| ntel® Fortran
Programmer’s
Reference

Copyright © 1996-2003 Intel Corporation
All Rights Reserved

Issued in U.S.A.

Version Number: FWL-700-07

World Wide Web: http://developer.intel.com

http://developer.intel.com

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel
or otherwise, to any intellectual property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSO-
EVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PAR-
TICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining
applications.

This Intel® Fortran Programmer s Reference as well as the software described in it is furnished under license and may
only be used or copied in accordance with the terms of the license. The information in this manual is furnished for infor-
mational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corpora-
tion. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibil-
ities arising from future changes to them.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, 1386, 1486, iCOMP, Intel, Intel logo, Intel386, Intel486,
Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon,
Intel XScale, Itanium, MMX, MMX logo, Penium, Pentium II Xeon, Pentium III Xeon, and VTune are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996 - 2003.

Contents

About This Manual

Related Publications.......ccooveeion oo
Notational ConVeNntioNnS.........oouuiie i,

Chapter 1 Introduction to Intel® Fortran Compiler

New Featuresin Fortran 95.............oooiiiiiiiii i
Source Formatoooiiiiiiiiii e
Data TYPES ..o
OPEratorsceieeeeeeeeeee s
Control CoNStrUCESeuieiiiiie e

MOAUIES ... e
Non-advancing /Oueeiiiiiiiie e
Namelist /O ...

Chapter 2 Language Elements

Character Setooieiieeeee e

Program Structure ...
Statement Labels ..o,

Intel Fortran Programmer’s Reference

ConStruUCt NAMES ... 2-4
StateMENtSove i 2-4
Statement Order..........cooovviiieieee e 2-6
Source Program FOrmMScoooviiiiiiiiii e, 2-8
Fixed Source FOrmccooovviiiiiiiiieeeee e 2-8
INItIAl LiNG oeeeeeeeee e 2-9
Continuation LiNecoovviviiiiie e 2-9
CommeENt LINEuniiiiee e 2-10
Tab-format Linesccooovveiiiiiiiiieeeee e 2-10

Free Source FOrmooooiiiiiiiiee e 2-10
SoUrce LIiNeS ... 2-10
Statement Labels............ooooeiiiiiiiii 2-11
SPACES ..ottt 2-11
Examples Using Spacesccocoeeiieiiciiiiciiiiiiiines 2-11
COMMENTES ... 2-12
Statement Continuation............ccccooooiiiiiiiiien 2-12
Example of Statement Continuation........................... 2-13
Intersection Source FOrm.........ccooooiiiiiiiiiiiciiiiieeeiie, 2-13
INCLUDE LIN€ ..covvniieiiee e 2-14
Example of INCLUDE Lines.........coooiiiiiiiiiiiiins 2-15

Chapter 3 Data Types and Data Objects

B =T 1411 o] (oo Y 3-1
Intrinsic Data TYPEScooviiiieeee e 3-2
Derived TYPES...coiiiiiiiieeeeee e 3-4
Type Declarationsccccccuuiiiiiiiiiiiiiiiie e 3-5
Examples of Type Declarationsccccceeeveeiiiiiiiiiiinnnnnnn. 3-7
Alternative Form of Intrinsic Type Spec Declaration.......... 3-8
Alternative Form of Initialization Within Declaration..... 3-9
Increasing Default Sizes ... 3-9
Intrinsic Inquiry FUNCHIONS ... 3-9
AHIDULES ..o 3-10

vi

Contents

Representation of Literal Constants...............ccccocoeeeiiiiennn. 3-11
Integer Constantsocueeiiiiiii i 3-1
BOZ Constantscooovvviiiiiiiiiii 3-12

Real Constants.............ueueiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 3-13
Complex Constantsccoovveiiiieii e 3-14
Character Constants..........ccccvvevvevviiiiiiiiiiieieeeeeeeeeeeeee e 3-14
Logical Constantscooooiiiiiieiiiiiiiee e 3-16
Typeless Constants ... 3-16
Extended Use of BOZ Constants..............ccccoeeeee. 3-17
Hollerith Constantscccccviii 3-18
Character SUbStNgSccoovvviiiiiiii e, 3-19
Derived-type Definition ... 3-20
Structure ConstruCtoruvvevviiviiiiiiieiieeeeeeee e 3-22
Implicit and Explicit Typingcocvuieieiiiiiie e 3-22
IMPLICIT Statement ..., 3-23

Data Initialization..............cccccuiiiiiiiiiiieeeeeeeeeeeeeee e 3-24
Storage Association and Alignmentccccooooiiiiiriiiiinnnn. 3-25
Storage Association Alignment Ruleccoee 3-25
Dynamic Data ODbjects..........coooiiiiiiiiiiiiiiie e 3-26
Allocatable Arrays........ccccooii 3-27
o111 (=T < P 3-27
CRAY*-Style Pointers..........cccoovviiieeiiiieeee, 3-27
Automatic Objectscoviieiiii 3-28
Records and Structures..............evvevvevvieiieiieiieeieeeeeeeeeeeeeeeee 3-28

Chapter 4 Arrays

NEW FEatUrest 4-1
Array Propertiesouiieiiiiiii e 4-3
Array Declarationcccooviiiiiiiieiicie e 4-4
SYNTAX. . 4-5
Examples of Array Specifierscccvvvvevveereiieeieeiieeieeeeeen, 4-5
Array Element Storage Order..........ccccvvveeiiiiiiiiiiieeen s 4-6

vil

Intel Fortran Programmer’s Reference

Array Categories.ocuuviiiieeeee e 4-7
Explicit-shape Arraysceooieiiiiiiiiiei e 4-7
Assumed-shape Arrays.......ccccceeeeeeeeeeiieeiiiiiie e, 4-9
Deferred-shape Arrays.......cccoooeeveiiiiiiiiiciie e 4-12

Pointer Arrayscoooooiiieiieieccece e 4-12
Allocatable Arrayseeeueeieeieiieiieiieeeieeeeeeeeeeeeeeee e 4-13
ASSUMEA-SIZE AITAYSuueieiiiiiiiiieiie et 4-15

Whole Arrays and Array Subobjects...........ccccceevieiiiiiinnnnen. 4-16
Array Elements ..., 4-17
WHhOIE AITAYS ...ovvviiieii e 4-19
Array SECHONS....coii i 4-20

Section Subscript List.......ccoovvviiviiiiiiii 4-20
Array of Derived-type Components.............ccccceeeuneeee. 4-25
Array of Character Substrings..........ccoooviiiiiiiiiinne. 4-27

Array ConstruCtors.........o.ouviiiiiii i 4-27

SYNIAX i 4-28
ZEr0-SiZEA AITAYS ...oiii et 4-30

Array EXPresSSiONS.oooo i 4-31

Array FUNCLIONS.......oooiiii 4-34
Intrinsic FUNCLIONScoooiiii 4-34
User-defined Functions................ccccc, 4-35

Array Inquiry FUNCLIONS..........cceeeiiiiiic e, 4-36

Chapter 5 Expressions and Assignment

EXPreSSIONS ...iiieei e 5-1
Formation of EXpressionscccccoeeeeeieii e 5-3
Primary ..o 5-3
OPEratorsuvuiiee e 5-4
Precedence of Operatorscccceeevevevviciiii e, 5-5
Special Forms of Expression..........ccccceveeveeeeiieen. 5-7
Constant EXpression ... 5-7
Initialization EXPression...........cccvvi i 5-8

viii

Contents

Specification EXpression...........ccccvevvevveeveeieeeeeeneeeeenn.. 5-10
Interpretation of Expressions...........cccccccoi. 5-12
Intrinsic Operatorsvviieiiiiiiiierc e 5-12
Array Operandscooiiiiiiiiieiiee e, 5-14
EXaMPI€. .o 5-14
Evaluation of EXpressionscccccvvevvieeiieeeeeeeeeeneenn. 5-15
Logical Operators and Integer Operands 5-15
Arithmetic Operators and Logical Operands.............. 5-15
ASSIGNMENT ... 5-17
Assignment Statement..............ccciiiii 5-17
Intrinsic Assignment............ccccceiiiiiiiir e 5-18
Examples of Intrinsic Assignment...........ccccccovriinee. 5-19
Pointer ASSignmentceueeiiiiiiiiiiiiiieiieceeeeeeeeeeeeee e 5-20
Examples of Pointer Assignment............cccccciviiinen. 5-21
Masked Array Assignmentccccoeeeiiiiiiiiiiiciciee e, 5-21
Examples of Mask Array Assignment........................ 5-23

Chapter 6 Execution Control

Control Constructs and Statement Blocks...............cooeveeeen.... 6-1
CASE CONStrUCEoeeeieeeeeeeeee e, 6-3
DO CoNnStruCt.......ccoevveieiie e, 6-5
Counter-controlled DOLOOPcceeeeieiiiiiiiiiiiciee e, 6-5
Conditional DOLOOP ...cooveeeeieeeeeicii e 6-7
Infinite DO LOOP ..ciiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeee e, 6-8
FORALL Construct and Statement.............ccccvuvneeeeeo. 6-9

IF CoNSIrUCt.......ueiieieee e 6-14
Flow Control Statementscoooueeiiiiiiiiiiieeeeeeeee 6-15
CONTINUE Statement............coeeviiiiiiiiiiieeeeeeeee 6-16
CYCLE Statementcooviiiiiiiiiiieecee e 6-16
EXIT Statementcooovveeeiiieee e, 6-17
Assigned GO TO Statement..........ccccceeeiiiiiiiieeeeee 6-18
Computed GO TO Statementccccvvvvviiiiiiiiiiiiiiiieeee. 6-19

ix

Intel Fortran Programmer’s Reference

Unconditional GO TO Statement............ccccoeeeeeveiiviiinnnnnn. 6-20
Arithmetic IF Statement...........ccooooeiiiiii e 6-21
Logical IF Statementcccoooiiiiiiiiiii . 6-21
PAUSE Statement..........ccooouviiiiiiei e 6-22
STOP Statement ..., 6-23

Chapter 7 Program Units and Procedures

OVEIVIEBWottt e e e e e 7-1
Program UNitscooiiiiiii e 7-1
Program Unit Concepts.....cccceeveiiiiiiiiiiiii e, 7-2
ProCedUIES.......covueeeeeee e 7-2
Scope and ASSOCIationcevveviiiiiiiiiiiiiiiiieee e, 7-3
SCOPE i, 7-3
ASSOCIAtIONcee 7-3
ProCeAUIESooveieeeee e 7-5
Procedure Categori€sccccceviieeiiiiiiiiiiicie e, 7-6
Intrinsic Proceduresc.ocoveeiiiiiiiiiiiice e, 7-6
External Procedures...........ccoovveeeiiieiiieiieeeeeeeeeeeeee 7-7
Module Procedurescceeeiiiiiiiiiiiiiiieeeeeeeeee 7-7
Internal Procedures.........ccooovuieiiiiiiiiiiiic e 7-7
Referencing Proceduresccoovvvviiiiiieieciie e, 7-7
Subroutine Subprogramcccccvveiiiiiii e, 7-7
Function Subprogram..........cccccevvvvieiiiciii e, 7-8

[0} (=Y 7= (1= T 7-8
Generic Referencingceeviieiiiiiiiiiiieee e 7-9
Built-in FUNCLIONS ... 7-9
EXample ... 7-10
Procedure Definitioncoooeiiiiiiiiiiiiee e 7-10
Functions and Subroutinescc.ccooooiiiiiiiiiiienennnn. 7-11
Statements Introducing Proceduresccccuueeeeen. 7-11
Internal Procedures..........cooeuvvieeieiieeeeiee e, 7-13
RECURSIVE Procedures..........ccooovvviiieeiiieeeeeeiinnnn, 7-14

Contents

Chapter 8

PURE ProCedurescccooviiieeiiiiiiiieie e 7-14
ELEMENTAL Procedurescoouuuiieiiiiieeieeeeiiin. 7-16
Statement Functions ... 7-17
Returning to the Calling Unitccooooiiiiiiii 7-18
Subprogram Argumentscccceeieieeeeiriiei e 7-18
Argument Correspondence..........cccuueveeeeeeeiiiviieeneeenn. 7-19
Argument Association............oooviiiiiiiiiiie 7-19
Duplicated Associationoviiiiiiiiiiie. 7-23
INTENT Attribute ..., 7-24
INterfaces. ... 7-24
INTERFACE BIOCK....ccoiiiiiiiiiiiei 7-26
INTERFACE TO BloCK.....cccviiieiiieiiiiee, 7-28
Generic Names and Proceduresccccceevvvevvennen.. 7-29
Defined Operatorsccccvvvviviiiiiiiie, 7-30
Defined Assignment............ccooooiriiiiiiiciie e, 7-31
MOAUIES ... 7-33
Use Statementooeviiiiiiiiieeeeeeeeee e 7-36
Main Programi...............eeeeeeeieeeeiieiieeieeeieeieeee e e e e ee e 7-42
BIOCK Data......coeeeiiieii e 7-43

1/0 and File Handling

R L=ToTo] o R 8-1
Formatted ReCOrds.........ccooovvivuiiiiiiieiieiee e 8-1
Unformatted Recordscoooovvviiiiiiiieeeiee e, 8-2
End-of-file RECOIdcoovvniiiiiiee e, 8-2

FIlES e 8-2
External FileS........oouuiiiiiiieieeeee e 8-2

ScratCh FileS ..o, 8-2
INternal Filescooiiiieeeee e 8-3

Connectinga Filetoa Unit.........cccoieieiiiiii, 8-4
Connecting to an External File ..o, 8-4
Preconnected Unit Numbersccooiiiiiiiiiiiii, 8-5

X1

Intel Fortran Programmer’s Reference

Automatically Opened Unit Numbers............cccccoeeviiiinnee. 8-6
WiINAOWS™ ... 8-6
LU e e 8-7

File Access Methods..........ooooo 8-8

Sequential ACCESSuuvuviiiii e 8-8
Formatted /O ..o 8-8
List-directed 1/O.......coooeiiiii i 8-9

Namelist-directed /O ... 8-13
Unformatted 1/O........ooooiiii e 8-16

DireCt ACCESS ...ooeeieeeeeeeeeeeeeeee 8-16

Nonadvancing /O ... 8-17
I/O Statementscoooiiiiiiicc 8-17
Syntax of 1/0 Statementsccoooviiiiieiiiiiiie 8-20

1/O SPECIfIEIS ... 8-21

/O Data List ..o 8-27
Simple Data Elements...........ccccoviiiiiie, 8-28
IMPlied-DO LOOP ..vvuvieieieiee e 8-29

ASA Carriage Controlccoooiiiiiiiiiiiie e 8-31
Example Programs ... 8-32

Internal-file Examplecoooooiiiiiii e 8-33

Nonadvancing-1/O Example.............ccccc . 8-34

Sequential- and Direct-access Example........cc.cccccc...... 8-36

Chapter 9 1/0 Formatting

FORMAT Statement..........oooooviiiiiii 9-2
Format Specificationcccevveiiiiii e, 9-3
Variable Expressions in Formatscccccoooiviiiiiiiiiiiinn e, 9-3
Edit DeSCriptorscovviiiiiiiee e 9-4
Character String (’..." or "...") Edit Descriptor.................... 9-7
Newline ($) Edit Descriptor.........cccouvveeieiiiiiiiie 9-8
Slash (/) Edit Descriptor..........ouuiieiiiiiiiiiee e, 9-9
Colon (:) Edit Descriptorcooovvviiiiiii e 9-9

xii

Contents

A and R (character) Edit Descriptors................c..ceeee. 9-10
B (binary) Edit Descriptorccccoviiiiiiiieiiiiiieeeee e 9-12
ONINPUL....e e 9-13
ONOUPUL ..., 9-13
BN and BZ (blank) Edit Descriptorsccccvvvvviiienennnn. 9-14
D, E, EN, ES, F, G, and Q (real) Edit Descriptors........... 9-15
Real Edit Descriptors on Input.......ccccoooevviiiiiiiicninnn. 9-16
Real Edit Descriptors on Output...............coeeeeeeeeen. 9-17

D and E edit descriptorscoovvviiiiieiiien e, 9-17
EN and ES edit descriptorceeieiiiiiiiiiiiiee. 9-18

F Edit Descriptor..........veeeiiiieeeeeeee e, 9-19

G Edit DeSCrPLOrvvvviiiiiiieiieeiieeieeieeeeee e 9-19

Q Edit DeSCHPLOrvvvviiiiiiieiieeeieeieeeeeeee e 9-21

H (Hollerith) Edit Descriptor..........cccooviiiiiieeiiiiiieeen 9-21
| (integer) Edit Descriptorooooviiiiiiiiiee e, 9-22
L (logical) Edit Descriptorccouviiiiiiiiiiiiiceee e, 9-24
O (octal) Edit DescCriptorcuuiceiiei e, 9-25
P (scale factor) Edit Descriptor...........cuuvviiiieiiieeieeneeenennn. 9-27
Q (bytes remaining) Edit Descriptorccccccceeeennnnen. 9-28
S, SP, and SS (plus sign) Edit Descriptors...........c.......... 9-29
T, TL, TR, and X (tab) Edit Descriptors.............cccovvvunnne. 9-29
Z (hexadecimal) Edit Descriptor.......cccoooeeiiiiiiiiiiicenen.n. 9-30
Embedded Format Specification.........cccccccceeiiiiiiiveiicnnnnn, 9-32
Nested Format Specificationscccccvvevieiieeieiiiiiiieeneeneen.. 9-33

Interaction Between Format Specification and 1/O Data List 9-34

Chapter 10 Intel Fortran Statements

ARIDULES ... 10-2
Statement and Attributes............coiiiiiiii 10-3
AC CEPT e 10-4
ALLOCATABLE (Statement and Attribute) 10-5
ALLOCATE ... 10-7

xiii

Intel Fortran Programmer’s Reference

Xiv

ASSIGN ... 10-10
AUTOMATIC .ot 10-11
BACKSPACE ..ot 10-12
BLOCK DATA ..ottt e e 10-14
BY TE . e 10-15
CALL e 10-18
CASE ..o 10-20
CHARACTER ...ttt 10-23
CLOSE ..o 10-27
COMMON ..o 10-29
COMPLEX ..ot 10-33
CONTAINS .o 10-37
CONTINUE ..ooeeiieeeeeeeeee e 10-39
CYCLE. oot 10-40
DA T A s 10-41
DEALLOCATE ..ottt 10-45
DECODE.... .. e 10-47
DIMENSION (Statement and Attribute)cccccceeee. 10-49
DO s 10-53
DOUBLE COMPLEX........uoiiiiiieeeieieiee e 10-56
DOUBLE PRECISION ..ot 10-59
EUE C T oo 10-62
ELSE o o 10-62
ELSE IF . e 10-63
ELSEWHEREoovoiiieiieee e 10-64
ENCODE......cc et 10-65
END oo 10-67
END (Construct).......cooovmiiiiiiii e, 10-69
END (Structure Definition).........cccevvvvviciciiiiieeeen, 10-70
END INTERFACE ... 10-70
END TYPE ... 10-71
ENDFILEo 10-72

Contents

ENTRY Lo 10-74
EQUIVALENCE ... 10-78
EXIT e 10-83
EXTERNAL (Statement and Attribute)...........cccccooooo. 10-84
FORMAT e 10-86
FUNCTION ..ot 10-88
GO TO (ASSIGNEA)evvieiieeeeieiiiiee e 10-90
GO TO (Computed)ceeeeeeriiiiiiiieee e 10-91
GO TO (Unconditional)..........c.ceeeeieeeiiiiiiiiieie e, 10-92
IF (@rithmetic)cooooiiiice e, 10-93
[F (BIOCK) ..t 10-94
[F (LOGICAI) o 10-95
IMPLICIT oot 10-96
IMPLICIT AUTOMATIC ... 10-98
IMPLICT STATIC ...t 10-98
INCLUDE..... ..ottt 10-99
INQUIRE ... 10-100
INTEGER ... 10-111
INTENT (Statement and Attribute)..........cccccoeviininen. 10-114
INTERFACEoooiiiiie s 110-17
INTERFACE TO ... 10-119
INTRINSIC (Statement and Attribute).......................... 10-120
LOGICAL .ot 10-122
MAP Lt 10-125
MODULE ...t 10-125
MODULE PROCEDURE ..o 10-127
NAMELIST oo 10-129
NULLIFY L 10-131
OPEN .o 10-133
OPTIONAL (Statement and Attribute)ccc.oceee. 10-143
OPTIONS .ot 10-146
PARAMETER (Statment and Attribiute)....................... 10-147

XV

Intel Fortran Programmer’s Reference

PAUSE ... 10-150
POINTER (CRAY*-Styl€) ..ot 10-152
POINTER (Statement and Attribiute)cccoeeees 10-155
PRINT oo 10-158
PRIVATE (Statement and Attribiute)c....cooooeeeees 10-160
PROGRAM ...ttt 10-163
PUBLIC (Statement and Attribiute)cccccveeeeens 10-164
READ ...t 10-167
REAL ...t 10-173
RECORD ...ttt 10-176
RETURN ...t 10-180
REWIND ... 10-182
SAVE (Statement and Attribiute)..........cccccevviiiiiiennn. 10-183
SELECT CASE ..o, 10-186
SEQUENCE ... 10-187
STATIC (Statement and Attribiute)cceevevnnnnnnnn. 10-188
STOP s 10-190
STRUCTURE ...ttt 10-191
SUBROUTINE ...ooiiiiiiiiiiiie e, 10-201
TARGET (Statement and Attribiute)............cccccoevnne. 10-203
TYPE (Declaration)cccooviviiiiiiiiiieeeecceee e, 10-206
TYPE (Definition)cooviiiiiiiieiieeeeeeeeeee e 10-209
TYPE (I/O) e 10-210
UNION L 10-211
USKE ..o 10-212
VIRTUAL ...ttt 10-214
VOLATILE ...t 10-215
WHERE (Statement and Attribiute)..........c.ccccccceeeee 10-216
WRITE ... 10-221

Appendix A Intel Fortran Extensions
Language Elements ... A-1

Xvi

Contents

Data Types and ODbJECtSc.eeveeiieiiiiiiieeeee e A-2
Array CONCEPLS ...oeiiiiiiiiiiiie it A-3
EXPreSSIiONS ...cooiiiiiiiiiiie e e A-3
Execution Controlcooeiiiiiiiiiee e, A-3
Scope, Program Units, and Procedurescccccuevvuiieeennnn. A-3
I/0 and File Handlingccccuviiiiiiiiiiee e A-4
1/O FOrmattingeeeeiiiiiiieie e A-4
StatemMeNntscoooveiee e A-4
INtrinsSic Proceduresccoooiviuiiiiiiiicee e A-5
MiISCEIlaNEOUSoveiiieie e A-5
Extended Directivescoooovviiiiiiiii e, A-5
Directives’ SYNtaxcccooiiiiiiiiiiiiieiiee e A-6
ATTRIBUTES Dir€Ctiveuoiiieiieeeeee e, A-6
Attributes and Associated Objectscocccvviieeeiinnnns A-8
ALIAS e A-9
ALIGN e A-9
ALLOCATABLE ..o A-10
CATTRIBUTE ..o A-10
DLLEXPORT and DLLIMPORTcooviiiiiiiieeeeeine A-11
EXTERN oo A-12
INLINE, NOINLINE, and FORCEINLINE A-12
REFERENCE ..ot A-13
STDCALL . A-13
VALUE e A-16
VARYING ..o A-16
DISTRIBUTE POINT Directiveccccocevvviieeeeiiiiieeeeeennn. A-17

IF and IF DEFINED Directivescccccoeevvivieiiiiiiiieeeeennn. A-18
IVDEP DireCtiveoouiiieieeeeeee e, A-20
LOOP COUNT DireCtivecocevvueeeeeeieeieeeeecieeee e A-21
PARALLEL and NOPARALLEL Directives A-22
PREFETCH and NOPREFETCH Directives A-23
SWP and NOSWP Directivescccooevvevieeeiiiiiieeeeeennen. A-23

Xvil

Intel Fortran Programmer’s Reference

Xviil

Glossary

Index

Tables

UNROLL and NOUNROLL Directivesccccceeeeeeeennn. A-24
VECTOR ALWAYS and NOVECTOR Directives A-25
VECTOR ALIGNED and UNALIGNED Directives A-26
2-1 Fortran 95 Character Set...............ccccee . 2-2
2-2 Intel Fortran Statement Categoriesccccoevennen. 2-4
2-3 Statement Ordering Requirements.............cccccceeee 2-7
2-4 Statements Allowed in Scoping Units (Y=yes)......... 2-7
3-1 Types and KIND Parameterscccccvvieiiiiineneinnnn, 3-2
3-2 Escape Characters.......cccccocvvviiiiiiiciii 3-15
3-3 Example of Structure Storagecccceeeevivevirininnnnn, 3-26
5-1 Intrinsic Operators ... 5-5
5-2 Operator Precedenceuuevvveevieeeiieeiieeiieiiieieeeeee, 5-6
5-3 Logical operators........cccooeeeevivieiiiiiiii e, 5-14
5-4 Conversion of variable=expressionccccccc.e...... 5-18
7-1 Categories of intrinsic functionsccccceeeeen 7-6
7-2 Allowable Block Data Attributeso. 7-44
8-1 Input Values for List-directed I/O...............cceeeiiinn. 8-9
8-2 Format of list-directed Input Data..............cccvvvneennn.n. 8-9
8-3 Format of List-directed Output Data........................ 8-11
8-4 Data Transfer Statements ..., 8-17
8-5 File Positioning Statements........ccccccccoeeiiiiiiirininnnnnn. 8-18
8-6 Auxiliary Statements..........cccccceiiiiiiiii 8-18
8-7 I/O Statements and Specifiers (Y=Yes).................. 8-19
8-8 I/O Specifiers Values........ccccccvvvvveveiiiiiiie, 8-22
8-9 ASA Carriage-control Characters............................ 8-29
9-1 Edit Descriptorsoovviiiiiiee 9-4
9-2 Character String Edit Descriptor:
Output EXamples.....ccooeeeiiiiiiiiiiiin e 9-8
9-3 Contents of Character Data Fields
ON INPUL ..o 9-11

Contents

9-5

9-7
9-8

9-10

9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25

10-1

Contents of Character Data Fields

ON OULPUL ... e 9-11
A and R Edit Descriptors: Input Examples.............. 9-12
A and R Edit Descriptors: Output Examples........... 9-12
B Edit Descriptor: Input Examplescccccceeeeeeen. 9-13
B Edit Descriptor: Output Examplesc......... 9-14
BN and BZ Edit Descriptors: Input Examples.......... 9-15
D, E, F, and G Edit Descriptors:

INPUt EXaMPIES ..coeeeiiiiie e 9-17
D and E Edit Descriptors: Output Examples........... 9-18
EN and ES Edit Descriptors: Output Examples 9-18
F Edit Descriptor: Output Examples.........ccccc.ee...... 9-19
G Edit Descriptor: Output Examples............c.ccc.... 9-20
H Edit Descriptor: Output Examples 9-22
| Edit Descriptor: Input Examples..........cccccvuennnnn..n. 9-23
| Edit Descriptor: Output Examples.......cccccccevveeee.. 9-23
L Edit Descriptor: Input Examples.........cccccccceeennnn.. 9-24
L Edit Descriptor: Output Examples........................ 9-25
O Edit Descriptor: Input Examples.......................... 9-26
O Edit Descriptor: Output Examples...........cccceeeee. 9-26
P Edit Descriptor: Input and Output Examples 9-28
Z Edit Descriptor: Input Examplesccceeee. 9-31
Z Edit Descriptor: Output Examples.............c.......... 9-32
Format Control and Nested Format
Specifications........coovveiiiiii 9-35
Attribute Compatibility (Y=YES) ... 10-2

Xix

Intel Fortran Programmer’s Reference

XX

About This Manual

Thismanual describes the Intel® Fortran Language for programmer’s
reference. It also provides description of al the library functions and
intrinsic procedures.

Thismanual is organized as follows:

Chapter 1 “Introduction to Intel Fortran.” Summarizes features of
Intel Fortran that distinguish it from the Standard
Fortran 95.

Chapter 2 “Language Elements.” Describes the basic language

elements of Intel Fortran, including character set,
names, statement types and order, source program
format, and the | NCLUDE line.

Chapter 3 “Data Types and Data Objects.” Describesintrinsic and
derived types, the type declaration statement, attributes,
constants, implicit typing, storage association,
alignment, and dynamic data objects.

Chapter 4 “Arrays.” Describes arrays and array-handling features
of Intel Fortran.

Chapter 5 “Expressions and Assignments.” Describes expressions,
operators, assignment, and the WHERE construct.

Chapter 6 “Execution Control.” Describes the constructs and
statements that control program execution.

Chapter 7 “Program Units and Procedures.” Describes program
units and procedures, argument correspondence and
association, interfaces, and modules.

XXVii

Intel Fortran Programmer s Reference

Xviil

Chapter 8 “I/O and File Handling.” Describes the types of records

and files, file connection and access, the I/O data list, the
implied-DOloop, and ASA carriage control. At the end
of this chapter are example programs that illustrate
various feature of Intel Fortran I/O, including
nonadvancing I/O.

Chapter 9 “I/O Formatting.” Describes the syntax and use of
format specifications and edit descriptors, as used with
formatted 1/0.

Chapter 10 “Intel Fortran Statements.” Describes the syntax and

function of all Intel Fortran statements and attributes.
The statements and attributes are described in
alphabetical order.

Appendix A “Intel Fortran Extensions.” Briefly summarizes all Intel

Fortran extensions to the Fortran standard.

Glossary Defines terms used in this manual.

Related Publications

The following documents provide additional information relevant to the
Intel Fortran Compiler:

Fortran 95 Handbook, Jeanne C. Adams, Walter S. Brainerd, Jeanne T.
Martin, Brian T. Smith, and Jerrold L. Wagener. The MIT Press, 1997.
Provides a comprehensive guide to the standard version of the Fortran
95 Language

Fortran 90/95 Explained, Michael Metcalf and John Reid. Oxford
University Press, 1996. Provides a concise description of the Fortran
95 language.

For Win32*-specific information, see the documentation included with
the Microsoft Win32 Software Development Kit.

For Microsoft* Fortran PowerStation 32 information, see the

documentation included with the Microsoft Fortran Powerstation 32
Development System for Windows NT, Version 1.0.

Information about the target architecture is available from Intel and from
most technical bookstores. Some helpful titles are:

Intel® Fortran Libraries Reference
Intel® C/C++ Compiler User's Guide

About This Manual

* [Intel® Architecture Optimization Reference Manual
® Intel Architecture Software Developers Manual:
— Volume 1: Basic Architecture
— Volume 2: Instruction Set Reference Manual
® Intel Processor ldentification with the CPUID Instruction

Most Intel documents are also available from the Intel Corporation web site
at www.intel.com

Notational Conventions

This manual uses the following conventions:

This typestyle indicates an element of syntax, a reserved word, a
keyword, a filename, computer output, or part of a
program example. The text appears in lowercase
unless uppercase is significant.

THI S TYPE STYLE Fortran source text appears in upper case.

| is lowercase letter L in examples. 1 is the
number 1 in examples. Ois the uppercase O in
examples. O is the number 0 in examples.

This type style indicates the exact characters you type as input.

This type style indicates a place holder for an identifier, an
expression, a string, a symbol, or a value.
Substitute one of these items for the place holder.

[itemns] items enclosed in brackets are options.

{item| iten} Select only one of the items listed between braces.
A vertical bar (|) separates the items.

Ellipses indicate that you can repeat the preceding
item.

This type style indicates an Intel Fortran Language extension
format.

Xix

Intel Fortran Programmer’s Reference

XXX

Thistype style

indicates an Intel Fortran Language extension
discussion. Throughout the manual, extensions to
the ANSI standard Fortran language appear inthis
color to help you easily identify when your code
uses a non-standard language extension.

Introduction to Intel®
Fortran Compiler

Thismanual is a complete reference description of the Intel® Fortran
compiler. Intel Fortran is fully compliant with ISO/IEC 1539:1995,
hereafter referred to as “the Fortran 95 Standard” or as “the Standard
Fortran” or as“Fortran 95.” Intel Fortran also includes a number of
extensions to the Standard, as well as command-line options that allow you
to override the default actions of the compiler. This manual describes the
standard features, the extensions and the command-line options.

In addition, this manual provides a distinction between the Microsoft* and
Linux* platforms. If thereisadifferencein functionality, characteristics and
syntax, such differences are indicated. Absence of the differences
description indicates that the feature is the same for both platforms.

The rest of this chapter briefly summarizes the standard features of

Fortran 95 that are not found in FORTRAN 77. It is chiefly of interest to
the developer who isfamiliar with FORTRAN 77 but new to Fortran 95. If
you are aready familiar with Fortran 95, you may want to turn to
Appendix A, “Intel Fortran Extensions” which lists al of the Intel
extensions and refers to other parts of this manual, where the extensions are
more fully described. For afull description of the command-line options,
see the Intel® Fortran Compiler User’s Guide.

1-1

1 Intel Fortran Programmer’s Reference

1-2

New Features in Fortran 95

Some extensions to FORTRAN 77 are included in Fortran 95 and other
completely new features have been added. The following list summarizes
features of Fortran 95 that are not in standard FORTRAN 77 and indicates
where they are described in the manual.

Source Format

Data Types

The fixed source form of FORTRAN 77 is extended by the addition of the
semicolon (;) statement separator, and the (!) trailing comment, and also a
free source form is provided.

The format used in a source program file is normally indicated by the file
suffix, but the default format can be overridden by the command-line
options/ FI and/ FR, Windows*, - FI and - FR, Linux, as described in
Intel® Fortran Compiler User’s Guide.

Intrinsic data types are now parameterized. Each data type can have one or
more kinds identified by a Kl ND type parameter. Thisis an integer value
that determines the range and/or precision of values that entities of that type
may hold.

Several KI ND types may be implemented for each intrinsic data type; aso,
intrinsic inquiry functions are provided to establish what is available
making “precision portability” possible.

In Intel Fortran, the KI ND type parameter value istypically the number of
bytes used to represent an entity of that type, except for COVPLEX entities,
where the number of bytes required is double the KI ND type value.

On Windows NT*, Intel Fortran provides an interface to the NT Unicode
support for Fortran programs. See the Intel Fortran User’s Guide for more
information.

Derived datatypes are available: they are defined by the user and can be
composed of components that are of the intrinsic types (I NTEGER, REAL,
COWVPLEX, LOG CAL, and CHARACTER) or of previously defined derived
datatypes. Scalar and array entities of derived data types may be declared.

Introduction to Intel Fortran 1

For more details on data types, see Chapter 3, “Data Types and Data
Objects.”

Operators

Intrinsic operators can be extended and new operations defined, for use with
operands of intrinsic or derived data types. The intrinsic assignment
operator can be extended similarly.

User-defined operations and defined assignment are implemented by means
of user-written procedures; see Chapter 7, “Program Units and Procedures.”
for details.

Control Constructs

The CASE construct enables one of a set of statement blocks to be executed

on the basis of a case selector value (that can be | NTEGER, CHARACTER

or LOQ CAL).

® Additional forms of the DO statement are provided, as well as the
CYCLE and EXI T statements, to branch to the end of a DOloop and out
of a DO loop respectively.

These facilities are described in Chapter 6, “Execution Control.”

Arrays

Fortran 95 greatly extends array facilities which include the following:

® Array sectionsthat permit selection of a subset of array elements have
been introduced. Operations for processing whol e arrays and array
sections are included, and expressions, functions, and assignments can
be array-valued. The WHERE construct and statement provide for
masked-array assignment.

® Array constructors are provided. An array constructor is an unnamed,
rank-one array value, the elements of which may be constant or
variable in value. The RESHAPE intrinsic function can be used to
produce an array value of higher rank from an array constructor.

® Several new sorts of array (extensionsin FORTRAN 77) are provided
in Fortran 95:

1 Intel Fortran Programmer’s Reference

1-4

— Assumed-shape (“assumed” meaning “taking on the
characteristics of”)
— Deferred-shape (an allocatable array or array pointer)
— Automatic, which is a new sort of explicit-shape array
®* Many intrinsic array functions are provided in Fortran 95, classed as
elemental, transformational, or inquiry.

Arrays are discussed in Chapter 4, “Arrays.”

Procedures

A large number of new intrinsic procedures and procedure-rel ated features
are provided in the language. Many of these features are “elementa.” Thus
they accept either scalar or array arguments. In the latter case, the result is
asif the procedure were applied separately to each element of the array.

Other additions are transformational functions, which operate on their
arguments in a nonelemental fashion. These functions return properties of
the arguments rather than values computed from them.

The following are some of these new procedures and feature-rel ated
procedures:

* interface block—Thisfeatureisthe basisof anumber of new facilities:

— Theinterface block enables explicit specification of procedure
interfaces, so that the names and properties of the dummy
arguments of such a procedure are known in the scoping unit
invoking the procedure. This makes it possible for the compiler to
ensure that the dummy and actual arguments match.

— Optional arguments and keyword-identified arguments are also
available when the procedure interface is explicit.

— In addition, the procedure interface block enables user-defined
generic procedures to be written, and is the mechanism used to
specify defined operators and defined assignment.

® intent Attribute—Dummy arguments to procedures can now be given
an | NTENT attribute (I N, OUT or | NOUT).

® |ocal scoping—Internal subprograms can be defined within amodule
subprogram, an external subprogram, or amain program unit. They are
local to the scoping unit in which they are declared.

Introduction to Intel Fortran 1

® recursive procedures—Recursive procedures that can invoke
themselves, directly or indirectly (an extension in FORTRAN 77), are
available as a standard feature in Fortran 95.

These facilities are discussed in Chapter 7, “Program Units and
Procedures.”

Pointers

Arrays and scalar variables can be given the POl NTER attribute in

Fortran 95. A pointer is an dlias, and the variable (or allocated space) for
which itisan aliasisitstarget. Pointer facilities enable data to be accessed
and handled dynamically. Allocatable arrays (noted in the array discussion
earlier) are similar to array pointers, but are slightly simpler, more limited,
and more efficient.

In Intel Fortran, the pointers are of two styles: Fortran 95 pointers and Cray*.
Cray pointers are non-standard and are discussed in

Modules

A moduleisanew type of program unit that allows the specification of data
objects, parameters, derived types, procedures, operators, and NAVELI ST
groups. Partial or complete access to these module entitiesis provided by
the USE statement. An entity may be declared PRI VATE to limit visibility
to the module itself.

Typica applications of modules are the specification of globa data(in
preference to the more troublesome common block mechanism) or the
specification of aderived type and its associated operations.

Modules are discussed in

Non-advancing I/O

In FORTRAN 77, after arecord-based |/O operation, the file pointer is
moved to the start of the next record.

1 Intel Fortran Programmer’s Reference

In Fortran 95, use of the I/O specifier ADVANCE=NO, causes the file pointer
to be positioned after the characters just read or written, but not
automatically at the start of the next record.

This makes character 1/0 operations much easier to handle. It isalso
possible to read a variable length record and determineits length.

I/0 facilities are discussed in Chapters 8, “1/O and File Handling.” and 9,
“1/0 Formatting.”

Namelist I/O

Namelist I/O, similar to that provided in FORTRAN 77, isavailablein Intel
Fortran 95. The READ/ WRI TE specifier NML=nan®el i st - gr oup- nane
has been added together with the NAMEL| ST statement that allows
specification of the variables belonging to a NAMELI ST group.

Language Elements

This chapter describes the basic elements of an Intel® Fortran program,
including the character set, lexical tokens, and names, and describes the
source program formats. It also summarizes the categories of statementsin
Intel Fortran and the rules controlling their use and ordering within program
units. The | NCLUDE line facility is described at the end of the chapter.

Character Set

The Fortran 95 character set consists of letters, digits, the underscore
character, and special characters, as detailed in

The processor character set consists of the Fortran 95 character set, plus:

® Control characters (Tab, Newline, and Carriage Return). Carriage
Return and Tab are usually treated as “white space”’ in a source
program. Their use may affect the appearance of alisting file.

® You can use the hash character (#), which may appear in column
1 to initiate a comment. The hash character is an Intel Fortran
extension.

2-1

2 Intel Fortran Programmer’s Reference

2-2

Table 2-1

Fortran 95 Character Set

Category Characters

Letters AtoZ,atoz"

Digits Oto9

Underscore _

Special characters blank (space)
=+ -*/ (), . " Y %&; <>
?** $

* Lowercase alphabetic characters are equivalent to uppercase characters except when
they appear in character strings or Hollerith constants.

** Although “?” has been designated a special character, it has no special meaning in the
Fortran 90 language.

Intel Fortran supports the default character type, which has kind
parameter = 1, as described in Chapter 3, “Data Types and Data
Objects.” However, support is provided for the use of conversions
from Unicode to multibyte character sets (MBCS) and back. For
more information see the Intel® Fortran Compiler User’s Guide.

Lexical Tokens

Names

Lexical tokens are the building blocks of a program; they consist of
sequences of characters. They denote names, operators, literal constants,
labels, keywords, delimiters, and can include the following characters and
character combinations:

Names are used in Fortran 95 to denote entities such as variables,
procedures, derived types, named constants, and common blocks. A name
must start with aletter and consists thereafter of any combination of |etters,
digits, and underscore (_) characters.

Language Elements 2

As an extension to Standard Fortran, the dollar sign may also be used
in aname, but not as the first character.

Standard Fortran 95 allows a maximum length of 31 charactersin a name;
in Intel Fortran thislimit is extended to 255 characters, and all are
significant— that is, two names that differ only in their 255th
character are treated as distinct. However, names and keywords are case
insensitive; thus Ti t | e$23_Nane and TI TLE$23_NAME are the same
name.

Program Structure

A complete executable program contains one main program unit and zero or
more other program units, where each of these can be compiled separately.
A program unit is one of the following:

®* Main program unit

® External function subprogram unit

® External subroutine subprogram unit

® Block data program unit

®* Module program unit

Execution of the program startsin the main program and then control can be
passed between the main program and the other program units.

The Fortran 95 program units, and the transfer of control between them, are
described in Chapter 7, “Program Units and Procedures.”

Statement Labels

A Fortran 95 statement can have a preceding |abel, composed of oneto five
digits. All statement labels in the same scoping unit must be unique; | eading
Os are not significant in distinguishing them. Although most Fortran 95
statements can be labeled, not all statements can be branched to. The
FORMAT statement must have alabel.

The | NCLUDE line (which is not a statement but a directive to the compiler)
must not have a label.

2-3

2 Intel Fortran Programmer’s Reference

2-4

Construct Names

Fortran 95 has these types of constructs. CASE, | F, DO, FORALL and
VHERE. These constructs can optionally be given names. When names are
used with the DO construct, they can affect the operation of the CYCLE and
EXI T statements.

The construct name appears before the first statement of the construct,
followed by a“: " character. It should then be repeated at the end of thefinal
statement of the construct. Chapter 6, “Execution Control,” describes
Fortran 95 constructs.

Statements

All Intel Fortran statements are listed in , with the following
categorization codes. They are fully described in Chapter 10, “Intel Fortran
Statements,” in alphabetical order.

All control statements are executable statements.

a Assignment statement
c Control statement

e Executable statement
I/O statement

n Nonstandard statement (extension)

p Program structure statement

S Specification statement

t Can be aterminal statement (of a DO construct)

Table 2-2 Intel Fortran Statement Categories
Statement Code Statement Code Statement Code
ACCEPT e,i,n END | NTERFACE OPEN e,it
ALLOCATABLE S END NMAP n,p OPTIl ONAL S
ALLOCATE et END MODULE p PARAMETER S
ASSI GN a,et END SELECT c.e PAUSE c.et
continued

Language Elements 2

Table 2-2 Intel Fortran Statement Categories (continued)
Statement Code Statement Code Statement Code
Assignment a,et END STRUCTURE n,p PO NTER s
statement
AUTOVATI C n,s END e.p PQO NTER (Cray*) n,s
SUBRQUTI NE
BACKSPACE e,it END TYPE p Pointer a,e
assignment
BLOCK DATA p END UNI ON n,p PRI NT e,it
BYTE n,s END WHERE c.e PRI VATE S
CALL cet ENDFI LE e,it PROGRAM p
CASE c.e ENTRY p PUBLI C S
CHARACTER S EQUI VALENCE S READ e,it
CLOSE e,it EXIT c.e REAL S
COVIVON S EXTERNAL S RECORD n,s
COVPLEX S FORMVAT i RETURN c.e
CONTAI NS p FUNCTI ON p REW ND e,it
CONTI NUE c.et GOT O (assigned) c.e SAVE S
CYCLE c.e GOTO (computed) c.e SELECT CASE c.e
DATA S GOro c.e SEQUENCE S
(unconditional)
DEALLOCATE et | F (arithmetic) c.e Statement function p
DECODE e,i,n | F (block) c.e STATIC n,s
DEFI NE FI LE e,in | F (logical) cet STOP ce
DI MENSI ON S IMPLICIT S STRUCTURE n,s
DO c.e I NCLUDE p SUBROUTI NE p
DOUBLE COWPLEX n,s I NQUI RE et TARGET S
DOUBLE S | NTEGER S TYPE p,s
PRECI SI ON (declaration)
ELSE c.e | NTENT S TYPE (definition) S
ELSE | F c.e | NTERFACE p TYPE (1 /O e,i,n
EL SEVHERE c.e I NTRI NSI C S UNI ON n,p
continued

2-5

2 Intel Fortran Programmer’s Reference

2-6

Table 2-2 Intel Fortran Statement Categories (continued)
Statement Code Statement Code Statement Code
ENCODE e,i,n LOG CAL S USE s
END (program unit) e,p VAP n,p VI RTUAL ns
END BLOCK DATA p MODULE p VOLATI LE n,s
END DO c.et MODULE S VWHERE c.et

PROCEDURE

END FORALL ce FORALL ce
END FUNCTI ON e.p NAMELI ST S VWRI TE e,it
END I F c.e NULLI FY a,et

Statement Order

summarizes the rules for statement ordering. It should beread in
conjunction with , which checks off those statements that can

appear in the various categories of scoping unit.

In , vertical lines separate statements that can be interspersed;
horizontal lines separate statements that cannot be interspersed. Thus, for

example, the tables indicate that:

® the USE statements, if present, must come immediately after theinitia

statement of the program unit.

* the FORVAT statements can appear anywhere in the program unit
between the USE statement position and the CONTAI NS statement

position (but not in modules, because prohibits their

appearance in modules).

® the DATA statements can be interspersed with executable constructs.

Language Elements 2

Table 2-3 Statement Ordering Requirements

PROGRAM FUNCTI ON, SUBROUTI NE,
MODULE, or BLOCK DATA statement

USE statements
| MPLI CI' T NONE
PARAMETER | MPLI CI T statements
statements
EORMAT Derived- type definitions,
and PARAMVETER Interface blocks,
ENTRY and DATA type declaration statements,
statements .
statements Statement function statements,

and Specification statements

DATA Executable constructs
statements

CONTAI NS statement
I NTERNAL subprograms or MODUL E subprograms
END statement

Table 2-4 Statements Allowed in Scoping Units (Y=yes)

T ITmZ T2 WS WS UOW
= c >'_<'_ o (=) Cc = o = E =
§588 2 ge2g2esg
) S 3 @ S @ o 2 &
Scoping Unit 3 e = < < ®
9 Q Q Q
Statement 3 3 3
USE statement Y Y Y Y Y Y Y
ENTRY statement Y Y
FORMAT statement Y Y Y Y
PARAMETER Y Y Y Y Y Y Y
statement
| MPLI CI T statement Y Y Y Y Y Y Y
Type declaration Y Y Y Y Y Y Y
statement
Specification Y Y Y Y Y Y Y
statement
continued

2-7

2 Intel Fortran Programmer’s Reference

2-8

Statements Allowed in Scoping Units (continued) (Y=yes)

T Im = T2 WS WS UW
58523 5355%83% 253
2= 3 & c T e T3S <=2
o S 3 @ S @ o 8
Scoping Unit 3 e = < < ®
9 Q Q Q
Statement 3 3 3
DATA statement Y Y Y Y Y Y
Derived-type definition Y Y Y Y Y Y Y

Source Program Forms

Fortran 95 has a free source form, but also accepts FORTRAN 77’s fixed
source form (asit must, since FORTRAN 77 is a subset of Fortran 95).
Although the two forms are quite different, it is possible to use an
“intersection” form that satisfies both. Thiswould be necessary, for
example, when preparing Fortran text that was intended to be | NCLUDEd
(see) in a Fortran program whaose source
form, fixed or free, was not known.

The fixed source form, the free source form, and the intersection form are
described below.

The Intel Fortran compilation system assumes that source files are in the
fixed format form, unless the source file being compiled has the suffix

. f 90. However, you can use the command-line options/ FI and/ FR,
Windows*, - FI and - FR, Linux*, to change the format accepted by the
compiler. See the Intel® Fortran Compiler User’s Guide.

Fixed Source Form

Statements or parts of statements must be written between character
positions 7 and 72. Any text following position 72 isignored. The
/ Qext end_sour ce option (see the Intel® Fortran Compiler User’s

Guide) extendsthe statement to position 132. Positions 1-6 are reserved
for special use. Blanks are not significant except within a character context.

Language Elements 2

For example:
RETURN
RETURN

are equivalent, but:
c = "abc"
c="abc"

are not equivalent.
Multiple statements may appear on one line separated by a semicolon (;).
There are three classes of lines in Fortran 95 fixed source form:

1. [Initia line
2. Continuation line
3. Comment line

Initial Line

An initial line has the following form:

®* Positions 1 to 5 may contain a statement label.

® Position 6 contains a space or the digit O.

® Positions 7 to 72 (optionally, to 254) can contain the statement.

Continuation Line
A continuation line has the following form:

® Positions1to 5 are blank.

® Position 6 contains any character other than O or a space. One practice
isto number continuation lines consecutively from 1.

® Positions 7 to 72 (optionally, to 254) contain the continuation of a
statement.

The Fortran 95 Standard specifies that a statement must not have more than
19 continuation lines.

In Intel Fortran, a statement consists of an initial line and up to 99
continuation lines.

2-9

2 Intel Fortran Programmer’s Reference

2-10

Comment Line

Comment lines may be included in aprogram. Such lines do not affect the
program in any way but can be used by the programmer to include
explanatory notes. Theletter C, or ¢ , or an asterisk (*) in position 1 of a
line, designates that line as a comment line; the comment text iswrittenin
positions 1 to 72. A line containing only blank charactersin positions 1 to
72 isalso treated as a comment line.

An exclamation mark (!) in position 1 or in any position except position 6,
causes the rest of the line to be treated as a comment.

In Intel Fortran, alinewith Dor d in position 1 is by default treated
as acomment. A command-line option, the/ Qd_I i nes, Windows,

- DD, Linux, option, treatslineswith Dor d in position 1 as statements
to be compiled. Thisfacility is useful in program debugging. See the
Intel® Fortran Compiler User’s Guide for more information about
the +dl i nes option.
Also, Intel Fortran provides the extension that aline with # in
position 1 is treated as a comment. This allows source files that have
been preprocessed with f pp to be compiled.

Tab-format Lines

In Intel Fortran atab character in the first position of aline can be
used to skip past the statement label positions. If the character
following the tab character is adigit, thisis assumed to be in position
6, the continuation indicator position. Any other character following
the tab character is assumed to be in position 7, the start of a new
statement. A tab character in any other position of alineistreated as
aspace.

Free Source Form

In thisform the source lineis not divided into fields of predefined width, as
in the fixed form. This makes it more convenient for input of text at an
interactive terminal. The details of the free source form are as follows.

Source Lines

Lines can contain from 0 to 132 characters. The/ Qext end_sour ce
option (see the Intel® Fortran Compiler User’s Guide) can extend the
statement to position 132. Several Fortran 95 statements can be placed on a

Language Elements 2

single source ling, separated by “; " characters, and a single Fortran 95
statement can extend over more than one source line, as described below in

Statement Labels

Statement labels are not required to be in columns 1-5, but must be
separated from the statement itself by at |east one space.

Spaces

Spaces are significant:

® Spacesdo not always appear within alexica token, such as a name or
an operator.

®* |ngeneral one or more spaces are required to separate adjacent
statement keywords, names, constants, or labels. Within the following
keyword pairs, however, the spaceis optional:

BLOCK DATA GO TO
DOUBLE PRECI SI ON I N OUT

ELSE I F SELECT CASE
END keywor d

The keywor d after END can be any allowed by the Fortran 95 syntax,
including the following: BLOCK DATA, DO, FI LE, FUNCTI ON, | F,

I NTERFACE, MAP, MODUL E, PROGRAM SELECT, SUBRCUTI NE,
STRUCTURE, TYPE, UNI ON, or WHERE.

Spaces are not required between a name and an operator because the latter
begins and ends with specia symbols that cannot be part of a name.
Multiple spaces, unless in a character context, are equivalent to asingle
space.

Examples Using Spaces

Spaces are denoted here (and throughout this manual where it is necessary
to stress their presence) by b.

| Feb(TEXT. EQ ' BbBYES) ... I valid

2-11

2 Intel Fortran Programmer’s Reference

2-12

Valid: the two spaces after | F are equivalent to one space. No spaces are
required before or after. EQ. , because there is no ambiguity. Note that the
three spaces in the character constant are significant.

| F(MBARY. bGE. M KE) . .. ! Faulty

Faulty: the spaceisinvalid in MaARY, and the spaceisinvalidin. bGE. .
(This example would be valid in the fixed form.)

Comments

In free source form, the only way of indicating a comment is by use of the
“1" symbol. Unlessit appears in a character context, the occurrence of a
“1” symbol defines the start of a comment, which aways continues to the
end of the source line. It is thus not possible to embed a comment inside
program text within a single source line, but it can follow program text on a
source line. Furthermore, a Fortran 95 statement on aline with atrailing
comment can be continued on subsequent lines.

Statement Continuation

A statement can be split over two or more source lines by appending an
ampersand (&) symbol to each source line involved except the last. The
ampersand must not be within a character constant.

In thisway, in Standard Fortran 95, a statement can occupy up to 40 source
lines. Asan extension, Intel Fortran increases this limit to 100 source
lines.

The END statement cannot be split by means of a continuation line.

The text of the source statement in a continuation line is assumed to resume
from column 1, unlessthefirst nonblank symbol in the lineis an ampersand,
in which case the text resumes from the first position after the ampersand.

Language Elements 2

Example of Statement Continuation
Consider the following two statements:

I NTEGER marks, total, difference, & I work vari abl es
mean, average
I NTEGER marks, total, difference, nean_& I work vari abl es

&val ue average
The second of these statements declares an integer variable called
mean_val ue. Any spaces appearing in the variable name as aresult of the
continuation would have been invalid, which is why another “&” was used
in the continuation line. (Alternatively “val ue” could have been positioned
at column 1.) Splitting lexical tokens, including character constants, across
source linesin thisway, is permitted but should be avoided if possible.
Comments cannot be continued.

Intersection Source Form

It is possible to write programs in away that is acceptable as both free

source form and fixed source form, unless in extended fixed format source

mode. The rules are:

®* Putlabelsin positions 1-5.

® Put statement bodiesin positions 7-72.

®* Begin comments with an exclamation mark (!) in any position
except 6.

® |ndicate al continuations with an ampersand in position 73 of the line
to be continued and an ampersand in position 6 of the continuing line.

®* Do not insert blanks in tokens.
® Separate adjacent names and keywords with a space.

2-13

2 Intel Fortran Programmer’s Reference

2-14

INCLUDE Line

An | NCLUDE line inserts text into a program during compilation. The
I NCLUDE lineis adirectiveto the compiler; it is not a Fortran 95 statement.
The format of an | NCLUDE lineis:

| NCLUDE character-1literal -constant
character-literal -constant isthenameof a
file containing the text to be included. The character
literal constant must not have akind parameter that isa
named constant.

The contents of the specified file are substituted for the | NCLUDE line
before compilation and are treated as if they were part of the original
program source text.

Use of the | NCLUDE line provides a convenient way to include source text
that isthe same in severa program units. For example, interface blocks or
common blocks may constitute afile that is referenced in the | NCLUDE
line.

Modules provide access to data, types, and procedures that can be shared
among procedures and thus provide a more effective way to accomplish
most of what an | NCLUDE line can do. However, asillustrated by the last

I NCLUDE linein the examplesthat follow, it is possible to use an | NCLUDE
line to include a portion of asubprogram; thisis not possible with amodule.

The | NCLUDE line must appear on one line with no other text except
possibly atrailing comment. There must be no statement label. This means,
for example, that it is not possible to branch to it, and it cannot be the action
statement that is part of an | F statement. Putting a second | NCL UDE or
another Fortran 95 statement on the samelineusing “; ” as aseparator is not
permitted. Continuing an | NCLUDE line using “&” is also not permitted.

| NCLUDE lines may be nested. That is, a second | NCLUDE line may appear
within the text to be included, and the text that it includes may also have an
I NCLUDE line, and so on. Intel Fortran has a maximum | NCLUDE line
nesting level of 10. However, the text inclusion must not be recursive at any
level; for example, included text A must not include text B if B includes
text A.

Language Elements 2

The text of thefile to beincluded must consist of complete Fortran 95
statements.

Example of INCLUDE Lines
I NCLUDE " MY_COMVON_BL OCKS"
I NCLUDE "/usr/include/ machi ne_paraneters. h"

I Programtext may be included within the

I executable part of the programas well as
! the specification part.

READ *, theta

| NCLUDE " FUNCTI ON_CALCULATI ON"

Ifcharacter-literal-constant isonlyafil enane, inother words
no pat hnane is specified, the compiler searches a user-specified path. See
the Intel Fortran Compiler User’s Guide for information about the/ | di r
option, which tells the compiler to search directories specified by di r to
locate files to be included.

2-15

2 Intel Fortran Programmer’s Reference

2-16

Data Types and
Data Objects

This chapter describes both intrinsic and derived data types and the form of
the declaration statements used to assign these data ty pes to data objects and
functions. It defines the format of constantsfor each of the intrinsic data
types. It illustrates the definition, declaration, and use of derived types. It
outlinesimplicit typing and datainitialization. Finally thereis a brief
discussion of the mechanisms available for storage association and for
dynamic storage allocation.

Terminology

A datatype defines a set of values and a means of representing,
manipulating, and interpreting them. Intrinsic numeric and nonnumeric
types are defined in the language, and a user can define additional types,
known as derived types, which are structures composed of the intrinsic
types and of other derived types.

A data object is aconstant, a variable, a subobject of avariable, or a
subobject of aconstant, and has a data type.

A constant has a value that cannot be changed during execution of the
program. A constant is aliteral constant, unless it has the PARAMETER
attribute, in which caseit is anamed constant.

