n) n/u n/u

IMz(m/2,1) IMz(m/2,2) IMz(m/2,3) IMz(m/2,4) ... IMz(m/2,n-1) IMz(m/2,n) n/u n/u

z(m/2+1,1) 0 REz(m/2+1,2) IMz(m/2+1,2) ... REz(m/2+1,k) IMz(m/2+1,k) z(m/2+1,k+1) 0

0 0 0 0 ... 0 0 n/u n/u

For (m = s*2+1)

z(1,1) 0 REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k) z(1,k+1) 0

0 0 0 0 ... 0 0 0 0

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n) n/u n/u

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n) n/u n/u

... ... ... ... ... ... ... n/u n/u

REz(s,1) REz(s,2) REz(s,3) REz(s,4) ... REz(s,n-1) REz(s,n) n/u n/u

IMz(s,1) IMz(s,2) IMz(s,3) IMz(s,4) ... IMz(s,n-1) IMz(s,n) n/u n/u
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Table 11-11 Pack Format Output Samples (Two-Dimensional Matrix m-by-n)

For (m = s*2)

z(1,1) REz(1,2) IMz(1,2) REz(1,3) ... IMz(1,k) z(1,k+1)

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n)

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n)

... ... ... ... ... ... ...

REz(m/2,1) REz(m/2,2) REz(m/2,3) REz(m/2,4) ... REz(m/2,n-1) REz(m/2,n)

IMz(m/2,1) IMz(m/2,2) IMz(m/2,3) IMz(m/2,4) ... IMz(m/2,n-1) IMz(m/2,n)

z(m/2+1,1) REz(m/2+1,2) IMz(m/2+1,2) REz(m/2+1,3) ... IMz(m/2+1,k) z(m/2+1,k+1)

For (m = s*2+1)

z(1,1) REz(1,2) IMz(1,2) REz(1,3) ... IMz(1,k) z(1,n/2+1)

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n)

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n)

... ... ... ... ... ... ...

REz(s,1) REz(s,2) REz(s,3) REz(s,4) ... REz(s,n-1) REz(s,n)

IMz(s,1) IMz(s,2) IMz(s,3) IMz(s,4) ... IMz(s,n-1) IMz(s,n)

Table 11-12 Perm Format Output Samples (Two-Dimensional Matrix m-by-n)

For (m = s*2)

z(1,1) z(1,k+1) REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k)

z(m/2+1,1) z(m/2+1,k+1) REz(m/2+1,2) IMz(m/2+1,2) ... REz(m/2+1,k) IMz(m/2+1,k)

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n)

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n)

... ... ... ... ... ... ...

REz(m/2,1) REz(m/2,2) REz(m/2,3) REz(m/2,4) ... REz(m/2,n-1) REz(m/2,n)

IMz(m/2,1) IMz(m/2,2) IMz(m/2,3) IMz(m/2,4) ... IMz(m/2,n-1) IMz(m/2,n)

For (m = s*2+1)

z(1,1) z(1,k+1) REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k)

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n)

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n)

... ... ... ... ... ... ...

REz(s,1) REz(s,2) REz(s,3) REz(s,4) ... REz(s,n-1) REz(s,n)

IMz(s,1) IMz(s,2) IMz(s,3) IMz(s,4) ... IMz(s,n-1) IMz(s,n)
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Note that in the Table 11-11 and  Table 11-12 for even number of columns   n = k*2, while for 
odd number of columns n = k*2+1 and the first row is
z(1,1) REz(1,2) IMz(1,2) … REz(1,k) IMz(1,k)

If m is even, the last row in Pack format and the second row in Perm format is
z(m/2+1,1) REz(m/2+1,2) IMz(m/2+1,2) … REz(m/2+1,k) IMz(m/2+1,k)

The tables for two-dimensional DFT use Fortran-interface conventions. For C-interface specifics 
in storing packed fata, see Storage schemes section below.
See also Table 11-15 and Table 11-16 for examples of Fortran-interface and C-interface formats.

Storage schemes

For each of the three domains  DFTI_COMPLEX, DFTI_REAL, and DFTI_CONJUGATE_EVEN (for 
the forward as well as the backward operator), a subset of the four storage schemes 
DFTI_COMPLEX_COMPLEX, DFTI_COMPLEX_REAL, DFTI_REAL_COMPLEX, and 
DFTI_REAL_REAL. Specific examples are presented here to illustrate the storage schemes. See the 
document [3] for the rationale behind this definition of the storage schemes.

Storage scheme for complex domain. This setting is recorded in the configuration parameter 
DFTI_COMPLEX_STORAGE. The three values that can be set are DFTI_COMPLEX_COMPLEX, 
DFTI_COMPLEX_REAL, and DFTI_REAL_REAL. Consider a one-dimensional n-length transform 
of the form 

 ,               C . 

Assume the stride has default value (unit stride) and DFTI_PLACEMENT has the default in-place 
setting.

1. DFTI_COMPLEX_COMPLEX storage scheme (by default). A typical usage will be as follows.

COMPLEX :: X(0:n-1)

...some other code...

Status = DftiComputeForward( Desc_Handle, X )

On input,

NOTE.  The data is stored in the Fortran style only, that is, the real 
and imaginary parts are stored side by side.

zk wje
i2πjk n⁄–

j 0=

n 1–

�= wj zk ∈,
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X(j) = wj , j = 0,1,...,n-1 .

On output,

X(k) = zk , k = 0,1,...,n-1 .

2. DFTI_COMPLEX_REAL storage scheme. A typical usage will be as follows.

REAL :: X(0:2*n-1)

...some other code...

Status = DftiComputeForward( Desc_Handle, X )

On input,

X(2*j) = Re(wj) , X(2*j+1) = Im(wj) , j = 0,1,...,n-1 .

On output,

X(2*k) = Re(zk) , X(2*k+1) = Im(zk) , k = 0,1,...,n-1 .

The notations Re(wj) and Im(wj) are the real and imaginary parts of the complex number wj.

3. DFTI_REAL_REAL storage scheme. A typical usage will be as follows.

REAL :: X(0:n-1), Y(0:n-1)

...some other code...

Status = DftiComputeForward( Desc_Handle, X, Y )

On input,

X(j) = Re(wj) , Y(j) = Im(wj) , j = 0,1,...,n-1 .

On output,

X(k) = Re(zk) , Y(k) = Im(zk) , k = 0,1,...,n-1 .

Storage scheme for the real and conjugate even domains. This setting for the storage 
schemes for these domains is recorded in the configuration parameters DFTI_REAL_STORAGE and 
DFTI_CONJUGATE_EVEN_STORAGE. Since a forward real domain corresponds to a conjugate 
even backward domain, they are considered together. The example uses one- and two-dimensional 
real to conjugate even transforms. In-place computation is assumed whenever possible (that is, 
when the input data type matches with the output data type).

Consider a one-dimensional n-length transform of the form
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  ,           R,    C . 

There is a symmetry: 

For even n: z(n/2+i) = conjg(z(n/2-i)), , and moreover z(0) and z(n/2)
are real values.

For odd n: z(m+i) = conjg(z(m-i+1)), ,  and moreover z(0) is real value.

m = floor(n/2).

Table 11-13 Comparison of the Storage Effects of Complex-to-Complex and 
Real-to-Complex DFTs for Forward Transform

N=8

Input Vectors Output Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real 
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) z4

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Re(z1)

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Im(z1)

w4 0.000000 w4 z4 0.000000 Re(z2) Im(z2) Re(z2)

w5 0.000000 w5 Re(z3) -Im(z3) Im(z2) Re(z3) Im(z2)

w6 0.000000 w6 Re(z2) -Im(z2) Re(z3) Im(z3) Re(z3)

w7 0.000000 w7 Re(z1) -Im(z1) Im(z3) z4 Im(z3)

z4

0.000000

zk wje
i2πjk n⁄–

j 0=

n 1–

�= wj ∈ zk ∈

1 i n 2 1–⁄≤ ≤

1 i m≤ ≤
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N=7

Input Vectors Output Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real 
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) Re(z1)

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Im(z1)

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Re(z2)

w4 0.000000 w4 Re(z3) -Im(z3) Re(z2) Im(z2) Im(z2)

w5 0.000000 w5 Re(z2) -Im(z2) Im(z2) Re(z3) Re(z3)

w6 0.000000 w6 Re(z1) -Im(z1) Re(z3) Im(z3) Im(z3)

Im(z3)
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Table 11-14 Comparison of the Storage Effects of Complex-to-Complex and 
Complex-to-Real DFTs for Backward Transform

N=8
Output Vectors Input Vectors

Complex DFT
Real
DFT complex DFT

Complex Data
Real 
Data Complex Data

Real Imaginary Real Imaginary CCS Pack Perm
w0 0.000000 w0 z0 0.000000 z0 z0 z0
w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) z4
w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Re(z1)
w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Im(z1)
w4 0.000000 w4 z4 Re(z2) Im(z2) Re(z2)
w5 0.000000 w5 Re(z3) -Im(z3) Im(z2) Re(z3) Im(z2)
w6 0.000000 w6 Re(z2) -Im(z2) Re(z3) Im(z3) Re(z3)
w7 0.00000 w7 Re(z1) -Im(z1) Im(z3) z4 Im(z3)

z4
0.000000

N=7

Output Vectors Input Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real 
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) Re(z1)

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Im(z1)

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Re(z2)

w4 0.000000 w4 Re(z3) -Im(z3) Re(z2) Im(z2) Im(z2)

w5 0.000000 w5 Re(z2) -Im(z2) Im(z2) Re(z3) Re(z3)

w6 0.000000 w6 Re(z1) -Im(z1) Re(z3) Im(z3) Im(z3)

Im(z3)
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Assume that the stride has the default value (unit stride).

This complex conjugate-symmetric vector can be stored in the complex array of size m+1 or in the 
real array of size 2m+2 or 2m depending on packed format.

Each of the real-to-complex routines computes the forward DFT of a two-dimensional real matrix 
according to the mathematical equation

tk,l = cmplx(rk,l,0), where rk,l is a real input matrix, 0 ≤ k ≤ m-1,  0 ≤ l ≤ n-1. 
The mathematical result zi,j, 0 ≤ i ≤ m-1,  0 ≤ j ≤ n-1, is the complex matrix of size (m,n). 
Each column is the complex conjugate-symmetric vector as follows:

For even m:

for  0 ≤ j ≤ n-1, 

z(m/2+i,j) = conjg(z(m/2-i,j)),  1 ≤ i ≤ m/2-1.

Moreover, z(0,j) and z(m/2,j) are real values for j=0 and j=n/2.

For odd m:

for  0 ≤ j ≤ n-1, 

z(s+i,j) = conjg(z(s-i,j)),  1 ≤ i ≤ s-1 ,
where s = floor(m/2).

Moreover, z(0,j) are real values for j=0 and j=n/2.

This mathematical result can be stored in the real two-dimensional array of size (m+2,n+2) or 
(m,n), or in the complex two-dimensional array of size  (m/2+1,n+1) for Fortran-interface and 
in the complex two-dimensional array of size  (m+1,n/2+1) for C-interface. 

Since the multidimensional array data are arranged differently in Fortran and C (see Strides), the 
output array that holds the computational result contains complex conjugate-symmetric columns 
(for Fortran) or complex conjugate-symmetric rows (for C).

zi j, tk l, *wm
i– *k

*wn
j– *l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–

�
k 0=

m 1–

�=
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The following tables give examples of output data layout in Pack format for a forward 
two-dimensional real-to-complex DFT of a 6-by-4 real matrix. Note that the same layout is used 
for the input data of the corresponding backward complex-to-real DFT.

For the above example, the stride array is taken to be (0, 1, 6).

For the second example, the stride array is taken to be  /0, 4, 1/. 
See also Packed formats.

1. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for conjugate even domain (by 
default). A typical usage will be as follows.

// m = floor( n/2 )

REAL :: X(0:2*m+1)

...some other code...

...assuming inplace...

Status = DftiComputeForward( Desc_Handle, X )

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Table 11-15 Fortran-interface Data Layout for a 6-by-4 Matrix

z(1,1) Re z(1,2) Im z(1,2) z(1,3)

Re z(2,1) Re z(2,2) Re z(2,3) Re z(2,4)

Im z(2,1) Im z(2,2) Im z(2,3) Im z(2,4)

Re z(3,1) Re z(3,2) Re z(3,3) Re z(3,4)

Im z(3,1) Im z(3,2) Im z(3,3) Im z(3,4)

z(4,1) Re z(4,2) Im z(4,2) z(4,3)

Table 11-16 C-interface Data Layout for a 6-by-4 Matrix

z(1,1) Re z(1,2) Im z(1,2) z(1,3)

Re z(2,1) Re z(2,2) Im z(2,2) Re z(2,3)

Im z(2,1) Re z(3,2) Im z(3,2) Im z(2,3)

Re z(3,1) Re z(4,2) Im z(4,2) Re z(3,3)

Im z(3,1) Re z(5,2) Im z(5,2) Im z(3,3)

z(4,1) Re z(6,2) Im z(6,2) z(4,3)
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Output data stored in one of formats: Pack, Perm or CCS (see “Packed formats”).

CCS format:  X(2*k) = Re(zk) , X(2*k+1) = Im(zk) , k = 0,1,...,m.

Pack format:  even n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk), 
k = 1,...,m-1, and X(n-1) = Re(zm) 

odd n: X(0) = Re(z0),  X(2*k-1) = Re(zk), X(2*k) = Im(zk), k = 1,...,m

Perm format:  even n: X(0) = Re(z0),  X(1) = Re(zm),  X(2*k) = Re(zk) , X(2*k+1) = Im(zk) , k = 
1,...,m-1,

odd n: X(0) = Re(z0),  X(2*k-1) = Re(zk), X(2*k) = Im(zk), k = 1,...,m.

2. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for conjugate even domain (by 
default). A typical usage will be as follows.

// m = floor( n/2 )

REAL :: X(0:n-1)

REAL :: Y(0:2*m+1)

...some other code...

...assuming out-of-place...

Status = DftiComputeForward( Desc_Handle, X, Y )

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Output data stored in one of formats: Pack, Perm or CCS (see “Packed formats”).

CCS format: Y(2*k) = Re(zk) , Y(2*k+1) = Im(zk) , k = 0,1,...,m.

Pack format: even n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), 
k = 1,...,m-1, and Y(n-1) = Re(zm) 

odd n: Y(0) = Re(z0),  Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m

Perm format:  even n: Y(0) = Re(z0),  Y(1) = Re(zm),  Y(2*k) = Re(zk) , 
Y(2*k+1) = Im(zk) , k = 1,...,m-1,

odd n: Y(0) = Re(z0),  Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m.

Notice  that if the stride of the output array is not set to the default value unit stride, the real and 
imaginary parts of one complex element will be placed with this stride.
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For example:

CCS format: Y(2*k*s) = Re(zk) , Y(2*k+1*s) = Im(zk) , k = 0,1,...,m, s - stride.

3. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_COMPLEX for conjugate even domain. 
A typical usage will be as follows.

// m = floor( n/2 )

REAL :: X(0:n-1)

COMPLEX :: Y(0:m)

...some other code...

...out of place transform...

Status = DftiComputeForward( Desc_Handle, X, Y )

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Y(k) = zk , k = 0,1,...,m .

4. DFTI_REAL_REAL for real domain, DFTI_REAL_REAL for conjugate even domain. This 
storage scheme for conjugate even domain is applicable for one-dimensional transform only. A 
typical usage will be as follows.

// m = floor( n/2 )

REAL :: X(0:n-1)

...some other code...

...assuming inplace...

Status = DftiComputeForward( Desc_Handle, X )

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

X(k) = Re(zk) , k = 0,1,...,m .

and

X(n-k) = Im(zk) , k = 1,2,...,m-1 .
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5. DFTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_COMPLEX for conjugate even 
domain. A typical usage will be as follows.

// m = floor( n/2 )

COMPLEX :: X(0:n-1)

...some other code...

...inplace transform...

Status = DftiComputeForward( Desc_Handle, X )

On input,

X(j) = wj , j = 0,1,...,n-1 .

That is, the imaginary parts of X(j) are zero. On output,

Y(k) = zk , k = 0,1,...,m .

where m is .

6. DFTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_REAL for conjugate even domain. 
A typical usage will be as follows.

// m = floor( n/2 )

COMPLEX :: X(0:n-1)

REAL :: Y(0:2*m+1)

...some other code...

...not inplace...

Status = DftiComputeForward( Desc_Handle, X, Y )

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Output data stored in one of formats: Pack, Perm or CCS (see “Packed formats”).

CCS format:  Y(2*k) = Re(zk) , Y(2*k+1) = Im(zk) , k = 0,1,...,m .

Pack format:  even n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), 
k = 1,...,m-1, and Y(n-1) = Re(zm) 

odd n: Y(0) = Re(z0),  Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m

n 2⁄
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Perm format:  even n: Y(0) = Re(z0),  Y(1) = Re(zm),  Y(2*k) = Re(zk) , Y(2*k+1) = Im(zk) , k = 
1,...,m-1,

odd n: Y(0) = Re(z0),  Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m.

6. DFTI_REAL_COMPLEX for real domain, DFTI_REAL_REAL for conjugate even domain. 
This storage scheme for conjugate even domain is applicable for one-dimensional transform only. 
A typical usage will be as follows.

// m = floor( n/2 )

COMPLEX :: X(0:n-1)

REAL :: Y(0:n-1)

...some other code...

...not inplace...

Status = DftiComputeForward( Desc_Handle, X, Y )

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Y(k) = Re(zk) , k = 0,1,...,m .

and

Y(n-k) = Im(zk) , k = 1,2,...,m-1 .

Number of user threads

Customer application can be parallelized by using the following techniques:

1. You do not create threads in your application but specify the parallel mode within the DFT 
module of Intel MKL. See Intel MKL Technical User Notes document for more information 
on how to do this.

2. You create threads in application yourself and have each thread perform all stages of DFT 
implementation including descriptor initialization, DFT computation, and descriptor 
deallocation. In this case each descriptor is used only within its corresponding thread.

3. You create threads after initializing the DFT descriptor. This implies that threading is 
employed for parallel DFT computation only, and the descriptor is freed after return from the 
parallel region. In this case each thread uses the same descriptor.
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For the first and second cases listed above, set the parameter DFTI_NUMBER_OF_USER_THREADS 
to 1 (its default value), since each particular descriptor instance is used only in a single thread. 

In case 3, you must use the DftiSetValue() function to set the 
DFTI_NUMBER_OF_USER_THREADS to the actual number of DFT computation threads, because 
multiple threads will be using the same descriptor. If this setting is not done, your program will 
work incorrectly or fail, since the descriptor contains individual data for each thread.

See Example C-21, Example C-22, and Example C-23 in Appendix C.

Input and output distances

DFT interface in Intel MKL allows the computation of multiple number of transforms. 
Consequently, the user needs to be able to specify the data distribution of these multiple sets of 
data. This is accomplished by the distance between the first data element of the consecutive data 
sets. This parameter is obligatory if multiple number is more than one. Data sets don’t have any 
common elements.The following example illustrates the specification. Consider computing the 
forward DFT on three 32-length complex sequences stored in X(0:31, 1), X(0:31, 2), and 
X(0:31, 3). Suppose the results are to be stored in the locations Y(0:31, k), k = 1, 2, 3, of the 
array Y(0:63, 3). Thus the input distance is 32, while the output distance is 64. Notice that the 
data and result parameters in computation functions are all declared as assumed-size rank-1 array 
DIMENSION(0:*). Therefore two-dimensional array must be transformed to one-dimensional 
array by EQUIVALENCE statement or other facilities of Fortran. Here is the code fragment:

Complex :: X_2D(0:31,3), Y_2D(0:63, 3)

Complex :: X(96), Y(192)

Equivalence (X_2D, X)

Equivalence (Y_2D, Y)

...................

WARNING.  
1. It is not recommended to simultaneously parallelize your program and 
employ the Intel MKL internal threading because this will slow down 
performance. Note that in case 3 above, DFT computation is automatically 
initiated in a single threading mode.
2.  The number of threads must not be changed after DFT initialization by 
the DftiCommitDescriptor() function is done. For example, do not use 
the OMP function omp_set_max_threads() for this purpose.
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Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(Desc_Handle, DFTI_NUMBER_OF_TRANSFORMS, 3)

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_DISTANCE, 32)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_DISTANCE, 64)

Status = DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X, Y)

Status = DftiFreeDescriptor(Desc_Handle)

Strides

In addition to supporting transforms of multiple number of datasets, DFT interface supports 
non-unit stride distribution of data within each data set. Consider the following situation where a 
32-length DFT is to be computed on the sequence xj ,  0  ≤  j  < 32. The actual location of these 
values are in X(5), X(7), ..., X(67) of an array X(1:68). The stride accommodated by DFT 
interface consists of a displacement from the first element of the data array L0, (4 in this case), and 
a constant distance of consecutive elements L1 (2 in this case). Thus for the Fortran array X

xj = X(1 + L0 + L1 * j) = X(5 + L1 * j) .

This stride vector (4,2) is provided by a length-2 rank-1 integer array:

COMPLEX :: X(68)

INTEGER :: Stride(2)

...................

Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Stride = (/ 4, 2 /)

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDES, Stride)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDES, Stride)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X)

Status = DftiFreeDescriptor(Desc_Handle)

In general, for a d-dimensional transform, the stride is provided by a d +1-length integer vector 
(L0, L1, L2, ..., Ld) with the meaning:

L0 = displacement from the first array element
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L1 = distance between consecutive data elements in the first dimension

L2 = distance between consecutive data elements in the second dimension

 ... = ...

Ld = distance between consecutive data elements in the d-th dimension.

A d-dimensional data sequence

  ,       0 ≤  ji  < Ji ,        1 ≤  i  ≤  d   

will be stored in the rank-1 array X by the mapping

 = X(first index + L0 + j1L1 + j2L2 + ... + jdLd) .

For multiple transforms, the value L0 applies to the first data sequence, and Lj , j = 1, 2,..., d apply 
to all the data sequences.

In the case of a single one-dimensional sequence, L1 is simply the usual stride. The default setting 
of strides in the general multi-dimensional situation corresponds to the case where the sequences 
are distributed tightly into the array:

L1 = 1, L2= J1, L3 = J1J2 ,..., Ld = 

Both the input data and output data have a stride associated with it. The default is set in accordance 
with the data to be stored contiguously in memory in a way that is natural to the language. 
See Example C-20 as an illustration on how to use the configuration parameters discussed above. 

Initialization Effort

In modern approaches to constructing fast algorithms (FFT) for DFT computations, one often has 
a flexibility of spending more effort in initializing (preparing for) an FFT algorithm to buy higher 
efficiency in the computation on actual data to follow. Advanced DFT functions in Intel MKL 
accommodate this situation through the configuration parameter 
DFTI_INITIALIZATION_EFFORT. The three configuration values are DFTI_LOW, DFTI_MEDIUM 
(default), and DFTI_HIGH. Note that specific implementations of DFT interface may or may not 
make use of this setting (see MKL Release Notes for implementation details).

xj1 j2 … jd, , ,

xj1 j2 … jd, , ,

Ji

i 1=

d 1–

∏
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Ordering

It is well known that a number of FFT algorithms apply an explicit permutation stage that is time 
consuming [4]. The exclusion of this step is similar to applying DFT to input data whose order is 
scrambled, or allowing a scrambled order of the DFT results. In applications such as convolution 
and power spectrum calculation, the order of result or data is unimportant and thus permission of 
scrambled order is attractive if it leads to higher performance. Three following options are 
available in Intel MKL:

1. DFTI_ORDERED: Forward transform data ordered, backward transform data ordered (default 
option).

2. DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered, backward transform data 
scrambled.

3. DFTI_FORWARD_SCRAMBLED: Forward transform data scrambled, backward transform data 
ordered.

Table 11-17 tabulates the effect on this configuration setting.

Note that meaning of the latter two options are "allow scrambled order if practical." There are 
situations where in fact allowing out of order data gives no performance advantage, and thus an 
implementation may choose to ignore the suggestion. Strictly speaking, the normal order is also a 
scrambled order, the trivial one.

When the ordering setting is other than the default DFTI_ORDERED, the user may need to know the 
actual ordering of the input and output data. The ordering of the data in the forward domain is 
obtained through reading (getting) the configuration parameter DFTI_FORWARD_ORDERING; and 
the ordering of the data in the reverse domain is obtained through reading (getting) the 
configuration parameter DFTI_BACKWARD_ORDERING. The configuration values are integer 
vectors, thus provided by pointer to any integer array. We now describe how these integer values 
specify the actual scrambling of data.

Table 11-17 Scrambled Order Transform

DftiComputeForward DftiComputeBackward

DFTI_ORDERING Input → Output Input → Output

DFTI_ORDERED ordered → ordered ordered → ordered

DFTI_BACKWARD_SCRAMBLED ordered → scrambled scrambled → ordered

DFTI_FORWARD_SCRAMBLED scrambled → ordered ordered → scrambled
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All scramblings involved are digit reversal along one single dimension. Precisely, a length J is 
factored into K ordered factors D1, D2, ..., DK. Any index i,  0 ≤   i < n,  can be expressed uniquely 
as K digits i1, i2, ..., iK where
 0 ≤  il  < Dl and

i =i1 + i2D1 + i3D1D2 +... + iKD1D2 ... DK-1 .

A digit reversal permutation scram(i) is given by

scram(i) = iK +iK-1DK + iK-2DKDK-1 +... +i1DKDK-1 ... D2

Factoring J into one factor J leads to no scrambling at all, that is, 
scram(i) = i. Note that the factoring does not need to correspond exactly to the number of 
"butterfly" stages to be carried out. In fact, the computation routine in its initialization stage 
determines if a scrambled order in some or all of the dimensions can result in performance gain. 
The digits of the digit reversal are recorded and stored in the descriptor. These digits can be 
obtained by calling a corresponding inquiry routine that returns a pointer to an integer array. The 
first element is K (1), which is the number of digits for the first dimension, followed by K (1) values 
of the corresponding digits. If the dimension is higher than one, the next integer value is K (2), etc.

Simple permutation such as mod-p sort [4] is a special case of digit reversal. Hence this option 
could be useful for high-performance implementation of one-dimensional DFT via a "six-step" or 
"four-step" framework [4].

The user can check the scrambling setting on the forward data and reverse data. This information 
is returned as an integer vector containing a number of sequence (K, D1, D2,..., DK), one for each 
dimension. Thus the first element indicates how many D's will follow. The inquiry routine 
allocates memory, fills it will this information, and returns a pointer to the memory location.

Workspace

Some FFT algorithms do not require a scratch space for permutation purposes. The user can 
choose between the setting of DFTI_ALLOW (default) and DFTI_AVOID for the option 
DFTI_WORKSPACE. Note that the setting DFTI_AVOID is meant to be "avoid if practical," hence 
allowing the implementation the flexibility to use workspace regardless of the setting.