A variable may have avalue and this value can be defined and redefined
during execution of the program. It can be a scalar variable, an array
variable, or a subobject of a variable.

31

3 Intel Fortran Programmer’s Reference

32

A subobject of avariable can be an array element, an array section, a
character substring, or astructure component. A subobject of aconstantisa
portion of the constant; the portion referenced may depend on the value of a
variable.

Intrinsic Data Types

The numeric types are | NTEGER, REAL, and COVMPLEX; the nonnumeric
types are CHARACTER and LOG CAL.

Each Fortran 95 implementation defines a set of representations for each of
these types. Each representation corresponds to a different range of values
that can be attained by entities or constants declared to be of the
corresponding type.

For real and complex types, different representations also have different
levels of precision. Each representation is assigned an identifying KI ND
parameter, which is an integer value. One of the representations for each
type is designated the default representation for that type. shows
the options available with Intel® Fortran.

Table 3-1 Types and KI ND Parameters
KI ND Storage

Type Parameter Range Bytes Alignment
| NTEGER (BYTE) 1 -128 to 127 1 1

| NTEGER 2 -215 10 215-1 2 2

| NTEGER 4 (default) ~ -231to 2311 4 4

| NTEGER 8 -263 tp 263-1 8 8

REAL 4 (default) -3.402823x1038 to 4 4
Precision: -1.175495x10-38

6 to 9 decimal digits

and 0.0 and

+1.175495x10-38 to
+3.402823x1038

continued

Data Types and Data Objects 3

Table 3-1 Types and KI ND Parameters (continued)
KI ND Storage
Type Parameter Range Bytes Alignment
REAL 8 -1.797693x10%308 to 8 8
Precision: -2.225073x10-308
and 0.0 and

15 to 17 decimal digits
+2.225073x10-308 to
+1.797693x10+308

REAL 16 -1.189731x10+4932 to 16 16

Preci si on: -3.362103x10-4932

33 to 35 decimal and 0.0 and

digits :iiggigiﬁg;ﬁ;m

COVPLEX" 4 (default) same as for REAL(4) 8 4

COMPLEX"* 8 same as for REAL(8) 16 8

COVPLEX(KI ND=16) 16 two components of 32 16
REAL(16)

CHARACTER 1 (default) ASCII character set™ 1 1

LOG CAL 1 . TRUE. 1 1
. FALSE. ™™

LOG CAL 2 .TRUE. .FALSE. ™ 2 2

LOG CAL 4 (defaulty . TRUE. .FALSE. ™ 4 4

LOG CAL 8 .TRUE. .FALSE. ™ 8 8

* COMPLEX (KI ND=4) is the same as COVMPLEX o r COMPLEX* 8.
= COMPLEX (KI ND=8) is the same as DOUBLE COMPLEX or COVPLEX* 16.

*** The ASCII character set uses only the values 0 to 127, but the Intel Fortran implementation allows use of all 8 bits of a
CHARACTER entity. The processing of character sets requiring multibyte representation for each character makes use
of all 8 bits.

#+x|n a standard conforming program, . TRUE. is represented by 1 and . FALSE. isrepresented by 0. In
nonstandard conforming programs involving arithmetic operators with logical operands, a logical variable may be
assigned a value other than O or 1. In this case, any nonzero value is considered to be . TRUE. and only the value
zero is considered to be . FALSE.

The KI ND parameter for an intrinsic data type is the same as the storage
requirements for that data type except for COMPLEX where the KI ND
parameter is the KI ND parameter of the real or imaginary part.

3-3

3 Intel Fortran Programmer’s Reference

Examples of simple type declarations are:

I NTEGER :: i,]j
! i and j are default 4-byte integers
| NTEGER(KIND=2) :: i2

I i2 is a 2-byte integer

REAL, DI MENSI ON(5,5) :: a

I ais a 5x5 array of default reals
CHARACTER(LEN=10) :: c10

I ¢c10 is a variable of 10 characters

Derived Types

Fortran 95 allows the creation of new data types that are constructed from
theintrinsic data types and previously defined new data types. These new
data types are known as derived types.

For example, aderived type for manipulating coordinates consisting of two
real numbers can be defined as follows:
TYPE coord
REAL :: X,y
END TYPE coord
X and y are conponents of the derived type coord.

Vari abl es of type coord, nanmed a and b, can be
decl ared as fol |l ows:

TYPE(coord) :: a, b
An assignment statement
a=m>n

copiesthe values of all the defined components of b to those of a.

Theindividual componentsof a andb arereferenced asa¥%, a%, b%x,
and b%. By coding appropriate procedures (as described in

), the scope of the standard operators can be
extended so that, for example,

a=a+b
could be defined to be equivaent to
a% = a% + b%; a% = a% + b%

Data Types and Data Objects 3

or to anything else, depending on the user-defined procedure that is
provided to implement the operation.

A derived-type entity can be used as an argument to a procedure and can be
the result of afunction— that is, afunction of derived type can be defined.

Type Declarations

The general form of atype declaration statement is:
type-spec|[[,attribute-spec] ... :: Jentity-Ilist
type- spec

isone of :

® | NTEGER [ki nd-sel ector]

® REAL [kind-sel ector]

* DOUBLE PRECI SI ON

® CHARACTER [char-sel ector]

® LOd CAL [kind-sel ector]

®* TYPE (type-nane)

® DOUBLE COWPLEX (Intel Fortran extension)
® BYTE (Intd Fortran extension)

BYTE isequivalentto | NTEGER (KI ND=1) . DOUBLE PRECI SI ONis
equivalent to REAL (KI ND=8) and DOUBLE COMPLEX isequivalent to
COMPLEX (KI ND=8) .

ki nd-sel ector is

([KIND=] scal ar-int-init-expr)

scal ar-int- isascaarinteger initialization expression that must
i nit-expr evaluate to one of the KI ND parameters available (see
).
char - sel ect or see “CHARACTER” in Chapter 10 for details.
t ype- nane is the name of a derived type.

attri but e- spec isoneor more compatible items from the following:
* PARAMETER
® access- spec

3-5

3 Intel Fortran Programmer’s Reference

3-6

* ALLOCATABLE

®* DI MENSI ON(array- spec)
® EXTERNAL

® | NTENT (i nt ent - spec)

® | NTRINSI C

® OPTI ONAL

®* PO NTER

® SAVE

® TARGET

Table 10-1 contains amatrix of attribute compatibility.

access-spec

array-spec

i ntent - spec

entity

is one of:

* PUBLIC
* PRI VATE

isalist of array bounds. Chapter 4, “Arrays,” describes

the formats.

isone of:

* |N

e Qur

e | NoUT

isone of:

® variable-nanme[(array-spec)]
[* character-1ength]

[=initialization-expression]

® function-nanme[(array-spec)]

[* character-1ength]

Note that when thereisani ni ti al i zat i on- expr essi on inthe
entity theremustasobea: : separator in the statement.

Data Types and Data Objects 3

Examples of Type Declarations
Below are examples of type declaration statements, some of which include
data initialization components.
INTEGER i, j, k
| Default, KIND=4, integers i | k.
INTEGER :: i,j,k
I Using optional separator.

| NTEGER(KI ND=8) :: i=2**40
I An 8-byte initialized integer.

| NTEGER(8), DI MENSI ON(10) :: i
I 10 element array of 8-byte integers.

REAL, DIMENSION(2,2):: a = &
RESHAPE((/1.,2.,3.,4./),(/2,2/))

I Using an array constructor for initialization.
COWPLEX :: z=(1.0,2.0)

I Initialized conpl ex.

COWPLEX z=(1.0,2.0) ! FAULTY
I Syntax error - no :: present.

CHARACTER(KIND=1) :: ¢
I One character (default Iength).

CHARACTER(LEN=10) :: c
I A 10-byte character string.

CHARACTER(*) , PARAMETER :: title="Ftn 95 MANUAL’

I Length can be * for a nanmed constant.
I title is a 13-byte character string.

37

3 Intel Fortran Programmer’s Reference

CHARACTER(LEN=Nn) :: ¢

I If the statenment is in a subprogram

! n nust be known at entry, otherw se

I it must be a constant.

SUBROUTI NE x(¢)

CHARACTER*(*) :: ¢

I ¢ assunes the length of the actual argunent.
END

TYPE(node):: list_el ement
I Asingle entity, of derived type node.

TYPE(coord) :: origin = coord(0.0,0.0)
! Declaration and initialization of a
I user-defined variable

Alternative Form of Intrinsic Type Spec Declaration

As an extension, Intel Fortran alows, for noncharacter types, the

t ype- spec tobegivenintheform:

type * length

wheret ype isanintrinsic type excluding CHARACTER, and | engt h isthe
number of bytes of storage required, asin Table 3-1. Alternatively,

*| engt h may be placed after the entity name. If the entity isan array with
anarray- spec following it, *| engt h may also be positioned after the
array- spec.

Example

REAL*8 r8(10)

REAL r8*8(10)

REAL r8(10)*8

are all equivalent to the following preferred notation:
REAL(8), DI MENSION(10) :: r8

3-8

Data Types and Data Objects 3

Except for COVPLEX, | engt h isthe same as the equiva ent KI ND
parameter; for COMPLEX, the KI ND parameter is the KI ND parameter of the
real or imaginary part and so:

COVPLEX*8 is equival ent to COVPLEX(KI ND=4) .

COVPLEX*16 i s equival ent to COVPLEX(KI ND=8).

Alternative Form of Initialization Within Declaration

Intel Fortran permitsthe use of slashes delimiting the data values rather than
the equal sign introducing the data item, although it is recommended that
thisformat isnot used. The :: separator must not be used and array
constructors and structure constructors cannot be used. Arrays may be
initialized by defining alist of values that will be sequence associated with
the elements of the array (the DATA statement, which permits the use of
implied-DOloops may be more appropriate).

Examples
INTEGER i/1/,j/l2]
REAL a(2,2)/1.1,2.1,1.2,2.2/ ' a(i,j)=i.j

Increasing Default Sizes

Intel Fortran provides command-line options (/ 41 2,/ 41 4,/ 41 8,
Windows*, -i 2, -i 4, -i 8, Linux*) that increase the default sizes of integer,
logical, real, and complex items. The options are described in the Intel®
Fortran Compiler User’s Guide.

Intrinsic Inquiry Functions

Two intrinsic functions, SELECTED_| NT_KI ND and
SELECTED_REAL_KI ND, are provided to determine the most appropriate
KI ND parameter to use for agiven range and precision. These functions can
be used to significantly enhance the portability of programs. The value of
the KI ND parameter can be set to the result returned by one of these
functions.

39

3 Intel Fortran Programmer’s Reference

3-10

Attributes

SELECTED _| NT_KI ND has one argument which specifies the range
required. For example:

PARAVETER(i nt ki nd=SELECTED_| NT_KI ND(11))

will set the parameter i nt ki nd to avalue of 8, asthe function will return
the KI ND parameter with the smallest storage requirement that can contain
integers with a magnitude of 10:w. Integer variables can then be declared
using thevalue of i nt ki nd thus:

| NTEGER(KI ND=i ntkind) :: i, j, k

SELECTED_REAL_KI ND has two arguments corresponding to the range
and precision required. For example:

PARAMVETER(r | ki nd=SELECTED REAL_KI ND(P=10, R=99))

returns avalue of 8, supporting at least 10 digits of precision for valueswith
magnitude of at least 10%. Declaring all REAL entities with

REAL(r | ki nd) enables easy modification if it becomes necessary to
change the range or precision.

The attributes that may be included in atype declaration are individually
described in Chapter 10, “Attributes,” with further references from there to
appropriate sections of the manual. A one-line summary of the purpose of
each attribute is given here.

ALLOCATABLE Storage for the array isto be explicitly allocated during

execution.

DI MENSI ON

(array-spec) Declaresan array.

EXTERNAL Defines a subprogram or block datato be in another
program unit.

I NTENT

(i ntent-spec) Definesthe mode of use of adummy argument.

I NTRI NSI C Allows the use of a specific intrinsic name as an actual
argument.

OPTI ONAL Declares the presence of an actual argument as optional.

Data Types and Data Objects 3

PARAVETER Defines named constants.

PO NTER Declares the entity to be a pointer.

PRI VATE Inhibits visibility outside a module.

PUBLI C Provides visibility outside a module.

SAVE Ensures the entity retains its value between calls of a
procedure.

TARGET Enables the entity to be the target of a pointer.

All the above attributes can also be specified by using separate statements,
although an attribute may not be specified more than once for an entity.

Note that in Intel Fortran there are two POl NTER statements with differing
syntax. One supports the Standard Fortran 95 definition and the other
supports Cray* -style pointers.

Thefollowing additional attributesare Intel Fortran extensions and can only
be specified using separate statements:

AUTOVATI C Entity does not retain its value between procedure calls.
STATI C Entity retainsits value between procedure calls.
VOLATI LE Provides data sharing between asynchronous processes.

An attribute compatibility table and further information and examples can
be found in the relevant entriesin

Representation of Literal Constants

The formats of constants for each of the intrinsic data types are described
below.

Integer Constants
A signed integer literal constant is:
[sign] digit-string [_kind-paraneter]

sign isone of:
* 4+

digit-string is

311

3 Intel Fortran Programmer’s Reference

312

* digit[digit]...
ki nd- par anet er is one of:
® digit-string
® thename of ascaar integer constant (PARAMETER)

For example:
e -123
* 1231

® 123 | LENwherel LENisanamed integer constant that must have a
value which isavalid KI ND parameter, either 1, 2, 4, or 8

BOZ Constants

In DATA statements, additional forms of unsigned constants are permitted
for initializing integer variables. The values are expressed in binary, octal,
or hexadecimal notation, and are collectively known as BOZ constants. The
formats are:

A binary constant is one of:

® B’'digit-string’
® B "digit-string

where di gi t - stri ng contains only the digits 0 and 1.
An octal constant is one of:

® O'digit-string’
® O"digit-string

where di gi t - stri ng containsonly the digitsO, . . ., 7.
A hexadecimal constant is one of:

® Z ' hex-digit-string
® Z "hex-digit-string

where hex- di gi t - st ri ng containsonly the characters0, ..., 9,
A ..., Fa ..., f
For example:

INTEGER i ,j .k
DATA i/ B 01001010’ /
DATA j/ O 112’/

Data Types and Data Objects 3

DATA k/ Z' 4A']
initializesi , j , and k to the decimal value 74.

Asan extension, Intel Fortran also allows octal constants with atrailing O,
and hexadecimal constants with atrailing X. For example:

112’0 "4A X
are alternative representations to those used in the example above.

Intel Fortran also extends the range of use of these constants to contexts
other than initializing integers. These extensions are described in “ Typeless
Constants”, page 3-16.

Real Constants

A signed real literal constant is one of:
® [sign] digit-string [exponent] [_kind-paraneter]
® [sign] digit-string.[digit-string] [exponent]
[_ki nd- par anet er]
® [sign] [digit-string] .digit-string [exponent]
[_ki nd- par anet er]

exponent is
exponent-letter [sign] digit-string
exponent -l etter isoneof:

* E
* D
S

signanddigit-stringareexplainedin the section “Integer
Constants”, page 3-11.

The use of Q isan Intel Fortran extension.

If no KI ND parameter is present, or if theexponent | ett er Eispresent,
then the default KI ND representation will be used. If theexponent

| etter isD, the Kl ND parameter used will be 8, and if theexponent

| etter isQ theKl ND parameter will be 16. If both an exponent and a
KI ND parameter are specified, theexponent | et t er must be E.

3-13

3 Intel Fortran Programmer’s Reference

3-14

For example:
3.4E-4 0.00034
42. E2 4200
1.234_8 1.234 with approximately 15 digits precision
-2.53Q- 300 -2.53x10°300 with approximately 34 digits

precision

Complex Constants

A complex literal constant has the form:

(real-part , inmaginary-part)

real - part, inmaginary-part areeachoneof:
® signed-integer-literal-constant

® signed-real-literal-constant

The KI ND parameter of the complex vaue will correspond to the KI ND
parameter of the part with the larger storage requirement. For example:

(1.0E2, 2.3E-2) default complex value
(3.0_8,4.2_4) complex value with KI ND=8

Character Constants

A character literal constant is one of:

® J[kind-paraneter_] ’'character-string’

® J[kind-paraneter_] "character-string"

® [kind-paraneter_] ‘character-constant’C

The delimiting characters are not part of the constant. If it isrequired to

place asingle quote in a string delimited by single quotes then two single
guotes must be used; and similarly for double quotes. For example:

1A N Oher’
"Bach'’'s Prel udes’ (actua constantisBach’ s Prel udes)

(azero length constant)

Data Types and Data Objects 3

For compatibility with C, Intel Fortran has an extension that allows you to
specify anull-terminated character constant. You can use this where a
character constant can appear. You must take into account that the last byte
of the character entity will be taken up by a zero. For example,
CHARACTER*5 STRI NG

DATA STRING ' 1234’ C/

Thisworks correctly because the fact that theinitializing STRI NGasaC
character constant means that the last byteisinitialized as zero. However,
CHARACTER*5 STRI NG

DATA STRI NG’ 12345 C/

will generate awarning because there are too many data valuesto fit in the
five bytes of STRI NG

Also for compatibility with C usage, Intel Fortran allows the backslash
character (\) to be used as an escape character in character strings. You can
use a compile-time option, the /nbs option (see the Intel® Fortran
Compiler User’s Guide) to disable thisfeature. When the/ nbs optionisnot
used, the default behavior isto ignore the backslash character, and either
substitute an alternative value for the character following, or to interpret the

character as a quoted value. The escape characters that are recognized and
their effects are described in Table 3-2.

Table 3-2 Escape Characters
Escape Character Effect
\n newline
\ 't horizontal tab
\v vertical tab
\b backspace
\ f form feed
\0 null
\’ apostrophe (does not terminate a string)
\ " double quote (does not terminate a string)

3-15

3 Intel Fortran Programmer’s Reference

3-16

Table 3-2

Escape Characters (continued)

Escape Character Effect

\\ \

\ x X, where x isany other character
Thus:

"I SN\’ T’ isavalid string where/ nbs is not used.
The backslash is not counted in the length of the string.

If \ & appears at the end of alinewhen the/ nbs option is active, the & will
not be treated as a continuation indicator.

Logical Constants

The form of alogical literal constant is one of:

® _TRUE. [_kind-paraneter]
® _FALSE. [_Kkind-parameter]

Example

. TRUE.
.FALSE. 2

Typeless Constants

Intel Fortran extends the uses of binary, octal, and hexadecimal constants
beyond those prescribed in the Fortran 95 Standard. Binary, octal, and
hexadecimal constants (BOZ constants) can be used wherever an intrinsic
literal constant of any numeric or logical typeis permitted. Intel Fortran
also allows Hollerith constants to be used in these contexts and where a
character typeisrequired.

Extended Use of BOZ Constants

The format of BOZ constants is described in “BOZ Constants’, page 3-12.
If possible, the type attached to a typeless constant i s derived from the
magnitude of the constant and the context in which it appears. When used as

one operand of abinary operator, it assumesthe type of the other operand. If
it is used as the right-hand side of an assignment, the type of the object on

Data Types and Data Objects 3

the left-hand side is assumed. When used to define the value within a
structure constructor, it assumes the type of the corresponding component.
If appearing in an array constructor, it assumes the type of the first element
of the constructor.

Further rules:

® |f the context does not determine the type, awarning is issued and the
type attached to the constant is:

N | NTEGER(4) if the constant occupies 1-4 bytes.

N | NTEGER(8) if the constant occupies more than 4 bytes.

L eading zeros are considered significant in determining the size.
For example:

Z' 00000001’ assumes | NTEGER(4)

Z' 000000001’ assumes| NTEGER(8)

The compiler truncates and issues a warning about constants that can only

be represented by more than 8 bytes (for example,

Z' 12345678123456781234’). Theresulting truncated value differs

from that specified in the source code.

®* When the size of type determined by context does not match the size of
the actual constant, the constant is either extended with zeros on the | eft
or truncated from the left as necessary.

* |f asingle constant isassigned to acomplex entity, it is assumed to
represent the real part only and will assume the real type with the same
length as the complex entity.

® |nuser generic procedure resolution (see Chapter 7 for details), an
actual argument that isaBOZ constant is considered to match alogical
or numeric dummy argument; however, an ambiguous referenceis
likely to occur.

® Except for theintrinsic conversion procedures, aBOZ constant used as
an actual argument for an intrinsic procedure assumes the integer type.

® Theintrinsic functions| NT, LOG CAL, REAL, DBLE, DREAL, CMPLX,
and DCVPLX are avail able to cast aBOZ constant to a specific type. If a
BOZ constant is given as argument ar g to these functions, the type
assumed for ar g is asfollows:

N For functions | NT and LOG CAL the assumed type will be
respectively | NTEGER(KI ND=a) and LOG CAL(z=a),wherea
is4 if the constant occupies 1 to 4 bytes, and 8 otherwise.

317

3 Intel Fortran Programmer’s Reference

3-18

N For the functions REAL, DBLE, DREAL, CMPL X, and DCMPLX an
argument of type REAL(KI ND=b) isassumed, whereb is4if the
constant occupies 1 to 4 bytes, 8 if it occupies 5 to 8 bytes, and 16

otherwise.
Examples
Z' AAY Hexadecimal constant is| NTEGER(4) .
10 2 + Z' 1000A The valueis 20 (constant treated as
I NTEGER(2) and truncated on the lft).
LOG CAL(2) :: lgl2 Constant treated as LOGl CAL(2) , the
lgl2 =B 1 type of the variable.
ABS(Z 41") Constant treated as | NTEGER(4) ; | ABS
is used.

REAL(Z' 3FFO000000000000’) Constant treated asREAL(8) asitis
more than 4 bytes.

Hollerith Constants

Hollerith constants have the format:

| enHstring where

| en isthe number of charactersin the constant and

string contains exactly | en characters. The value of the
constant is the value of the pattern of bytes
generated by the ASCII values of the characters.

For example:

3HABC

5HABCbb

bb represents two space characters, to make the length equal to 5.

Hollerith constants may appear anywhere that a BOZ constant can appear,
and additionally where a character string isvalid. When there is amismatch
in lengths the constant will be truncated on the right, or padded on the right
with space characters.

If aHollerith constant is used as an argument to the conversion functions

I NT and LOG CAL, KI ND=1 and KI ND=2 are added as possible values for
Kl ND=a (seethe BOZ rules earlier in this section); these apply when the
length of the constant is 1 or 2 characters/bytes.

Data Types and Data Objects 3
Character Substrings

A char act er - subst ri ng isacontiguous portion of a scalar character
entity, referred to asthe par ent - st ri ng. The substring is defined by
giving the character positions of its start and end. The format is:
parent-string ([starting-position]
[endi ng- posi tion])
starting-position isascaarexpression. If starting-position
isomitted, avaue of 1isassumed. The
starting-position must be greater than or
equal to 1 unless the substring has zero length.
endi ng-position isascaarinteger expression. If
endi ng- posi ti on isomitted the value of the
length of the character string is assumed.
The length of the substring is:

MAX (endi ng-position - starting-position+ 1, 0)

Example

" ABCDEFGH (3:5)

is a character substring of length 3 equal to
' CDE’

"ABC (-1 : 2)

is invalid.

"ABC (2: -1)

has a zero |ength.

Derived-type Definition

The format of aderived-type definition is:

TYPE [[, access-spec] ::] type-nane
[private-sequence- st at enent]
conmponent - def i ni ti on- st at enent
[conponent - definition-statenent]

END TYPE [type- nane]

3-19

3 Intel Fortran Programmer’s Reference

3-20

access- spec Specifies one of the following:

PRI VATE
PUBLI C

t ype- nane is the name of the type being defined.
t ype- nanme must not conflict with theintrinsic
type names.

privat e-sequence- isaPRI VATE statement or a SEQUENCE
statement.

Theuse of PRI VATE and PUBLI Cisonly allowed
if the type definition iswithin amodule. Their use
isexplained in
and

The SEQUENCE statement is explained below.

conponent -definition-statenent is

type-spec [[conponent-attr-list]::]

conmponent - decl arati on

conponent -attr-1 i stcanonly containthe DI MENSI ONand PO NTER
attributes.

conponent - decl arati on is

conponent - nane [(component -array-spec)]
[*character-1length][component-initialization]

where conponent -i ni ti al i zati on hasone of the following forms:
= initialization-expression
=> NULL()

Thefirst form of component -i ni ti al i zati on isused for components
that are not of PO NTER type.

The second form of conponent -i ni ti al i zati onisusedfor PO NTER
components, and indicates that the pointer has an initial status of
di sassoci at ed (or nullified).

The ability to initialize a pointer in this manner is useful because there are
several instances in the language where a pointer may not be used unless it
has a defined association status.

Data Types and Data Objects 3

A component array without the POl NTER attribute must have an
explicit-shape specification with constant bounds.

The presence of the SEQUENCE statement implies that the components of
the type will be arranged in storage in the order in which they are defined.
Thetypeisthen knownasasequence derived type.Ifdl
components are of character typeit haschar act er sequence type,
and if all the components are of numerictypeit hasnuneri ¢ sequence

t ype.

Equivalencing variables of derived type which have different sequence
types is a supported extension.

If acomponent is of the same derived type as the type being defined then
the component must have the POl NTER attribute.

For example, asingly linked list can be created as a set of “nodes’, each
containing a value and a pointer to the next node. A type node can be
defined as follows:
TYPE node
| NTEGER :: val ue
TYPE(node), PO NTER :: next
I next must have the PO NTER
I attribute
END TYPE node

Structure Constructor

A structure constructor specifies a scalar value for a derived type by
specifying the values for the componentsin the order that they appear in the
definition. For example:
TYPE enpl oyee

CHARACTER(LEN=30) :: surnane

CHARACTER(LEN=20) :: firstnane

INTEGER :: id
END TYPE enpl oyee

TYPE(enpl oyee) :: programers(30)

321

3 Intel Fortran Programmer’s Reference

3-22

TYPE(enpl oyee) :: &

r obj ones=enpl oyee(’ Jones’ ,’ Rob’, 20)
programers(1l) = enployee(’ Smith’,’John', 34)
enpl oyee(’ Smith’,’ John’, 34) isastructure constructor that
contains the values assigned to the components of the first element of the
array pr ogr amrer s by the final statement above.

Note that the name of the type must precede the parenthesized data values
of the components, avalue must be present for each component, and objects
of derived type may beinitialized by a structure constructor in a
derived-type declaration.

Implicit and Explicit Typing

If an entity is declared or used without being explicitly typed, then the
entity’s type will be determined from theinitial symbol of its name, known
asimplicit typing. The default implicit typing rules are as follows:

®* Nameswithinitial letter Ato Hor Oto Z: REAL

®* Nameswithinitial letter | to N: | NTEGER

Thus:

DI MENSI ON a(5), i(10)

k=1

b=k

implicitly declaresa and b asdefault realsand i and k as default integers.

Do not use implicit typing if you can avoid it because your types can be
converted to a type that you do not want. Instead explicitly type all entities
using declaration statements. Implicit typing can be disabled with the

| MPLI CI T NONE statement, as described below, ensuring that any
appearance of an entity that has not appeared in an explicit type declaration
statement will be the subject of an error message and render the program
invalid.

IMPLICIT Statement

Thel MPLI CI T statement provides a means of changing or canceling the
default implicit typing. This takes effect for the scoping unit in which it
appears, except where overridden by explicit type statements.

Data Types and Data Objects 3

The statement is one of:

®* | MPLICIT NONE

® |IMPLICIT inplicit-spec-Ilist
inmplicit-spec-list is
type-spec (letter-spec-list)

| etter-spec isoneof:

letter

letter - letter
| MPLI CI T NONE overrides the predefined implicit type specification. If
this statement isincluded in a scoping unit then all the namesin that unit
must have their types explicitly declared. It must appear before any
PARAMETER statements. A scoping unit that includesan | MPLI CI T NONE
statement may not include any other | MPLI Cl T statements.

A command-line option, the/ 4{ Y| N} d for Windows, (- i npl i ci t none
for Linux) option, can be specified that has the effect of including an

| MPLI CI T NONE statement in every program unit (See the Intel® Fortran
Compiler User’s Guide).

Examples

| MPLI CI' T NONE

I Enforce explicit typing

| MPLICI' T REAL(a-h, 0-z), | NTEGER(i - n)

I This is equivalent to the default typing:
! a through h and o through z inplies REAL
I i through n inplies | NTEGER

| MPLI CI T REAL(KI ND=8) (d), COVPLEX(8) (z)
! d inplies REAL(8) z inplies COWPLEX(8);
I other letters retain any assigned types

| MPLICI' T TYPE(node) (I, n)
| Derived types can be included

3-23

3 Intel Fortran Programmer’s Reference

3-24

A scoping unit may contain more than one “active” | MPLI Cl T statement,
but any letter must beincludedinonly onel etter-spec. | MPLICI T
statements must precede all other specification statements except
PARAMETER statements. The | MPLI ClI T statement has no effect on the
default types of intrinsic functions.

The implicit rules of a host scoping unit will apply to a contained scoping
unit, but can be completely or partially overridden by implicit statements
within the contained scoping unit.

Data Initialization

Compile-time datainitialization can be carried out using type declaration
statements and DATA statements. The format of the DATA statement isfully
describedin , where theinitialization formats for
each of the intrinsic type declarations are also specified.

Examples

| NTEGER i

LOd CAL test

CHARACTER(LEN=10) : : string
REAL, DI MENSI ON(2,4) :: array
COWPLEX, DI MENSI ON(3) :: zz

DATA i,test,string/21,. TRUE.,” 10 letters’/

DATA zz/3*(1.0,2.0)/ ! Using a repeat factor.
DATA ((array(i,j),i=1,2),j=1,4)/1.0,2*2.0,5*3.0/
I Using an inplied DO | oop.

' i =21 test = . TRUE.

I string =10 letters’

I All elenments of zz = (1.0,2.0)
I The 8 elenents of array are

! 1.0 2.0 3.0 3.0

! 2.03.03.03.0

Data Types and Data Objects 3
Storage Association and Alignment

In general, no assumptions about the relative storage locations of any
entities can be made. The use of COVMON and EQUI VALENCE statements
enabl e storage association to be established. The detailed syntax and
description of these statementsis given in Chapter 10.

The COMMON statement enables common blocks of storage to be established.
The use of a COMMON statement referring to the same common block in
more than one program unit ensures that the same storage locations are
referenced in each of the program units.

The EQUI VALENCE statement enables more than one name to be given to
the same storage location within a program unit. Where common block
elements or array elements are referenced, restrictions apply because of the
imposed sequencing of these e ements within storage.

The SEQUENCE statement appears only in a derived-type definition (see

). It enables derived-type variables to
be located in common blocks and to be named in EQUI VALENCE
statements.

Storage Association Alignment Rule

The COVMMON and SEQUENCE st or age statements enforce an ordering of
variables within storage. Association may be established between variables
with different type and KI ND parameters. The general rules for the
alignment of variables in storage are as follows:

®* A variablewill be stored at an address that is a multiple of the
alignment required for storage of a scalar variable with the same type
and KI ND parameters (see Table 3-1). Thisis an extension to the
Fortran 95 Standard.

® A sequence derived type will have the same alignment as the
component that has the most restrictive alignment requirement.

Examples

The following code illustrates how a sequence of variables would be stored
within aderived type.

TYPE t

3-25

3 Intel Fortran Programmer’s Reference

SEQUENCE
CHARACTER(LEN=7) :: ¢
I NTEGER(2) :: i2

REAL(8) :: r8
REAL(4) :: r4
END TYPE t

TYPE (t), DIMENSION(5) :: ta

Each element of t isallocated asin the following table. The first component
of t startsat an address that is amultiple of 8:

Table 3-3 Example of Structure Storage
Component Byte Offset Length
c 0 7
i 2 8 2
r8 16 8
r4 24 4
padding 28 4
The four trailing padding bytes are necessary to preserve the alignment of
r 8 in each element of the array.
Dynamic Data Objects

Allocatable arrays, pointers and automatic objects are all ocated
dynamically.

Allocatable Arrays

3-26

The definition and description of use of allocatable arraysisin

Data Types and Data Objects 3

Pointers

A variable with the PO NTER attributeis referred to asa pointer. It canbein

one of three states: undefined, disassociated, or associated. On entry to a

program, al pointers are undefined.

If variable p is apointer:

®* ALLOCATE(p) acquires storage and associates p with this storage,
which becomes its target.

® DEALLOCATE(p) disassociates p from itstarget (which must have
been previously ALLOCATEd) and frees the storage occupied by the
target.

® NULLI FY(p) disassociates p from any target but does not alter the
status of the target.

The ASSOCI ATED intrinsic functioninquiresif a pointer is associated with:

®* Any target

* A gpecific target

® The same target as another pointer

A pointer can also be associated with an existing target using pointer

assignment (see Chapter 5for details). Briefly, p => t associates pointer p

withtargett . If t isapointer then p becomes associated with the target

withwhich t isassociated.

Intel Fortran compiler also supports the NULL function with the following

syntax:

real, pointer :: pl => NULL()

Cray-Style Pointers

For compatibility with earlier versions of Fortran, Intel Fortran supports
Cray-style pointer variables; see for
the syntax and examples. The use of Cray-style pointersis not
recommended.

327

3 Intel Fortran Programmer’s Referemce

3-28

Automatic Objects

An automatic object isan explicit-shape array or character string whose size
is determined by values which are known only on entry to the procedure in
which it isdeclared. It cannot be adummy argument and cannot possess the
SAVE attribute. Its storage space is dynamically alocated upon invocation
of the subprogram and is released on return from the subprogram.

Example
SUBROUTI NE sub(n,...)
! a and ¢ are not in the dumry argunent |i st
I NTEGER, INTENT(IN) :: n
I n nust have a value on entry
REAL, DIMENSION(n) :: a
CHARACTER(LEN=Nn) :: c

END SUBROUTI NE sub

Array a isdynamically alocated on entry to the subroutine sub, by which
time the value of n has been defined. Similarly, character variable ¢ will be
dynamically allocated, with length n. The storage for both of these
automatic objects will be released on return from the subroutine.

Records and Structures

Intel Fortran also provides STRUCTURE and RECORD statements to provide
compatibility with earlier implementations. The Fortran 95 derived-type
(TYPE) feature now provides similar facilities.

The STRUCTURE and RECORD statements are extensions to the Fortran 95
Standard. For details see the “ STRUCTURE” and “ RECORD” in

Arrays

Array processing is afeature of many Fortran programs and one of the
major features of Fortran 95 is the ability to process an array as awhole, or
in part, rather than on an element-by-element basis asin traditional Fortran.
Fortran 95 has also introduced new array categories that include automatic
arrays, pointer arrays, arrays that may be allocated dynamically, and
functions that return an array result. These new array categories and the
concepts introduced to support them are described in this chapter.

New Features

The following is a summary of new array features provided in Fortran 95:

Array categories Fortran 95 provides a number of different categories of
arrays:. explicit-shape (including automatic and
adjustable), assumed-shape, deferred-shape (including
alocatable and pointer), and assumed-size. They are
each described later in this chapter.

Whole array Expressions may contain array operands and be
processing array-valued. They may also contain array sections,

which are array-valued. Function results may also be
array valued. Thereis no implied order in which the
element-by-element operations are performed. If such
operations appear in an assignment statement where the
left-hand sideisan array, the effect isasif theright-hand
side were completely evauated before any part of the
assignment takes place. A scalar may also be used in
array expressions, more details of array expressions
appear later in this chapter.

41

I Intel Fortran Programmer’s Reference

4-2

Masked array
assignment

Intrinsic functions

Array sections

Array substrings

Certain array elements, selected by a mask, can be
assigned in array assignment statements using the
WHERE statement or WHERE construct. For any
elemental operation in the assignments, only the
elements selected by the mask participate in the
computation.

Masked array assignments are described later in
and under
the WHERE statement in

A number of new intrinsic functions have been provided
to manipulate arrays. They are mostly classed as
transformational functions.

A selected portion of an array, called an array section,
can be specified. It isthen treated as an array in its own
right and can be used as such. The section can be
specified by the use of subscript triplets, vector
subscripts, or both.

It is possible to attach a substring specifier to the
subscript list of acharacter array; theresult is
considered to be an array section, that (as noted above)
isitself an array.

Array constructors An array constructor allows an array to be constructed

from alist of scalar values and arrays of any rank. An
array constructor is a one-dimensiona array and can be
used wherever such an array isvalid. Arrays of higher
rank can be constructed by combining an array
constructor with the RESHAPE intrinsic function.

Arrays I

Zero-sized arrays Fortran 95 hasintroduced the concept of an array with

Array Properties

no elements. These arrays are known as zero-sized
arrays and allow certain algorithmsto be written
naturally without having to allow for edge conditions;
more details are given later in this chapter.

Examples of these features are given in the appropriate
sections below.

A Fortran array isasingle, named entity consisting of a set of objects called
array elements, all of the same type and type parameters, arranged in a
rectangular pattern of one or more dimensions. An array is therefore said to
have the DI MENSI ON attribute, and arrays in Fortran 95 may have up to
seven dimensions. An array has the following properties:

r ank

| ower bound,
upper bound,
ext ent

size

The number of dimensions of the array. Thisisfixed for
agiven array, and is determined from the array
declaration. If an object isnot an array, thenitissaid to
be scalar and to have rank zero.

Each array dimension hasal ower bound, an
upper bound, and an ext ent that is defined as:

MAX (upper bound -1ower bound+ 1, 0)

Bounds are integer valued and may be positive, zero, or
negative. Unlike FORTRAN 77, it is permissible for the
| ower bound to be greater than theupper bound; if
this happens then there are no elementsin the dimension
and the extent of the dimension is defined to be zero.

Thesi ze of an array isthe total number of array
elements, computed as the product of all its extents. If
the extent of any dimension is zero, the size of the array
is zero and the array containsno elements. An array with
no elements is known as a zero-sized array.

I Intel Fortran Programmer’s Reference

4-4

shape The shape of an array isavector of the extents of each
dimension of the array; the shape can thus be expressed
asaone-dimensional array of size equal to the rank of
the array being described. For example, if given the
following declarations:

REAL :: al(10)

| NTEGER :: a2(2,4)
LOG CAL :: a3(5,5,0)
COWPLEX :: s1

Therank of al is1 asit only has one dimension, the extent of the single
dimension is 10, and the size of al isaso 10. al hasa shape represented by
the vector [10].

a2 has been declared with two dimensions and consequently has a rank of
2, the extents of the dimensions are 2 and 4 respectively, and the size of a2
is8. The vector [2, 4] represents the array’s shape.

a3 hasarank of 3, the extent of the first two dimensionsis 5, and the extent
of thethird dimension is zero. The size of a3 isthe product of all the extents
and is therefore zero. The shape of a3 is[5, 5, 0].

s1 isascaar and therefore has a rank of zero, and its shape is represented
by an empty vector.

Array Declaration

An object isdeclared as an array if its declaration includes an array
specifier. An array specifier is enclosed in parentheses and defines the rank
(number of dimensions), or the rank and shape, of the array and may either
follow the DI MENSI ON keyword in atype declaration statement or may
follow the declaration of a name.

See and
for descriptions of the statements
that can be used to declare arrays.

Arrays I

Syntax

In Fortran 95, an array specifier is used to classify an array as
explicit-shape, assumed-shape, deferred-shape, or assumed-size; these
different classes of array are discussed later under the section

, page 4-7.
The syntax of an array specifier is:

array-spec is either a comma separated list of one of the following:
® explicit-shape-spec
® assuned-shape-spec
® deferred-shape-spec
® assuned-si ze-spec
explicit-shape-spec
[l ower-bound :] upper-bound
assumned- shape- spec
[l ower - bound]
def err ed- shape- spec

assumned- si ze- spec
[explicit-shape-spec-list ,] [lower-bound :] *
Each set of bounds defines one dimension of the array, and the number of

sets of bounds definestherank of thearray. If alower bound is not specified
then the default lower bound for that dimensionis 1.

Examples of Array Specifiers

The following declarations illustrate various forms of an array specifier.
REAL :: x(10, 1:5, -2:3)

DI MENSI ON p(1500)

I x and p have explicit shape, in this exanple

I the bounds are constant

I NTEGER :: ibuff (i:,j:), obuff (:)

I ibuff and obuff are assumed-shape arrays

I Intel Fortran Programmer’s Reference

4-6

I NTEGER :: cnts (mdi m ndim

an array with an explicit shape, the bounds
are not constant

COWPLEX, ALLOCATABLE, DI MENSION (:,:) :: coords

declares an array with deferred shape

REAL, PO NTER :: ptr(:,:,:)

a pointer with deferred shape and a rank of
t hree

CHARACTER*S5 :: text(10,%)

the array text has an assuned size

Array Element Storage Order

The sequence in which elementsin an array are stored in memory (the array
element order) isimportant in certain circumstances, such as:

Input and output list items

Internal filel/O

The DATA statement

Argument association involving assumed-size or explicit-shape arrays
Certainintrinsic functions (for example, RESHAPE, TRANSFER, PACK,
and UNPACK)

Array constantsin array constructors

Storage association (for example, as entailed by use of the COVMON or
EQUI VALENCE statements)

Array elements are stored in column major order — that is, the order is
columnwise: the subscripts along the first dimension vary most rapidly, and
the subscripts along the last dimension vary most slowly. Thus the order of
theelementsin an array declared with thebounds(3, 2) is(1,1),(2, 1),
(3,1),(1,2),(2,2),(3,2).

Arrays I

In general, for an array a declared as

DI MENSION a(1:ul, 1:u2, 1:u3

the position of array element a(s1, s2, s3) isgiven by the formula

sl + (s2-1) x ul + (s3-1) x ul x u2

If the array has more dimensions, the formulais extended accordingly, as

implied by its structure. If the lower bound of any dimension is not 1, then
the formula has to be elaborated dlightly, but the general form is unaffected.

Notice that the upper bound of the rightmost dimension (u3) does not
appear. An assumed-size array, described below, is characterized in its
declaration by the rightmost upper bound being given as an asterisk (*).
Thisis possible because its value is not needed in order to compute the
position of any array element.

Array Categories

There are several different categories of arraysin Fortran 95. Each category
is based on the shape of the array as defined by its array specifier.

Explicit-shape Arrays

Anexplicit-shape array hasexplicitly declared bounds for each
dimension; they are neither taken from an actual array argument
(“assumed”) nor otherwise specified later, prior to use (“deferred”). Each
dimension of an explicit-shape array is of the form:

[l ower bound:] upper bound

For a given dimension, the values of the lower bound and upper bound
define the range of the array in that dimension. The bounds may be positive,
negative, or zero. Normally the lower bound will be | ess than the upper
bound; if the lower bound is the same as the upper bound then that
dimension will contain only one element; if it is greater, then the dimension
contains no elements, the extent of the dimension will be zero, and the array
will be zero-sized. If alower bound is not specified then it will assume the
default value of 1.

4-7

I Intel Fortran Programmer’s Reference

4-8

More generdly, the bounds of a dimension may be any specification
expression. A specification expression is dways a scalar and of type
integer; it is either a constant expression, or one in which al variables are
available at the time the subprogram is activated. Chapter 5, “ Expressions
and Assignment,” describes specification expressions in more detail.

There are various forms of explicit-shape array; the simplest formis
represented by an array declaration in which the name of the array isnot a
dummy argument and all the bounds are constant expressions. This form of
array may have the SAVE attribute and you can declare it in any program
unit.

An automatic array isan explicit-shape array that is not adummy argument,
and which has at least one nonconstant bound. You can declare automatic
arraysin asubroutine or function, but they may not have the SAVE attribute
nor can they beinitialized. Large automatic arrays may adversely affect the
performance of your programs on Windows* -based operating systems.

A dummy array isidentified by the appearance of its name in a dummy
argument list; its bounds may be constants or expressions. Dummy arrays
can only be declared in a subroutine or function.

An adjustable array is a particular form of adummy array; its name is
specified in adummy argument list but at least one of its boundsis a
nonconstant specification expression.

Explicit-shape arrays may also be used as function results; these are

described in the section page 4-34, and also in
Chapter 7,

Example

The subroutine below demonstrates how explicit-shape arrays may be
declared.

SUBROUTI NE sort(listl,list2, mn)

I exanples of arrays with explicit shape
INTEGER :: mn

I NTEGER :: cnt1(2:99)

I a rank-one array, having an explicit shape

I represented by the vector [98]

Arrays I

REAL :: list1(100), list2(0:m1,-mn)

I two dunmy arrays with explicit shape, listl

! is a rank-one array with an extent of 100 and
I list2 is a rank-two array with an extent of

' m* (mtn+l). Note that list2 is also an

I adjustable array

REAL :: work(100,n)

! work is an automatic array as it does not
| appear in the dummy argunment list and its
I bounds are not constant

| NTEGER, PARAMETER :: buffsize =0

REAL :: buffer (1: buffsize)

! the array buffer has explicit shape, in this
I exanpl e however it has no elenents and is

I zero-sized

END SUBROUTI NE SORT

Assumed-shape Arrays

An assumed-shape array is adummy argument that assumes the shape of
the corresponding actual argument. This should be compared with an
explicit-shape dummy array in which the shape of the array is specified
locally.

Each dimension of an assumed-shape array has the form:
[1 ower bound]
where

| ower bound isaspecification expression; it can be omitted and
would then take the default value of 1. Note that it isthe
shape of the actual argument that is assumed and not its
bounds and that the actual and dummy argument may
have different lower (and upper) bounds for each
dimension.

I Intel Fortran Programmer’s Reference

An assumed-shape array subscript may extend from the specified | ower
bound to an upper bound that is equal to the lower bound plusthe extent in
that dimension of the actual argument minus one.

A procedure that declares an assumed-shape dummy argument must have
an explicit interface in the calling program unit; thisis explained more
thoroughly in Chapter 7, “Program Units and Procedures.”

Examples

The subroutine below demonstrates various forms of an assumed-shape
array declaration.

SUBROUTINE initialize (a,b,c,n)

I exanpl es of assumed-shape arrays
INTEGER :: n

I NTEGER :: a(:)

I the array a is a rank-one assumned-shape array,
I it assunmes (or inherits) its shape and size

I fromthe correspondi ng actual argunent; its

! lTower bound is 1 regardless of the | ower bound
I defined for the actual argunent

COWPLEX :: b(ABS(n):)

I a rank-one assuned-shape array, the |ower

! bound is ABS(n) and the upper bound will be
I the | ower bound plus the extent of the

I correspondi ng actual argunent minus one

4-10

Arrays I

REAL, DIMENSION(:,:,:,:,:) :: ¢
I an assuned-shape array with 5 di mensions
I (rank=5), and all the | ower bounds are 1

END SUBROUTINE initialize

As mentioned previoudly, if a procedure has an argument that is an
assumed-shape array, its interface must be known to the calling program
unit. For example, if subroutinei ni ti al i ze isan external subroutine,
then it must appear in an interface block asfollows:

PROGRAM nmi n

| NTEGER :: parts(0:100)
COWPLEX :: coeffs(100)
REAL :: onmega(-2:+3, -1:+3, 0:3, 1:3, 2:3)

I NTERFACE

SUBROUTINE initialize (a,b,c,n)

INTEGER :: n

I NTEGER :: a(:)

COWPLEX :: b(ABS(n):)

REAL, DIMENSION(:,:,:,:,:) :: ¢C
END SUBROUTI NE initialize

END | NTERFACE

CALL initialize &
(parts, coeffs, onega, | bound(onega, 1))

END PROGRAM nmmai n

4-11

I Intel Fortran Programmer’s Reference

4-12

Interface blocks are described further in Chapters 7 and 10.

Deferred-shape Arrays

A deferred-shape array is either an alocatable array or it is a pointer array.
The array specification for a deferred-shape array is of the form:

[,]
It defines the rank of the array but not the bounds. The array is therefore
said to have deferred-shape.

The shape of the array becomes defined either when the array isallocated or
when a pointer array becomes associated with atarget. Note that the form of
array specifier for assumed-shape arrays and deferred-shape arraysis
similar, but a deferred-shape array has either the ALLOCATABLE attribute
which defines an allocatable array or it has the PO NTER attribute which
defines apointer array; an assumed-shape array may have neither of these
attributes.

Pointer Arrays

A pointer array is an array that has the PO NTER attribute and may
therefore be used to point to some target object. Initially a pointer array has
no shape and may not be referenced until it becomes associated either
through an ALLOCATE statement or through a pointer assignment statement.

describes in more detail the
concept of pointers and how they may become associated, and
disassociated, while
explains how the POl NTER statement may be used to declare a pointer.

Once a pointer array has become associated you can useit in any contextin
which an array is allowed. Note that a pointer array is not an array of
pointers; that is, its elements do not have the PO NTER attribute. To create
an array of pointers, define a derived type consisting of asingle pointer
component and declare an array of this derived type.

Examples

The following declarations illustrate the concepts associated with declaring
apointer array.

Arrays I

REAL, PO NTER, DI MENSION(:) :: pl

! pl is declared as a pointer to a rank-one
I array of type real, pl is not associated
I with any target

| NTEGER, PO NTER :: p2(:,:)

| p2is a pointer to an integer array of

' rank-two,

I p2 nust be associated with a target before it
I can be referenced

TYPE err_type
I NTEGER :: cl ass
REAL :: code
END TYPE err_type
TYPE(err_type), PO NTER, DIMENSION(:,:,:) :: err
! err is a pointer to a rank-3 array of type
I err_type

| NTEGER, POl NTER :: p3(n)

! this is ILLEGAL, pointers cannot have an

I explicit shape

Allocatable Arrays

An alocatable array has only its name and rank declared at compile-time,
plusthe ALLOCATABLE attribute. It can be alocated and deallocated as
required by use of the ALLOCATE and DEALL OCATE statements. These
statements give the user the ability to manage space dynamically at
execution time.

The ALLOCATABLE statement and attribute, the ALLOCATE statement, and
the DEALLOCATE statement are described in Chapter 10.

An allocatable array has an alocation status which isinitialy set to

not - al | ocat ed. The array may not be referenced whileit isin this state
except as an argument to the ALLOCATED intrinsic inquiry function, which
may be used to determine the allocation status of an allocatable array. Once
the allocatable array is allocated, its allocation status becomes al | ocat ed
and the array may be used in any context in which an array may appear. If
an allocatable array is deallocated then its allocation status returnsto

4-13

I Intel Fortran Programmer’s Reference

4-14

not - al | ocat ed. Itisan error to either allocate an allocatable array
whose statusisal | ocat ed, or to deallocate an all ocatable array when its
statusisnot - al | ocat ed.

The alocation status of alocal allocatable array that does not have the
SAVE attribute becomes undefined if the allocation status of the array is
al | ocat ed when the procedure in which it is defined exits. In

Intel® Fortran such an array will be automatically deallocated.

Although pointer arrays provide more functionality, allocatable arrays are
simpler and provide more opportunities for compiler optimization. When
exiting a particular scope, any array that is ALLOCATABLE and is not
SAVEd is automatically deallocated. This prevents memory |eaks.

Example

The following subroutine contains an example of an allocatable array
declaration and uses the ALLOCATED intrinsic function to illustrate how its
allocation status may change.

SUBROUTI NE f oo
I denpnstrate the use of an allocatable array

REAL, ALLOCATABLE, DI MENSION(:,:) :: matrix
! the array matrix is rank-2 allocatable
I array, it has no shape and no storage

INTEGER :: n
LOG CAL :: al
LOG CAL :: a2
LOG CAL :: a3

al = ALLOCATED(matri x)

I al is assigned the value . FALSE. as the
I allocation status of the array is

! not allocated

READ *, n

ALLOCATE(mat ri x(n, n))

Arrays I

! dynamically create the array matrix; after
I it has been allocated the array will have
! the shape [n, n]

a2 = ALLOCATED(matri x)

| a2 is assigned the value . TRUE. as the

! allocatable array does exist and its

| allocation status is therefore allocated

DEALLOCATE (nmatri x)

a3 = ALLOCATED (matri x)

I a3 is assigned the value .FALSE. as the
I allocation status of the array is

I not-allocated

END SUBROUTI NE f oo

Assumed-size Arrays

Anassuned- si ze array isanolder FORTRAN 77 feature that has
been modernized in Fortran 90 with the introduction of assumed-shape
arrays, the use of assumed-size arraysin new code is discouraged.

An assumed-si ze array is a dummy argument whose size is not specified;
thisisin contrast to an explicit-shape dummy array where the extents of
each dimension are specified, and an assumed-shape array where the
extents of each dimension are assumed from the corresponding actual
argument. The form of an assumed-size array specifier isthe same as for an
explicit-shape array except that the upper bound of the last dimensionis an
asterisk (*).

All dummy array arguments and their corresponding actual argument share
the sameinitial el ement and are storage-associated. In the case of

explicit-shape and assumed-size arrays, the actual and dummy array do not
have to have the same shape or even rank. However the size of the dummy
array must not exceed the size of the actual argument. Therefore a subscript

4-15

I Intel Fortran Programmer’s Reference

4-16

in the last dimension of an assumed-size array may extend from the lower
bound to another value, providing that the value does not cause the
reference to go beyond the storage associated with the actual argument.

Because the last dimension of an assumed-size array has no upper bound,
the dimension has no extent and the array consequently has no shape. The
name of an assumed-size array therefore cannot be used in contextsin
which ashape is required, such as the name of afunction result or in a
whole array reference.

Example

The example below shows how an assumed-size array may be declared.
SUBROUTI NE foo(a, n)

I an exanpl e of an assuned-size array

INTEGER :: n

REAL :: a(n,3:*)

! declares a to be a rank-two array, the array

I has no shape and its size nust not be greater
I than the size of associated dummy argunent;

! the bounds of the first dinmension range from1l
I through to n, the | ower bound of the second

I dinension starts at 3, and its upper bound is
! not specified

END SUBROUTI NE f oo

Whole Arrays and Array Subobjects

An array may bereferred to either asawhole or in part. Any part of an array
that may be referenced independently of other parts of the array is known as
a subobject of the array, and includes either an array element or an array
section. These terms are explained below.

Arrays I

Array Elements

Anindividual element of an array is ascalar and has the same type and type
parameters as the array; an element of an array may be referred to by an
array element reference that takes the form of the array name followed by a
subscript list enclosed in parentheses. A subscript list is an ordered set of
subscript expressions separated by commas, one expression for each array
dimension. Each subscript expression must be scalar and of typeinteger and
must have a value that lies within the declared bounds for that dimension.

Intel Fortran also allows a subscript expression of type real; the expression
will be automatically truncated to type integer after it has been evaluated.

An array element may be used in any expression in which ascalar is
allowed

Example

The example bel ow declares various arrays and then shows how el ements of
these arrays may be referenced. The example also contains some invalid
array element references and explains why they areillegal.

SUBROUTI NE f oo(a, b, c, n)

INTEGER :: n
I NTEGER :: a(:)
I ais an assuned-shape array

REAL :: Db(-100:n)
! b is an adjustable dumry array
REAL :: c(100, 100)

I ¢ is an explicit-shape dunmy array

REAL, ALLOCATABLE :: d(:,:,:)
! dis an allocatable array
REAL, PO NTER :: e(:,:)

| eis a pointer to a rank-2 array

4-17

I Intel Fortran Programmer’s Reference

4-18

REAL, TARGET :o f(5,5)

I f is an explicit-shape array with rank 2 and
I size 25

I NTEGER :: i,]

I exanples of valid array el enment references

a(1) = 100b(a(n)) = b(a(n)) + ABS(c(10*i,j)) /
ABS(a(n))

ALLOCATE(d(10, 10, n))
! allocate d with shape [10, 10, n]
d(5,5,n) = LOGLO (n)

e =>f
| associate pointer e with array f
e(1,1) =n

| assign nto the first array elenment of e,
! this is equivalent to assigning nto f(1,1)

I exanples of INVALID array el ement references

a(0) = 100

I illegal - a reference outside the array
! bounds, the default |ower bound of an

I assunmed shape array is 1

c(100) = 123
! illegal - the array has a rank of two but
only! one subscript has been specified

c(101,1) = 0.0
I illegal - the subscript 101 is outside the
I bounds of its dinension

END SUBROUTI NE f oo

Arrays I

Whole Arrays

All the elements of an array are referenced if the array name is used without
any bracketed subscript list; thisis known as awhole array reference.
Whole array references may be used in such contexts as input/output
statements and argument lists, and also in any array-valued expression. An
array-valued expression is an expression whose value is an array and may
be formed from operations involving arrays; thisis discussed in more detail
in afollowing section.

Example

The subroutine in the exampl e below illustrates various contextsin which a
whole array reference may be used. It also contains some examples of
simple array operations, which will be explained later in the section “

SUBROUTI NE change (a, b)
I exanples of references to a whole array

REAL, DIMENSION(:,:) :: a,b
! declare a and b to be rank-two assuned-shape
I arrays

REAL, ALLOCATABLE :: temp(:,:)
| tenmp is an allocatable array, it will be
I assigned storage bel ow

ALLOCATE(TEMP(SI ZE(a, 1), Sl ZE(a, 2))

I create tenp with the sane shape as the
I assuned- shape array a

tenp = a

I copy all of array a into tenp

subtract 1.0 from each elenent of b and

a=b- 1.0
!
I assign to the corresponding el enent of a

4-19

I Intel Fortran Programmer’s Reference

4-20

decrement each element of b by the

b=D>b- tenp
!
I corresponding element in tenp

WRI TE(*,*) b
DEALLOCATE(t enp)

END SUBROUTI NE change

Array Sections

The term array section is used in Fortran 95 to denote an array that isa
selected portion of another array, known as the parent. An array section is
an array evenif it consists of only one element (or possibly none) and can
therefore be specified wherever an array name may be specified.

In Fortran 95, an array section may be defined:
® By asection subscript list

®* By anarray of derived-type components
®* By anarray of character substrings

Each of these will be described in turn below.

Section Subscript List

There are two subscript forms used to describe a section: subscript triplets
and vector subscripts.

® The subscript triplet notation enables alower bound, an upper bound,
and a stride to be specified for any dimension of the parent array. A
subscript triplet sel ects elementsin aregular manner from adimension;
the stride can, for example, be used to select every second element.

® A vector subscript isany expression that results in a rank-one integer
value; the values of the array select the corresponding elements of the
parent array for a given dimension. Vector subscripts can be used to
describe an irregular pattern and may be useful for indirect array
addressing such an indexing by atable.

Arrays I

Syntax
An array section reference using a section subscript list is:
array-nanme (section-subscript-list)

secti on-subscri pt - isacomma-separated list of
list section-subscri pt.

secti on-subscri pt isoneof:
® subscript
® subscript-triplet
® vector-subscript

subscri pt is:

scal ar-i nt eger - expressi on

subscri pt - is
triplet [subscript] : [subscript] [: stride]
stride is

scal ar-i nt eger - expressi on

vector - is arank-one integer array expression.
subscri pt

A section-subscript-1list mustspecify asecti on-subscri pt
for each dimension of the parent array. The rank of the array section is the
number of subscript-triplets andvector-subscri pts that
appear inthesect i on-subscri pt -1i st ; and because an array section
isalso an array, at least onesubscri pt-tripl et or
vect or - subscri pt must be specified.

Subscript triplet

The first subscript of a subscript triplet specifies the lower bound for the
dimension, the second subscript specifies the upper bound, and the stride
defines the increment between subscript values. All three components of a
subscript triplet are optional; if abound isleft out, then that bound is taken
from the parent array; if the stride is omitted, then the increment between
subscript values is assumed to be one. However, you must specify an upper
bound if asubscript triplet is used in the last dimension of an assumed-sized
array.

4-21

I Intel Fortran Programmer’s Reference

4-22

The stride must not be zero; if it is positive then the subscripts range from
the lower bound up to and including the upper bound, in steps of stride.
Note that when the difference between the upper bound and lower bound is
not a multiple of the stride then the last subscript value selected by the
subscript triplet will be the largest integer value that is not greater than the
upper bound; thus the array expressiona(1: 9: 3) will select subscripts
1,4, and 7 from a.

It therefore follows that abound in a subscript triplet need not be within the
declared bounds for that dimension of the parent array so long as all the
elements selected are within its declared bounds.

Strides may be negative aswell as positive. A negative stride selects
elements from the parent array starting at the lower bound and proceeds
backwards through the parent array in steps of the stride down the last value
that is greater than the upper bound. For example, the expression a(9:

1:- 3) will select the subscripts 9, 6, and 3 in that order from a.

If the section bounds are such that no elements are selected in adimension,
the section has zero-size; for example, the sectiona(2: 1) .

Example

The following exampl e shows the power of the subscript triplet notation in
assigning the same value to aregular pattern of array el ements.
| NTEGER, DI MENSION(3,6) :: X,Y,2

I X, y, and z are 3x6 arrays.

x =0, y=0 2=0

I These are whol e-array assi gnnments.
x(3,2:4:1) =1

y(2,2:6:2) =2

z(1:2,3:6) = 3

I Using subscript triplets, elenents of x, v,
I and z have been assigned, as follows.

! X Y z

1 0000O0O 000O0O00O 003333
1 0000O0O 020202 003333
011100 000O0O00O 000O0O0O

Arrays I

Vector Subscripts

A vector subscript is an array expression that evaluates into arank-one
integer array. The values of the expression represent the subscript value of
the elements to be selected. For example, if v represents a rank-one array
initialized with the values 4, 3, 1, 7, then the array sectiona(v) isa
rank-one array composed of the array elementsa(4) ,a(3),a(1),and
a(7) — inthat order. Note that vector subscripts are commonly specified
using array constructors that are described in the next section; as an
example of thesg, the expressionsa(v) anda((/ 4, 3, 1, 7/)) have
the same section of the array a.

There are various restrictions associated with the use of an array section
with vector subscript; they may not appear:

®* Ontheright hand side of a pointer assignment statement.
®* Inanl/O statement as an internal file.
® Asan actual argument that is associated with a dummy argument
declared with | NTENT(OQUT) or | NTENT(| NOUT) or with no
| NTENT.
Itis permissible for avector subscript to specify the same element more
than once. When a vector subscript of thisform is used to specify an array
section, the array section isknown asamany- one array section.An
exampleof amany-one array sectionis:
a((/ 4, 3, 4, 7/))
where element 4 has been selected twice. Fortran 95 does not define the
order in which elements are selected in array operations and it is therefore
illegal for amany-one array section to appear in either an input list or on the
left-hand side of an assignment statement.

A vector subscript allows irregular patterns of €l ementsto be selected as
opposed to subscript triplets that select elementsin a uniform pattern.

Example

The following example illustrates the concept of an array section using a
section subscript list.

INTEGER, DIMENSION(4) :: m= (/ 2, 3, 8, 1/)

I mis a rank-1 array that has been

I initialized with the values of an array

I constructor

4-23

I Intel Fortran Programmer’s Reference

4-24

I NTEGER :: i

REAL, DI MENSION(10) :: a = (/ (i*1l.1, i=1,10) /)
I ais arank-1 array that has been

I initialized with the val ues

! 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9,

I 11.0

REAL, DI MENSION(4,2) :: b
! bis an uninitialized 4x2 array

PRI NT *,a(m
I prints 2.2, 3.3, 8.8, and 1.1

b(:,1) = a((/ 5, 10, 6, 5/))

| assigns the values 5.5, 11.0, 6.6, and 5.5

! to the first colum of b; this is an exanple
I of a many-one array section

b(:,2) = b(MN(m4),1)

I the vector subscript MN(m4) represents a
! rank-1 array with the values 2, 3, 4, 1 and
I the second colum of b is assignhed with

! 11.0, 6.6, 5.5, 5.5

a(m = a(m + 20.0
I increments a(2), a(3), a(8), and a(l) by 20.0

PRI NT *, a
I prints 21.1, 22.2, 23.3, 4.4, 5.5, 6.6, 7.7,
! 28.8, 9.9, 11.0

Arrays I

Array of Derived-type Components

describes how derived types may
be declared. They may be scalars or arrays and may contain components
which are scalars or arrays of intrinsic type. The components may also be
variables of derived type nested to any arbitrary level. Fortran 95 requires
that in any variable name reference at most one component of the name has
anon-zero rank and a reference to an array of derived-type componentsis
one in which a component of the name, but not the last, is an array. Thus
given the declaration:

TYPE sanpl et ype

character(8) :: tine
real :: reading
| ogi cal :: flags(4)

END TYPE sanpl et ype

TYPE (sanpl etype) :: sanpl e(100)

then the operands below are examples of awhole array:

sanpl e

sanpl e(n) % | ags

and the following operand is an example of an array of derived-type
components:

sampl e% eadi ng

Thisarray hasarank of 1 and asize of 100; it consists of the array elements
sanpl e(1) % eadi ng, sanpl e(2)% eading, ...,

sanpl e(100) % eadi ng.

Similarly the operand below:

sanmpl e% i me

represents a CHARACTER(8) array, itsrank is 1, itssizeis 100, anditis

composed of the elementssanpl e(1) % i me, sanpl e(2)% i ne,. . .,
sanpl e(100) % i ne.

This concept may be taken one step further, for although the term

sanpl e% | ags isnot alowed, sanpl e% | ags(4) isvaidand
represents an array of derived-type components that is composed of all the

final elements of the component f | ags that belong tothear ray sanpl e.

4-25

I Intel Fortran Programmer’s Reference

Example

The following subroutine includes the declaration of the derived-type
sanpl e and demonstrates some simple uses of an array of derived-type
components.

SUBROUTI NE process(sanpl e, case)

TYPE sanpl et ype
CHARACTER(8):: tinme
REAL :: reading
LOG CAL :: flags(4)
END TYPE sanpl et ype
TYPE (sanpl etype) :: sanpl e(100)
| declare sanple to be a rank-1 dummy array
I of type sampl etype, the array has 100
| elenents

I NTEGER :: case

| F (case == 1) THEN
sampl e% eading = 0.0
I initializes every conponent reading of the
! array sanple to zero

ENDI F

| F (case == 2) THEN
sanmpl e% eadi ng = DI M sanpl e% eadi ng, 0. 0)
I any negative value in the array
I sanpl e% eading is replaced by zero
ENDI F

IF (case == 3) THEN
VWRI TE(*, 10) &

(sanple(i)%ine, sanpl e(i) % eadi ng, i=1, 100)
I prints two colums, the first colum

4-26

Arrays I

I contains the 100 conponents tinme and the
I second colum contains the 100 conponents
I reading

ENDI F

10 FORMAT(A, E15.7)
END SUBROUTI NE process

Array of Character Substrings

An array section of type character may a so have a substring range
specified. An array section of thisform is known as an array substring and
is composed of array elements whose values only include the specified
substring from each corresponding element of the array section.

Example

This exampleillustrates the concept of an array substring.
CHARACTER(11) :: dates(40)

dates(5:10)(8:) = "1996"

Thevariabledat es(5: 10) isan array section that includes elements 5
through to 10 of the parent array dat es, and the variable

dat es(5:10) (8: 11) isaso an array section of the array dat es but
only contains the last 4 character positions of the elements 5 through to 10.

Array Constructors

An array constructor allows arank-one array to be constructed from alist of
scalar values, arrays of any rank, and implied DO specifications. The type of
an array constructor is taken from the valuesin the list which must al have
the same type and type parameters (including character length), and its
shape is taken from the number of values specified.

An array constructor may appear in any context in which arank-one array
expression is alowed. An array with arank greater than one may be
constructed by passing the array constructor to the RESHAPE intrinsic
function.

4-27

I Intel Fortran Programmer’s Reference

4-28

Syntax

If the list contains only constant values, the array constructor may be used
to initialize anamed constant, or it may be used in an initialization
expression in atype declaration statement; however an array constructor
may not be used to initialize variablesin a DATA statement as this
statement may only contain scalar constants.

The syntax of an array constructor is:
(/ array-constructor-value-list /)
array-constructor-val ue-1li st isacomma-separated list of:

array-constructor-val ue
array-constructor-val ue isone of:

® scal ar-expression

® array-expression

® array-constructor-inplied-do
array-constructor-inplied-do is

(array-constructor-value-list , scalar-int-var-nane
=&

scal ar-int-expression , scalar-int-expression &

[, scalar-int-expression])

If an array expression appearsin avaluelist, it istreated as a succession of
values appearing in array element order (see

).
The extent of an array constructor is the number of values supplied. If no
values were supplied then the array constructor is zero-sized. For example,
the size of the following array constructor:
(/ (i, i=10,n) /)

depends on the value of the variable n; if the value of the variable isless
than 10 then the constructor will contain no values.

Intel Fortran allows the use of the square brackets square brackets ([]) in
placeof slashed (/ ... /). Thisnotationisan extension to the
Fortran 95 Standard.

Arrays I

Examples
x = (/19.3, 24.1, 28.6/)
I Array x is assigned three real val ues.

j = (/4, 10, k(1:5), 2 +1, &

(mn), n=-7,-2),16, 1/)
I One vector, consisting of 16 integer val ues,
I is assigned to j.

a = (/(base(k), k=1,5)/)
I 5 values are assigned.

REAL, DI MENSI ON(2):: t

PARAMETER (t=(/ 36.0, 37.0/))

I The nanmed constant t is a rank-one array

I initialized with the values 36.0 and 37.0.

z=RESHAPE((/1,2,3,4,5,6,7,8/), (/2,4]))

! the array constructor is reshaped as 1 3 5 7
! 2468

! and is then assigned to z

al aska = site("NOWE", (/-63,4/))
I An array constructor is used for the second
I conponent of the structure constructor
diagonal = (/ (b(i,i), i=1,n) /)
hilbert = RESHAPE((/ ((1.0/(i+j), i=1,n), &
i=1L,n) /), (/ n,n/))
ident = RESHAPE ((/ (1, (0, i=1,n), j=1,n-1), &
1/7), (/ nnlt))
Asillustrated by the last three examples, an array constructor with implied
DGCs and the RESHAPE function can be used to construct arrays that cannot
be expressed conveniently with aternative notations.

4-29

I Intel Fortran Programmer’s Reference

4-30

Zero-sized Arrays

The size of an array is the product of the extents of each dimension; if any
extent is zero then the array has no size and is known as a zero-sized array.
Any of the arrays described in this chapter may be zero-sized apart from
assumed-sized arrays, which have no specified size. This concept of a
zero-sized arraysis important if anumber of algorithms are to be expressed
naturally.

Note that while zero-sized arrays have no elements, they do still have a
shape and thisisimportant when they are used in array expressions which
are described below. Operations involving zero-sized arrays are generally
null operations.

Examples
Some examples of zero-sized arrays are given below:
| NTEGER, PARAMETER :: cases = 0
REAL :: datal(cases, 2), data2(cases, 3)
I both datal and data2 are explicit-shape
I arrays and have zero size; datal has
| shape [0, 2] and data2 has the shape
' [0, 3]
DOi = 1,n+1
a(i) = SIN(x(i))
b(i:n) = Db(i:n) + a(i)
ENDDO
I the array section b(i:n) becones a
| zero-sized array in the last iteration of
! the DO | oop
WRI TE(*, " (9a)", ADVANCE="NO') &
(/ (title(i),i=1,cols) /)
! if the variable cols is less than 1, then
! the array constructor contains no val ues
! and no data will be output

Arrays I

Array Expressions

The preceding sections have primarily been concerned with describing the
concepts of arraysin Fortran 95, the various categories of arrays, and the
different ways that they may be referenced. An important feature of
Fortran 95 is also the ability to use arrays as operands in expressions; for
example, in traditional Fortran an expression of the form

a+b

must include scalars, but in Fortran 95 the variablesa and b may equally be
arrays. Operationsinvolving arrays are performed elementally — that is, an
equivalent scalar operation is performed on each element of the arrays.

Array operations generally require the arrays invol ved to be conformable
—that is, they must have the same rank (number of dimensions), same
shape, and the extents of corresponding dimensions must be the same.
Assumed-size arrays therefore may not be used in an array operation,
although a section of such an array is allowed. Note that conformability
does not require the lower and upper bounds of corresponding dimensions
to be the same.

The Fortran array semantics specifies that array operations are conceptually
performed in parallel — that is, the result of such an operation must be as if
the operation were performed on each element independently and in any
order. The practical effect of thisisthat, because an assignment statement
may have the same array on both the left and right-hand sides, the
right-hand sideisfully evaluated before any assignment takes place. This
means that in some cases the compiler may create temporary space to hold
intermediate results of the computation.

A scalar may appear in an array expression. The effect isasif the scalar
were evaluated and then broadcast to form a conformable array of elements,
each having the value of the scalar. Thus a scalar used in an array context is
regarded as conformable with the array or arrays involved.

Zero-sized arrays may also be used in an array expression, but while they
have no elements they do have a shape and must therefore follow the rule of
conformable arrays. Note that scalars are conformable with any array and
may therefore be used in an operation involving a zero-sized array.

4-31

I Intel Fortran Programmer’s Reference

4-32

Example

The following example contains valid and invalid examples of array
operations.

SUBRQUTI NE f oo(a, b, c)

REAL cooal)

I a is an assuned-shape array with rank-one
REAL, PO NTER :: b(:,:)

! bis a pointer to a rank-two array

REAL roc(*)

I ¢ is an assuned-size array

REAL, ALLOCATABLE :: d(:)
! dis an allocatable array, its shape can
I only be defined in an ALLOCATE st at enent

ALLOCATE(d(SI ZE(a)))

I creates the array d with the sane size as a;
I in this exanple a and d are conformabl e as

! they have the sanme shape

d =a
I copies the array a into d

b=0.0

I sets each el enent of the array associ ated

I with b to 0.0; the effect is as if the scal ar
I were broadcast into a tenmporary array, wth

I the same shape as b,that is then assigned

I to the left-hand side

Arrays I

d
!
!
!

=a+d

correspondi ng el enents of a and d are added
toget her and then stored back into the
corresponding array el ement of d

= a + SQRT(d)

conceptually the operand SQRT(d) is eval uated
into an internediate array with the sanme shape
as d; each elenent of the internediate array
will be added to the correspondi ng el ement of
a and stored into the correspondi ng el ement of
d

DEALLOCATE(d)

exanpl es of invalid uses of arrays

=c

illegal - c is an assunmed-size array and so
has no shape; an assuned-size array may not be
used as a whole array operand (except in an
argunent |ist)

—a+bhb
illegal - the arrays a and b do not have the
same shape and are therefore not conformble

=—a+d

illegal - in this exanple d has already been
deal | ocated and nay not be referenced
subsequent |y

END SUBROUTI NE f oo

4-33

I Intel Fortran Programmer’s Reference

4-34

Array Functions

Functions may be used in array expressions. Aswell as returning a scalar

result, afunction may also be defined to return an array result. Array

functions may be used in any array expression provided that they do not

appear:

® |naninputlist

®* Ontheleft side of an assignment statement (unless returning the result
from within afunction)

Array functions may aso be used in an array expression wherever a scalar
function referenceis allowed but must be conformable—that is, the
function result must have the same shape as the expression. Functions that
return arrays are also known as array-valued functions and may be either:
® |ntrinsic functions

® User-defined functions

Intrinsic Functions

The group of functions known as elemental procedures and transformation
procedures have particular relevanceto array expressions. Elemental
procedures are specified for scalar arguments, but when used with an array
argument will return an array result with the same shape asits argument(s);
each element of theresult is asif the function were applied to each
corresponding element of the argument. Examples of elemental intrinsic
procedures are the mathematical functions SQRT and SI N.

A transformational procedure on the other hand generally has one or more
array arguments that the procedure operates on as a whole, and usually
returns an array result whose elements may depend not only on the
corresponding elements of the arguments but also on the values of other
elements of the arguments. The RESHAPE intrinsic mentioned earlier in the
chapter is an example of atransformational procedure; other examples are
theintrinsic functions SUMand MATMUL.

Arrays I

User-defined Functions

A user-defined array function may be PURE or ELEMENTAL if it is declared
as PURE or ELEMENTAL and meets the constraints for a PURE or
ELEMENTAL function. A reference to a user-defined array function must
obey the rules for functions in general, and must also conform to the shape
of the expression in which it appears.

User-defined functions are described in

Example

The following example shows how an array-val ued function may be
referenced.

PROGRAM mai n

I the following interface block describes the

I characteristics of a function genrand; the

I function inputs a single integer scalar and

! returns a real array of rank-one with an

I extent equal to the value of its argunent

| NTERFACE
FUNCTI ON genr and(n)
I NTEGER: : n

REAL, DI MENSION (n)::genrand
END FUNCTI ON genr and
END | NTERFACE

REAL :: a(100)
REAL :: b(10,10)

a = genrand(Sl ZE(a))
!

the array a is set to the result returned by
I the function genrand, note that the left

4-35

I Intel Fortran Programmer’s Reference

4-36

I and right hand side are confornable.

b = RESHAPE(a + genrand(100),(/ 10, 10 /))

I each elenent of a is added with the

I corresponding el ement of the result returned
! by genrand to form an internediate rank-one
I result that is passed into the intrinsic

I function RESHAPE. In this exanple, the

I RESHAPE intrinsic transforms its argunent

! into a 10 by 10 array; again the left and

I right hand side are conformable.

END PROGRAM rmmai n

Array Inquiry Functions

Fortran 95 has a number of intrinsic inquiry functions that may be used to
interrogate the properties of an array. The array need not be defined as these
functions examine the array itself rather than its values, but in general, an
alocatable array must have been allocated and a pointer array must either
be associated with atarget or have been explicitly disassociated.

The inquiry functions that can be used to return the properties of an array
are;

ALLOCATED interrogates whether an allocatable array is allocated.

ASSQOCI ATED examines the association status of a pointer to determine
whether it is associated with a target.

LBOUND returns either the lower bound of a specific dimension or
the lower bounds of the array as awhole.

SHAPE returns the shape of the array as arank-oneinteger array.

S| ZE returns the size of the array or the extent of a particular
dimension.

UBOUND issimilar to LBOUND but returns an upper bound for a
dimension or the upper boundsfor all the dimensions of
the array.

Expressions and
Asslgnment

This chapter describes the syntax and uses of the different forms of
expressions and assignments in Fortran 95.

Expressions

An expression can consist of operands, operators, and parentheses, and
defines a computation that upon evaluation yields aresult. This result can
be an operand in alarger expression.

Expressions are used in many contexts in Fortran 95, for example, in
assignment statements, in procedure references, and in output statements.
An expression has avalue and therefore atype and akind. Expressions are
formed from operands and operators that may be intrinsic or user-defined.

An operand may be a constant, variable, array element, array section,
structure component, substring, array constructor, structure constructor,
function reference, or an expression enclosed in parentheses. Parentheses
have the usual mathematical meaning.

An operator can be an intrinsic operator or a user-defined operator. The
intrinsic operators are defined within the language; each has a specific
meaning for a set of defined operand types. The range of typesthat an
intrinsic operator accepts can be extended, and entirely new operators can
be defined, by inclusion of an appropriate interface block and function
subprogram definitions. Detailsare givenin

5 Intel Fortran Programmer’s Reference

5-2

Examples

3. 14159

I A constant is an expression.

\%

! Avariable is an expression.
2.0* a- b** 3.3

I An expression using *, -, and **.

SIN(atb) - a * SQRT(b) / d
I An expression using intrinsic functions
I SQRT and SIN.

a .plus. b-c .tines. f
I An expression using user-defined
I operators -,.plus., and .tines..

(/ 1, 2, 3171) ** 2 +v
I An array expression, using an array
I constructor.

fen(x+y) * SUM aa, DI M-1)

I An expression using the intrinsic

I function SUM and an external function
I fcn.

. NOT. |
I An expression using the unary | ogical
I' _.NOT.intrinsic operator.

(3.0, 5.0) - CONJH cx)
I An expression using a conplex constant

I and intrinsic function CONJG

rational (1, 2*j) * rational(i, j)

Expressions and Assignment 5

I An expression using the structure
! constructor rational and an extended
I definition of the intrinsic operator *.

Formation of Expressions

The expressions can be primary, consisting of operands only, and more
complex, including both operator(s) and operand(s). I n addition, there could
be special forms of expressions. All these forms are described in the
following sections.

Primary

A primary, the simplest form of expression, consists only of an operand,
that can be any of:
® A constant or variable

1.0, 'ab’, a
®* Anarray element or array section

a(1,3), a(1,2:3)
® A character substring or structure component

ch(1:3), enployee¥mane
®* Anarray constructor

(/1.0,2.0/)
® A structure constructor

enpl oyee(8, “WIson”, 123876)
® A function reference

SQRT(x)
®* Anexpression in parentheses

(b + SIN(y)**2)
When the primary is an array variable, the complete array isreferenced. An
assumed-size array variable cannot be a primary. An array section of an
assumed-size array can be aprimary if the extent of the last dimension of
the section is defined by the use of a subscript, a section subscript with an
extent for the upper bound, or avector subscript. (See for
adiscussion of arrays.)
If the primary has the POl NTER attribute, then the target associated with it
is used as the operand.

5-3

5 Intel Fortran Programmer’s Reference

5-4

Operators
The more general form of an expressioniis:
[operandl] operator operand2

If oper and1 is present then the operator is binary (operates on two
operands), otherwise it is a unary operator (operates on only one operand).

lists the intrinsic operators and the types of operands for which

they have a defined meaning.
Note that:

The operators+, -,/ , *,and** are used for addition, subtraction,
division, multiplication, and exponentiation respectively.

The operators + and - can be used as unary or binary operators.
The operator / / isused to concatenate two strings.

The Standard does not allow two adjacent operators. For example,i +
-j isnot valid; thisexample should be rewrittenas i + (-j).
However, Intel® Fortran does allow the exponentiation operator to be
followed by asigned entity, for example, i ** -] ispermittedandis
equivalenttoi ** (-j).

Therelational operators . EQ , . NE. , and othersare used to compare
values.

L ogical operators are available to perform Boolean arithmetic; these
are. NOT., . AND., . OR.,. EQV. ,and . NEQV. . Their behavioris
describedin

Asan extension, Intel Fortran also supportsthe . XOR. operator, which
isequivalent to . NEQV. .

A more detailed description of theinterpretation of the operatorsisgivenin

Expressions and Assignment 5

Table 5-1

Intrinsic Operators

Category Operators Valid Operand Types
Arithmetic *x Numeric, of any combination of
* types and kind parameters
+-
Character /1 Character, of any length but same

kind parameters

Relational .EQ. .NE. Both operands of numeric type
—— /= (mixed kind parameters allowed),
or both of character type, with
same kind parameters

Relational .GT. .GE. Both operands of numeric type

LT .LE. except complex (mixed kind
parameters allowed), or both of

> o= character type (same kind
< <= parameters)

Logical .NOT. .AND. .OR. Logical (mixed kind parameters)
.EQV. .NEQV.
. XOR.

Precedence of Operators
When an expression expands to:
operandl operatorl operand2 operator2 operand3 ...

it is necessary to define the order in which the operators will be applied.
Each operator is assigned a precedence. The defined order of evaluation is
that any subexpressions containing an operator with higher precedence than
the adjacent operators will be eval uated first. Where operators are of equal
precedence, evaluation will be from left to right, except for the
exponentiation operator (**), whichisevaluated from right to left. Any
expression or subexpression may be enclosed in parentheses; such
expressions are always evaluated first using the rules explained above. This
usage of parentheses is therefore equivalent to normal mathematical usage.

lists the precedence of the operators; it is followed by some
examples.

5-5

5 Intel Fortran Programmer’s Reference

Table 5-2 Operator Precedence
Precedence Operators
Highest User defined unary operators

Lowest

* *
*

Unary + Unary -

+ -
/1

.EQ .NE. .LT. .LE. .GI. .CGE ==
[= < <= > >=

. NOT.

. AND.

. OR

.EQV. .NEQV. .XOR.

User defined binary operators

Examples
at+b*c

isa + (b*c)

al b*c

is (a/b)*c

a**b**c

isa**(b**c)

(* hasahigher precedence than +)

(/ and * have the same precedence, and
evaluation is left to right)

(** evaluatesright to left)

a. AND. b. AND. c. OR. d
is((a. AND. b) . AND. ¢) . OR. d)

5-6

Expressions and Assignment 5

Special Forms of Expression

Within certain language constructs only strictly defined forms of expression
are permitted. For example, the value of an entity with the PARAMETER
attribute—that is, a named constant—may be defined by an expression, but
it must be possible to evaluate the expression during compilation—the
expression must be an initialization expression, a strictly defined form of
constant expression.

The bound of an array that isadummy array argument in a subprogram may
be an expression, but it must be possible to evaluate this expression on entry
to the subprogram: the expression must be a specification expression.

Constant expressions, initialization expressions, and specification
expressions are defined in the following sections.

Constant Expression

A constant expression is either a constant or an expression containing only
intrinsic operators and constant operands. I n this context, a constant
includes any well-defined part of a constant—for example, a substring with
constant start and end points, or an array or structure constructor where all
the expressions used are constants or constant expressions. A constant
expression can also includereferencesto intrinsic functionsthat can befully
evaluated at compilation time.

Certain intrinsics cannot be evaluated by the compiler; these are
ALLOCATED, ASSOCI ATED, and PRESENT, and any inquiry intrinsic with
arguments such that the property inquired about (for example type
parameters or array bounds) is not constant.

A constant expression may appear in any context in which a general
expression may be used.

Examples of a constant expression are:

123 lan integer litera
"Hello ™ // " World" I a character constant

I expression
3.0_single | areal literal constant

! where single is a naned

5-7

5 Intel Fortran Programmer’s Reference

! integer constant

coord(0.0,infinity) I a structure constructor
' in which "infinity" is
! a named const ant

(/ SQRT(x), x, x*x /) ! an array constructor in
I which x is a naned rea
I constant

X*X + 2*X*y + y*y I a constant nuneric

I expression where x and
I y are nanmed constants
SUMiterations,DIM-1) ! reference to a
I transformational
I intrinsic where
| iterations is an
I array-val ued naned
I constant
SHAPE(mat ri x) I areference to an
I inquiry intrinsic in
I which "matrix" is an
I array with constant
! bounds

Initialization Expression

Aninitialization expression is a constant expression with the following
further restrictions:
* Exponentiationisonly alowed if the second operand is an integer.
® Any subexpression used within the expression must be an initialization
expression.
* All argumentsto intrinsic function references must be initialization
expressions.
® Only the following transformational intrinsic functions may be
referenced:
— REPEAT
— RESHAPE
— SELECTED_I NT_KI ND

5-8

Expressions and Assignment 5

— SELECTED_REAL_KI ND
— TRANSFER
— TRIM

If you use an inquiry intrinsic, you can only use it to ask about an
aspect of an entity that is a compile-time constant. For example, you
can use an inquiry intrinsic to ask about the bounds of an array, or a
KI ND-type parameter.

Intel Fortran allows references to elemental intrinsic functions with
integer or character constants or named constants of an integer or character
type, so long as the parameters to the elemental function reference are
rank-zero, compile-time constant expressions.

Initialization expressions are required in the following situations:

When defining values of named constants.
When specifying a kind parameter in a type specification statement.

When specifying the KI ND dummy argument of a type conversion
intrinsic function.

For initial valuesin type declaration statements.
For expressions in structure constructors in DATA statements.
For case values in CASE statements.

For subscript expressions or substring ranges in EQUI VALENCE
statements.

The following are valid initialization expressions:

- 456
(“Hello “// “World")

an integer literal
a character constant
expression

pi *r ** 2 a constant numeric
expressi on where
pi and r are naned

ABS(i * j) a reference to an

SELECTED_REAL_KI ND(7)

elemental intrinsic in
which i and j are
named i nteger constants
a reference to a
transfornmati onal

I intrinsic

!
!
!
!
!
!
I constants
!
!
!
!
!
!

5-9

5 Intel Fortran Programmer’s Reference

5-10

The following are not valid initialization expressions:

X ** 2.5 I X is not a conpile-tine
I constant
suMm (/ i, 21)) ! reference to a

! prohibited function

Specification Expression

A specification expression is an expression that hasa scalar value, is of type
integer, and can be evaluated on entry to the scoping unit in which it
appears. Thisimposes the following conditions on primaries used in a
specification expression:

Constants or variables must be available by argument, host, or use
association or be in common.

Any variable referenced must not be adummy argument with either the
OPTI ONAL attribute or the | NTENT(OUT) attribute.

All arguments to intrinsic function references must be specification
expressions.

Elemental intrinsic function references must return integer results.
Only the following transformational intrinsic functions may be
referenced:

— SELECTED_I NT_KI ND

— SELECTED_REAL_KI ND

— TRANSFER

Theinquiry intrinsics ALLOCATED, ASSOCI ATED, and PRESENT may
not be referenced.

Other inquiry intrinsics may be referenced provided that the property
interrogated is not defined by either a pointer assignment or
ALLOCATE statement; furthermore, an inquiry intrinsic may not
interrogate the following properties of an assumed size array:

— Upper bound of the last dimension

— Extent of the last dimension

— Sizeof the array

— Shape of the array

Expressions and Assignment 5

Note that there are some important differences between specification
expressions and initialization expressions; the differences are summarized
below:
® |nitialization expressions
— Must be a constant expression
— Can beeither scalar or array valued
— Canbeany type
— Can reference an inquiry intrinsic (except for ALLOCATED,
ASSQOCI ATED, and PRESENT) to interrogate a property of an
entity provided that the property is constant
® Specification expressions
— Must be scalar valued
— Must be integer type
— Can reference variables via host, argument, or use association
— Can reference variables in common
— Subject to certain restrictions, can reference an inquiry intrinsic
(except for ALLOCATED, ASSOCI ATED, and PRESENT) to
interrogate a property of an entity; the property need not be
constant.
Specification expressions may be used where any arbitrary expression is
alowed, and they may also be used to declare the bounds of an array and
the length of a character variable. Do not use them as follows:
® assubscripts or substring ranges in an EQUI VALENCE statement
® inaCASE statement
® asaKl ND parameter in a type declaration statement
® asinitia valuesin a PARAMETER or type declaration statement
® asthelimitsor increment of an implied DOloop in a DATA statement
® asaKI ND dummy argument to type conversion intrinsics

Examples of specification expressions are:

789 I an integer literal
I constant
MAX(mtn, 0) ! mand n are integer
I dummy ar gunent s
LEN(c) I ¢ is a character

511

5 Intel Fortran Programmer’s Reference

SELECTED | NT_KI ND(5)

UBOUND(ar r, DI M=n)

Interpretation of Expressions

vari abl e accessible
vi a host associ ation
a reference to a
transformati ona
intrinsic

a reference to an array
inquiry intrinsic in
which arr is an array
accessi bl e via USE
associationandnisa
variable in common

The expressions can be interpreted differently depending on the type and
the KI ND type parameters and operator types.

Intrinsic Operators

® Arithmetic operators (+, -,/,*, **)
The two operands may be of different numeric types or different KI ND
type parameters. The type of the result is as follows:

The type of either operand if the types and KI ND type parameters
are the same.

The type of the operand with the larger KI ND type parameter if the
types are the same but not the kind type parameters.

Complex if either operand is complex and the other is not.
Real if either operand is real and the other is not complex.

* Except for avaueraised to an integer power, each operand that differs
in type or kind type parameter from that of the result is converted to a
value with the type and kind type of the result before the operation is

performed.

The arithmetic operators behave as expected, with the following

gudifications:

— Thedivision of aninteger by aninteger is defined to be the integer

5-12

closest to the true result that is between zero and the true result.

Expressions and Assignment 5

— Exponentiation of an integer to anegative integer, i 1**i 2,
wherei 2 isnegative, isinterpreted as 1/ (i 1**(-i 2)), where
the division isinterpreted as described for division of one integer
by another.

— If x1 and x2 arereal with x1 negative, then x1* * x2 could be an
invalid expression, asthe result could be complex. Note, however,
that CMPLX(x1) ** x2 isvalid; the result is the principal value.

Relational operators(.EQ., .NE., .GI., .GE., .LT.,

.LE., ==, / = >, >= < <:)

If the operands of arelational operator are numerical expressions with

different type or kind type parameters, the operands are converted to

the type and kind type parameters that the sum of the operands have,
and then they are compared. If the operands are character expressions,
the shorter operand is blank padded to the length of the other prior to
the comparison. The comparison starts at the first character and
proceeds until a character differs or equality is confirmed.

Character operators (/ /)

In a character concatenation operation, each operand must be a

character type and have the same kind type parameter. The character

length parameter of the result is the sum of the character length
parameters of the operands.

Logica operators (. AND., .OR., .EQV., .NEQV., .XOR,

. NOT.)

In astandard conforming program the two operands must be of logical

type but may be of different kind type parameters. The type of the

result is as follows:

— thetype of either operand if the kind type parameters are the same

— thetype of the operand with the larger kind type parameter if the
kind type parameters are not the same

An operand that differsin kind type from that of the result is converted

to avalue with the type and kind type of the result before the operation

is performed.

5-13

5 Intel Fortran Programmer’s Reference

As an extension, Intel Fortran permits the operands to be of type
i nt eger.The behavior of thelogical operatorsis as shown in

Table 5-3:
Table 5-3 Logical operators
NEQV.

opndl opnd2 .AND. .OR. .EQV. XOR. .NOT. opnd1
. TRUE. . TRUE. . TRUE. . TRUE. . TRUE. . FALSE. . FALSE.

. TRUE. .FALSE. .FALSE. . TRUE . FALSE. . TRUE. . FALSE.
.FALSE. . TRUE. . FALSE. . TRUE. . FALSE. . TRUE. . TRUE.
.FALSE. .FALSE. .FALSE. .FALSE. .TRUE .FALSE. . TRUE.

Intel Fortran accepts. XOR. as an aternative notation for . NEQV. .

Array Operands

If both operands are arrays, then they must have the same shape. If one
operand isascalar, thenit istreated as an array of the same shape as the
other operand in which all elements have the value of the scalar. The result
of the operation is an array in which each element is the result of applying
the operator repeatedly to corresponding elements of the two operands.

Example
REAL, DI MENSION(3):: a, b, ¢

a= at 1.5

I Increases each element of a by 1.5
c=a*hb

I It is equivalent to

! DOi =1,3

I c(i) = a(i) * b(i)

I ENDDO

5-14

Expressions and Assignment 5

Evaluation of Expressions

The definition of the language allows the compiler to generate code that
evaluates an expression by any sequence that produces a result
mathematically equivalent to the sequence implied by the Fortran 95
statement. This permits optimization of the code, including, for example,
the reordering of expressions and the promotion of common
subexpressions.

Because the order of evaluation of an expression is not defined, it isinvalid
for any function reference within an expression to modify any of the other
components appearing within the expression. Thus, for example,

fun(x) +x isindeterminateif the reference tof un modifies the value of
the argument x.

Logical Operators and Integer Operands

The logical operators can be used with integer operands to perform bit
operations. The logical operations are performed for each bit of the binary
representations of the integers. When the operands are of different lengths,
the shorter is considered to be extended to the length of the other operand as
if it were asigned integer, and the result has the length of the longer
operand.

The following exampl e shows the use of logical operators to perform
bit-masking operations.

| NTEGER(2) mask2

| NTEGER(4) nmsk4

DATA mask2/ -4/

DATA mask4/ Z"ccc2"/

mask4 = mask4 . NEQV. mask?2 I'set mask4 to
1Z"ffff333e"

mask2 = . NOT. nmask4 I'set mask2 to
1Z"cccl”

5-15

5 Intel Fortran Programmer’s Reference

5-16

Arithmetic Operators and Logical Operands

Logica and integer types can be combined with the arithmetic operators.
Thelogical variable istreated as an integer of equivalent size, and the result
of the operation is an integer value. When different lengths of operands are
involved, the shorter is considered extended as a signed integer.

The following example shows how logical operands can be used
interchangeably with integer operands

LOd CAL(1) :: booleanl -4

LOd CAL(4) :: booleand = 2**16 + 27

I NTEGER(1) :: flagl

| NTEGER(4) :: flag4

flag4 = bool eand4 - bool eanl Iset flag4 to
12**16 + 31
| F (bool ean4 > 65536) THEN l'an exanpl e of

l'a rel ational
loperator with
l'a | ogical
! oper and
flagl = -(bool eand4/65536) !set flagl to -1
ENDI F

Integer and Logical Functions

References to functions are classified as expressions, and Intel Fortran
allows integer function resultsto be used in logical expressions, and also
user-defined logical function results to be used in integer expressions.

Bit Manipulation Intrinsics

In general, an integer actual argument may not be used in areferenceto a
procedure when the corresponding dummy argument is of type logical, nor
may alogical actual argument be used when the dummy argument is of type
integer. The only relaxation of thisrule allowed by Intel Fortranisin callsto
bit mani pulation intrinsics, when logical and integer arguments may be used
interchangeably.

The following code contains a standard-conforming reference to a bit
manipulation intrinsic:

I NTEGER :: mask = 65535

Expressions and Assignment 5

LOG CAL :: is_even = . TRUE

I F (1 AND(mask, 1) /= 0) is_even = .FALSE

The following code contains a similar but nonstandard reference supported
by Intel Fortran:

LOG CAL :: mask = z"ffff"

I NTEGER :: is_even = . TRUE

I F (1 AND(mask, 1)) is_even = . FALSE.

Logical Truth Values

In a standard-conforming program, a logical variable or expression will be
. TRUE. (thevaluelin Intel Fortran) or . FALSE. (thevaueO in

Intel Fortran). In nonstandard conforming programsinvolving logical
operators with integer operands or arithmetic operators with logical
operands, alogical variable or expression may have avalue other than 1 to
return . TRUE. . Inthiscase, any nonzero valueisconsidered to be. TRUE.
and azerovalue. FALSE. .

Typeless Entities

The Fortran 95 Standard defines a specific set of integer literals known
collectively as BOZ constants that represent valuesin binary, octal, or
hexadecimal. These constants may be used in DATA statements as initial
values. In Intel Fortran, BOZ constants assume atype and kind that is
compatible with the context in which they appear, and may be used
interchangeably wherever integer, logical, real, or complex literals are
alowed.

Intel Fortran allows Hollerith constants to be used in the same contexts as
BOZ constants and a so wherever a character literal may appear.

BOZ constants and Hollerith constants are collectively known as typeless
constants and are described in “ Representation of Literal Constants’ in
Chapter 3; the rules associated with the use of these constants are also
described in “Typeless Constants” in Chapter 3.

Assignment

This section discusses assignment statement and two varieties of
assignments: pointer and masked array.

5-17

5 Intel Fortran Programmer’s Reference

Assignment Statement

Table 5-4

An assignment statement transfers the value of an expression to avariable.
The syntax of an assignment statement is:
vari abl e = expression

Theinterpretation of the assignment isdefined for the allowed intrinsic type
combinations of variables and expressions; these are intrinsic assignments.
Assignments for additional combinations can be defined by inclusion of the
appropriate defined assignment interfaces and corresponding subroutine
subprograms, as detailed in

Intrinsic Assignment

The variable may be any nonpointer variable or a pointer variable that is
associated with atarget.

The valid combinations of typesfor the variable and the expression are
givenin the following table. The intrinsic functions used to describe the
conversions are detailed in the Intel Fortran Compiler User’s Guide.

Conversion of variable=expression

Variable Type
integer
real

character

logical

logical

derived type

Expression Type Conversion
integer, real, or complex | NT(expression, Kl ND(variable))

integer, real, or complex REAL(expression, Kl ND(variable))

character (same kind CMPLX(expression, Kl NI variable))
parameters)
logical Truncate expression if expression length is greater

than variable length; otherwise, pad value
assigned to variable, with blanks if necessary.

logical LOG CAL(expression, Kl ND(variable))

same derived type None

5-18

As described in the section
Intel Fortran allows integer and logical operands to be used
interchangeably. Intel Fortran also allows logical expressions to be assigned

Expressions and Assignment 5

to integer variables and integer expressionsto logical variables. So, from

, alogical expression may also be assigned to real or complex
variables, and similarly, area or complex expression may be assigned to a
logical variable.

If the variable is a scalar, the expression must be scalar. If the variableis an
array or an array section, the expression must be an array valued expression
of the same shape or a scalar. If the variableis an array or an array section,
and the expression is a scalar, the value of the expression is assigned to all
elements of the variable. If the variable and expression are arrays, the
assignment is carried out element by element with no ordering implied.

The expression is evaluated completely before the assignment is started.
For example:

CHARACTER (LEN=4):: c

c(1:4) "abcd’

c(2:4) c(1:3)

setsc(2: 4) to"abc", notto"aaa", which might result from a
|eft-to-right character-by-character assignment.

If the variableis a pointer, then it must be associated with atarget; the value
of the expression is assigned to the target.

Examples of Intrinsic Assignment
I NTEGER | CNT
TYPE CI RCLE
REAL RADI US
REAL X, REAL Y
END TYPE
TYPE (Cl RCLE) ClI RCLE1, Cl RCLE2
REAL AREA, PI
LOd CAL BOOLX, BOOLY, PI XEL(10, 10)
| NTEGER A(10, 5)
| NTEGER, DI MENSI ON (10, 10):: MATRI X1, MATRI X2
CHARACTER*3 | NI TI ALS
CHARACTER* 10 SURNANME
CHARACTER* 20 NAME

5-19

5 Intel Fortran Programmer’s Reference

5-20

ICNT = ICNT + 1
lexanpl e of an integer assignnent

Cl RCLE1 = ClI RCLE2
lexanpl e of a derived-type assi gnnent

AREA = Pl * Cl RCLE%RADI US** 2
I exanpl e of a real assignnment

PI XEL(X, Y) = BOOLX . AND. BOOLY
lassigns a | ogical expression to an el enment of
'the | ogical array pixel

A(:,1:2) =0

Ifirst two colums of A are set to zero
MATRI X1 = MATRI X2

leach el ement of MATRI X2 is assigned to the
Icorrespondi ng el ement of MATRI X1

NAME = | NI TIALS // SURNAME
I exanpl e of a character assignnent

Pointer Assignment

The pointer assignment statement establishes an association between a

pointer object and atarget.

The syntax is:

poi nt er-obj ect => t ar get

subject to the following constraints:

® pointer-object isavariable or variable component with the
PO NTER attribute; if t ar get isavariable, it must have the TARGET
or PO NTER attribute. If t ar get isan expression, then it must either

be areference to afunction that returns a pointer result or a
user-defined operation that returns a pointer result.

Expressions and Assignment 5

®* Thetype, kind parameters and rank of poi nt er - obj ect and
t ar get must be the same.
® target cannot be an assumed-size whole array or an array section
with a vector subscript.
If t ar get isapointer already associated with atarget, then
poi nt er - obj ect becomes associated with the target of t ar get . If
t ar get isapointer that is disassociated or undefined, then
poi nt er - obj ect inherits the disassociated or undefined status of
target.

Examples of Pointer Assignment

The following examples show association of scalar and array pointers with
scalar and array targets.

I NTEGER, PO NTER :: P1, P2, P3(:)

| NTEGER, TARGET :: T1, T2(10)

! P1, P2 and P3 are currently undefined.

PL =>T1 ! Pl is associated with T1.
P2 => P1 I P2 is associated with T1.

! P1 remains associated with T1.
P1 => T2(1) ! P1 is associated with T2(1).

! P2 remains associated with T1.
P3 => T2 ! P3 is associated with T2.
P1 => P3(2) ! P1 is associated with T2(2).
NULLI FY(P1) ! P1 is disassociated.
P2 => P1 I Now P2 is also disassoci at ed.

Masked Array Assignment

In masked array assignment, alogical array expression, the mask, controls
evaluation of the array expressions and assignment to the array variables.

Masked array assignment is provided in Fortran 95 by the WHERE statement
and the WHERE construct.

The syntax of the WHERE statement is:
WHERE (array-I| ogical -expression) array = expression

5-21

5 Intel Fortran Programmer’s Reference

5-22

array-| ogi cal - expression,array, andexpr essi on must al be
conformable. Thearray-1 ogi cal - expr essi on (themask) is
evaluated for each element and the outcome (. TRUE. or. FALSE.) used to
determine whether an assignment is made to the corresponding element of
array.

The syntax of the WHERE construct is:

WHERE (array-| ogical -expression)
array = expression
[array = expression]

[ELSEVWHERE

array = expression

[array = expression] ...]
END VHERE

The WHERE construct is similar to the WHERE statement, but more general in
that several array = expressi on clauses can be controlled by one
array-| ogi cal - expressi on. Inaddition, an optional ELSEWHERE
part of the construct may be used to assign array elements whose
corresponding ar r ay- | ogi cal - expr essi on elements evaluate

. FALSE. .

When a WHERE construct is executed, ar r ay- | ogi cal - expressi onis
evaluated just once and therefore any subsequent assignment in a WHERE
block (the block following the WHERE statement), or EL SEWHERE block to
anentity of ar r ay- | ogi cal - expr essi on hasno effect on the masking.
Thereafter, successive assignments in the WHERE block are evaluated in
sequence as if they were specified as:
VWHERE (array-logical-expression) array = expression
Each assignment in the ELSEVWHERE is executed asiif it were:
VWHERE (. NOT. array-logical-expression) array = expression
For example, the following WHERE construct:
VWHERE (a > b)

a==>b

b=0

Expressions and Assignment 5

EL SEVWHERE

b =a

a=2=0
END WHERE
isevaluated asif it was specified as:
mask = a > b
WHERE (mask) a = b
WHERE (mask) b =0
VWHERE (. NOT.mask) b = a
VWHERE (. NOT. mask) a =0
Only assignment statements may appear in a WHERE block or an

EL SEWHERE block. Within a WHERE construct, only the WHERE statement
may be the target of a branch.

Examples of Mask Array Assignment
REAL, dinension(5) :: a
WHERE (a > 0.0) a = SQRT(a)
Each positive elenent of array a is replaced by its
square root.
REAL, DI MENSION(5) :: a
COVPLEX, DI MENSI ON(5) :: ca
VWHERE (a > 0.0)

ca = CMPLX(O0. 0)

a = SQRT(a)
EL SEVWHERE

ca = SQRT(CWPLX(a))

a =0.0
END WHERE
Each positive element of array a is replaced by its square root; the
remaining elements cal culate the complex square roots of their values,
which are then stored in the corresponding elements of the complex array
ca. Note that in the ELSEWHERE clause the assignment to array a should
not appear before the assignment to array ca; otherwise, all of ca will be
set to zero.

5-23

5 Intel Fortran Programmer’s Reference

5-24

The form of a WHERE construct issimilar to that of an | F construct, but with
the following important difference: no more than one block of an | F
construct may be executed, but in a\WWHERE construct at least one (and
possibly both) of the WHERE and EL SEWHERE blocks will be executed. Ina
WHERE construct, this difference has the effect that results in aWHERE block
may feed into, and hence affect, variables used in the EL SEWHERE bl ock.
Notice, however, that results generated in an EL SEWHERE bl ock cannot feed
back into variables used in the WHERE bl ock.

The following demonstrates how results in a WHERE block could affect
assignments in the EL SEWHERE bl ock:

REAL, DI MENSI ON x(100)

WHERE (x(2:100) /= 0.0)

X(2:100) = 1.0/x(2:100) !the last 99
Inon-zero el enents
lof x are replaced
I'by their reciprocal

EL SEWHERE

X(2:100) = x(1:99) I'the last 99 zero
lelements of x are
I'replaced by their
! precedi ng nei ghbor
I'whi ch may have
I been nodi fied by
't he WHERE bl ock

END WHERE

Execution Control

The normal flow of execution in a Fortran 95 program is sequential:
statements execute in the order of their appearance in the program.
However, you can alter this flow, using Fortran 95 control constructs and
flow control statements.

This chapter describes the operations performed by control constructs and
flow control statements. For afull description of each Fortran 95 control
statement, see . The WHERE
construct isdescribed in

Control Constructs and Statement Blocks

A control construct consists of a statement block whose execution logic is
defined by one of the following control statements:

® CASE statement

¢ DOstatement

® FORALL statement

® | F statement

A statement block is a sequence of statements delimited by a control
statement and its corresponding terminal statement. A statement block
consists of zero or more statements and can include nested control

constructs. However, any nested construct must have its beginning and end
within the same statement block.

6-1

6 Intel Fortran Programmer’s Reference

6-2

Although the Fortran Standard forbids transferring control into a statement
block except by means of its control statement, Intel Fortran allowsit. The
Fortran Standard does permit transferring control out of a statement block.
For example, the following IF construct containsaGO TO statement that
legally transfers control to a label that is defined outside the IF construct:

IF (var > 1) THEN
varl =1

ELSE
GO TO 2

END | F

2 varl = var?2

Thenext logical | F statement is nonstandard (but permitted by Intel® Fortran)
because it would transfer control into the DO construct:

I'F (.NOT.done) GO TO 4 ! nonstandard!

DOi =1, 100
sum=b + ¢
4 b=Db+1
END DO

The following sections describe the operations performed by the control
constructs.

CASE Construct

The CASE construct selects (at most) one out of a number of statement
blocks for execution.
[construct-nanme :] SELECT CASE (case-expr)
[CASE (case-selector) [construct-nane]
st at enent - bl ock]

Execution Control 6

[CASE DEFAULT [construct-nane]
st at enent - bl ock]
END SELECT [construct-name]

Notes on Syntax

® case-sel ect or isone of the following:
— case-val ue
— low:
— : high
— Jlow : high
For additiona information about case-selector, see the description of
the CASE statement in .

® acase-sel ect or must bemutually exclusive and must agreein type
with case- expr.

® case-expr must evaluate to a scalar value and must be an integer,
logical, or character type.

® If construct-nameisgivenin the SELECT CASE statement, the same
name can appear after any CASE statement within the construct, and
must appear inthe END CASE statement. The construct name cannot be
used as a name for any other entity within the program unit.

® CASE constructs can be nested. Construct names can then be useful in
avoiding confusion.

® Although the Standard forbids branching to any statement in a CASE
construct other than theinitial SELECT CASE statement from outside
the construct, Intel Fortran alowsit. The Standard allows branching to
the END SELECT statement from within the construct.

Execution Logic
The execution sequence of the CASE construct is as follows:

1. case-expr isevauated.
2. Theresulting value is compared to each case- sel ect or.
3. If amatchisfound, the corresponding st at enent - bl ock executes.

6-3

6 Intel Fortran Programmer’s Reference

6-4

4. If no matchisfound but a CASE DEFAULT statement is present, its
statement-block executes.

5. If no matchisfound and thereisno CASE DEFAULT statement,
execution of the CASE construct terminates without any block
executing.

6. Thenormal flow of execution resumes with the first executable
statement following the END SELECT statement, unless a statement in
statement-block transfers contral.

Example

The following CASE construct prints an error message according to the
valueof i os_err:

I NTEGER :: ios_err

SELECT CASE (ios_err)
CASE (:900)

PRI NT *, "Unknown error"”
CASE (913)

PRINT *, "Qut of free space”
CASE (963:971)

PRI NT *, "Format error"”
CASE (1100:)

PRINT *, "ISAM error"
CASE DEFAULT

PRI NT *, "M scell aneous Error"

END SELECT

DO Construct

The DO construct repeatedly executes a statement block. The syntax of the

DO statement provides two ways to specify the number of times the

statement block executes:

* By specifying aloop count.

* By testing alogical expression as a condition for executing each
iteration.

You can aso omit all control logic from the DO statement, in effect creating

an infinite loop. The following sections describe the three variations of the

DO construct.

Execution Control 6

You can usethe CYCLE and EXI T statements to alter the execution logic of
the DO construct. For information about these statements, see

Counter-controlled DOLoop

A counter-controlled DOloop uses an index variable to determine the
number of times the loop executes.

Syntax

[construct-nane:] DOindex = init, limt][i step]
st at ement - bl ock

END DO[construct - nane]

Intel Fortran also supports the older, FORTRAN 77-style syntax of the DO
loop:

DOl abel index = init, limt [,step]

st at enent - sequence

label terminal -statement

A third form, combining elements of the other two, is also supported:

[construct-nane:] DOl abel index = init, limt][,
step]

For afull description of the DOloop syntax—including alist of legal
term nal - st at enent s—see

Execution Logic

The following execution steps apply to all three syntactic forms, except as
noted:

1. Theloop becomesactive, andi ndex issettoi nit.
2. Theiteration count is determined by the following expression:

MAX(INT (Iimit - init + step) / step, 0)
st ep isoptional, with the default value of 1. It may not be 0.
Note that theiteration count is O if either of the following conditionsistrue:

6-5

6 Intel Fortran Programmer’s Reference

6-6

® step (if present) isapositive number andi ni t is
greaterthanlim t.

® stepisanegative number andi ni t islessthan
limt.

3. If theiteration count is O, the construct becomes inactive and the

normal flow of execution resumes with the first executabl e statement
following the END DO or terminal statement.

4. Thest at enment - bl ock executes. (In the case of the old-style

syntactic form, both st at enent - sequence and
t er mi nal - st at enent execute.)

5. Theiteration count isdecremented by 1, andi ndex isincremented by
st ep, or by 1 if st ep isnot specified.

6. Goto Step 3.

NOTE. To ensure compatibility with older versions of Fortran, you can
usethe/ Qonetripor /-1 (-onetrip or-1for Linux)
command-line option to ensure that, when a counter-controlled DOloop
is encountered during program execution, the body of the loop executes
at least once. For more information about this option, see the Intel®
Fortran Compiler User’s Guide.

Example
This example uses nested DOloops to sort an array into ascending order:
| NTEGER :: scores(100)
DOi =1, 99
DOj = i+1, 100
IF (scores(i) > scores(j)) THEN
tenp = scores(i)
scores(i) = scores(j)
scores(j) = tenp
END | F
END DO
END DO

Execution Control 6

The following example uses the ol der syntactic form. Note that, unlike the
newer form, old-style nested DOloops can share the same terminal

statement:
DO10 i =1, 99
DO 10 j = i+1, 100

if (scores(i) <= scores(j)) GO TO 10
tenp = scores(i)
scores(i) = scores(j)
scores(j) = tenp
10 CONTI NUE

Conditional DOLoop

A conditional DOloop usesthe WHI LE syntax to test alogical expression as
a condition for executing the next iteration.

Syntax

[construct-nanme: DO WHI LE (| ogi cal - expression)
st at ement - bl ock

END DO[construct - nane]

Intel Fortran also supports the older syntax of the DO WHI LE loop:
DOl abel WHI LE (| ogi cal - expression)

st at enent - sequence

| abel termnal -statenent

Execution Logic
1. Theloop becomes active.

2. Thelogical-expression is evaluated. If the result of the evaluationis
false, the loop becomes inactive, and the normal flow of execution
resumes with the first executable statement following the END DO
statement, or in the old DO-loop syntax, the terminal statement.

3. The st at enent - bl ock executes. (In the case of the old-style
syntactic form, both statement-sequence and terminal-statement
execute.)

4. Goto Step 2.

6-7

6 Intel Fortran Programmer’s Reference

6-8

Example

I Compute the nunber of years it takes to

I doubl e the value of an investnment earning
I 4% interest per annum

REAL :: noney, invest, interest

| NTEGER :: years

noney = 1000

i nvest = nopney

interest = .04

years = 0

DO WHI LE (money < 2*invest) ! doubl ed our noney?
years = years + 1

nmoney = noney + (interest * noney)
END DO
PRI NT *, "Years =", years

Infinite DO Loop

The DO statement for the infinite DOloop contains no loop control logic. It
executes a statement block for an indefinite number of iterations, until it is
terminated explicitly by a statement within the block; for example, a
RETURN or EXI T statement.

Syntax

[construct-nanme:] DO

st at ement - bl ock

END DO [construct-nane]

Execution Logic
The execution sequence of an infinite DOloop is as follows:
1. Theloop becomes active.

2. statement-block executes.
3. Goto Step 2.

Execution Control 6

Example

I Conpute the average of input val ues;

| press O to exit

INTEGER :: i, sum n

sum = 0

n =20

average: DO

PRINT *, *Enter a new nunmber or 0 to quit’

READ *, i

IF (i == 0) EXIT
sum = sum + |
n=n+1

END DO aver age
PRINT *, *The average is ', sumn

FORALL Construct and Statement

The FORALL construct and statement are similar to the DO statement,
providing indexed repetitive execution of a statement or block of
statements. However, when you use FORALL, you are specifying that the
operations within a statement on array elements in the body of the FORALL
construct may be executed in parallel. The result stored in each array
element isindependent of the result stored in other elements. FORALL
allowsindexed parallel assignment of valuesto an array.

Syntax
The syntax of the FORALL statement is:

[construct-nane :] FORALL (forall-
triplet-specification-Iist
[, scalar-1logical-expression])
[forall-body-construct]
END FORALL [forall-construct-nane]

The syntax of the FORALL construct is:

6-9

6 Intel Fortran Programmer’s Reference

6-10

[construct-nane :] FORALL (forall-
triplet-specification-Ilist
[, scalar-logical-expression])
foral |l -assi gnnment - st at enent

where;

foral |l -construct-nane isanoptiona identifier that must be unique
within the program unit

forall-triplet-specification-list is
index-name = scalar-integer-expression :
scalar-integer-expression :
[scalar-integer-expression]

foral |l -body-construct isoneof:

an assignment statement
WHERE construct
FORALL construct
FORALL statement

scal ar -1 ogi cal - expression
isamask value, indicating whether the
operation should be carried out on each
array element.

foral |l -assi gnnment - st at enent
is an assignment statement or a pointer
assignment statement

A FORALL construct has more than one statement in the
forall-body-construct, while a FORALL statement has a single FORTRAN
statement as its forall-body-construct. A FORALL statement does not need
an END FORALL to mark the end of the iterative statement group, since
there is only one statement in the group. For example,

FORALL (1=1:N) A(l,1) = B(I)
Each operation on an array element in a statement of FORALL construct

must complete execution before an operation on the same array element in
the next sequential statement can begin execution.