Transposition

This is an option that allows for the result of a high-dimensional transform to be presented in a 
transposed manner. The default setting is DFTI_NONE and can be set to DFTI_ALLOW. Similar to 
that of scrambled order, sometimes in higher dimension transform, performance can be gained if 
the result is delivered in a transposed manner. DFT interface offers an option for the output be 
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returned in a transposed form if performance gain is possible. Since the generic stride specification 
is naturally suited for representation of transposition, this option allows the strides for the output to 
be possibly different from those originally specified by the user. Consider an example where a 
two-dimensional result
  ,  0 ≤  ji  < ni, 

 is expected. Originally the user specified that the result be distributed in the (flat) array Y in with 
generic strides L1 = 1 and L2 = n1. With the transposition option, the computation may actually 
return the result into Y with stride L1 = n2 and L2 = 1. These strides can be obtained from an 
appropriate inquiry function. Note also that in dimension 3 and above, transposition means an 
arbitrary permutation of the dimension.

yj1 j2,
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Fast Fourier Transforms 12
This chapter describes the one- and two-dimensional fast Fourier transform (FFT) routines 
implemented in Intel® MKL. The FFT routines work with transforms of a power of 2 length and 
are supported to provide compatibility with previous versions of the library.

For a more general set of Discrete Fourier Transform functions in Intel MKL, refer to Discrete 
Fourier Transform Functions  in this manual.

Although Intel MKL still supports the FFT interface described later in this chapter, users are 
encouraged to migrate to the newer DFT functions  in their application programs. Unlike the FFT 
routines, the DFT routines support transforms of up to the dimension of seven, and transform 
lengths of other than powers of 2 mixed radix.

This chapter contains the following major sections:

• One-dimensional FFTs

• Two-dimensional FFTs

Each of the major sections contains the description of three groups of the FFTs.

One-dimensional FFTs
The one-dimensional FFTs include the following groups:

• Complex-to-Complex Transforms

• Real-to-Complex Transforms

• Complex-to-Real Transforms.
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All one-dimensional FFTs are in-place. The transform length must be a power of 2. The 
complex-to-complex transform routines perform both forward and inverse transforms of a 
complex vector. The real-to-complex transform routines perform forward transforms of a real 
vector. The complex-to-real transform routines perform inverse transforms of a complex 
conjugate-symmetric vector, which is packed in a real array.

Data Storage Types

Each FFT group contains two sets of FFTs having the similar functionality: one set is used for the 
Fortran-interface and the other for the C-interface. The former set stores the complex data as a 
Fortran complex data type, while the latter stores the complex data as float arrays of real and 
imaginary parts separately. These sets are distinguished by naming the FFTs within each set. The 
names of the FFTs used for the C-interface have the letter “c” added to the end of the FFTs’ 
Fortran names. For example, the names of the cfft1d/zfft1d FFTs for the corresponding 
C-interface routines are cfft1dc/zfft1dc. All names of the C-type data items are lower case. 

Table 12-1 lists the one-dimensional FFT routine groups and the data types associated with them.

Data Structure Requirements

For C-interface, storage of the complex-to-complex transform routines data requires separate float 
arrays for the real and imaginary parts. The real-to-complex and complex-to-real pairs require a 
single float input/output array.

The C-interface requires scalar values to be passed by value. 

Table 12-1 One-dimensional FFTs: Names and Data Types

Group

Stored as
Fortran
Complex
Data

Stored as C
Real Data

Data
Types Description

Complex-to
- Complex

cfft1d/
zfft1d

cfftldc/
zfftldc

c, z Transform complex data to complex
data.

Real-to-
Complex

scfft1d/
dzfft1d

scfft1dc/
dzfft1dc

sc, dz Transform forward real-to-complex data.
Complement csfft1d/zdfft1d and
csfft1dc/zdfft1dc FFTs.

Complex-
to-Real

csfft1d/
zdfft1d

csfft1dc/
zdfft1dc

cs, zd Transform inverse complex-to-real data.
Complement scfft1d/dzfft1d and
scfft1dc/dzfft1dc FFTs.
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All transforms require additional memory to store the transform coefficients. When performing 
multiple FFTs of the same dimension, the table of coefficients should be created only once and 
then used on all the FFTs afterwards. Using the same table rather than creating it repeatedly for 
each FFT produces an obvious performance gain.

Complex-to-Complex One-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse FFT of a complex vector.
The forward FFT is computed according to the mathematical equation

 

The inverse FFT is computed according to the mathematical equation

 

where  ,  i being the imaginary unit.

The operation performed by the complex-to-complex routines is determined by the value of the 
isign parameter used by each of these routines.

If isign = -1, perform the forward FFT where input and output are in normal order.

If isign = +1, perform the inverse FFT where input and output are in normal order.

If isign = -2, perform the forward FFT where input is in normal order and output is in 
bit-reversed order.

If isign = +2, perform the inverse FFT where input is in bit-reversed order and output is in 
normal order.

If isign = 0, initialize FFT coefficients for both the forward and inverse FFTs.

The above equations apply to all FFTs with all data types indicated 
in Table 12-1.

To compute a forward or inverse FFT of a given length, first initialize the coefficients by calling 
the function with isign = 0. Thereafter, any number of transforms of the same length can be 
computed by calling the function with  isign = +1, -1, +2, -2.

zj rk*w
j*k–

0 j n 1–≤ ≤,

k 0=

n 1–

�=

rj
1
n
- zk*w

j*k 0 j n 1–≤ ≤,

k 0=

n 1–

�=

w
2πi
n

------exp=
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cfft1d/zfft1d           
Fortran-interface routines. Compute the forward
or inverse FFT of a complex vector (in-place)

Syntax
call cfft1d ( r, n, isign, wsave )

call zfft1d ( r, n, isign, wsave )

Description

The operation performed by the cfft1d/zfft1d routines is determined by the value of isign. 
See the equations of the operations for the Complex-to-Complex One-dimensional FFTs above.

Input Parameters

r COMPLEX for cfft1d
DOUBLE COMPLEX for zfft1d
Array, DIMENSION at least (n). Contains the complex vector on which the
transform is to be performed. Not referenced if isign = 0.

n INTEGER. Transform length; n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be performed:
if isign = 0, initialize the coefficients wsave;
if isign = -1, perform the forward FFT where input and output are in normal
order;
if isign = +1, perform the inverse FFT where input and output are in normal
order;
if isign = -2, perform the forward FFT where input is in normal order and
output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

wsave COMPLEX for cfft1d
DOUBLE COMPLEX for zfft1d
Array, DIMENSION at least ((3*n)/2). If isign = 0, then wsave is an output
parameter. Otherwise, wsave contains the FFT coefficients initialized on a
previous call with isign = 0.
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Output Parameters

r Contains the complex result of the transform depending on isign. Does not
change if isign = 0.

wsave If isign = 0, wsave contains the initialized FFT coefficients. Otherwise,
wsave does not change.

cfft1dc/zfft1dc              
C-interface routines. Compute the forward
or inverse FFT of a complex vector (in-place).

Syntax
void cfft1dc (float* r, float* i, int n, int isign, float* wsave)

void zfft1dc (double* r, double* i, int n, int isign, double* wsave)

Description

The operation performed by the cfft1dc/zfft1dc routines is determined by the value of 
isign. See the equations of the operations for the Complex-to-Complex One-dimensional FFTs.

Input Parameters

r float* for cfft1dc
double* for zfft1dc
Pointer to an array of size at least (n). Contains the real parts of complex
vector to be transformed. Not referenced if isign = 0.

i float* for cfft1dc
double* for zfft1dc

Pointer to an array of size at least (n). Contains the imaginary parts of
complex vector to be transformed.

Not referenced if isign = 0.

n int. Transform length; n must be a power of 2.

isign int. Flag indicating the type of operation to be performed:
if isign = 0, initialize the coefficients wsave;
if isign = -1, perform the forward FFT where input and output are in normal
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order;
if isign = +1, perform the inverse FFT where input and output are in normal
order;
if isign = -2, perform the forward FFT where input is in normal order and
output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

wsave float* for cfft1dc
double* for zfft1dc
Pointer to an array of size at least (3*n). If isign = 0, then wsave is an
output parameter. Otherwise, wsave contains the FFT coefficients initialized
on a previous call with isign = 0.

Output Parameters

r Contains the real part of the transform depending on isign. Does not change
if isign = 0.

i Contains the imaginary part of the transform depending on isign.. Does not
change if isign = 0.

wsave If isign = 0, wsave contains the initialized FFT coefficients. Otherwise,
wsave does not change.

Real-to-Complex One-dimensional FFTs

Each of the real-to-complex routines computes forward FFT of a real input vector according to the 
mathematical equation

 for tk = cmplx(rk,0), where rk is the real input vector, .
The mathematical result zj, , is the complex conjugate-symmetric vector, where 
z(n/2+i) = conjg(z(n/2-i)), , and moreover z(0) and z(n/2) are real 
values.

This complex conjugate-symmetric (CCS) vector can be stored in the complex array of size 
(n/2+1) or in the real array of size (n+2). The data storage of the CCS format is defined later for 
Fortran-interface and C-interface routines separately.

zj tk*w
j*k–

0 j n 1–≤ ≤,

k 0=

n 1–

�=

0 k n 1–≤ ≤
0 j n 1–≤ ≤

1 i n 2⁄ 1–≤ ≤
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Table 12-2 shows a comparison of the effects of performing the cfft1d/ zfft1d 
complex-to-complex FFT on a vector of length n=8 in which all the imaginary elements are zeros, 
with the real-to-complex scfft1d/zdfft1d FFT applied to the same vector. The advantage of 
the latter approach is that only half of the input data storage is required and there is no need to zero 
the imaginary part. The last two columns are stored in the real array of size (n+2) containing the 
complex conjugate-symmetric vector in CCS format.

To compute a forward FFT of a given length, first initialize the coefficients by calling the routine 
you are going to use with isign = 0. Thereafter, any number of real-to-complex and 
complex-to-real transforms of the same length can be computed by calling that routine with the 
isign value other than 0.

scfft1d/dzfft1d          
Fortran-interface routines. Compute forward FFT of a 
real vector and represent the complex 
conjugate-symmetric result in CCS format (in-place).

Syntax
call scfft1d ( r, n, isign, wsave )

Table 12-2 Comparison of the Storage Effects of Complex-to-Complex and 
Real-to-Complex FFTs

Input Vectors Output Vectors

cfft1d scfft1d cfft1d scfft1d

Complex Data Real Data Complex Data Real Data

Real Imaginary Real Imaginary (Real) (Imaginary)

0.841471 0.000000 0.841471 1.543091 0.000000 1.543091 0.000000

0.909297 0.000000 0.909297 3.875664 0.910042 3.875664 0.910042

0.141120 0.000000 0.141120 -0.915560 -0.397326 -0.915560 -0.397326

-0.756802 0.000000 -0.756802 -0.274874 -0.121691 -0.274874 -0.121691

-0.958924 0.000000 -0.958924 -0.181784 0.000000 -0.181784 0.000000

-0.279415 0.000000 -0.279415 -0.274874 0.121691

0.656987 0.000000 0.656987 -0.915560 0.397326

0.989358 0.000000 0.989358 3.875664 -0.910042
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call dzfft1d ( r, n, isign, wsave )

Description

The operation performed by the scfft1d/dzfft1d routines is determined by the value of 
isign. See the equations of the operations for Real-to-Complex One-dimensional FFTs above. 
These routines are complementary to the complex-to-real transform routines csfft1d/zdfft1d.

Input Parameters

r REAL for scfft1d
DOUBLE PRECISION for dzfft1d

Array, DIMENSION at least (n+2). First n elements contain the input vector to
be transformed. The elements r(n+1) and r(n+2) are used on output. The
array r is not referenced if isign = 0.

n INTEGER. Transform length; n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be performed:
if isign is 0, initialize the coefficients wsave;
if isign is not 0, perform the forward FFT.

wsave REAL for scfft1d
DOUBLE PRECISION for dzfft1d

Array, DIMENSION at least (2*n+4). If isign = 0, then wsave contains
output data. Otherwise, wsave contains coefficients required to perform the
FFT that has been initialized on a previous call to this routine or the
complementary complex-to-real FFT routine.

Output Parameters

r If isign = 0, r does not change. If isign is not 0, the output real-valued array
r(1:n+2) contains the complex conjugate-symmetric vector z(1:n) packed
in CCS format for Fortran interface.
The table below shows the relationship between them. 

The full complex vector z(1:n) is defined by

z(i) = cmplx(r(2*i-1), r(2*i)),
1 ≤ i ≤ n/2+1,

r(1) r(2) r(3) r(4) ... r(n-1) r(n) r(n+1) r(n+2)

z(1) 0 REz(2) IMz(2) ... REz(n/2) IMz(n/2) z(n/2+1) 0



Fast Fourier Transforms 12

12-9

z(n/2+i) = conjg(z(n/2+2-i)),
2 ≤ i ≤ n/2.

Then, z(1:n) is the forward FFT of a real input vector r(1:n).

wsave If isign = 0, wsave contains the coefficients required by the called routine.
Otherwise wsave does not change.

scfft1dc/dzfft1dc           
C-interface routines. Compute forward FFT of a real 
vector and represent the complex conjugate-
symmetric result in CCS format (in-place).

Syntax
void scfft1dc ( float* r, int n, int isign, float* wsave );

void dzfft1dc ( double* r, int n, int isign, double* wsave );

Description

The operation performed by the scfft1dc/dzfft1dc routines is determined by the value of 
isign. See the equations of the operations for the Real-to-Complex One-dimensional FFTs 
above. 
These routines are complementary to the complex-to-real transform routines 
csfft1dc/zdfft1dc.

Input Parameters

r float* for scfft1dc
double* for dzfft1dc

Pointer to an array of size at least (n+2). First n elements contain the input
vector to be transformed. The array r is not referenced if isign = 0.

n int. Transform length; n must be a power of 2.

isign int. Flag indicating the type of operation to be performed:

if isign is 0, initialize the coefficients wsave;

if isign is not 0, perform the forward FFT.
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wsave float* for scfft1dc
double* for dzfft1dc

Pointer to an array of size at least (2*n+4).
If isign = 0, then wsave contains output data. Otherwise, wsave contains
coefficients required to perform the FFT that has been initialized on a previous
call to this routine or the complementary complex-to-real FFT routine.

Output Parameters

r If isign = 0, r does not change. If isign is not 0, the output real-valued array
r(0:n+1) contains the complex conjugate-symmetric vector z(0:n-1)
packed in CCS format for C-interface.
The table below shows the relationship between them.

The full complex vector z(0:n-1) is defined by

z(i) = cmplx(r(i),r(n/2+1+i)), 0 ≤ i ≤ n/2,

z(n/2+i) = conjg(z(n/2-i)), 1 ≤  i ≤  n/2-1.
Then, z(0:n-1) is the forward FFT of the real input vector of length n.

wsave If isign = 0, wsave contains the coefficients required by the called routine.
Otherwise wsave does not change.

Complex-to-Real One-dimensional FFTs

Each of the complex-to-real routines computes a one-dimensional inverse FFT according to the 
mathematical equation

The mathematical input is the complex conjugate-symmetric vector zj, , , where 
z(n/2+i) = conjg(z(n/2-i)), , and moreover z(0) and z(n/2) are real 
values.

The mathematical result is tj = cmplx(rj,0), where rj is a real vector, .

r(0) r(1) r(2) ... r(n/2) r(n/2+1) r(n/2+2) ... r(n) r(n+1)

z(0) REz(1) REz(2) ... z(n/2) 0 IMz(1) ... IMz(n/2-1) 0

tj
1
n
- zk*w

j*k 0 j n 1–≤ ≤,

k 0=

n 1–

�=

0 j n 1–≤ ≤
1 i n 2⁄ 1–≤ ≤

0 j n 1–≤ ≤
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Input to the complex-to-real transform routines is a real array of size (n+2), which contains the 
complex conjugate-symmetric vector z(0:n-1) in CCS format (see Real-to-Complex 
One-dimensional FFTs above). 

Output of the complex-to-real routines is a real vector of size n.

Table 12-3 is identical to Table 12-2, except for reversing the input and output vectors. In the 
complex-to-real routines the last two columns are stored in the input real array of size (n+2) 
containing the complex conjugate-symmetric vector in CCS format. 

To compute an inverse FFT of a given length, first initialize the coefficients by calling the routine 
you are going to use with isign = 0. Thereafter, any number of real-to-complex and 
complex-to-real transforms of the same length can be computed by calling the appropriate routine 
with the isign value other than 0.

Table 12-3 Comparison of the Storage Effects of Complex-to-Real and 
Complex-to-Complex FFTs

Output Vectors Input Vectors

cfft1d csfft1d cfft1d csfft1d

Complex Data Real Data Complex Data Real Data

Real Imaginary Real Imaginary (Real) (Imaginary)

0.841471 0.000000 0.841471 1.543091 0.000000 1.543091 0.000000

0.909297 0.000000 0.909297 3.875664 0.910042 3.875664 0.910042

0.141120 0.000000 0.141120 -0.915560 -0.397326 -0.915560 -0.397326

-0.756802 0.000000 -0.756802 -0.274874 -0.121691 -0.274874 -0.121691

-0.958924 0.000000 -0.958924 -0.181784 0.000000 -0.181784 0.000000

-0.279415 0.000000 -0.279415 -0.274874 0.121691

0.656987 0.000000 0.656987 -0.915560 0.397326

0.989358 0.000000 0.989358 3.875664 -0.910042
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csfft1d/zdfft1d              
Fortran-interface routines. Compute inverse FFT of a 
complex conjugate-symmetric vector packed in CCS 
format (in-place).

Syntax
call csfft1d ( r, n, isign, wsave )

call zdfft1d ( r, n, isign, wsave )

Description

The operation performed by the csfft1d/zdfft1d routines is determined by the value of 
isign. See the equations of the operations for the Complex-to-Real One-dimensional FFTs 
above.

These routines are complementary to the real-to-complex transform routines scfft1d/dzfft1d.

Input Parameters

r REAL for csfft1d
DOUBLE PRECISION for zdfft1d

Array, DIMENSION at least (n+2).
Not referenced if isign = 0.

If isign is not 0, then r(1:n+2) contains the complex conjugate-symmetric
vector packed in CCS format for Fortran-interface.
The table below shows the relationship between them.

The full complex vector z(1:n) is defined by

z(i) = cmplx(r(2*i-1), r(2*i)),
1 ≤ i ≤ n/2+1,

z(n/2+i) = conjg(z(n/2+2-i)),
2 ≤ i ≤ n/2.

r(1) r(2) r(3) r(4) ... r(n-1) r(n) r(n+1) r(n+2)

z(1) 0 REz(2) IMz(2) ... REz(n/2) IMz(n/2) z(n/2+1) 0
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After the transform, r(1:n) contains the inverse FFT of the complex
conjugate-symmetric vector z(1:n).

n INTEGER. Transform length; n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be performed:
if isign is 0, initialize the coefficients wsave;
if isign is not 0, perform the inverse FFT.

wsave REAL for csfft1d
DOUBLE PRECISION for zdfft1d
Array, DIMENSION at least (2*n+4). If isign = 0, then wsave contains
output data. Otherwise, wsave contains coefficients required to perform the
FFT that has been initialized on a previous call to this routine or the
complementary real-to-complex FFT routine.

Output Parameters

r If isign is not 0, then r(1:n) is the real result of the inverse FFT of the
complex conjugate-symmetric vector z(1:n). Does not change if isign = 0.

wsave If isign = 0, wsave contains the coefficients required by the called routine.
Otherwise wsave does not change.

csfft1dc/zdfft1dc              
C-interface routines.Compute inverse FFT 
of a complex conjugate-symmetric vector 
packed in CCS format (in-place).

Syntax
void csfft1dc ( float* r, int n, int isign, float* wsave )

void zdfft1dc ( double* r, int n, int isign, double* wsave )

Description

The operation performed by the csfft1dc/zdfft1dc routines is determined by the value of 
isign. See the equations of the operations for the Complex-to-Real One-dimensional FFTs 
above.
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These routines are complementary to the real-to-complex transform routines 
scfft1dc/dzfft1dc.

Input Parameters

r float* for csfft1dc
double* for zdfft1dc

Pointer to an array of size at least (n+2). Not referenced if isign = 0.

If isign is not 0, then r(0:n+1) contains the complex conjugate-symmetric
vector packed in CCS format for C-interface.
The table below shows the relationship between them.

The full complex vector z(0:n-1) is defined by
z(i) = cmplx(r(i),r(n/2+1+i)), 0 ≤ i ≤ n/2,

z(n/2+i) = conjg(z(n/2-i)), 1 ≤ i ≤ n/2-1 .
After the transform, r(0:n-1) is the inverse FFT of the complex
conjugate-symmetric vector z(0:n-1).

n int. Transform length; n must be a power of 2.

isign int. Flag indicating the type of operation to be performed:
if isign = 0, initialize the coefficients wsave;
if isign is not 0, perform the inverse FFT.

wsave float* for csfft1dc
double* for zdfft1dc
Pointer to an array of size at least (2*n+4).
If isign = 0, then wsave contains output data. Otherwise, wsave contains
coefficients required to perform the FFT that has been initialized on a previous
call to this routine or the complementary real-to-complex FFT routine.

Output Parameters

r If isign is not 0, then r(0:n-1) is the real result of the inverse FFT of the
complex conjugate-symmetric vector z(0:n-1). Does not change if isign =
0.

wsave If isign = 0, wsave contains the coefficients required by the called routine.
Otherwise wsave does not change.

r(0) r(1) r(2) ... r(n/2) r(n/2+1) r(n/2+2) ... r(n) r(n+1)

z(0) REz(1) REz(2) ... z(n/2) 0 IMz(1) ... IMz(n/2-1) 0
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Two-dimensional FFTs
The two-dimensional FFTs are functionally the same as one-dimensional FFTs. They contain the 
following groups: 

• Complex-to-Complex Transforms

• Real-to-Complex Transforms

• Complex-to-Real Transforms.

All two-dimensional FFTs are in-place. Transform lengths must be a power of 2. The 
complex-to-complex transform routines perform both forward and inverse transforms of a 
complex matrix. The real-to-complex transform routines perform forward transforms of a real 
matrix. The complex-to-real transform routines perform inverse transforms of a complex 
conjugate-symmetric matrix, which is packed in a real array.

The naming conventions are also the same as those for one-dimensional FFTs, with “2d” replacing 
“1d” in all cases. Table 12-4 lists the two-dimensional FFT routine groups and the data types 
associated with them.

The C-interface requires scalar values to be passed by value. The major difference between the 
one-dimensional and two-dimensional FFTs is that your application does not need to provide 
storage for transform coefficients.

The data storage types and data structure requirements are the same as for one-dimensional FFTs. 
For more information, see the Data Storage Types and Data Structure Requirements sections at the 
beginning of this chapter. 

Table 12-4 Two-dimensional FFTs: Names and Data Types

Group

Stored as
FORTRAN
Complex
Data

Stored as C
Real Data

Data
Types Description

Complex-to-
Complex

cfft2d/
zfft2d

cfft2dc/
zfft2dc

c, z Transform complex data to complex
data.

Real-to-
Complex

scfft2d/
dzfft2d

scfft2dc/
dzfft2dc

sc, dz Transform forward real-to-complex data.
Complement csfft2d/zdfft2d and
csfft2dc/zdfft2dc FFTs.

Complex-
to-Real

csfft2d/
zdfft2d

csfft2dc/
zdfft2dc

cs, zd Transform inverse complex-to-real data.
Complement scfft2d/dzfft2d and
scfft2dc/dzfft2dc FFTs.
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Complex-to-Complex Two-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse FFT of a complex matrix 
in-place.

The forward FFT is computed according to the mathematical equation

The inverse FFT is computed according to the mathematical equation

where  ,   , i being the imaginary unit.

 The operation performed by the complex-to-complex routines is determined by the value of the 
isign parameter. 

If isign = -1, perform the forward FFT where input and output are in normal order.
If isign = +1, perform the inverse FFT where input and output are in normal order.
If isign = -2, perform the forward FFT where input is in normal order and output is in 
bit-reversed order.
If isign = +2, perform the inverse FFT where input is in bit-reversed order and output is in 
normal order.

The above equations apply to all FFTs with all data types indicated in  Table 12-4.
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cfft2d/zfft2d            
Fortran-interface routines. Compute the forward or
inverse FFT of a complex matrix (in-place).

Syntax
call cfft2d ( r, m, n, isign )

call zfft2d ( r, m, n, isign )

Description

The operation performed by the cfft2d/zfft2d routines is determined by the value of isign. 
See the equations of the operations for Complex-to-Complex Two-dimensional FFTs.

Input Parameters

r COMPLEX for cfft2d
DOUBLE COMPLEX for zfft2d
Array, DIMENSION at least (m,n), with its leading dimension equal to m. This
array contains the complex matrix to be transformed.

m INTEGER. Column transform length (number of rows);
m must be a power of 2.

n INTEGER. Row transform length (number of columns); n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be performed:
if isign = -1, perform the forward FFT where input and output are in normal
order;
if isign = +1, perform the inverse FFT where input and output are in normal
order;
if isign = -2, perform the forward FFT where input is in normal order and
output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

Output Parameters

r Contains the complex result of the transform depending on isign.
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cfft2dc/zfft2dc               
C-interface routines. Compute the forward or inverse 
FFT of a complex matrix (in-place).

Syntax
void cfft2dc ( float* r, float* i, int m, int n, int isign )

void zfft2dc ( double* r, double* i, int m, int n, int isign )

Description

The operation performed by the cfft2dc/zfft2dc routines is determined by the value of 
isign. See the equations of the operations for the Complex-to-Complex Two-dimensional FFTs 
above.

Input Parameters

r float* for cfft2dc
double* for zfft2dc

Pointer to a two-dimensional array of size at least (m,n), with its leading
dimension equal to n. The array contains the real parts of a complex matrix to
be transformed.

i float* for cfft2dc
double* for zfft2dc

Pointer to a two-dimensional array of size at least (m,n), with its leading
dimension equal to n. The array contains the imaginary parts of a complex
matrix to be transformed.

m int. Column transform length (number of rows); m must be a power of 2.

n int. Row transform length (number of columns); n must be a power of 2.

isign int. Flag indicating the type of operation to be performed:

if isign = -1, perform the forward FFT where input and output are in normal
order;
if isign = +1, perform the inverse FFT where input and output are in normal
order;
if isign = -2, perform the forward FFT where input is in normal order and
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output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

Output Parameters

r Contains the real parts of the complex result depending on isign.

i Contains the imaginary parts of the complex depending on isign.

Real-to-Complex Two-dimensional FFTs

Each of the real-to-complex routines computes the forward FFT of a real matrix according to the 
mathematical equation

tk,l = cmplx(rk,l,0), where rk,l is a real input matrix, 0 ≤ k ≤ m-1,  0 ≤ l ≤ n-1. 
The mathematical result zi,j, 0 ≤ i ≤ m-1,  0 ≤ j ≤ n-1, is the complex matrix of size (m,n). Each 
column is the complex conjugate-symmetric vector as follows:

for  0 ≤ j ≤ n-1, 

z(m/2+i,j) = conjg(z(m/2-i,j)),  1 ≤ i ≤ m/2-1.
Moreover, z(0,j) and z(m/2,j) are real values for j=0 and j=n/2.

This mathematical result can be stored in the real two-dimensional array of size (m+2,n+2) or in 
the complex two-dimensional array of size  (m/2+1,n+1) for Fortran-interface and in the 
complex two-dimensional array of size  (m+1,n/2+1) for C-interface. The data storage of CCS 
format is defined later for Fortran-interface and C-interface routines separately.

zi j, tk l, *wm
i– *k

*wn
j– *l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–

�
k 0=

m 1–

�=
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scfft2d/dzfft2d        
Fortran-interface routines. Compute forward FFT of a 
real matrix and represent the complex 
conjugate-symmetric result in CCS format (in-place).

Syntax
call scfft2d ( r, m, n )

call dzfft2d ( r, m, n )

Description

See the equations of the operations for the Real-to-Complex Two-dimensional FFTs above.