Execution Control 6

Example
The following code —
DI MENSI ON A(10, 10), B(10)
REAL A B, C
DATA A/ 100*2. 0/, B/ 10*1.0/,C/ 4.0/
| NTEGER |
FORALL(1=1:10: 2)
A(l,1) = A(l, 1) + C* B(I)
AL, 1) = A(l, 1) + 1
B(1) = A(l, 1)

END FORALL
PRINT *, B
END

produces these results:

7.000000 1.000000 2.000000 1.000000 2.000000
1.000000 2.000000 1.000000 2.000000 1.000000
The code above is equivalent to:
DI MENSI ON A(10, 10), B(10)
REAL A B, C
DATA A/ 100*2.0/,B/10*1.0/,Cl 4.0/
I NTEGER I, J
DO I=1, 10,2
AL, 1) = A(l, 1) + C* B(I)
AL, 1) = A(LLL) + 1
B(1) = A(l, 1)
ENDDO
PRINT *, B
END

Usage Rules
Follow these rules when using the FORALL construct and statement:

®* WithaFORALL construct name, the same identifier must appear on the
FORALL and END FORALL statements.

6-11

6 Intel Fortran Programmer’s Reference

6-12

Theindex variable for a FORALL statement or construct must be a
scalar integer variable. The index variable may be aformal parameter
withthe | NTENT(| N) attribute. If theindex variableis| NTENT(I N),
the increment or decrement of the variable is not reflected on return to
the calling routine.

Theforall-triplet-specification-list mustnotcontaina
reference to any scalar variable from the list in which the expression
appears. For example, the following FORALL statement isinvalid:
FORALL (N= 1:K, K=1,L) A(NK) = 0.0

Thisstatement isinvalid because the limit for thefirstindex tripletisK,
and the next part of the specification list uses K as an index variable.
The FORALL statement may specify a

scal ar -1 ogi cal - expr essi on that formsamask. Operationsin
the FORALL construct are carried out on the array elements whose
indiceshavea. TRUE. valueréative to the mask expression. For
example:

DI MENSI ON A(100)

DO | =1, 100
A(l) = REAL(I)
ENDDO

FORALL (1=1:100, A(1) > 20.0 .AND. A(l) < 90.0)
A1) = A(l) * A1)

END FORALL
PRI NT *, A
END

This FORALL construct squares each array el ement of Afrom A(20) to
A(89) inclusive. The mask is based upon the value of the array
elements themselves, not the value of the index variable .

Any procedure referenced inthe scal ar - | ogi cal - expr essi on
that formsthe mask, or in any statement in the FORALL body construct
must be a PURE procedure.

Execution Control 6

® WithinaFORALL body construct, you must not alter the value of the
scalar index variable used to control the FORALL construct. This
includes changing the va ue of the index variable by using the same
index variable for anested FORALL construct.
FORALL(I=1:10)
FORALL(I=1:10)
END FORALL
END FORALL
The above construct isinvalid.
® A FORALL body construct may not be the target of a GOTO or other
branch construct.
® Thestrideportionof aforal | -tripl et-specification-Iist
may not equal zero.
® You cannot perform a many-to-one assignment within asingle
statement of a FORALL construct.
For example:
DI MENSI ON F(10), A2(10)
DATA F/1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0, 10. 0/
A2 = F* 3.0
FORALL (J=1:10)
F((/1,1,2,2,3,3,4,4,5,5/)) = A2(J)
END FORALL
END

will yield:
badf or. f
mai n program
F((/1,1,2,2,3,3,4,4,5,5/)) = A2(J)

AN

Error 513 a (5: badf or. f): The FORALL with index J causes more than
one assignment to this (sub)object.

Execution Logic
The execution logic of a FORALL statement is as follows:

6-13

6 Intel Fortran Programmer’s Reference

6-14

1. When your program executes a FORALL construct, it first determines
the values for the FORALL index variables, then evaluates the mask
expression, if thereisone, and finally executes the body of the FORALL
construct.

2. The expressions forming each component of the
forall-triplet-specification-list maybeevauatedin
any order, and if necessary, converted to the type and KI ND value of the
index variable.

3. If thereisno mask expression, it is asif the mask were present, and all
valueswere. TRUE. If themaskis. TRUE. for aparticular index
value, then that index valueisin the set of active index valuesfor the
FORALL construct.

4. FORALL body constructs are executed in the order in which they
appear, for all active index values. The statements executed may be
assignment statements, pointer assignment statements, a WHERE
construct or statement, or a nested FORALL construct.

IF Construct

The | F construct sel ects between alternate paths of execution. The
executing path is determined by testing logical expressions. At most, one
statement block within the | F construct executes.

Syntax

[construct-nane :] IF (logical-expressionl) THEN
st at ement - bl ock1

[ELSE I F (I ogical - expression2) THEN [construct-naneg]
statement - bl ock2]

[ELSE [construct - nane]
st at enent - bl ock3]

END | F [construct - nane]

Execution Control 6

Execution Logic
1. Thel ogi cal - expressi onl isevauated. If itistrue,
st at ement - bl ock1 executes.

2. If 1 ogi cal - expressi onl evaluatesto falseand ELSE | F
statements are present, the logical-expression for each ELSE | F
statement isevaluated. The first expression to evaluate to true causes
the associated statement-block to execute.

3. If dl expressions evaluate to false and the EL SE statement is present,
its statement-block executes. If the EL SE statement is not present, no
statement block within the construct executes.

4. Thenormal flow of execution resumes with the first executable
statement following the END | F statement.

Example
I Conpare two integer val ues
IF (numlL < nun2) THEN

PRINT *, "numl is snaller than nunf."
ELSE IF (nunl > num2) THEN

PRINT *, "numl is greater than nunf."
ELSE

PRI NT *, "The nunmbers are equal”
END I F

Flow Control Statements

Flow control statements alter the normal flow of program execution or the
execution logic of acontrol construct. For example, the GO TO statement
can be used to transfer control to another statement within a program unit,
and the EXI T statement can terminate execution of a DOconstruct.

This section describes the operations performed by the following flow
control statements:

® CONTI NUE statement

® CYCLE statement

® EXIT statement

®* Assigned GO TO statement

6-15

6 Intel Fortran Programmer’s Reference

® Computed GO TOstatement

® Unconditional GO TO statement
® Arithmetic | F statement

®* Logicd | F statement

® PAUSE statement

¢ STOP statement

For additional information about these statements, see

CONTINUE Statement

The CONTI NUE statement has no effect on program execution. Itis
generally used to mark a place for a statement label, especially when it
occurs as the terminal statement of a FORTRAN 77-style DOloop.

Syntax
CONTI NUE

Execution Logic
No action occurs.

Example

I find the 50th triangul ar nunber
triangular_num= 0

DO 10 i =1, 50
triangul ar_num = triangular_num + i
10 CONTI NUE

PRINT *, triangular_num

CYCLE Statement

The CYCLE statement interrupts execution of the current iteration of a DO
loop.

6-16

Execution Control 6

Syntax
CYCLE [do-construct-name]

Execution Logic
1. Thecurrent iteration of the enclosing DOloop terminates. Any
statements following the CYCLE statement do not execute.

2. If do-construct-name is specified, the iteration count for the named DO
loop decrements. If do-construct-name is not specified, the iteration
count for the immediately enclosing DO |oop decrements.

3. If theiteration count is nonzero, execution resumes at the start of the
statement block in the named (or enclosing) DOloop. If it is zero, the
relevant DO loop becomes inactive.

Example
LOG CAL :: even
| NTEGER :: nunber
loop: DOi =1, 10
PRINT *, "Enter an integer:
READ *, nunber
I F (nunmber == 0) THEN
PRI NT *, "Miust be nonzero."
CYCLE | oop
END | F
even = (MOD(nunber, 2) == 0)
| F (even) THEN
PRI NT *, "Even"
ELSE
PRI NT *, "Cdd"
END | F
END DO | oop

EXIT Statement

The EXI T statement terminates a DO loop. If it specifies the name of a DO
loop within a nest of DOloops, the EXI T statement terminates all loops by
which it is enclosed, up to and including the named DOloop.

6-17

6 Intel Fortran Programmer’s Reference

6-18

Syntax
EXIT[do-construct-nane]

Execution Logic

If thedo- const r uct - name is specified, execution terminates for all DO
loops that are within range, up to and including the DOloop with that name.
If no nameis specified, execution terminates for the immediately enclosing
DO loop.

Example

DO

PRINT *, "Enter a nonzero integer: "
READ *, nunber

I F (number == 0) THEN
PRI NT *, "Bye"
EXIT

END | F

even_odd = MOD(number, 2)
IF (even_odd == 0) THEN
PRI NT *, "Even"

ELSE
PRI NT *, "Qdd"

END | F

END DO

Assigned GO TO Statement

The assigned GO TO statement transfers control to the statement whose
statement |abel was assigned to an integer variable by an ASSI GN
statement.

Syntax
GO TO integer-variable [, (label-list)]

If | abel - 1i st ispresent, then the label previously assigned to
integer-variable must bein thelist.

Execution Control 6

Control transfers to the executable statement at i nt eger - vari abl e.

Execution Logic

Example
I NTEGER i nt _| abel

ASSI GN 20 TO i nt _I abel
GOTO i nt _| abel
20 ...
Computed GO TO Statement

The computed GO TO statement transfers control to one of several labeled
statements, as determined by the value of an arithmetic expression.

Syntax
GO TO(label-list) [,] integer-expression

Execution Logic

1. integer-expression is evaluated.

2. Theresulting integer value (the index) specifies the ordinal position of
the label that is selected from label-list.

3. Control transfers to the executable statement with the selected label. If
the value of the index islessthan 1 or greater than the number of labels
in label-list, the computed GO TO statement has no effect, and control
passes to the next executable statement in the program.

Example
DO
PRINT *, "Enter a nunmber 1-3: "
READ *, k
GO TO (20, 30, 40) k
PRI NT *, "Nunmber out of range.”

6-19

6 Intel Fortran Programmer’s Reference

EXIT
201 = 20

GO TO 100
30 i = 30

GO TO 100
40 i = 40
100 print *, i
END DO

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the statement with
the specified label.

Syntax
GO TO | abel

Execution Logic
Control transfers to the statement at | abel .

Example
Older, “dusty-deck” Fortran programs often combine the GO TO statement
with thelogical | F statement to form a kind of leap-frog logic, asin the
following:
IF (numl /= nunR) GO TO 10
PRINT *, "numl and nun are equal ."
GO TO 30
10 IF (numl > nun2) GO TO 20
PRINT *, "numl is snaller than nunf."
GO TO 30
20 PRINT *, "numl is greater than nunf."”
30 CONTI NUE

6-20

Execution Control 6

The arithmetic | F transfers control to one of three labeled statements, as
determined by the value of an arithmetic expression.

Arithmetic IF Statement

Syntax

IF(arithnmetic-expression)label 1,1 abel 2,1 abel 3

Execution Logic
1. arithmetic-expression is evaluated.

2. If theresulting value is negative, control transfers to the statement at
| abel 1.

3. If theresulting value is 0, control transfersto the statement at | abel 2.

4. If theresulting value is positive, control transfers to the statement at
| abel 3.

Example

Note that, asin this example, two or more labelsin the label list can be the
same.

i = MOD(total, 3) + 1
IF (i) 10, 20, 10

Logical IF Statement

Thelogical | F statement executes a single statement, conditional upon the
value of alogica expression. The statement it executes must not be any of
the following:

® astatement used to begin a construct
¢ an END statement
®* anl F statement

Syntax
| F (logical-expression) executable-statement

6-21

6 Intel Fortran Programmer’s Reference

6-22

Execution logic
1. logical-expressionis evaluated.
2. If it evaluates to true, executable-statement executes.

3. Thenormal flow of execution resumes with the first executable
statement following the | F statement. (If executable-statement is an
unconditional GO TOstatement, control resumes with the statement
specified by the GO TO statement.)

Example
LOGA CAL :: finished

IF (finished) PRINT *, "Done."

PAUSE Statement

The PAUSE statement temporarily suspends program execution until the
user or the system resumes execution. The PAUSE statement is an

obsol escent feature in Fortran 90 that has been deleted from the standard
language in Fortran 95. However, Intel Fortran fully supports the PAUSE
statement.

Syntax
PAUSE[pause-code]
where pause- code isone of the following optional messages:

® ascalar character constant of type default character

® astring of up to six digits; leading zeros ignored. (Fortran 95 and
FORTRAN 77 standards limit the number of digitsto five)

Execution Control 6
Execution Logic

1. Ifyouspecify a] pause-code] message, the PAUSE statement
displays the message specified and then the default prompt.
or

If you do not specify a[pause- code] message, the following
prompt is then displayed:

on Windows* NT* and Windows 95* Systems:

Fortran Pause - Enter <CR> to continue
where <CR> is the carriage control character. The program looks for
input from st di n (typically your terminal keyboard). If you enter a
blank line, execution resumes at the next executable statement.
Anything elseistreated asa MS-DOS* command, and executed by a
syst em() call. The program loops, | tting you execute multiple DOS
commands until ayou enter ablank line. The program resumes at the
next executable statement.

If the standard input device is other than ayour keyborad terminal, the

messageis:
To resume execution, execute the followi ng a conmmand:
kill -15 pid

pi d isthe unique process identification number of the suspended program.
You canissue theki | I command at any terminal that you are logged into.

Example
PAUSE 999

STOP Statement

The STOP statement terminates program execution.

Syntax
STOP [stop-code]

where stop-code is a character constant, a named constant, or alist of up to
5 digits.

6-23

6 Intel Fortran Programmer’s Reference

Execution logic

Program terminates execution. If stop-code is specified, the following is
written to standard output:

STOP st op- code

Example
STOP "Program has stopped executing.”

6-24

Program Units and
Procedures

This chapter describes the internal structure of each type of program unit,
how it is used, and how information is communicated between program
units and shared by them. All Fortran 95 statements are described in detail
in this chapter.

Overview

This overview summarizes the main features of program units, procedures,
scope, and association.

Program Units

A program unit is one of the following:

®* Main program unit

® External function subprogram unit

® External subroutine subprogram unit
® Block data program unit

®* Module program unit

A complete executable program contains one main program unit and zero or
more other program units, where each of these can be compiled separately.

7-1

; Intel Fortran Programmer’s Reference

Program Unit Concepts

A program unit corresponds to the following characteristics:

Procedures

The main program, subroutine subprogram, and function subprogram
are all executable. The nonexecutable program units are block data
units and modules, which provide only definitions used by other
program units.

Each program unit is an ordered set of constructs, statements,
comments, and include lines. The heading statement identifies the kind
of program unit it is; it is optional in amain program unit. An END
statement marks the end of a program unit.

Program execution begins with the first executable statement in the
main program. The main program is often used as a “driver” to control
computations defined in other program units.

A module program unit contai ns data declarations, user-defined type
definitions, procedure interfaces, common block declarations, namelist
group declarations, and subprogram definitions used by other program
units. It al so specifies the accessibility (PUBLI C or PRI VATE) of these
entities.

Block data program units are used only to specify initial values for
variables in named common blocks. With the provision of modulesin
Fortran 95, block data program units are no longer needed for new
programs because modules can provide global data initializations.
Main programs, external subprograms, and module subprograms may
contain interna subprograms.

All program units, except block data, may contain procedure interface
blocks.

Procedures can be defined by the following characteristics:

A procedure is either afunction or a subroutine. It encapsulates an
arbitrary sequence of computationsthat may beinvoked directly during
program execution.

A procedure is defined by a subprogram— that is, a subprogram
defines (or isan implementation of) a procedure. A procedure can also
be implemented by means other than the Fortran Language.

Program Units and Procedures ;

* If asubprogram contains one or more ENTRY statements, it defines a
procedure for each ENTRY statement, as well as a procedure for the
SUBROUTI NE or FUNCTI ON statement.

Scope and Association

Two further concepts are required for afull understanding of program
structure: scope and associ ati on.

Scope

All defined Fortran entities have ascope within which their properties are
known. For example, alabel used within asubprogram cannot be referenced
directly from outside the subprogram; the subprogram is the scoping unit of
the label. A variable declared within a subprogram has a scope that is the
subprogram. A common block name can be used in any program unit and it
refers to the same entity — that is, the name has global scope. At the other
extreme, the index variable used within an implied DOlist in a DATA
statement or array constructor, for example, has a scope consisting only of
theimplied DOlist construct itself.

Association

Entities may be associated by host , st or age, use, poi nt er or
argunment associ at i on. One scoping unit can encapsulate others, and
an entity declared in an outer unit may also, by default, be known within the
contained subprogram. Thisis an example of host association. Examples of
storage association are;: use of an EQUI VALENCE statement (sharing data
within a subprogram), use of a COMMON statement (sharing data across
program units). The USE statement provides access to entities defined in a
modul e to other program units by use association. A pointer and its target
have pointer association. The actual and dummy arguments of a subprogram
have argument association when the subprogram is invoked.

Example
Different kinds of scope and association are illustrated in the fol lowing:
SUBROUTI NE get (i, j)

| NTEGER i , j

7-3

; Intel Fortran Programmer’s Reference

7-4

COVWON /buffer/ x, y

' i,j,x, and y are |local nanes.

I get and buffer are gl obal

END

MODULE st ack_dat abase
I stack_dat abase is gl obal
TYPE stack_type

I NTEGER top; REAL, PO NTER ::

END TYPE st ack_type

CONTAI NS
SUBROUTI NE cr eat e(st ack)
I create is |ocal
TYPE(stack_type) :: stack

ptr(:)

I Host association of stack_type.

END SUBRCUTI NE create
END MODULE st ack_dat abase
PROGRAM mai n
! main is gl obal

USE st ack_dat abase
| NTEGER a, b

TYPE (stack_type) :: main_stack

I Use association of stack_type.

Program Units and Procedures ;
COWON / buffer/ t(2)

! t is local but buffer is global; thus t is
| storage associated with x and vy.

CALL get(a,b)

CALL creat e(min_stack)

I Use association of create.

END

In this example, the namesbuf f er, get , st ack_dat abase, cr eat e,
and mai n have the scope of the entire executable program, and are called
global names. All of the program units mei n, get , cr eat e and

st ack_dat abase are “scoping units’. A scoping unit in general isnot an
entire program unit, but is a unit with holesin it. The holes occur wherever
a scoping construct such as another program unit or derived-type definition
appears within it. For example, the scoping unit corresponding to the
module st ack _dat abase does not include the inner parts of the
procedurecr eat e.

Lines of communication or association can be established between the local
entities of two or more scoping units. For example, the CALL statement to
get inmai n associates the dummy and actual arguments (all are local
namesin this case), so that while get is being executed the dummy
argument i isthe same as a, and the dummy argument j isthe sasmeasb;
thisis argument association. The local variablesx andy in get
communicate with the local variablet in mai n by storage association.

Procedures

Fortran 95 procedures are implemented either as function subprograms or
as subroutine subprograms. A function subprogram returns a value, the
function-result, for use within an expression evaluation.

7-5

; Intel Fortran Programmer’s Reference

7-6

Procedure Categories

Table 7-1

There are several categories of procedures described in the following
sections.

Intrinsic Procedures

Intrinsic procedures are those available for use without any declaration or
definition. They are described in detail in the Intel® Fortran Compiler
User’s Guide.

Intrinsic procedures provide away to incorporate into Standard Fortran 95
the most common computations important to scientific and engineering
applications. Standard Fortran 95 has 110 intrinsic functions and 5 intrinsic
subroutines. Table 12 lists the different categories of intrinsic functions and
givesthetotal number of intrinsic functions for each category.

Categories of intrinsic functions

Category Total
Conversion intrinsics 16
Array intrinsics 17
Inquiry and model intrinsics 28
Numeric computation 26
Character computation 12
Bit computation 9

Some intrinsic procedures are known as elemental—that is, they can take
scalar arguments to produce a scalar result, and they can accept
conformable arrays as arguments, in which case they operate on each array
element separately and return an array as a result.

Several different intrinsic procedures can be called using the same name
when the actual arguments are of different kinds, types and ranks. For
example, when using SQRT(x) , x can be of type rea or complex, it can be
of any defined kind, and it can be an array of any of these types, of any rank.
The name used is ageneric name for a set of procedures, each of which
accepts an argument of afixed kind, type, and rank.

Program Units and Procedures ;

External Procedures

An external procedureis aseparately compilable program unit whose name
and any additional entry points have global scope.

Module Procedures

A module procedure can appear only within a module. Its name can be
made available outside the scope of its host only by use association. It is not
otherwise accessible outside of its host.

Internal Procedures

An internal procedure can appear only within a main program, an external
subprogram, or a module subprogram. It cannot have additional entry
points, and it is not accessible outside its host. It appears between a
CONTAI NS and END statement of its host.

Referencing Procedures

The following sections describe how to reference a procedure subprogram:

Subroutine Subprogram

A subroutine subprogram is referenced by using the CALL statement
specifying the subroutine name, one of its entry point names, or when the
subroutine is implementing an assignment operation.

The syntax of the CALL statement is:
CALL subrouti ne-nanme &

[([actual -argunent -spec-list])]
act ual - argunent - spec

is [keyword =] actual -argunent
keywor d
isdumy- ar gunment

77

; Intel Fortran Programmer’s Reference

7-8

act ual - ar gunment

is one of the following:

— expression

— variable

— procedure-naneal ternate-return
alternate-return

is one of the following:

— *| abel

— &l abel
| abel ispermittedin Intel Fortran in fixed source form only.

Alternate returns are arguments that permit control to branch to a particular
label following the call. | abel isthe statement label of an executable
statement in the same scoping unit as the CALL statement.

Function Subprogram

A function subprogram is referenced by its name, by one of its entry point
names or by the operator defined by the function.

The syntax of afunction referenceis:
function-name ([actual-argument-spec-list])

where actual-argument-spec is as above, except that an alternate return
cannot be included.

On invocation, the calling program unit can identify actual arguments that
are then associated with dummy arguments in the procedure definition. This
is also applicable to subroutine subprograms.

Interfaces

Theinterface of a procedureisthe information required to compileacall to
the procedure. This information includes the characteristics of the dummy
arguments and of the result for afunction procedure. It is explicit if all of
these characteristics are defined within the scope of the reference. If they
are not, the compiler may be able to make sufficient assumptions about
them and the interface is then implicit. Under many circumstances an
explicit interface is mandatory. Internal procedures and module procedures
always have an explicit interface.

Program Units and Procedures ;

Explicit interfaces can be specified by means of an | NTERFACE block. An
| NTERFACE block is aso used to define the extended use of the standard
operators, to define new operators and to extend the definition of the
assignment operator. Additionally, it provides the capability of using a
generic name to reference any one of a set of procedures.

Generic Referencing

The user can define ageneric name and code several proceduresto cater for
the required different combinations of argument characteristics. Then, by
including the specifications of these routines within an interface definition,
use just the generic name for referencing any of the procedures (the choice
of procedure being determined by matching actual and dummy arguments).
The technique can also be used to extend the selection of argument types.

Built-in Functions

Intel Fortran provides two functions that are extension to the language:
9%W/AL and %REF. These extensions can be used to communicate with
procedures written in programming languages other than Fortran 95 that
have different argument passing conventions. These functions specify how
an actual argument isto be passed in a procedure reference.

* WAL(a) specifiesthat the value of the actual argument a isto be
passed to the called procedure. The argument a can be a constant,
variable, array element, or derived-type component. %/AL
approximates the default argument passing mechanism of the C
programming language, and it is to pass a Fortran object to a procedure
written in C where %W/AL istypically used.

* OREF(a) specifiesthat the actual argument aisto be passed as a
referencetoitsvaue. Thisishow Intel Fortran normally passes
arguments except those of type character; for each character argument,
Intel Fortran normally passes both areference to the argument and its
length, with the length being appended to the end of the actual
argument list. Passing a character argument using %REF disables the
passing of the character length argument.

These two routines may only be used in either an interface block, or in the
actual CALL statement or function reference.

For information about %/AL and %REF, see the description of the CALL
statement in Chapter 10, Intel Fortran Statements.

; Intel Fortran Programmer’s Reference

Example
This first example uses %/AL and %REF in an interface block:
PROGRAM f oobar

| NTERFACE
SUBROUTI NE fred(%/AL(X))
| NTEGER :: X

END SUBROUTI NE fred

FUNCTI ON foo (9%REF(i p))
I NTEGER :: ip, foo
END FUNCTI ON f oo
END | NTERFACE

CALL fred(i) ! The value of i is passed to fred
j =foo(i) ! i passed to foo by reference,

I foo receives a reference to

! the value of i.
END PROGRAM

The next example employs %REF and %VAL in the actual procedure
references:
PROGRAM f oobar
I NTEGER :: foo
EXTERNAL foo, fred

CALL fred (9/AL(i))
j = foo(YREF(i))
END PROGRAM

Procedure interfaces and interface blocks are described later in this chapter.
Procedure Definition

Fortran procedures mostly consist of functions and subroutines defined in
the following sections.

7-10

Program Units and Procedures ;

Functions and Subroutines

Functions and subroutines are defined in Fortran 95 by means of
subprograms.

A subroutine subprogram has the following form:
subrouti ne- st at ement

[specification-part]

[execution-part]

[i nternal - subprogram part]
end- subrouti ne- st at enent
A function subprogram has the following form:
functi on- st at enent

[specification-part]

[execution-part]

[i nternal - subprogram part]
end-f uncti on- st at enent
internal-subprogram-part is:

CONTAI NS
[internal -subprogram...
i nt ernal - subprogram
is asubprogram without any i nt er nal - subpr ogr am part.
end- subrouti ne- st at enent
is
END [SUBROUTI NE [subr outi ne- nane]]

end-f uncti on- st at enent

is
END [FUNCTI ON [functi on-nane]]

Statements Introducing Procedures

The following sections describe specific statements with which each
procedure is introduced in the code.

7-11

; Intel Fortran Programmer’s Reference

7-12

Subroutine Statement

The SUBROUTI NE statement introduces a subroutine subprogram. The
syntax for subr out i ne- st at enent is:

[RECURSI VE] [PURE] [ELEMENTAL] SUBROUTI NE
subrouti ne- name & [([dunmmy- ar gunent - | i st])]

Function Statement

The FUNCTI ON statement introduces afunction subprogram. The syntax for
function-statenent is

[prefix] FUNCTI ONf uncti on- nane &
([durmy-ar gunent -1 i st]) [RESULT (r esul t - nane)]
prefix
isone of:
e type-spec [RECURSI VE]
e RECURSI VE [t ype- spec]
e PUREt ype-spec]
e ELEMENTAL [t ype- spec]
Thet ype- spec may appear before or after the attribute.

Dummy arguments are discussed in :
actual arguments are describedin

The result-name must be different from the function-name, and must be
given if the function isrecursive. If thereisaresult clause, the result-name
must be used as the result variable, otherwise the function name must be
used.

Entry Statement
The ENTRY statement defines a procedure entry. Its syntax is as follows:
ENTRY entry-nanme ([dummy-argunment-list]) &

[RESULT (result-nane)]

The RESULT clause may appear only if the ENTRY statement isin a
function subprogram.

Program Units and Procedures ;

ENTRY statements can appear only within the execution part of a
subprogram; they provide additional names by which the subprogram can
be invoked. Execution will commence at the statement immediately
following the referenced ENTRY statement, but the ENTRY statement does
not interrupt the sequencing of execution acrossit. ENTRY statements may
not appear within an internal subprogram.

When used in a function subprogram, all ENTRY statements should return
results of the same type, kind, and shape; otherwise they should al return
results that are scalars without the POl NTER attribute and which are of
intrinsic numeric or logical type.

Examples of the ENTRY statement are given in

Internal Procedures

Internal procedures are defined by internal subprogramsin the internd
subprogram part of amain, external, or module program unit. Internal
subprograms can be recursive. The following restrictions apply to internal
subprograms:

® They cannot have ENTRY statements.

®* They cannot be passed as arguments.

® Their names are local to the host.

®* Theinterface of an internal procedure is explicit in the host.

® Declarationsin the host are inherited by the internal subprogram, but
can be overridden.

® They cannot be the host of another internal procedure.
Example of an internal function:
SUBROUTI NE pri ntav
I Start of external subprogram
REAL, DI MENSION(3) :: x
I Specification part.
x=(/2.0,5.0,7.0/)
PRI NT *, av(Xx)
I Reference to function av.

7-13

; Intel Fortran Programmer’s Reference

7-14

CONTAI NS
REAL FUNCTI ON av(a)
I Start of internal subprogram
REAL a(:)
av=SUM a) / SI ZE(a)
I References to intrinsic functions.
END FUNCTI ON av
END SUBROUTI NE pri ntav

RECURSIVE Procedures
Aninternal or external procedure that directly or indirectly invokesitsdlf is

recursive. Such a procedure must have the word RECURSI VE added to the
FUNCTI ON or SUBROUTI NE statement.

If both RECURSI VE and a result clause are specified in the FUNCTI ON
statement, then the interface of the function being defined is explicit within
the subprogram.
Example of arecursive function:
RECURSI VE FUNCTI ON factorial (n) RESULT(r)
INTEGER :: n, r
I F (n.ne.0) THEN
r = n*factorial (n-1)
ELSE
r =1
ENDI F
END FUNCTI ON factori al

PURE Procedures

A PURE procedure is aroutine that does not change any value external to
the procedure implicitly. For a FUNCTI ON, this means that the only value a
pure function may changeisits return value. For a SUBROUTI NE, the
routine may change only the values of those formal parameters that are
declared | NTENT(OUT) . Variables in COMMON blocks or variables that are
host-associated or use-associated are regarded as external to the PURE

Program Units and Procedures ;

procedure, and may not be modified. Any local variablethat is
storage-associ ated with an variable in a COMMON block or avariable that is
host or use associated may not be modified.

Host association occurs when the declaration point of avariableisin an
outer scope from the current procedure. USE association occurs when a
variable is made available in the current routine via a USE statement.

Variablesin COMMON blocks or variables that are host or use associated may
not appear in the right-hand side of an assignment statement whose
left-hand side has a pointer component at any level, within a PURE
procedure.

All intrinsic functions and the intrinsic subroutine MVBITS are PURE
procedures.

Locd variables of PURE procedures must not have the SAVE attribute, and
may not be used in a STATI C or VOLATI LE statement.

This means also that you cannot give alocal variable of a PURE procedure
aninitial value in the specification portion of the routine, since this
automatically implies the SAVE attribute.

A PURE procedure may not contain a STOP, PRI NT, OPEN, CLOSE,
BACKSPACE, REW ND, ENDFI LE, or | NQUI RE statement. WRI TE and
READ statements may appear only if they reference internal files as the
logical unit.

Any routine CONTAI Ned within a PURE procedure must also be PURE.

Example
PURE FUNCTI ON ADDI T(1)
I NTENT (IN) |

ADDI T = REAL(1) + 2.0
END FUNCTI ON

PURE SUBROUTI NE SUBI T(RESULT, Al N1, Al N2)
| NTENT (OUT) RESULT

I NTENT (I'N) Al NL, Al N2

RESULT = AINL - Al N2

END SUBROUTI NE

7-15

; Intel Fortran Programmer’s Reference

7-16

In the following cases the use of a PURE procedure is required, if any
procedure is used at all:

® afunction referenced in a FORALL statement
® afunction referenced in a specification statement
® aprocedurethat is passed as an actual argument to a PURE procedure

® aprocedure referenced in the body of a PURE procedure, including
defined operators or defined assignment

In these contexts, with the exception of intrinsic functions, you must define
an explicit | NTERFACE for the referenced procedure, and the | NTERFACE
must contain the PURE attribute.

ELEMENTAL Procedures

ELEMENTAL procedures allow you to specify routines that have scalar
formal parameters, but whose actual parameters are arrays of any rank, so
long as the actual parameters are conformable. A formal parameter of the
ELEMENTAL procedure must be a scalar and must not have a PO NTER
attribute. An ELEMENTAL procedure isimplicitly a PURE procedure. The
keywords ELEMENTAL and PURE may appear on the same routine
declaration, but in this case PURE is redundant.

The result of executing an ELEMENTAL procedure is the same asif the
procedure were applied to each element of the array(s) in the actual
parameter(s) in any order, including simultaneously. ELEMENTAL functions
must return a scalar resullt.

It should be noted that some side effects are not recognized by standard
Fortran, such as |[EEE* floating point exception bits. It is the programmer’s
responsibility to make sure these side effects either do not occur, or have
acceptable results.

The following rules apply to ELEMENTAL procedures:

® All formal parameters must be scalars.

®* Formal parametersin ELEMENTAL subprograms must be
| NTENT(I N) .

® Thel NTENT of each formal parameter must be specified.

® Locd variables have the same restrictions as in a PURE procedure (i.e.
no SAVE attribute, cannot be used in a STATI Cor VOLATI LE
statement. See “PURE Procedures.”).

Program Units and Procedures ;

® Sincean ELEMENTAL procedure is aso PURE, an ELEMENTAL
procedure may not contain a STOP, PRI NT, OPEN, CLCSE,
BACKSPACE, REW ND, ENDFI LE, or | NQUI RE statement. WRI TE and
READ statements may appear only if they reference internal files as the
logical unit.

®* AnELEMENTAL procedure cannot be RECURSI VE.

* A formal parameter of an ELEMENTAL procedure must not have a
PO NTER type.

® Theresult of an ELEMENTAL function must not have a PO NTER type.

® You cannot use alternate returns with an ELEMENTAL subroutine.

Statement Functions

If an evaluation of afunction with a scalar value can be expressed in just
one Fortran assignment statement, such a definition can beincluded in the
specification part of amain program unit or subprogram. This definitionis
known as a statement function, and islocal to the scopein which it is
defined. The syntax is:

function-nanme (dummy-argunent-list) =

scal ar - expr essi on

All dummy arguments must be scalars. All entities used in the expression
must have been declared earlier in the specification part. A statement
function can reference another statement function that has aready been
declared. The name cannot be passed as a procedure-name argument.

Example

vol (r,h) = 3.14*h*r**2

I Definition, within the specification part of
I the subprogram

total = n * vol (0.5*d, x)

I Reference to the statement function, from
I within the same programunit.

7-17

; Intel Fortran Programmer’s Reference

7-18

Returning to the Calling Unit

When the END statement of the subprogram is encountered, control will be
returned to the calling program unit. The RETURN statement can be used to
the same effect at any point within the subprogram.

The syntax of the RETURN statement is:
RETURN[scal ar - i nt eger - expr essi on]

When alternate returns have been declared, the value of the scalar integer
expression determines which argument corresponds to the requested return
point. The dummy arguments corresponding to the alternate returns must
each be declared as an asterisk (*). If the value of the expression isn, then
the return is to the labeled statement referred to by the actual argument
corresponding to the nth dummy argument declared as an asterisk.

Subprogram Arguments

Actua arguments appear in a procedure reference and specify the actual
entitiesto be used by the procedure during its execution. Dummy arguments
are specified when the procedure is defined and are the name by which the
actual arguments are known within a procedure. When a procedureis
referenced during program execution, the actual arguments become
associated with the dummy arguments through argument association.

A dummy argument is one of:

®* npane

e * (subroutineonly)

A subprogram actual argument is one of:

® expression

® procedure-nane

® alternate return

Arguments allow a calling program unit and a called subprogram to
communicate with each other. The calling unit provides alist of actual

arguments and the called subprogram will have been declared with alist of
dummy arguments.

Program Units and Procedures ;

Argument Correspondence

If no keyword= component of an actual-argument-spec isincluded in the
reference, then each actual argument is assumed to correspond with the
dummy argument in the equivalent position in the dummy argument list.
The actual arguments may appear in any order if the keyword option isused
for all arguments. Actual arguments without the keyword option may be
followed by an argument with the keyword option. However, an argument
with the keyword option must only be followed by other arguments with the
keyword option.

Dummy arguments can be declared with the OPTI ONAL attribute. If they
appear at the end of the dummy argument list, the reference can omit any

trailing arguments that are not required. Otherwise, keywords must be
provided to maintain an identifiable correspondence.

Example of Argument Correspondence

The intrinsic function SUM(has three arguments: ar r ay, di m and nask,

in that order, and dim and mask are optional arguments. The following are
valid references:

SUM a, 2)

SUM a, MASK=a. gt . 0)

SUM DI M=2, ARRAY=a)

Thefollowing isan invalid reference—the mask keyword should have been
specified:

SUM a, DI M=2, a. gt . 0) ! Invalid

Argument Association

Dummy and actual arguments must agree in kind, type, and usually in
rank—that is, both scalars, or both arrays of the same dimensionality. An
actual argument that is an expression or areference to afunction procedure
must match the type and kind of the dummy argument.

Scalar Dummy Argument

If the dummy argument is a scalar, then the corresponding actual argument
must be a scalar, or scalar expression, of the same kind and type.

7-19

; Intel Fortran Programmer’s Reference

7-20

If the dummy argument is a character variable and has assumed length then
it will inherit the length of the actual argument. Otherwise the length of the
actual argument must be at least that of the dummy argument, and only the
characters within the range of the dummy argument can be accessed by the
subprogram. The lengths may differ only for default character types.

Array Dummy Argument

The different sorts of Fortran 95 arrays are described in Chapter 4,
“Arrays.”

If the dummy argument is an assumed-shape array, then the corresponding
actual argument must match in kind, type, and rank; the dummy argument
assumes its shape (the number of elementsin each dimension) from the
actual argument, resulting in an element-by-corresponding-€lement
association between the actual and dummy arguments.

If the dummy argument has explicit shape or assumed size, the kind and
type of the actual argument must match but the rank need not, as the
elements are matched by sequence association. That is, the actual and
dummy arguments are each considered to be alinear sequence of elements
in storage without regard to rank or shape, and corresponding elementsin
each sequence are associated with each other.

A consequence of this sequence association is that the overall size of the
actual argument must be at least that of the dummy argument, and only
elements within the overall size of the dummy argument can be accessed by
this subprogram.

Example

The following example illustrates sequence association.

Assuming that an actual array argument is declared thus:

REAL a(0:3,0:2)

And that the corresponding dummy array argument is declared thus:
REAL d(2, 3, 2)

Then the following correspondence between elements of the actual and
dummy argument is achieved:

Dummy <=> Act ual

Program Units and Procedures ;

d(1,1,1) <=> a(0,0)d(2,1,1) <=> a(1,0)
d(1,2,1) <=> a(2,0)

d(2, 3,2) <> a(3, 2)

When an actual argument and associated dummy argument are default
character arrays, they may be of unequal character length. If thisisthe case,
then thefirst character of the dummy and actual argumentswill be matched,
and the successive characters, rather than array elements, will be matched.

Example

The following example illustrates character sequence association.
Assuming that an actual argument array is declared thus:
CHARACTER* 2 a(3, 4)

and that the corresponding dummy array argument is declared thus:
CHARACTER*4 d(2, 3)

then the following correspondence between elements of the actual and
dummy argument is achieved:

Dunmy <=> Actual

d(1,1) <=> a(1,1)//a(2,1)

d(2,1) <=> a(3,1)//a(1,?2)

d(2, 3) <:> a(2,4)/1a(3,4)

An actual argument may be an array section, but passing an array section to
anonassumed shape dummy argument may cause a copy of the array
section to be generated and islikely to result in adegradation in
performance.

Derived-type Dummy Argument

The corresponding dummy and actual arguments of derived types are of the
same derived typeif the structures refer to the same type definition.
Alternatively, they are of the same typeif all the following are true:

® They refer to different type definitions with the same name.
® They both have the SEQUENCE statement in their definition.

7-21

; Intel Fortran Programmer’s Reference

7-22

®* The components have the same names and types and are in the same
order.

®* None of the componentsis of a private type or is of atype that has
private access.

Pointer Dummy Argument

If the dummy argument hasthe POl NTER attribute, the actual argument
must also have the POl NTER attribute, and match in kind, type, and rank;
the dummy argument in the procedure then behaves as if the actual
argument were used in its place. If the dummy argument does not have the
PO NTER attribute but the actual argument is a pointer, the argument
association behaves as if the pointer actual argument were replaced by its
target at the time of the procedure reference.

Procedure Dummy Argument

If adummy argument of a procedure is used as a procedure name within the
procedure, then the actual argument must be the name of an appropriate
subprogram, and its name must have been declared as EXTERNAL in the
calling unit or defined in an interface block. Internal procedures, statement
functions and generic names may not be passed as actual arguments.

If the actual argument is an intrinsic procedure, then the appropriate specific
name must be used in the reference, and must be declared as| NTRI NSI Cin
the calling unit.

Example

DOUBLE PRECI SI ON dsi n, x, y, fun
I NTRINSI C dsin

y=fun(dsin, x)

DOUBLE PRECI SI ON FUNCTI ON f un(pr oc, y)
DOUBLE PRECI SION y, proc

fun=proc(y)

END

Program Units and Procedures ;
Duplicated Association

If asubroutine call or function reference would cause a data object to be
associated with two or more dummy arguments, then that data object must
not be redefined within the subroutine or function. For example, in the
following:

PROGRAM p
CALL s (a,a)
CONTAI NS
SUBROUTINE s (c,d)
c = 22.01 ! invalid definition of

I one of the dummy
I arguments associ at ed
I with data object a

END SUBROUTI NE
END PROGRAM
both dummy arguments, ¢ and d, are associated with the actual argument a.
The definition of a, through the assignment to the dummy argument c, is
invalid. The above rule is extended to when the actual arguments are
overlapping sections of the same array.

Similarly, if adataobject isavailable to a procedure through both argument
association and either use, host, or storage association, then the data object
must be defined and referenced only through the dummy argument.

In the following code, the data object a is available to the subroutine as a
consequence of argument association and host association. The reference to
a directly in the subroutineisillegal.

PROGRAM p
CALL s (a,b)
CONTAI NS
SUBROUTI NE s (c, d)
c = 22.01 I valid definition of a
I through the dunmy
I argument
d = 3.0*a | reference to a directly

7-23

; Intel Fortran Programmer’s Reference

7-24

Interfaces

' is illegal

END SUBROUTI NE
END PROGRAM

INTENT Attribute

To enable additional checking to be performed on argument matching and
to avoid possible unwanted side effects, an | NTENT attribute can be
declared for each dummy argument, which may be specified as

I NTENT(I N), | NTENT(QUT) or | NTENT(| NOUT) .

The values that may be specified for the | NTENT attribute have the

following significance:

®* | Nisusedif the argument is not to be modified within the subprogram.

® QUT impliesthat the actual argument must not be used within the
subprogram beforeit is assigned a value.

® | NOUT (theform | N OUT is aso permitted) implies that the actual
argument must be defined on entry and is definable within the
subprogram.

The interface to a procedure (referred to as the procedure interface) is that
information, about the procedure, which is pertinent when that procedure is
invoked. Thisinformation includes:

® The name of the procedure.

® The properties (type, kind, and attributes) of the result, if the procedure
isafunction.

® Thenames, types, kinds, attributes, and order of the dummy arguments
of the procedure.

The procedure interface is said to be explicit if the above informationis
available to a program unit containing a reference to the procedure; when
the above information is not known, the procedure interface isimplicit. In
FORTRAN 77 all procedureinterfaces areimplicit, giving no way to ensure
that the actual arguments supplied in a procedure reference match the
dummy arguments within the procedure itself. In Fortran 95 procedure
interfaces can be either implicit or explicit.

Program Units and Procedures ;

A number of new Fortran 95 features, as listed below, require that the
procedures involved have explicit procedure interfaces available within the
scoping units invoking them. An explicit procedure interfaceis required
when:

The procedure reference uses the keyword form of an actual argument.

The procedure has OPTI ONAL arguments.

Any dummy argument is an assumed-shape array or pointer.

The result of the procedureisan array or pointer.

The procedure is a character function, the length of which is

determined dynamically.

The procedure reference isto a generic name.

®* The procedure reference is a consequence of a user-defined operator
function or operation.

® The procedure reference is a consequence of a user-defined

assignment.

Even where an explicit procedure interface is not required, making a
procedure interface explicit allows the compiler to check the validity of
references to the procedure.

In Fortran 95, all procedure interfaces are implicit except for procedures
which are:

® |ntrinsic procedures—the interface of every intrinsic procedure is
explicit.

® |nternal procedures—the interface of an internal procedure is explicit
within its host.

®* Module procedures—the interface of a module procedure is explicit
within a program unit using the module, and within the module itself.

® Recursive functions which specify aresult clause—the interface of
such afunction is explicit within the function itself.

® External procedures whose interfaces have been made explicit by the
provision of an interface block.

INTERFACE Block

When an external procedure (one which is outside the prevailing scope) or a
dummy procedure is referenced, it is sometimes necessary for itsinterface
to be made explicit. Thisisachieved by the provision of an interface block,
which is accessible to the scoping unit containing the procedure reference.
An interface block can aso be used to:

7-25

; Intel Fortran Programmer’s Reference

7-26

* Define ageneric procedure name, specify the set of proceduresto
which the generic name applies, and make explicit the interfaces of any
external procedures contained within the set.

* Define anew operator or extend an aready defined operator, specify
the set of functions which implement the operator, and make the
interfaces of any of these functions, which are externa, explicit.

* Define new defined assignment operations, specify the set of
subroutines to which to implement these operations, and make the
interfaces of any of these subroutines, which are external, explicit.

* Anexplicitinterfaceis described by an interface block, which appears
in the specification part of the programming unit containing the
procedure reference. An interface block may appear in any program
unit, except ablock data program unit.

The syntax for an | NTERFACE block is:

| NTERFACE [generi c- spec]

[i nterface-body]...
[MODULE PROCEDURE nodul e- procedur e- nane- | i st]

END | NTERFACE

generi c- spec
isone of:

e generic-nane
e OPERATOR (oper at or) ASSI GNMVENT (=)

generi c- nane
is the name of the generic procedure that is referenced in the
subprogram containing the interface block

oper at or
isone of the Fortran 95 unary or binary intrinsic operators, or a
user-defined unary or binary operator of the form:
.letter[letter]...

i nterface-body
is
functi on- st at enent

[specification-part]
end-functi on- st at enent

Program Units and Procedures ;

or
subrouti ne- st at ement
[specification-part]
end- subrouti ne- st at enent
The MODULE PROCEDURE statement is permitted in an interface block only
if thereisageneri c- spec present.

In the following example, the procedure interface for the function av is
made explicit by the inclusion of the interface block in the main program.

Example

REAL FUNCTI ON av(a)

I External function av with one assuned-shape
I dunmy argunent.

REAL a(:)
av = SUM a)/ Sl ZE(a)
END

PROGRAM mai n

REAL, DI MENSI ON(3) :: X

| NTERFACE
REAL FUNCTI ON av(a)
REAL, INTENT(IN) :: a(:)
END FUNCTI ON av

END | NTERFACE

x=(/2.0,4.0.7.0/)

PRI NT *, av(x)

END

INTERFACE TO Block

The | NTERFACE TOisan Intel Fortran extension that serves the same

purpose as the | NTERFACE block with the following exceptions:

®* The header is on the same line as the as the key phrase | NTERFACE
TO.

®* Theblock contains the specifications for just one subroutine or
function

7-27

; Intel Fortran Programmer’s Reference

7-28

The syntax for an | NTERFACE TOblock is:

| NTERFACE TO [functi on-stat ement
| subroutine-statenment]

[formal - paraneter-declarations]...
END
where,
function-stat ement isafunction declaration statement.
subrout i ne- st at ement isasubrotuine declaration statement
f ormal - par anet er - decl ar at i ons isvariable declaration statement.
The following is an example:
| NTERFACE TO I nteger*4 function CreateMitex

[stdcall, alias: ‘_CreateMitexA@?2]

(security, owner, string)

i nteger*4 security [val ue]

| ogi cal *4 owner [val ue]

integer*4 string [val ue]
END
In the preceding example, the procedure Cr eat eMut ex isbeing
referenced. The ALI AS attribute is being used to change the name of the
function. (See “Attributes’ in Appendix A for adescription of the ALI AS
attribute. Also, three variables (security, owner, string)and their

data types are being prototyped. The STDCALL attribute is implemented on
Windows* only.

Generic Names and Procedures

The concept of generic names and procedures wasintroduced in FORTRAN
77 with the provision of generic intrinsic procedures. In Fortran 95 this
concept is extended to allow user-defined generic procedures.

Two or more procedures are said to be generic if they can be referenced
with the same name; the name by which the procedures can be referenced is
the generic name.

Program Units and Procedures ;

A generic nameis defined by an interface block containing a

generi c- spec and the specifications of the procedures that may be
invoked by referencing the generic name. The procedure specificationsin
the interface block must be distinguishable from each other in one or more
of the following ways:

® The number of dummy arguments differ.

* Dummy arguments, from the specific procedure specifications, that
occupy the same position in the argument lists differ in type, kind, or
rank.

® The name of adummy argument differs from the names of the other
dummy arguments in dummy argument lists of other procedure
specifications, or all dummy arguments with the same name differ in
either type, kind, or rank.

There may be more than one interface block with the same generic name,
but the procedure specificationsin all such interface blocks must be
distinguishable by the above criteria.

When a generic name is referenced it must be possible to determine to
which of the specific procedures the generic name refers; the generic
reference must resolve to a unique specific procedure name. Selection of the
specific procedure is based on the properties of the actua argument list,
including:

® The number of actual arguments.

®* Thetype, kind, and rank of each actual argument.

® Theargument keyword, if supplied, of an actual argument.

The specific procedure whose dummy argument list matches the actual
argument list is selected and invoked from the list of procedure
specifications contained in the interface block that defines the generic
name. The dummy argument list of exactly one of the procedure
specifications contained in the interface block must match the actual
arguments in the reference of the generic name.

The MODULE PROCEDURE statement can be used to extend the list of
procedure specifications that comprises the interface block, by naming
procedures that are accessible to the program unit containing the interface
block. In the MODULE PROCEDURE statement only the specific names of
the procedures are given as their procedure interfaces are already explicit.
The MODULE PROCEDURE statement may only appear in an interface block

7-29

; Intel Fortran Programmer’s Reference

7-30

that has a generic specification, and the interface block must either beinthe
modul e containing the definitions of the named procedures or, in aprogram
unit in which the procedures are accessible through use association.

Example

In the following, it is assumed that two subroutines have been coded for
solving linear equations: r | i neq for when the coefficients are real, and
zl i neq for when the coefficients are complex. A generic name, | i neq, is
declared as follows and then used for either reference.
I NTERFACE | i neq
SUBROUTI NE rlineq(ra,rhb,rx)
REAL, DI MENSION(:,:) :: ra
REAL, DI MENSION(:) :: rb,rx
END SUBROUTI NE rli neq
SUBROUTI NE zl i neq(za, zb, zx)
COWPLEX, DI MENSION(:,:) :: za
COWPLEX, DI MENSI ON(:) :: zb, zx
END SUBROUTI NE zli neq
END | NTERFACE 1i neq

Defined Operators

The OPERATOR (oper at or) generic specification can be used to either
define a new user-defined operator symbol, or to extend the behavior of an
aready defined or intrinsic operator.

When the OPERATOR (oper at or) generic specification is present in the

| NTERFACE statement, the procedure specifications that immediately
follow must only describe function subprograms. The functions described
are those that are to be used to implement the operator for various type,
kind, and rank combinations of operand. These functions must have only
one or two mandatory arguments, which correspond to the operand(s) of a
unary or binary operator. The functions return the result of an expression of
the form:

oper ator operand
or
operandl operator operand2

Program Units and Procedures ;

as appropriate. Each dummy argument of the functions described in the
interface block must havethe | NTENT(| N) attribute. If oper at or isone
of the Fortran 95 intrinsic operators, then each of the specified functions
must take the same number of arguments as the intrinsic operator has
operands, and the arguments must be distinguishable from those normally
associated with the intrinsic operation.

Argument keywords must not be specified in areference to a user-defined
operator function when the operator syntax, rather than the name of the
specific function, is used in an expression.

An interface block that defines or extends an operator is analogous to
defining a generic procedure name, with the operator being the generic
name. Similarly areference to a user-defined operator must resolve to a
unique specific function name. The selection of the functionis
accomplished by matching the number, type, kind, and rank of the
operand(s) with the dummy argument lists of the function specifications
contained in the interface block. As with generic names exactly one such
specification must match the properties of the operands, and the function
whose specification does match is selected and invoked.

See the examples in the next section.

Defined Assignment

The ASSI GNVENT(=) option allows you to specify one or more
subroutines that extend the assignment operation. Each subroutine must
have only two mandatory arguments; the first argument can have either the
| NTENT(OUT) or the | NTENT(| NOUT) attribute; the second argument
must havethe | NTENT(| N) attribute. The first argument corresponds to
the variable on the left-hand side of the assignment statement, and the
second to the expression on the right-hand side.

In a similar manner to generic names and defined operators, defined
assignment must resolve to a unique specific subroutine. The subroutine
whose dummy arguments match the left and right-hand sides of the
assignment statement in all of kind, type, and rank is selected and invoked
from thelist of subroutine specifications contained in the defined
assignment interface block.

7-31

; Intel Fortran Programmer’s Reference

7-32

Examples

The following exampleillustrates the definition of a user-defined unary
operator, . ei genval ues. , that, when applied to an object of type
mat ri x, computes its eigenvalues:
| NTERFACE OPERATOR (. ei genval ues.)

TYPE (vector) FUNCTION &

find_eigenval ues(matrix_1)
USE new_t ypes
TYPE (matrix), INTENT(IN) :: matrix_1

END FUNCTI ON fi nd_ei genval ues

END | NTERFACE

TYPE (matrix) :: a; TYPE (vector) :: b
I Conpute the eigenval ues of a.
b = .eigenval ues. a

The next example extends the * operator and assignment in order to work
with entities of derived types.
| Extend the * operator.
| NTERFACE OPERATOR (*)
MODULE PROCEDURE pol ar _mul, interval _mul
END | NTERFACE
! Extend assignnent.
| NTERFACE ASSI GNMVENT (=)
MODULE PROCEDURE assi gn_pol ar_t o_conpl ex
END | NTERFACE
TYPE (polar) :: pl, p2
TYPE (interval) :: vl, v2, v
COWLEX :: ¢

I A defined operation and an intrinsic

I assignnent.

v = vl*v2

I A defined operation and an defined assi gnnent.
c = pl*p2

Program Units and Procedures ;

Modules

Modules contain the definitions of data objects, derived-types, procedures,
and procedure interface blocks. These definitions may be used in other
program units. A module does not contain executable code, except in the
execution parts of module subprograms.

Typicaly, modules are used for:

Definition and declaration of data types
Definition and declaration of global data areas
Definitions of operators

Creation of subprogram libraries

The definitions within a modul e become availabl e to another program unit
if that program unit contains a USE statement nominating the module. These
definitions are then said to be accessible by the other program unit through
use association.

A USE statement may appear within a module program unit, but such a
statement must not cause a module to reference itself either directly or
indirectly.
The syntax of amodule program unit is:
MODULE nodul e- nane
[specification-part]
[modul e- subprogram part]
END [MODULE [nodul e- nane]]
modul e- subpr ogram part
is
CONTAI NS
nodul e- subpr ogr an{ nodul e- subprograni. ..
nodul e- subpr ogram
isone of:

e module-function-subprogram
e modul e-subroutine-subprogram

A module subprogram can contain internal subprograms. It differs from an
external subprogram in the following ways:

7-33

; Intel Fortran Programmer’s Reference

7-34

A module subprogram name does not have global scope—it is known
only within the module. However, it can be made accessible to other
program units, however, through use association.

The END statement of a module subprogram must contain the
SUBROUTI NE or FUNCTI ON keywor d, as appropriate; for an
external subprogram thisisoptional.

Module Usage

Points to note about module definition and use:

Module entities that are accessible by use association are;

— Declared variables

— Named constants

— Derived-type definitions

— Procedure interfaces

— Module procedures

— Generic names

— Namédlist groups

The procedure interface of amodule subprogram is automatically made
explicit in the program unit using the module—no interface block
needs to be created.

A module subprogram can be passed as an actual argument.

The specification part of a module must not contain statement function
definitions, automatic objects, or FORMAT statements.

The SAVE attribute can be specified when declaring an entity within a
module or, aternatively, the entity may appear in a SAVE statement
within the module. Thiswill preserve the entity’s value even when
there are no active program units using the module.

Specifying the SAVE attribute within a module is unnecessary in

Intel Fortran, as entities declared within a module retain their value(s)
by default.

Each entity declared in the module specification part, and each of the
modul e subprogram names, has either the PUBLI C or PRI VATE
attribute. By default all of the declared entities have the PUBLI C
attribute and thereby become accessibl e to other program units
accessing the modul e by use association. The PRI VATE attribute and
statement can be specified to inhibit access.

Program Units and Procedures ;

The PUBLI C and PRI VATE attributes and statements are described further
in

NOTE. The current version of the Intel® Fortran Compiler does not
support STRUCTURES within the Fortran modules.

Example

The following schematic example shows a possible structure for an
application using modules.

MODUL E datatypes
[derived-type definitions]..
END MODULE datatypes

MODULE gl obal

USE dat at ypes

I G ves access to nodul e dat atypes.
[gl obal data area definitions]

END MODULE gl obal

MODULE operators

USE dat at ypes

I G ves access to nodul e dat atypes.
[generic interface definitions]

[code for operator, assi gnnent definitions]

END MODULE operators

MODULE li brary

USE operators

I G ves access to datatypes and operators.
CONTAI NS

e | Module subprograms.

7-35

; Intel Fortran Programmer’s Reference

END MODULE 1i brary

PROGRAM mai n

USE gl obal

I Gves access to data areas. USE library
I G ves access to subprogramlibrary,

I generic interfaces and operator

I definitions.

END

Use Statement

USE statements appear at the head of the specification part of aprogram unit
that requires access to information from modules. Such shared information
has use association.