These routines are complementary to the complex-to-real transform routines csfft2d/zdfft2d.

Input Parameters

r REAL for scfft2d
DOUBLE PRECISION for dzfft2d
Array, DIMENSION at least (m+2,n+2), with its leading dimension equal to 
(m+2). The first m rows and n columns of this array contain the real matrix to
be transformed. Table 12-5 presents the input data layout.

m INTEGER. Column transform length (number of rows); m must be a power of 2.

n INTEGER. Row transform length (number of columns); n must be a power of 2.  
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* n/u - not used

Output Parameters

r The output real array r(1:m+2,1:n+2) contains the complex conjugate-symmetric
matrix z(1:m,1:n) packed in CCS format for Fortran-interface as follows:

• Rows 1 and m+1 contain in n+2 locations the complex conjugate-symmetric vectors
z(1,j) and z(m/2+1,j) packed in CCS format (seeReal-to-Complex
One-dimensional FFTs above).
The full complex vector z(1,j) is defined by:
z(1,j) = cmplx(r(1,2*j-1),r(1,2*j)), 1 ≤ j ≤ n/2+1,
z(1,n/2+1+j) = conjg(z(1,n/2+1-j)), 1 ≤ j ≤ n/2-1 .
The full complex vector z(m/2+1,j) is defined by:
z(m/2+1,j) = cmplx(r(m+1,2*j-1),r(m+1,2*j)),
1 ≤ j ≤ n/2+1,
z(m/2+1,n/2+1+j) = conjg(z(m/2+1,n/2+1-j)),
1 ≤ j ≤ n/2-1;

• Rows from 3 to m contain in n locations complex vectors represented as
z(i+1,j) = cmplx(r(2*i+1,j),r(2*i+2,j)),
1 ≤ i ≤ m/2-1, 1 ≤ j ≤ n .

Table 12-5 Fortran-interface Real Data Storage for the Real-to-Complex 
and Complex-to-Real Two-dimensional FFTs

r(1,1) r(1,2) ... r(1,n-1) r(1,n) n/u n/u

r(2,1) r(2,2) ... r(2,n-1) r(2,n) n/u n/u

r(3,1) r(3,2) ... r(3,n-1) r(3,n) n/u n/u

r(4,1) r(4,2) ... r(4,n-1) r(4,n) n/u n/u

... ... ... ... ... ... ...

r(m-1,1) r(m-1,2) ... r(m-1,n-1) r(m-1,n) n/u n/u

r(m,1) r(m,2) ... r(m,n-1) r(m,n) n/u n/u

n/u n/u ... n/u n/u n/u n/u

n/u n/u ... n/u n/u n/u n/u
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• The rest matrix elements can be obtained from
z(m/2+1+i,j) = conjg(z(m/2+1-i,j)),
1 ≤ i ≤ m/2-1, 1 ≤ j ≤ n .

The storage of the complex conjugate-symmetric matrix z for Fortran-interface is shown 
in Table 12-6.  

* n/u - not used

scfft2dc/dzfft2dc              
C-interface routine. Compute forward FFT of a real 
matrix and represent the complex conjugate-symmetric 
result in CCS format (in-place).

Syntax
void scfft2dc ( float* r, int m, int n )

void dzfft2dc ( double* r, int m, int n )

Table 12-6 Fortran-interface Data Storage of CCS Format for the Real-to-Complex and 
Complex-to-Real Two-Dimensional FFTs

z(1,1) 0 REz(1,2) IMz(1,2) ... REz(1,n/2) IMz(1,n/2) z(1,
n/2+1)

0

0 0 0 0 ... 0 0 0 0

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n) n/u n/u

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n) n/u n/u

... ... ... ... ... ... ... n/u n/u

REz(m/2,1) REz(m/2,2) REz(m/2,3) REz(m/2,4) ... REz(m/2,
n-1)

REz(m/2,
n)

n/u n/u

IMz(m/2,1) IMz(m/2,2) IMz(m/2,3) IMz(m/2,4) ... IMz(m/2,
n-1)

IMz(m/2,
n)

n/u n/u

z(m/2+1,1) 0 REz(m/2+1,2) IMz(m/2+1,2) ... REz(m/2+1,
n/2)

IMz(m/2+1,
n/2)

z(m/2+1,
n/2+1)

0

0 0 0 0 ... 0 0 n/u n/u
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Description

See the equations of the operations for the Real-to-Complex Two-dimensional FFTs above. 

These routines are complementary to the complex-to-real transform routines 
csfft2dc/zdfft2dc.

Input Parameters

r float* for scfft2dc
double* for dzfft2dc

Pointer to an array of size at least (m+2,n+2), with its leading dimension
equal to (n+2). The first m rows and n columns of this array contain the real
matrix to be transformed.

Table 12-7 presents the input data layout.

m int. Column transform length;
m must be a power of 2.

n int. Row transform length;
n must be a power of 2.  

 Output Parameters

r The output real array r(0:m+1,0:n+1) contains the complex conjugate-symmetric
matrix z(0:m-1,0:n-1) packed in CCS format for C-interface as follows:

Table 12-7 C-interface Real Data Storage for a Real-to-Complex 
and Complex-to-Real Two-dimensional FFTs

r(0,0) r(0,1) ... r(0,n-2) r(0,n-1) n/u n/u

r(1,0) r(1,1) ... r(1,n-2) r(1,n-1) n/u n/u

r(2,0) r(2,1) ... r(2,n-2) r(2,n-1) n/u n/u

r(3,0) r(3,1) ... r(3,n-2) r(3,n-1) n/u n/u

... ... ... ... ... ... ...

r(m-2,0) r(m-2,1) ... r(m-2,n-2) r(m-2,n-1) n/u n/u

r(m-1,0) r(m-1,1) ... r(m-1,n-2) r(m-1,n-1) n/u n/u

n/u n/u ... n/u n/u n/u n/u

n/u n/u ... n/u n/u n/u n/u
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• Columns 0 and n/2 contain in m+2 locations the complex conjugate-symmetric
vectors z(i,0) and z(i,n/2) in CCS format (seeReal-to-Complex
One-dimensional FFTs above).
The full complex vector z(i,0) is defined by:
z(i,0) = cmplx(r(i,0),r(m/2+i+1,0)), 0 ≤ i ≤ m/2,
z(m/2+i,0) = conjg(z(m/2-i,0)), 1 ≤ i ≤ m/2-1 .

The full complex vector z(i,n/2) is defined by:
z(i,n/2) = cmplx(r(i,n/2),r(m/2+i+1,n/2)), 0 ≤ i ≤ m/2,
z(m/2+i,n/2) = conjg(z(m/2-i,n/2)), 1 ≤ i ≤ m/2-1 .

• Columns from 1 to n/2-1 contain real parts, and columns from n/2+2 to n contain 
imaginary parts of complex vectors. These values for each vector are stored in m 
locations represented as follows
z(i,j) = cmplx(r(i,j),r(i,n/2+1+j)),
0 ≤ i ≤ m-1, 1 ≤ j ≤ n/2-1 .

• The rest matrix elements can be obtained from
z(i,n/2+j) = conjg(z(i,n/2-j)),
0 ≤ i ≤ m-1, 1 ≤ j ≤ n/2-1 .

The storage of the complex conjugate-symmetric matrix z for C-interface is shown in Table 12-8.  
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Complex-to-Real Two-dimensional FFTs    

Each of the complex-to-real routines computes a two-dimensional inverse FFT according to the 
mathematical equation:

The mathematical input zi,j, , is a complex matrix of size (m,n). 
Each column is the complex conjugate-symmetric vector as follows:

for  0 ≤ j ≤ n-1, 
z(m/2+i,j) = conjg(z(m/2-i,j)),  1 ≤ i ≤ m/2-1.
Moreover, z(0,j) and z(m/2,j) are real values for j=0 and j=n/2.

Table 12-8 C-interface Data Storage of CCS Format for the Real-to-Complex and 
Complex-to-Real Two-dimensional FFT

z(0,0) REz(0,1) ... REz(0,
n/2-1)

z(0,n/2) 0 IMz(0,1) ... IMz(0,
n/2-1)

0

REz(1,0) REz(1,1) ... REz(1,
n/2-1)

REz(1,n/2) 0 IMz(1,1) ... IMz(1,
n/2-1)

0

... ... ... ... ... 0 ... ... ... 0

REz(m/2-1,
0)

REz(m/2-1,
1)

... REz(m/2-1,
n/2-1)

REz(m/2-1,
n/2)

0 IMz(m/2-1,
1)

... IMz(m/2-1,
n/2-1)

0

z(m/2,0) REz(m/2,1) ... REz(m/2,
n/2-1)

z(m/2,n/2) 0 IMz(m/2,1) ... IMz(m/2,
n/2-1)

0

0 REz(m/2+1,
1)

... REz(m/2+1,
n/2-1)

0 0 IMz(m/2+1,
1)

... IMz(m/2+1,
n/2-1)

0

IMz(1,0) REz(m/2+2,
1)

... REz(m/2+2,
n/2-1)

IMz(1,n/2) 0 IMz(m/2+2,
1)

... IMz(m/2+2,
n/2-1)

0

... ... ... ... ... 0 ... ... ... 0

IMz(m/2-2,
0)

REz(m-1,1) ... REz(m-1,
n/2-1)

IMz(m/2-2,
n/2)

0 IMz(m-1,1) ... IMz(m-1,
n/2-1)

0

IMz(m/2-1,
0)

n/u ... n/u IMz(m/2-1,
n/2)

n/u n/u ... n/u n/u

0 n/u ... n/u 0 n/u n/u ... n/u n/u

ti j,
1

m*n
------ zk l, *wm

i*k
*wn

j*l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–

�
k 0=

m 1–

�=

0 i m 1 0 j n 1–≤ ≤,–≤ ≤
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This mathematical result can be stored in the real two-dimensional array of size (m+2,n+2) or in 
the complex two-dimensional array of size  (m/2+1,n+1) for Fortran-interface and in the 
complex two-dimensional array of size  (m+1,n/2+1) for C-interface.  The data storage of CCS 
format is defined later for Fortran-interface and C-interface routines separately.

The mathematical result of the transform is tk,l = cmplx(rk,l,0), where rk,l is the real 
matrix,  .

 csfft2d/zdfft2d     
Fortran-interface routine. Compute inverse FFT of a
complex conjugate-symmetric matrix packed in CCS
format (in-place).

Syntax
call csfft2d ( r, m, n )

call zdfft2d ( r, m, n )

Description

See the equations of the operations for the Complex-to-Real Two-dimensional FFTs above. These 
routines are complementary to the real-to-complex transform routines scfft2d/dzfft2d.

Input Parameters

r SINGLE PRECISION REAL*4 for csfft2d
DOUBLE PRECISION REAL*8 for zdfft2d

Array, DIMENSION at least (m+2,n+2), with its leading dimension equal to
(m+2). This array contains the complex conjugate-symmetric matrix in CCS 
format to be transformed. The input data layout is given in Table 12-6.

m INTEGER. Column transform length (number of rows); m must be a power of 2.

n INTEGER. Row transform length (number of columns); n must be a power of 2.

Output Parameters

r Contains the real result returned by the transform. For the output data layout,
see Table 12-5.

0 k m 1 0 l n 1–≤ ≤,–≤ ≤
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csfft2dc/zdfft2dc             
C-interface routines. Compute inverse FFT of a
complex conjugate-symmetric matrix packed in CCS
format (in-place).

Syntax
void csfft2dc ( float* r, int m, int n );

void zdfft2dc ( double* r, int m, int n );

Description

See the equations of the operations for the Complex-to-Real Two-dimensional FFTs above. These 
routines are complementary to the real-to-complex transform routines scfft2dc/dzfft2dc.

Input Parameters

r float* for csfft2dc
double* for zdfft2dc

Pointer to an array of size at least (m+2,n+2), with its leading dimension
equal to (n+2). This array contains the complex conjugate-symmetric matrix 
in CCS format to be transformed. The input data layout is given in Table 12-8.

m int. Column transform length; m must be a power of 2.

n int. Row transform length; n must be a power of 2.

 Output Parameters

r Contains the real result returned by the transform. The output data layout is the
same as that for the input data of scfft2dc/dzfft2dc. See Table 12-7 for
the details.
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Linear Solvers Basics
A

Many applications in science and engineering require the solution of a system of linear equations. 
This problem is usually expressed mathematically by the matrix-vector equation, 
Ax = b, where A is an n by n matrix and x and b are n element column vectors. The matrix A is 
usually referred to as the coefficient matrix, and the vectors x and b are referred to as the solution 
vector and the right-hand side, respectively.

In many real-life applications, most of the elements in A are zero. Such a matrix is referred to as 
sparse. Conversely, matrices with very few zero elements are called dense. For sparse matrices, 
computing the solution to the equation Ax = b can be made much more efficient with respect to 
both storage and computation time, if the sparsity of the matrix can be exploited. The more an 
algorithm can exploit the sparsity without sacrificing the correctness, the better the algorithm.

Generally speaking, computer software that finds solutions to systems of linear equations is called 
a solver. A solver designed to work specifically on sparse systems of equations is called a sparse 
solver. Solvers are usually classified into two groups - direct and iterative.

Iterative Solvers  start with an initial approximation to a solution and attempt to estimate the 
difference between the approximation and the true result. Based on the difference, an iterative 
solver calculates a new approximation that is closer to the true result than the initial 
approximation. This process is repeated until the difference between the approximation and the 
true result is sufficiently small. The main drawback to iterative solvers is that the rate of 
convergence depends greatly on the values in the matrix A. Consequently, it is not possible to 
predict how long it will take for an iterative solver to produce a solution. In fact, for ill-conditioned 
matrices, the iterative process will not converge to a solution at all. However, for well-conditioned 
matrices it is possible for iterative solvers to converge to a solution very quickly. Consequently for 
the right applications, iterative solvers can be very efficient.

Direct Solvers, on the other hand, often factor the matrix A into the product of two triangular 
matrices and then perform a forward and backward triangular solve. 
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This approach makes the time required to solve a systems of linear equations relatively 
predictable, based on the size of the matrix. In fact, for sparse matrices, the solution time can be 
predicted based on the number of non-zero elements in the array A.

Matrix Fundamentals
A matrix is a rectangular array of either real or complex numbers. A matrix is denoted by a capital 
letter; its elements are denoted by the same lower case letter with row/column subscripts.  Thus, 
the value of the element in row i and column j in matrix A is denoted by a(i,j).
For example, a 3 by 4 matrix A, is written as follows:

Note that with the above notation, we assume the standard Fortran programming language 
convention of starting array indices at 1 rather than the C programming language convention of 
starting them at 0.

A matrix in which all of the elements are real numbers is called a real matrix. A matrix that 
contains at least one complex number is called a complex matrix. 
A real or complex matrix A with the property that a(i,j) = a(j,i), is called a symmetric 
matrix. A complex matrix  A with the property that a(i,j) = conj(a(j,i)), is called a 
Hermitian matrix. Note that programs that manipulate symmetric and Hermitian matrices need 
only store half of the matrix values, since the values of the non-stored elements can be quickly 
reconstructed from the stored values.

A matrix that has the same number of rows as it has columns is referred to as a square matrix. The 
elements in a square matrix that have same row index and column index are called the diagonal 
elements of the matrix, or simply the diagonal of the matrix.

The transpose of a matrix A is the matrix obtained by “flipping” the elements of the array about its 
diagonal. That is, we exchange the elements a(i,j) and a(j,i). For a complex matrix, if we 
both flip the elements about the diagonal and then take the complex conjugate of the element, the 
resulting matrix is called the Hermitian transpose or conjugate transpose of the original matrix. 
The transpose and Hermitian transpose of a matrix A are denoted by AT and AH respectively.

A column vector, or simply a vector, is a  matrix, and a row vector is a  matrix. 
A real or complex matrix  A is said to be positive definite if the vector-matrix product xTAx is 
greater than zero for all non-zero vectors x. A matrix that is not positive definite is referred to as 
indefinite.

A
a 1 1,( ) a 1 2,( ) a 1 3,( ) a 1 4,( )
a 2 1,( ) a 2 2,( ) a 2 3,( ) a 2 4,( )
a 3 1,( ) a 3 2,( ) a 3 3,( ) a 3 4,( )

=

n 1× 1 n×
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An upper (or lower) triangular matrix, is a square matrix in which all elements below (or above) 
the diagonal are zero. A unit triangular matrix is an upper or lower triangular matrix with all 1’s 
along the diagonal.

A matrix P is called a permutation matrix if, for any matrix A, the result of the matrix product PA 
is identical to A except for interchanging the rows of A. For a square matrix, it can be shown that if 
PA is a permutation of the rows of A, then APT is the same permutation of the columns of A. 
Additionally, it can be shown that the inverse of P is PT.

In order to save space, a permutation matrix is usually stored as a linear array, called a permutation 
vector, rather than as an array. Specifically, if the permutation matrix maps the i-th row of a matrix 
to the j-th row, then the i-th element of the permutation vector is j.

A matrix with non-zero elements only on the diagonal is called a diagonal matrix. As is the case 
with a permutation matrix, it is usually stored as a vector of values, rather than as a matrix.

Direct Method
For solvers that use the direct method, the basic technique employed in finding the solution of the 
system Ax = b is to first factor A into triangular matrices. That is, find a lower triangular matrix L 
and an upper triangular matrix U, such that A = LU. Having obtained such a factorization (usually 
referred to as an LU decomposition or LU factorization), the solution to the original problem can 
be rewritten as follows.

This leads to the following two-step process for finding the solution to the original system of 
equations:

1. Solve the systems of equations Ly = b.

2. Solve the system Ux = y.

Solving the systems Ly = b and Ux = y is referred to as a forward solve and a backward solve, 
respectively.

If a symmetric matrix  A is also positive definite, it can be shown that A can be factored as LLT 
where L is a lower triangular matrix. Similarly, a Hermitian matrix, A, that is positive definite can 
be factored as A = LLH. For both symmetric and Hermitian matrices, a factorization of this form is 
called a Cholesky factorization.

Ax b
LUx� b
Ux( )� b

=
=
=
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In a Cholesky factorization, the matrix U in an LU decomposition is either LT or LH. Consequently, 
a solver can increase its efficiency by only storing L, and one-half of A, and not computing U. 
Therefore, users who can express their application as the solution of a system of positive definite 
equations will gain a significant performance improvement over using a general representation. 

For matrices that are symmetric (or Hermitian) but not positive definite, there are still some 
significant efficiencies to be had. It can be shown that if A is symmetric but not positive definite, 
then A can be factored as A = LDLT, where D is a diagonal matrix and L is a lower unit triangular 
matrix. Similarly, if A is Hermitian, it can be factored as A = LDLH. In either case, we again only 
need to store L, D, and half of A and we need not compute U. However, the backward solve phases 
must be amended to solving LTx = D-1y rather than LTx = y.

Fill-In and Reordering of Sparse Matrices

Two important concepts associated with the solution of sparse systems of equations are fill-in and 
reordering. The following example illustrates these concepts.

Consider the system of linear equation Ax = b, where A is the symmetric positive definite sparse 
matrix defined by the following:

A star (*) is used to represent zeros and to emphasize the sparsity of A. The Cholesky factorization 
of A is: A = LLT, where L is the following:

A

9
3
2
--- 6

3
4
--- 3

3
2
--- 1

2
--- * * *

6 * 12 * *

3
4
--- * *

5
8
--- *

3 * * * 16

b

1

2

3

4

5

= =

L

3 * * * *

1
2
--- 1

2
--- * * *

2 2– 2 * *

1
4
--- 1

4–
------ 1

2–
------ 1

2
--- *

1 1– 2– 3– 1

=
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Notice that even though the matrix A is relatively sparse, the lower triangular matrix L has no zeros 
below the diagonal. If we computed L and then used it for the forward and backward solve phase, 
we would do as much computation as if A had been dense.

The situation of L having non-zeros in places where A has zeros is referred to as fill-in. 
Computationally, it would be more efficient if a solver could exploit the non-zero structure of A in 
such a way as to reduce the fill-in when computing L. By doing this, the solver would only need to 
compute the non-zero entries in L. Toward this end, consider permuting the rows and columns of 
A. As described in Matrix Fundamentals  section, the permutations of the rows of A can be 
represented as a permutation matrix, P. The result of permuting the rows is the product of P and A. 
Suppose, in the above example, we swap the first and fifth row of A, then swap the first and fifth 
columns of A, and call the resulting matrix B. Mathematically, we can express the process of 
permuting the rows and columns of A to get B as B = PAPT. After permuting the rows and columns 
of A, we see that B is given by the following:

Since B is obtained from A by simply switching rows and columns, the numbers of non-zero 
entries in A and B are the same. However, when we find the Cholesky factorization, B = LLT, we 
see the following:

B

16 * * * 3

*
1
2
--- * *

3
2
---

* * 12 * 6

* * *
5
8
--- 3

4
---

3
3
2
--- 6

3
4
--- 9

=

L

4 * * * *

*
1

2
------- * * *

* * 2 3( ) * *

* * *
10
4

---------- *

3
4
--- 3

2
------- 3

3

10
----------

3
5
---

4
-------

=
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The fill-in associated with B is much smaller than the fill-in associated with A. Consequently, the 
storage and computation time needed to factor B is much smaller than to factor A. Based on this, 
we see that an efficient sparse solver needs to find permutation P of the matrix A, which minimizes 
the fill-in for factoring B = PAPT, and then use the factorization of B to solve the original system of 
equations.

Although the above example is based on a symmetric positive definite matrix and a Cholesky 
decomposition, the same approach works for a general LU decomposition. Specifically, let P be a 
permutation matrix, B = PAPT and suppose that B can be factored as B = LU. Then

It follows that if we obtain an LU factorization for B, we can solve the original system of equations 
by a three step process:

1. Solve Ly = Pb.

2. Solve Uz = y.

3. Set x = PTz.

If we apply this three step process to the current example, we first need to perform the forward 
solve of the systems of equation Ly = Pb:

This gives: , , , , .

The second step is to perform the backward solve, Uz = y. Or, in this case, since we are using a 
Cholesky factorization, LTz = y.

Ax b

PA P
1–
P( )x� Pb

PA P
T
P( )x� Pb

PAP
T( ) Px( )� Pb

B Px( )� Pb

LU Px( )� Pb

=

=

=

=

=

=

4 * * * *

*
1

2
------- * * *

* * 2 3( ) * *

* * *
10
4

---------- *

3
4
--- 3

2
------- 3

3

10
----------

3
5
---

4
-------

*

y1

y2

y3
y4

y5

5

2

3
4

1

=

y
T 5

4
---= 2 2

3
2

------- 16

10
----------

979 3
5
---–

12
--------------------
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This gives , 983, , 398, .

The third and final step is to set x = PTz. This gives , 983, , 398, .

Sparse Matrix Storage Format
As discussed above, it is more efficient to store only the non-zeros of a sparse matrix. This 
assumes that the sparsity is large, i.e., the number of non-zero entries is a small percentage of the 
total number of entries. If there is only an occasional zero entry, the cost of exploiting the sparsity 
actually slows down the computation when compared to simply treating the matrix as dense, 
meaning that all the values, zero and non-zero, are used in the computation.

There are a number of common storage schemes used for sparse matrices, but most of the schemes 
employ the same basic technique. That is, compress all of the non-zero elements of the matrix into 
a linear array, and then provide some number of auxiliary arrays to describe the locations of the 
non-zeros in the original matrix.

The compression of the non-zeros of a sparse matrix A into a linear array is done by walking down 
each column (column major format) or across each row (row major format) in order, and writing 
the non-zero elements to a linear array in the order that they appear in the walk.

When storing symmetric matrices, it is necessary to store only the upper triangular half of the 
matrix (upper triangular format) or the lower triangular half of the matrix (lower triangular 
format).

4 * * *
3
4
---

*
1

2
------- * *

3

2
-------

* * 2 3( ) * 3

* * *
10
4

---------- 3

10
----------

* * * *

3
5
---

4
-------

*

z1

z2

z3

z4

z5

5
4
---

2 2( )

3
2

-------

16

10
----------

979 3
5
---–

12
--------------------

=

z
123

2
---------=

1961
12

------------ 979–
3

------------

x
T 979–

3
------------=

1961
12

------------ 123
2

---------
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The Intel MKL direct sparse solver uses a row major upper triangular storage format. That is, the 
matrix is compressed row-by-row and for symmetric matrices only non-zeros in the upper 
triangular half of the matrix are stored.

The Intel MKL storage format for sparse matrices consists of three arrays, which are called the 
values, columns, and rowIndex arrays. The following table describes the arrays in terms of the 
values, row, and column positions of the non-zero elements in a sparse matrix A. 

values A real or complex array that contains the non-zero entries of A. The non-zero values 
of A are mapped into the values array using the row major, upper triangular storage 
mapping described above.

columns Element i of the integer array columns contains the number of the column in A that 
contained the value in values(i).

rowIndex Element j of the integer array rowIndex gives the index into the values array that 
contains the first non-zero element in a row j of A. The length of the values and 
columns arrays is equal to the number of non-zeros in A.

Since the rowIndex array gives the location of the first non-zero within a row, and the non-zeros 
are stored consecutively, then we would like to be able to compute the number of non-zeros in the 
i-th row as the difference of rowIndex(i) and rowIndex(i+1).

In order to have this relationship hold for the last row of A, we need to add an entry (dummy entry) 
to the end of rowIndex whose value is equal to the number of non-zeros in A, plus one. This 
makes the total length of the rowIndex array one larger than the number of rows of A.

With the above in mind, consider storing the symmetric matrix discussed in the example from the 
previous section.

NOTE.  The Intel MKL sparse storage scheme uses the Fortran 
programming language convention of starting array indices at 1, rather 
than the C programming language convention of starting at 0. 

A

9
3
2
--- 6

3
4
--- 3

*
1
2
--- * * *

* *
1
2
--- * *

* * *
5
8
--- *

* * * * 16

=
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In this case, A has nine non-zero elements, so the lengths of the values and columns arrays will 
be nine. Also, since the matrix A has five rows, the rowIndex array is of length six. The actual 
values for each of the arrays for the example matrix are as follows:

For a non-symmetric or non-Hermitian array, all of the non-zeros need to be stored. Consider the 
non-symmetric matrix B defined by the following:

We see that B has 13 non-zeros, and we store B as follows:

In the current version of Intel MKL, direct sparse solvers cannot solve non-symmetric systems of 
equations. However, it can solve symmetrically structured systems of equations. 
A symmetrically structured system of equations is one where the pattern of non-zeros is 
symmetric. That is, a matrix has a symmetric structure if a(j,i) is non-zero if and only if a(j,i) is 
non-zero.

From the point of view of the solver software, a non-zero element of a matrix is anything that is 
stored in the values array. In that sense, we can turn any non-symmetric matrix into a 
symmetrically structured matrix by carefully adding zeros to the values array.
For example, suppose we consider the matrix B to have the following set of non-zero entries:

Table 0-1 Storage Arrays for a Symmetric Example Matrix

values = (9 3/2 6 3/4 3 1/2 12 5/8 16)

columns = (1 2 3 4 5 2 3 4 5)

rowIndex = (1 6 7 8 9 10)

Table 0-2 Storage Arrays for a Non-Symmetric Example Matrix

values = (1 -1 -3 -2 5 4 6 4 -4 2 7 8 -5)

columns = (1 2 4 1 2 3 4 5 1 3 4 2 5)

rowIndex = (1 4 6 9 12 14)

B

1 1– * 3– *

2– 5 * * *

* * 4 6 4

4– * 2 7 *

* 8 * * 5–

=

B

1 1– * 3– *

2– 5 * * 0

* * 4 6 4

4– * 2 7 *

* 8 0 * 5–

=
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Now B can be considered to be symmetrically structured with 15 non-zero entries.We would 
represent the matrix as:

Storage Format Restrictions

The storage format for the sparse solver must conform to two important restrictions: 

First, the non-zero values in a given row must be placed into the values array in the order in 
which they occur in the row (from left to right). Second, no diagonal element can be omitted from 
the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that when dealing with symmetric or structurally symmetric 
matrices that have zeros on the diagonal, the zero diagonal elements must be explicitly represented 
in the values array.