The syntax of the USE statement is:
® USEnodul e-nane [, renane-list]
or
® USEnodul e-name, ONLY : [access-list]
rename-| i st

isacomma separated list of r ename
renane

is

| ocal - nanme =>nodul e-enti ty-name
access -1list

isacomma separated list of access
access

isone of:

e [local -name =>] nodul e-entity-name
e OPERATOR (operator)
e ASSI GNMVENT (=)

7-36

Program Units and Procedures ;

Notes

® Theform USE nodul e- nane, without the ONLY option, provides
accessto all PUBLI C entitieswithin nodul e- nane available.

® The ONLY option restricts the information that is accessed through use
association to alisted subset of public itemsin the named module. Each
item can be renamed if necessary.

® Arenane-|ist may beadded to avoid name clashes.

®* When morethan one USE statement for the same moduleispresentin a
scoping unit, then:

® |f one of the USE statements is without the ONLY qualifier, then al of
the PUBLI C entities from the modul e are available and all of the
renames from the rename-lists and access-lists are interpreted as a
single concatenated rename-list.

® Otherwise, al of the USE statements have the ONLY qualifier and the
access- i sts fromthese ONLY qualifiers areinterpreted asasingle
concatenated access-list.

Example 1

In thisfirst example, the modulel i near sol ver contains two module
proceduresr | i neq and zI i neq; they are given the generic namel i neq,
whichisrenamed to | g by the program unit using | i near sol ver.| qis
then invoked twice.
MODULE | i near sol ver
I NTERFACE | i neq

MODULE PROCEDURE rlineq, zlineq
END | NTERFACE
CONTAI NS

SUBROUTI NE rlineq(ra,rhb,rx)

REAL, DI MENSION(:,:) :: ra

REAL, DI MENSION(:) :: rb, rx

. I Code for rlineq.

END SUBROUTI NE rl i neq
SUBROUTI NE zl i neq(za, zb, zx)
COWPLEX, DI MENSION(:,:) :: za

7-37

; Intel Fortran Programmer’s Reference

COWPLEX, DI MENSI ON(:) :: zb, zx
. I Code for zlineq.
END SUBROUTI NE zl i neq
END MODULE | i nearsol ver

PROGRAM mai n
USE linearsolver, I g => lineq
REAL ra(4,4),rb(4),rx(4)
COWPLEX za(5,5), zb(5), zx(5)

CALL I q(ra,rhb,rx) I Invokes rlineq.

CALL 1 q(za, zb, zx) I I nvokes zlineq.

END PROGRAM nmmai n

Example 2

The next extended exampl e entails the use of two modules, pr eci si on
and | i near _equati on_sol ver. Thepreci si on moduleisvery short
and it is used to communicate akind type parameter (adequat e) to the
other program units in the program, and thus exemplifies precision
portability. Thel i near _equati on_sol ver isatypica exampleof a
“real life” module that also demonstrates the power of Fortran 95 array
language. This module contai ns three modul e procedures, the first of which,
sol ve_l i near _equat i ons, uses the other two;

sol ve_l i near _equat i ons isitself invoked by the main program.
MODULE preci si on

I adequate is a kind nunber of a real representation with
at | east 10

7-38

Program Units and Procedures ;

I digits of precision and 99 digits range, that normally
results
I in 64-bit arithnmetic.
| NTECER, PARAMETER :: adequate =
SELECTED REAL_KI NI(10, 99)
END MODULE pr eci si on

MODULE | i near _equati on_sol ver
ppUSE preci si on
I MPLI CI' T NONE
PRI VATE adequat e

CONTAI NS

SUBROUTI NE sol ve_l i near _equations (a, x, b, error)
I Solve the systemof |inear equations ax = b.
I error is true if the extents of a, x, and b are
i nconpatible or a
I zero pivot is found.
REAL (adequate), DIMENSION (:, :), INTENT (IN) :: a
REAL (adequate), DI MENSION (:), INTENT (OUT) :: X

REAL (adequate), DIMENSION (:), INTENT (IN :: b

LOd CAL, |INTENT (QUT) :: error

REAL (adequate), DI MENSION (SIZE (b), SIZE (b) + 1) :: m
INTEGER :: n

n = Sl ZE (b)

I Check for conpatible extents.

error = SIZE(a, DIM1) /=n .OR SIZE(a, DOM2) /=n &
.OR SIZE(x).LT. n

IF (error) THEN

x =0.0

RETURN

END | F

I Append the right-hand side of the equation to m

m(l:n, 1:n) = a
m(l:n, n+tl) = Db

7-39

; Intel Fortran Programmer’s Reference

7-40

I Factor mand performforward substitution in the |ast
colum of m

CALL factor (m error)

IF (error) THEN

x = 0.0

RETURN

END | F

I Perform back substitution to obtain the solution.
CALL back_substitution (m x)
END SUBROUTI NE sol ve_Il i near _equati ons

SUBROUTI NE factor (m error)

I Factor min place into a | ower and upper triangul ar
matrix using

I partial pivoting.

I Term nate when a pivot elenment is zero.

I Performforward substitution with the | ower triangle on

t he
I right-hand side n(:,n+l)
REAL (adequate), DI MENSION (:, :), INTENT (INQUT) :: m
LOG CAL, |INTENT (QUT) :: error
I NTEGER, DI MENSION (1) :: max_|oc

REAL (adequate), DIMENSION (SIZE (m DI M:2)) :: tenp_row
INTEGER :: n, k
I NTRI NSI C MAXLOC, SIZE, SPREAD, ABS

n = SIZE (m DI Me1)

triang_loop: DOk =1, n
max_|l oc = MAXLOC (ABS (m (k:n, k)))
temp_row (k:n+1) = m (k, k:n+l1)
m (k, k:n+l) = m (k-1+max_l oc(1), k:n+1)
m (k-1+max_l oc(1), k:n+l) = tenp_row (k:n+1)

IF (m(k, k) == 0) THEN
error = . TRUE.
EXIT triang_| oop

ELSE

m (k, kin+l) = m(k, k:in+l) / m(k, K)
m (k+1:n, k+1:n+1) = m (k+1l:n, k+l:n+l) - &

Program Units and Procedures ;

SPREAD (m (k, k+1:n+1), 1, n-k) * &
SPREAD (m (k+1:n, k), 2, n-k+1)
END | F
END DO triang_| oop
END SUBROUTI NE f act or

SUBROUTI NE back_substitution (m x)
I Perform back substitution on the upper triangle to
comput e the
I solution.
REAL (adequate), DIMENSION (:, :), INTENT (IN) :: m
REAL (adequate), DIMENSION (:), INTENT (OUT) :: X
INTEGER :: n, k
I NTRINSI C SI ZE, SUM

n = SIZE (m D M1)
DOk =n, 1, -1
x (k) = m(k, n+tl) - SUM (m (k, k+1:n) * x (k+1:n))
END DO

END SUBROUTI NE back_substitution

END MODULE | i near _equation_sol ver

PROGRAM exanpl e
I Use the two nodul es defined above.
USE precision
USE | i near _equation_sol ver

| MPLI CI' T NONE

REAL (adequate) a(3,3), b(3), x(3)
| NTEGER i, |j

LOG CAL error

a(3,3) =-a(3,3)
b =(/ 20, 26, -4 1)

7-41

; Intel Fortran Programmer’s Reference

CALL solve_linear_equations (a, x, b, error)
PRINT *, error

PRI NT *, X

END PROGRAM exanpl e

Main Program
A main program isaprogram unit. There must be exactly one main program
in an executabl e program. Execution always begins with the main program.

The main program can determine the overall design and structure of the
complete Fortran 95 program and often performs various computations by
referencing procedures. A Fortran program may consist of only amain
program, in which case al the program logic is contained withinit.

A main program has the form:
[PROGRAMpr ogr am nane]
[specification-part]..
[execution-part] ..
[i nt er nal - subprogram part]
END [PROGRAM[pr ogr am nane]]

E NOTE. Ifyou use a PROGRAMstatement, the pr ogr am nane isglobal

to the executable program, and must not be the same as the name of any
other program unit, external procedure, or common block in the
executable program, nor the same as any local name in the main
program.

Like other program units, amain program has three parts: a specification
part, an execution part, and an internal procedure part that begins with the
CONTAI NS statement. All three parts are optional .

7-42

Program Units and Procedures ;

The data environment is described in the specification part. The data
environment includes USE statements, declarations and specifications of the
attributes of variables, type definitions, and initial values. An automatic
object must not appear in the specification part of a main program.

The execution-part of a program unit contains executable-constructs such as
the CASE, DO, | F, or WHERE constructs, and action statements such as
assignment statements, data transfer statements, or | F statements.

Neither ENTRY nor RETURN statements are permitted in a main program.
The internal subprogram part contains one or more internal procedures.

The PROGRAMSstatement isoptional; if it appears, the program name may be
used on the END statement.

Note that the smallest valid Fortran 95 program consists of the single
Statement:

END

Block Data

A block data program unit initiali zes data values in common blocks. The
syntax of ablock data program unit is:

BLOCK DATA [bl ock- dat a- nane]
[speci fication-part]
END [BLOCK DATA [bl ock- dat a- nane]]
The specification part of ablock data program unit can contain:
®* Type declaration statements
® USE statements
® | MPLI CI T statements
®* COWVON statements
® DATA statements
® EQUI VALENCE statements
® Derived-type definitions
* Allowable attribute specification statements (see list below)

7-43

; Intel Fortran Programmer’s Reference

7-44

Table 7-2

The following attributes can be specified:

Allowable Block Data Attributes

PARAMETER INTRINSIC SAVE
DIMENSION POINTER TARGET

There must not be more than one unnamed BLOCK DATA program unit in
an executable program. A named common block can beinitialized in only
one BLOCK DATA program unit. Pointer objects cannot be initialized.

An Intel Fortran extension allows data objects in an unnamed common
block to be initialized as shown in the following example.

Example

BLOCK DATA bl ank
COVWON / aa(3), ab(5)
DATA aa/ 3*1. 0/
DATA ab/ 1.0, 2.0, 3*4. 0/

END BLOCK DATA bl ank

Another extension in Intel Fortran allows the DATA initialization of
variables in COMMON blocks, in any program unit or subprogram, and not
justin BLOCK DATA. However agiven COMMON block can only be
initialized in one program unit only.

1/0 and File Handling

This chapter describes input/output (1/0) and file handling as supported by
Intel® Fortran. Included at the end of the chapter are example programs that
illustrate different types of 1/0.

Records

Therecord isthe basic unit of Fortran 95 /O operations. It consists of either
characters or binary values, depending upon whether the record is formatted
or unformatted. The following sections describe both formatted and
unformatted records, plus the special case of the end-of-file record.

Note that nonadvancing 1/0O makes it possible to read and write partial
records. For more information, see

Formatted Records

A formatted record consists of characters that have been edited during
list-directed or namelist-directed /O, or by aformat specification during a
data transfer. (For information about format specifications, see

.) Thelength of aformatted record is measured in characters,
thereis no predefined maximum limit to the length of aformatted record.

8-1

8 Intel Fortran Programmer’s Reference

8-2

Unformatted Records

An unformatted record consists of binary values in machine-representable
format. The length of an unformatted record is measured in bytes.
Unformatted records cannot be processed by list-directed or
namelist-directed |/O statements or by 1/O statements that use format
specificationsto edit data.

End-of-file Record

Files

The end-of-file record is a specia case: it contains no data and is the last

record of asequential file. The end-of-file record is written:

* By the ENDFI LE statement

®* Whenthefileis closed—either explicitly by the CLOSE statement or
implicitly when the program terminates—immediately following a
write operation

®* When a BACKSPACE statement executes after a write operation, before
thefileis backspaced

A fileisacollection of data, organized as a sequence of logical records.
Records in afile must be either all formatted or all unformatted, except for
the end-of-file record.

The following sections describe the two types of files, external files and
internal files.

External Files

An external fileis stored on disk, magnetic tape, or some other peripheral
device. External files can be accessed sequentially or directly as described
in“ ”

Scratch Files

A scratch fileis a special type of external file. It is an unnamed, temporary
file that exists only whileit is open—that is, it exists no longer than the life
of the program. Intel Fortran usesthet empnam(3S) system routine to

I/0 and File Handling 8

name the scratch file. The name becomes unavailable through thefile
system immediately after it is created, and it cannot be seen by thel s(1)
command and cannot be opened by any other process.

To create a scratch file, you must include the STATUS=" SCRATCH
specifier in the OPEN statement, asin the following:

OPEN (25, STATUS=" SCRATCH)

In all other respects, a scratch file behaves like other external files. For an
exampl e of a program that uses a scratch file, see

Internal Files

Aninternal fileis stored in avariable where it exists for the life of the
variable. Its main use is to enable programs to transfer data internally
between a machine representation and a character format, using edit
descriptors to make the conversions. (For more information about edit
descriptors, see)

Aninternal file can be one of the following:

® A character variable

®* A character array

® A character array element

® A character substring

®* Aninteger or rea array (Intel Fortran extension)

* Any of theabove that is either afield of astructure or acomponent of a
derived type

Note, however, that a section of a character array with a vector subscript
cannot be used as an internal file.

Accessing recordsin an internal fileis analogous to accessing themin a
formatted sequential file; see ." For an example program that
uses an internal file, see “ §

An internal fileis not connected to a unit number and therefore does not
require an OPEN statement. It is referenced as a character variable. In the
following example, the WRI TE statement transfersthe datafrom char _var

8-3

8 Intel Fortran Programmer’s Reference

8-4

totheinternal filei nt _fi | e, using list-directed formatting. Because
i nt_fil eisdeclaredto be80 characterslong, it isassumed that the length
of char _var will be no more than 80 characters.

CHARACTER(LEN=80) :: int_file

WRI TE (FILE=int _file, FMI=*) char_var

Connecting a File to a Unit

Before a program can perform any 1/O operations on an externd file, it must
establish alogical connection between the file and a unit number. Once the
connection is established, the program can reference the file by specifying
the associated unit number (a non-negative integer expression). In the
following example, the OPEN statement connects unit number 1 to the file
ny_dat a, alowing the WRI TE statement to write the valuesin

total acct andbal ance tony_dat a:

OPEN (UNI T=1, FILE="ny_data’)

WRITE (1, '(F8.2)’) total _acct, bal ance

The following sections describe three types of unit numbers:

®* Those that are explicitly connected by means of the OPEN statement
® Preconnected unit numbers
* Automatically opened unit numbers

Connecting to an External File

Typically, the connection between an external file and a unit number is
established by the OPEN statement. When the program is finished using the
file, the connection is terminated by the CLOSE statement. Once the
connection is terminated, the unit number can be assigned to a different file
by means of another OPEN statement. Similarly, afile whose connection
was broken by a CLOSE statement can be reconnected to the same unit
number or to a different unit number.

A unit cannot be connected to more than one file at atime.

I/0 and File Handling 8

The following code establishes a connection between unit 9 and the external
filefirst _file,whichisto beby default opened for sequential access.
When the program is finished with the file, the CLOSE statement terminates
the connection, making the unit number available for connection to other
files. Following the CLOSE statement, the program connects unit 9 to a
different externd file, new_fil e:
I connect unit 9 to first_file

OPEN (9, FILE="first _file")

I process file

I term nate connection

CLOSE (9)

I connect sane unit nunber to new file
OPEN (9, FILE="new file")

| process file

I term nate connection
CLCSE (9)

Preconnected Unit Numbers

Unit numbers 5, 6, and 0 are preconnected; that is, they do not have to be
explicitly opened and are connected to system-defined files, as follows:

® Unit 5isconnected to standard input—by default, the keyboard of the
machine on which the program is running.

® Unit 6 is connected to standard output—by default, the
terminal/display of the machine on which the program is running.

® Unit Oisconnected to standard error—by default, the terminal/display
of the machine on which the program is running.

Each predefined logical unit is automatically opened when a Fortran 95
program begins executing and remains open for the duration of the
program. This means, for example, that standard output can be used by a
PRI NT statement without prior execution of an OPEN statement. Attempting
to CLOSE a preconnected logical unit has no effect.

8 Intel Fortran Programmer’s Reference

A preconnected unit number can be reused with an OPEN statement that
assignsit to a new file. Once a preconnected unit number is connected to a
new file, however, it cannot be reconnected to its original designation.

You can use the input/output redirection (< and >) and piping (])
operatorsto redirect from standard input, standard output, or standard error
to afile of your own choosing.

Automatically Opened Unit Numbers

Unit numbers that have not been associated with afile by an OPEN
statement can be automatically opened using the READ or WRI TE statement.

For automatically opened unit n, the file name conventions are as follows:
when afileis automatically opened, the file name assigned toitisfort. n
where n is replaced by the unit number in the range 01 to 99.

Thefilef ort. n isopened in the current directory. If such file does not
exigt, it is created.

Automatically opened files are always opened as sequential files. Other
characteristics of an automatically opened file, such as record length and
format, are determined by the datatransfer statement that creates thefile. If
the statement does not specify formatted, list-directed, or namelist-directed
1/0O, thefile is created as an unformatted file.

Windows*

If you have made an environment variable assignment of the form
FORTXX=PATH, the file named in PATH is opened. Otherwise, thefile
whose nameis FORT. XX is opened in the current directory. If the file does
not exigt, it is created.

The following program writes the string “Hel | o, wor | d! ” tothefile
fort.11:

PROGRAM Aut 0
WRITE (11,’ (A)’) ’'Hello, world!’
END

If this program iscompiledtoa. out andisrunusing/ bi n/ sh or
/ bi n/ ksh asfollows:

I/0 and File Handling 8

fort.ll=datafile
export fort.11
a. out

the output string iswrittentothefiledat afi | e insteadof fort . 11.

Linux*

On Linux* operating system, you can use the environment variable
mechanism to associate logical units with external files. If you have set an
environment variable FORTn to the valug] pat h] fi | enane, thefile
namedin[pat h] fi | ename isopened for unit n in the absence of OPEN
Statement.

Thepat h specifiesthe directory and may be omitted, f i | enane specifies
thefilein the directory. If the file does not exist, it is created. The directory,
defined in the pat h, must exist.

To set the environment variable, use the following commands:

1) with sh, bash, or ksh shells:

export FORTn=[path]filenane

2) with csh shell

setenv FORTn [path]filename

To unset the environment variable, use the following commands:
1) with sh, bash, or ksh shells:

unset FORTn

2) with csh shell:

unsetenv FORTn

The following program writes the string “Hel | o, wor | d! ” to thefile
fort. 11 by default:

PROGRAM Aut o

WRI TE (11, (A)’) 'Hello, world!’

END

If you set environment variable FORT11=nydat / fi | e. dat , the output

string iswrittento thefilefi | e. dat inthe. / nydat directory instead
of fort. 11 inthe current directory.

8 Intel Fortran Programmer’s Reference

8-8

File Access Methods

Intel Fortran allows both sequential access and direct access. You specify
the access method with the OPEN statement when you connect the fileto a
unit number. The following example opensthe file new_dat a for direct
access:
OPEN(40, ACCESS=’ DI RECT', RECL=128, &

FI LE=" new_data’)
If you do not specify an access method, the file is opened for sequential
access.

The following sections describe both sequential and direct methods.

Sequential Access

Records in afile opened for sequential access can be accessed only in the
order in which they were written to thefile. A sequential file may consist of
either formatted or unformatted records. If the records are formatted, you
can use list-directed, namelist-directed, and formatted |/O statements to
operate on them. If the records are unformatted, you must use unformatted
1/0O statements only. The last record of a sequential file is the end-of-file
record.

The following sections describe the types of 1/O that can be used with
sequential files, namely:

®* Formatted I/O

® List-directed I/O

®* Namelist-directed I/O

* Unformatted I/O

Formatted 1/O

Formatted |/O uses format specifications to define the appearance of data
input to or output from the program, producing ASCII records that are
formatted for display. (Format specifications are described in detail in

.) Dataistransferred and converted, as necessary,
between binary values and character format. You cannot perform formatted
I/0 on afilethat has been connected for unformatted 1/O; see”

I/0 and File Handling 8

Formatted /O can be performed only by datatransfer statements that
include a format specification. The format specification can be defined in
the statement itself or in a FORMAT statement referenced by the statement.

For an example of a program that accesses a formatted file, see

List-directed 1/O

List-directed I/O is similar to formatted /O in that data undergoes aformat
conversion when it is transferred but without the use of aformat
specification to control formatting. Instead, data is formatted according to
itsdatatype. List-directed 1/O istypically used when reading from standard
input and writing to standard output.

List-directed /O uses the asterisk (*) as aformat identifier instead of alist
of edit descriptors, asin the following READ statement, which reads three
floating-point values from standard input:

READ *, A, B, C

List-directed 1/0O can be performed only on internal files and on formatted,
sequential external files. It worksidentically for both file types.

List-directed Input

Input datafor list-directed input consists of values separated by one or more
blanks, a slash, or acomma preceded or followed by any number of blanks.
(No values may follow the slash.) An end-of-record also acts as a separator
except within a character constant. Leading blanks in the first record read
are not considered to be part of avalue separator unless followed by aslash
or comma.

Input val ues can be any of the valueslisted in Table 8-1. (A blank is
indicated by the symbol b.)

8-9

8 Intel Fortran Programmer’s Reference

8-10

Table 8-1

Input Values for List-directed I/O

Table 8-2

Value

V4

r*c

r*z

Meaning

A null value, indicated by two successive separators with zero
or more intervening blanks (for example, , b/).

A literal constant with no embedded blanks. It must be
readable by an | , F, A, or L edit descriptor. Binary, octal, and
hexadecimal data are illegal.

Equivalenttor (an integer) successive occurrences of ¢ in
the input record. For example, 5* 0. O is equivalent to 0. 0
0.0 0.0 0.0 0.0.

Equivalent to r successive occurrences of z.

Reading always starts at the beginning of a new record. Records are read
until the list is satisfied, unless a slash in the input record is encountered.
The effect of the slash is to terminate the READ statement after the
assignment of the previous value; any remaining datain the current record

isignored.

Table 8-2 outlines the rules for the format of list-directed input data.

Format of list-directed Input Data

Data Type Input Format Rules

Integer Conforms to the same rules as integer constants.
Real and Double Any valid form for real and double precision. In
Precision addition, the exponent can be indicated by a signed

integer constant (the Q, D, or E can be omitted),
and the decimal point can be omitted for those
values with no fractional part.

continued

I/0 and File Handling 8

Table 8-2 Format of list-directed Input Data (continued)
Data Type Input Format Rules
Complex and Two integer, real, or double precision constants,
Double Complex separated by a comma and enclosed in

parentheses. The first number is the real part of the
complex or double complex number, and the
second number is the imaginary part. Each of the
numbers can be preceded or followed by blanks or
the end of a record.

Logical Consists of a field of characters, the first nonblank
character of which must be a T for true or an F for
false (excluding the optional leading decimal point).
Integer constants may also appear.

Character Same form as character constants. (Delimiting with
single or double quotation marks is needed only if
the constant contains any separators; delimiters
are discarded upon input.) Character constants can
be continued from one record to the next. The
end-of-record does not cause a blank or any other
character to become part of the constant. If the
length of the character constant is greater than or
equal to the length, len, of the list item, only the
leftmost len characters of the constant are
transferred. If the length of the constant is less than
len, the constant is left-justified in the list item with
trailing blanks.

List-directed Output

The format of list-directed output is determined by the type and value of the
datain the output list and by the value of the DELI M= specifier in the OPEN
statement. (For information about the DELI M= specifier, see the description
of the OPEN statement in)
summarizes the rules governing the display of each data type.

811

8 Intel Fortran Programmer’s Reference

8-12

Table 8-3

Format of List-directed Output Data

Data Type
Integer

Real and
Double
Precision

Complex

Logical

Character

Output Format Rules
Output as an integer constant.

Output with or without an exponent, depending on the
magnitude. Also, output with field width and decimal places
appropriate to maintain the precision of the data as closely
as possible.

Output as two numeric values separated by commas and
enclosed in parentheses.

If the value of the list element is . TRUE. , then T is output.
Otherwise, F is output.

Output using the Alen format descriptor, where len is the
length of the character expression (adjusted for doubling).
If DELI M=’ NONE' (the default), no single () or double (*)
guotation marks are doubled, and the records may not be
suitable list-directed input. If the value specified by

DELI M= is not’ NONE’ , only the specified delimiter is
doubled. Character strings are output without delimiters,
making them also unsuitable for list-directed input.

With the exception of character values, all output values are preceded by
exactly one blank. A blank character is also inserted at the start of each
record to provide ASA carriage control if the fileisto be printed (see

PRI NT *,

"). For example, the following statement:

"Hell o, world!’

outputs the line (where b indicates a blank):
bHel | o, bwor | d!

If the length of the values of the output itemsis greater than 79 characters,
the current record is written and a new record started.

Slashes, as value separators, and null values are not output by list-directed
WRI TE statements.

I/0 and File Handling 8
Namelist-directed 1/0O

Namelist-directed 1/0O enables you to transfer a group of variables by
referencing the name of the group, using the NML= specifier in the data
transfer statement. The NAMEL| ST statement specifies the variablesin the
group and gives the group a name.

Like list-directed 1/0, namelist-directed I/O does not use a format
specification when formatting data but uses default formats, as determined
by the data types.

In the following example, the NAMELI ST statement defines the group
name_gr oup, which consists of the variablesi , j , and c. The READ
statement reads a record from the file connected to unit number 27 into
name_gr oup. The PRI NT statement then writesthe datafrom the variables
in name_gr oup to standard output. (As an extension, Intel Fortran allows
this use of the PRI NT statement in namelist 1/0.)

I NTEGER :: i, j

CHARACTER(LEN=10) :: ¢

NAMELI ST / name_group/ i, j, ¢C

READ (UNI T=27, NM_L=namne_gr oup)
PRI NT name_gr oup

Each namelist-directed output record begins with a blank character to
provide for ASA carriage control if the records are to be printed (see “

H).
Namelist-directed 1/0O can be performed only on formatted, sequentia
external files.
The following program illustrates namelist-directed 1/O:
PROGRAM nanel i st

| NTEGER, DI MENSI ON(4) :: ivar
CHARACTER(LEN=3), DI MENSION(3,2) :: cvar
LOd CAL :: lvar

REAL :: rvar

8-13

8 Intel Fortran Programmer’s Reference

NAMELI ST /nl/ ivar, cvar, |var, rvar
READ (*, nl)
PRI NT nl

END PROGRAM nanel i st

If theinput datais:

&nl

ivar = 4,3,2,1

| var =t oodl es

cvar=,,’ QRS , 2*, 2*' XXX

rvar=5. 75E25, cvar(3,2)(1:2)="AB

/

the output from this program will be:

B&NLBI VAR =4 3 2 1BCVAR =", "QRS, "', "7, " XXX,
" ABX BLVAR = TBRVAR = 5. 75000E+25b/

The following sections describe the format of namelist-directed input and
output. For detailed information about the NAMELI ST statement, see

Namelist-directed Input
A namélist-directed input record takes the following form:

1. Anampersand character (&) immediately followed by a namelist group
name. The group name must have been previously defined by a
NAMELI| ST statement.

As an extension, the dollar sign ($) can be substituted for the
ampersand (&).

2. A sequence of name-value pairs and value separators. A name-value
pair consists of the name of avariable in the namelist group, the equals
sign (=), and avalue having the same format as for list-directed input
(z,c,r*c,andr*). A name-value pair can appear in any order in the
sequence or can be omitted.

8-14

I/0 and File Handling 8

A value separator may be one of the following:

« Blanks
e Tabs
« Newlines

e Any of the above with asingle comma

A NAMELI ST comment may appear following aval ue separator. It begins
with an exclamation mark (1), except when the exclamation mark isa
character in aliteral constant. The comment extends to the end of the
NAMELI ST record. A slash appearing within the comment does not end the
record; the comment itself ends the input record. A comment may appear as
the first non-blank character in an input record, but in this case, the input
record consists only of the comment. NAMELI ST comments are ignored.

3. A terminating slash (/).

As an extension, ($END) can be substituted for the slash.

Names of character type may be qualified by substring range expressions
and array names by subscript/array section expressions. If the namein a
name-value pair is that of an array, the number of the values following the
equal s sign must be separated by value separators and must not exceed the
number of elementsin the array. If there are fewer values than e ements,
null values are supplied for the unfilled elements.

Namelist-directed input values are formatted according to the same rules as
for list-directed input data; see

Namelist-directed Output

The output record for namelist-directed 1/0 has the same form as the input
record, but with these exceptions:

® Thenaméelist group nameis always in uppercase.

® Logica valuesareeither T or F.

* Asinlist-directed output, character values are output without
delimiters by default, making them unsuitable for namelist-directed
input. However, you can use the DELI M= specifier in the OPEN
statement to specify the single or double quotation mark as the
delimiter to use for character constants.

® Only character and complex values may be split between two records.

8-15

8 Intel Fortran Programmer’s Reference

8-16

Unformatted I/O

Unformatted 1/O does not perform format conversion on dataiit transfers.
Instead, datais kept in its internal, machine-representable format. You
cannot perform unformatted I/O on files that have been connected for
formatted 1/0O (see” ").

Unformatted 1/0O is more efficient than formatted, list-directed, or
namelist-directed /O because the transfer occurs without the conversion
overhead. However, because unformatted |/O transfers datain internal
format, it is not portable.

Direct Access

When performing I/O on a direct-access file, records can be read or written
in any order. The records in a direct-access file are all of the same length.

Reading and writing records is accomplished by READ and WRI TE
statements containing the REC= specifier. Each record isidentified by a
record number that is a positive integer. For example, the first record is
record number 1; the second, number 2; and so on. If REC= is not specified:

® The READ statement inputs from the current record, and the file pointer
moves to the next record.

®* TheWRI TE statement outputs to the record at the position of the file
pointer, and the file pointer is advanced to the next record.

As an extension, Intel Fortran allows sequentia 1/0 statements to access a
file connected for direct access.

Once established, arecord number of a specific record cannot be changed or
deleted, although the record may be rewritten. A direct-access file does not
contain an end-of-file record as an integral part of the file with a specific
record number. Therefore, when accessing afile with adirect-access read or
write statement, the END= specifier is not valid and is not allowed.

Direct-access files support both formatted and unformatted record types.
Both formatted and unformatted 1/0 work exactly as they do for sequential
files. However, you cannot perform list-directed, namelist-directed, or
nonadvancing I/O on direct-access files.

I/0 and File Handling 8

For an example program that uses direct access, see “

Nonadvancing 1/O

By default, adatatransfer leavesthe file positioned after the last record read
or written. Thistype of 1/0 is called advancing. Fortran 95 also allows
nonadvancing 1/0, which positions the file just after the last character read
or written, without advancing to the next record. It is character-oriented and
can be used only with external files opened for sequential access. It cannot
be used with list-directed or namelist-directed /0.

To use nonadvancing 1/0, you must specify ADVANCE=" NO in the READ
or W\RI TE statement. The example program, “

" uses nonadvancing I/O in the first WRI TE statement, which is
reproduced here:

WRI TE (6, FMI="(A)’, ADVANCE="NO) ' Enter nunber to
insert in list:

The effect of nonadvancing I/0O on the WRI TE statement is to suppress the
newline character that is normally output at the end of arecord. Thisisthe
desired effect in the example program: by using a nonadvancing WRI TE
statement, the user input to the READ statement stays on the same line as the
prompt.

(You can get the same effect with the newline ($) edit descriptor, an Intel

Fortran extension that also suppresses the carriage-return/linefeed sequence
at the end of arecord; see Chapter 9, I/O Formatting.)

For an example program that illustrates nonadvancing 1/0 in a READ

statement, see “ . For more information about
nonadvancing I/0O and the ADVANCE= specifier, see the READ and WRI TE
statementsin

I/O Statements

Intel Fortran supports three types of 1/0 statements:

* Datatransfer statements (see)
®* Filepositioning statements (see)
®* Auxiliary statements (see)

817

8 Intel Fortran Programmer’s Reference

8-18

Table 8-4

For detailed information about al 1/0 statements, refer to Chapter 10, [ntel
Fortran Statements.

Data Transfer Statements

Statement

ACCEPT

DECCDE
ENCCDE
PRI NT

READ
TYPE
WRI TE

Use

Inputs data from the preconnected default input device
(standard input). (Extension)

Inputs data from an interna file. (Extension)
Outputs data to an internal file. (Extension)

Outputs data to the preconnected default output device file
(standard output).

Inputs data from a connected or automatically opened unit.
Synonym for the PRINT statement. (Extension)

Outputs data to a connected or automatically opened unit.

NOTE. Although the DECODE and ENCODE statements are available as
compatibility extensions for use with internal files, they are nonportable
and are provided for compatibility with older versions of Fortran. To
keep your programs standard-conforming and portable, you should use
the READ and V\RI TE statements with both external and internal files.

ACCEPT and TYPE are also available as compatibility extensions for
reading from standard input and writing to standard output. However, if
you wish your program to be portable, you should use the READ and
PRI NT statements instead of the ACCEPT and TYPE statements.

I/0 and File Handling 8

Table 8-5 File Positioning Statements

Statement Use

BACKSPACE Moves the file pointer of the connected sequential
file to the start of the previous record.

ENDFI LE Writes an end-of-file record as the next record of the
sequential file.

REW ND Moves the file pointer of the connected file to the
initial point of the file.

Table 8-6 Auxiliary Statements

Statement Use
CLOSE Disconnects a unit from a file.
I NQUI RE Requests information about a file or unit.

OPEN Connects an existing file to a unit, creates a file and
connects it to a unit, or changes certain specifiers of
a connection between a file and a unit.

Syntax of I/O Statements
The general syntactic form of file-positioning and auxiliary statementsis:
stat enent - nane (io-specifier-list)
where
st at enent - nane isone of the statements listed in or

i o-specifier-list isacommaseparated list of 1/0O specifiers that
control the statement’s operation.

8-19

8 Intel Fortran Programmer’s Reference

8-20

The general form of a data-transfer statement is:
statenment-nane (io-specifier-list) data-Ilist
where

st at enent - nane isone of the statements listed in

i o-specifier-list isacommaseparated list of 1/0 specifiersthat
control the data transfer.

data-li st isacomma-separated list of dataitems.

The following sections describe the I/O specifiers and the form of
dat a- | i st . For detailed information about the syntax of individual 1/0
statements, see

I/O Specifiers

Table 8-7

I/0 specifiers provide 1/0 statements with additional information about a
file or a data transfer operation. They can also be used (especially with the
I NQUI RE statement) to return information about afile. listsall
1/0 specifiers supported by Intel Fortran and identifies the statementsin
which each can appear. Note that the ACCEPT, DECODE, ENCODE, and
TYPE statements are not listed in the table as they are nonstandard. All 1/0
specifiers and statements are fully described in

I/O Statements and Specifiers (Y=Yes)

I/0O statements

g Ly
N4 L R Z o) ~
/0 Specifiers g E§ = § g r D o g
m O w = a xx
ACCESS= Y Y
ACTI ON= Y Y
continued

I/0 and File Handling 8

Table 8-7 I/O Statements and Specifiers (continued) (Y=Yes)

I/0O statements

BACKSPACE
CLOSE
ENDFI LE

I/O Specifiers
ADVANCE=

| NQUI RE
OPEN
PRI NT
< READ

REW ND
< WRITE

ASSCOCl ATEVARI ABLE= Y
Bl NARY=

<

BLANK=

BLOCKSI ZE=
BUFFERCQUNT=
CARRI AGECONTROL=
DEFAULTFI LE=
DELI M=

< < < <

DI RECT=

DI SPOSE= Y
(same as STATUS)

DI SP[OSE] =
EXTENDSI ZE=

END=

EOR=

ERR= Y Y Y Y Y Y Y Y
EXI ST=

FI LE=

FI LEOPT=

continued

8-21

8 Intel Fortran Programmer’s Reference

Table 8-7

I/O Statements and Specifiers (continued) (Y=Yes)

I/O Specifiers

FMI=
FORM:

FORMATTED=
I NI TI ALSI ZE=

| OLENGTH=
| OFOCUS=
| OSTAT=

MAXREC ONOPEN=

NAME=
NAMED=
NEXTREC=
NML=

NOSPANBL OCKS=

NUVBER=
OPENED=

ORGANI ZATI ON=

PAD=

POSI TI ON=
READ=
READONL Y=

8-22

I/0O statements

BACKSPACE

CLOSE

ENDFI LE

| NQUI RE
OPEN

< < < < < <

< < < < =< <

< < < =<

PRI NT

< READ

a)

Z W

= -

F 2
Y

Y Y
Y

continued

I/0 and File Handling 8

Table 8-7

I/O Statements and Specifiers (continued) (Y=Yes)

Table 8-8

I/0O statements

BACKSPACE
CLOSE
ENDFI LE

I/O Specifiers
READWRI TE=
RECORDTYPE=
REC=
RECL= or
SEQUENTI AL=
SHARE=

RECORDSI ZE=

SHARED=

STATUS= Y

TI TLE on OPEN=

UNFORMATTED=

UNI T= Y Y Y
USEROPEN=

WRI TE=

| NQUI RE

< <

OPEN
PRI NT
READ

< < < =<

REW ND
WRI TE

I/O Specifiers Values

I/O Specifiers
ACCESS=
ACTI ON=

ADVANCE=

Possible Values

‘DI RECT" SEQUENTI AL

‘READ' , ‘WRITE',
‘ READWRI TE'
“YES , ‘NO

Default Values

* SEQUENTI AL’

Processor-Dependent

‘Yes’

continued

8-23

8 Intel Fortran Programmer’s Reference

8-24

Table 8-8

I/0 Specifiers Values (continued)

I/O Specifiers
ASSCCI ATEVARI ABLE=

Bl NARY=

BLANK=

BLOCKSI ZE=
BUFFERCQOUNT=
CARRI AGECONTROL=

DEFAULTFI LE=
DELI M=

DI RECT=

DI SPOSE=
(sanme as STATUS)

DI SP[OSE] =

EXTENDSI ZE=
END=

EOR=

ERR=

EXI ST=

FI LEOPT=
FMT=

FORM=

Possible Values

vari abl e- nane

“YES , ‘NO, ‘UNKNOW

“NULL", ‘ZERO ,
“ UNDEFI NED'

i nt eger - expressi on

i nt eger - expressi on

‘FORTRAN , ‘NONE', ‘LIST

charact er - expr essi on

* APCSTROPHE' , ‘ QUOTE' ,

“ NONE'
“YES', ‘NO, ‘UNKNOMW

“OLD, "NEW, ‘UNKNOWN ,

‘ REPLACE , ‘' SCRATCH

‘KEEP', *SAVE', ‘DELETE,

‘PRI NT,
‘SUBM T,

* PRI NT/ DELETE’ ,
* SUBM T/ DELETE’

i nt eger - expressi on

Label
Label
Label
. TRUE. .

FALSE.

char act er - const ant

characte
| abel

r-expression, *

‘ FORVATTED

Default Values
No default

Formatted: * Yes’
Unformatted: * No’

“ NULL’

512
1

Formatted: LIST
Unformatted: ‘ NONE

Current working directory
* NONE’

‘*NO
‘* NEW

* KEEP’

512

No default
No default
No default
No default

No default

‘ FORVATTED for
sequential access

continued

I/0 and File Handling 8

Table 8-8

I/0O Specifiers Values (continued)

I/O Specifiers
FORMATTED=

I NI TI ALSI ZE=
| OFOCUS=

| OLENGTH=
| OSTAT=

MODE=

NAME=

NAMED=
NEXTREC=

NML=

NOSPANBL OCKS

NUVBER=
OPENED=
ORGANI ZATI ON=

PAD=
POSI TI ON=

READ=
READONLY

Possible Values

“YES , ‘NO, ‘UNKNOW

i nt eger - expressi on

| ogi cal expression

l ength

scal ar-defaul t-i nteger-
val ue

‘READ , ‘WRI TE',
‘ READVRI TE’

filenane or undefined

. TRUE. or .FALSE.
next-record-#, undefined
nanel i st-group-nane

no val ues

num
. FALSE., . TRUE.

* SEQUENTI AL,
“ RELATI VE', * UNKNOWN

“YES , ‘NO

“ASIS, ‘REWND ,
* APPEND'

“YES , ‘NO, ‘UNKNOW

No val ue

Default Values

Direct access: * No’
Sequential access: ‘ Yes'’

If unitis* *’ , defaults to
. FALSE. , otherwise
. TRUE.

No default

* READVRI TE’

No default

Spanni ng bl ocks OK
(no val ue)

‘' YES

“ASI S

continued

8-25

8 Intel Fortran Programmer’s Reference

8-26

Table 8-8 I/0 Specifiers Values (continued)
I/O Specifiers Possible Values Default Values
RECORDT YPE= ‘“FI XED' , *‘VARI ABLE’, Di rect access:
‘ SEGVENTED , ‘ STREAM , ‘FIXED O herwi se:
* STREAM CR ‘ VARI ABLE’
REC= scal ar-integer expressi on No default
RECL= positive-scal ar-integer Processor-Dependent
expression
SEQUENTI AL= ‘YES , ‘NO, ‘' UNKNOANWN
SHARE= scal ar-integer-expression
SHARED= No val ue
Sl ZE= scal ar - def aul t-i nt eger
variabl e
STATUS= “OLD, ‘NEW, ‘UNKNOW , * UNKNOWN
‘* REPLACE , ‘ SCRATCH
TI TLE= character expression
UNFORMATTED= ‘YES , ‘NO, ‘' UNKNOANWN
UNI T= scal ar -i nt eger - expressi on No default
USEROPEN= pr ocedur e- nane
WRI TE= ‘YES' , ‘NO, ‘' UNKNOMNWN
I/O Data List
The I/O datalist can be used with any data transfer statement except
namelist I/O (see .” The general form of the I/O data
listis:
iteml[,itenm2. . .]
where
item is aeither asimple data element or an implied-DO loop.

The following sections describe simple data elements and the implied-DO
loop.

I/0 and File Handling 8

Simple Data Elements

In aread operation, the simple data element specifies avariable, which can
include:

* Ascaar

* Anarray

®* Anarray element or section

® A character substring

®* A structure

®* A component of astructure

* Arecord
e Afiedof arecord
* A pointer

In awrite operation, the simple data el ement can include any variablethat is
valid for aread operation, plus most expressions. Note that, if the
expression includes a function reference, the function must not itself
perform 1/0.

The output list in the following PRI NT statement contains two simple list
elements, avariable named r adi us and an expression formed from
radi us:
99 FORMVAT(’ Radius ="', F10.2, 'Area = ', F10.2)

PRI NT 99, radius, 3.14159*radi us**2

The next READ statement contains three simple elements. a character
substring (nanme(1: 10)), avariable (i d), and an array name
(scores):
88 FORMAT(A10, 19, 101 5)

READ(5, 88) name(1l:10), id, scores
If an array name is used as a simple data element in the I/0O list of aWRI TE
statement, then every element in the array will be displayed. If aformat
specification is also used, then the format will be reused if necessary to
display every element. For example, the following code

INTEGER :: i(10) = (/1,2,3,4,5,6,7,8,9,10/)
88 FORMAT(® N1:’,15, ' N2:’,15, ' N3:',15)
PRI NT 88, i

8-27

8 Intel Fortran Programmer’s Reference

8-28

will output the fol lowing:

Nl: 1 N2: 2 N3: 3

Nl: 4 N2: 5 N3: 6

Nl: 7 N2: 8 N3: 9

N1: 10 N2:

The following restrictions apply to the use of arraysin input and output:

® Sections of character arrays that specify vector-valued subscripts
cannot be used as internal files.

®* Anassumed-size array cannot be referenced as awhole array in an
input or output list.

The following restrictions apply to the use of structures and records in input

and output:

® All components of the structure or fields of the record must be

accessible within the scoping unit that contains the data transfer
statement.

® Every component of the structure or field of the record is written.

® A structurein an I/O list must not contain a pointer that is an ultimate
component—that is, the last component in a variable reference. In the
expression a% %, a and b can be pointers, but not c.

Implied-DOLoop
An implied-DOloop consists of alist of data elementsto beread, written, or

initialized, and a set of indexing parameters. The syntax of an implied-DO
loop inan /O statement is:

(list , index =init , limt [, step])

where

list isan 1/0 list, which can contain other implied-DOloops.
i ndex isan integer variable that controls the number of times

theelementsin| i st areread or written. The use of real
variables is supported but obsolescent.

init isan expression that is the initial value assigned to
i ndex at the start of the implied-DOloop.
limt isan expression that is the termination value for i ndex.

I/0 and File Handling 8

step isan expression by which i ndex isincremented or
decremented after each execution of the DOloop. st ep
can be positive or negative. Its default valueis 1.

Inner loops can use the indexes of outer loops.

The implied-DOloop acts like a DO construct. The range of the implied-DO
loop isthelist of elements to be input or output. The implied-DOloop can
transfer alist of data elementsthat are valid for awrite operation. i ndex is
assigned the value of i ni t at the start of the loop. Execution continuesin
the same manner as for DOl oops (see).

The implied-DOloop is generally used to transmit arrays and array
elements, asin the following:

I NTEGER :: b(10)

PRINT *, (b(i), i = 1,10)

If b has been initialized with the values 1 through 10 in order, the PRI NT
statement will produce the following output:
12345678910

If an unsubscripted array name occurs in the list, the entire array is
transmitted at each iteration. For example:

REAL :: x(3)

PRINT *, (x, i=1, 2)

If x hasbeeninitializedtobe[1 2 3], theoutput will be:

1.0 2.0 3.0 1.0 2.0 3.0
The list can contain expressions that use the index value. For example:
REAL :: x(10) = (/.1, .2, .3, .4, .5 .6, &

.7, .8, .9, 11)

PRINT *, (i*2, x(i*2), i =1, 5)

print the numbers
2 .24 .46 .68 .8101

Implied-DOloops can a so be nested. The form of a nested implied-DOloop
inan /O statement is:
(((list, index1 = initl, limitl, stepl), index2 = init2, limit2,
step2)
indexN = initN, limitN, stepN)

8-29

8 Intel Fortran Programmer’s Reference

8-30

Nested implied-DOloops follow the same rules as do other nested DOloops.
For example, given the following statements:

REAL :: a(2,?2)

a(1,1)
a(2,1)
a(1,2)
a(2,2)

m n n
A W N PR

WRI TE(6, *) ((a(i,j),i=1,2),j=1,2)
the output will be:
1.0 2.0 3.0 4.0

The first, or nested DOloop, is completed once for each execution of the
outer loop.

ASA Carriage Control

Table 8-9

If you areonaUNIX* system, the programasa(1) processesthe output of
a Fortran 95 program that uses ASA carriage control characters so that it
can be properly handled by many printers.

The syntax of asa is:
asa [fil e-nanes]
wher e

fil e-names isalist of file names to be output with carriage control
characters interpreted according to ASA rules.

Table 8-9 liststhe ASA carriage-control characters and their meanings.

ASA Carriage-control Characters

Character Meaning

bl ank Advance oneline.

0 Advance two lines.

1 Advance to top of next page.

+ Do not advance; overstrike previous line.

I/0 and File Handling 8

Theasa readsinput fromfi | e- nanes or from standard input if

fil e-nanmes isnot specified. The first character of each lineisinterpreted
as a control character. Lines beginning with any character other than those
listed in Table 8-9 are interpreted as if they began with a blank, and an
appropriate diagnostic appears on standard error. The first character of each
lineis not printed. Theasa program interprets input lines and sends its
output to standard output. Each input file begins on anew page.

To properly view the output of programs that use asa carriage control
characters, asa should be used as afilter. For example, the following
exampl e pipes the output of f or t r an_asa, an executable Intel Fortran
program that outputs lineswith ASA carriage control characters, through the
asa filter to the line printer command, | p:

fortran_asa | asa | Ip
On Windows NT* systems, if you have the Mortice Kern Systems (MKS)

Toolkit*, you can use the MKS version of asa and use the pri nt command
rather than | p.

Example Programs

This section gives example programs that illustrate I/O and file-handling
features of Intel Fortran.

Internal-file Example

The following program illustrates how internal files can use edit descriptors
internally. The comments within the program explain in detail what the
program does.

I ifile.f90

Thisprogram isadriver for the function roundoff, which truncates and
rounds a floating-point number to a requested number of decimal places.
The main program prompts for two numbers, a double-precision number
and an integer. These are passed to the function roundoff as arguments. The
double-precision argument (x) is the value to be rounded, and the integer
(n) represents the number of decimal places for rounding. The function
converts both arguments to character format, storing them in separate
internal files. The function usesthe F edit descriptor (to which n in

8-31

8 Intel Fortran Programmer’s Reference

8-32

WRI TE (6,
READ (5,
WRI TE (6,
WRI TE (6,

character format has been appended) to round x. Thisrounded value is
finally converted back from a character string to adouble-precision number,
which the function returns.

PROGRAM i nternal _file

REAL (KIND=8) :: x, Yy, roundoff

Use nonadvancing 1/0 to suppress the newline and keep the prompt on the
same line as the input.

(X, A)’, ADVANCE="NO) 'Enter a real nunber: ’
"(F14.0)’) x

"(A)’) "How many significant digits (1 - 9) to the’
"(X, A)', ADVANCE=' NO) 'right of the deciml point?

Don’t enter a nunber greater than you input into x!

READ (5,

"(I1)") n

y = roundoff(x, n)

PRI NT *,
END

y

This function truncates and rounds x to the number of decimal places
specified by n. The function performs no error checking on either argument.
REAL (KI ND=8) FUNCTI ON roundoff(x, n)

INTEGER :: n

REAL (KIND=8) :: x

CHARACTER (LEN=14) :: dp_val

CHARACTER :: dec_digits

Use an edit descriptor to convert the value of n to a character, writing the
result to theinternal filedec_di gits.

WRI TE (dec _digits, '(11)') n

Concatenatedec_di gi t s tothestring' F14."' . The complete string
forms an edit descriptor that will convert the binary value of x to a
formatted character string that formats the value. The character represents
the requested level of precision. The formatted number is stored in the
internal filedp_val .

WRI TE (dp_val, '(F14.'//dec_digits//')"') x

I/0 and File Handling 8

Re-convert the formatted record in dp_val to abinary value that the
function will return.

READ (dp_val, ' (F14.0)') roundoff

END

When compiled with the command line:

fo90 -o ifile ifile.f90

the program writes the following to standard output:

Enter a real nunber: 3.1415927

How many significant digits (1 - 9) to the
right of the decimal point? 3

3.142

Nonadvancing-1/O Example

The following program illustrates nonadvancing 1/O on input. It reads a
formatted sequential file, each record of which consists of a name followed
by one or more grades. For each record, the program first reads the name,
then uses a DOloop to read all grades in the record. After reading the last
grade, the program computes and displays the average. The comments
explain what the program does.

I nonadv. f 90

I assunptions: no errors in file (hence no
error-checki ng),

I name field occupies 20 characters, and at | east one
gr ade

PROGRAM pr oc_gr ades

| NTEGER :: grade, count, sum average
CHARACTER(LEN=20) nane

OPEN(20, FILE=" grades’)

WRI TE (6, 10) "Nanme", "Average"

VWRITE (6, *) "---cmmmmmm e m e ee e - "
DO

8-33

8 Intel Fortran Programmer’s Reference

8-34

sum= 0
count =0
Read the first field of the record, using nonadvancing 1/0 so as not to
advance beyond that field. Note that the END= specifier causes the program
to exit the loop and branch to the statement | abeled 999 when it detects
end-of-file.
READ(20, "(A20)", ADVANCE=' NO, END=999) narme
! read in grades
DO
Again, use non-advancing /O to avoid advancing to the next record after
each read. The EOR= specifier causes the program to break out of the loop
and resume execution at the statement labeled 99.
READ(20, "(13)", ADVANCE='NO , EOR=99) grade
count = count + 1
sum = sum + grade
END DO
99 average = sunicount
I Wite each student’s nanme and aver age.
WRI TE(6, 20) nane, average
END DO
10 FORMAT (X, A, T21, A
20 FORMAT (X, A 13)

999 CLOSE(20)

END PROGRAM proc_gr ades

Use the following command line to compile the program:
f90 -0 nonad nonad.f90

If thefile gr ades contains the following records:

Sandr abDel f or dbbbbb79685681672100100
JoanbAr unsoel t onbbbbbb8b64b77H79

EdenbPhi | pot t sbbbbbb100692b87b65bb0
SoanesbJenynsbbbbbbbb97b78b658b75b688b73
Ani t abJaysonbbbbbbbbb93b85b690b95b68b72b93
JoebKor zeni owski bbbbbb9b27b535b49

I/0 and File Handling 8

Harri et BMyr | ebbbbbbbb84b78593b95b97592b84b93
Pet ebHar t | eybbbbbbbbb67b654558571593b58

the program will produce the following output:

Name Aver age
Sandra Del ford 86
Joan Arunsoel ton 57
Eden Phil potts 68
Soanes Jenyns 78
Anita Jayson 85
Joe Kor zeni owski 30
Harriet Myrle 89
Pete Hartl ey 66

Sequential- and Direct-access Example

The following program illustrates both sequential and direct access on
external files. The file opened for direct accessis ascratch file. The
comments explain what the program does.

I dir_acc.f90

This program uses an external file and a scratch file to insert a number into a
list of numerically sorted numbers. The sorted list is held in a external file.
The program uses the scratch file as atemporary holding place. The program
uses the direct access method with the scratch file.

PROGRAM di r ect _access

REAL :: nunber_to_insert, nunber_in_list
I NTEGER :: rec_num iosl, ios2, i

' Initialize counter.
rec_num= 0

i 0s1 must beinitialized to 0 so that the error-handling section at the end of
the program will work correctly

iosl= 0

8-35

8 Intel Fortran Programmer’s Reference

8-36

I Open the scratch file and the sequential data file
OPEN (18, FILE="list’', STATUS=" UNKNOWN' , | OSTAT=i osl1,
ERR=99)

OPEN (17, STATUS=" SCRATCH , ACCESS=’' DI RECT’,
FORME' FORVATTED , &

| OSTAT=i 0s1l, ERR=99, RECL=16)

Use non-advancing |/O to suppress newline at the end of output record, thus
keeping the prompt on the same line with the input.

WRI TE (6, FMI="(A)’, ADVANCE="NO) ' Enter nunber to
insert in list: ’

READ *, nunber _to_insert

Read from sorted list and write to scratch file until we find where to insert
number; then, write nunber _t o_i nsert, and continue writing rest of
sorted numbers to scratch file.

DO WHI LE (iosl >= 0) Enter loop only if OPEN didn't
encounter EOF

The END=15 specifier in the READ statenent gets us
out of the loop, once we're init.

READ (18, *, END=10, |OSTAT=i 0s2, ERR=99) nunber _in_Iist
I F (nunmber_to_insert <= nunber_in_list) THEN
rec_num=rec_num+ 1 ! add the new record
WRI TE(17, 100, REC=rec_num nunber _to_insert
DO

rec_num= rec_num+ 1

VWRI TE(17, 100, REC=rec_nun) nunber_in_Iist
READ (18, *, END=15, | OSTAT=i0s2, ERR=99)
nunber _in_Ii st

END DO

ELSE

rec_nums= rec_num+ 1

VWRI TE (17, 100, REC=rec_num) nunber _in_Ili st
END I F

END DO

I/0 and File Handling 8

Thefileis empty or the item goes at the end of file. Add 1 to r ec_numfor
the record to be inserted.

10 rec_num = rec_num + 1

WRI TE (17, 100, REC=rec_num) nunber_to_insert

Copy the scratch file to the datafile. But first rewind so that we start writing
at beginning of the datafile.

15 REWND 18

Read from scratch file and write to datafile
DOi =1, rec_num
READ (17, 100, REC=i) nunber_in_Ilist
VWRI TE (18, *) nunber_in_list
END DO

CLCSE (18)

CLCSE (17)

STOP ’Inserted!’

! Error handling section
99 IF (iosl /= 0) THEN

WRI TE (7, 200) "Open error =", iosl
ELSE

WRI TE (7, 200) "Read error =", io0s2
END I F

100 FORMAT (F16. 6)
200 FORMAT (A, 21 86)

END
Use the following command line to compile the program:
f90 -0 dir_acc dir_acc.f90

If thefilel i st contains the following records:

3.01
6.0
6. 22

8-37

8 Intel Fortran Programmer’s Reference

7.54

27.9

and theinput is

6. 15

the file rewritten by the program will contain the following numbers:
3.010000
6. 000000
6.150000
6.220000
7.540000
27.900000

8-38

/O Formatting

1/0O formatting occurs during data transfer operations when datais
converted between its machine-readable binary representation and
human-readable character format. Although unformatted data transfers are
faster because they do not incur the overhead of data conversion, 1/0
formatting is useful for displaying data in a human-readable form and for
transferring data between machines with different machine representations
for adatatype.

I/O formatting can beimplicit or explicit. Implicit formatting occurs during
list-directed and namelist-directed 1/O: datais converted without
programmer intervention, based on the data types of the 1/0 list items. (For
information about | i st -di rect ed andnanel i st-directed 1/O, see
.) Explicit formatting occurs under the
control of the programmer, who specifies how the dataisto be converted.

This chapter describes explicit 1/0 formatting and includes information
about the following:

* FORMAT statement

* Format specification

® Edit descriptors

® Format specification in character expressions

®* Nested format specifications

® |nteraction between format specification and /0O list

9-1

9 Intel Fortran Programmer’s Reference

9-2

FORMAT Statement

The function of the FORMAT statement is to specify formatting information
that can be used by one or more of the following data transfer statements:
® ACCEPT (extension)

®* DECODE (extension)

® ENCODE (extension)

® PRINT

* READ

® TYPE (extension)
* WRITE

The syntax of the FORMAT statement is:
| abel FORMAT (f or mat - spec)
where

| abel is astatement label.

format-spec isaformat specification consisting of a
comma-separated list of edit descriptors. For detailed
information about edit descriptors, see the next section.

The FORMAT statement must include | abel so that the data transfer
statements can reference it. One FORVAT statement can be referenced by
many data transfer statements. In the following example, both the READ and
V\RI TE statements reference the same FORMAT statement:

READ(UNI T=22, FMr=10)ivar, fvar

WRI TE(17, 10)ivar, fvar

10 FORMAT(17, F14.3)

For additional information about the FORVAT statement and data transfer
statements, see

1/0O Formatting 9
Format Specification

A format specification consists of alist of edit descriptors that define the
format of datato be read with a READ statement, or written with a\ARI TE or
PRI NT statement. A format specification can appear either in a FORMAT
statement or in a character expression in a data transfer statement.

The syntax of aformat specification is:

[descriptorl[, descriptor2...]]

where

descri pt or is an edit descriptor that is used to convert data between
itsinternal (binary) format and an external (character)
format. Edit descriptors are described in detail in the
following section.

Note that format specifications are not used in list-directed and
namelist-directed 1/O.