Table 0-3 Storage Arrays for a Symmetrically Structured Example Matrix

values = (1 -1 -3 -2 5 0 4 6 4 -4 2 7 8 0 -5)

columns = (1 2 4 1 2 5 3 4 5 1 3 4 2 3 5)

rowIndex = (1 4 7 10 13 16)
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Routine and Function 
Arguments B

The major arguments in the BLAS routines are vector and matrix, whereas VML functions work 
on vector arguments only. 
The sections that follow discuss each of these arguments and provide examples.

Vector Arguments in BLAS
Vector arguments are passed in one-dimensional arrays.  The array dimension (length) and vector 
increment are passed as integer variables.  The length determines the number of elements in the 
vector.  The increment (also called stride) determines the spacing between vector elements and the 
order of the elements in the array in which the vector is passed.

A vector of length n and increment incx is passed in a one-dimensional array x whose values are 
defined as

x(1), x(1+|incx|), ..., x(1+(n-1)* |incx|)

If incx is positive, then the elements in array x are stored in increasing order.  If incx is negative, 
the elements in array x are stored in decreasing order with the first element defined as 
x(1+(n-1)* |incx|).  If incx is zero, then all elements of the vector have the same value, 
x(1).  The dimension of the one-dimensional array that stores the vector must always be at least

idimx = 1 + (n-1)* |incx |
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Example B-1 One-dimensional Real Array

Let x(1:7) be the one-dimensional real array
x = (1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0).
If incx =2 and n = 3, then the vector argument with elements in order from first to
last is (1.0, 5.0, 9.0).
If incx = -2 and n = 4, then the vector elements in order from first to last is (13.0,
9.0, 5.0, 1.0).
If incx = 0 and n = 4, then the vector elements in order from first to last is (1.0,
1.0, 1.0, 1.0).

One-dimensional substructures of a matrix, such as the rows, columns, and diagonals, can be 
passed as vector arguments with the starting address and increment specified.  In Fortran, storing 
the m by n matrix is based on column-major ordering where the increment between elements in the 
same column is 1, the increment between elements in the same row is m, and the increment 
between elements on the same diagonal is m + 1.

Example B-2 Two-dimensional Real Matrix

Let a be the real 5 x 4 matrix declared as REAL A (5,4).
To scale the third column of a by 2.0, use the BLAS routine sscal with the following
calling sequence:
call sscal (5, 2.0, a(1,3), 1).
To scale the second row, use the statement:
call sscal (4, 2.0, a(2,1), 5).
To scale the main diagonal of A by 2.0, use the statement:
call sscal (5, 2.0, a(1,1), 6).

Vector Arguments in VML  
Vector arguments of VML mathematical functions are passed in one-dimensional arrays with unit 
vector increment. It means that a vector of length n  is passed contiguously in an array a whose 
values are defined as a[0], a[1], ..., a[n-1] (for C- interface). 

NOTE.  The default vector argument is assumed to be 1.
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To accommodate for arrays with other increments, or more complicated indexing,  VML contains 
auxiliary pack/unpack functions that gather the array elements into a contiguous vector and then 
scatter them after the computation is complete. 

Generally, if the vector elements are stored in a  one-dimensional array a as

 a[m0], a[m1], ..., a[mn-1]

and need to be regrouped into an array y as 

y[k0], y[k1], ..., y[kn-1], 

VML pack/unpack functions can use one of the following indexing methods:

Positive Increment Indexing

kj = incy * j, mj = inca * j, j = 0 ,…, n-1

Constraint: incy > 0 and inca > 0.
For example, setting incy = 1 specifies gathering array elements into a 
contiguous vector. 

This method is similar to that used in BLAS, with the exception that negative and zero increments 
are not permitted.

Index Vector Indexing

kj = iy[j], mj = ia[j], j = 0 ,…, n-1,

where ia and iy are arrays of length n that contain index vectors for the input and output arrays 
a and y,  respectively.

Mask Vector Indexing

Indices kj, mj are such that:

my[kj] ≠ 0, ma[mj] ≠ 0 , j = 0,…, n-1,

where ma and my are arrays that contain mask vectors for the input and 
output arrays a and y,  respectively.

Matrix Arguments    
Matrix arguments of the Intel® Math Kernel Library routines can be stored in either one- or 
two-dimensional arrays, using the following storage schemes:
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• conventional full storage (in a two-dimensional array)
• packed storage for Hermitian, symmetric, or triangular matrices 

(in a one-dimensional array)
• band storage for band matrices (in a two-dimensional array).

Full storage is the following obvious scheme: a matrix A is stored in a two-dimensional array a, 
with the matrix element aij stored in the array element a(i,j).

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of 
the relevant triangle are stored; the remaining elements of the array need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle 
of the matrix to be stored in the corresponding elements of the array: 

if uplo ='U', aij is stored in a(i,j) for i ≤ j,
other elements of a need not be set.

if uplo ='L', aij is stored in a(i,j) for j ≤ i,
other elements of a need not be set.

Packed storage allows you to store symmetric, Hermitian, or triangular matrices more 
compactly: the relevant triangle (again, as specified by the argument uplo) is packed by columns 
in a one-dimensional array ap:

if uplo ='U',  aij is stored in ap(i+j(j-1)/2) for i ≤ j

if uplo ='L',  aij is stored in ap(i+(2*n-j)*(j-1)/2) for j ≤ i.

In descriptions of LAPACK routines, arrays with packed matrices have names ending in p.

Band storage is as follows: an m by n band matrix with kl non-zero sub-diagonals and ku 
non-zero super-diagonals is stored compactly in a two-dimensional array ab with kl+ku+1 rows 
and n columns. Columns of the matrix are stored in the corresponding columns of the array, and 
diagonals of the matrix are stored in rows of the array. Thus,

aij is stored in ab(kl+ku+1+i-j,j)  for max(n,j-ku) ≤ i ≤ min(n,j+kl).

Use the band storage scheme only when kl and ku are much less than the matrix size n. (Although 
the routines work correctly for all values of kl and ku, it’s inefficient to use the band storage if 
your matrices are not really banded). 

When a general band matrix is supplied for LU factorization, space must be allowed to store kl 
additional super-diagonals generated by fill-in as a result of row interchanges. This means that the 
matrix is stored according to the above scheme, but with kl + ku super-diagonals.
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The band storage scheme is illustrated by the following example, when
m = n = 6, kl = 2, ku = 1:

Array elements marked * are not used by the routines; elements marked + need not be set on entry, 
but are required by the LU factorization routines to store the results.  The input array will be 
overwritten on exit by the details of the LU factorization as follows:

where uij are the elements of the upper triangular matrix U, and mij are the multipliers used during 
factorization.

a11 a12 0 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 a34 0 0

0 a42 a43 a44 a45 0

0 0 a53 a54 a55 a56

0 0 0 a64 a65 a66

* * * + + +

* * + + + +

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 *

a31 a42 a53 a64 * *

Banded matrix A Band storage of A

* * * u14 u25 u36

* * u13 u24 u35 u46

* u12 u23 u34 u45 u56

u11 u22 u33 u44 u55 u66

m21 m32 m43 m54 m65 *

m31 m42 m53 m64 * *
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Triangular band matrices are stored in the same format, with either kl= 0 if upper triangular, or ku 
= 0 if lower triangular. For symmetric or Hermitian band matrices with k sub-diagonals or 
super-diagonals, you need to store only the upper or lower triangle, as specified by the argument 
uplo:

if uplo ='U',  aij is stored in ab(k+1+i-j,j) for max(1,j-k) ≤ i ≤ j
if uplo ='L',  aij is stored in ab(1+i-j,j) for j ≤ i ≤ min(n,j+k).

In descriptions of LAPACK routines, arrays that hold matrices in band storage have names ending 
in b.

In Fortran, column-major ordering of storage is assumed.  This means that elements of the same 
column occupy successive storage locations.  

Three quantities are usually associated with a two-dimensional array argument: its leading 
dimension, which specifies the number of storage locations between elements in the same row, its 
number of rows, and its number of columns. For a matrix in full storage, the leading dimension of 
the array must be at least as large as the number of rows in the matrix.

A character transposition parameter is often passed to indicate whether the matrix argument is to 
be used in normal or transposed form or, for a complex matrix, if the conjugate transpose of the 
matrix is to be used.  
The values of the transposition parameter for these three cases are the following:

'N' or 'n'  normal (no conjugation, no transposition)

'T' or 't' transpose

'C' or 'c' conjugate transpose.

Example B-3 Two-Dimensional Complex Array

Suppose A (1:5, 1:4) is the complex two-dimensional array presented by matrix

Let transa be the transposition parameter, m be the number of rows, n be the number
of columns, and lda be the leading dimension. Then if

1.1 0.11,( ) 1.2 0.12,( ) 1.3 0.13,( ) 1.4 0.14,( )
2.1 0.21,( ) 2.2 0.22,( ) 2.3 0.23,( ) 2.4 0.24,( )
3.1 0.31,( ) 3.2 0.32,( ) 3.3 0.33,( ) 3.4 0.34,( )
4.1 0.41,( ) 4.2 0.42,( ) 4.3 0.43,( ) 4.4 0.44,( )
5.1 0.51,( ) 5.2 0.52,( ) 5.3 0.53,( ) 5.4 0.54,( )
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transa = 'N', m = 4, n = 2, and lda = 5, the matrix argument would be

If transa = 'T', m = 4, n = 2, and lda =5,
the matrix argument would be

If transa = 'C', m = 4, n = 2, and lda =5,
the matrix argument would be

Note that care should be taken when using a leading dimension value which is different from the 
number of rows specified in the declaration of the two-dimensional array.  For example, suppose 
the array A above is declared as COMPLEX A (5,4).

continued <TableFinger>*

Then if transa = 'N', m = 3, n = 4, and lda = 4, the matrix argument will be

1.1 0.11,( ) 1.2 0.12,( )
2.1 0.21,( ) 2.2 0.22,( )
3.1 0.31,( ) 3.2 0.32,( )
4.1 0.41,( ) 4.2 0.42,( )

1.1 0.11,( ) 2.1 0.21,( ) 3.1 0.31,( ) 4.1 0.41,( )
1.2 0.12,( ) 2.2 0.22,( ) 3.2 0.32,( ) 4.2 0.42,( )

1.1 0.11–,( ) 2.1 0.21–,( ) 3.1 0.31–,( ) 4.1 0.41–,( )
1.2 0.12–,( ) 2.2 0.22–,( ) 3.2 0.32–,( ) 4.2 0.42–,( )

1.1 0.11,( ) 5.1 0.51,( ) 4.2 0.42,( ) 3.3 0.33,( )
2.1 0.21,( ) 1.2 0.12,( ) 5.2 0.52,( ) 4.3 0.43,( )
3.1 0.31,( ) 2.2 0.22,( ) 1.3 0.13,( ) 5.3 0.53,( )
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Code Examples C
This appendix presents code examples of using some Intel MKL routines and functions. 
You can find here example code written in both Fortran and C. 

Currently, the appendix includes the following sections:

• BLAS Code Examples

• PARDISO Code Examples

• Direct Sparse Solver Examples

• DFT Code Examples

Please refer to respective chapters in the manual for detailed descriptions of function parameters 
and operation.

BLAS Code Examples

Example C-1 Using BLAS Level 1 Function

The following example illustrates a call to the BLAS Level 1 function sdot. This function 
performs a vector-vector operation of computing a scalar product of two single-precision real 
vectors x and y.

Parameters

n Specifies the order of vectors x and y.

incx Specifies the increment for the elements of x.

incy Specifies the increment for the elements of y.
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program dot_main
real x(10), y(10), sdot, res
integer n, incx, incy, i
external sdot

n = 5
incx = 2
incy = 1

do i = 1, 10
x(i) = 2.0e0
y(i) = 1.0e0

end do

res = sdot (n, x, incx, y, incy)

print*, ‘SDOT = ‘, res

end

As a result of this program execution, the following line is printed:

SDOT = 10.000

Example C-2 Using BLAS Level 1 Routine

The following example illustrates a call to the BLAS Level 1 routine scopy. This routine performs 
a vector-vector operation of copying a single-precision real vector x to a vector y.

Parameters

n Specifies the order of vectors x and y.

incx Specifies the increment for the elements of x.

incy Specifies the increment for the elements of y.

program copy_main
real x(10), y(10)
integer n, incx, incy, i

n = 3

incx = 3

incy = 1

do i = 1, 10

x(i) = i
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end do

call scopy (n, x, incx, y, incy)

print*, ‘Y = ‘, (y(i), i = 1, n)

end

As a result of this program execution, the following line is printed:

Y = 1.00000 4.00000 7.00000

Example C-3 Using BLAS Level 2 Routine

The following example illustrates a call to the BLAS Level 2 routine sger. This routine performs 
a matrix-vector operation

a := alpha*x*y' + a.

Parameters

alpha Specifies a scalar alpha.

x m-element vector.

y n-element vector.

a m by n matrix.

program ger_main
real a(5,3), x(10), y(10), alpha
integer m, n, incx, incy, i, j, lda

m = 2
n = 3
lda = 5
incx = 2
incy = 1
alpha = 0.5
do i = 1, 10

x(i) = 1.0
y(i) = 1.0

end do
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do i = 1, m
do j = 1, n

a(i,j) = j
end do

end do

call sger (m, n, alpha, x, incx, y, incy, a, lda)

print*, ‘Matrix A: ‘

do i = 1, m

print*, (a(i,j), j = 1, n)

end do

end

As a result of this program execution, matrix a is printed as follows:

Matrix A:

1.50000 2.50000 3.50000

1.50000 2.50000 3.50000

Example C-4 Using BLAS Level 3 Routine

The following example illustrates  a call to the BLAS Level 3 routine ssymm. This routine 
performs a matrix-matrix operation

c := alpha*a*b' + beta*c.

Parameters

alpha Specifies a scalar alpha.

beta Specifies a scalar beta.

a Symmetric matrix.

b m by n matrix.

c m by n matrix.

program symm_main
real a(3,3), b(3,2), c(3,3), alpha, beta
integer m, n, lda, ldb, ldc, i, j
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character uplo, side

uplo = 'u'
side = 'l'
m = 3
n = 2
lda = 3
ldb = 3
ldc = 3
alpha = 0.5
beta = 2.0

do i = 1, m
do j = 1, m

a(i,j) = 1.0

end do

end do

do i = 1, m

do j = 1, n

c(i,j) = 1.0

b(i,j) = 2.0

end do

end do

call ssymm (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

print*, ‘Matrix C: ‘

do i = 1, m

print*, (c(i,j), j = 1, n)

end do

end

As a result of this program execution, matrix c is printed as follows:

Matrix C:

5.00000 5.00000

5.00000 5.00000

5.00000 5.00000
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Example C-5 Calling a Complex BLAS Level 1 Function from C 

The following example illustrates a call from a C program to the complex BLAS Level 1 function 
zdotc(). This function computes the dot product of two double-precision complex vectors. 

In this example, the complex dot product is returned in the structure c.

#define N 5
void main()
{

int n, inca = 1, incb = 1, i;
typedef struct{ double re; double im; } complex16;
complex16 a[N], b[N], c;
void zdotc();
n = N;
for( i = 0; i < n; i++ ){

a[i].re = (double)i; a[i].im = (double)i * 2.0;
b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;

}
zdotc( &c, &n, a, &inca, b, &incb );
printf( "The complex dot product is: ( %6.2f, %6.2f )\n", c.re, c.im );

}

  

NOTE.  Instead of calling BLAS directly from C programs, you might 
wish to use the CBLAS interface; this is the supported way of calling 
BLAS from C. For more information about CBLAS, see Appendix D,
which presents CBLAS, the C interface to the Basic Linear Algebra 
Subprograms (BLAS) implemented in Intel® MKL..
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PARDISO Code Examples
This section presents code examples of using the PARDISO direct solver for computing solutions 
of linear systems with sparse matrices. For description of this solver, refer to Chapter 8 of the 
manual.

Examples for sparse symmetric linear systems

In this section two examples (Fortran, C) are provided to solve symmetric linear systems with 
PARDISO. To solve the systems of equations Ax = b, where

A  =         and   B  =  

Example results for symmetric systems

Upon successful execution of the solver, the result of the solution X is as follows

Reordering completed ...

Number of nonzeros in factors = 30

Number of factorization MFLOPS = 0

Factorization completed ...

Solve completed ...

The solution of the system is

x(1) = -0.0418602013

x(2) = -0.00341312416

x(3) = 0.117250377

x(4) = -0.11263958

x(5) = 0.0241722445

7.0 0.0 1.0 0.0 0.0 2.0 7.0 0.0

0.0 4.0– 8.0 0.0 2.0 0.0 0.0 0.0

1.0 8.0 1.0 0.0 0.0 0.0 0.0 5.0

0.0 0.0 0.0 7.0 0.0 0.0 9.0 0.0

0.0 2.0 0.0 0.0 5.0 1.0 5.0 0.0

2.0 0.0 0.0 0.0 1.0 1.0– 0.0 5.0

7.0 0.0 0.0 9.0 5.0 0.0 11.0 0.0
0.0 0.0 5.0 0.0 0.0 5.0 0.0 5.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0
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x(6) = -0.10763334

x(7) = 0.198719673

x(8) = 0.190382964

Example C-6 Example pardiso_sym.f for symmetric linear systems

C----------------------------------------------------------------------

C Example program to show the use of the "PARDISO" routine

C for symmetric linear systems

C---------------------------------------------------------------------

C This program can be downloaded from the following site:

C http://www.computational.unibas.ch/cs/scicomp

C

C (C) Olaf Schenk, Department of Computer Science,

C University of Basel, Switzerland.

C Email: olaf.schenk@unibas.ch

C

C---------------------------------------------------------------------

PROGRAM pardiso_sym

IMPLICIT NONE

C.. Internal solver memory pointer for 64-bit architectures

C.. INTEGER*8 pt(64)

C.. Internal solver memory pointer for 32-bit architectures

C.. INTEGER*4 pt(64)

C.. This is OK in both cases

INTEGER*8 pt(64)

C.. All other variables

INTEGER maxfct, mnum, mtype, phase, n, nrhs, error, msglvl

INTEGER iparm(64)

INTEGER ia(9)

INTEGER ja(18)

REAL*8 a(18)

REAL*8 b(8)

REAL*8 x(8)
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INTEGER i, idum

REAL*8 waltime1, waltime2, ddum

C.. Fill all arrays containing matrix data.

DATA n /8/, nrhs /1/, maxfct /1/, mnum /1/

DATA ia /1,5,8,10,12,15,17,18,19/

DATA ja

1 /1, 3, 6,7,

2 2,3, 5,

3 3, 8,

4 4, 7,

5 5,6,7,

6 6, 8,

7 7,

8 8/

DATA a

1 /7.d0, 1.d0, 2.d0,7.d0,

2 -4.d0,8.d0, 2.d0,

3 1.d0, 5.d0,

4 7.d0, 9.d0,

5 5.d0,1.d0,5.d0,

6 -1.d0, 5.d0,

7 11.d0,

8 5.d0/

integer omp_get_max_threads

external omp_get_max_threads

C..

C.. Set up PARDISO control parameter

C..

do i = 1, 64

iparm(i) = 0

end do

iparm(1) = 1 ! no solver default

iparm(2) = 2 ! fill-in reordering from METIS
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iparm(3) = omp_get_max_threads() !numbers of processors, value of OMP_NUM_THREADS

iparm(4) = 0 ! no iterative-direct algorithm

iparm(5) = 0 ! no user fill-in reducing permutation

iparm(6) = 0 ! =0 solution on the first n compoments of x

iparm(7) = 16 ! default logical fortran unit number for output

iparm(8) = 9 ! numbers of iterative refinement steps

iparm(9) = 0 ! not in use

iparm(10) = 13 ! perturbe the pivot elements with 1E-13

iparm(11) = 1 ! use nonsymmetric permutation and scaling MPS

iparm(12) = 0 ! not in use

iparm(13) = 0 ! not in use

iparm(14) = 0 ! Output: number of perturbed pivots

iparm(15) = 0 ! not in use

iparm(16) = 0 ! not in use

iparm(17) = 0 ! not in use

iparm(18) = -1 ! Output: number of nonzeros in the factor LU

iparm(19) = -1 ! Output: Mflops for LU factorization

iparm(20) = 0 ! Output: Numbers of CG Iterations

error = 0 ! initialize error flag

msglvl = 0 ! don't print statistical information

mtype = -2 ! unsymmetric matrix symmetric, indefinite, no pivoting

C.. Initiliaze the internal solver memory pointer. This is only

C necessary for the FIRST call of the PARDISO solver.

do i = 1, 64

pt(i) = 0

end do

C.. Reordering and Symbolic Factorization, This step also allocates

C all memory that is necessary for the factorization

phase = 11 ! only reordering and symbolic factorization

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

WRITE(*,*) 'Reordering completed ... '

IF (error .NE. 0) THEN
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WRITE(*,*) 'The following ERROR was detected: ', error

STOP

END IF

WRITE(*,*) 'Number of nonzeros in factors = ',iparm(18)

WRITE(*,*) 'Number of factorization MFLOPS = ',iparm(19)

C.. Factorization.

phase = 22 ! only factorization

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

WRITE(*,*) 'Factorization completed ... '

IF (error .NE. 0) THEN

WRITE(*,*) 'The following ERROR was detected: ', error

STOP

ENDIF

C.. Back substitution and iterative refinement

iparm(8) = 2 ! max numbers of iterative refinement steps

phase = 33 ! only factorization

do i = 1, n

b(i) = 1.d0

end do

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, b, x, error)

WRITE(*,*) 'Solve completed ... '

WRITE(*,*) 'The solution of the system is '

DO i = 1, n

WRITE(*,*) ' x(',i,') = ', x(i)

END DO

C.. Termination and release of memory

phase = -1 ! release internal memory

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, ddum, idum, idum,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

END
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Example C-7 Example pardiso_sym.c for symmetric linear systems

/* -------------------------------------------------------------------- */

/* Example program to show the use of the "PARDISO" routine */

/* on symmetric linear systems */

/* -------------------------------------------------------------------- */

/* This program can be downloaded from the following site: */

/* http://www.computational.unibas.ch/cs/scicomp */

/* */

/* (C) Olaf Schenk, Department of Computer Science, */

/* University of Basel, Switzerland. */

/* Email: olaf.schenk@unibas.ch */

/* -------------------------------------------------------------------- */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

extern int omp_get_max_threads();

/* PARDISO prototype. */

extern int PARDISO

(void *, int *, int *, int *, int *, int *,

double *, int *, int *, int *, int *, int *,

int *, double *, double *, int *);

int main( void ) {

/* Matrix data. */

int n = 8;

int ia[ 9] = { 1, 5, 8, 10, 12, 15, 17, 18, 19 };

int ja[18] = { 1, 3, 6, 7,

2, 3, 5,

3, 8,

4, 7,

5, 6, 7,

6, 8,
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7,

8 };

double a[18] = { 7.0, 1.0, 2.0, 7.0,

-4.0, 8.0, 2.0,

1.0, 5.0,

7.0, 9.0,

5.0, 1.0, 5.0,

-1.0, 5.0,

11.0,

5.0 };

int mtype = -2; /* Real symmetric matrix */

/* RHS and solution vectors. */

double b[8], x[8];

int nrhs = 1; /* Number of right hand sides. */

/* Internal solver memory pointer pt, */

/* 32-bit: int pt[64]; 64-bit: long int pt[64] */

/* or void *pt[64] should be OK on both architectures */

void *pt[64];

/* Pardiso control parameters. */

int iparm[64];

int maxfct, mnum, phase, error, msglvl;

/* Auxiliary variables. */

int i;

double ddum; /* Double dummy */

int idum; /* Integer dummy. */

/* -------------------------------------------------------------------- */

/* .. Setup Pardiso control parameters. */

/* -------------------------------------------------------------------- */

for (i = 0; i < 64; i++) {

iparm[i] = 0;

}

iparm[0] = 1; /* No solver default */

iparm[1] = 2; /* Fill-in reordering from METIS */
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/* Numbers of processors, value of OMP_NUM_THREADS */

iparm[2] = omp_get_max_threads();

iparm[3] = 0; /* No iterative-direct algorithm */

iparm[4] = 0; /* No user fill-in reducing permutation */

iparm[5] = 0; /* Write solution into x */

iparm[6] = 16; /* Default logical fortran unit number for output */

iparm[7] = 2; /* Max numbers of iterative refinement steps */

iparm[8] = 0; /* Not in use */

iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */

iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */

iparm[11] = 0; /* Not in use */

iparm[12] = 0; /* Not in use */

iparm[13] = 0; /* Output: Number of perturbed pivots */

iparm[14] = 0; /* Not in use */

iparm[15] = 0; /* Not in use */

iparm[16] = 0; /* Not in use */

iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */

iparm[18] = -1; /* Output: Mflops for LU factorization */

iparm[19] = 0; /* Output: Numbers of CG Iterations */

maxfct = 1; /* Maximum number of numerical factorizations. */

mnum = 1; /* Which factorization to use. */

msglvl = 0; /* Don't print statistical information in file */

error = 0; /* Initialize error flag */

/* -------------------------------------------------------------------- */

/* .. Initialize the internal solver memory pointer. This is only */

/* necessary for the FIRST call of the PARDISO solver. */

/* -------------------------------------------------------------------- */

for (i = 0; i < 64; i++) {

pt[i] = 0;

}

/* -------------------------------------------------------------------- */

/* .. Reordering and Symbolic Factorization. This step also allocates */

/* all memory that is necessary for the factorization. */
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/* -------------------------------------------------------------------- */

phase = 11;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during symbolic factorization: %d", error);

exit(1);

}

printf("\nReordering completed ... ");

printf("\nNumber of nonzeros in factors = %d", iparm[17]);

printf("\nNumber of factorization MFLOPS = %d", iparm[18]);

/* -------------------------------------------------------------------- */

/* .. Numerical factorization. */

/* -------------------------------------------------------------------- */

phase = 22;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during numerical factorization: %d", error);

exit(2);

}

printf("\nFactorization completed ... ");

/* -------------------------------------------------------------------- */

/* .. Back substitution and iterative refinement. */

/* -------------------------------------------------------------------- */

phase = 33;

iparm[7] = 2; /* Max numbers of iterative refinement steps. */

/* Set right hand side to one. */

for (i = 0; i < n; i++) {

b[i] = 1;

}
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PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, b, x, &error);

if (error != 0) {

printf("\nERROR during solution: %d", error);

exit(3);

}

printf("\nSolve completed ... ");

printf("\nThe solution of the system is: ");

for (i = 0; i < n; i++) {

printf("\n x [%d] = % f", i, x[i] );

}

printf ("\n");

/* -------------------------------------------------------------------- */

/* .. Termination and release of memory. */

/* -------------------------------------------------------------------- */

phase = -1; /* Release internal memory. */

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, &ddum, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

return 0;

}
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Examples for sparse unsymmetric linear systems

In this section two examples (Fortran, C) are provided to solve unsymmetric linear systems with 
PARDISO. To solve the systems of equations  Ax = b, where

A  =         and   B  =  

Example results for unsymmetric systems

Upon successful execution of the solver, the result of the solution X is as follows

Reordering completed ...

Number of nonzeros in factors = 21

Number of factorization MFLOPS = 0

Factorization completed ...

Solve completed ...

The solution of the system is

x( 1) = -0.522321429

x( 2) = -0.00892857143

x( 3) = 1.22098214

x( 4) = -0.504464286

x( 5) = -0.214285714

Example C-8 Example pardiso_unsym.f for unsymmetric linear systems

*******************************************************************************

* INTEL CONFIDENTIAL

* Copyright(C) 2004 Intel Corporation. All Rights Reserved.

* The source code contained or described herein and all documents related to

* the source code ("Material") are owned by Intel Corporation or its suppliers

* or licensors. Title to the Material remains with Intel Corporation or its

* suppliers and licensors. The Material contains trade secrets and proprietary

1.0 1.0– 0.0 3.0– 0.0

2.0– 5.0 0.0 0.0 0.0

0.0 0.0 4.0 6.0 4.0

4.0– 0.0 2.0 7.0 0.0

0.0 8.0 0.0 0.0 5.0–

1.0

1.0

1.0

1.0

1.0
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* and confidential information of Intel or its suppliers and licensors. The

* Material is protected by worldwide copyright and trade secret laws and

* treaty provisions. No part of the Material may be used, copied, reproduced,

* modified, published, uploaded, posted, transmitted, distributed or disclosed

* in any way without Intel's prior express written permission.

* No license under any patent, copyright, trade secret or other intellectual

* property right is granted to or conferred upon you by disclosure or delivery

* of the Materials, either expressly, by implication, inducement, estoppel or

* otherwise. Any license under such intellectual property rights must be

* express and approved by Intel in writing.

*

*******************************************************************************
*

* Content : MKL DSS Fortran-77 example

*

*******************************************************************************
*

C----------------------------------------------------------------------

C Example program to show the use of the "PARDISO" routine

C for symmetric linear systems

C---------------------------------------------------------------------

C This program can be downloaded from the following site:

C http://www.computational.unibas.ch/cs/scicomp

C

C (C) Olaf Schenk, Department of Computer Science,

C University of Basel, Switzerland.

C Email: olaf.schenk@unibas.ch

C

C---------------------------------------------------------------------

PROGRAM pardiso_unsym

IMPLICIT NONE

C.. Internal solver memory pointer for 64-bit architectures

C.. INTEGER*8 pt(64)
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C.. Internal solver memory pointer for 32-bit architectures

C.. INTEGER*4 pt(64)

C.. This is OK in both cases

INTEGER*8 pt(64)

C.. All other variables

INTEGER maxfct, mnum, mtype, phase, n, nrhs, error, msglvl

INTEGER iparm(64)

INTEGER ia(6)

INTEGER ja(13)

REAL*8 a(13)

REAL*8 b(5)

REAL*8 x(5)

INTEGER i, idum

REAL*8 waltime1, waltime2, ddum

C.. Fill all arrays containing matrix data.

DATA n /5/, nrhs /1/, maxfct /1/, mnum /1/

DATA ia /1,4,6,9,12,14/

DATA ja

1 / 1, 2, 4,

2 1, 2,

3 3, 4, 5,

4 1, 3, 4,

5 2, 5/

DATA a

1 /1.d0,-1.d0, -3.d0,

2 -2.d0, 5.d0,

3 4.d0, 6.d0, 4.d0,

4 -4.d0, 2.d0, 7.d0,

5 8.d0, -5.d0/

integer omp_get_max_threads

external omp_get_max_threads

C..

C.. Set up PARDISO control parameter
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C..

do i = 1, 64

iparm(i) = 0

end do

iparm(1) = 1 ! no solver default

iparm(2) = 2 ! fill-in reordering from METIS

iparm(3) = omp_get_max_threads() ! numbers of processors, value of
OMP_NUM_THREADS

iparm(4) = 0 ! no iterative-direct algorithm

iparm(5) = 0 ! no user fill-in reducing permutation

iparm(6) = 0 ! =0 solution on the first n compoments of x

iparm(7) = 0 ! not in use

iparm(8) = 9 ! numbers of iterative refinement steps

iparm(9) = 0 ! not in use

iparm(10) = 13 ! perturbe the pivot elements with 1E-13

iparm(11) = 1 ! use nonsymmetric permutation and scaling MPS

iparm(12) = 0 ! not in use

iparm(13) = 0 ! not in use

iparm(14) = 0 ! Output: number of perturbed pivots

iparm(15) = 0 ! not in use

iparm(16) = 0 ! not in use

iparm(17) = 0 ! not in use

iparm(18) = -1 ! Output: number of nonzeros in the factor LU

iparm(19) = -1 ! Output: Mflops for LU factorization

iparm(20) = 0 ! Output: Numbers of CG Iterations

error = 0 ! initialize error flag

msglvl = 1 ! print statistical information

mtype = 11 ! real unsymmetric

C.. Initiliaze the internal solver memory pointer. This is only

C necessary for the FIRST call of the PARDISO solver.

do i = 1, 64

pt(i) = 0

end do
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C.. Reordering and Symbolic Factorization, This step also allocates

C all memory that is necessary for the factorization

phase = 11 ! only reordering and symbolic factorization

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

WRITE(*,*) 'Reordering completed ... '

IF (error .NE. 0) THEN

WRITE(*,*) 'The following ERROR was detected: ', error

STOP

END IF

WRITE(*,*) 'Number of nonzeros in factors = ',iparm(18)

WRITE(*,*) 'Number of factorization MFLOPS = ',iparm(19)

C.. Factorization.

phase = 22 ! only factorization

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

WRITE(*,*) 'Factorization completed ... '

IF (error .NE. 0) THEN

WRITE(*,*) 'The following ERROR was detected: ', error

STOP

ENDIF

C.. Back substitution and iterative refinement

iparm(8) = 2 ! max numbers of iterative refinement steps

phase = 33 ! only factorization

do i = 1, n

b(i) = 1.d0

end do

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

1 idum, nrhs, iparm, msglvl, b, x, error)

WRITE(*,*) 'Solve completed ... '

WRITE(*,*) 'The solution of the system is '

DO i = 1, n

WRITE(*,*) ' x(',i,') = ', x(i)
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END DO

C.. Termination and release of memory

phase = -1 ! release internal memory

CALL pardiso (pt, maxfct, mnum, mtype, phase, n, ddum, idum, idum,

1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

END

Example C-9 Example C-9 Example pardiso_unsym.c for unsymmetric linear systems

/*

*******************************************************************************
*

* INTEL CONFIDENTIAL

* Copyright(C) 2004 Intel Corporation. All Rights Reserved.

* The source code contained or described herein and all documents related to

* the source code ("Material") are owned by Intel Corporation or its suppliers

* or licensors. Title to the Material remains with Intel Corporation or its

* suppliers and licensors. The Material contains trade secrets and proprietary

* and confidential information of Intel or its suppliers and licensors. The

* Material is protected by worldwide copyright and trade secret laws and

* treaty provisions. No part of the Material may be used, copied, reproduced,

* modified, published, uploaded, posted, transmitted, distributed or disclosed

* in any way without Intel's prior express written permission.

* No license under any patent, copyright, trade secret or other intellectual

* property right is granted to or conferred upon you by disclosure or delivery

* of the Materials, either expressly, by implication, inducement, estoppel or

* otherwise. Any license under such intellectual property rights must be

* express and approved by Intel in writing.

*

*******************************************************************************
*

* Content : MKL DSS C example

*
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*******************************************************************************
*

*/

/* -------------------------------------------------------------------- */

/* Example program to show the use of the "PARDISO" routine */

/* on symmetric linear systems */

/* -------------------------------------------------------------------- */

/* This program can be downloaded from the following site: */

/* http://www.computational.unibas.ch/cs/scicomp */

/* */

/* (C) Olaf Schenk, Department of Computer Science, */

/* University of Basel, Switzerland. */

/* Email: olaf.schenk@unibas.ch */

/* -------------------------------------------------------------------- */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

extern int omp_get_max_threads();

/* PARDISO prototype. */

#if defined(_WIN32) || defined(_WIN64)

#define pardiso_ PARDISO

#else

#define PARDISO pardiso_

#endif

extern int PARDISO

(void *, int *, int *, int *, int *, int *,

double *, int *, int *, int *, int *, int *,

int *, double *, double *, int *);

int main( void ) {

/* Matrix data. */

int n = 5;

int ia[ 6] = { 1, 4, 6, 9, 12, 14 };
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int ja[13] = { 1, 2, 4,

1, 2,

3, 4, 5,

1, 3, 4,

2, 5 };

double a[18] = { 1.0, -1.0, -3.0,

-2.0, 5.0,

4.0, 6.0, 4.0,

-4.0, 2.0, 7.0,

8.0, -5.0 };

int mtype = 11; /* Real unsymmetric matrix */

/* RHS and solution vectors. */

double b[5], x[5];

int nrhs = 1; /* Number of right hand sides. */

/* Internal solver memory pointer pt, */

/* 32-bit: int pt[64]; 64-bit: long int pt[64] */

/* or void *pt[64] should be OK on both architectures */

void *pt[64];

/* Pardiso control parameters. */

int iparm[64];

int maxfct, mnum, phase, error, msglvl;

/* Auxiliary variables. */

int i;

double ddum; /* Double dummy */

int idum; /* Integer dummy. */

/* -------------------------------------------------------------------- */

/* .. Setup Pardiso control parameters. */

/* -------------------------------------------------------------------- */

for (i = 0; i < 64; i++) {

iparm[i] = 0;

}

iparm[0] = 1; /* No solver default */

iparm[1] = 2; /* Fill-in reordering from METIS */
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/* Numbers of processors, value of OMP_NUM_THREADS */

iparm[2] = omp_get_max_threads();

iparm[3] = 0; /* No iterative-direct algorithm */

iparm[4] = 0; /* No user fill-in reducing permutation */

iparm[5] = 0; /* Write solution into x */

iparm[6] = 0; /* Not in use */

iparm[7] = 2; /* Max numbers of iterative refinement steps */

iparm[8] = 0; /* Not in use */

iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */

iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */

iparm[11] = 0; /* Not in use */

iparm[12] = 0; /* Not in use */

iparm[13] = 0; /* Output: Number of perturbed pivots */

iparm[14] = 0; /* Not in use */

iparm[15] = 0; /* Not in use */

iparm[16] = 0; /* Not in use */

iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */

iparm[18] = -1; /* Output: Mflops for LU factorization */

iparm[19] = 0; /* Output: Numbers of CG Iterations */

maxfct = 1; /* Maximum number of numerical factorizations. */

mnum = 1; /* Which factorization to use. */

msglvl = 1; /* Print statistical information in file */

error = 0; /* Initialize error flag */

/* -------------------------------------------------------------------- */

/* .. Initialize the internal solver memory pointer. This is only */

/* necessary for the FIRST call of the PARDISO solver. */

/* -------------------------------------------------------------------- */

for (i = 0; i < 64; i++) {

pt[i] = 0;

}

/* -------------------------------------------------------------------- */

/* .. Reordering and Symbolic Factorization. This step also allocates */

/* all memory that is necessary for the factorization. */
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/* -------------------------------------------------------------------- */

phase = 11;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during symbolic factorization: %d", error);

exit(1);

}

printf("\nReordering completed ... ");

printf("\nNumber of nonzeros in factors = %d", iparm[17]);

printf("\nNumber of factorization MFLOPS = %d", iparm[18]);

/* -------------------------------------------------------------------- */

/* .. Numerical factorization. */

/* -------------------------------------------------------------------- */

phase = 22;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during numerical factorization: %d", error);

exit(2);

}

printf("\nFactorization completed ... ");

/* -------------------------------------------------------------------- */

/* .. Back substitution and iterative refinement. */

/* -------------------------------------------------------------------- */

phase = 33;

iparm[7] = 2; /* Max numbers of iterative refinement steps. */

/* Set right hand side to one. */

for (i = 0; i < n; i++) {

b[i] = 1;

}
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PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, b, x, &error);

if (error != 0) {

printf("\nERROR during solution: %d", error);

exit(3);

}

printf("\nSolve completed ... ");

printf("\nThe solution of the system is: ");

for (i = 0; i < n; i++) {

printf("\n x [%d] = % f", i, x[i] );

}

printf ("\n");

/* -------------------------------------------------------------------- */

/* .. Termination and release of memory. */

/* -------------------------------------------------------------------- */

phase = -1; /* Release internal memory. */

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, &ddum, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

return 0;

}

Direct Sparse Solver Examples
This section contains example code in Fortan 77, Fortran 90 and C.  For description of the sparse 
solver routines used in this code, refer to “Direct Sparse Solver (DSS) Interface Routines” in 
Chapter 8 of the manual.
The example code solves the equations presented in Direct Method section of Appendix A - 
a symmetric positive definite system of equations  Ax = b  with a sparse matrix, where 

A  =         and   B  =  

9 1.5 6 0.75 3

1.5 0.5 0 0 0

6 0 12 0 0

0.75 0 0 0.625 0

3 0 0 0 16

1

2

3

4

5
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Example results for symmetric systems

Upon successful execution of the solver, the determinant and the result of the solution array are as 
follows

pow of determinant is 0.000

base of determinant is 2.250

Determinant is 2.250

Solution Array: -326.333 983.000 163.417 398.000 61.500

Example C-10 Fortran 77 example to solve symmetric positive definite system 

*******************************************************************************
*

* INTEL CONFIDENTIAL

* Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.

* The source code contained or described herein and all documents related to

* the source code ("Material") are owned by Intel Corporation or its suppliers

* or licensors. Title to the Material remains with Intel Corporation or its

* suppliers and licensors. The Material contains trade secrets and proprietary

* and confidential information of Intel or its suppliers and licensors. The

* Material is protected by worldwide copyright and trade secret laws and

* treaty provisions. No part of the Material may be used, copied, reproduced,

* modified, published, uploaded, posted, transmitted, distributed or disclosed

* in any way without Intel's prior express written permission.

* No license under any patent, copyright, trade secret or other intellectual

* property right is granted to or conferred upon you by disclosure or delivery

* of the Materials, either expressly, by implication, inducement, estoppel or

* otherwise. Any license under such intellectual property rights must be

* express and approved by Intel in writing.

*

*******************************************************************************
*

* Content : Intel MKL DSS Fortran-77 example
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*

*******************************************************************************
*

C---------------------------------------------------------------------------

C Example program for solving symmetric positive definite system of

C equations.

C---------------------------------------------------------------------------

PROGRAM solver_f77_test

IMPLICIT NONE

INCLUDE 'mkl_dss.f77'

C---------------------------------------------------------------------------

C Define the array and rhs vectors

C---------------------------------------------------------------------------

INTEGER nRows, nCols, nNonZeros, i, nRhs

PARAMETER (nRows = 5,

1 nCols = 5,

2 nNonZeros = 9,

3 nRhs = 1)

INTEGER rowIndex(nRows + 1), columns(nNonZeros)

DOUBLE PRECISION values(nNonZeros), rhs(nRows)

DATA rowIndex / 1, 6, 7, 8, 9, 10 /

DATA columns / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

DATA values / 9, 1.5, 6, .75, 3, 0.5, 12, .625, 16 /

DATA rhs / 1, 2, 3, 4, 5 /

C---------------------------------------------------------------------------

C Allocate storage for the solver handle and the solution vector

C---------------------------------------------------------------------------

DOUBLE PRECISION solution(nRows)

INTEGER*8 handle

INTEGER error

CHARACTER*15 statIn

DOUBLE PRECISION statOut(5)

INTEGER bufLen
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PARAMETER(bufLen = 20)

INTEGER buff(bufLen)

C---------------------------------------------------------------------------

C Initialize the solver

C---------------------------------------------------------------------------

error = dss_create(handle, MKL_DSS_DEFAULTS)

IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999

C---------------------------------------------------------------------------

C Define the non-zero structure of the matrix

C---------------------------------------------------------------------------

error = dss_define_structure( handle, MKL_DSS_SYMMETRIC,

& rowIndex, nRows, nCols, columns, nNonZeros )

IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999

C---------------------------------------------------------------------------

C Reorder the matrix

C---------------------------------------------------------------------------

error = dss_reorder( handle, MKL_DSS_DEFAULTS, 0)

IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999

C---------------------------------------------------------------------------

C Factor the matrix

C---------------------------------------------------------------------------

error = dss_factor_real( handle,

& MKL_DSS_DEFAULTS, VALUES)

IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999

C---------------------------------------------------------------------------

C Get the solution vector

C---------------------------------------------------------------------------

error = dss_solve_real( handle, MKL_DSS_DEFAULTS,

& rhs, nRhs, solution)

IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999

C---------------------------------------------------------------------------

C Print Determinant of the matrix

C---------------------------------------------------------------------------
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statIn = 'determinant'

call mkl_cvt_to_null_terminated_str(buff,bufLen,statIn)

error = dss_statistics(handle, MKL_DSS_DEFAULTS,

& buff,statOut)

WRITE(*,"(' pow of determinant is ', 5(F10.3))") statOut(1)

WRITE(*,"(' base of determinant is ', 5(F10.3))") statOut(2)

WRITE(*,"(' Determinant is ', 5(F10.3))")(10**statOut(1))*

& statOut(2)

C---------------------------------------------------------------------------

C Deallocate solver storage

C---------------------------------------------------------------------------

error = dss_delete( handle, MKL_DSS_DEFAULTS )

IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999

C---------------------------------------------------------------------------

C Print solution vector

C---------------------------------------------------------------------------

WRITE(*,900) (solution(i), i = 1, nCols)

900 FORMAT(' Solution Array: ',5(F10.3))

GOTO 1000

999 WRITE(*,*) "Solver returned error code ", error

1000 END

Example C-11 C example to solve symmetric positive definite system

/*

*******************************************************************************
*

* INTEL CONFIDENTIAL

* Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.

* The source code contained or described herein and all documents related to

* the source code ("Material") are owned by Intel Corporation or its suppliers

* or licensors. Title to the Material remains with Intel Corporation or its

* suppliers and licensors. The Material contains trade secrets and proprietary



C-32

C Intel® Math Kernel Library Reference Manual

* and confidential information of Intel or its suppliers and licensors. The

* Material is protected by worldwide copyright and trade secret laws and

* treaty provisions. No part of the Material may be used, copied, reproduced,

* modified, published, uploaded, posted, transmitted, distributed or disclosed

* in any way without Intel's prior express written permission.

* No license under any patent, copyright, trade secret or other intellectual

* property right is granted to or conferred upon you by disclosure or delivery

* of the Materials, either expressly, by implication, inducement, estoppel or

* otherwise. Any license under such intellectual property rights must be

* express and approved by Intel in writing.

*

*******************************************************************************
*

* Content : Intel MKL DSS C example

*

*******************************************************************************
*/

/*

**

** Example program to solve symmetric positive definite system of equations.

**

*/

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include "mkl_dss.h"

/*

** Define the array and rhs vectors

*/

#define NROWS 5

#define NCOLS 5

#define NNONZEROS 9

#define NRHS 1

static const int nRows = NROWS ;
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static const int nCols = NCOLS ;

static const int nNonZeros = NNONZEROS ;

static const int nRhs = NRHS ;

static _INTEGER_t rowIndex[NROWS+1] = { 1, 6, 7, 8, 9, 10 };

static _INTEGER_t columns[NNONZEROS] = { 1, 2, 3, 4, 5, 2, 3, 4, 5 };

static _DOUBLE_PRECISION_t values[NNONZEROS] = { 9, 1.5, 6, .75, 3, 0.5, 12, .625, 16 };

static _DOUBLE_PRECISION_t rhs[NCOLS] = { 1, 2, 3, 4, 5 };

void main() {

int i;

/* Allocate storage for the solver handle and the right-hand side. */

_DOUBLE_PRECISION_t solValues[NROWS];

_MKL_DSS_HANDLE_t handle;

_INTEGER_t error;

_CHARACTER_STR_t statIn[] = "determinant";

_DOUBLE_PRECISION_t statOut[5];

int opt = MKL_DSS_DEFAULTS;

int sym = MKL_DSS_SYMMETRIC;

int type = MKL_DSS_POSITIVE_DEFINITE;

/* --------------------- */

/* Initialize the solver */

/* --------------------- */

error = dss_create(handle, opt );

if ( error != MKL_DSS_SUCCESS ) goto printError;

/* ------------------------------------------- */

/* Define the non-zero structure of the matrix */

/* ------------------------------------------- */

error = dss_define_structure(

handle, sym, rowIndex, nRows, nCols,

columns, nNonZeros );

if ( error != MKL_DSS_SUCCESS ) goto printError;

/* ------------------ */

/* Reorder the matrix */
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/* ------------------ */

error = dss_reorder( handle, opt, 0);

if ( error != MKL_DSS_SUCCESS ) goto printError;

/* ------------------ */

/* Factor the matrix */

/* ------------------ */

error = dss_factor_real( handle, type, values );

if ( error != MKL_DSS_SUCCESS ) goto printError;

/* ------------------------ */

/* Get the solution vector */

/* ------------------------ */

error = dss_solve_real( handle, opt, rhs, nRhs, solValues );

if ( error != MKL_DSS_SUCCESS ) goto printError;

/* ------------------------ */

/* Get the determinant */

/*--------------------------*/

error = dss_statistics(handle, opt, statIn, statOut);

if ( error != MKL_DSS_SUCCESS ) goto printError;

/*-------------------------*/

/* print determinant */

/*-------------------------*/

printf(" determinant power is %g \n", statOut[0]);

printf(" determinant base is %g \n", statOut[1]);

printf(" Determinant is %g \n", (pow(10.0,statOut[0]))*statOut[1]);

free((void *) statIn);

/* -------------------------- */

/* Deallocate solver storage */

/* -------------------------- */

error = dss_delete( handle, opt );

if ( error != MKL_DSS_SUCCESS ) goto printError;

/* ---------------------- */

/* Print solution vector */

/* ---------------------- */
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printf(" Solution array: ");

for(i = 0; i< nCols; i++)

printf(" %g", solValues[i] );

printf("\n");

exit(0);

printError:

printf("Solver returned error code %d\n", error);

exit(1);

}

Example C-12  Fortran 90 example to solve symmetric positive definite system

!******************************************************************************
*

! INTEL CONFIDENTIAL

! Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.

! The source code contained or described herein and all documents related to

! the source code ("Material") are owned by Intel Corporation or its suppliers

! or licensors. Title to the Material remains with Intel Corporation or its

! suppliers and licensors. The Material contains trade secrets and proprietary

! and confidential information of Intel or its suppliers and licensors. The

! Material is protected by worldwide copyright and trade secret laws and

! treaty provisions. No part of the Material may be used, copied, reproduced,

! modified, published, uploaded, posted, transmitted, distributed or disclosed

! in any way without Intel's prior express written permission.

! No license under any patent, copyright, trade secret or other intellectual

! property right is granted to or conferred upon you by disclosure or delivery

! of the Materials, either expressly, by implication, inducement, estoppel or

! otherwise. Any license under such intellectual property rights must be

! express and approved by Intel in writing.

!

!******************************************************************************
*

! Content : Intel MKL DSS Fortran-90 example
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!

!******************************************************************************
*

!--------------------------------------------------------------------------

!

! Example program for solving a symmetric positive definite system of

! equations.

!

!--------------------------------------------------------------------------

INCLUDE 'mkl_dss.f90' ! Include the standard DSS "header file."

PROGRAM solver_f90_test

use mkl_dss

IMPLICIT NONE

INTEGER, PARAMETER :: dp = KIND(1.0D0)

INTEGER :: error

INTEGER :: i

INTEGER, PARAMETER :: bufLen = 20

! Define the data arrays and the solution and rhs vectors.

INTEGER, ALLOCATABLE :: columns( : )

INTEGER :: nCols

INTEGER :: nNonZeros

INTEGER :: nRhs

INTEGER :: nRows

REAL(KIND=DP), ALLOCATABLE :: rhs( : )

INTEGER, ALLOCATABLE :: rowIndex( : )

REAL(KIND=DP), ALLOCATABLE :: solution( : )

REAL(KIND=DP), ALLOCATABLE :: values( : )

TYPE(MKL_DSS_HANDLE) :: handle ! Allocate storage for the solver handle.

REAL(KIND=DP),ALLOCATABLE::statOUt( : )

CHARACTER*15 statIn

INTEGER perm(1)

INTEGER buff(bufLen)

EXTERNAL MKL_CVT_TO_NULL_TERMINATED_STR
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! Set the problem to be solved.

nRows = 5

nCols = 5

nNonZeros = 9

nRhs = 1

perm(1) = 0

ALLOCATE( rowIndex( nRows + 1 ) )

rowIndex = (/ 1, 6, 7, 8, 9, 10 /)

ALLOCATE( columns( nNonZeros ) )

columns = (/ 1, 2, 3, 4, 5, 2, 3, 4, 5 /)

ALLOCATE( values( nNonZeros ) )

values = (/ 9.0_DP, 1.5_DP, 6.0_DP, 0.75_DP, 3.0_DP, 0.5_DP, 12.0_DP, &

& 0.625_DP, 16.0_DP /)

ALLOCATE( rhs( nRows ) )

rhs = (/ 1.0_DP, 2.0_DP, 3.0_DP, 4.0_DP, 5.0_DP /)

! Initialize the solver.

error = dss_create( handle, MKL_DSS_DEFAULTS )

IF (error /= MKL_DSS_SUCCESS) GOTO 999

! Define the non-zero structure of the matrix.

error = dss_define_structure( handle, MKL_DSS_SYMMETRIC, rowIndex, nRows, &

& nCols, columns, nNonZeros )

IF (error /= MKL_DSS_SUCCESS) GOTO 999

! Reorder the matrix.

error = dss_reorder( handle, MKL_DSS_DEFAULTS, perm )

IF (error /= MKL_DSS_SUCCESS) GOTO 999

! Factor the matrix.

error = dss_factor_real( handle, MKL_DSS_DEFAULTS, values )

IF (error /= MKL_DSS_SUCCESS) GOTO 999

! Allocate the solution vector and solve the problem.