Variable Expressions in Formats

With variable expressions, you can replace an integer constant in any
arbitrary expression. You must enclose the expression in angle brackets. For
example, in the following statement

FORMAT(4f8.2)
you can replace the 8 with the variable X as in the following:
FORVAT(4f <X>.2)

Also, you can use more complicated expressions within the brackets as
follows:

FORMAT(4f <2*X+Y>.2)
Further, you can replace the 4 or the 2 by any expression.
The following rules apply to using variable expressionsin formats:

® Theexpressionisre-evauated each timeit isfound in aformat scan.
* |f necessary, the expression is converted to integer type.

* All valid Fortran 95 statements are allowed, including function calls.

9-3

9 Intel Fortran Programmer’s Reference

94

® You cannot use variable expressions in formats generated at runtime.
® Thesingleexceptionisthen inannH. . . edit descriptor. See the
following section for a description of edit descriptors.

Edit Descriptors

Edit descriptors are encoded characters that describe data conversion
between an internal (binary) format and an external (character) format.
There are three types of edit descriptors:

® Dataedit descriptors define the format of datato be read or written,
such asitstype and width (in characters). All data edit descriptors are
repeatable; that is, they can be preceded by a positive integer that
specifies the number of times the edit descriptor isto be replicated.

® Control edit descriptors specify editing information, such asthe
number of spaces between input items, treatment of blanksin input,
and scale factors. Of the control edit descriptors, only theslash (/) is
repeatable.

® Character string edit descriptors output text. None of theseis
repeatable.

Output format edit descriptors can produce default minimum field widths

that eliminate "white space" on output, for formatting numeric values. To

specify aminimum field width, the width w should be zero when used with

thel ,B,0.Z, or F edit descriptors.

All of the edit descriptors supported by Intel® Fortran are listed in Table 9-1.
Asindicated by the syntax descriptionsincluded in the table, the field width
specification (w) is optional for al data edit descriptorsin Intel Fortran.
(Note that the Standard defines the field width specifier to be optional only
for the A edit descriptor.) The table also identifies which edit descriptors are
repeatable and which can be used on input, output, or both.

Table 9-1 Edit Descriptors
Descriptor Type Repeatable? 1/0 Use Function
" or Character No Output Output enclosed string.
- String
$ Control No Output Suppress newline at end of
output.

continued

1/0O Formatting 9

Table 9-1 Edit Descriptors (continued)

Descriptor Type Repeatable? 1/0 Use Function

/| (slash) Control Yes Input and End current record and
output begin new record.

. (colon) Control No Input and Stop formatting if I/O list is
output exhausted.

Alw or Data Yes Input and Convert character AND

R[W] output Non-character data.

Blw .nl Data Yes Input and Convert integer data, using
output binary base.

BN Control No Input and Ignore blanks in numeric
output input data.

BZ Control No Input and Treat blanks as zeroes in
output numeric input data.

D w. d[Ee]] Data Yes Input and Convert real type data with
output exponent.

E[w. d[Ee]] Data Yes Input and Convert real type data with
output exponent.

EN[w. d[Ee]] Data Yes Input and Convert real type data, using
output engineering notation.

ES[w. d[Ee]] Data Yes Input and Convert real type data, using
output scientific notation.

F[w. d] Data Yes Input and Convert real type data
output without exponent.

d w. d[Ee]] Data Yes Input and Convert numeric data, all
output types.

nHs Character No Output Output following n

String characters.

I(w.mMl Data Yes Input and Convert integer numeric
output data.

L[w Data Yes Input and Convert logical data.
output

aw.n] Data Yes Input and Convert integer data, using
output octal base.

continued

9-5

9 Intel Fortran Programmer’s Reference

Table 9-1 Edit Descriptors (continued)

Descriptor Type Repeatable? 1/0 Use Function

kP Control No Input and Set scale factor to K.

output

Q w. d] Data Yes Input and Convert real type datawith

output exponent.

Q Control No I nput Return number of bytes
remaining to be read in current
input record.

[nN]R Control No Input and Changes the Radix for

output integer-formatted 1/O.

S or SP Control No Output Print optional plus sign.

SS Control No Output Do not print optional plus
sign.

Tc Control No Input and Move to column C.

output

TLc Control No Input and Move C columns to the left.

output

TRc orcX Control No Input and Move c columns to the right.

output

X[

Z[wW. m] Data Yes Input and Convert integer data, using

output hexadecimal base.

The following sections describe the edit descriptors.

9-6

1/0O Formatting 9

Character String ('...” or "...") Edit Descriptor

NOTE. Thereisno singleedit descriptor that defines a field for complex

data. Instead, you must usetwo real edit descriptors--thefirst for thereal
part of the number, and the second for the imaginary part. The two edit
descriptors may be different or the same, and you can insert control and
character string edit descriptors between them.

Likewise, there are no edit descriptors for formatting derived types and
pointers. For derived types, you must specify the appropriate sequence of
edit descriptors that match the data types of the derived type's
components. For pointers, you must specify the edit descriptor that
matches the type of the target object.

The character string edit descriptor is used to write a character constant to a
formatted output record. It cannot be used to format input. You can use
either apostrophes or quotation marks to delimit the constant. Whichever
you use, they must be balanced. That is, if you begin with an apostrophe,
you must also end with it. If the enclosed character constant includes a
delimiting character, it must be of the other type; or you can escape the
delimiter by giving another of the same type. The width of thefieldis the
number of characters enclosed by the character string edit descriptors,
including any blanks.

Table 9-2 gives examples of the character string edit descriptor on output.
Note that b represents a blank.

9-7

9 Intel Fortran Programmer’s Reference

Table 9-2 Character String Edit Descriptor: Output Examples

Descriptor Field Width Output
"Enter data:’ 11 Enter data:
"David's turn" 12 David’s turn
"bbbSpacesbbb” 12 bbbSpacesbbb
"That’ "Il do.’ 11 That'll do.
"""That' Il do!""" 13 "That'll do!"

1

1

Newline ($) Edit Descriptor

The newline edit descriptor isan Intel Fortran extension that suppresses the
generation of the newline character (that is, the carriage-return/linefeed
sequence) during formatted, sequential output. By default, the cursor moves
to anewline after each output statement. The newline edit descriptor causes
the cursor to remain on the same line, immediately to the right of the last
character output.

& NOTE. Nonadvancing I/O also suppresses the newline at the end

of arecord. Unlike the newline ($) edit descriptor, it isa standard
feature of Fortran 95, and can be used in input and output. For
more information, see Chapter 8, I/0O and File Handling and the
ADVANCE= |/O specifier in the description of the OPEN statement in
Chapter 10, Intel Fortran Statements.

NOTE. Also, asan extension in Intel Fortran, you can use the
backslash (\) character asthe new line edit descriptor.

1/0O Formatting 9

Slash (/) Edit Descriptor

The slash edit descriptor terminates the current record and begins
processing anew record (such as anew line on aterminal). This edit
descriptor has the same result for both input and output: it terminates the
current record and begins anew one. For example, on output a newline
character is printed, and on input anew lineis read.

Keep in mind the following considerations when using the slash edit
descriptor:

* |f aseriesof two or more slashes are written at the beginning of a
format specification, the number of records skipped is equal to the
number of slashes.

* |f n dashes appear other than at the beginning of aformat specification
(where n is greater than 1), processing of the current record terminates
and n - 1records are skipped.

* |f aformat containsonly n slashes (and no other format specifiers),
n + 1 records are skipped.

The/ edit descriptor does not need to be separated from other descriptors
by commas.

Colon (:) Edit Descriptor

The colon edit descriptor (:) is used when performing formatted I/O to
terminate format control when the I/O list has been exhausted. If al itemsin
an 1/0 list have been read or written, the colon edit descriptor stops any
further format processing. If more items remain in the list, the colon edit
descriptor has no effect.

Consider the following example:

WRI TE (*, 40) 1, 2

WRITE (*, 50) 1, 2

40 FORMAT(3(’ value =", 12))

50 FORMAT(3(:, ' value =", 12))

Thefirst WRI TE statement outputsthe line:

value = 1 value = 2 value =

9-9

9 Intel Fortran Programmer’s Reference

9-10

The descriptor 'val ue =’isrepeated athird time because format control is
not terminated until the descriptor | 2 isreached and not satisfied.

The second WRI TE statement outputs the line:
value = 1 value = 2

Thistime, the colon descriptor terminates format control before the string
val ue=" isoutput athird time.

A and R (character) Edit Descriptors

The A and R edit descriptors define fields for character data. The A edit
descriptor specifies |eft-justification, and the R edit descriptor specifies
right-justification.

The R edit descriptor is an Intel Fortran extension.

The syntax for the character edit descriptorsis:

[rTAlW

[r1RwW

where

r is a positive integer constant, specifying the repeat
factor.

w isthe field width. If w isnot specified, the default isthe

length in bytes of the corresponding 1/0O list item.
As aportability extension, the list item can be of any data type.

When the A and R edit descriptors are used for input and output, the results
can differ according to whether the width (w) specified for the edit
descriptor is less than, greater than, or equal to the length of the I/O list
item. The results on input are summarized in Table 9-3; the results on output
are summarized in Table 9-4.

1/0O Formatting 9

Table 9-3 Contents of Character Data Fields on Input
Width/Length
Descriptor Relationship Result
A width < length Data is left-justified in variable, followed
by blanks.
width >= length Data is taken from rightmost characters
in the field.
R width < length Data is right-justified in variable,
preceded by nulls.
width >= length Data is taken from rightmost characters
in the field.
Table 9-4 Contents of Character Data Fields on Output
Width/Length
Descriptor Relationship Result
A width <= length Data is taken from leftmost
characters in the field.
width > length Output the value, preceded by
blanks.
R width <= length Data is taken from rightmost
characters in the field.
width > length Output the value, preceded by
blanks.

For exampl es of the use of character edit descriptors on input, see Table 9-5;
for output examples, see Table 9-6. In the tables, b represents ablank and z
represents a Null.

9-11

9 Intel Fortran Programmer’s Reference

9-12

Table 9-5 A and R Edit Descriptors: Input Examples
Edit Variable
Descriptor Input Field Length Value Stored
A3 XYZ 3 XYZ
R3 XYZ 4 zXYZ
A5 ABCbb 10 ABCbbbbbbb
R9 RI GHTMOST 4 MOST
R8 CHAIRbbB 8 CHAIRbbb
R4 CHAI R 8 zzzzCHAI
A4 ABCD 2 CD

Table 9-6 A and R Edit Descriptors: Output Examples

Edit
Descriptor

A6
R4
A4
A8
R8
R8

Internal
Characters

ABCDEF
ABCDEFGH
ABCDE
STATUS
STATUS
STATUS

Variable
Length

6

8
5
6
6
8

Output
ABCDEF
EFGH
ABCD
BBSTATUS
BBSTATUS
STATUSkb

B (binary) Edit Descriptor

The B edit descriptor defines a field for binary data. It providesfor

conversion between an external binary number and its internal

representation.

The syntax for the binary edit descriptor is:

[r1B[w.n]

where

r

is a positive integer constant, specifying the repeat

factor.

1/0O Formatting 9

w is a positive integer constant, specifying the field width.

m isan unsigned integer constant, specifying the minimum
number of digits that must be in the field and forcing
leading zeroes as necessary up to the first nonzero digit.
The mvaueisignored on input. If m is not specified, a
default value of 1 isassumed. If mislarger than w, the
field isfilled with w asterisks.

On Input

Variablesto receive binary input must be of type integer. The only legal
characters are Os and 1s. Nonleading blanks are ignored, unless the fileis
opened with BLANK=" ZERO .

If thefile is opened with BLANK=" ZERQO , nonleading blanks are treated as
zeroes. (For more information about the BLANK= specifier, see the
description of the OPEN statement in)
Plus and minus signs, commas, or any other symbols are not permitted. If a
nonbinary digit appears, an error occurs. The presence of too many digits
for the integer variable (or 1/O list item) isillegal.

Table 9-7 gives examples of the binary edit descriptor on input.

Table 9-7 B Edit Descriptor: Input Examples
Descriptor Input field (Binary) Value Stored (Binary)
B8 1111 1111
B8 01111 1111
B4 10101 1010
B8 1.1 error: illegal character
On Output

Unlike input, list items on output may be of any type, though character
values are output only asthe binary equivalent of their ASCII representation
(without alength descriptor). If w is greater than the number of converted
binary digits (excluding leading zeroes), the binary digits are right-justified
in the output field.

9-13

9 Intel Fortran Programmer’s Reference

9-14

Table 9-8

If wislessthan the number of converted binary digits, thefield isfilled with
w asterisks. This primarily affects the output of negative values. Because
negative values are output in twos complement form, their high-order bits
are nonzero and cause the field to be filled with asterisks when wisless
than the number of binary digits in the entire output value.

The field width required to fully represent the binary value of anitemis
eight timesits size in bytes. For example, an | NTEGER* 4 item could
require afield w of up to 32 characters.

Only 1sand Os are printed on output.
Table 9-8 gives examples of the binary edit descriptor on output.

B Edit Descriptor: Output Examples

Descriptor Internal Value Output
B5 27 11011
B8 27 bbb11011
B8. 6 27 bb011011
BS 27 P

BN and BZ (blank) Edit Descriptors

The BN and BZ edit descriptors control the interpretation of embedded and
trailing blanksin numeric input fields. The syntax of the blank edit
descriptorsis:

BN
BZ

At the beginning of the execution of an input statement, blank characters
within numbers are ignored except when the unit is connected with
BLANK=" ZERO specified in the OPEN statement. BN and BZ override the
BLANK= 1/O specifier for the current READ statement. For more details
about the BLANK= |/O specifier, see the OPEN statement in

If aBZ edit descriptor is encountered in the format specification, trailing
and embedded blanks in succeeding numeric fields are treated as zeroes.
The BZ edit descriptor remainsin effect until a BN edit descriptor or the end

1/0O Formatting 9

of the format specification is encountered. If BN is specified, all embedded
blanks are removed and the input number isright justified within the field
width.

The BN and BZ edit descriptors affect only | , B, O, Q F, D, E, EN, ES, G and
Z format descriptors during the execution of an input statement. The BN and
BZ edit descriptors do not affect character and logical edit descriptors.

gives examples of the BNand BZ edit descriptors on input.

Table 9-9 BN and BZ Edit Descriptors: Input Examples
Data Input BN Editing in
Descriptor Characters Effect BZ Editing in Effect
14 1b2b 12 1020
F6.2 b4b.b2 4.2 40.02
E7.1 5b.bE1b 5.0 x 10* 5.0 x 1011
E5.0 3E4bb 3.0 x 10* 3.0 x 1090 (overflow)

The BN and BZ edit descriptors are ignored during the execution of an
output statement.

D, E, EN, ES, F, G, and Q (real) Edit Descriptors

The D, E, EN, ES, F, G and Qedit descriptors define fields for real numbers.
Thel/O list item corresponding to areal descriptor must be a numeric type.
(The Standard permits real and complex types only; as an extension, Intel
Fortran allows integers.)

NOTE. For the edit descriptors E, G and D, you can use a comma as a
delimiter to terminate an input field.

The syntax for these edit descriptorsis:
[r]D[w.d]
[rl1E[w.d [{E[D Qe]]

9-15

9 Intel Fortran Programmer’s Reference

9-16

[rTEN[w.d [Ee]]
[r]ES[w. d [Ee]]

[r]F[w.d]

[rldw.d E[{|D Qe]]

[r]Q wd]

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

d isanonnegative integer constant, specifying the number
of decimal places on output.

e is a positive integer constant, specifying the number of

digitsin the exponent.

For formatting complex data, you can use two real edit descriptors—the
first for the real part of the number and the second for the imaginary part.
The two edit descriptors may be different or the same, and you can insert
control and character string edit descriptors between them.

Real Edit Descriptors on Input

The input field for the real descriptors consists of an optional plus or minus
sign followed by a string of digits that may contain adecimal point. If the
decimal point is omitted in the input string, then the number of digits equal
to d from the right of the string are interpreted to be to the right of the
decimad point. If adecimal point appearsin the input string and conflicts
with the edit descriptor, the decimal point in the input string takes
precedence. This basic form can be followed by an exponent in one of the
following forms:

® A signedinteger constant

An E followed by an optionally signed integer constant
A Dfollowed by an optionally signed integer constant
* A Qfollowed by an optionally signed integer constant

All four exponent forms are processed in the same way. Note, however, that
e has no effect on input.

1/0O Formatting 9

The EN and ES edit descriptors are the same as the F edit descriptor on
input. The Qedit descriptor (an Intel Fortran extension) isthe same asthe E
edit descriptor on input.

Table 9-10 gives examples of the real edit descriptorson input. (The BZ edit
descriptor listed in the “Descriptor” column treats nonleading blanksin
numeric fields as zeroes.)

Table 9-10 D, E, F, and G Edit Descriptors: Input Examples

Descriptor Input Field Value Stored
F6.5 4.51E4 45100

4.2 51-3 .00051

E8. 3 7.1bEb5 710000

D9. 4 bbb45E+35 .0045 x 10%°
BZ, F6.1 -54E3b -5.4 x 10°%°

Real Edit Descriptors on Output

The output field for the real descriptors consists of w character positions,
filled with leading blanks (if necessary) and an optionally signed real
constant with a decimal point, rounded to d digits after the decimal point.
The following sections describe the real edit descriptors on output in detail.

D and E edit descriptors

The D and E edit descriptors define a normalized floating-point field for red
and complex values. The value is rounded to d digits. The exponent part
consists of e digits. If Ee isomitted in aD or E edit descriptor, then the
exponent occupies two or three positions, depending on its magnitude. The
field width, w; should follow the generd rule: wis greater than or equal to
d+7. If Ee isused, wisgreater than or equal to d+e+5. Thisrule provides
positions for aleading blank, the sign of the value, the decimal point, d
digits, the exponent letter (D, E, or Q), the sign of the exponent, and the
exponent. The Ee, De, and Qe specifications, which are available with the E
edit descriptor, control which exponent | etter is output.

Table 9-11 gives examples of the D and E edit descriptors on output.

9-17

9 Intel Fortran Programmer’s Reference

9-18

Table 9-11 D and E Edit Descriptors: Output Examples
Descriptor Internal value Output
D10.3 +12.342 bb.123D+02
E10.3E3 -12.3454 -. 123E+002
E12.4 +12.34 bbb.1234E+02
D12.4 -.00456532 bb-.4565D-02
D10.10 +99.99913 ek
E11.5 +999.997 b.10000E+04
E10.3E4 +.624 x 10730 .624E-0030
EN and ES edit descriptor
The EN and ES descriptors format floating-point values, using engineering
and scientific notation, respectively. They are similar in form to the E
descriptor, except:
® Thefield produced by the EN descriptor has an exponent that is
divisible by 3 and a significand that isin the range 1 to 999.
* Thefield produced by the ES descriptor has one digit before the
decima point.
Table 9-12 gives examples of the EN and ES edit descriptors on output.
Table 9-12 EN and ES Edit Descriptors: Output Examples

Descriptor Internal value Output
EN12.3 +3.141 bbb3.141E+00
ES12.3 +3.141 bbb3.141E+00
EN12.3 +.00123 bbb1.230E-03
ES12.3 +.00123 bbb1.230E-03
EN12.3 -7 -700.000E-03
ES12.3 -7 bb-7.000E-01
EN12.3 +1234.5 bbb1.235E+03
ES12.3 +1234.5 bbb1.235E+03

1/0O Formatting 9
F Edit Descriptor

The F edit descriptor definesafield for real and complex values. The value
isrounded to d digitsto the right of the decimal point. The field width, w,
should be four greater than the expected length of the number to provide
positions for aleading blank, the sign, the decimal point, and aroll-over
digit for rounding if needed.

Table 9-13 gives examples of the F edit descriptor on output.

Table 9-13 F Edit Descriptor: Output Examples

Descriptor Internal value Output
F5.2 +10.567 10.57
F3.1 -254.2 **xx

F6.3 +5.66791432 b5.668
F8.2 +999.997 £1000.00
F8.2 -999.998 -1000.00
F7.2 -999.997 ol
F4.1 +23 23.0

G Edit Descriptor

The Gedit descriptor can be used with any data type but is commonly used
to define afield for real and complex values.

According to the magnitude of the data, the G edit descriptor is interpreted
as either an E or F descriptor. (For more information on these edit
descriptors, refer to “D and E edit descriptors’ on page 17 and “F Edit
Descriptor” on page 19.) The E edit descriptor is used when one of the
following conditionsistrue:

®* The magnitudeislessthan 0.1 but not zero.
®* The magnitudeisgreater than or equal to 10* * d (after roundingto d
digits).

If the magnitude does not fit either of these rules, the F edit descriptor is
used. When F is used, trailing blanks are included in the field where the
exponent would have been.

9-19

9 Intel Fortran Programmer’s Reference

9-20

Table 9-14

For fixed- or floating-point format descriptors, the field width is w. The
valueisroundedto d digits, and the exponent consistsof e digits. If Ee is
omitted, the exponent occupies two positions. If Ee is omitted and the
exponent is greater than 99 (that is, it requires three digits), the exponent
letter is dropped from the output. The field width, w, should follow the
general rule: w isgreater than or equal to the sum of d+7; or, if Ee is
specified, w isgreater than or equa to the sum of d+e+5. Thisrule
provides positions for a leading blank, the sign of the value, d digits, the
decima point, and, if needed, the exponent letter (D, E, or Q), the sign of the
exponent, and the exponent. Note that the Ee, De, and Qe specifications
control which exponent letter is output.

When used to specify 1/0 fields for integer, character, and logica data, the G
edit descriptor has the same syntax and same effect as the integer, character,
and logical edit descriptors. Thed and e values (if specified) have no
effect.

Table 9-14 gives examples of the G edit descriptor on output.

G Edit Descriptor: Output Examples

Edit Internal

Descriptor value Interpreted as Output

G10.3 +1234.0 E10.3 B80.123E+04
G10.3 -1234.0 E10.3 -0.123E+04
G124 +12345.0 El12.4 bb0.1235E+05
Gl2.4 +9999.0 F8.0, 4X bbb9999 bbbb
Gl2.4 -999.0 F8.1, 4X Bb-999.0bbbb
G7.1 +.09 E7.1 0.9E-01

G5.1 -.09 E5.1 Fkkkk

Gl1.1 +9999.0 E11.1 bbbb0.1E+05
G8.2 +9999.0 E8.2 0.10E+05
G7.2 -999.0 E7.2 ek

1/0O Formatting 9

Q Edit Descriptor

The Q edit descriptor (an Intel Fortran extension) has the same effect asthe
E edit descriptor on output, except that it outputs a Q for the exponent
instead of an E.

The Qedit descriptor can aso be used to determine the number of bytes
remaining to beread in an input record; see page 9-28, “ Q (bytes remaining)
Edit Descriptor.”

H (Hollerith) Edit Descriptor

The H edit descriptor outputs a specified number of characters. The syntax
is:

nHchar act er - sequence
where

n is a positive integer that specifies the number of
characters to output. This number must exactly
match the actual number of charactersin
char act er - sequence.

char act er - sequenceisthe string of representabl e characters (including
blanks) to output.

Table 9-15 gives examples of the Hollerith edit descriptor on output.

NOTE. You should be careful if you split a Hollerith edit string across
the Fortran source lines. By default, the compiler treats the end of line
character asthe end of the source line, even if it occurs before column 72
in fixed form source. If your Hollerith depends on treating the remaining
characters up to column 72 as blanks, use the - Qpad_ source
(- pad_sour ce for Linux*) option. For details, see Intel® Fortran
Compiler User’s Guide.

9-21

9 Intel Fortran Programmer’s Reference

9-22

Table 9-15

H Edit Descriptor: Output Examples

Edit Descriptor Field Width ~ Output
12HebbSpacesbbb 12 bbbSpacesbbb
14H'I t bi sn’ t bso. " 14 "Ithkisn tbso."

| (integer) Edit Descriptor

L)

Thel edit descriptor defines afield for an integer number. As an Intel
Fortran extension, it can also be used on real and logical data. The
corresponding 1/0O list item must be a numeric or logical type.

NOTE. For thel edit descriptor, you can use a comma as a delimiter to
terminate an input field.

The syntax of the integer edit descriptor is:

[ri]iw.m]

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

m is a nonnegative integer constant, specifying the
minimum number of digits that must be in the field and
forcing leading zeroes as necessary up to the first
nonzero digit. The mvalueisignored oninput. If mis
not specified, a default value of 1 isassumed. If mis
larger than w, thefield isfilled with wasterisks. If m=0
and thelist item is zero, only blanks are output.

On Input

The integer edit descriptor causes the interpretation of the next w positions
of the input record. The number is converted to match the type of thelist
item currently using the descriptor. A plus sign is optional for positive
values. A decimal point must not appear in the field.

Table 9-16 gives examples of the integer edit descriptor on input.

1/0O Formatting 9

Table 9-16 | Edit Descriptor: Input Examples
Descriptor Input field Value Stored
14 blbb 1
15 bbbbb 0
15 bbbbb1 0
12 -1 -1
14 -123 -123
13 b12 12
13 12b 12
13 12b 120
13 1.1 error: illegal character
On Output

The integer edit descriptor outputs a numeric variable as aright-justified
integer value (truncated, if necessary). The field width, w;, should be one
greater than the expected number of digitsto allow a position for aminus
sign for negative values. If misset to 0, azero valueis output as all blanks.

Table 9-17 gives examples of the integer edit descriptor on output.

Table 9-17 | Edit Descriptor: Output Examples
Descriptor Internal Value Output
14 +452.25 452
12 +6234 o
13 -11.92 -11
15 -52 bb-52
110 123456.5 bbbb123456
16.3 3 bbb003
13.0 0 bbb
13 0 bb0

9-23

9 Intel Fortran Programmer’s Reference

9-24

L (logical) Edit Descriptor

Table 9-18

The L edit descriptor defines afield for logical data. Its syntax is:

[r1L[w

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

NOTE. For the L edit descriptor, you can use a comma as a delimiter to
terminate an input field.

The l/O list item corresponding to an L edit descriptor must be of type
logical, short logical, or byte.

On Input

The field width is scanned for optional blanks followed by an optional
decimal point, followed by T (or t) for trueor F (or f) for false. Thefirst
nonblank character in the input field (excluding the optional decimal point)
determines the val ue to be stored in the declared logical variable. It isan
error if the first nonblank characterisnot T, t , F, f , or aperiod(.). Table
9-18 gives examples of the logical edit descriptor on input.

L Edit Descriptor: Input Examples

Edit Descriptor Input Field Value Stored

L1 T .TRUE.

L1 f .FALSE.

L6 .TRUE. .TRUE.

L7 false. .FALSE.

L2 .t .TRUE.

L8 bbbbTRUE .TRUE.

L3 ABC error: illegal character

1/0O Formatting 9
On Output

The character T or F isright-justified in the output field, depending on
whether the value of thelist item is true or false. Table 9-19 gives examples
of the logical edit descriptor on output.

Table 9-19 L Edit Descriptor: Output Examples

Descriptor Internal value Output (logical)
L5 false bbbbF

L4 true bbbT

L1 true T

O (octal) Edit Descriptor

The Oedit descriptor defines afield for octal data. It provides conversion
between an external octal number and its internal representation.

The syntax for the octal edit descriptor is:

[rlawW.n]

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

m is a nonnegative integer constant, specifying the
minimum number of digits that must be in thefield and
forcing leading zeroes as necessary up to the first
nonzero digit. The mvalueisignored oninput. If m is
not specified, a default value of 1 isassumed. If mis
larger than w, the field is filled with w asterisks.

On Input

The presence of too many digits for the integer variable (or list item) to
receive produces undefined results. Legal octal digitsare O through 7. Plus
and minus signs areillegal.

9-25

9 Intel Fortran Programmer’s Reference

9-26

Table 9-20

Table 9-20 gives examples of the octal edit descriptors on input.

O Edit Descriptor: Input Examples

Table 9-21

Descriptor Input Field (Octal) Value Stored (Octal)
08 12345670 12345670

02 77 77

03 064 64

08 45r error: illegal character

On Output

List items may be of any type, though character variables are output only as
the octal equivalent of their ASCII representation (no length descriptor).

If wis greater than the number of converted octal digits (including blanks
between words but excluding leading zeroes), the octal digits are
right-justified in the output field. If w i sless than the number of converted
octal digits, thefield isfilled with asterisks. This primarily affects the
output of negative values. Because negative values are output in twos
complement form, their high-order bits are nonzero and cause the field to be
filled with asterisks when wis less than the number of octal digitsin the
entire output value. If mis set to 0, azero value is output as all blanks.

Table 9-21 gives examples of the octal edit descriptors on output.

O Edit Descriptor: Output Examples

Descriptor Internal Value Output (Octal)
06 80 bbb120

02 80 *x

014 -9 bbb37777777767
Ol1 32767 bbbbbb77777
06.4 79 bb0117

012 1.1 bb7743146315
012 A b101

012 'ABC’ b101b102b103

1/0O Formatting 9

P (scale factor) Edit Descriptor

The kP edit descriptor causes a scale factor of k to be applied to all
subsequent F, D, E, EN, ES, and G edit descriptorsin the format
specification.

If the P edit descriptor does not precede an F, D, E, EN, ES, or G edit
descriptor, it should be separated from other edit descriptors by acomma. If
the P edit descriptor immediately precedesan F, D, E, EN, ES, or G edit
descriptor, the commalis optional. For example, the format specification:
(3P, 12, F4.1, E5.2)

isequivalent to

(12, 3PF4.1, E5.2)

When aformat specification isinterpreted, the scale factor isinitialy set to
0. When a P edit descriptor is encountered, the specified scale factor takes

effect for the format specification and remains in effect until another P edit
descriptor is encountered.

The effect of the scale factor differs for input and output as follows:

On Input

If the value in the input field does not have an exponent, the internal number
isequal to the field value multiplied by 10K If the valuein the input field
has an exponent, the scale factor has no effect. See Table 9-22 for examples
of the scal e factor on input.

On Output

The scale factor has no effect on the EN, ES, F and G (interpreted as F) edit
descriptors. For the D, E, and G (interpreted as E) edit descriptors, the value
of the list item is multiplied by 10X asit is output but the exponent part is
decreased by k.

9-27

9 Intel Fortran Programmer’s Reference

The value specified for the scale factor (k) must be in the range:

-d < k < d+2

where

d isthe number of digitsin the fractional part of the
number being written.

k isasigned integer that specifies the scale factor.

See Table 9-22 for examples of the scale factor on output.

Table 9-22 P Edit Descriptor: Input and Output Examples

Format

Specification Input Field Internal Value Output
(-2PG15.5) 1.97E-4 1.97 x 10 bbbbb.00197E-01
(2P, F15.5) 27.982 .2798199 bbbbbbb27.98200
(2P,ES15.5) 3518. 35.18 bbbb3.51800E+01
(-2P,EN15.5) 7.91E+5 7.91x 10° bb791.00000E+03
(-2PE15.5) 17694 17.694 bbbbb.00177E+04

When part or all of aformat specification is repeated, the current scale
factor is not changed until another scale factor is encountered.

Q (bytes remaining) Edit Descriptor

The Qedit descriptor is an Intel Fortran extension that returns the number of
bytes remaining to be read in the input record, placing the result into the
corresponding integer variable in the 1/0 list. The return value can be used
to control the remaining input items.

9-28

1/0O Formatting 9

The Qedit descriptor isvalid on input only; it isignored on output. It can be
used for reading formatted, sequential, and direct-access files. The
following program segment reads variable-length strings from a sequential

file:

CHARACTER(LEN=80) :: string

INTEGER :: n, i

READ (11, (Q 80Al)’) n, (string (i:i), i=1, n)

For information about the Qw. d edit descriptor for editing real data, see
page 9-15, “D, E, EN, ES, F, G and Q (real) Edit Descriptors.”

S, SP, and SS (plus sign) Edit Descriptors

The S, SP, and SS edit descriptors control printing of the plus sign character
in numeric output. The default behavior of Intel Fortran is not to print the
plus sign. However, an SP edit descriptor in the format specification causes
the plus sign to appear in any subsequent numeric output where the value is
positive. The SS descriptor suppresses the plus sign in subsequent numeric
output. The S edit descriptor restores the default behavior.

The sign edit descriptors have no effect on input.

T, TL, TR, and X (tab) Edit Descriptors
The tab edit descriptors position the cursor on the input or output record.
Their syntax is:
Tn
TLn
TRn
nX
where
n is a positive integer constant, specifying the number of

column positions to skip for positioning within the
current output or input record.

9-29

9 Intel Fortran Programmer’s Reference

9-30

The T edit descriptor references an absolute column number, while the
descriptors TL and TR reference a relative number of column positions to
theleft (TL) or right (TR) of the current cursor position. Note that the TR
descriptor isidentical to the X edit descriptor.

Z (hexadecimal) Edit Descriptor

L)

The Z edit descriptor defines a field for hexadecimal data. This descriptor
provides for conversion between an external hexadecimal number and its
internal representation.

NOTE. For the Z edit descriptor, you can use a comma as a delimiter to
terminate an input field.

The syntax for the hexadecimal edit descriptor is:
[r 1Z[w[.m]]

where

r is a positive integer constant, specifying the repeat
factor.

w is a positive integer constant, specifying the field width.

m is a nonnegative integer constant, specifying the
minimum number of digits that must be in thefield and
forcing leading zeroes as necessary up to the first
nonzero digit. The mvalueisignored on input. If mis
not specified, a default value of 1 isassumed. If mis
larger than w, the field isfilled with w asterisks.

On Input

Variablesto receive hexadecimal input must be of type integer. Legal
hexadecimal digits are 0 through 9, and A through F (or a through f).
Nonleading blanks are ignored, unless the file is opened with

BLANK=" ZERQO . If the file is opened with BLANK=" ZERO , nonleading
blanks are treated as zeroes. (For more information about the BLANK=

1/0O Formatting 9

specifier of the OPEN statement, see)
Plus and minus signs, commas, or any other symbols are neither permitted
on input nor printed on output. The presence of too many digits for the
integer variable (or list item) produces undefined results.

Table 9-23 gives examples of the hexadecimal edit descriptor on input.

Table 9-23 Z Edit Descriptor: Input Examples

Input Field
Descriptor (Hexadecimal) Value Stored (Hexadecimal)
Z4 FF3B FF3B
Z4 fFiF FFFF
Z2 ABCD AB
Z3 1.1 error: illegal character

On Output

List items may be of any type, though character variables are output only as
the hexadecimal equivalent of their ASCII representation (without alength
descriptor). If wis greater than the number of converted hexadecimal digits
(excluding leading zeroes), the hexadecimal digits are right-justified in the
output field. If wislessthan the number of converted hexadecimal digits,
thefield isfilled with asterisks. This primarily affectsthe output of negative
values. Because negative values are output in twos complement form, their
high-order bits are nonzero and cause the field to be filled with asterisks
when wisless than the number of hexadecimal digitsin the entire output
value. If misset to 0, azero valueis output as all blanks.

The field width required to fully represent the hexadecimal value of anitem
istwiceits size in bytes. For example, a CHARACTER* 12 item would
require afield width of 24 characters.

Table 9-24 gives examples of the hexadecimal edit descriptor on output.

9-31

9 Intel Fortran Programmer’s Reference

9-32

Table 9-24

Z Edit Descriptor: Output Examples

Descriptor Internal value Output

Z2 27 1B

Z6.4 27 bb001B

z A b4l

Z8 'ABCD’ 41424344
Z8 1.1 3F8CCCCD

Embedded Format Specification

A format specification can be embedded in a data transfer statement asa
character expression. Parentheses are included in the expression, and the
first nonblank character must be a left parenthesis. The matching right
parenthesis must also be in the expression. A list of edit descriptors appears
between the parentheses. Any characters appearing after the matching right
parenthesis are ignored.

If the character expression is a character constant, it must be delimited by
either apostrophes or quotation marks. If the character constant contains
another character constant, the nested character constant must aso be
delimited. If theinner set of delimitersisthe same asthe outer set they must
be doubled. Each of the following statementsis correct and will produce the
same results:

PRINT “('i ="', i2)", i
PRINT “(""i ="", i2)", i
PRINT ' ("i =", i2), i
PRINT ('@ =", i2)", i
WRITE (6, "('i ="', i2)") i

If the character expression is an array element, the entire specification must
be within that element. If the expression is a whole character array, the
format specification is the concatenation of the array elementsin array
element order. (As an extension, Intel Fortran allows the use of an integer
array to contain a format specification.)

1/0O Formatting 9

The following illustrates the use of a character array to hold the format
specification:

CHARACTER(LEN=6), DI MENSION(2) :: fspec

fspec(l) = ' (F8.3,’

fspec(2) ="' 15)’

PRI NT fspec, fvar, ivar

If thevalue of f var is12.34567 and i var is 123, the output would be:
bbl12. 346bb123

Nested Format Specifications

A format specification can include anested format specification (another set
of edit descriptors, enclosed in parentheses). You can also precede the
nested format specification with a repeat factor, as in the following
example:

(1H, 2(15, F10.5))

Thisis equivalent to:

(1H, I5, F10.5, 15, F10.5)

Each nested specification is known asagroup at nested level n. Thevaue
of n beginsat 1. For each successive level of nesting, n isincremented by
1. Each group at nested level 1 can contain one or more groups at nested
level 2, and so on.

For example:

(E9. 3,186, (2X,14))

contains one group at nested level 1.

(L2, A3/ (E10. 3, 4(A2, L4)))

has one group at nested level 1 and one at nested level 2.

(A (3X(12,(A3)),13),A

contains one group at nested level 1, one at level 2, and one at level 3.

9-33

9 Intel Fortran Programmer’s Reference

9-34

A nested format specification can be preceded by arepeat specification. For
exampl e, the following input record:

b26b6. 4336b373. 86639bb49. 79bb4bbb4395. 4972
could be accessed with the following FORMAT statement:
10 FORMAT (I 3,F7.4,2(F7.2,13),F12.4)

Thelist of variablesfollowing READ statement corresponds to the preceding
FORMAT statement:

READ 10,i,a,b,j,d, k, f

The READ statement would read valuesfori and a; repeat the nested format

specification F7. 2, | 3 twiceto read valuesfor b, j , d, and k; and, finaly,
read avaluefor f .

Interaction Between Format Specification and I/O Data

List

L)

A formatted 1/0O statement references each itemin an I/O list, and the
corresponding format specification is scanned to find aformat descriptor for
each item. Aslong as an item is matched to an edit descriptor, normal
execution continues.

NOTE. Default values are provided for thew; d, and e fields regardless
of which edit descriptors you select.

If there are more edit descriptors than list items, format control terminates
with thelast list item. If there are fewer edit descriptors than list items, the
following three steps are performed:

1. Thecurrent record is terminated.

2. A new record is started.

1/0O Formatting 9

3. Format control is returned to the format specification based upon the
following hierarchy:
a. Control returnsto the repeat specification for the rightmost group
at nested level 1. (For information about nested levels, see “ Nested
Format Specifications’ on page 33.)
b. If norepeat specification existsin the rightmost group at nested
level 1, control returns to the group itself.

c. If thereisno group at nested level 1, control returnsto the first
descriptor in the format specification.

Table 9-25 provides examples showing how control is returned to the
format specification in different circumstances.

Table 9-25 Format Control and Nested Format Specifications

Format Specification Control Returns to: Explanation

(15,2(3X,12,(14))) 2(3X,12,(14)) The rightmost group at nested level 1 is
3X,12,(14). Control returns to the repeat
specifier for this group.

(F4.1,12) (F4.1,12) There is no group at nested level 1.
Control returns to the first descriptor in
the format specification.

(A3,(3X,12),4X,14) (3X,12),4X,14 Control returns to the group at nested
level 1.

9-35

g Intel Fortran Programmer s Reference

9-36

Intel® Fortran Statements

This chapter describes the Intel® Fortran statements and attributes,
arranged in alphabetical order and providing syntactic descriptions,
applicable rules, and examples. This chapter does not describe assignment
statements (see) or statement functions (see

). For general information about type
declaration statements, see . For
information about any of the following specific type declaration statements,
see this chapter:

* BYTE
* CHARACTER
¢ COWLEX

¢ DOUBLE COWPLEX
¢ DOUBLE PRECI SI ON

* | NTEGER
¢ LOG CAL
* REAL

* RECORD

* TYPE(type-nane)
This chapter describes statements and attributes only, not constructs. For

example, for information about the CASE statement, look here; for
information about the CASE construct, see

10-1

1 () Intel Fortran Programmer s Reference

Attributes

Table 10-1 lists all the attributes that an Intel Fortran entity may possess and
indicates their compatibility. If the box at the intersection of two attributes

contains a check mark, then the attributes are mutually compatible and can
be held simultaneously by a Fortran 95 entity. The attributes are referred to
throughout this chapter as well as in the rest of the book.

Table 10-1 Attribute Compatibility (Y=YES)

w
,E_D:I IL:) § § é ; i xow o
5§32 8:080fto oyp;
S5 g £t c 2 5282253
< < O w £ Z Z 85 T 2 EE 5 b = >
ALLOCATABLE Y Y 3 Y Y Y Y Y
AUTOVATI C Y Y Y Y Y Y
DI MENSI ON Y Y Y Y Y Y YY Y Y Y Y Y Y
EXTERNAL Y Y Y Y
INITIALIZATION Y Y Y Y YY Y Y Y
| NTENT Y Y Y Y Y
I NTRI NSI C Y Y Y
OPTI ONAL Y Y Y Y Y Y Y
PARANMVETER Y Y Y Y Y
PO NTER Y Y Y Y Y Y Y Y Y
PRI VATE Y Y Y Y Y Y Y Y Y Y Y Y
PUBLI C Y Y Y Y Y Y Y Y Y Y Y Y
SAVE Y Y Y Y YY Y Y Y Y
STATI C Y Y Y YY Y Y Y Y
continued

10-2

Intel® Fortran Statements 1 O

Table 10-1 Attribute Compatibility (Y=YES) (continued)

(1]

208,58 o8, :

3888 igeiicigenys

J2a5fEEREeelsiEo
TARGET Y Y Y Y Y Y Y YY Y Y Y
VOLATI LE Y Y Y Y Y Y Y YY Y Y YY
& NOTE. AUTOMATI C, STATI C, and VOLATI LE may be specified in a

statement of the same name but not as attributes in a type declaration

Statement.

Statements and Attributes

The remainder of this chapter describes all statements and attributes used in
an Intel Fortran program. The statement and attribute descriptions are listed
in alphabetical order. Not described here are the statement function (see

) and the general form of a type
declaration statement (see). For
general information about statements and attributes (including the order in
which statements are required to appear in a legal program), refer to

E NOTE. Ifthe input/output statement includes an | OSTAT=STAT

specifier, then an occurrence of any of the errors can cause the STAT
variable to become defined with the corresponding error number. For the
list of error numbers, see the “Input/Output Errors” in the Intel®
Fortran Compiler User s Guide.

10-3

1 O Intel Fortran Programmer’s Reference

ACCEPT

Reads from standard input.

The syntax of the ACCEPT statement can take one of two forms:
* Formatted and list-directed syntax:
ACCEPT format [, input-list]
* Namelist-directed syntax:
ACCEPT name
f or mat is one of the following:
® Anasterisk (*), specifying list-directed I/O. For
detailed information about list-directed 1/O, see
Chapter 8, I/O and File Handling.
® The label of a FORMAT statement containing the
format specification.

* Aninteger variable that has been assigned the label
of a FORWVAT statement.

®* Anembedded format specification. For information
about the format specifications, see Chapter 9, I/O
Formatting.
i nput-1ist is a comma-separated list of data items. The data items
can include variables and implied-DO lists; see Chapter
8, I/O and File Handling for more detailed information.

name is the name of a namelist group, as previously defined
by a NAMELI ST statement. Using this syntax, the
ACCEPT statement accepts data from standard input and
transfers it to the namelist group. To perform
namelist-directed I/O with a connected file, you must
use the READ statement and include the NM.= specifier.

Description

The ACCEPT statement is an Intel Fortran extension and is provided for
compatibility with other versions of Fortran. The standard READ statement
performs the same function, and standard-conforming programs can use it.
ACCEPT transfers data from standard input to internal storage. (Unit 5 is

10-4

Intel® Fortran Statements 1 O

preconnected to the Intel standard input.) The ACCEPT statement can be
used to perform formatted, list-directed, and namelist-directed I/O only. To
read data from a connected file, use the READ statement.

Examples

The following example of the ACCEPT statement reads an integer and a
floating-point value from standard input, using list-directed formatting:

I NTEGER :: i

REAL :: X

ACCEPT *, i, x

Related Statements
FORMAT, NAMELI ST, PRI NT and READ

Related Concepts

For information about I/O concepts, see Chapter 8, [/O and File Handling,
which also presents example programs performing I/O. For information
about I/O formatting, see Chapter 9, 1/O Formatting.

ALLOCATABLE (Statement and Attribute)

Declares an allocatable array with
deferred shape.

The syntax of a type declaration statement with the ALLOCATABLE attribute

is:

type, attrib-list :: entity-1list

type is a valid type specification (I NTEGER, REAL,
LOG CAL, CHARACTER, TYPE (type-name) , and so
on), as described in Chapter 3. Data Types and Data
Objects.

attrib-1ist isacomma-separated list of attributes including
ALLOCATABLE and optionally those attributes
compatible with it, namely:

10-5

1 () Intel Fortran Programmer s Reference

10-6

DI MENSI ON PUBLI C TARGET
PRI VATE SAVE

entity-1ist is a comma-separated list of entities. Each entity is of the
form:

array-nane [(deferred-shape-spec-list)]
If (def err ed- shape-spec-1i st) is omitted, it must be specified in
another declaration statement.
array- name is the name of an array being given the attribute
ALLOCATABLE.
def err ed- shape- spec-1i st
is a comma-separated list of colons, each colon
representing one dimension. Thus the rank of the
array is equal to the number of colons specified.
The syntax of the ALLOCATABLE statement is:
ALLOCATABLE [::] array-nane
[(deferred-shape-spec-list)]
[,array-nane [(deferred-shape-spec-list)]]...
If (def err ed- shape- spec-1i st) is omitted from the ALLOCATABLE

statement, it must be specified in another declaration statement, such as a
type or DI MENSI ON statement.

The ALLOCATED intrinsic inquiry function can be used to determine whether
an allocatable array is currently allocated.

Description

The ALLOCATABLE attribute or statement is used to declare an array whose
extents in all its dimensions will be specified when an ALLOCATE statement
is executed at run-time; for this reason it is known as “deferred-shape”.
When an allocatable array is declared, only its name and rank are given.

Examples

The following statements declare a rank-one deferred-shape array and
illustrate its use with different extents.

I m s is deferred shape.

Intel® Fortran Statements 1 O

| NTEGER, ALLOCATABLE :: ms(:)
ALLOCATE (m's (3)) I Allocate 3 elements.

DEALLOCATE (i s) I m s is no longer allocated.
ALLOCATE (m's (-n:n)) ! Allocate with different extent.

Related Statements
ALLOCATE and DEALLOCATE

Related Concepts

See for a full description of ALLOCATABLE arrays and
the conditions applying to their use.

Array pointers provide a more general mechanism for the manipulation of
deferred-shape arrays; see

ALLOCATE

Provides storage space for allocatable
arrays and pointer targets.

ALLOCATE (al |l ocation-1i st
[, STAT=scal ar-i nteger-vari abl e])

al l ocation-1i st is a comma-separated list of allocation.

al | ocation is allocate-object [(al | ocat e- shape-
spec-list)].

al | ocat e- obj ect isvari abl e- nane or
structure-conponent . Each
al | ocat e- obj ect must be an allocatable array
or a pointer.

al | ocat e- shape- spec-1i st
is a comma-separated list of allocate-shape-spec.

10-7

1 () Intel Fortran Programmer s Reference

10-8

al | ocat e- shape- spec
is [ower-bound :] upper-bound. The
bounds in an allocate-shape-spec must be scalar
integer expressions.

STAT=scal ar-i nt eger-vari abl e

returns the error status after the statement executes. If given, it is set to a
positive value if an error is detected, and to zero otherwise. If there is no
status variable, the occurrence of an error causes the program to terminate.

Description

The ALLOCATE statement creates space for allocatable arrays and targets
for variables (scalars or arrays) with the PO NTER attribute. The
ALLOCATE and DEALLOCATE statements give the user the ability to
manage space dynamically at execution time.

For allocatable arrays, an error occurs when an attempt is made to allocate
an already allocated array or to deallocate an array that is not allocated. The
ALLQOCATED intrinsic function may be used to determine whether an
allocatable array is allocated.

A pointer can be associated with a target, either with the pointer assignment
statement or by use of the ALLOCATE statement. It is not an error to allocate
an already associated pointer; its old target connection is replaced by a
connection to the newly allocated space. However, if the previous target
was allocated and no other pointer became associated with it, the space is no
longer accessible.

Examples

In the following example, a complex array with the PO NTER attribute is
declared. Target space is allocated to it at run-time, the amount being
determined by two integer values read in. Later in the program, the space is
recovered by use of the DEALL OCATE statement.

COWLEX, PO NTER :: hermitian (:, :)

READ *, m n

ALLOCATE (hermitian (m n))

DEALLOCATE (hermitian, STAT = ierr)

Intel® Fortran Statements 1 O

In the next exanple, a real allocatable array is
decl ared. The anpunt of space allocated to it depends
on how much is avail abl e.

REAL, ALLOCATABLE :: intense(:,:)
! Rank-2 allocatable array
CALL init_i_j(i, j)
DO

ALLOCATE (intense(i, j), STAT = ierrd)

! ierrd will be positive if there is not

I enough space to allocate this array.

IF (ierrd == 0) EXIT

i =i/2; j =jl2
END DO
The derived type node in the next example is the basis of a binary tree
structure. It consists of a real value component (val) and two pointer
components, | eft and ri ght, both of type node. The variable t op (of
type node) is declared, and space is allocated for targets for the pointers
top% eft andtop% i ght.

The ALLOCATE and DEAL L OCATE statements and pointer variables of type
NODE make it possible to allocate space for nodes in such a tree structure,
traverse it as required, and then recover the space when it is no longer
needed.
TYPE node

REAL val

TYPE(node), PO NTER :: left, right

I Poi nter conponents.
END TYPE node
TYPE(node) top
ALLOCATE (top %l eft, top %right)
In the final example, two CHARACTER arrays, par a and key, are declared
with the PO NTER attribute. par a is allocated space; key is made to point
at a section of par a.
CHARACTER, PO NTER :: para(:), key(:)
! Pointers to char arrays.
CALL init_k_mk, m

10-9

1 () Intel Fortran Programmer s Reference

10-10

ALLOCATE (para(1000))
key => para (k : k + m

Related Statements

ALLOCATABLE (statement and attribute), DEALLOCATE, NULLI FY, and
PO NTER (statement and attribute)

Related Concepts

The intrinsic inquiry functions ALLOCATED and ASSOC| ATED are
described in the Intel Fortran Compiler User s Guide. See
for information about pointers.

ASSIGN

Assigns statement label to integer

variable.

ASSI GN stnt-label TO integer-variable

stnt -1 abel is the statement label for an executable statement
or a FORVAT statement in the same scoping unit
as the ASSI GN statement.

i nteger-vari abl e is a scalar variable of the default integer type. It
cannot be a field of a derived type or record, or an
array element.

Description

Once a variable is defined by an ASSI GN statement, it can be used in an
assigned GO TOstatement or as a format specifier in an input/output
statement. It should not be used in any other way.

A variable that has been assigned a statement label can be reassigned
another label or an integer value. If i nt eger - vari abl e is subsequently
assigned an integer value, it no longer refers to a label.

Intel® Fortran Statements 1 O

Examples
ASSI GN 20 TO LAST1
GO TO LAST1
I ASSI GN used with FORMAT st at enent
ASSI GN 10 TO FORML
10 FORMAT(F6. 1, 2X,15/F6. 1
READ(5, FORML) SUM K1, AVE1
20 ...

Related Statements
GO TO, READ, and WRI TE

Related Concepts

Statement labels are described in Chapter 2. Language Elements. The
assigned GO TOstatement is described later in this chapter as well as in
Chapter 6, Execution Control.

AUTOMATIC

Makes procedure variables and arrays
automatic.

AUTOVATI C var - nane-| i st

var - nanme- | i st is a comma-separated list of names of variables and
arrays to be declared as automatic. Array names may be
followed by an optional explicit-shape-spec.

Description

The AUTOVATI C statement is provided as an Intel Fortran extension.

If a variable or array declared within a procedure is declared as automatic,
then there is one copy of it for each invocation of the procedure. Space is
allocated on entry to the procedure and deallocated on exit. This is also the

10-11

1 () Intel Fortran Programmer s Reference

10-12

default for variables that do not have the SAVE or STATI C attribute, unless
the / Qsave (- save for Linux*)option has been specified (see the Intel®
Fortran Compiler User’s Guide for information about this option).

If it is required to have the same copy of a variable available to each
invocation of the routine (for example, to keep a record of the depth of
recursion), then the variable should have the SAVE attribute.

Note the following:

®* The AUTOVATI C statement may only be used within a procedure.
®* Local variables are AUTOVATI C by default.

* Arguments and function values are AUTOVATI C.

* Automatic variables may not appear in EQUI VALENCE, DATA or SAVE
statements.

®* The AUTOVATI C attribute is not the same as automatic arrays and
automatic character strings.

Example
AUTOMATIC r, s, u, v, w(10)

Related Statements
SAVE and STATI C

Related Concepts

Automatic and static variables are described in Chapter 3, Data Types and
Data Objects.

BACKSPACE

Positions file at preceding record.

The syntax of the BACKSPACE statement can take one of two forms:
¢ Short form:

BACKSPACE i nt eger - expr essi on
®* Long form:

BACKSPACE (io-specifier-list)

Intel® Fortran Statements 1 O

i nt eger - expr essi onis the number of the unit connected to a sequential

file.

i 0-specifier-1list isalistofthe following comma-separated I/O
specifiers:

[UNI T=] uni t specifies the unit connected to an external file

opened for sequential access. uni t must be an
integer expression that evaluates to a number
greater than 0. If the optional keyword UNI T= is
omitted, uni t must be the first item in

i o-specifier-list.

ERR=st nt - | abel specifies the label of an executable statement to
which control passes if an error occurs during
statement execution.

| OSTAT=i nt eger - returns the I/O status after the statement executes.

vari abl e If the statement executes successfully,
i nt eger-vari abl e is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

Description

The BACKSPACE statement causes the external file connected to unit to be
positioned just before the preceding record of the file. The file must be
connected for sequential access.

Examples

The following statement causes the file connected to unit 10 to be
positioned just before the preceding record:

BACKSPACE 10

The following statement causes the file connected to unit 17 to be
positioned just before the preceding record. If an error occurs during the

execution of the statement, control passes to the statement at label 99, and
the error code is returned in i 0s:

BACKSPACE (17, ERR=99, | OSTAT=i 0s)

10-13

1 () Intel Fortran Programmer s Reference

10-14

Related Statements
ENDFI LE, OPEN, and REW ND

Related Concepts

For information about I/O concepts, see ,
which also gives example programs that perform I/O. For information about
I/O formatting, see

BLOCK DATA

Introduces a BLOCK DATA program

unit.

BLOCK DATA [bl ock- dat a- nane]

bl ock- dat a- nanme is an optional name. If a name is given in the END
BLOCK DATA statement terminating a block data
program unit, it must be the same as the
block-data-name given in the BLOCK DATA
statement introducing the program unit.

Description

A block data program unit is used to give initial values to variables in a
named common blocks by means of DATA statements and must start with a
BLOCK DATA statement. The block data program unit is an obsolescent
feature of Fortran 95 and is effectively superseded by the module facility
(described in).

As an extension, Intel Fortran allows unnamed common blocks to be
initialized.

Intel® Fortran Statements 1 O

The following block data program unit gives initial values to some variables
in the common blocks cb1 and cb2. All variables in each common block
are specified completely.
BLOCK DATA

REAL b(4) DOUBLE PRECI SI ON z(3)

COWPLEX c

COVWON /cbl/c,a,b /cb2/z,y

DATA b, z, ¢ /1.0, 1.2 ,2*1.3, &

3*7.654321D0, (2.4,3.76)/

Examples

END

Related Statements
COMMVON, DATA, and END

Related Concepts

The initialization of variables is discussed in Chapter 3., Data Types and
Data Objects.

BYTE

Declares entities of type integer.

BYTE [[, attrib-list] ::] entity-list
attrib-1ist isacomma-separated list of one or more of the
following attributes:

ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON OPTIl ONAL PUBLI C
EXTERNAL PARAMETER SAVE

I NTENT PO NTER TARGET

10-15

1 () Intel Fortran Programmer s Reference

10-16

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-1list is a list of entities, separated by commas. Each entity
takes the form:
nane [(array-spec)] [= initialization-expr]
wher e nane is the name of a variable or function
array-spec is a comma-separated list of dimension bounds
initialization-expr
is the initial value for the entity.

Description

The BYTE statement is an Intel Fortran extension that is used to declare the
properties of entities. The entities can take values that are whole numbers
and can be represented in one byte. It is equivalent to the

| NTEGER(KI ND=1) statement. Note that the BYTE statement does not
have a KI ND parameter.

The BYTE statement is constrained by the rules for all type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the BYTE statement overrides any
implicit typing rules in effect.

An array specification included with an entity in enti ty-1i st overrides
any specification made with the DI MENSI ON attribute.

Ifattrib-1ist orinitialization-expr appear in the declaration,
entity-1ist mustbe preceded by the double colon.

Initialization

initialization-expr mustbe a constant integer expression that can
be evaluated at compile time.

The following entities may not be initialized:
®* Dummy arguments

* Function results

® Allocatable arrays

* Pointers

* External names

® Intrinsic names

Intel® Fortran Statements

10

* Automatic objects

Ifattrib-1ist includesthe PARAMETER attribute, every entity in
entity-1ist mustbeaccompanied by an initialization expression.
Initializing an entity implies the SAVE attribute.

To initialize an array in a BYTE statement, you may use an array
constructor, as in the following example:

BYTE, DI MENSI ON(4) :: bvec=(/1,2,3,4/)

When initializing an array, all items in the array must be initialized.

Implied-DOloops cannot be used to initialize an array in a type declaration
statement.

As an extension, an initializer may appear between slashes in a type
declaration statement, as in the following example:
BYTE b/ 12/, bb/ 27/

The double colon (: :) may not be used with this initialization format.