ALLOCATE( solution( nRows ) )

error = dss_solve_real(handle, MKL_DSS_DEFAULTS, rhs, nRhs, solution )

IF (error /= MKL_DSS_SUCCESS) GOTO 999

! Print Out the determinant of the matrix
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ALLOCATE(statOut( 5 ) )

statIn = 'determinant'

call mkl_cvt_to_null_terminated_str(buff,bufLen,statIn);

error = dss_statistics(handle, MKL_DSS_DEFAULTS, buff, statOut )

IF (error /= MKL_DSS_SUCCESS) GOTO 999

WRITE(*,"('pow of determinant is '(5F10.3))") ( statOut(1) )

WRITE(*,"('base of determinant is '(5F10.3))") ( statOut(2) )

WRITE(*,"('Determinant is '(5F10.3))") ( (10**statOut(1))*statOut(2) )

! Deallocate solver storage and various local arrays.

error = dss_delete( handle, MKL_DSS_DEFAULTS )

IF (error /= MKL_DSS_SUCCESS ) GOTO 999

IF ( ALLOCATED( rowIndex) ) DEALLOCATE( rowIndex )

IF ( ALLOCATED( columns ) ) DEALLOCATE( columns )

IF ( ALLOCATED( values ) ) DEALLOCATE( values )

IF ( ALLOCATED( rhs ) ) DEALLOCATE( rhs )

IF ( ALLOCATED( statOut ) ) DEALLOCATE( statOut )

! Print the solution vector, deallocate it and exit

WRITE(*,"('Solution Array: '(5F10.3))") ( solution(i), i = 1, nCols )

IF ( ALLOCATED( solution ) ) DEALLOCATE( solution )

GOTO 1000

! Print an error message and exit

999 WRITE(*,*) "Solver returned error code ", error

1000 CONTINUE

END PROGRAM solver_f90_test
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DFT Code Examples
This section presents code examples of using the DFT interface functions described in “Discrete 
Fourier Transform Functions” chapter. 
Here are the examples of two one-dimensional computations. These examples use the default 
settings for all of the configuration parameters, which are specified in “Configuration Settings”.  

Example C-13 One-dimensional DFT (Fortran-interface)

! Fortran example.

! 1D complex to complex, and real to conjugate even

Use MKL_DFTI

Complex :: X(32)

Real :: Y(34)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status

...put input data into X(1),...,X(32); Y(1),...,Y(32)

! Perform a complex to complex transform

Status = DftiCreateDescriptor( My_Desc1_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32 )

Status = DftiCommitDescriptor( My_Desc1_Handle )

Status = DftiComputeForward( My_Desc1_Handle, X )

Status = DftiFreeDescriptor(My_Desc1_Handle)
! result is given by {X(1),X(2),...,X(32)}

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
DFTI_REAL, 1, 32)

Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Handle, Y)

Status = DftiFreeDescriptor(My_Desc2_Handle)

! result is given by {Y(1)+iY(2), Y(3)+iY(4), ..., Y(33)+iY(34),

! Y(31)-iY(32), Y(29)-iY(30), ..., Y(3)-iY(4).
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The following is an example of two simple two-dimensional transforms. Notice that the data and 
result parameters in computation functions are all declared as assumed-size rank-1 array 
DIMENSION(0:*). Therefore two-dimensional array must be transformed to one-dimensional 
array by EQUIVALENCE statement or other facilities of Fortran.

Example C-14  One-dimensional DFT (C-interface)

/* C example, float _Complex is defined in C9X */

#include "mkl_dfti.h"

float _Complex x[32];

float y[34];

DFTI_DESCRIPTOR *my_desc1_handle, *my_desc2_handle;

/* .... or alternatively

DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle; */

long status;

...put input data into x[0],...,x[31]; y[0],...,y[31]

status = DftiCreateDescriptor( &my_desc1_handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32);

status = DftiCommitDescriptor( my_desc1_handle );

status = DftiComputeForward( my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

/* result is x[0], ..., x[31] */

status = DftiCreateDescriptor( &my_desc2_handle, DFTI_SINGLE,
DFTI_REAL, 1, 32);

status = DftiCommitDescriptor( my_desc2_handle);

status = DftiComputeForward( my_desc2_handle, y);

status = DftiFreeDescriptor(&my_desc2_handle);

/* y[0]+iy[1], ..., y[32]+iy[33], y[30]-iy[31], ..., y[2]-iy[3] */
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Example C-15 Two-dimensional DFT (Fortran-interface)

! Fortran example.

! 2D complex to complex, and real to conjugate even

Use MKL_DFTI

Complex :: X_2D(32,100)

Real :: Y_2D(34, 102)

Complex :: X(3200)

Real :: Y(3468)

Equivalence (X_2D, X)
Equivalence (Y_2D, Y)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status, L(2)

...put input data into X_2D(j,k), Y_2D(j,k), 1<=j=32,1<=k<=100

...set L(1) = 32, L(2) = 100

...the transform is a 32-by-100

! Perform a complex to complex transform

Status = DftiCreateDescriptor( My_Desc1_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 2, L)

Status = DftiCommitDescriptor( My_Desc1_Handle)

Status = DftiComputeForward( My_Desc1_Handle, X)

Status = DftiFreeDescriptor(My_Desc1_Handle)

! result is given by X_2D(j,k), 1<=j<=32, 1<=k<=100

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor( My_Desc2_Handle, DFTI_SINGLE,
DFTI_REAL, 2, L)

Status = DftiCommitDescriptor( My_Desc2_Handle)

Status = DftiComputeForward( My_Desc2_Handle, Y)

Status = DftiFreeDescriptor(My_Desc2_Handle)

! result is given by the complex value z(j,k) 1<=j<=32; 1<=k<=100 where

! z(j,k) = Y_2D(2j-1,k) + iY_2D(2j,k) 1<=j<=17; 1<=k<=100

! z(j,k) = Y_2D(2(34-j)-1,k) - iY_2D(2(34-j),k) 18<=j<=32; 1<=k<=100
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Example C-16  Two-dimensional DFT (C-interface)

/* C example */

#include "mkl_dfti.h"

float _Complex x[32][100];

float y[34][102];

DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle;

/* or alternatively

DFTI_DESCRIPTOR *my_desc1_handle, *my_desc2_handle; */

long status, l[2];

...put input data into x[j][k] 0<=j<=31, 0<=k<=99

...put input data into y[j][k] 0<=j<=31, 0<=k<=99

l[0] = 32; l[1] = 100;

status = DftiCreateDescriptor( &my_desc1_handle, DFTI_SINGLE,
DFTI_COMPLEX, 2, l);

status = DftiCommitDescriptor( my_desc1_handle);

status = DftiComputeForward( my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

/* result is the complex value x[j][k], 0<=j<=31, 0<=k<=99 */

status = DftiCreateDescriptor( &my_desc2_handle, DFTI_SINGLE,
DFTI_REAL, 2, l);

status = DftiCommitDescriptor( my_desc2_handle);

status = DftiComputeForward( my_desc2_handle, y);

status = DftiFreeDescriptor(&my_desc2_handle);

/* result is the complex value z(j,k) 0<=j<=31; 0<=k<=99

/* z(j,k) = y[2j][k] + iy[2j+1][k] 0<=j<=16; 0<=k<=99 */

/* z(j,k) = y[2(32-j)][k] - iy[2(32-j)+1][k] 17<=j<=31; 1<=k<=100 */
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The following examples demonstrate how you can change the default configuration settings by 
using the DftiSetValue function.

For instance, to preserve the input data after the DFT computation, the configuration of the 
DFTI_PLACEMENT should be changed to "not in place" from the default choice of "in place." 

The code below illustrates how this can be done:

Example C-17 Changing Default Settings (Fortran)

! Fortran example

! 1D complex to complex, not in place

Use MKL_DFTI

Complex :: X_in(32), X_out(32)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle

Integer :: Status

...put input data into X_in(j), 1<=j<=32

Status = DftiCreateDescriptor( My_Desc_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Status = DftiSetValue( My_Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor( My_Desc_Handle)

Status = DftiComputeForward( My_Desc_Handle, X_in, X_out)

Status = DftiFreeDescriptor (My_Desc_Handle)

! result is X_out(1),X_out(2),...,X_out(32)
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Example C-18  Changing Default Settings (C)

/* C example */

#include "mkl_dfti.h"

float _Complex x_in[32], x_out[32];

DFTI_DESCRIPTOR_HANDLE my_desc_handle;

/* or alternatively

DFTI_DESCRIPTOR *my_desc_handle; */

long status;

...put input data into x_in[j], 0 <= j < 32

status = DftiCreateDescriptor( &my_desc_handle, DFTI_SINGLE,

DFTI_COMPLEX, 1, 32);

status = DftiSetValue( my_desc_handle, DFTI_PLACEMENT,
DFTI_NOT_INPLACE);

status = DftiCommitDescriptor( my_desc_handle);

status = DftiComputeForward( my_desc_handle, x_in, x_out);

status = DftiFreeDescriptor(&my_desc_handle);

/* result is x_out[0], x_out[1], ..., x_out[31] */
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The Example C-19 below illustrates the use of the status checking functions described in
Chapter 11.

Example C-19 Using Status Checking Function

from C language:

DFTI_DESCRIPTOR_HANDLE desc;
long status, class_error, value;
char* error_message;
. . . descriptor creation and other code
status = DftiGetValue( desc, DFTI_PRECISION, &value); //
//or any DFTI function

class_error = DftiErrorClass(status, DFTI_ERROR_CLASS);
if (! class_error) {
printf ("status is not a member of Predefined Error
Class\n");
} else {
error_message = DftiErrorMessage(status);
printf("error_message = %s \n", error_message);
}
. . .
from Fortran:

type(DFTI_DESCRIPTOR), POINTER :: desc
integer value, status
character(DFTI_MAX_MESSAGE_LENGTH) error_message
logical class_error
. . . descriptor creation and other code
status = DftiGetValue( desc, DFTI_PRECISION, value)

class_error = DftiErrorClass(status, DFTI_ERROR_CLASS)
if (.not. class_error) then
print *, 'status is not a member of Predefined Error
Class '
else
error_message = DftiErrorMessage(status)
print *, 'error_message = ', error_message
endif
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Below is an example where a 20-by-40 two-dimensional DFT is computed explicitly using 
one-dimensional transforms. Notice that the data and result parameters in computation functions 
are all declared as assumed-size rank-1 array DIMENSION(0:*). Therefore two-dimensional 
array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities 
of Fortran.

! Fortran

Complex :: X_2D(20,40),

Complex :: X(800)

Equivalence (X_2D, X)

INTEGER :: STRIDE(2)

type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim1

type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim2

...

Status = DftiCreateDescriptor( Desc_Handle_Dim1, DFTI_SINGLE,
DFTI_COMPLEX, 1, 20 )

Status = DftiCreateDescriptor( Desc_Handle_Dim2, DFTI_SINGLE,
DFTI_COMPLEX, 1, 40 )

! perform 40 one-dimensional transforms along 1st dimension

Status = DftiSetValue( Desc_Handle_Dim1, DFTI_NUMBER_OF_TRANSFORMS, 40 )

Status = DftiSetValue( Desc_Handle_Dim1, DFTI_INPUT_DISTANCE, 20 )

Status = DftiSetValue( Desc_Handle_Dim1, DFTI_OUTPUT_DISTANCE, 20 )

Status = DftiCommitDescriptor( Desc_Handle_Dim1 )

Status = DftiComputeForward( Desc_Handle_Dim1, X )

! perform 20 one-dimensional transforms along 2nd dimension

Stride(1) = 0; Stride(2) = 20

Status = DftiSetValue( Desc_Handle_Dim2, DFTI_NUMBER_OF_TRANSFORMS, 20 )

Status = DftiSetValue( Desc_Handle_Dim2, DFTI_INPUT_DISTANCE, 1 )

Status = DftiSetValue( Desc_Handle_Dim2, DFTI_OUTPUT_DISTANCE, 1 )

Status = DftiSetValue( Desc_Handle_Dim2, DFTI_INPUT_STRIDES, Stride )

Status = DftiSetValue( Desc_Handle_Dim2, DFTI_OUTPUT_STRIDES, Stride )

Example C-20 Computing 2D DFT by One-Dimentional Transforms
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Status = DftiCommitDescriptor( Desc_Handle_Dim2 )

Status = DftiComputeForward( Desc_Handle_Dim2, X )
Status = DftiFreeDescriptor( Desc_Handle_Dim1 )

Status = DftiFreeDescriptor( Desc_Handle_Dim2 )

/* C */

float _Complex x[20][40];

long stride[2];

DFTI_DESCRIPTOR_HANDLE Desc_Handle_Dim1;

DFTI_DESCRIPTOR_HANDLE Desc_Handle_Dim2;

...

status = DftiCreateDescriptor( &desc_handle_dim1, DFTI_SINGLE,
DFTI_COMPLEX, 1, 20 );

status = DftiCreateDescriptor( &desc_handle_dim2, DFTI_SINGLE,
DFTI_COMPLEX, 1, 40 );

/* perform 40 one-dimensional transforms along 1st dimension */

/* note that the 1st dimension data are not unit-stride */

stride[0] = 0; stride[1] = 40;

status = DftiSetValue( desc_handle_dim1, DFTI_NUMBER_OF_TRANSFORMS, 40 );

status = DftiSetValue( desc_handle_dim1, DFTI_INPUT_DISTANCE, 1 );

status = DftiSetValue( desc_handle_dim1, DFTI_OUTPUT_DISTANCE, 1 );

status = DftiSetValue( desc_handle_dim1, DFTI_INPUT_STRIDES, stride );

status = DftiSetValue( desc_handle_dim1, DFTI_OUTPUT_STRIDES, stride );

status = DftiCommitDescriptor( desc_handle_dim1 );

status = DftiComputeForward( desc_handle_dim1, x );

/* perform 20 one-dimensional transforms along 2nd dimension */

/* note that the 2nd dimension is unit stride */

status = DftiSetValue( desc_handle_dim2, DFTI_NUMBER_OF_TRANSFORMS, 20 );

status = DftiSetValue( desc_handle_dim2, DFTI_INPUT_DISTANCE, 40 );

status = DftiSetValue( desc_handle_dim2, DFTI_OUTPUT_DISTANCE, 40 );

status = DftiCommitDescriptor( desc_handle_dim2 );

status = DftiComputeForward( desc_handle_dim2, x );
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status = DftiFreeDescriptor( &Desc_Handle_Dim1 );

status = DftiFreeDescriptor( &Desc_Handle_Dim2 );

Examples of Using Multi-Threading for DFT Computation

The following example program shows how to employ internal threading in Intel MKL for DFT 
computation (see case 1 in “Number of user threads”). 

To specify the number of threads inside Intel MKL, use the following settings:

set OMP_NUM_THREADS = 1 for one-threaded mode;

set OMP_NUM_THREADS = 4 for multi-threaded mode.

Note that the configuration parameter DFTI_NUMBER_OF_USER_THREADS must be equal to its 
default value 1 .

#include "mkl_dfti.h"

void main () {

float x[200][100];

DFTI_DESCRIPTOR_HANDLE my_desc1_handle;

long status, len[2];

//...put input data into x[j][k] 0<=j<=199, 0<=k<=99

len[0] = 200; len[1] = 100;

status = DftiCreateDescriptor( &my_desc1_handle, DFTI_SINGLE,DFTI_REAL, 2,
len);

status = DftiCommitDescriptor( my_desc1_handle);

status = DftiComputeForward( my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

}

Example C-21  Using Intel MKL Internal Threading Mode 
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The following Example C-22 illustrates a parallel customer program with each descriptor instance  
used only in a single thread (see case 2 in “Number of user threads”).

To specify the number of threads, use the following settings:

set MKL_SERIAL = 1 for single-threaded mode in Intel MKL (recommended);

set OMP_NUM_THREADS = 4 for multi-threaded mode in customer program.

The configuration parameter DFTI_NUMBER_OF_USER_THREADS must be equal to its default 
value 1.

Note that in this example the program can be transformed to become single-threaded on the 
customer level but using parallel mode within Intel MKL. To achieve this, you need to set the 
parameter DFTI_NUMBER_OF_TRANSFORMS = 4 and to set the corresponding parameter 
DFTI_INPUT_DISTANCE = 5000.

#include "mkl_dfti.h"

void main () {

float _Complex x[200][100];

DFTI_DESCRIPTOR_HANDLE my_desc_handle;

long status, len[2];

int iThread;

//...put input data into x[j][k] 0<=j<=199, 0<=k<=99

len[0] = 50; len[1] = 100;

int nThread = omp_get_max_threads();

// each thread calculates real DFT for matrix (50*100)

#pragma omp parallel default(shared)

{

#pragma omp for private(iThread, my_desc_handle) /* parallel step */

for (iThread = 0; iThread < nThread; iThread++) {

status = DftiCreateDescriptor( &my_desc_handle, DFTI_SINGLE, DFTI_COMPLEX, 2, len);

Example C-22  Using Parallel Mode with Multiple Descriptors
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status = DftiCommitDescriptor( my_desc_handle);

status = DftiComputeForward( my_desc_handle, &x[iThread * len[0] * len[1]]);

status = DftiFreeDescriptor(&my_desc_handle);

}/* parallel for */

}/* #pragma omp */

}

The following Example C-23 illustrates a parallel customer program with a common descriptor  
used in several threads (see case 3 in “Number of user threads”).

In this case the number of threads, as well as any other configuration parameter, must not be 
changed after DFT initialization by the DftiCommitDescriptor() function is done.

// set number of threads inside Intel MKL:

//rem set MKL_SERIAL = 1 - is not required since one-threaded mode for
Intel MKL is forced automatically

// set OMP_NUM_THREADS = 4 - multi-threaded mode for customer

#include "mkl_dfti.h"

void main () {

float _Complex x[200][100];

DFTI_DESCRIPTOR_HANDLE my_desc_handle;

long status, len[2];

int iThread;

//...put input data into x[j][k] 0<=j<=199, 0<=k<=99

len[0] = 50; len[1] = 100;

int nThread = omp_get_max_threads();

status = DftiCreateDescriptor( &my_desc_handle, DFTI_SINGLE, DFTI_COMPLEX, 2, len);

status = DftiSetValue(my_desc_handle, DFTI_NUMBER_OF_USER_THREADS, nThread);

Example C-23  Using Parallel Mode with a Common Descriptor
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status = DftiCommitDescriptor( my_desc_handle);

// each thread calculates real DFT for matrix (50*100)

#pragma omp parallel default(shared)

{

#pragma omp for private(iThread) /* parallel step */

for (iThread = 0; iThread < nThread; iThread++) {

status = DftiComputeForward( my_desc_handle, &x[iThread * len[0] * len[1]]);

}/* parallel for */

}

status = DftiFreeDescriptor(&my_desc_handle);

}
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CBLAS Interface
to the BLAS D

This appendix presents CBLAS, the C interface to the Basic Linear Algebra Subprograms (BLAS) 
implemented in Intel® MKL.

Similar to BLAS, the CBLAS interface includes the following levels of functions: 

•  “Level 1 CBLAS” (vector-vector operations) 

•  “Level 2 CBLAS” (matrix-vector operations) 

•  “Level 3 CBLAS” (matrix-matrix operations).

•  “Sparse CBLAS” (operations on sparse vectors).

To obtain the C interface, the Fortran routine names are prefixed with cblas_ (for example, 
dasum becomes cblas_dasum). Names of all CBLAS functions are in lowercase letters. 

Complex functions ?dotc and ?dotu become CBLAS subroutines (void functions); they return 
the complex result via a void pointer, added as the last parameter. CBLAS names of these 
functions are suffixed with _sub. For example, the BLAS function cdotc corresponds to 
cblas_cdotc_sub. 

CBLAS Arguments  
The arguments of CBLAS functions obey the following rules: 

• Input arguments are declared with the const modifier.

• Non-complex scalar input arguments are passed by value.

• Complex scalar input arguments are passed as void pointers.

• Array arguments are passed by address.

• Output scalar arguments are passed by address.
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• BLAS character arguments are replaced by the appropriate enumerated type.

• Level 2 and Level 3 routines acquire an additional parameter of type CBLAS_ORDER as their 
first argument. This parameter specifies whether two-dimensional arrays are row-major 
(CblasRowMajor) or column-major (CblasColMajor). 

Enumerated Types

The CBLAS interface uses the following enumerated types: 

enum CBLAS_ORDER {
CblasRowMajor=101, /* row-major arrays */
CblasColMajor=102}; /* column-major arrays */

enum CBLAS_TRANSPOSE {
CblasNoTrans=111, /* trans='N' */
CblasTrans=112, /* trans='T' */
CblasConjTrans=113}; /* trans='C' */

enum CBLAS_UPLO {
CblasUpper=121, /* uplo ='U' */
CblasLower=122}; /* uplo ='L' */

enum CBLAS_DIAG {
CblasNonUnit=131, /* diag ='N' */
CblasUnit=132}; /* diag ='U' */

enum CBLAS_SIDE {
CblasLeft=141, /* side ='L' */
CblasRight=142}; /* side ='R' */
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Level 1 CBLAS  
This is an interface to  “BLAS Level 1 Routines and Functions”, which perform basic 
vector-vector operations.

ipps?asum

float cblas_sasum(const int N, const float *X, const int incX);

double cblas_dasum(const int N, const double *X, const int incX);

float cblas_scasum(const int N, const void *X, const int incX);

double cblas_dzasum(const int N, const void *X, const int incX);

ipps?axpy

void cblas_saxpy(const int N, const float alpha, const float *X, const int incX,
float *Y, const int incY);

void cblas_daxpy(const int N, const double alpha, const double *X, const int
incX, double *Y, const int incY);

void cblas_caxpy(const int N, const void *alpha, const void *X, const int incX,
void *Y, const int incY);

void cblas_zaxpy(const int N, const void *alpha, const void *X, const int incX,
void *Y, const int incY);

ipps?copy

void cblas_scopy(const int N, const float *X, const int incX, float *Y, const int
incY);

void cblas_dcopy(const int N, const double *X, const int incX, double *Y, const
int incY);

void cblas_ccopy(const int N, const void *X, const int incX, void *Y, const int
incY);

void cblas_zcopy(const int N, const void *X, const int incX, void *Y, const int
incY);

ipps?dot

float cblas_sdot(const int N, const float *X, const int incX,
const float *Y, const int incY);

double cblas_ddot(const int N, const double *X, const int incX,
const double *Y, const int incY);

ipps?sdot

float cblas_sdsdot(const int N, const float *SB, const float *SX, const int incX,
const float *SY, const int incY);

double cblas_dsdot(const int N, const float *SX, const int incX, const float *SY,
const int incY);
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ipps?dotc

void cblas_cdotc_sub(const int N, const void *X, const int incX, const void *Y,
const int incY, void *dotc);

void cblas_zdotc_sub(const int N, const void *X, const int incX, const void *Y,
const int incY, void *dotc);

ipps?dotu
void cblas_cdotu_sub(const int N, const void *X, const int incX, const void *Y,
const int incY, void *dotu);

void cblas_zdotu_sub(const int N, const void *X, const int incX, const void *Y,
const int incY, void *dotu);

ipps?nrm2
float cblas_snrm2(const int N, const float *X, const int incX);

double cblas_dnrm2(const int N, const double *X, const int incX);

float cblas_scnrm2(const int N, const void *X, const int incX);

double cblas_dznrm2(const int N, const void *X, const int incX);

ipps?rot
void cblas_srot(const int N, float *X, const int incX, float *Y, const int incY,
const float c, const float s);

void cblas_drot(const int N, double *X, const int incX, double *Y,const int incY,
const double c, const double s);

ipps?rotg

void cblas_srotg(float *a, float *b, float *c, float *s);

void cblas_drotg(double *a, double *b, double *c, double *s);

ipps?rotm
void cblas_srotm(const int N, float *X, const int incX, float *Y, const int incY,
const float *P);

void cblas_drotm(const int N, double *X, const int incX, double *Y, const int
incY, const double *P);

ipps?rotmg

void cblas_srotmg(float *d1, float *d2, float *b1, const float b2, float *P);

void cblas_drotmg(double *d1, double *d2, double *b1, const double b2, double
*P);
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ipps?scal
void cblas_sscal(const int N, const float alpha, float *X, const int incX);

void cblas_dscal(const int N, const double alpha, double *X, const int incX);

void cblas_cscal(const int N, const void *alpha, void *X, const int incX);

void cblas_zscal(const int N, const void *alpha, void *X, const int incX);

void cblas_csscal(const int N, const float alpha, void *X, const int incX);

void cblas_zdscal(const int N, const double alpha, void *X, const int incX);

ipps?swap
void cblas_sswap(const int N, float *X, const int incX, float *Y, const int incY);

void cblas_dswap(const int N, double *X, const int incX, double *Y, const int
incY);

void cblas_cswap(const int N, void *X, const int incX, void *Y, const int incY);

void cblas_zswap(const int N, void *X, const int incX, void *Y, const int incY);

ippsi?amax
CBLAS_INDEX cblas_isamax(const int N, const float *X, const int incX);

CBLAS_INDEX cblas_idamax(const int N, const double *X, const int incX);

CBLAS_INDEX cblas_icamax(const int N, const void *X, const int incX);

CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX);

ippsi?amin
CBLAS_INDEX cblas_isamin(const int N, const float *X, const int incX);

CBLAS_INDEX cblas_idamin(const int N, const double *X, const int incX);

CBLAS_INDEX cblas_icamin(const int N, const void *X, const int incX);

CBLAS_INDEX cblas_izamin(const int N, const void *X, const int incX);

Level 2 CBLAS  
This is an interface to  “BLAS Level 2 Routines”, which perform basic matrix-vector operations. 
Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first 
argument) that determines whether the two-dimensional arrays use column-major or row-major 
storage.

ipps?gbmv

void cblas_sgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const int KL, const int KU, const float alpha, const
float *A, const int lda, const float *X, const int incX, const float beta, float
*Y, const int incY);



D-6

D Intel® Math Kernel Library Reference Manual

void cblas_dgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const int KL, const int KU, const double alpha, const
double *A, const int lda, const double *X, const int incX, const double beta,
double *Y, const int incY);

void cblas_cgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const int KL, const int KU, const void *alpha, const
void *A, const int lda, const void *X, const int incX, const void *beta, void *Y,
const int incY);

void cblas_zgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const int KL, const int KU, const void *alpha, const
void *A, const int lda, const void *X, const int incX, const void *beta, void *Y,
const int incY);

ipps?gemv

void cblas_sgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const float alpha, const float *A, const int lda, const
float *X, const int incX, const float beta, float *Y, const int incY);

void cblas_dgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const double alpha, const double *A, const int lda,
const double *X, const int incX, const double beta, double *Y, const int incY);

void cblas_cgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const void *alpha, const void *A, const int lda, const
void *X, const int incX, const void *beta, void *Y, const int incY);

void cblas_zgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const void *alpha, const void *A, const int lda, const
void *X, const int incX, const void *beta, void *Y, const int incY);

ipps?ger

void cblas_sger(const enum CBLAS_ORDER order, const int M, const int N, const
float alpha, const float *X, const int incX, const float *Y, const int incY, float
*A, const int lda);

void cblas_dger(const enum CBLAS_ORDER order, const int M, const int N, const
double alpha, const double *X, const int incX, const double *Y, const int incY,
double *A, const int lda);

ipps?gerc

void cblas_cgerc(const enum CBLAS_ORDER order, const int M, const int N, const
void *alpha, const void *X, const int incX, const void *Y, const int incY, void
*A, const int lda);

void cblas_zgerc(const enum CBLAS_ORDER order, const int M, const int N, const
void *alpha, const void *X, const int incX, const void *Y, const int incY, void
*A, const int lda);
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ipps?geru

void cblas_cgeru(const enum CBLAS_ORDER order, const int M, const int N, const
void *alpha, const void *X, const int incX, const void *Y, const int incY, void
*A, const int lda);

void cblas_zgeru(const enum CBLAS_ORDER order, const int M, const int N, const
void *alpha, const void *X, const int incX, const void *Y, const int incY, void
*A, const int lda);

ipps?hbmv

void cblas_chbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const int K, const void *alpha, const void *A, const int lda, const void
*X, const int incX, const void *beta, void *Y, const int incY);

void cblas_zhbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const int K, const void *alpha, const void *A, const int lda, const void
*X, const int incX, const void *beta, void *Y, const int incY);

ipps?hemv

void cblas_chemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *A, const int lda, const void *X, const int
incX, const void *beta, void *Y, const int incY);

void cblas_zhemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *A, const int lda, const void *X, const int
incX, const void *beta, void *Y, const int incY);

ipps?her

void cblas_cher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const void *X, const int incX, void *A, const int lda);

void cblas_zher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const void *X, const int incX, void *A, const int lda);

ipps?her2

void cblas_cher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *A, const int lda);

void cblas_zher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *A, const int lda);

ipps?hpmv

void cblas_chpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *Ap, const void *X, const int incX, const
void *beta, void *Y, const int incY);
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void cblas_zhpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *Ap, const void *X, const int incX, const
void *beta, void *Y, const int incY);

ipps?hpr

void cblas_chpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const void *X, const int incX, void *A);

void cblas_zhpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const void *X, const int incX, void *A);

ipps?hpr2

void cblas_chpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *Ap);

void cblas_zhpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *Ap);

ipps?sbmv

void cblas_ssbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const int K, const float alpha, const float *A, const int lda, const float
*X, const int incX, const float beta, float *Y, const int incY);

void cblas_dsbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const int K, const double alpha, const double *A, const int lda, const
double *X, const int incX, const double beta, double *Y, const int incY);

ipps?spmv

void cblas_sspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *Ap, const float *X, const int incX, const
float beta, float *Y, const int incY);

void cblas_dspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *Ap, const double *X, const int incX,
const double beta, double *Y, const int incY);

ipps?spr

void cblas_sspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *X, const int incX, float *Ap);

void cblas_dspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *X, const int incX, double *Ap);

ipps?spr2

void cblas_sspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *X, const int incX, const float *Y, const
int incY, float *A);
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void cblas_dspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *X, const int incX, const double *Y, const
int incY, double *A);

ipps?symv

void cblas_ssymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *A, const int lda, const float *X, const int
incX, const float beta, float *Y, const int incY);

void cblas_dsymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *A, const int lda, const double *X, const
int incX, const double beta, double *Y, const int incY);

ipps?syr

void cblas_ssyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *X, const int incX, float *A, const int
lda);

void cblas_dsyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *X, const int incX, double *A, const int
lda);

ipps?syr2

void cblas_ssyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *X, const int incX, const float *Y, const
int incY, float *A, const int lda);

void cblas_dsyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *X, const int incX, const double *Y, const
int incY, double *A, const int lda);

ipps?tbmv

void cblas_stbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const float *A, const int lda, float *X, const int incX);

void cblas_dtbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const double *A, const int lda, double *X, const int incX);

void cblas_ctbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const void *A, const int lda, void *X, const int incX);

void cblas_ztbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const void *A, const int lda, void *X, const int incX);
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ipps?tbsv

void cblas_stbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const float *A, const int lda, float *X, const int incX);

void cblas_dtbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const double *A, const int lda, double *X, const int incX);

void cblas_ctbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const void *A, const int lda, void *X, const int incX);

void cblas_ztbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const void *A, const int lda, void *X, const int incX);

ipps?tpmv

void cblas_stpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float
*Ap, float *X, const int incX);

void cblas_dtpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const
double *Ap, double *X, const int incX);

void cblas_ctpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*Ap, void *X, const int incX);

void cblas_ztpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*Ap, void *X, const int incX);

ipps?tpsv

void cblas_stpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const float
*Ap, float *X, const int incX);

void cblas_dtpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const double
*Ap, double *X, const int incX);

void cblas_ctpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*Ap, void *X, const int incX);

void cblas_ztpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*Ap, void *X, const int incX);
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ipps?trmv

void cblas_strmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const float
*A, const int lda, float *X, const int incX);

void cblas_dtrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const double
*A, const int lda, double *X, const int incX);

void cblas_ctrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*A, const int lda, void *X, const int incX);

void cblas_ztrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*A, const int lda, void *X, const int incX);

ipps?trsv

void cblas_strsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const float
*A, const int lda, float *X, const int incX);

void cblas_dtrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const double
*A, const int lda, double *X, const int incX);

void cblas_ctrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*A, const int lda, void *X, const int incX);

void cblas_ztrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*A, const int lda, void *X, const int incX);
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Level 3 CBLAS  
This is an interface to  “BLAS Level 3 Routines”, which perform basic matrix-matrix operations. 
Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first 
argument) that determines whether the two-dimensional arrays use column-major or row-major 
storage.

ipps?gemm

void cblas_sgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const
float alpha, const float *A, const int lda, const float *B, const int ldb, const
float beta, float *C, const int ldc);

void cblas_dgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const
double alpha, const double *A, const int lda, const double *B, const int ldb,
const double beta, double *C, const int ldc);

void cblas_cgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const
void *alpha, const void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

void cblas_zgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const
void *alpha, const void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

ipps?hemm

void cblas_chemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A,
const int lda, const void *B, const int ldb, const void *beta, void *C, const int
ldc);

void cblas_zhemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A,
const int lda, const void *B, const int ldb, const void *beta, void *C, const int
ldc);

ipps?herk

void cblas_cherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const
void *A, const int lda, const float beta, void *C, const int ldc);

void cblas_zherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const
void *A, const int lda, const double beta, void *C, const int ldc);
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ipps?her2k

void cblas_cher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const float beta, void *C,
const int ldc);

void cblas_zher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const double beta, void *C,
const int ldc);

ipps?symm

void cblas_ssymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const float alpha, const float *A,
const int lda, const float *B, const int ldb, const float beta, float *C, const
int ldc);

void cblas_dsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const double alpha, const double
*A, const int lda, const double *B, const int ldb, const double beta, double *C,
const int ldc);

void cblas_csymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A,
const int lda, const void *B, const int ldb, const void *beta, void *C, const int
ldc);

void cblas_zsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A,
const int lda, const void *B, const int ldb, const void *beta, void *C, const int
ldc);

ipps?syrk

void cblas_ssyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const
float *A, const int lda, const float beta, float *C, const int ldc);

void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const
double *A, const int lda, const double beta, double *C, const int ldc);

void cblas_csyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *beta, void *C, const int ldc);

void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *beta, void *C, const int ldc);
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ipps?syr2k

void cblas_ssyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha,const
float *A, const int lda, const float *B, const int ldb, const float beta, float
*C, const int ldc);

void cblas_dsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const
double *A, const int lda, const double *B, const int ldb, const double beta,
double *C, const int ldc);

void cblas_csyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSP SE Trans, const int N, const int K, const void *alpha,const void
*A, const int lda, const void *B, const int ldb, const void *beta, void *C, const
int ldc);

void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const void *beta, void *C,
const int ldc);

ipps?trmm

void cblas_strmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const float alpha, const float *A, const int lda,
float *B, const int ldb);

void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const double alpha, const double *A, const int
lda, double *B, const int ldb);

void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const void *alpha, const void *A, const int lda,
void *B, const int ldb);

void cblas_ztrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const void *alpha, const void *A, const int lda,
void *B, const int ldb);

ipps?trsm

void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const float alpha, const float *A, const int lda,
float *B, const int ldb);

void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const double alpha, const double *A, const int
lda, double *B, const int ldb);
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void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const void *alpha, const void *A, const int lda,
void *B, const int ldb);

void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const void *alpha, const void *A, const int lda,
void *B, const int ldb);
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Sparse CBLAS  
This is an interface to  “Sparse BLAS Routines and Functions”, which perform a number of 
common vector operations on sparse vectors stored in compressed form. 

Note that all index parameters, indx, are in C-type notation and vary in the range [0..N-1].

ipps?axpyi

void cblas_saxpyi(const int N, const float alpha,
const float *X, const int *indx, float *Y);

void cblas_daxpyi(const int N, const double alpha,
const double *X, const int *indx, double *Y);

void cblas_caxpyi(const int N, const void *alpha,
const void *X, const int *indx, void *Y);

void cblas_zaxpyi(const int N, const void *alpha,
const void *X, const int *indx, void *Y);

ipps?doti

float cblas_sdoti(const int N, const float *X,
const int *indx, const float *Y);

double cblas_ddoti(const int N, const double *X,
const int *indx, const double *Y);

ipps?dotci

void cblas_cdotci_sub(const int N, const void *X, const int *indx, const void
*Y, void *dotui);

void cblas_zdotci_sub(const int N, const void *X, const int *indx, const void
*Y, void *dotui);

ipps?dotui

void cblas_cdotui_sub(const int N, const void *X, const int *indx, const void
*Y, void *dotui);

void cblas_zdotui_sub(const int N, const void *X, const int *indx, const void
*Y, void *dotui);

ipps?gthr

void cblas_sgthr(const int N, const float *Y, float *X,
const int *indx);

void cblas_dgthr(const int N, const double *Y, double *X,
const int *indx);

void cblas_cgthr(const int N, const void *Y, void *X,
const int *indx);
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void cblas_zgthr(const int N, const void *Y, void *X,
const int *indx);

ipps?gthrz

void cblas_sgthrz(const int N, float *Y, float *X,
const int *indx);

void cblas_dgthrz(const int N, double *Y, double *X,
const int *indx);

void cblas_cgthrz(const int N, void *Y, void *X,
const int *indx);

void cblas_zgthrz(const int N, void *Y, void *X,
const int *indx);

ipps?roti

void cblas_sroti(const int N, float *X, const int *indx,
float *Y, const float c, const float s);

void cblas_droti(const int N, double *X, const int *indx,
double *Y, const double c, const double s);

ipps?sctr

void cblas_ssctr(const int N, const float *X, const int *indx, float *Y);

void cblas_dsctr(const int N, const double *X, const int *indx, double *Y);

void cblas_csctr(const int N, const void *X, const int *indx, void *Y);

void cblas_zsctr(const int N, const void *X, const int *indx, void *Y);
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AH Denotes the conjugate of a general matrix A. 
See also conjugate matrix.

AT Denotes the transpose of a general matrix A. 
See also transpose.

band matrix A general m by n matrix A such that aij = 0 for 
|i - j| > l, where 1 < l < min(m, n). For example, any 
tridiagonal matrix is a band matrix.

band storage A special storage scheme for band matrices. 
A matrix is stored in a two-dimensional array: columns 
of the matrix are stored in the corresponding columns 
of the array, and diagonals of the matrix are stored in 
rows of the array.

BLAS Abbreviation for Basic Linear Algebra Subprograms. 
These subprograms implement vector, matrix-vector, 
and matrix-matrix operations.

BRNG Abbreviation for Basic Random Number Generator. 
Basic random number generators are pseudorandom 
number generators imitating i.i.d. random number 
sequences of uniform distribution. Distributions other 
than uniform are generated by applying different 
transformation techniques to the sequences of random 
numbers of uniform distribution.

BRNG registration Standardized mechanism that allows a user to include a 
user-designed BRNG into the VSL and use it along 
with the predefined VSL basic generators.



Glossary-2

Intel® Math Kernel Library Reference Manual

Bunch-Kaufman 
factorization

Representation of a real symmetric or complex 
Hermitian matrix A in the form  A = PUDUHPT 
(or A = PLDLHPT) where P is a permutation matrix, U 
and L are upper and lower triangular matrices with unit 
diagonal, and D is a Hermitian block-diagonal matrix 
with 1-by-1 and 2-by-2 diagonal blocks. U and L have 
2-by-2 unit diagonal blocks corresponding to the 
2-by-2 blocks of D.

c When found as the first letter of routine names, 
c indicates the usage of single-precision complex data 
type.

CBLAS C interface to the BLAS. See BLAS.

CDF Cumulative Distribution Function. The function that 
determines probability distribution for univariate or 
multivariate random variable X. For univariate 
distribution the cumulative distribution function is the 
function of real argument x, which for every x takes a 
value equal to probability of the event A: 
 X ≤ x. For multivariate distribution the cumulative 
distribution function is the function of a real vector 

, which, for every x,  takes a value 
equal to probability of the event A = (X1 ≤ x1 & 
X2 ≤ x2, & ..., & Xn ≤ xn ).

Cholesky factorization Representation of a symmetric positive-definite or, for 
complex data, Hermitian positive-definite matrix A in 
the form A = UHU or A = LLH, where L is a lower 
triangular matrix and U is an upper triangular matrix.

condition number The number κ(A) defined for a given square matrix A 
as follows: κ(A) = ||A|| ||A−1||.

conjugate matrix The matrix AH defined for a given general matrix A as 
follows: (AH)ij = (aji)

*.

conjugate number The conjugate of a complex number z = a + bi  is 
z*= a - bi.

x x1 x2 ..., xn,( , )=



Glossary-3

d When found as the first letter of routine names, 
d indicates the usage of double-precision real data 
type.

dot product The number denoted x · y and defined for given vectors 
x and y as follows: x · y = Σi xiyi.
Here xi and yi stand for the ith elements of x and y, 
respectively.

double precision A floating-point data type. On Intel® processors, this 
data type allows you to store real numbers x such that 
2.23*10−308< | x | < 1.79*10308. 
For this data type, the machine precision ε is 
approximately 10−15, which means that 
double-precision numbers usually contain no more 
than 15 significant decimal digits.
For more information, refer to Pentium® Processor 
Family Developer’s Manual, Volume 3: Architecture 
and Programming Manual.

eigenvalue See eigenvalue problem.

eigenvalue problem A problem of finding non-zero vectors x and numbers 
λ (for a given square matrix A) such that Ax = λx. Here 
the numbers λ are called the eigenvalues of the matrix 
A and the vectors x are called the eigenvectors of the 
matrix A.

eigenvector See eigenvalue problem.

elementary reflector
(Householder matrix)

Matrix of a general form H = I − τvvT, where v is a 
column vector and τ is a scalar. 
In LAPACK elementary reflectors are used, for 
example, to represent the matrix Q in the QR 
factorization (the matrix Q is represented as a product 
of elementary reflectors).

factorization Representation of a matrix as a product of matrices. 
See also Bunch-Kaufman factorization, Cholesky 
factorization, LU factorization, LQ factorization, QR 
factorization, Schur factorization.
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FFTs Abbreviation for Fast Fourier Transforms. See Chapter 
3 of this book.

full storage A storage scheme allowing you to store matrices of any 
kind. A matrix A is stored in a two-dimensional array 
a, with the matrix element aij stored in the array 
element a(i,j).

Hermitian matrix A square matrix A that is equal to its conjugate matrix 
AH.  The conjugate AH is defined as follows: (AH)ij = 
(aji)

*.

I See identity matrix.

identity matrix A square matrix I whose diagonal elements are 1, and 
off-diagonal elements are 0. For any matrix A, AI = A 
and IA = A.

i.i.d. Independent Identically Distributed.

in-place Qualifier of an operation. A function that performs its 
operation in-place takes its input from an array and 
returns its output to the same array.

Intel MKL Abbreviation for Intel® Math Kernel Library.

inverse matrix The matrix denoted as A−1 and defined for a given 
square matrix A as follows: AA−1 = A−1A = I. 
A−1 does not exist for singular matrices A.

LQ factorization Representation of an m by n matrix A as A = LQ or 
A = (L 0)Q. Here Q is an n by n orthogonal (unitary) 
matrix. For m ≤ n, L is an m by m lower triangular 
matrix with real diagonal elements; for m > n,

    where L1 is an n by n lower triangular

 matrix, and L2 is a rectangular matrix. 

LU factorization Representation of a general m by n matrix A as 
A = PLU, where P is a permutation matrix, L is lower 
triangular with unit diagonal elements (lower 
trapezoidal if m > n) and U is upper triangular (upper 
trapezoidal if m < n).

L
L1

L2

=
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machine precision The number ε determining the precision of the machine 
representation of real numbers. For Intel®  architecture, 
the machine precision is approximately 10−7 for 
single-precision data, and approximately 10−15 for 
double-precision data. The precision also determines 
the number of significant decimal digits in the machine 
representation of real numbers. See also double 
precision and single precision.

MPI Message Passing Interface. This standard
defines the user interface and functionality for a
wide range of message-passing capabilities in
parallel computing.

MPICH A freely available, portable implementation of
MPI standard for message-passing libraries.

orthogonal matrix A real square matrix A whose transpose and inverse are 
equal, that is, AT = A-1, and therefore 
AAT = ATA = I.  All eigenvalues of an orthogonal matrix 
have the absolute value 1.

packed storage A storage scheme allowing you to store symmetric, 
Hermitian, or triangular matrices more compactly. The 
upper or lower triangle of a matrix is packed by 
columns in a one-dimensional array.

PDF Probability Density Function. The function that 
determines probability distribution for univariate or 
multivariate continuous random variable X. The 
probability density function is closely related with 
the cumulative distribution function  . For 
univariate distribution the relation is

 .

For multivariate distribution the relation is 

.

f x( )

F x( )

F x( ) f t( ) td
∞–

x

�=

F x1 x2 ..., xn,( , ) ...
∞–

x2

�
∞–

x1

� f t1 t2 ..., tn,( , ) t1 t2... tnddd
∞–

xn

�=
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positive-definite
matrix

A square matrix A such that Ax · x > 0 for any non-zero 
vector x. Here · denotes the dot product.

pseudorandom number 
generator

A completely deterministic algorithm that imitates 
truly random sequences.

QR factorization Representation of an m by n matrix A as A = QR, where 
Q is an m by m orthogonal (unitary) matrix, and R is n 
by n upper triangular with real diagonal elements (if m 
≥ n) or trapezoidal (if m < n) matrix.

random stream An abstract source of independent identically 
distributed random numbers of uniform distribution. In 
this manual a random stream points to a structure that 
uniquely defines a random number sequence generated 
by a basic generator associated with a given random 
stream.

RNG Abbreviation for Random Number Generator. In this 
manual the term ‘random number generators’ stands 
for pseudorandom number generators, that is, 
generators based on completely deterministic 
algorithms imitating truly random sequences.

s When found as the first letter of routine names, 
s indicates the usage of single-precision real data type.

ScaLAPACK Stands for Scalable Linear Algebra PACKage.

Schur factorization Representation of a square matrix A in the form 
A = ZTZH. Here T is an upper quasi-triangular matrix 
(for complex A, triangular matrix) called the Schur 
form of A; the matrix Z is orthogonal (for complex A, 
unitary). Columns of Z are called Schur vectors.



Glossary-7

single precision A floating-point data type. On Intel® processors, this 
data type allows you to store real numbers x such that 
1.18*10−38 < | x | < 3.40*1038. 
For this data type, the machine precision (ε) is 
approximately 10−7, which means that single-precision 
numbers usually contain no more than 7 significant 
decimal digits. For more information, refer to 
Pentium® Processor Family Developer’s Manual, 
Volume 3: Architecture and Programming Manual.

singular matrix A matrix whose determinant is zero. If A is a singular 
matrix, the inverse A-1 does not exist, and the system 
of equations Ax = b does not have a unique solution 
(that is, there exist no solutions or an infinite number of 
solutions).

singular value The numbers defined for a given general matrix A as 
the eigenvalues of the matrix AAH.  See also SVD.

SMP Abbreviation for Symmetric MultiProcessing. The 
MKL offers performance gains through parallelism 
provided by the SMP feature.

sparse BLAS Routines performing basic vector operations on sparse 
vectors. Sparse BLAS routines take advantage of 
vectors’ sparsity: they allow you to store only non-zero 
elements of vectors. See BLAS.

sparse vectors Vectors in which most of the components are zeros.

storage scheme The way of storing matrices. See full storage, packed 
storage, and band storage.

SVD Abbreviation for Singular Value Decomposition. See 
also Singular value decomposition section in Chapter 
5.

symmetric matrix A square matrix A such that aij = aji.

transpose The transpose of a given matrix A is a matrix AT such 
that (AT)ij = aji (rows of A become columns of AT, and 
columns of A become rows of AT).
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trapezoidal matrix A matrix A such that A = (A1A2), where A1 is an upper 
triangular matrix, A2 is a rectangular matrix.

triangular matrix A matrix A is called an upper (lower) triangular matrix 
if all its subdiagonal elements (superdiagonal 
elements) are zeros. Thus, for an upper triangular 
matrix aij = 0 when i > j; for a lower triangular matrix 
aij = 0 when i < j.

tridiagonal matrix A matrix whose non-zero elements are in three 
diagonals only: the leading diagonal, the first 
subdiagonal, and the first super-diagonal.

unitary matrix A complex square matrix A whose conjugate and 
inverse are equal, that is,  that is, AH = A-1, and 
therefore AAH = AHA = I.  All eigenvalues of a unitary 
matrix have the absolute value 1.

VML Abbreviation for Vector Mathematical Library. 
See Chapter 9 of this book.

VSL Abbreviation for Vector Statistical Library. 
See Chapter 10 of this book.

z When found as the first letter of routine names, 
z indicates the usage of double-precision complex data 
type.
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?gesdd, 4-371
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?getc2, 5-40

?getf2, 5-41
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?ggbal, 4-214

?gges, 4-438

?ggesx, 4-444

?ggev, 4-451

?ggevx, 4-455

?ggglm, 4-275

?gghrd, 4-211

?gglse, 4-272

?ggsvd, 4-375

?ggsvp, 4-247

?gtcon, 3-61
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?sptrf, 3-24

?sptri, 3-127

?sptrs, 3-47

?stebz, 4-133, 4-140, 6-170

?stein, 4-143, 6-174

?stein2, 7-179
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?sterf, 4-125
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?stevd, 4-337
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?swap, 2-20
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?syevx, 4-287, 6-250
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?sygv, 4-381
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?sygvx, 4-393, 6-269

?symm, 2-87

?symv, 2-56

?symv (complex), 5-20
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?syr (complex), 5-22

?syr2, 2-60

?syr2k, 2-93

?syrfs, 3-101

?syrk, 2-90

?sytrd, 4-99, 6-154
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?tbsv, 2-65

?tbtrs, 3-55
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?tpmv, 2-67

?tprfs, 3-113
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?tptri, 3-132

?tptrs, 3-53
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?trevc, 4-192
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?trrfs, 3-111

?trsen, 4-203

?trsm, 2-98

?trsna, 4-196

?trsv, 2-73

?trsyl, 4-207

?trtri, 3-131
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?ungbr, 4-82

?unghr, 4-173

?unglq, 4-30, 6-97

?ungqr, 4-19, 6-83

?ungtr, 4-107

?unmbr, 4-85, 6-202

?unmhr, 4-175, 6-186
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?unmqr, 4-21, 6-89

?unmtr, 4-109, 6-166

?upgtr, 4-118

?upmtr, 4-119
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A
absolute value of a vector element

largest, 2-21
smallest, 2-22

accuracy modes, in VML, 9-2

adding magnitudes of the vector elements, 2-5

arguments
matrix, B-3
sparse vector, 2-102
vector, B-1

array descriptor, 6-2

auxiliary routines (ScaLAPACK), 7-1

B
balancing a matrix, 4-178

band storage scheme, B-3

Bernoulli, 10-54

bidiagonal matrix, 4-68, 6-191

Binomial, 10-57

BLACS, 6-1

BLAS Level 1 functions
?asum, 2-4, 2-5
?dot, 2-4, 2-8
?dotc, 2-4, 2-10
?dotu, 2-4, 2-11
?nrm2, 2-4, 2-12
?sdot, 2-9
code example, C-1
i?amax, 2-4, 2-21
i?amin, 2-4, 2-22

BLAS Level 1 routines
?axpy, 2-4, 2-6
?copy, 2-4, 2-7
?rot, 2-4, 2-13
?rotg, 2-4, 2-15
?rotm, 2-16
?rotmg, 2-18
?scal, 2-4, 2-19
?swap, 2-4, 2-20
code example, C-2

BLAS Level 2 routines
?gbmv, 2-24, 2-25

?gemv, 2-24, 2-28
?ger, 2-24, 2-30
?gerc, 2-24, 2-32
?geru, 2-24, 2-33
?hbmv, 2-24, 2-35
?hemv, 2-24, 2-37
?her, 2-24, 2-39
?her2, 2-24, 2-41
?hpmv, 2-24, 2-43
?hpr, 2-24, 2-45
?hpr2, 2-24, 2-46
?sbmv, 2-24, 2-48
?spmv, 2-24, 2-51
?spr, 2-24, 2-53
?spr2, 2-24, 2-54
?symv, 2-24, 2-56
?syr, 2-24, 2-58
?syr2, 2-24, 2-60
?tbmv, 2-24, 2-62
?tbsv, 2-24, 2-65
?tpmv, 2-25, 2-67
?tpsv, 2-25, 2-69
?trmv, 2-25, 2-71
?trsv, 2-25, 2-73
code example, C-3

BLAS Level 3 routines
?gemm, 2-76, 2-77
?hemm, 2-76, 2-79
?her2k, 2-76, 2-84
?herk, 2-76, 2-82
?symm, 2-76, 2-87
?syr2k, 2-76, 2-93
?syrk, 2-76, 2-90
?trmm, 2-76, 2-96
?trsm, 2-76, 2-98
code example, C-4

BLAS routines
matrix arguments, B-3
routine groups, 1-6, 2-1
vector arguments, B-1

block-cyclic distribution, 6-2

block-splitting method, 10-5

Bunch-Kaufman factorization, 3-7, 6-6
Hermitian matrix, 3-22

packed storage, 3-27
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symmetric matrix, 3-19
packed storage, 3-24

C
C interface, 12-2

Cauchy, 10-40

CBLAS, D-1
arguments, D-1
level 1 (vector operations), D-3
level 2 (matrix-vector operations), D-5
level 3 (matrix-matrix operations), D-12
sparse BLAS, D-16

Cholesky factorization
Hermitian positive-definite matrix, 3-12, 6-13

band storage, 3-16, 6-14
packed storage, 3-14

symmetric positive-definite matrix, 3-12, 6-13
band storage, 3-16, 6-14
packed storage, 3-14

code examples
BLAS Level 1 function, C-1
BLAS Level 1 routine, C-2
BLAS Level 2 routine, C-3
BLAS Level 3 routine, C-4

CommitDescriptor, 11-10

communication subprograms, 6-1

complex-to-complex one-dimensional FFTs, 12-3

complex-to-complex two-dimensional FFTs, 12-16

complex-to-real one-dimensional FFTs, 12-10

complex-to-real two-dimensional FFTs, 12-25

computational node, 10-2

Computational Routines, 4-5

ComputeBackward, 11-16

ComputeForward, 11-13

condition number
band matrix, 3-59
general matrix, 3-57, 6-42, 6-45, 6-48
Hermitian matrix, 3-73

packed storage, 3-76
Hermitian positive-definite matrix, 3-63

band storage, 3-67
packed storage, 3-65

tridiagonal, 3-69
symmetric matrix, 3-71, 4-145

packed storage, 3-74
symmetric positive-definite matrix, 3-63

band storage, 3-67
packed storage, 3-65
tridiagonal, 3-69

triangular matrix, 3-78
band storage, 3-82
packed storage, 3-80

tridiagonal matrix, 3-61

configuration parameters, in DFTI, 11-2

Continuous Distribution Generators, 9-7, 10-22

converting a sparse vector into compressed storage form, 
2-109

and writing zeros to the original vector, 2-110

converting compressed sparse vectors into full storage 
form, 2-112

CopyDescriptor, 11-11

copying vectors, 2-7

CopyStream, 10-12

CopyStreamState, 10-13

CreateDescriptor, 11-7

D
data structure requirements for FFTs, 12-2

data type
in VML, 9-2
shorthand, 1-8

DeleteStream, 10-11

Descriptor configuration, in DFTI, 11-4

Descriptor Manipulation, in DFTI, 11-4

DFT computation, 11-4

DFT routines
descriptor configuration

GetValue, 11-21
SetValue, 11-18

descriptor manipulation
CommitDescriptor, 11-10
CopyDescriptor, 11-11
CreateDescriptor, 11-7
FreeDescriptor, 11-12
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DFT computation
ComputeBackward, 11-16
ComputeForward, 11-13

status checking
ErrorClass, 11-5
ErrorMessage, 11-6

dimension, B-1

Discrete Distribution Generators, 10-22

Discrete Fourier Transform
CommitDescriptor, 11-10
ComputeBackward, 11-16
ComputeForward, 11-13
CopyDescriptor, 11-11
CreateDescriptor, 11-7
ErrorClass, 11-5
ErrorMessage, 11-6
FreeDescriptor, 11-12
GetValue, 11-21
SetValue, 11-18

distributed-memory computations, 6-1

dot product
complex vectors, conjugated, 2-10
complex vectors, unconjugated, 2-11
real vectors, 2-8
real vectors (extended precision), 2-9
sparse complex vectors, 2-108
sparse complex vectors, conjugated, 2-107
sparse real vectors, 2-106