Example

The following are valid declarations:
BYTE i, |

BYTE :: k

BYTE, PARAMETER :: |imit=120

BYTE val /253/

Related Statements
| NTEGER

Related Concepts

The following are discussed elsewhere in this manual:

* Implicit typing rules: Chapter 3, Data Types and Data Objects

® Data representation models: Chapter 3. Data Types and Data Objects
® Storage classes for variables: Chapter 3, Data Types and Data Objects
* Automatic objects: Chapter 3. Data Types and Data Objects

® Arrays: Chapter 4, Arrays

* Expressions: Chapter 5, Expressions and Assignment

* Initialization expressions: Chapter 5, Expressions and Assignment

10-17

1 () Intel Fortran Programmer s Reference

10-18

CALL

Invokes a subroutine.

CALL subr-nane[([subr-act-arg-spec-list])]

subr - name is the name of the subroutine being invoked.

subr - act - ar g- is a comma-separated list of subr-act-arg-spec.

spec-1i st

subr-act-arg- is[keyword =]Jsubr-act-arg

spec

subr-act-arg is one of the following:

® expression

® variable

® procedure-name
* *| abel

keywor d is one of the dummy argument names of the subroutine

being invoked. If any keyword is specified, the
subroutine interface must be explicit.

Description

A CALL statement is used to invoke (call) a subroutine, and to specify actual
arguments, if any. Execution of the subroutine begins with the first
executable statement. The sequence of events when a CALL statement is
executed is as follows:

1.
2.

Actual arguments that are expressions are evaluated.

The actual arguments are associated with the corresponding dummy
arguments.

Control transfers to the subroutine being called, and the subroutine
executes.

Control returns from the subroutine, normally to the statement
following the CALL statement, or to a statement label indicated by an
alternate return specifier argument (of the form * | abel).

Intel® Fortran Statements

10

The correspondence between actual and dummy arguments is primarily by
position: the first actual argument corresponds to the first dummy argument,
the second to the second, and so on. The positional correspondence may be
overridden by argument keywords, where a keyword name attached to an
actual argument specifies a correspondence to the dummy argument of the
same name. The following conditions govern the use of argument
keywords:

* Ifan argument keyword is used, all subsequent arguments in the CALL
statement must also be accompanied by keywords.

* Ifan optional argument is omitted, the keyword form is required for
any following arguments.

* Ifan argument keyword is used, the procedure interface must be
explicit; that is, the procedure must be an intrinsic procedure, an
internal procedure, a module procedure, or an external procedure with
an interface block accessible to the program unit making the call.

A subroutine can call itself, directly or indirectly; in this case the keyword
RECURSI VE must be added to the SUBROUTI NE statement of the
subroutine definition.

The %/AL and ¥REF built-in functions are provided as Intel Fortran
extensions. These allow cross-calling between languages by enabling
arguments to be passed by value and by reference, respectively. /AL
causes its argument to be passed by value, as if to a C function; it is
sign-extended to a 32-bit value if it is less than 32 bits. %REF causes its
argument to be passed by reference, similar to the default Fortran 95
behavior, except that the hidden length parameter of a CHARACTER string is
not passed.

The only subroutine invocation other than by the CALL statement in Fortran
95 is through “defined assignment”, where a defined type assignment

operator that has been defined by means of a subroutine is used. See the
| NTERFACE statement in this chapter for more information.

Examples
! Interface for subroutine draw
| NTERFACE
SUBROUTI NE draw (x_start, y_start, x_end, &
y_end, form scale)

10-19

1 () Intel Fortran Programmer s Reference

REAL x_start, y_start, x_end, y_end
CHARACTER (LEN = 6), OPTIONAL :: form
REAL, OPTIONAL :: scale
END SUBROUTI NE dr aw

END | NTERFACE

! References to draw

CALL draw (5., -4., 2., .6, "DASHED")

! Argunments given by position.

I Optional argument scale onmitted.

CALL draw (scale=.4, x_end=0., y_end=0., &

Xx_start=.5 y start=3.)
I Argunents given by keyword.
! Optional argunent formomtted.

Related Statements
| NTERFACE and SUBROUTI NE

Related Concepts

The correspondence between the dummy arguments of a subroutine and the
actual arguments specified in its invocation (“Argument association”) is

discussed in detail in , as are the
other methods of association between a program unit and a subroutine
called by it.

CASE

Marks start of statement block in a
CASE construct.

CASE (case-selector) [construct-nanme |

10-20

Intel® Fortran Statements 1 O

case-sel ector is a comma-separated list of ranges of values that
are candidates for matching against the case index
specified by the SELECT CASE statement. Each
item in the list can take one of the following
forms:

® case-value

* Jow:
* high
* low:high
* DEFAULT
where case-val ue, are scalar initialization expressions of type
| ow and hi gh integer, character, or logical; and DEFAULT

indicates the statement block to execute if none of
the other CASE statements in the CASE construct
produces a match.

construct - nane is the name given to the CASE construct.

Description

The CASE statement is used in a CASE construct to mark the start of a
statement block. The CASE construct can consist of multiple blocks; at
most, one is selected for execution. Selection is determined by comparing
the case index produced by the SELECT CASE statement to the

case- sel ect or in each CASE statement. If a match is found, the
statement block under the matching case- sel ect or executes. A match
between the case index (¢) and case- sel ect or is determined for each
form of case- sel ect or, as follows:

case-val ue For integer and character types, a match occurs if ¢
. EQ case-val ue. For logical types, a match occurs if
c.EQV. case-val ue.

| ow: For integer and character types, a match occurs if ¢
.CGE. | ow

: hi gh For integer and character types, a match occurs if ¢
. LE. hi gh.

| ow : high For integer and character types, a match occurs if ¢

.GE. | ow.AND. c.LE. high.

10-21

1 () Intel Fortran Programmer s Reference

10-22

DEFAULT For integer, character, and logical types, a match occurs
if no match is found with any other case- sel ect or
and DEFAULT is specified as a case- sel ect or.

If CASE DEFAULT is not present and no match is found with any of the
other CASE statements, none of the statement blocks within the CASE
construct executes and execution resumes with the first executable
statement following the END SELECT statement.

At most only one DEFAULT selector can appear within a CASE construct.

Each CASE statement must specify a unique value or range of values within
a particular CASE construct. Only one match can occur, and only one
statement block can execute.

All case- sel ect or s and the case index within a particular CASE
construct must be of the same type: integer, character, or logical. However,
the lengths of character types can differ.

The colon forms— | ow: , : hi gh, or | ow: hi gh—are not permitted for a
logical type.

Although putting the CASE statements in order according to range may
improve readability, it is not necessary for correct or optimal execution of
the CASE construct. In particular, DEFAULT can appear anywhere among
the CASE statements and need not be the last.

CASE statements inside a named CASE construct need not specify
const ruct - nane; but if they do, the name they specify must match that
of the SELECT CASE.

A CASE statement can have an empty statement block.

Example

The following example considers a person’s credits and debits and prints a
message indicating whether a resulting account balance will be overdrawn,
empty, uncomfortably small, or sufficient:
INTEGER :: credits, debits
SELECT CASE (credits - debits)
CASE (:-1)

PRI NT *, ' OVERDRAVW

CALL TRANSFERFUNDS

Intel® Fortran Statements 1 O

CASE (0)

PRINT *, ' NO MONEY LEFT'
CASE (1:50)

PRINT *, ' BALANCE LOW
CASE (51:)

PRI NT *, ' BALANCE OKAY'
END SELECT

Related Statements
SELECT CASE and END (construct)

Related Concepts
The CASE construct is described in

CHARACTER

Declares entities of type character.

CHARACTER [char-sel ector] [,

entity-Ilist

attrib-list] ::]

char - sel ect or specifies the length and kind of the character variable. It

takes one of the following forms:
* ([LEN=]Ien-parani,
KI ND=ki nd- param)

® (len-param [KIND=]kind-param
* (KIND=ki nd-parani, LEN=len-param)

¢ *char-len [,]
* *(len-param [,]

where ki nd- par am(if present) must be 1 (the default), | en- par amis
either an asterisk (*) or a specification expression, and char - | en is an
integer constant. In the last form, | en- par amis enclosed in parentheses,
and the optional comma may be included only if the double colon does not

10-23

1 () Intel Fortran Programmer s Reference

10-24

appear in the type declaration statement. If | en- par amevaluates to a
negative value, a zero-length string is declared. If | en- par amis
unspecified, the default is 1.

attrib-1ist is a list of one or more of the following attributes,
separated by commas:

ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON OPTIl ONAL PUBLI C
EXTERNAL PARAMETER SAVE

I NTENT PO NTER TARGET

For information about each of the attributes, see the corresponding

statement in this chapter.

entity-1list is a list of entities, separated by commas. Each entity

takes the form:

nane [(array-spec)] [* len-param]
[=initialization-expr]

where nane is the name of a variable or function, ar r ay- spec isa

comma-separated list of dimension bounds, | en- par amis either an

asterisk (*) or a specification expression, and i ni ti al i zati on- expr is

the initial value for the entity.

Description

The CHARACTER statement is used to declare the length and properties of
character data.

The CHARACTER statement is constrained by the rules for all type
declaration statements, including the requirement that it precede all
executable statements.

Explicitly declaring an entity with the CHARACTER statement overrides any
implicit typing rules in effect.

An array specification included with each entity inentity-1i st
overrides any specification made with the DI MENSI ON attribute.

Initializing an entity implies the SAVE attribute.

Ifattrib-list orinitialization-expr appearsin the declaration,
entity-1ist mustbe preceded by the double colon.

Intel® Fortran Statements 1 O

Assumed Character Length Parameter

To indicate that the length of a character can vary, you may use an assumed
character length parameter by specifying an asterisk (*) for | en- par am
The asterisk may only be used to do the following:

* Declare the type of a function. The function must not be an
internal or module function, nor must it be array-valued,
pointer-valued, or recursive.

e Declare a dummy argument of a procedure.
* Declare a named constant (see the PARAMETER statement).

Automatic Character Variables

Automatic character variables are allowed within procedures, but only as
local objects, not dummy arguments. For example,

CHARACTER(LEN=arg) :: nane

declares an automatic character variable of the nonconstant length ar g
within a procedure. The value of ar g is known only at entry to the
procedure. Such character variables and character dummy arguments
specified with a length of * are the only character entities whose length may
vary. Automatic character variables cannot be initialized in a type
declaration statement or appear in a DATA statement.

Initialization

initialization-expr mustbeaconstant character expression that can
be evaluated at compile time.
The following entities may not be initialized:

* Dummy arguments

* Function results

e Allocatable arrays

* Pointers

* External names

e Intrinsic names

* Automatic objects

10-25

1 () Intel Fortran Programmer s Reference

10-26

Ifattrib-1ist includes the PARAMETER attribute, each entity in
entity-1i st mustinclude an initialization expression; see
for information about initialization

expressions.
Initializing an entity implies the SAVE attribute.
The following is an example of character array initialization using array
constructor syntax:
CHARACTER(4) :: response(3) = (/"Yes.", &

"No!!", "Huh?"/)
As shown in the example, all items in the array must be initialized, and all
of the character constants must be of the same length. Implied-DOloops
cannot be used to initialize an array in a type declaration statement.
As an extension, an initializer may appear between slashes in a type

declaration statement. However, the double colon separator (: :) may not be
used with this format.

Examples

The following are valid declarations:

CHARACTER c1, c2

CHARACTER(LEN=80) :: text(0:25)

CHARACTER(2, 1), PARAMETER :: limt='2zZ

The following are valid uses of the assumed length parameter:
CHARACTER(*) dunmy_ar g_nane

CHARACTER(*), PARAMETER :: hello="H Sani

CHARACTER(LEN=*), PARAMETER :: hello="H Sant
Assuming that ¢ is an ordinary variable and not the dummy argument to a

procedure, the following declaration is an illegal use of the assumed length
parameter:

CHARACTER*(*) c¢ ! illegal

Related Concepts
The following related concepts are discussed elsewhere in this manual:

* Implicit typing rules:

Intel® Fortran Statements 1 O

* Data representation models: Chapter 3. Data Types and Data
Objects

» Storage classes for variables: Chapter 3, Data Types and Data
Objects

e Automatic objects: Chapter 3, Data Types and Data Objects

e Arrays: Chapter 4, Arrays

* Expressions: Chapter 5. Expressions and Assignment

* Initialization expressions: Chapter 5. Expressions and Assignment

CLOSE

Terminates file connection.

CLOSE (io-specifier-list)
i o-specifier-list isa listofthe following comma-separated I/O
specifiers:

[UNI T=] uni t specifies the unit connected to an external file.
uni t must be a positive integer-valued
expression. If the optional keyword UNI T=is
omitted, unit must be the first item in
i o-specifier-list.

ERR=st nt - | abel specifies the label of the executable statement to
which control passes if an error occurs during
statement execution. If neither | OSTAT= or ERR=
is specified and an error occurs, the program
aborts and a system error message is issued.
st nt - | abel must be in the same scoping unit as
the CLOSE statement with the ERR= specifier.

| OSTAT= returns the I/0 status after the statement executes.

i nt eger-vari abl e Ifthe statement executes successfully,
i nt eger-vari abl e is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred. If neither | OSTAT= or

10-27

1 () Intel Fortran Programmer s Reference

10-28

ERR-= is specified and an error occurs, the
program aborts and a system error message is

issued.
STATUS=char act er - specifies the state of the file after it is closed.
expr essi on char act er - expr essi on can be one of the

following arguments:

' KEEP' Preserve the file after
it is closed (default).

' DELETE' Do not preserve the file
after it is closed.

The STATUS= specifier is ignored if the file was opened as a scratch
file; see the OPEN statement in this chapter.

Description
The CLOSE statement closes the file whose unit number was obtained from

an OPEN statement. A CLOSE statement must contain a unit number and at
most one each of the other I/O specifiers.

A CLOSE statement need not be in the same program unit as the OPEN
statement that connected the file to the specified unit. If a CLOSE statement
specifies a unit that does not exist or has no file connected to it, no action
occurs.

Examples

The following examples illustrate different uses of the CLOSE statement. In
the first example, the CLOSE statement closes the file connected to unit 10;
after it is closed, the file will continue to exist, unless it was opened with the
STATUS="' SCRATCH' specifier:

CLCSE (10)

In the next example, after the file connected to unit 9 is closed, it will cease
to exist:

CLOSE(UNI T=9, STATUS=' DELETE')

The following code produces the same results as the previous example:

CHARACTER(LEN=6) cst at
cstat =" del et e’

Intel® Fortran Statements 1 O
CLOSE(UNI T=9, STATUS=cst at)

The following example closes the file connected to unit 8. If an error occurs,
control is transferred to the executable statement labeled 100, and the error
code is stored in the variable i 0S:

CLOSE(8, | OSTAT=i 0s, ERR=100)

Related Statements
OPEN

Related Concepts

For information about I/O concepts, see ,
which also lists example programs performing 1/O.

COMMON

Specifies common blocks.

COMWON [/[[conmon- bl ock-nane]]/] object-list
[[.]1/ [common-bl ock-nane] / object-list]...

conmon- bl ock- nane
is the name of a labeled common block.

obj ect-1ist isacomma-separated list of scalar variables, arrays,
records, and structures. If an array is specified, it may be
followed by an explicit-shape specification expression.

Description

The COMMON statement defines one or more named or unnamed storage
areas to be shared by different program units. It also identifies the
objects—that is, variables, arrays, records, and structures—to be stored in
those areas. Objects in common that are shared by different program units
are made accessible by storage association.

10-29

1 () Intel Fortran Programmer s Reference

10-30

Each object following a common-block name is declared to be in that
common block. If/ conmon- bl ock- nane/ is omitted, all objects in the
corresponding obj ect - | i st are specified to be in blank common. It is
also possible to declare variables in blank common by specifying two
slashes without cormon- bl ock- nane. Consider the following examples:
!Declare variables a, b, ¢ in blank conmmon.

COMMON a, b, c

! Declare pay and tinme in blank comon,
! and red in the named common bl ock col or
COVMON pay, time, /color/red

!'Variables al and a2 are in conmon bl ock a;

! array x and variable y are in blank common;
! and variable d is in conmon bl ock ¢

COMWON a/ al, a2,//x(10),y,/cl/d

Any common block name or blank common specification can appear more
than once in one or more COVMON statements within the same program unit.
The variable list following each successive appearance of the same common
block name is treated as a continuation of the list for that common block
name. For example, the following COMMON statements:

COWN a, b,c Ixly,x,d /[/wr

COMMON / cap/ hat,visor, //tax, /x/o,t
are equivalent to:

COVMN a, b, c,w, r, tax

COMMON /x/y, x,d,o,t
COMMON / cap/ hat , vi sor

Unlike named common blocks, blank common can differ in size in different
scoping units. However, blank common cannot be initialized.

Intel Fortran allows you to mix CHARACTER and numeric data types in
COWMON. This may create undesirable alignment, however, and is not
recommended. Intel Fortran saves all common blocks in static memory
unless you use the name of a COMMON block with the dynamic-common
option, - Qdyncom see “Allocating Common Blocks” section in the /ntel®

Intel® Fortran Statements

10

Fortran Compiler User's Guide. The dynamic common option - Qdyncom
is an Intel extension, and enables you to allocate common on the heap, and
determine the size of a common block at run-time.

Restrictions on Common Block Usage
All common block names must be distinct from subprogram names.

The size of a named common block must be the same in all program units
where it is declared. Note, however, that the size of blank common can
differ.

The following data items must not appear in a COMMON statement:

* Dummy arguments in a subprogram

®* Functions, subroutines, or intrinsic functions

®* Pointees declared by Cray*-style pointers

® Variables accessible by use association

* Automatic entities, including automatic character strings

* Allocatable arrays

A variable can only appear in one COMMON statement within a program unit.

Zero-sized common blocks are allowed. Zero-sized common blocks with
the same name are storage associated.

Array bounds in a COMMON statement must be constant specification
expressions.

Structures in common must be of sequence type.

A pointer may appear in a common block. When it does, it must have the
same type, type parameter, and rank in every instance of that common
block.

Initializing Common Blocks

As an extension to the Standard, Intel Fortran allows common blocks to be
initialized outside of a block data program unit; for example, in a
subroutine. However, note that all data initialization for a given common
block must occur in the same compilation unit.

Intel Fortran also allows blank common to be initialized.

10-31

1 () Intel Fortran Programmer s Reference

10-32

Common Block Size

The size of a common block is determined by the number and type of the
variables it contains. In the following example, the common block
my_bl ock takes 20 bytes of storage: b uses 8 (2 bytes per element) and
arr uses 12 (4 bytes per element):

| NTEGER(2) b(4)

| NTEGER(4) arr(3)

COVMWMON /cb/b, arr

Data space within the common area for arrays b and ar r shown in this
example is allocated as follows:

Bytes Common Block Variables
0,1,2,3 b(1), b(2)

4,56,7 b(3), b(4)

8,9,10, 1 arr(1)

12,13, 14, 15 arr(2)

16, 17,18, 19 arr(3)

Allocation of Common Block Storage

Common block storage is allocated at link time. It is not local to any one
program unit.

Each program unit that uses the common block must include a COMMON
statement that contains the block name, if a name was specified. Variables
assigned to the common block by the program unit need not correspond by
name, type, or number of elements with those of any other program unit.
The only consideration is the size of the common blocks referenced by the
different program units. Correspondence between objects in different
instances of the same common block is established by storage association.

Note the following Intel Fortran: when types with different alignment
restrictions are mixed in a common block, the compiler may insert padding
bytes as necessary. (For exact data type alignment rules, see Chapter 3, Data
Types and Data Objects.)

Intel® Fortran Statements 1 O

The following example illustrates how the same common block can be
declared in different program units with different variables but the same
size:

Example

! common decl aration for programunit 1
INTEGER i, j, k
COWMON / ny_block/ i, j, k

! common decl aration for programunit 2
I NTEGER n(3)
COMMON / my_bl ock/ n(3)

The variables i , j , and k in program unit 1 share the same storage with the
array n in program unit 2: i in program unit 1 matches up with n(1) in
program unit 2, j with n(2), and k with n(3) .

Related Statements
EQUI VALENCE

Related Concepts

For additional information about storage association and alignment, see

COMPLEX

Declares entities of type complex.

COWPLEX [kind-spec] [[, attrib-list] ::] entity-Ilist

10-33

1 () Intel Fortran Programmer s Reference

10-34

ki nd- spec is the kind type parameter that specifies the range and

precision of the entitiesinenti ty- | i st.Kki nd- spec
takes the form:

([KIND=] ki nd- param)

where ki nd- par amrepresents the kind of both the real and imaginary

parts of the complex number. It can be a named constant or a constant

expression that has the integer value of 4 or 8. The size of the default

type is 4.

As an extension, ki nd- spec can take the form:

* | en- param

where | en- par amis the integer 8 or 16 (default = 8), which

represents the size of the whole complex entity.

attrib-1ist is a list of one or more of the following attributes,
separated by commas:

ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON OPTI ONAL PUBLI C
EXTERNAL PARAMETER SAVE

| NTENT PO NTER TARGET

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-list isalist of entities, separated by commas. Each entity
takes the form:

name [(array-spec)] [= initialization-expr]

where nane is the name of a variable or function, ar r ay- spec is a
comma-separated list of dimension bounds, and
initialization-expr is the initial value for the
entity.

Description

The COVPLEX statement is used to declare the length and properties of data
that are approximations to the mathematical complex numbers. A complex
number consists of a real part and an imaginary part. A kind parameter (if
specified) indicates the representation method.

Intel® Fortran Statements 1 O

The COVPLEX statement is constrained by the rules for type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the COVPLEX statement overrides any
implicit typing rules in effect.

Ifattrib-1ist orinitialization-expr appearinthe declaration,
entity-1ist mustbe preceded by the double colon.

Ifarr ay- spec is specified for an entity, it overrides any DI MENSI ON
attribute.

Initialization

initialization-expr mustbe a constant complex expression that can
be evaluated at compile time.

The following entities may not be initialized:

* Dummy arguments

* Function results

® Allocatable arrays

* Pointers

* External names

* Intrinsic names

* Automatic objects

Ifattrib-1ist includes the PARAMETER attribute, each entity in
entity-1|ist mustinclude an initialization expression.

To initialize an array in a COVPLEX statement, you must use an array
constructor, as in the following example:
COWPLEX, DI MENSION(2) :: &
cvec=(/(2.294, 6.288E-2), (-1.0096E7, 0)/)
If an array is initialized, all items in the array must be initialized.

Implied-DOloops cannot be used to initialize an array in a type declaration
statement.

As an Intel Fortran extension, an initializer may appear between slashes in a
type declaration statement, as follows:
COVPLEX cx/ (2.294, 6.288E-2)/

The double colon (: :) may not be used with this initialization format.

10-35

1 () Intel Fortran Programmer s Reference

10-36

Length Specification Extension

As a portability extension, Intel Fortran allows the following syntax for
specifying the length of an entity:

name [*len] [(array-spec)] [= initialization-expr]
If arr ay- spec is specified, *| en may appear on either side of
array-spec.

If name appears with * | en, it overrides the length specified by
ki nd- spec. For example, the following statements are equivalent
declarations of X:

COVPLEX(KI ND = 8) x
COWPLEX(8) x*16

Examples

The following are valid declarations:

COWPLEX x, vy

COVPLEX(KIND=8) :: z

COVPLEX, PARAMETER :: t1(2)=(/(3.2, 0), &
(.04, -1.1)/)

Related Statements
DOUBLE COVPLEX

Related Concepts
The following are discussed elsewhere in this manual:

* Implicit typing rules: Chapter 3, Data Types and Data Objects

® Data representation models: Chapter 3. Data Types and Data Objects

® Storage classes for variables: Chapter 3. Data Types and Data Objects

® Automatic objects: Chapter 3. Data Types and Data Objects

® Arrays: Chapter 4, Arrays

® Expressions: Chapter 5, Expressions and Assignment

* Initialization expressions: Chapter 5, Expressions and Assignment

Intel® Fortran Statements 1 O

CONTAINS

Introduces an internal procedure or a
module procedure.

CONTAI NS

Description

The CONTAI NS statement introduces an internal procedure or a module

procedure, separating it from the program unit that contains it. The

statement can be used in:

* A main program, external subprogram, or module subprogram; in each
case, it precedes one or more internal procedures.

®* A module, where it precedes any module procedures.

When a CONTAI NS statement is present, at least one subprogram must
follow it.

Examples

The first example illustrates CONTAI NS introducing an internal subroutine.
It also illustrates how the internal subroutine mechanism can provide an
alternative to the FORTRAN 77 statement function mechanism.

PRI NT *, doubl e_real (6.6)

CONTAI NS

FUNCTI ON doubl e_real (x); REAL X

double real = 2.0 * x

END FUNCTI ON
END
The next example illustrates a main program with an internal procedure
part.
PROGRAM el ectric I Program header

REAL current I Specification part

current = 100.5 ! Execution part begins

10-37

1 () Intel Fortran Programmer s Reference

CALL conmpute_resistance(voltage, current, &
resi stance)

CONTAI NS ! Internal procedure part
SUBRQUTI NE conput e_resistance(v, i, r)
REAL i
r=v/ i

END SUBROUTI NE
END PROCRAM el ectric
The third example is of a module that contains a module subprogram, which
in turn contains an internal subprogram.
MODULE one
CONTAI NS
SUBROUTI NE t wo(Xx) I Modul e subprogram
CONTAI NS
LOG CAL FUNCTI ON t hree(y)
'l nternal subprogram
END FUNCTI ON t hree
END SUBROUTI NE t wo
END MODULE one

Related Statements
SUBROUTI NE and FUNCTI ON

Related Concepts
The following are discussed in

®* Program units
® Internal subprograms
®* Module subprograms

10-38

Intel® Fortran Statements 1 O

CONTINUE

Establishes reference point within a
program unit.

CONTI NUE

Description

The CONTI NUE statement has no effect on program execution. Control
passes to the next executable statement. The CONTI NUE statement is
generally used to mark a place for a statement label, especially when it
occurs as the terminal statement of a FORTRAN 77-style DOloop.

CONTI NUE is obsolescent in Fortran 95.

Example

count =0

DO20i =1, 10
count = count + i

20 CONTI NUE

PRI NT *, count

Related Statements
DO

Related Concepts

Flow control statements are described in

10-39

1 () Intel Fortran Programmer s Reference

10-40

CYCLE

Interrupts current iteration of a DO

loop.

CYCLE [do-construct-nane]
do- construct - nane

is the name of a DO construct that must contain this CYCLE statement.

Description

The CYCLE statement is used to control the execution of a DOloop. When it
executes, it interrupts a currently executing loop iteration and passes control
to the next iteration, making the appropriate adjustments to the loop index.
It may be used with either the DOconstruct or the FORTRAN 77-style DO
loop.

A CYCLE statement belongs to a particular DOloop. If

do- const ruct - name is not given, the CYCLE statement resumes the

immediately enclosing DOloop. If do- const r uct - nane is given, the
CYCLE statement resumes an enclosing named DOloop with the same name.

Example
The following example uses the CYCLE statement to control a bubble sort:
LOG CAL :: swap
I NTEGER :: i, j
outer: DOi =1, n-1
swap = . FALSE.

inner: DOj =n, i+l, -1
IF (a(j) >= a(j-1)) CYCLE inner

swap = . TRUE
atnp = a(j)
a(j) =a(j-1)
a(j-1) = atnp
END DO i nner

Intel® Fortran Statements 1 O

IF (.NOT. swap) EXIT outer
END DO out er

Related Statements
DOand EXIT

Related Concepts

The DOconstruct and flow control are discussed in

DATA

Initializes program variables.

DATA var-listl / value-listl / [[,]var-list2/
value-list2 /]...

var-1ist isacomma-separated list of entities, including the following:

®* A variable name

®* Anarray name

®* An array triplet section; for example:
poi nts(1:10: 2)

* An array element reference; for example:
scores(0)

® A substring name; for example:
name(1: 10)

* An implied-DOloop; for example:
((matrix(i,j),i=0,5),j=5,10)

* For information about implied-DOloops, see

®* An object of a derived type
®* A component of a derived-type object

10-41

1 () Intel Fortran Programmer s Reference

10-42

The following cannot appear in var - | i st :

* Pointer-based variables

®* Records and record field references. However, you can initialize a
record’s fields in the record’s structure definition; see the RECORD
statement in this chapter.

* Automatic objects, including automatic character strings

* Dummy arguments

* Allocatable arrays: that is, arrays declared with a specified rank, but no
specified bounds within each dimension

® The result variable of a function

®* Objects made available by use or host association

®* Procedure names

val ue-1i st is a list of constant values, separated by commas. Each
constant in the list represents a value to be assigned to
the corresponding variable in var - | i st . A constant
value can be optionally repeated by preceding the
constant with a repetition factor. The syntax of a
repeated constant is:

r*val

where r is a positive integer specifying the number of times that
val , the constant value, is to be specified.

Description

The DATA statement initializes variables local to a program unit before the
program unit begins execution. Initialization occurs as follows:

The var -1 i st is expanded to form a sequence of scalar variables, and the
value-list is expanded to form a sequence of scalar constants. The number
of items in each expanded sequence must be the same, and there must be a
one-to-one correspondence between the items in the two expanded lists.
The variables in the expanded sequence of var - | i St are initialized on the
basis of the correspondence.

If var -1 i st contains an array name, the expanded sequence of constants
must contain a constant for every element in the array.

Intel® Fortran Statements

10

A zero-sized array or an implied-DOlist with an iteration count of zero in
var - | i st contributes no variables to the expanded sequence of variables.
However, a zero-length character variable does contribute a variable to the
list.

If a constant is of any numeric or logical type, the corresponding variable
can be of any numeric type. If an object is of derived type, the
corresponding constant must be of the same type. If the type of the constant
does not agree with the type of the variable, type conversion is performed,
according to the rules described in Chapter 5, Expressions and Assignment.

Variables can be initialized with binary, octal, or hexadecimal constants.

A variable or array element must not appear in a DATA statement more than
once. If two variables share the same storage space through an

EQUI VALENCE statement, only one can appear in a DATA statement. If a
substring of a character variable or other array element appears in a DATA
statement, no overlapping substring (including the entire variable or array
element) can appear in any DATA statement.

The length of a character constant and the declared length of its
corresponding character variable need not be the same. If the constant is
shorter than the variable, blank characters are placed in the remaining
positions. If the constant is longer than the variable, the constant is
truncated from the right until it is the same length as the variable

If a subscripted array element appears in var - | i st , then the subscript
must be a specification expression.

DATA statements can be interspersed among executable statements.
However, they initialize prior to runtime and, therefore, cannot be used as
executable assignment statements.

Extensions to Fortran 95

A variable of type other than integer may be initialized with a binary, octal,
or hexadecimal constant. The data type for a constant is determined from
the type of the corresponding variable. The size (in bytes) of the variable
determines how many digits of the octal or hexadecimal constant are used.
If the constant lacks enough digits, the value is padded on the left with
zeros. If the constant has too many digits, it is truncated on the left.

10-43

1 () Intel Fortran Programmer s Reference

10-44

An integer, binary, octal, or hexadecimal constant can initialize a character
variable of length one, as long as the value of the constant is in the range 0
to 255.

Examples

The following DATA statement initializes integer, logical, and character
variables:

| NTEGER i

LOG CAL done

CHARACTER(LEN=5) pr onpt

DATA i, done, pronpt/10, .FALSE., 'Next?'/

The next DATA statement specifies a repetition factor of 3 to assign the
value of 2 to all three elements of array i :

| NTEGER, DI MENSI ON(3) :: i

DATA i/3*2/

The next DATA statement uses two nested implied-DOloops to assign the
literal value X to each element of an array of 50 elements, k(10, 5) ; for
detailed information about implied-DOloops, see Chapter 8. I/O and File
Handling:

CHARACTER, DI MENSI ON(10,5) :: k

DATA ((k(i,j),i=1,10),j=1,5)/50*" X/

Related Statements

BYTE, CHARACTER, COMPLEX, DOUBLE COVPLEX, DOUBLE
PREC! SI ON, | NTEGER, LOG CAL, and REAL

Related Concepts
The following are discussed elsewhere in this manual:

® [Initialization: Chapter 3, Data Types and Data Objects

® Assignment: Chapter 5, Expressions and Assignment

* Implied-DOloops: Chapter &, I/O and File Handling

Intel® Fortran Statements 1 O

DEALLOCATE

Deallocates allocatable arrays and
pointer targets.

DEALLOCATE (al | oc-obj-list[, STAT=scalar-int-var])

all oc-obj-1i st is a comma-separated list of pointers or
allocatable arrays.

STAT=scal ar-i nt-var
returns the error status after the statement
executes. If given, it is set to a positive value if an
error is detected, and to zero otherwise. If there is
no status variable, the occurrence of an error
causes the program to terminate.

Description

The DEALLOCATE statement deallocates allocatable arrays and pointer
targets, making the memory available for reuse. A specified allocatable
array then becomes not allocated (as reported by the ALLOCATED intrinsic),
while a specified pointer becomes disassociated (as reported by the
ASSQOC!I ATED intrinsic).

An error occurs if an attempt is made to deallocate an allocatable array that
is not currently allocated or a pointer that is not associated. Errors in the
operation of DEALLOCATE can be reported by means of the optional STAT=
specifier.

You can deallocate an allocatable array by specifying the name of the array
with the DEALLOCATE statement. You cannot deallocate a pointer that
points to an object that was not allocated.

Some or all of a target associated with a pointer by means of the ALLOCATE
statement can also be associated subsequently with other pointers. However,
it is not permitted to deallocate a pointer that is not currently associated with
the whole of an allocated target object.

10-45

1 () Intel Fortran Programmer s Reference

10-46

Deallocation of a pointer target causes the association status of any other
pointer associated with all or part of the target to become undefined. When
a pointer is deallocated, its association status becomes disassociated, as if a
NULLI FY statement had been executed.

Examples

The following example declares a complex array with the POl NTER
attribute. The ALLOCATE statement allocates target space to the array at
run-time; the amount is determined by the input values to the READ
statement. Later in the program, the DEALL OCATE statement will recover
the space.

COWLEX, PO NTER :: hermitian (:, :)

READ *, m n
ALLOCATE (hermitian (m n))

DEALLOCATE (hermitian, STAT=ierr)

Related Statements
ALLOCATABLE, ALLOCATE, NULLI FY, and PO NTER

Related Concepts
Pointers are discussed in ,

, and . The intrinsic
inquiry functions ALLOCATED and ASSOCI ATED are described in the
Intel® Fortran Compiler Users Guide.

Intel® Fortran Statements

10

DECODE

Inputs formatted data from internal

storage.

DECODE (count,
[in-1ist]

count

f or mat

f or mat

unit

uni t

i 0-specifier-
Iist

format, unit, io-specifier-list)

is an integer expression that specifies the number of
characters (bytes) to translate from character format to
internal (binary) format. count must precede f or mat .

specifies the format specification for formatting the

data. format can be one of the following:

® The label of a FORMAT statement containing the
format specification.

® Aninteger variable that has been assigned the label
of a FORVAT statement.

* Anembedded format specification. For information
about embedded format specifications, see Chapter
9, I/O Formatting.

must be the second of the parenthesized items,
immediately following count. Note that the keyword
FMT= is not used.

is the internal storage designator. It must be a scalar
variable or array name. Assumed-size and
adjustable-size arrays are not permitted. Note that
char-var-name is not a unit number and that the keyword
UNI T= is not used.

must be the third of the parenthesized items,
immediately following f or nat .

is a comma-separated list of I/O specifiers. Note that the
unit and format specifiers are required; the other I/O
specifiers are optional. The arguments that can appear in
io-specifier-list as I/O specifiers are:

ERR=st nt - | abel

| OSTAT=i nt eger-vari abl e

10-47

1 () Intel Fortran Programmer’s Reference

10-48

in-1ist
ERR=st nt - | abel specifies the label of the executable statement to

which control passes if an error occurs during statement
execution.

| OSTAT=i nt eger-vari abl e
returns the I/O status after the statement executes. If
the statement successfully executes,
i nt eger-vari abl e is set to zero. If an end-of-file
record is encountered without an error condition, it is set
to a negative integer. If an error occurs,
i nt eger-vari abl e is set to a positive integer that
indicates which error occurred.

in-list is a comma-separated list of data items for input. The
data items can include expressions and implied-DO lists
(see Chapter 8, I/O and File Handling).

Description

The DECODE statement is a nonstandard feature of Intel Fortran and is
provided for compatibility with other versions of Fortran. The internal-1/O
capabilities of the standard READ statement provide similar functionality
and should be used to ensure portability.

The DECODE statement translates formatted character data into its binary
(internal) representation.

Examples
The following example program illustrates the DECODE statement:
PROGRAM decode_exanpl e

CHARACTER(LEN=20) :: buf

INTEGER i, j, k

buf = 'XX1234 45 - 12XXXXXX'

DECCDE (15,'(2X,314,1X)', buf) i, j, k
! The equival ent READ statenent is:

! READ (buf, "(2X,314,1X)"') i, j, k
PRINT *, i, j, Kk

END

Intel® Fortran Statements 1 O

When compiled and executed, this program produces the following output:
1234 45 -12

Related Statements
ENCODE and READ

Related Concepts

For information about I/O concepts, see Chapter 8. I/0O and File Handling,
which also presents example programs performing I/O. For information
about I/O formatting, see Chapter 9, I/O Formatting.

DIMENSION (Statement and Attribute)

Declares a variable to be an array.

A type declaration statement with the DI MENSI ON attribute is:
type, DIMENSION (array-spec) [[, attrib-list]::]
entity-Ilist

type is a valid type specification (I NTEGER, REAL,
LOG CAL, CHARACTER, TYPE(t ype- nane), etc.),
as described in Chapter 3. Data Types and Data Objects.

array-spec is one of the following:
® explicit-shape-spec-list
® assumed-shape-spec-list
¢ deferred-shape-spec-list
® assumed-size-spec
explicit-shape-spec
[l ower-bound :] upper-bound
| ower - bound
speci ficati on-expr
upper - bound
speci ficati on-expr

10-49

1 () Intel Fortran Programmer s Reference

10-50

assuned- shape- spec
[ower - bound]
def err ed- shape- spec

assuned- si ze- spec
[explicit-shape-spec-list ,] [|lower-bound :] *
That is, assuned- si ze- spec isexpl i ci t - shape-spec-1i st
with the final upper bound given as *.
attrib-1ist isacomma-separated list of attributes including
DI MENSI ON and optionally those attributes compatible
with it, namely:

ALLOCATABLE PARAMETER PUBLI C
I NTENT PO NTER SAVE
OPTI ONAL PRI VATE TARCGET

entity-1list
obj ect-nane [(array-spec)]
If (array- spec) is present, it overrides the (arr ay- spec) given
with the DI MENSI ONkeywordinat tri but e- i st ; see the example
below.

The syntax of the DI MENSI ON statement is:
DIMENSION [::] array-nanme (array-spec)
[, array-nanme (array-spec)]...

Description

An array consists of a set of objects called the array elements, all of the
same type and type parameters, arranged in a pattern involving columns,
and possibly rows, planes, and higher dimensioned configurations. The type
of the array elements may be intrinsic or user-defined. In Intel Fortran, an
array may have up to seven dimensions. The number of dimensions is called
the rank of the array and is fixed when the array is declared. Each
dimension has an extent that is the size in that dimension (upper bound

Intel® Fortran Statements 1 O

minus lower bound plus one). The size of an array is the product of its
extents. The shape of an array is the vector of its extents in each dimension.
Two arrays that have the same shape are said to be conformable.

It is not necessary for the keyword DI MENSI ON to appear in the declaration
of a variable to give it the DI MENSI ON attribute. This attribute, as well as
the rank, and possibly the extents and the bounds of an array, may be
specified in the entity declaration part of any of the following statements:

* type declaration

* DIMENSION

® ALLOCATABLE

¢ COWON

* PO NTER

® TARCET

The ar r ay- spec (see Syntax, above) determines the category of the array
being declared. As fully described in , these categories
are:

* Explicit-shape array

* Assumed-shape array

* Assumed-size array

® Deferred-shape array

Examples

REAL a (20,2), b (20,2), c (20,2)

REAL, DIMENSION (20,2) :: a, b, c

! These 2 declaration statenments are equival ent.

DI MENSI ON x(100), y(100)

! x and y are 1-di nmensional.

INTEGER jj (0:100, -1:1)

! Lower bounds are specified for jj.
' (If not given, they default to 1.)

LOG CAL |

ALLOCATABLE I (:,:,:,:)
' 1 is a 4-dinensional, allocatable,

10-51

1 () Intel Fortran Programmer s Reference

! deferred shape | ogical array.

COWPLEX s ! s has explicit shape and
TARGET :: s(10,2) ! has the target attribute.

DOUBLE PRECI SI ON d
COWDON /stuff/ d(2,3,5,9,8)
! d has 5 dinensions and is declared in common.

SUBRQUTI NE cal c(arrl, ibl, ib2)

REAL, DI MENSION (ibl, ib2) :: arrl, arr2
! arrl is an adjustable array.

! arr2 is an automatic array.

REAL, PO NTER, DI MENSION(:,:) :: arr3

! arr3 is a deferred-shape array with the

! pointer attribute.

LOd CAL, DI MENSI ON(10,20) :: ta, tb(10,10), tc
I All three arrays have explicit shape.

! The array specifier (10,10) overrides the

' (10, 20) specifier for the declaration of

' tb only.

Related Statements

ALLOCATABLE, COMVON, POl NTER, TARGET, TYPE, and the type
declaration statements

Related Concepts
See for a detailed description of Fortran 95 arrays.

The following intrinsic functions relate to array properties:

* LBOUND
¢ RESHAPE
* SHAPE

e SIZE

* UBOUND

10-52

Intel® Fortran Statements 1 O

DO

Controls execution of DO loop.

[construct-name :] DO [label] [loop-control]

construct - nanme
is the name given to the DO construct. If construct-name
is specified, an END DOstatement must appear at the
end of the DO construct and have the same
construct-name.

| abel is the label of an executable statement that terminates
the DOloop. If you specify label, you can terminate the
DOloop either with an END DO statement or with an
executable statement; the terminating statement must
include label. If you do not specify label, you must
terminate the DOloop with the END DO statement.

| oop-control isinformation used by the DOstatement to control the

loop. It can take one of the following forms:

® index = init, limt [, step]

* WH LE (|ogical-expression)

* | oop-control
In the first form, i ndex is a scalar variable of type integer or real;
init,limt,andstep are scalar expressions of type integer or real.
In the second form, | ogi cal - expr essi on is a scalar logical
expression. In the third form, | oop- contr ol is omitted. If you use
the second or third form, you must terminate the DO loop with the END
DOstatement.

Description
The syntax of the DO statement allows for the following types of DOloops:

* Counter-controlled loop: a loop count is calculated that controls the
number of times the block is executed, unless a prior exit occurs. A
loop variable is incremented or decremented after each execution.

10-53

1 () Intel Fortran Programmer s Reference

10-54

®* While loop: a condition (I ogi cal - expr essi on) is tested before
each execution of the block; when it is false, execution ceases. An exit
may occur at any time.

* Infinite loop: there is no | oop- cont r ol ; repeated execution of the
block ceases only when an exit from the loop occurs.

For more information about the different types of DOloops, see Chapter 6.
Execution Control, “DO construct”.

When | abel is present in the DOstatement, it specifies the label of the
terminating statement of the DOloop. The terminating statement cannot be
any of the following statements:

®* (GO TO(unconditional)

®* (GO TO(assigned)

* | F (arithmetic)

* | F(block)

* ELSEorELSE IF

* END END | F, END SELECT, or END WHERE

¢ RETURN
¢ STOP
* DO

* Any nonexecutable statement
Note, however, that the terminating statement can be an | F (logical) or
an END DOstatement.
To maintain compatibility with some older versions of Fortran, you can
use the /onetrip command-line option to ensure that every
counter-controlled DO loop in the program executes at least once. For
more information about this option, see the Intel® Fortran Compiler
User'’s Guide.

Extended-range DO Loops

Extended-range DO loops—a compatibility extension—enable a program
to transfer control outside the DO loop’s range and then back into the DO
loop. Extended-range DO loops work as follows: if a control statement
inside a DO loop transfers control to a statement outside the DO loop, then
any subsequent statement can transfer control back into the body of the DO
loop.

Intel® Fortran Statements 1 O

For example, in the following code, the range of the DO loop is extended to
include the statement GOTO 20, which transfers control back to the body of
the DO loop:

DO50 i =1, 10
20 n=n+1

IF (n > 10) GOTO 60
50 CONTINUE ! nornally, the range ends here
60 n =n + 100 ! this is the extended range,

GOTO 20 ! which extends down to this line

Examples
The following DO construct displays the integers 1 through 10:
DOi =1, 10
WRITE (*, *) i
END DO

The next example is a FORTRAN 77-style DOloop that does the same as
the preceding example:

DO 50 i = 1, 10
WRITE (%, *) i
50 CONTI NUE

The following DO construct iterates 5 times, decrementing the loop index
from 10 to 2:
DOi =10, 1, -2
END DO
The following is an example of a DO WHI LE loop:
DO WH LE (sum < 100. 0)
sum = sum + get _numunit)

END DO
The following example illustrates the use of the EXI T statement to exit
from a nested DOloop. The loops are named to control which loop is exited.
Note that | oop- cont rol is missing from both the inner and outer loops,
which therefore can be exited only by the execution of the EXI T statements:
out er: DO

READ *, val

10-55

1 () Intel Fortran Programmer s Reference

new val =0

i nner: DO

new val = new val + proc_val (val)
IF (new val >= nmax_val) EXIT inner
IF (new val == 0) EXIT outer

END DO i nner

END DO out er

The next DO construct never executes:
DOi =10, 1, -2

END DO

Related Statements
CONTI NUE, CYCLE, END (construct), and EXI T

Related Concepts

For information about the DO construct (including examples), see
Chapter 6, Execution Control.

DOUBLE COMPLEX

Declares entities of type double
complex.

DOUBLE COWPLEX [[, attrib-list] ::] entity-list

attrib-1ist isalistof one or more of the following attributes,
separated by commas:

ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON OPTI ONAL PUBLI C
EXTERNAL PARAMETER SAVE

| NTENT PO NTER TARGET

10-56

Intel® Fortran Statements 1 O

NOTE. DOUBLE COVPLEX is equivalent to COVPLEX* 16 and
COVPLEX(KI ND=16) .

entity-1ist isalist of entities, separated by commas. Each entity
takes the form:

nane [(array-spec)] [= initialization-expr]

where
nane is the name of a variable or function
array-spec is a comma-separated list of dimension bounds

initialization-expr
is the initial value for the entity.

Description

The DOUBLE COMPLEX statement is an Intel Fortran extension that
declares the properties of complex data that has greater precision than data
of default type complex. The two parts of a double complex value are each a
double precision value. Note that the DOUBLE COMPLEX statement does
not have a kind parameter.

The DOUBLE COMPLEX statement is constrained by the rules for type
declaration statements, including the requirement that it precede all
executable statements.

Explicitly declaring an entity with the DOUBLE COMPLEX statement
overrides any implicit typing rules in effect.

Ifattrib-list or initialization-expr appearin the
declaration, ent i ty-1 i st must be preceded by the double colon.

Ifarr ay- spec is specified for an entity, it overrides any DIMENSION
attribute.

Initialization

initialization-expr mustbe a constant complex typed expression
that can be evaluated at compile time.

10-57

1 O Intel Fortran Programmer’s Reference

10-58

The following entities may not be initialized:

¢ Dummy arguments

* Function results

* Allocatable arrays

* Pointers

* External names

* Intrinsic names

* Automatic objects

Ifattrib-1ist includes the PARAMETER attribute, each entity in

entity-1ist mustinclude an initialization expression.

To initialize an array in a DOUBLE COWMPLEX statement, you must use an

array constructor, as in the following example:

DOUBLE COWPLEX, DI MENSION(2) :: dc_vec = &
(/(2.294D-8, 6.288D-4), (-4.817D4, 0)/)

If an array is initialized, all items in the array must be initialized.
Implied-DOloops cannot be used to initialize an array in a type declaration
statement.

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:

DOUBLE COMPLEX dcx/ (2.294D-8, 6.288D 4)/
The double colon (: :) may not be used with this initialization format.

Example

The following are valid declarations:

DOUBLE COWPLEX x, vy

DOUBLE COWPLEX, PARAMETER :: t1(2)=(/(1.2, 0), &
(-1.01, 0.0009)/)

Related Statements
COVPLEX

Related Concepts

The following are discussed elsewhere in this manual:

* Implicit typing rules: Chapter 3, Data Types and Data Objects

® Data representation models: Chapter 3, Data Types and Data Objects
® Storage classes for variables: Chapter 3, Data Types and Data Objects

Intel® Fortran Statements 1 O

* Automatic objects: Chapter 3. Data Types and Data Objects

® Arrays: Chapter 4, Arrays

* Expressions: Chapter 5, Expressions and Assignment

* Initialization expressions: Chapter 5, Expressions and Assignment

DOUBLE PRECISION

Declares entities of type double

precision.
DOUBLE PRECISION [[, attrib-list] ::] entity-list
attrib-1ist isalistof one or more of the following attributes,
separated by commas:
ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON OPTI ONAL PUBLI C
EXTERNAL PARAVETER SAVE
| NTENT PO NTER TARCET
NOTE. DOUBLE PRECI S| ONis equivalent to REAL* 8 and
REAL (KI ND=8) .

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-list isalist of entities, separated by commas. Each entity
takes the form:

nane [(array-spec)] [= initialization-expr]

10-59

1 () Intel Fortran Programmer s Reference

10-60

where name is the name of a variable or function, ar r ay- spec is a
comma-separated list of dimension bounds, and
initialization-expr is the initial value for the
entity.

Description

The DOUBLE PRECI S| ON statement is used to declare the properties of
real data that has greater precision than data of default type real. By default,
the DOUBLE PRECI S| ON statement is equivalent to the REAL(KI ND=8)
statement. Note that the DOUBLE PRECI SI ON statement does not have a
kind parameter.

The DOUBLE PRECI SI ON statement is constrained by the rules for type
declaration statements, including the requirement that it precede all
executable statements.

Explicitly declaring an entity with the DOUBLE PRECI SI ON statement
overrides any implicit typing rules in effect.

Ifattrib-list orinitialization-expr appearsin the declaration,
entity-1ist mustbe preceded by the double colon.

If arr ay- spec is specified for an entity, it overrides any DI MENSI ON
attribute.

Initialization

initialization-expr mustbe aconstant expression that can be
evaluated at compile time.

The following entities may not be initialized:

¢ Dummy arguments

* Function results

* Allocatable arrays

* Pointers

* External names

* Intrinsic names

* Automatic objects

Ifattrib-1ist includes the PARAMETER attribute, each entity in
entity-1ist mustinclude an initialization expression.

Intel® Fortran Statements

10

To initialize an array in a DOUBLE PRECI S| ONstatement, you must use an
array constructor, as in the following example:

DOUBLE PRECI SI ON, DI MENSI ON(4) :: dp_vec= &
(/4.700, 5.2D0, 3.3D0, 2.9D0/)

If an array is initialized, all items in the array must be initialized.
Implied-DOloops cannot be used to initialize an array in a type declaration
statement.

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:

DOUBLE PRECI SI ON dpl/5.28D0/, dp2/72.3D0/

The double colon (: :) may not be used with this initialization format.

Example

The following are valid declarations:

DOUBLE PRECI SION x, vy
DOUBLE PRECI SI ON, PARAMETER :: pi=3.1415927D0

Related Statements
REAL

Related Concepts
The following are discussed elsewhere in this manual:

* Implicit typing rules: Chapter 3, Data Types and Data Objects

® Data representation models: Chapter 3. Data Types and Data Objects

® Storage classes for variables: Chapter 3. Data Types and Data Objects

® Automatic objects: Chapter 3. Data Types and Data Objects

® Arrays: Chapter 4, Arrays

® Expressions: Chapter 5, Expressions and Assignment

* Initialization expressions: Chapter 5, Expressions and Assignment

10-61

1 () Intel Fortran Programmer s Reference

10-62

EJECT

Starts a new full page of the source
listing.

Description

The EJECT statement is a compiler directive that starts a new page of the
source listing. You cannot CONTI NUE an EJECT statement.

ELSE

Provides a default path of execution for
IF construct.

ELSE [construct-nane]

const ruct - nane
is the name given to the | F construct. If construct-name
is specified, the same name must also appear in the | F
statement and in the END | F statement.

Description

The ELSE statement is used in an | F construct to provide a statement block
for execution if none of the logical expressions in the | F and ELSE | F
statements in the | F construct evaluates to true.

An | F construct may contain (at most) one ELSE statement. If present, it
must follow all ELSE | F statements within the | F construct.

Example
IF (a > b) THEN
mx = a

ELSE IF (b > max) THEN

Intel® Fortran Statements 1 O

max = b

ELSE

PRINT *, 'The two nunbers are equal .’
STOP ' Done'

END | F

Related Statements
ELSE | F, END | F, and | F (construct)

Related Concepts

For information about the | F construct, see

ELSE IF

Provides alternate path of execution for
IF construct.

ELSE I F (| ogi cal -expression) THEN [construct - nane]
| ogi cal - expr essi onis a scalar logical expression.

construct - nane
is the name given to the | F construct. If construct-name
is specified, the same name must also appear in the | F
statement and in the END | F statement.

Description

The ELSE | F statement executes the immediately following statement
block, if the following conditions are met:

®* None of the logical expressions in the | F statement and any previous
ELSE | F statements evaluates to true.

®* | ogical - expressi on evaluates to true.

Branching to an ELSE | F statement is illegal.

10-63

1 () Intel Fortran Programmer s Reference

10-64

Example

| NTEGER t enperature

| NTEGER, PARAMETER :: hot=1, col d=2

I F (tenmperature == hot) THEN

PRI NT *, ' Turn down your thernostat.'
ELSE | F (tenperature == cold) THEN

PRINT *, 'Turn up your thernostat.'

ELSE

PRINT *, 'Your thernostat is working oK'
END | F

Related Statements
ELSE, END | F, and | F (construct)

Related Concepts

For information about the | F construct, see

ELSEWHERE

Introduces optional ELSEWHERE block
within a WHERE construct.

EL SEWHERE

Description

The ELSEVWHERE statement introduces an EL SEWHERE block, which is an
optional component of the WHERE construct. The EL SEWHERE statement
executes on the complement of the WHERE condition. The EL SEWHERE
statement can optionally contain another ar r ay- | ogi cal - expr. This
expression is referred to as a masked EL SEWHERE statement. For additional
information, see WHERE (Statement and Construct) in this chapter.

Intel® Fortran Statements 1 O

Example
VWHERE(b .GE. 0.0)
sqrt_b = SQRT(b)
| Assign to sqgrt_b only where logical array b
! is zero or positive.
EL SEWHERE
sqgrt_b = 0.0
I Assign sqrt_b where b is negative.
END WHERE
The following example demonstrates the use of a masked EL SEWHERE
statement.
! Arrays before WHERE/ ELSEVWHERE
' MFI1 3] N=1]2 2 |RESUT =
! | 2 4] |2 2]
WHERE M > N
| RESULT = 1
ELSEVWHERE (M==N)
| RESULT = 0
EL SEVWHERE
| RESULT = -1
END WHERE

-100 - 100

|
| -100 -100]

I Arrays after WHERE/ ELSEVWHERE
' ME|1 3] N=|2 2 |IRESUT = |-
! | 2 4 |2 2] |

Related Statements
WHERE and END WWHERE

Related Concepts
The WHERE construct is described in

10-65

1 () Intel Fortran Programmer’s Reference

10-66

ENCODE

Outputs formatted data to internal

storage.

ENCODE

(count, format, unit, io-specifier-list) [out-]ist]

count

f or mat

is an integer expression that specifies the number of
characters (bytes) to translate from character format to
internal (binary) format. count must precede format.

specifies the format specification for formatting the

data. f or mat can be one of the following:

® The label of a FORMAT statement containing the
format specification.

* Aninteger variable that has been assigned the label
of a FORVAT statement.

* Anembedded format specification. For information
about embedded format specifications, see Chapter
9, I/O Formatting.

f or mat must be the second of the parenthesized items, immediately
following count. Note that the keyword FMT'= is not used.

uni t

i o-specifier-
list

is the internal storage designator. It must be a scalar
variable or array name. Assumed-size and
adjustable-size arrays are not permitted. Note that
char - var - name is not a unit number and that the
keyword UNI T= is not used.

unit must be the third of the parenthesized items,
immediately following format.

is a comma-separated list of I/O specifiers. Note that the
unit and format specifiers are required; the other I/O
specifiers are optional. The following I/O specifiers can
appear in io-specifier-list:

Intel® Fortran Statements 1 O
ERR=st nt - | abel

specifies the label of the executable statement to which
control passes if an error occurs during statement
execution.

| OSTAT=i nt eger-vari abl e
returns the I/O status after the statement executes. If
the statement successfully executes,
i nt eger -vari abl e is set to zero. If an end-of-file
record is encountered without an error condition, it is set
to a negative integer. If an error occurs,
i nteger-vari abl e is set to a positive integer that
indicates which error occurred.

out-Ilist is a comma-separated list of data items for output. The
data items can include expressions and implied-DO lists
(see Chapter 8, I/0O and File Handling).

Description

The ENCODE statement is a nonstandard feature of Intel Fortran and is
provided for compatibility with other versions of Fortran. The internal-1/O
capabilities of the standard Rl TE statement provide similar functionality
and should be used to ensure portability.

The ENCODE statement translates data from its internal (binary)
representation into formatted character data.

Examples
The following example program uses the ENCODE statement to write to an
internal file:
PROGRAM encode_exanpl e

CHARACTER(LEN=20) :: buf

ENCODE (LEN(buf), '(2X, 314, 1X)', buf) &

1234, 45, -12

PRI NT *, buf

END

When compiled and executed, this program outputs the following (where &
represents the blank character):

bb1234bb45k- 12bbbbbb

10-67

1 () Intel Fortran Programmer s Reference

10-68

Related Statements
DECODE and WRI TE

Related Concepts

For information about I/O concepts, see Chapter 8, I/O and File Handling,
which also gives example programs using different kinds of I/O. For
information about I/O formatting, see Chapter 9, I/O Formatting.

Marks the end of a program unit or

END [keyword [nane]]

keywor d is one of the keywords BLOCK DATA, FUNCTI ON,
MODULE, PROGRAM or SUBROUTI NE. When the END
statement is used for an internal procedure or module
procedure, the FUNCTI ON or SUBROUTI NE keyword is
required.

name is the name given to the program unit. If name is
specified, keyword must also be specified.

Description

The END statement is the last statement of a program unit (that is, a main
program, function, subroutine, module, or block data subprogram), an
internal procedure, or a module procedure. It is the only statement that is
required within a program unit.