Driver Routines, 4-257

E
eigenvalue problems

general matrix, 4-162, 4-210, 6-178
generalized form, 4-147
Hermitian matrix, 4-95
symmetric matrix, 4-95

eigenvalues. See eigenvalue problems

eigenvectors. See eigenvalue problems

error diagnostics, in VML, 9-6

Error reporting routine, XERBLA, 2-1

ErrorClass, 11-5

ErrorMessage, 11-6

errors in solutions of linear equations
general matrix, 3-84, 3-89, 6-51, 6-55, 6-59

band storage, 3-87
Hermitian matrix, 3-104

packed storage, 3-108
Hermitian positive-definite matrix, 3-92, 3-99

band storage, 3-97
packed storage, 3-94

symmetric matrix, 3-101
packed storage, 3-106

symmetric positive-definite matrix, 3-92, 3-99
band storage, 3-97
packed storage, 3-94

triangular matrix, 3-111
band storage, 3-116
packed storage, 3-113

Euclidean norm
of a vector, 2-12

Exponential, 10-32

F
factorization

See also triangular factorization
Bunch-Kaufman, 3-7, 6-6
Cholesky, 3-7, 6-6
LU, 3-7, 6-6
orthogonal (LQ, QR), 4-6, 6-75

fast Fourier transforms
C interface, 12-2
data storage types, 12-2
data structure requirements, 12-2
routines

?fft1d, 12-4, 12-7, 12-12
?fft1dc, 12-5, 12-9, 12-13
?fft2d, 12-17, 12-20, 12-26
?fft2dc, 12-18, 12-22, 12-27

FFT. See fast Fourier transforms

fill-in, for sparse matrices, A-4

finding
element of a vector with the largest absolute value, 

2-21
element of a vector with the smallest absolute value, 

2-22

font conventions, 1-8
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forward or inverse FFTs, 12-4, 12-5, 12-17, 12-18

FreeDescriptor, 11-12

full storage scheme, B-3

function name conventions, in VML, 9-2

G
gathering sparse vector’s elements into compressed form, 

2-109
and writing zeros to these elements, 2-110

Gaussian, 10-25

GaussianMV, 10-28

general matrix
eigenvalue problems, 4-162, 4-210, 6-178
estimating the condition number, 3-57, 6-42, 6-45, 

6-48
band storage, 3-59

inverting the matrix, 3-119, 6-64, 6-66, 6-68
LQ factorization, 4-23, 4-34, 6-92, 6-106
LU factorization, 3-7, 6-6

band storage, 3-9, 6-8, 6-10, 7-184
matrix-vector product, 2-28

band storage, 2-25
QR factorization, 4-7, 4-44, 4-54, 4-62, 4-65, 6-120, 

6-134, 6-144, 6-149
with pivoting, 4-9, 4-12, 6-78

rank-l update, 2-30
rank-l update, conjugated, 2-32
rank-l update, unconjugated, 2-33
scalar-matrix-matrix product, 2-77
solving systems of linear equations, 3-29, 6-22

band storage, 3-31, 6-24

generalized eigenvalue problems, 4-147
See also LAPACK routines, generalized eigenvalue 

problems
complex Hermitian-definite problem, 4-150, 6-209

band storage, 4-158
packed storage, 4-154

real symmetric-definite problem, 4-148, 6-207
band storage, 4-155
packed storage, 4-152

generation methods, 10-2

Geometric, 10-55

GetBrngProperties, 10-70

GetNumRegBrng, 10-21

GetStreamStateBrng, 10-20

GetValue, 11-21

GFSR, 10-3

Givens rotation
modified Givens transformation parameters, 2-18
of sparse vectors, 2-111
parameters, 2-15

global array, 6-2

Gumbel, 10-48

H
Hermitian matrix, 4-95, 4-147

Bunch-Kaufman factorization, 3-22
packed storage, 3-27

estimating the condition number, 3-73
packed storage, 3-76

generalized eigenvalue problems, 4-147
inverting the matrix, 3-126

packed storage, 3-129
matrix-vector product, 2-37

band storage, 2-35
packed storage, 2-43

rank-1 update, 2-39
packed storage, 2-45

rank-2 update, 2-41
packed storage, 2-46

rank-2k update, 2-84
rank-n update, 2-82
scalar-matrix-matrix product, 2-79
solving systems of linear equations, 3-45

packed storage, 3-49

Hermitian positive-definite matrix
Cholesky factorization, 3-12, 6-13

band storage, 3-16, 6-14
packed storage, 3-14

estimating the condition number, 3-63
band storage, 3-67
packed storage, 3-65

inverting the matrix, 3-121
packed storage, 3-122

solving systems of linear equations, 3-35, 6-27, 6-31, 
6-34, 6-36

band storage, 3-39
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packed storage, 3-37

Hypergeometric, 10-59

I
i?amax, 2-21

i?amin, 2-22

i?max1, 5-24

ilaenv, 5-321

increment, B-1

inverse matrix. See inverting a matrix

inverting a matrix
general matrix, 3-119, 6-64, 6-66, 6-68
Hermitian matrix, 3-126

packed storage, 3-129
Hermitian positive-definite matrix, 3-121

packed storage, 3-122
symmetric matrix, 3-124

packed storage, 3-127
symmetric positive-definite matrix, 3-121

packed storage, 3-122
triangular matrix, 3-131

packed storage, 3-132

L
LAPACK routines

condition number estimation
?gbcon, 3-59
?gecon, 3-57, 6-42, 6-45, 6-48
?gtcon, 3-61
?hecon, 3-73
?hpcon, 3-76
?pbcon, 3-67
?pocon, 3-63
?ppcon, 3-65
?ptcon, 3-69
?spcon, 3-74
?sycon, 3-71, 4-145
?tbcon, 3-82
?tpcon, 3-80
?trcon, 3-78

generalized eigenvalue problems
?hbgst, 4-158

?hegst, 4-150, 6-209
?hpgst, 4-154
?pbstf, 4-160
?sbgst, 4-155
?spgst, 4-152
?sygst, 4-148, 6-207

LQ factorization
?gelqf, 4-23, 4-34, 6-92, 6-106
?orglq, 4-26, 4-36, 4-38, 6-95, 6-109, 6-111
?ormlq, 4-28, 4-40, 4-42, 4-50, 4-52, 4-56, 4-59,

6-99, 6-113, 6-117, 6-127, 6-131,
6-137, 6-141

?unglq, 4-30, 6-97
?unmlq, 4-32, 6-103

matrix inversion
?getri, 3-119, 6-64, 6-66, 6-68
?hetri, 3-126
?hptri, 3-129
?potri, 3-121
?pptri, 3-122
?sptri, 3-127
?sytri, 3-124
?tptri, 3-132
?trtri, 3-131

nonsymmetric eigenvalue problems
?gebak, 4-181
?gebal, 4-178
?gehrd, 4-166, 6-179
?hsein, 4-187
?hseqr, 4-183
?orghr, 4-168
?ormhr, 4-170, 6-182
?trevc, 4-192
?trexc, 4-201
?trsen, 4-203
?trsna, 4-196
?unghr, 4-173
?unmhr, 4-175, 6-186

QR factorization
?geqpf, 4-9, 4-12, 6-78
?geqrf, 4-7, 4-44, 4-54, 4-62, 4-65, 6-120,

6-134, 6-144, 6-149
?orgqr, 4-15, 4-46, 4-48, 6-81, 6-123, 6-125
?ormqr, 4-17, 6-85
?ungqr, 4-19, 6-83
?unmqr, 4-21, 6-89
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singular value decomposition
?bdsqr, 4-88, 4-92
?gbbrd, 4-73
?gebrd, 4-70, 6-192
?orgbr, 4-76
?ormbr, 4-79, 6-197
?ungbr, 4-82
?unmbr, 4-85, 6-202

solution refinement and error estimation
?gbrfs, 3-87
?gerfs, 3-84, 3-89, 6-51, 6-55, 6-59
?herfs, 3-104
?hprfs, 3-108
?pbrfs, 3-97
?porfs, 3-92, 3-99
?pprfs, 3-94
?sprfs, 3-106
?syrfs, 3-101
?tbrfs, 3-116
?tprfs, 3-113
?trrfs, 3-111

solving linear equations
?dttrs, 7-187
?gbtrs, 3-31, 6-24
?getrs, 3-29, 6-22
?gttrs, 3-33, 5-42
?hetrs, 3-45
?hptrs, 3-49
?pbtrs, 3-39
?potrs, 3-35, 6-27, 6-31, 6-34, 6-36, 7-158
?pptrs, 3-37
?pttrs, 3-41
?sptrs, 3-47
?sytrs, 3-43
?tbtrs, 3-55
?tptrs, 3-53
?trtrs, 3-51, 6-39

Sylvester’s equation
?trsyl, 4-207

symmetric eigenvalue problems
?hbevd, 4-323
?hbtrd, 4-123
?heevd, 4-284
?hetrd, 4-105, 6-162
?hpevd, 4-308
?hptrd, 4-116

?opgtr, 4-113
?opmtr, 4-114
?orgtr, 4-101
?ormtr, 4-103, 6-159
?pteqr, 4-137
?sbevd, 4-321
?sbtrd, 4-121
?spevd, 4-305
?sptrd, 4-111
?stebz, 4-133, 4-140, 6-170
?stein, 4-143, 6-174
?steqr, 4-127, 4-130
?sterf, 4-125
?stevd, 4-337
?syevd, 4-282
?sytrd, 4-99, 6-154
?ungtr, 4-107
?unmtr, 4-109, 6-166
?upgtr, 4-118
?upmtr, 4-119

triangular factorization
?dbtrf, 7-184
?dttrf, 7-185
?gbtrf, 3-9, 6-8, 6-10
?getrf, 3-7, 6-6
?gttrf, 3-11
?hetrf, 3-22
?hptrf, 3-27
?pbtrf, 3-16, 6-14
?potrf, 3-12, 6-13
?pptrf, 3-14
?pttrf, 3-18, 6-17, 6-19
?pttrsv, 7-188
?sptrf, 3-24
?sytrf, 3-19

Laplace, 10-35

leading dimension, B-6

leapfrog method, 10-5

LeapfrogStream, 10-14

length. See dimension

linear combination of vectors, 2-6

Linear Congruential Generator, 10-3

linear equations, solving
general matrix, 3-29, 6-22

band storage, 3-31, 6-24
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Hermitian matrix, 3-45
packed storage, 3-49

Hermitian positive-definite matrix, 3-35, 6-27, 6-31, 
6-34, 6-36

band storage, 3-39
packed storage, 3-37

symmetric matrix, 3-43
packed storage, 3-47

symmetric positive-definite matrix, 3-35, 6-27, 6-31, 
6-34, 6-36

band storage, 3-39
packed storage, 3-37

triangular matrix, 3-51, 6-39
band storage, 3-55
packed storage, 3-53

tridiagonal matrix, 3-33, 3-41, 5-42, 7-187

Lognormal, 10-45

LQ factorization, 4-5
computing the elements of

orthogonal matrix Q, 4-26, 4-36, 4-38, 6-95,
6-109, 6-111

unitary matrix Q, 4-30, 6-97

lsame, 5-325

lsamen, 5-325

LU factorization, 3-7, 6-6
band matrix, 3-9, 6-8, 6-10, 7-184
tridiagonal matrix, 3-11, 7-185

M
matrix arguments, B-3

column-major ordering, B-2, B-6
example, B-6
leading dimension, B-6
number of columns, B-6
number of rows, B-6
transposition parameter, B-6

matrix equation
AX = B, 2-98, 3-5, 3-29, 6-5, 6-21

matrix one-dimensional substructures, B-2

matrix-matrix operation
product

general matrix, 2-77
rank-2k update

Hermitian matrix, 2-84
symmetric matrix, 2-93

rank-n update
Hermitian matrix, 2-82
symmetric matrix, 2-90

scalar-matrix-matrix product
Hermitian matrix, 2-79
symmetric matrix, 2-87
triangular matrix, 2-96

matrix-vector operation
product, 2-25, 2-28

Hermitian matrix, 2-37

band storage, 2-35

packed storage, 2-43
symmetric matrix, 2-56

band storage, 2-48

packed storage, 2-51
triangular matrix, 2-71

band storage, 2-62

packed storage, 2-67
rank-1 update, 2-30, 2-32, 2-33

Hermitian matrix, 2-39

packed storage, 2-45
symmetric matrix, 2-58

packed storage, 2-53
rank-2 update

Hermitian matrix, 2-41

packed storage, 2-46
symmetric matrix, 2-60

packed storage, 2-54

MPI, 6-1

MPICH, 6-1

Multiplicative Congruential Generator, 10-3

N
naming conventions, 1-8

BLAS, 2-2
LAPACK, 3-2, 4-3, 6-3
Sparse BLAS, 2-102
VML, 9-2

NegBinomial, 10-64
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NewStream, 10-8

NewStreamEx, 10-9

O
one-dimensional FFTs, 12-1

complex sequence, 12-8, 12-10, 12-12, 12-14
complex-to-complex, 12-3
complex-to-real, 12-10
computing a forward FFT, real input data, 12-7, 12-9
computing a forward or inverse FFT of a complex 

vector, 12-4, 12-5
groups, 12-2
performing an inverse FFT, complex input data, 

12-12, 12-13
real-to-complex, 12-6
storage effects, 11-36, 11-38, 12-7, 12-11

orthogonal matrix, 4-68, 4-95, 4-162, 4-210, 6-178, 6-191

P
p?pttrsv, 7-158

Packed formats, 11-31

packed storage scheme, B-3

parallel direct solver (Pardiso), 8-1

parameters
for a Givens rotation, 2-15
modified Givens transformation, 2-18

PARDISO, 8-1

permutation matrix, A-3

platforms supported, 1-6

points
rotation in the modified plane, 2-16
rotation in the plane, 2-13

Poisson, 10-61

PoissonV, 10-63

positive-definite matrix
generalized eigenvalue problems, 4-148, 6-207

process grid, 6-2

product
See also dot product
matrix-vector

general matrix, 2-28

band storage, 2-25
Hermitian matrix, 2-37

band storage, 2-35

packed storage, 2-43
symmetric matrix, 2-56

band storage, 2-48

packed storage, 2-51
triangular matrix, 2-71

band storage, 2-62

packed storage, 2-67
scalar-matrix

general matrix, 2-77
Hermitian matrix, 2-79

scalar-matrix-matrix
general matrix, 2-77
Hermitian matrix, 2-79
symmetric matrix, 2-87
triangular matrix, 2-96

vector-scalar, 2-19

pseudorandom numbers, 10-1

Q
QR factorization, 4-5

computing the elements of
orthogonal matrix Q, 4-15, 4-46, 4-48, 6-81,

6-123, 6-125
unitary matrix Q, 4-19, 6-83

with pivoting, 4-9, 4-12, 6-78

quasi-triangular matrix, 4-162, 4-210, 6-178

R
Random Number Generators, 10-1

random stream, 10-6

rank-1 update
conjugated, general matrix, 2-32
general matrix, 2-30
Hermitian matrix, 2-39

packed storage, 2-45
symmetric matrix, 2-58

packed storage, 2-53
unconjugated, general matrix, 2-33
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rank-2 update
Hermitian matrix, 2-41

packed storage, 2-46
symmetric matrix, 2-60

packed storage, 2-54

rank-2k update
Hermitian matrix, 2-84
symmetric matrix, 2-93

rank-n update
Hermitian matrix, 2-82
symmetric matrix, 2-90

Rayleigh, 10-42

real-to-complex one-dimensional FFTs, 12-6

real-to-complex two-dimensional FFTs, 12-19

reducing generalized eigenvalue problems, 4-148, 6-207

refining solutions of linear equations
band matrix, 3-87
general matrix, 3-84, 3-89, 6-51, 6-55, 6-59
Hermitian matrix, 3-104

packed storage, 3-108
Hermitian positive-definite matrix, 3-92, 3-99

band storage, 3-97
packed storage, 3-94

symmetric matrix, 3-101
packed storage, 3-106

symmetric positive-definite matrix, 3-92, 3-99
band storage, 3-97
packed storage, 3-94

RegisterBrng, 10-69

registering a basic generator, 10-66

reordering of matrices, A-4

rotation
of points in the modified plane, 2-16
of points in the plane, 2-13
of sparse vectors, 2-111
parameters for a Givens rotation, 2-15
parameters of modified Givens transformation, 2-18

routine name conventions
BLAS, 2-2
Sparse BLAS, 2-102

S
ScaLAPACK, 6-1

scalar-matrix product, 2-77, 2-79, 2-87

scalar-matrix-matrix product, 2-79
general matrix, 2-77
symmetric matrix, 2-87
triangular matrix, 2-96

scattering compressed sparse vector’s elements into full 
storage form, 2-112

SetValue, 11-18

singular value decomposition, 4-68, 6-191
See also LAPACK routines, singular value 

decomposition

SkipAheadStream, 10-17

smallest absolute value of a vector element, 2-22

solver, direct, A-1

solver, iterative, A-1

solver, sparse, 8-1

solving linear equations. See linear equations

Sparse BLAS, 2-102
data types, 2-103
naming conventions, 2-102

Sparse BLAS routines and functions, 2-103
?axpyi, 2-104
?dotci, 2-107
?doti, 2-106
?dotui, 2-108
?gthr, 2-109
?gthrz, 2-110
?roti, 2-111
?sctr, 2-112

sparse matrices, 8-1

sparse vectors, 2-102
adding and scaling, 2-104
complex dot product, conjugated, 2-107
complex dot product, unconjugated, 2-108
compressed form, 2-102
converting to compressed form, 2-109, 2-110
converting to full-storage form, 2-112
full-storage form, 2-102
Givens rotation, 2-111
norm, 2-104
passed to BLAS level 1 routines, 2-104
real dot product, 2-106
scaling, 2-104
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split Cholesky factorization (band matrices), 4-160

Status Checking, in DFTI, 11-4

storage, of sparse matrices, A-7

stream, 10-6

stream descriptor, 10-2

stride. See increment

sum
of magnitudes of the vector elements, 2-5
of sparse vector and full-storage vector, 2-104
of vectors, 2-6

SVD (singular value decomposition), 4-68, 6-191

swapping vectors, 2-20

Sylvester’s equation, 4-207

symmetric matrix, 4-95, 4-147
Bunch-Kaufman factorization, 3-19

packed storage, 3-24
estimating the condition number, 3-71, 4-145

packed storage, 3-74
generalized eigenvalue problems, 4-147
inverting the matrix, 3-124

packed storage, 3-127
matrix-vector product, 2-56

band storage, 2-48
packed storage, 2-51

rank-1 update, 2-58
packed storage, 2-53

rank-2 update, 2-60
packed storage, 2-54

rank-2k update, 2-93
rank-n update, 2-90
scalar-matrix-matrix product, 2-87
solving systems of linear equations, 3-43

packed storage, 3-47

symmetric positive-definite matrix
Cholesky factorization, 3-12, 6-13

band storage, 3-16, 6-14
packed storage, 3-14

estimating the condition number, 3-63
band storage, 3-67
packed storage, 3-65
tridiagonal matrix, 3-69

inverting the matrix, 3-121
packed storage, 3-122

solving systems of linear equations, 3-35, 6-27, 6-31, 

6-34, 6-36
band storage, 3-39
packed storage, 3-37

symmetrically structured systems, A-9

system of linear equations
with a triangular matrix, 2-73

band storage, 2-65
packed storage, 2-69

systems of linear equations. See linear equations

T
transposition parameter, B-6

triangular factorization
band matrix, 3-9, 6-8, 6-10, 7-184
general matrix, 3-7, 6-6
Hermitian matrix, 3-22

packed storage, 3-27
Hermitian positive-definite matrix, 3-12, 6-13

band storage, 3-16, 6-14
packed storage, 3-14
tridiagonal matrix, 3-18, 6-17, 6-19, 7-188

symmetric matrix, 3-19
packed storage, 3-24

symmetric positive-definite matrix, 3-12, 6-13
band storage, 3-16, 6-14
packed storage, 3-14
tridiagonal matrix, 3-18, 6-17, 6-19, 7-188

tridiagonal matrix, 3-11, 7-185

triangular matrix, 4-162, 4-210, 6-178
estimating the condition number, 3-78

band storage, 3-82
packed storage, 3-80

inverting the matrix, 3-131
packed storage, 3-132

matrix-vector product, 2-71
band storage, 2-62
packed storage, 2-67

scalar-matrix-matrix product, 2-96
solving systems of linear equations, 2-73, 3-51, 6-39

band storage, 2-65, 3-55
packed storage, 2-69, 3-53

tridiagonal matrix, 4-95
estimating the condition number, 3-61
solving systems of linear equations, 3-33, 3-41, 5-42, 
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7-187

two-dimensional FFTs, 12-15
complex-to-complex, 12-16
complex-to-real, 12-25
computing a forward FFT, real input data, 12-20, 

12-22
computing a forward or inverse FFT, 12-17, 12-18
computing an inverse FFT, complex input data, 12-26, 

12-27
data storage types, 12-15
data structure requirements, 12-15
equations, 12-16
groups, 12-15
real-to-complex, 12-19

U
Uniform (continuous), 10-23

Uniform (discrete), 10-50

UniformBits, 10-52

unitary matrix, 4-68, 4-95, 4-162, 4-210, 6-178, 6-191

updating
rank-1

general matrix, 2-30
Hermitian matrix, 2-39

packed storage, 2-45
symmetric matrix, 2-58

packed storage, 2-53
rank-1, conjugated

general matrix, 2-32
rank-1, unconjugated

general matrix, 2-33
rank-2

Hermitian matrix, 2-41

packed storage, 2-46
symmetric matrix, 2-60

packed storage, 2-54
rank-2k

Hermitian matrix, 2-84
symmetric matrix, 2-93

rank-n
Hermitian matrix, 2-82
symmetric matrix, 2-90

upper Hessenberg matrix, 4-162, 4-210, 6-178

V
vector arguments, B-1

array dimension, B-1
default, B-2
examples, B-2
increment, B-1
length, B-1
matrix one-dimensional substructures, B-2
sparse vector, 2-102

vector indexing, 9-6

vector mathematical functions, 9-7
complementary error function value, 9-42
cosine, 9-23
cube root, 9-14
denary logarithm, 9-22
division, 9-10
error function value, 9-40
exponential, 9-19
four-quadrant arctangent, 9-31
hyperbolic cosine, 9-33
hyperbolic sine, 9-34
hyperbolic tangent, 9-36
inverse cosine, 9-28
inverse cube root, 9-15
inverse hyperbolic cosine, 9-37
inverse hyperbolic sine, 9-38
inverse hyperbolic tangent, 9-39
inverse sine, 9-29
inverse square root, 9-12
inverse tangent, 9-30
inversion, 9-9
natural logarithm, 9-21
power, 9-16
power (constant), 9-18
sine, 9-24
sine and cosine, 9-25
square root, 9-11
tangent, 9-27

vector pack function, 9-44

vector statistics functions
Bernoulli, 10-54
Binomial, 10-57
Cauchy, 10-40
CopyStream, 10-12
CopyStreamState, 10-13
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DeleteStream, 10-11
Exponential, 10-32
Gaussian, 10-25
GaussianMV, 10-28
Geometric, 10-55
GetBrngProperties, 10-70
GetNumRegBrng, 10-21
GetStreamStateBrng, 10-20
Gumbel, 10-48
Hypergeometric, 10-59
Laplace, 10-35
LeapfrogStream, 10-14
Lognormal, 10-45
NegBinomial, 10-64
NewStream, 10-8
NewStreamEx, 10-9
Poisson, 10-61
PoissonV, 10-63
Rayleigh, 10-42
RegisterBrng, 10-69
SkipAheadStream, 10-17
Uniform (continuous), 10-23
Uniform (discrete), 10-50
UniformBits, 10-52
Weibull, 10-37

vector unpack function, 9-46

vectors
adding magnitudes of vector elements, 2-5
copying, 2-7
dot product

complex vectors, 2-11
complex vectors, conjugated, 2-10
real vectors, 2-8

element with the largest absolute value, 2-21
element with the smallest absolute value, 2-22
Euclidean norm, 2-12
Givens rotation, 2-15
linear combination of vectors, 2-6
modified Givens transformation parameters, 2-18
rotation of points, 2-13
rotation of points in the modified plane, 2-16
sparse vectors, 2-103
sum of vectors, 2-6
swapping, 2-20
vector-scalar product, 2-19

vector-scalar product, 2-19
sparse vectors, 2-104

VML, 9-1

VML functions
mathematical functions

Acos, 9-28
Acosh, 9-37
Asin, 9-29
Asinh, 9-38
Atan, 9-30
Atan2, 9-31
Atanh, 9-39
Cbrt, 9-14
Cos, 9-23
Cosh, 9-33
Div, 9-10
Erf, 9-40
Erfc, 9-42
Exp, 9-19
Inv, 9-9
InvCbrt, 9-15
InvSqrt, 9-12
Ln, 9-21
Log10, 9-22
Pow, 9-16
Powx, 9-18
Sin, 9-24
SinCos, 9-25
Sinh, 9-34
Sqrt, 9-11
Tan, 9-27
Tanh, 9-36

pack/unpack functions
Pack, 9-44
Unpack, 9-46

service functions
ClearErrorCallBack, 9-59
ClearErrStatus, 9-55
GetErrorCallBack, 9-58
GetErrStatus, 9-54
GetMode, 9-51
SetErrorCallBack, 9-55
SetErrStatus, 9-53
SetMode, 9-49

VSL functions
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advanced service subroutines
GetBrngProperties, 10-70
RegisterBrng, 10-69

generator subroutines
, 10-64
Bernoulli, 10-54
Binomial, 10-57
Cauchy, 10-40
Exponential, 10-32
Gaussian, 10-25
GaussianMV, 10-28
Geometric, 10-55
Gumbel, 10-48
Hypergeometric, 10-59
Laplace, 10-35
Lognormal, 10-45
Poisson, 10-61
PoissonV, 10-63
Rayleigh, 10-42
Uniform (continuous), 10-23
Uniform (discrete), 10-50
UniformBits, 10-52
Weibull, 10-37

sevice subroutines
CopyStream, 10-12
CopyStreamState, 10-13
DeleteStream, 10-11
GetNumRegBrng, 10-21
GetStreamStateBrng, 10-20
LeapfrogStream, 10-14
NewStream, 10-8
NewStreamEx, 10-9
SkipAheadStream, 10-17

W
Weibull, 10-37

X
XERBLA, error reporting routine, 2-1
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