Examples

The following example illustrates the use of the END statement to indicate
the end of a main program. Notice that, even though the main program unit
is given a name, the END PROGRAMstatement does not require it:

PROGRAM nai n_pr og

Intel® Fortran Statements 1 O
END PROGRAM

In the next example, the END statement marks the end of an internal
function and must therefore specify the keyword FUNCTI ON. However, it is
not required that the name, get _ar gs, be also specified:

FUNCTI ON get _args (argl, arg2)

END FUNCTI ON get _args

The following example uses the END statement to indicate the end of a
block data subprogram. Because the END statement specifies the program
unit name, it must also specify the keyword BLOCK DATA:

BLOCK DATA mai n_dat a

END BLOCK DATA numi n_dat a

Related Statements
BLOCK DATA, FUNCTI ON, MODULE, PROGRAM and SUBROUTI NE

Related Concepts

For information about program units, see

END (Construct)

Terminates a CASE, DO, IF, or WHERE
construct.

END construct - keyword [construct - nane]

construct - keyword is one of the keywords DO, | F, SELECT, or
WHERE.

construct - nane is the name given to the construct terminated by
this statement.

10-69

1 () Intel Fortran Programmer s Reference

10-70

Description

The END (construct) statement terminates a CASE, DO, | F, or WHERE
construct. If const r uct - nane appears in the statement that introduces
the construct, the same name must also appear in the END statement. If no
const ruct - nane is given in the introducing statement, none must appear
in the END statement.

Example

For examples of each of the END (construct) statement, see the descriptions
of the DO, | F, SELECT, or WHERE statements in this chapter.

Related Statements
DO, | F, SELECT, and WHERE

Related Concepts

The CASE, DO, and | F constructs are discussed in Chapter 6. Execution
Control; the WHERE construct is discussed in Chapter 5. Expressions and

Assignment.

END (Structure Definition)

Terminates the definition of a structure

END recor d-keywor d

record- keyword
is one of the keywords MAP, STRUCTURE, or UNI ON.

Description

The END (record definition) statement is an Intel Fortran extension that is
used to delimit the definition of a structure (END STRUCTURE) or a union
within a structure (END UNI ONand END MAP). For more information, refer
to the description of the STRUCTURE statement in this chapter.

Intel® Fortran Statements 1 O

END INTERFACE

Terminates a procedure interface block.

END | NTERFACE

Description

In Fortran 95, external procedures may be given explicit interfaces by
means of procedure interface blocks. Such a block is always terminated by
the END | NTERFACE statement.

Example
The following makes the interface of function r _ave explicit, giving it the
generic name g_ave.
| NTERFACE g_ave
FUNCTI ON r _ave(x)
I Get the size of array x from
! nodul e ave_stuff.
USE ave stuff, ONLY: n
REAL r _ave, x(n)
END FUNCTI ON r _ave
END | NTERFACE

Related Statements
| NTERFACE

Related Concepts

Interface blocks are described in

10-71

1 () Intel Fortran Programmer s Reference

END TYPE

Terminates a derived type definition.

END TYPE [t ype- nane]

t ype- nane is the name of the derived type being defined. type-name
is optional. If given, it must be the same as the
type-name specified in the TYPE statement introducing
the derived type definition.

Description
The END TYPE statement terminates the definition of a derived type.

Example

The following is a simple example of a derived type with two components,
hi gh and | ow.

TYPE tenp_range
| NTEGER hi gh, | ow
END TYPE tenp_range

Related Statements
TYPE (definition)

Related Concepts

Derived types are described in

ENDFILE

Writes end-of-file record to file.

The syntax of the ENDFI LE statement can take one of the following forms:

10-72

Intel® Fortran Statements 1 O

* Short form:
ENDFI LE i nt eger - expressi on
* Long form:
ENDFI LE (io-specifier-1list)
i Nt eger - expr essi on is the number of the unit connected to a sequential

file.

i 0-specifier-1list isalistofthe following comma-separated 1/O
specifiers:

[UNI T=] uni t specifies the unit connected to a device or external

file opened for sequential access. uni t must be
an integer expression that evaluates to a
non-negative number. If the optional keyword
UNI T= is omitted, uni t must be the first item in
i o-specifier-list.

ERR=st nt - | abel specifies the label of the executable statement to
which control passes if an error occurs during
statement execution.

| OSTAT=i nt eger - returns the I/O status after the statement executes.

vari abl e If the statement executes successfully,
integer-variable is set to zero. If an error occurs, it
is set to a positive integer that indicates which
error occurred.

Description

The ENDFI LE statement writes an end-of-file record to the file or device
connected to the specified unit at the current position and positions the file
after the end-of-file record.

An end-of-file record can occur only as the last record of a disk file. After
execution of an ENDFI LE statement, the file is positioned beyond the
end-of-file record; any records beyond the current position are lost—that is,
the file is truncated.

Some devices (for example, magnetic tape units) can have multiple
end-of-file records, with or without intervening data records.

An end-of-file record can be written to a sequential file only.

10-73

1 () Intel Fortran Programmer s Reference

10-74

Examples

The following statement writes an end-of-file record to the file connected to
unit 10:

ENDFI LE 10

The following statement writes an end-of-file record to the file connected to
unit 17. If an error occurs during the execution of the statement, control
passes to the statement at label 99, and the error code is returned in i 0s:

I NTEGER :: io0s
ENDFI LE (17, ERR=99, | OSTAT=i 0s)

Related Statements
BACKSPACE, OPEN, and REW ND

Related Concepts

For information about I/O concepts, see ,
which also presents example programs performing I/O. For information
about I/O formatting, see

ENTRY

Provides an additional external or
module subprogram entry point.

ENTRY entry-name [([dummy-arg-lisf])
[RESULT (result-name) 1]]

ent ry- nanme is the name of the entry point (subroutine or function)
defined by the ENTRY statement. It must differ from the
original subroutine or function name, and from other
ENTRY statement entry-names specified in the
subprogram in which it appears.

Intel® Fortran Statements 1 O
dummy-arg-1i st

is a comma-separated list of dummy arguments for the
subroutine or function defined by the ENTRY statement.
The same rules and restrictions apply as for subroutine
dummy arguments or function dummy arguments, as
appropriate.

result-name isthe result variable for a function defined by an ENTRY
statement. r esul t - name is optional; if not specified,
the result variable is entry-name.

The RESULT (r esul t - nanme) clause can only be specified when the
ENTRY statement is included in a function subprogram.

Description

When an ENTRY statement appears in a function subprogram, it effectively
provides an additional FUNCT| ON statement in the subprogram: execution
starts from the ENTRY statement when the ent r y- nane is invoked (by
being used). Similarly, an ENTRY statement in a subroutine subprogram
effectively provides an additional SUBROUTI NE statement in the
subprogram, and execution starts from the ENTRY statement when the

ent ry- nane is called.

The following restrictions apply to the ENTRY statement:

* The ENTRY statement can appear in an external subprogram or a
module subprogram; it may not appear in an internal subprogram. If the
ENTRY statement appears in a function subprogram, it defines an
additional function; if it appears in a subroutine subprogram, it defines
an additional subroutine. The entry points thus defined can be
referenced in the same way as for a normal function name or
subroutine name, as appropriate. Execution starts at the ENTRY
statement, and continues in the normal manner, ignoring any ENTRY
statements subsequently encountered, until a RETURN statement or the
end of the procedure is reached.

®* The RESULT (result-nane) clause can only be specified when the
ENTRY statement is included in a function subprogram. If specified,

r esul t - name must differ from ent r y- name, and ent r y- nane
must not appear in any specification statement in the scoping unit of

10-75

1 () Intel Fortran Programmer s Reference

10-76

the function subprogram; ent r y- name assumes all the attributes of
resul t - name. The RESULT clause in an ENTRY statement has the
same syntax and semantics as in a FUNCTI ON statement.

If the ENTRY statement appears in a function, the result variable is that
specified in the FUNCTI ON statement; if none is specified, the result
variable is ent r y- nane.

If the characteristics of the result variable specified in the ENTRY
statement are the same as those of the result variable specified in the
FUNCTI ON statement, then the result variable is the same, even though
the names are different. If the characteristics are different, then the
result variables must be:

— Nonpointer scalars of intrinsic type
— Storage associated

— If any is of character type, they must all be of character type and
must all have the same length. If any is of noncharacter type, they
must all be of noncharacter type.

The result variable may not appear in a COMVON, DATA, or
EQUI VALENCE statement. Also, the result variable may not have the
ALLOCATABLE, | NTENT, OPTI ONAL, PARAMETER, or SAVE attribute.

If RECURSI VE is specified on the FUNCTI ON statement at the start of a
function subprogram, and RESULT is specified on an ENTRY statement
within the subprogram, then the interface of the function defined by the
ENTRY statement is explicit within the function subprogram; the
function can thus be invoked recursively. (Note that the keyword
RECURSI VE is not given on the ENTRY statement, but only on the
FUNCTI ON statement.)

If RECURSI VE is specified on the SUBROUT| NE statement at the start
of a subroutine subprogram, the interface of the subroutine defined by
an ENTRY statement within the subprogram is explicit within the
subprogram; the subroutine can thus be called recursively.

A dummy argument in an ENTRY statement must not appear in an
executable statement preceding the ENTRY statement, unless it also
appears in a FUNCTI ON, SUBROUTI NE, or ENTRY statement preceding
the executable statement.

If a dummy argument in a subprogram—that is, as specified in a
FUNCTI ON or SUBROUTI NE statement at the start of the subprogram
or in any ENTRY statements within the subprogram—is used in an

Intel® Fortran Statements 1 O

executable statement, then the statement may only be executed if the
dummy argument appears in the dummy argument list of the procedure
name actually referenced in the current call. The same restrictions
apply when you use a dummy argument in a specification expression to
specify an array bound or character length.

* A procedure defined by an ENTRY statement may be given an explicit
interface by use of an | NTERFACE block. The procedure header in the
interface body must be a FUNCT| ON statement for an entry to a
function subprogram, and a SUBROUTI NE statement for an entry to a
subroutine subprogram.

The ENTRY statement was often used in FORTRAN 77 programs in
situations where a set of subroutines or functions had slightly different
dummy argument lists but entailed computations involving identical data
and code. In Fortran 95 the use of the ENTRY statement in such situations
can be replaced by the use of optional arguments.

Examples

The following example defines a subroutine subprogram with two dummy
arguments. The subprogram also contains an ENTRY statement that takes
only the first dummy argument specified in the SUBROUT| NE statement.
SUBROUTI NE Ful | _Name (First_Nane, Surnane)
CHARACTER(20) :: First_Nanme, Surnanme

ENTRY Part Nane (First_Nane)

The following example creates a stack. It shows the use of ENTRY to group
the definition of a data structure together with the code that accesses it, a
technique known as encapsulation. (This example could alternatively be
programmed as a module, which would be preferable in that it does not rely
on storage association.)
SUBROUTI NE nani pul at e_st ack

| MPLI CI' T NONE

| NTEGER size, top /0/, value

PARAMVETER (size = 100)

| NTEGER, DI MENSI ON(si ze) :: stack

SAVE stack, top

10-77

1 () Intel Fortran Programmer s Reference

C Push val ue onto the stack

ENTRY push(val ue)

IF (top == size) STOP 'Stack Overflow
top =top + 1
stack(top) = value

RETURN

C Pop the top of the stack and place in Val ue
ENTRY pop(val ue)
IF (top == 0) STOP ' Stack Underfl ow
val ue = stack(top)
top =top - 1
RETURN
END
Here are examples of CALL statements associated with the preceding
example:
CALL push(10)
CALL push(15)
CALL pop(1)
CALL pop(J)

Related Statements
FUNCTI ON, SUBRQUTI NE, and CALL

Related Concepts

Subprograms and entry points are discussed in
, as are dummy arguments and recursion.

10-78

Intel® Fortran Statements 1 O

EQUIVALENCE

Associates different objects with same
storage areaq.

EQUI VALENCE (equi val ence-1ist1)
[, (equivalence-list2)]...
equi val ence-list isacomma-separated list of two or more object
names to be storage associated. Objects can
include simple variables, array elements, array
names, and character substrings.

Description

All objects in each equi val ence-1 i st share the same storage area. Such

objects become storage associated and are equivalenced to each other.

Equivalencing may also cause other objects to become storage associated.

The following items must not appear in equi val ence-1i st :

* Automatic objects, including character variables whose length is
specified with a nonconstant

® Allocatable arrays

* Function names, result names, or entry names

®* Dummy arguments

* Records or record field references

* Nonsequence derived type objects

® Structure components

* Pointers or structures containing pointers

* Named constants

The following restrictions apply to objects that can appear in an
EQUI VALENCE statement:

®* Objects in the same equi val ence- | i st must be explicitly or
implicitly declared in the same scoping unit.

* The name of an equivalenced object must not be made available by use
association.

10-79

1 () Intel Fortran Programmer s Reference

10-80

The Fortran 95 standard imposes the following type restrictions on
equivalenced objects:

* Ifone of the objects in equi val ence-1i st is of type default integer,
default real, double precision real, default complex, double complex,
default logical, or numeric sequence type, then all objects in
equi val ence-1i st must be one of these types.

Intel Fortran relaxes this restriction and allows character and
noncharacter items to be equivalenced. Note, however, that use of this
extension can impact portability.

* Ifone of the objects in equi val ence- | i st is of derived type that is
not a numeric sequence or character sequence type, then all objects in
equi val ence- 1 i st must be of the same type.

* Ifone of the objects in equi val ence- | i st is of intrinsic type other
than default integer, default real, double precision real, default
complex, double complex, default logical, or default character, then all
objects in equi val ence- 1 i st must be of the same type with the
same kind type parameter value.

Intel Fortran relaxes this restriction.

The EQUI VALENCE statement does not cause type conversion or imply
mathematical equivalence. If an array and a scalar share the same storage
space through the EQUI VALENCE statement, the array does not have the
characteristics of a scalar and the scalar does not have the characteristics of
an array. They only share the same storage space.

Care should be taken when data types of different sizes share the same
storage space, because the EQUI VALENCE statement specifies that each
data item in equi val ence- i st has the same first storage unit. For
example, if a 4-byte integer variable and a double-precision variable are
equivalenced, the integer variable shares the same space as the 4 most
significant bytes of the 8-byte double-precision variable.

Proper alignment of data types is always enforced. The compiler will issue a
diagnostic if incorrect alignment is forced through an EQUI VALENCE
statement. For data type alignment rules, see

The lengths of the equivalenced objects need not be the same.

Intel® Fortran Statements 1 O
Equivalencing Character Data

An EQUI VAL ENCE statement specifies that the storage sequences of
character data items whose names are specified in equi val ence- 1 i st
have the same first character storage unit. This causes the association of the
data items in equi val ence- 1 i st and can cause association of other data
items as well. Consider the following example:

CHARACTER(LEN=4) :: a, b

CHARACTER(LEN=3) :: c(2)

EQUI VALENCE (a, c(1)), (b, c(2))

As a result of this EQUI VALENCE statement, the fourth character in a, the
first character in b, and the first character in ¢c(2) share the same storage.

Strings of the same or different lengths can be equivalenced to start on the
first element, and you can use substring notation to specify other
associations, as in the following:

CHARACTER (10) :: s1, s2

EQUI VALENCE (s1(2:2), s2(3:3)

Substring subscripts must be integer initialization expressions, and the
substring length must be nonzero.

Equivalencing Arrays

To determine equivalence between arrays with different dimensions, Intel
Fortran views all elements of an array in linear sequence. Each array is
stored as if it were a one-dimensional array. Array elements are stored in
ascending sequential, column-major order; for information about how
arrays are laid out in memory, see

Array elements can be equivalenced with elements of a different array or
with scalars. No equivalence occurs outside the bounds of any of the
equivalenced arrays.

If equivalenced arrays are not of the same type, they may not line up
element by element.

If an array name appears without subscripts in an EQUI VALENCE statement,
it has the same effect as specifying an array name with the subscript of its
first element.

10-81

1 () Intel Fortran Programmer s Reference

10-82

It is illegal to equivalence different elements of the same array to the same
storage area. For example, the following is illegal:

INTEGER :: a(2), b

EQUI VALENCE (a(1), b), (a(2), b)

Likewise, it is illegal to use the EQUI VALENCE statement to force
consecutive array elements to be noncontiguous, as in the following
example:

REAL :: a(2), r(3)

EQUI VALENCE (a(1), r(1)), (a(2), r(3))

Array subscripts must be integer initialization expressions.

Equivalence in Common Blocks

An EQUI VALENCE statement must not cause two common blocks to be
associated.

You can use the EQUI VALENCE statement to place objects in common by
equivalencing them to objects already in common. If one element of an
array is equivalenced to an object in common, the whole array is placed in
common with equivalence maintained for storage units preceding and
following the data element in common. The common block is always
extended when it is necessary to fit an array that shares storage space in the
common block. It may be extended after the last entry, but not before the
first.

Consider the following example, which puts array i in blank common and
equivalences array elementj (2) toi (3):

INTEGER :: i(6), j(6)

COVMMON i

EQUI VALENCE (i (3), j(2))

The effect of the EQUI VALENCE statement is to extend blank common to
include element j (6) . This is entirely legal because the extension occurs at
the end of the common block.

But if the EQUI VALENCE statement were changed as follows:

EQUI VALENCE (i (1), j(2)) ! illegal

it would result in an illegal equivalence, because storage would have to be
inserted in front of the block in order to accommodate elementj (1) .

Intel® Fortran Statements 1 O

Example

In the following example, the variables a, b, and ¢ share the same storage
space; array elements d(2) and e(5) share the same storage space;
variables f , g, and h share the same storage:

INTEGER :: a, b, ¢, d(20), e(30), f, g, h

EQUI VALENCE (a, b, c), (d(2), e(5)), (f, g, h)

Related Statements
COMVON

i NOTE. You cannot equivalence items in dynamic COMVON.

Related Concepts
The following are discussed elsewhere in this manual:

® Storage association:
* Arrays:

EXIT

Terminates a DO loop.

EXI T [do-construct - name]

do- construct - name is the name given to the DO construct. If
do-construct-name is specified, it must be the
name of a DO construct that contains the EXI T
statement.

10-83

1 () Intel Fortran Programmer s Reference

10-84

Description

If you do not specify do- const r uct - nane, the EXI T statement
terminates the immediately enclosing DOloop. If you do specify it, the
EXI T statement terminates the enclosing DOloop with the same name.

Example

DOi =1, 20

n(i) =0

READ *, j

IF (j <0) EXIT
n(i) =j

END DO

Related Statements
CYCLE and DO

Related Concepts

For information about the DO construct and flow control statements, see

EXTERNAL (Statement and Attribute)

Declares a name to be external.

A type declaration statement with the EXTERNAL attribute is:
type , attrib-list :: function-nane-Iist
type is a valid type specification (I NTEGER, REAL,

LOQ CAL, CHARACTER, TYPE (name) , etc.), as
described in

attrib-1ist isacomma-separated list of attributes including
EXTERNAL and optionally those attributes compatible
with it, namely:

Intel® Fortran Statements 1 O

OPTI ONAL PRI VATE PUBLI C

functi on- name- is a comma-separated list of function names to be
l'ist designated EXTERNAL.

The syntax of the EXTERNAL statement is:
EXTERNAL ext ernal - name-1i st

Note that the syntax of the EXTERNAL statement does not permit optional
colons.

Description
An EXTERNAL attribute or statement specifies that a name may be used as
an actual argument in subroutine calls and function references. The name is

either an external procedure, a dummy procedure, or a block data program
unit.

A name that appears in a type statement specifying the EXTERNAL attribute
must be the name of an external procedure or of a dummy argument that is a
procedure.

The following rules and restrictions apply:

* A name can appear once in an EXTERNAL statement, in a declaration
statement with an EXTERNAL attribute, or in an interface body, but not
in more than one of these.

® Ifthe name is a dummy argument, an EXTERNAL statement declares it
to be a dummy procedure.

* Ifauser intrinsic procedure has the same name as an external
procedure, then it must either be declared to have the EXTERNAL
attribute or have an explicit interface. The named intrinsic procedure is
then no longer available in such program units.

®* The I NTRI NSI Cand EXTERNAL attributes are mutually exclusive.

Examples

SUBRQUTI NE sub (fourier)

! fourier is a dummy procedure. The actual

I argunent corresponding to fourier could be
! an external, an intrinsic, or a nodule

! procedure.

10-85

1 () Intel Fortran Programmer s Reference

10-86

REAL fourier
EXTERNAL fouri er
REAL, EXTERNAL :: SIN, CGCS, TAN

! The precedi ng statenent nmeans that SIN, COS, and
! TAN are no longer intrinsic procedures.
!
!

Functions with these nanes nust be defined in the
pr ogr am

END SUBROUTI NE sub

SUBROUTI NE gratx (x, V)

EXTERNAL init_block_a

! Specify init_block _a as the block data sub-
I programthat initializes comrmon bl ock a.
COVWON /al tenp, pressure

! Common bl ock avail abl e in subroutine gratx.
END SUBROUTI NE gr at x

BLOCK DATA init_bl ock_a

COMVON /al tenp, pressure

! init_block_a initializes the objects in
! conmmon bl ock a.

DATA tenp, pressure/ 98.6, 15.5/

END BLOCK DATA init_block_a

Related Statements
| NTRI NSI C

Related Concepts

Module procedures, interfaces, and interface blocks are described in

Intel® Fortran Statements 1 O

FORMAT

Describes how I/0 data is to be
formatted.

| abel FORMAT (format-list)

| abel is a statement label.

format-1ist isacomma-separated list of format items, where each
item in the list can be either one of the edit descriptors
described in or (format-list).

If format-list is one of the list items, it may be optionally
preceded by a repeat specification—a positive integer
that specifies how may times format-list is to be
repeated. Many of the edit descriptors may also be
repeated; see for more
information.

Description

The FORMAT statement holds the format specification that indicates how
data in formatted I/O is to be translated between internal (binary)
representation and formatted (ASCII) representation. The translation makes
it possible to represent data in a humanly readable format.

Although a format specification can be embedded within a data transfer
statement, the point to using a FORMAT statement is to make it available to
any number of data transfer statements. Several data transfer statements
can use the same format specification contained in a FORMAT statement by
referencing | abel .

Another advantage of the FORMAT statement over the use of embedded
format specifications is that it is "pre-compiled", reducing the runtime
overhead of processing the format specification and providing compile-time
error checking of the FMTI'= specifier.

10-87

1 () Intel Fortran Programmer s Reference

Examples
PROGRAM f or mat _exanpl e

WRI TE (15, FMr=20) 1234, 45, -12
20 FORMAT (16, 2I4)
END

When compiled and executed, this program outputs the following (where &
represents the blank character):

bb1234bb45b -12

Related Statements
READ and WRI TE

Related Concepts

Statement labels are described in . For
information about I/O formatting, see

FUNCTION

Introduces a function subprogram.

[RECURSI VE] [type-spec] FUNCTI ON
function-nane ([dummy-arg-name-1list])
[RESULT (result-nane)]

RECURSI VE is a keyword that must be specified in the FUNCTI ON
statement if the function is either directly or indirectly
recursive. The RECURSI VE clause can appear at most
once, either before or after t ype- spec. It is not an
error to specify RECURSI VE for a nonrecursive
function.

10-88

Intel® Fortran Statements 1 O

A recursive function that calls itself directly must also
have the RESULT clause specified (see r esul t - nane,
below).

type-spec is a valid type specification (I NTEGER, REAL,
LOG CAL, CHARACTER, TYPE (name), etc.), as
described in .
The type and type parameters of the function result can
be specified by type-spec or by declaring the result
variable within the function subprogram, but not by
both. The implicit typing rules apply if the function is
not typed explicitly.
If the function result is array-valued or a pointer, the
appropriate attributes for the result variable (which is
function-nane,orresul t - nane if specified) must
be specified within the function subprogram.

functi on- name is the name of the function subprogram being defined.

dunmy- ar g- nane- | i st
is a comma-separated list of dummy argument names
for the function.

result-name isthe result variable. If the RESULT clause is not
specified, function-name becomes the result variable. If
result-name is given, it must differ from function-name,
and function-name must not then be declared within the
function subprogram.

As noted above, a recursive function that calls itself
directly must have the RESULT clause specified. Other
functions may have a RESULT clause.

Description

A FUNCTI ONstatement introduces an external, module, or internal function
subprogram.

Example
PROGRAM p
CONTAI NS

10-89

1 () Intel Fortran Programmer s Reference

I f is an internal function. In FORTRAN 77
! this could have been a statenent function
! (also valid in Fortran 95).
FUNCTI ON f (x)
f =2*x + 3
END FUNCTI ON f

RECURSI VE | NTEGER FUNCTI ON factorial (n) &
RESULT (factorial val ue)

I A recursive function, which nust

! therefore specify a RESULT cl ause.

| MPLICI T | NTEGER (a-2)

IF (n <= 0) THEN

factorial value =1
ELSE

factorial _value = n * factorial (n-1)
END | F

END FUNCTI ON factori al
END PROGRAM p

Related Statements

END, | NTENT, | NTERFACE, OPTI ONAL, and the type declaration
statements

Related Concepts
The following are described elsewhere in this manual:

* Data types:
® Defined operators:
* Expressions (a function reference is a primary in an expression):

* External functions, module function, internal functions, recursive
functions, and function invocation:

10-90

Intel® Fortran Statements 1 O

GO TO (Assigned)

Transfers control to a variable that was
assigned a label.

GO TO integer-variable [[,] (label-list)]
i nt eger-vari abl e is a scalar variable of default type integer.
| abel -1i st is a list of statement labels, separated by commas.

Description

The assigned GO TOstatement transfers control to the statement whose
label was most recently assigned to a variable with the ASSI GN statement.

i nt eger-vari abl e must be given a label value of an executable
statement through an ASSI GN statement prior to execution of the GO TO
statement. When the assigned GO TOstatement is executed, control is
transferred to the statement whose label matches the label value of

i nteger-vari abl e.

| abel -1i st is alist of labels that i nt eger - var i abl e might assume.

i nt eger -vari abl e must not be an array element or an integer
component of a structure.

The use of this statement can hinder the ability of the compiler to optimize
the program in which it occurs.

Example
ASSI GN 10 TO out
GO TO out

Related Statements
ASSI GN, GO TO(computed), and GO TO (unconditional)

10-91

1 () Intel Fortran Programmer s Reference

10-92

Related Concepts

For additional information about the assigned GO TOand other flow control
statements, see

GO TO (Computed)

Transfers control to one of several

labels.

GO TO (label-list) [,] arithnetic-expression
| abel -1i st is a list of statement labels, separated by
commas.

arithmetic-expression is a scalar integer expression. As an
extension, Intel Fortran also allows the
expression to be of type real or double
precision.

Description

The computed GO TOstatement transfers control to one of several labeled
statements, depending on the value of ari t hiret i c- expr essi on. After
arithmeti c-expression is evaluated (and, if necessary, truncated to
an integer value), control transfers to the statement label whose position in
| abel -1i st corresponds to the truncated value of

arithneti c-expression.

If the value of ari t hrmet i c- expr essi on is less than 1 or greater than
the total number of labels in | abel - | i st, control transfers to the
executable statement immediately following the computed GO TO
statement.

Example

i ndex = 3

GO TO (10, 20, 30, 40) index

! Branch nade to the statenent |abeled 30.

Intel® Fortran Statements 1 O
Related Statements

SELECT CASE, GO TO(assigned), and GO TO (unconditional)

Related Concepts

For more information about the computed GO TOstatement and other flow
control statements, see

GO TO (Unconditional)

Transfers control to a specified label.

GO TO | abel
| abel is the label of an executable statement.
Description

The unconditional GO TOstatement transfers control directly to the
statement at the specified label. The executable statement with | abel can
occur before or after the GO TOstatement, but it must be within the same
scoping unit.

Example
GO TO 30
30 CONTI NUE

Related Statements
GO TO(assigned) and GO TO (computed)

Related Concepts

For more information about the unconditional GO TOstatement and other
flow control statements, see

10-93

1 () Intel Fortran Programmer s Reference

10-94

IF (Arithmetic)

Transfers control to one of three labels.

IF (arithmetic-expression) |abelN, |abelZz |I|abelP

arithnetic-expression isan arithmetic expression of any
numeric type except complex and double
complex.

| abel is a label of an executable statement.
Description

The arithmetic | F statement transfers control to the statement whose label
is determined by ari t hmet i c- expr essi on. If

arithmeti c-expression evaluates to a negative value, control
transfers to | abel N; if it evaluates to 0, control transfers to | abel Z; and if
it evaluates to a positive value, control transfers to | abel P.

The same label may appear more than once in the same arithmetic | F
statement.

Each label must be that of an executable statement in the same scoping unit
as the arithmetic | F.

Example

i =-1

IF (i) 10, 20, 30

! Branch nade to the statenent |abeled 10.

Related Statements
| F (construct) and | F (logical)

Related Concepts

For more information about the arithmetic | F statement and other flow
control statements, see

Intel® Fortran Statements 1 O

IF (Block)

Begins an IF construct.

[construct-nane :] |F (logical-expression) THEN

construct - nane is the name given to the | F construct. If
construct-name is specified, the same name must
also appear in the END | F statement.

| ogi cal - expr essi onis a scalar logical expression.

Description

The | F statement executes the immediately following statement block if
| ogi cal - expr essi on evaluates to true.

The | F construct, which the | F statement begins, may include ELSE | F
statements and an ELSE statement to provide alternate statement blocks for
execution.

The block following the | F statement may be empty.

As an extension, Intel Fortran allows the transfer of control into an | F
construct from outside the construct.

Example

IF (x <= 0.0 .AND. y > 1.0) THEN
CALL fix_coord(x, vy)
END | F

Related Statements
ELSE, ELSE |F, | F (arithmetic), | F (logical), and END (construct)

Related Concepts

For more information about the | F construct, see

10-95

1 () Intel Fortran Programmer s Reference

10-96

IF (Logical)

Conditionally executes a statement.

I F (I ogical -expression) statenent
| ogi cal - expr essi onis a logical expression.

st at ement is any executable statement other than the
following:

* A statement used to begin a construct
* Any END statement
®* Any | F statement

Description

The logical | F statement is a two-way decision maker. If

| ogi cal - expr essi on evaluates to is true, St at ement executes and
control passes to the next statement. If | ogi cal - expr essi on evaluates
to false, st at ement does not execute and control passes to the next
statement in the program.

Example
IF (a .EQ b) PRINT *, 'They are equal .’

Related Statements

| F (arithmetic) and | F (construct)

Related Concepts

For more information about the logical | F statement and other flow control
statements, see

Intel® Fortran Statements 1 O

IMPLICIT

Changes or voids default typing rules.

The | MPLI CI T statement can take either of the following forms:

IMPLICIT type (range-list) [, type (range-list) ,]...

I MPLI CI' T NONE

type is the data type to be associated with the corresponding
letters in range-list.

range-|i st is a comma-separated list of letters or ranges of letters
(for example, A- Z or | - N) to be associated with t ype.

Writing a range of letters has the same effect as writing a
list of single letters.

Description

The | MPLI CI T statement can be used either to change or void the default
typing rules, depending on which of the two forms the statement takes.

First Form

This form of the | MPLI Cl T statement specifies t ype as the data type for
all variables, arrays, named constants, function subprograms, ENTRY names
in function subprograms, and statement functions that begin with any letter
inrange-1i st and that are not explicitly given a type.

Within the specification statements of a program unit, | MPLI CI T
statements must precede all other specification statements, except possibly
the DATA and PARAMETER statements.

The same letter must not appear as a single letter or be included in a range
of letters, more than once in all of the | MPLI Cl T statements in a scoping
unit.

For information on how the | MPLI ClI T and PARAMETER statements
interact, refer to the description of the PARAMETER in this chapter.

10-97

1 () Intel Fortran Programmer s Reference

10-98

Second Form

The | MPLI CI T NONE statement disables the default typing rules for all
variables, arrays, named constants, function subprograms, ENTRY names,
and statement functions (but not intrinsic functions). All such objects must
be explicitly typed. The | MPLI CI T NONE statement must be the only

| MPLI CI T statement in the scoping unit, and it must precede any
PARAMETER statement. Types of intrinsic functions are not affected.

You can also use the / 4{ Y| N} d (or-i npl i cit_none;
-implicitnone for Linux) command-line option to void the default
typing rules. A program compiled with this option may include | MPLI CI T
statements, which the compiler will honor. For additional information about
the - i npl i ci t _none option, see the Intel Fortran Compiler User’s
Guide.

Example

The following statement causes all variables and function names beginning
with | , J, or K to be of type complex, and all data items beginning with A,
B, or Cto be of type integer:

IMPLICI T COWPLEX (1, J, K), INTEGER (A-C)

Related Concepts

The default typing rules and the behavior of the | MPLI Cl Tand | MPLI CI T
NONE statements are discussed in Chapter 3, Data Types and Data Objects.
The - i npl i ci t _none command-line option is described in the Intel
Fortran Compiler User’s Guide.

IMPLICIT AUTOMATIC

Defaults typing to automatic variable.

The | MPLI CI T AUTOVATI C statement takes the following form:

I MPLI CI T AUTOVATI C (range-list) [, type (range-list)
N

Intel® Fortran Statements 1 O

range-|i st is a comma-separated list of letters or ranges of letters
(for example, A- Z or | - N) to be associated with t ype.
Writing a range of letters has the same effect as writing a
list of single letters.

Description

The | MPLI CI T AUTOVATI C statement is used to make the type variable
automatic, that is, a copy is generated each time you invoke the procedure.

Related Concepts

The default typing rules and the behavior of the | MPLI ClI T are discussed in
Chapter 3, Data Types and Data Objects. The - i npli ci t_none
command-line option is described in the Intel Fortran Compiler User’s
Guide. Also, for a general description, see the “IMPLICIT”. Also see _
“AUTOMATIC”.

IMPLICIT STATIC

Defaults typing to a static variable.

The | MPLI CI T STATI Cstatement takes the following form:

IMPLICIT STATIC (range-list) [, type (range-list)

B

range-|i st is a comma-separated list of letters or ranges of letters
(for example, A- Z or | - N) to be associated with type.
Writing a range of letters has the same effect as writing a
list of single letters.

Description

The | MPLI CI T STATI Cstatement is used to make the type variable static,
that is, a one and only one copy of the data is kept regardless of the number
of times a procedure is called.

10-99

1 () Intel Fortran Programmer s Reference

10-100

Related Concepts

The default typing rules and the behavior of the | MPLI Cl T statements are
discussed in Chapter 3, Data Types and Data Objects. The
-inplicit_none command-line option is described in the Intel Fortran
Compiler User’s Guide. Also, for a general description, see the _
“IMPLICIT”. Also see “STATIC (Statement and Attribute)”.

INCLUDE

Imports text from a specified file.

| NCLUDE character-literal -constant
character-1iteral - const ant is the name of the file to include.

Description

The keyword | NCLUDE and char acter-1iteral - const ant form an
I NCLUDE line, which is used to insert text into a program prior to
compilation. The inserted text replaces the | NCLUDE line; the | NCLUDE
line should therefore appear in your program where you want the inserted
text. When the end of an included file is reached, the compiler continues
processing with the line following the | NCLUDE line.

character-literal -constant can be either a file name or a device
name. It must not have a kind parameter that is a named constant.

The | NCLUDE line must appear on one line with no other text except
possibly a trailing comment. It must not have a statement label. Thus, you
cannot branch to it, and it cannot be an action statement that is part of a
Fortran 95 | F statement. You cannot use the ““; ”” operator to add a second

I NCLUDE line, nor can you use the “&” operator to continue it over another

line.

The compiler searches directories for the named include files in the
following order:

Intel® Fortran Statements 1 O

2. Directories specified by the /| (-i for Linux) command-line option, in
the order specified

1. The current directory

3. The directories specified with the | NCLUDE environment variable
See the Intel® Fortran Compiler User s Guide for information about the / |
option.

I NCLUDE lines can be nested to a maximum of ten levels. However, they
must be nested nonrecursively. That is, inserted text must not specify an
I NCLUDE line that was encountered at an earlier level of nesting.

Line numbering within the listing of an included file begins at 1. When the
included file listing ends, the include level decreases appropriately, and the
previous line numbering resumes.

Example

I NCLUDE ' ny_common_bl ocks'
I NCLUDE "/ nmy_stuff/declarations. h”

INQUIRE

Returns information about file
properties.

The syntax of the | NQUI RE statement has two forms:

* Inquiry by output list:

I NQUI RE (| OLENGTH=i nt eger -vari abl e) out put-1i st
® Inquiry by unit or file:
I NQUI RE (i o-specifier-1list)

i nteger-vari abl e is the length of the unformatted record that would
result from writing output-list to a direct-access
file. The value returned in integer-variable can be
used with the RECL= specifier in an OPEN

10-101

1 () Intel Fortran Programmer s Reference

statement to specify the length of each record in
an unformatted direct-access file that will hold the
data in output-list.

out put-1ist is a comma-separated list of data items, similar to
what would be included with the WRI TE or
PRI NT statement. The data items can include
variables and implied-DO lists; see

for more information.

i o-specifier-list isa list of comma-separated I/O specifiers. As
noted in the following descriptions, most of the
specifiers return information about the specified
unit or file. i o- speci fi er-1i st mustinclude
either the UNI T= or FI LE= specifier, but not
both. The following paragraphs describe all the
I/O specifiers that can appear in io-specifier-list:

[UNI T=] uni t specifies the unit connected to an external file.
uni t must be an integer expression that evaluates
to a number greater than 0. If the optional
keyword UNI T= is omitted, uni t must be the
firstitem in i o- speci fier-1list.Ifunit
appears ini o-specifier-1list,the Fl LE=
specifier must not be used.

ACCESS=char act er - returns the following values, indicating the

vari abl e method of access:

" SEQUENTI AL' File is connected for sequential

accCess.

" DI RECT' File is connected for direct

accCess.

" UNDEFI NED File is not connected.

ACTI ON=char act er - returns the following values, indicating the

vari abl e direction of the transfer:
" READ File is connected for reading only.
"WRI TE' File is connected for writing only.

10-102

Intel® Fortran Statements

10

' READVWRI TE' File is connected for reading and
writing.

" UNDEFI NED File is not connected.

Bl NARY=bi n bi n is a scalar default CHARACTER variable that
is assigned one of the following values:

" YES File is connected to a binary file.

"' NO File is not connected to a binary
file.

" UNKNOWN' It cannot be determined whether or
not file is connected to a binary
file.

BLANK=char act er - returns the type of blank control that is in effect.
vari abl e For information about blank control, see the
BLANK= specifier for the OPEN statement. The
values returned by the BLANK= specifier are:

" NULL' Null blank control is in effect.
' ZERO Zero blank control is in effect.

" UNDEFI NED File is not connected for
formatted 1/0.

BLOCKSI ZE=i nt eger - indicates the physical I/O transfer size for the file.

expr essi on If the value is non-zero, it should be rounded up to
a multiple of 512. If it is zero or not specified, it
defaults to system default, generally 512.

CARRI AGECONTROL= indicates the type of carriage control used when a

string file is displayed on a terminal device. The string
values are:

" FORTRAN' Default for Fortran interpretation of the
first character.
"LI ST' Default for formatted file.
' NONE' Default for binary and unformatted file.
DELI M=char act er - returns the following values, indicating the

10-103

1 () Intel Fortran Programmer s Reference

expr essi on character to use (if any) to delimit character
values in list-directed and namelist formatting:
' APOSTROPHE' An apostrophe is used as the delimiter.

" QUOTE' The double quotation mark is used as
the delimiter.

" NONE' There is no delimiting character.

" UNDEFI NED File is not connected for formatted 1/0.

Dl RECT=char act er - returns the following values, indicating whether

vari abl e or not the file is connected for direct access:

" YES' File is connected for direct access.

" NO File is not connected for direct
access.

" UNKNOAN' It cannot be determined whether or
not file is connected for direct
access.

ERR=st nt - | abel specifies the label of the executable statement to

which control passes if an error occurs during
statement execution.

EXI ST=I ogi cal - returns the following values, indicating whether
vari abl e or not the file or unit exists:
. TRUE. File exists or unit is connected.
. FALSE. File does not exist or unit is not
connected.
Fl LE=char act er - specifies the name of a file for inquiry. The file
expression does not have to be connected or even exist. If the

FI LE= specifier appears in
i 0-specifier-1list,the UNI T= specifier
must not be used.

FORM=char act er - returns the following values, indicating whether
vari abl e the file is connected for formatted or unformatted
I/0:

10-104

Intel® Fortran Statements 1 O

FORVATTED File is connected for formatted
1/0.

UNFORMVATTED File is connected for unformatted
1/0.

UNDEFI NED' File is not connected.

Bl NARY' File is connected for binary
transfer.

FORMATTED=char act er -vari abl e

returns the following values, indicating
whether or not the file is connected for formatted
1/0:

YES' File is connected for formatted 1/0.

NO File is not connected for formatted I/0.

UNKNOWN' It cannot be determined whether or not
file is connected for formatted 1/0.

| OFOCUS=I ogi cal -vari abl e

returns the following values indicating whether
the specified UNIT is the current active window:

. TRUE. Specified UNIT is the current active
window in a QuickWin application.

. FALSE. Specified UNIT is not the current active
window.

| OSTAT=i nt eger -
vari abl e

NAME=char act er -
vari abl e

NAMED=I| ogi cal -

returns the I/O status after the statement executes.
If the statement successfully executes,

i nt eger-vari abl e is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

returns the name of file connected to the specified
unit. If the file has no name or is not connected,
NAME= returns the string UNDEFI NED.

returns the following values, indicating whether

10-105

1 () Intel Fortran Programmer s Reference

10-106

vari abl e

NEXTREC=i nt eger -
vari abl e

NUMBER=i nt eger -
vari abl e

OPENED=I ogi cal -
vari abl e

or not the file has a name:

. TRUE. File has a name.

. FALSE. File does not have a name.

returns the number of the next record to be read or
written in a file connected for direct access. The
value is the last record read or written +1. A value
of 1 indicates that no records have been
processed. If the file is not connected or it is a
device file or its status cannot be determined,

i nt eger-vari abl e is undefined.

returns the unit number that is connected to the
specified file. If no unit is connected to the named
file, i nt eger - vari abl e is undefined.

returns the following values, indicating whether
or not the file has been opened (that is, is
connected):

. TRUE. File is connected.
. FALSE. File is not connected.

ORGANI ZATI ON=scal ar - char at cer

PAD=char act er -

returns a scalar character variable indicating the
following record access types:

" SEQUENTI AL’ File is connected for a sequential
access, records are accessed in order.

" RELATI VE' File is connected for a direct access,
records can be accessed in any order.

" UNKNOVWN' It cannot be determined whether the
file is connected for sequential or
relative access.

returns a value indicating whether or not input

Intel® Fortran Statements 1 O

vari abl e records are padded with blanks. For more
information about padding, see the PAD=
specifier for the OPEN statement. The return

values are:

" YES' File or unit is connected with
PAD=' YES' in OPEN
statement.

' NO File or unit is connected with

PAD="' NO in OPEN statement.

PCSI TI ON=char acter-vari abl e
returns the following values, indicating the file

position:

" REW ND File is connected with its position at
the start of the first record.

" APPEND File is connected with its position at
the end-of-file record.

"ASI S File is connected without changing

its position.

" UNDEFI NED File is not connected or is connected
for direct access.

READ=char act er - returns the following values, indicating whether
vari abl e or not reading is an allowed action for the file:
"YES' Reading is allowed for file.
"'NO Reading is not allowed for file.

" UNKNOMWN It cannot be determined whether or
not reading is allowed for file.

READWRI TE=char act er-vari abl e
returns the following values, indicating
whether or not reading and writing are allowed
actions for the file:

10-107

1 () Intel Fortran Programmer s Reference

" YES

" UNKNOVWN

RECL=i nt eger -
vari abl e

Both reading and writing are allowed
for file.

Reading and writing are not both
allowed for file.

It cannot be determined whether or not
reading and writing are both allowed
for file.

returns the record length of the specified unit or
file, measured in bytes. The file must be a

direct-access file. If the file is not a direct-access
file or does not exist, i nt eger - vari abl e is

undefined.

RECORDTYPE=scal ar - char act er - expr essi on

returns a scalar default variable r t ype of default
CHARACTER type with one of the following

values:

" FI XED

" VARl ABLE'

' SEGVENTED

' STREAM

' STREAM CR

' STREAM _LF'

" UNKNOWN

SEQUENTI AL=char act er - vari abl e

File is connected for a fixed-length
record.

File is connected for a variable-length
record.

File is connected for unformatted
sequential access with segmented
records.

File is connected without record
termination.

File is connected with its records
terminated with carriage return.

File is connected with its records
terminated with line feed.

File is not connected.

returns the following values, indicating

10-108

Intel® Fortran Statements 1 O

whether or not the file is connected for direct

access:

" YES

" NO

" UNKNOVWN

SHARE=char act er -
vari abl e

" DENYRW

" DENYWR

' DENYRD

" DENYNONE'

" UNDEFI NED

UNFORMATTED=char act er vari abl e

File is connected for sequential
access.

File is not connected for sequential
access.

It cannot be determined whether or
not file is connected for sequential
access.

indicates whether the file locking is applied while
the unit is open. The following values are used:

Deny-read/write mode. No process can
open this file.

Deny-write mode. No process can
open the file with write access.

Deny-read mode. No process can open
the file with read access.

Deny-none mode. Any process can
open the file in any mode. This is the
default value.

The access mode is undefined.

returns the following values, indicating whether
or not the file is connected for formatted 1/O:

" YES

" NO

" UNKNOWN

WRI TE=char act er -

File is connected for unformatted
1/0.

File is not connected for
unformatted I/O.

It cannot be determined whether or
not file is connected for
unformatted I/O.

returns the following values, indicating whether

10-109

1 () Intel Fortran Programmer s Reference

vari abl e or not writing is an allowed action for the file:
" YES' Writing is allowed for file.
' NO Writing is not allowed for file.
" UNKNOVWN It cannot be determined whether or

not writing is allowed for file.

Description

The | NQUI RE statement returns selected properties of a specified file or
unit number. (It is illegal to include both the UNI T= specifier and the

FI LE= specifier in the same | NQUI RE statement.) Inquiring by unit
number should be used on connected files; inquiring by filename is
typically used on unconnected files.

In addition, the | NQUI RE statement can also be used to determine the
record length of a new or existing file. That is, you can use | NQUI RE to
obtain the record length before creating the file and then use the return value
as the argument to the RECL= specifier in an OPEN statement.

Examples

The examples in this section illustrate different uses of the | NQUI RE
statement.

Inquiry by File
The following statement returns the following information about the file
named my_fil e:
¢ s it connected?
® s it connected for direct access?
¢ Can it be read and written?
LOd CAL :: exist
CHARACTER(LEN=9) :: dir_acc, rw.sts
INQUIRE (FILE=' ny_file', EX ST=exist, &
Dl RECT=di r _acc, READWRI TE=rw st s)

10-110

Intel® Fortran Statements 1 O

Inquiry by Unit

The following | NQUI RE statement returns the following information about
the file connected to the unit in u_num

® Is there a file connected to u_nun?

* Isit named file or a scratch file?

®* What is the name?

LOG CAL :: opened, naned

I NTEGER :: u_num

CHARACTER(LEN=80) :: fnane

I NQUI RE (UNI T=u_num NAMED=naned, &
OPENED=opened, NAME=f namne)

Inquiry by Output List

When using the OPEN statement to create a direct-access file, you must

specify the record length for the file with the RECL= specifier. Previous to

Fortran 95, you had to resort to a nonportable strategy to determine record

length. The Fortran 95 | NQUI RE statement provides a portable solution:

use the | NQUI RE statement to inquire by output list, and specify the return

value from the | NQUI RE statement as the argument to the OPEN statement.

The following is an example:

INTEGER :: rec_len, ios

I NQU RE (I OLENGTH=rec_len) x, vy, i, |

OPEN (UNI T=32, FILE="new file', |OSTAT=ios, &
ACCESS=' DI RECT', RECL=rec_| en)

Related Statements
OPEN

Related Concepts

For information about I/O concepts, see

10-111

1 () Intel Fortran Programmer s Reference

10-112

INTEGER

Declares entities of type integer.

I NTECER [ki nd-spec] [[, attrib-list] ::] entity-list

ki nd- spec is the kind type parameter that specifies the range
of the entities in entity-list. ki nd- spec takes the
form:
([KI ND=] ki nd- param

where ki nd- param can be a named constant or a constant expression
that has the integer value of 1, 2, 4, or 8. The size
of the default type is 4.

As an extension, ki nd- spec can take the form:

*| en- param

where | en- par am is the integer 1, 2, 4, or 8 (default = 4).

attrib-1ist is a list of one or more of the following attributes,
separated by commas:

ALLOCATABLE INTRINSIC PRI VATE

DI MENSI ON OPTI ONAL PUBLI C

EXTERNAL PARAMETER SAVE

| NTENT PO NTER TARGET
For information about each of the attributes, see the corresponding
statement in this chapter.

entity-1list is a list of entities, separated by commas. Each
entity takes the form:

name [(array-spec)] [= initialization-expr]

where nane is the name of a variable or function,
arr ay- spec is a comma-separated list of
dimension bounds, and
initialization-expr isthe initial value for
the entity.

Intel® Fortran Statements 1 O

Description

The | NTEGER statement is used to declare the length and properties of data
that are whole numbers. A kind parameter (if present) indicates the
representation method.

The | NTEGER statement is constrained by the rules for all type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the | NTEGER statement overrides any
implicit typing rules in effect.

Ifattrib-1ist orinitialization-expr appear in the declaration,
entity-1ist mustbe preceded by the double colon.

If arr ay- spec is specified for an entity, it overrides any DI MENSI ON
attribute.

Initialization

initialization-expr mustbe a constant integer expression that can
be evaluated at compile time.

The following entities may not be initialized:

¢ Dummy arguments

* Function results

* Allocatable arrays

* Pointers

* External names

* Intrinsic names

* Automatic objects

Ifattrib-1ist includes the PARAMETER attribute, each entity in
entity-1ist mustinclude an initialization expression.

To initialize an array in an | NTEGER statement, you must use an array
constructor, as in the following example:

| NTEGER, DI MENSI ON(4) :: ivec=(/1,2,3,4/)

If an array is initialized, all items in the array must be initialized.

Implied-DOloops cannot be used to initialize an array in a type declaration
statement.

10-113

1 O Intel Fortran Programmer’s Reference

10-114

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:
INTEGER i/-1/, j/-2/, kI-7]

The double colon (: :) may not be used with this initialization format.

Length Specification Extension

As a portability extension, Intel Fortran allows the following syntax for
specifying the length of an entity:

name [*l en][(array-spec)] [= initialization-expr]

If (ar r ay- spec) is specified, *| en may appear on either side of
(array-spec).

If nane appears with *| en, it overrides the length specified by

| NTEGER* si ze. For example, the following statements are equivalent
declarations of i nt 1:

I NTEGER (KIND = 8) intl
| NTEGER*4 i nt 1*8

Example

The following are valid declarations:

I NTEGER i, j
| NTEGER(KI ND=2) :: K
| NTEGER(2), PARAVETER :: |init=420

Related Statements
BYTE

Related Concepts
The following are discussed elsewhere in this manual:

* Implicit typing rules: Chapter 3, Data Types and Data Objects

® Data representation models: Chapter 3. Data Types and Data Objects

® Storage classes for variables: Chapter 3. Data Types and Data Objects

® Automatic objects: Chapter 3. Data Types and Data Objects

®* Arrays: Chapter 4, Arrays

® Expressions: Chapter 5, Expressions and Assignment
* Initialization expressions: Chapter 5, Expressions and Assignment

Intel® Fortran Statements 1 O

INTENT (Statement and Attribute)

Specifies the intended use of dummy
arguments.

A type declaration statement with the | NTENT attribute is:

type , attrib-list :: dummy-arg-name-|i st

type is a valid type specification (I NTEGER, REAL,
LOG CAL, CHARACTER, TYPE (nane), etc.), as
described in

attrib-1ist is a comma-separated list of attributes including
I NTENT (i ntent-spec) and optionally those
attributes compatible with it, namely:

DI MENSI ON OPTI ONAL TARGET
i ntent-spec is one of I N, OUT, or | NOUT. (The form | N OUT
is valid.)

dunmy- ar g- nane- | i st
is a comma-separated list of subprogram dummy
arguments to which intent-spec is to apply.

The syntax of the | NTENT statement is:

INTENT (intent-spec) [::] dummy-arg-name-|i st

Description

The | NTENT attribute declares whether a dummy argument is intended for
transferring a value into a procedure, or out of it, or both. The | NTENT
attribute helps detect the use of arguments inconsistent with their intended
use, and may also assist the compiler in generating more efficient code.

If a dummy argument has intent | N, the procedure must not change it or
cause it to become undefined. If the actual argument is defined, this value is
passed in as the value of the dummy argument.

10-115

1 () Intel Fortran Programmer s Reference

10-116

If a dummy argument has intent OUT, the corresponding actual argument
must be definable; that is, it cannot be a constant. When execution of the
procedure begins, the dummy argument is undefined; thus it must be given
a value before it is referenced. The dummy argument need not be given a
value by the procedure.

If a dummy argument has intent | NOUT, the corresponding actual argument

must be definable. If the actual argument is defined, this value is passed in

as the value of the dummy argument. The dummy argument need not be

given a value by the procedure.

The following points should also be noted:

* Intent specifications apply only to dummy arguments and may only
appear in the specification part of a subprogram or interface body.

® If'there is no intent specified for an argument in a subprogram, the
limitations imposed by the actual argument apply to the dummy

argument. For example, if the actual argument is an expression that is
not a variable, the dummy argument must not redefine its value.

® The intent of a pointer dummy argument must not be specified.

Examples
SUBRQUTI NE el ectric (x, vy, z)
! X, y, and z are dumy arguments.
REAL, INTENT (IN) :: X, Yy
! x and y are used only for input.
COWPLEX, | NTENT (I NQUT), TARGET :: z(1000)
! z is used for input and output.
SUBROUTI NE pressure (true, tape, a, b)
USE a_nodul e
TYPE(ace), INTENT(IN) :: a, b
! a and b are only for input.
| NTENT (QUT) true, tape
! true and tape are only for output.
SUBROUTI NE | ab_ten (degrees, X, Yy, 2)
COVPLEX, | NTENT(INOUT) :: degrees
REAL, | NTENT(IN), OPTIONAL :: X, ¥y
I NTENT(IN) z

Intel® Fortran Statements 1 O

PROGRAM pxx
CALL electric (a+l, h*c, d)
I First subroutine defined above.
CALL lab_ten (dg, e, f, g+1.0)
END PROGRAM pxx

Related Statements
FUNCTI ON and SUBROUTI NE

Related Concepts

Procedure arguments—including argument association and argument
keywords—are discussed in

INTERFACE

Introduces an interface block.

| NTERFACE [generi c-spec]
generi c-spec is one of:
® generic-nane
®* OPERATOR(defi ned-operator)
* ASSI GNMVENT(=)
generi c- name is the name of a generic procedure.
defi ned- operator isone of:
* An intrinsic operator

® .operator.,whereoperator isa
user-defined name

Description

The | NTERFACE statement is the first statement of an interface block.
Interface blocks constitute the mechanism by which external procedures
may be given explicit interfaces and also provide additional functionality, as
described below.

10-117

1 () Intel Fortran Programmer s Reference

10-118

The | NTERFACE gener i c- nanme form defines a generic interface for the
procedures in the interface block.

The | NTERFACE OPERATOR (defi ned- operat or) form is used to
define a new operator or to extend the meaning of an existing operator.

The | NTERFACE ASSI GNVENT(=) form is used to extend the definition
of the assignment operator to new combinations of data types, or to redefine
the assignment operator for user-defined types.

Examples
The following examples illustrate various forms of interface block:
! Make explicit the interfaces of
! external function spline and externa
! subroutine sp2.
| NTERFACE
REAL FUNCTI ON spline(x,y, z)
END FUNCTI ON spl i ne
SUBROUTI NE sp2(x, z)
END SUBROUTI NE sp2
END | NTERFACE

! Make the interface of function r_ave
! explicit, and give it the generic nane
! g_ave.
| NTERFACE g_ave

FUNCTI ON r _ave(x)

I Get the size of x fromthe nodul e

I ave_stuff.

USE ave_stuff, ONLY: n

REAL r_ave, x(n)

END FUNCTI ON r_ave
END | NTERFACE
! Make the interface of external function b_or
I explicit, and use it to extend the +
! operator.

Intel® Fortran Statements 1 O

| NTERFACE OPERATOR (+)
FUNCTION b_or(p, Q)
LOAd CAL b_or, p, g
INTENT (IN) p, q
END FUNCTI ON b_or

END | NTERFACE

Related Statements
END | NTERFACE, FUNCTI ON, and SUBRQUTI NE

Related Concepts
The following are discussed elsewhere in this manual:

® Derived types: Chapter 3. Data Types and Data Objects

® Assignment: Chapter 5. Expressions and Assignment

®* Procedures, generic procedures, procedure interfaces, and user defined
operators: Chapter 7, Program Units and Procedures

INTERFACE TO

A block to identify a subprogram
before it is actually referenced.

| NTERFACE TO routine-declaration

(formal -argunent-declaration(s))

formal - argunent - Fortran type argument declarations. Optionally,
decl aration(s) each argument can contain attributes.

Description

This block identifies a subprogram and its actual arguments before it is
actually referenced or called.

The r out i ne- decl ar at i on defines a function or subroutine depending
on whether one of those needs to be identified

10-119

1 () Intel Fortran Programmer s Reference

10-120

Example
Consider calling a C function that has this prototype:
extern void Foo (int i);

The | NTERFACE TOblock to declare the Fortran call to this function is as
follows:

| NTERFACE TO SUBROUTI NE Foo [C.ALIAS: ‘ Foo'] (1)
| NTEGER* 4 |
END

INTRINSIC (Statement and Attribute)

Identifies an intrinsic procedure.

The syntax of the type declaration statement with the | NTRI NSI C attribute
is:

type , attrib-list :: intrinsic-function-nane-1li st

type is a valid type specification (I NTEGER, REAL,
LOG CAL, CHARACTER, TYPE(nane), etc.), as
described in

attrib-1ist is a comma-separated list of attributes including
I NTRI NSI C and optionally those attributes
compatible with it, namely:

PRI VATE PUBLI C

intrinsic-function-nane-|ist
is a comma-separated list of
intrinsic-function-names. (Note that subroutine
names cannot appear in type statements, so that
intrinsic subroutine names can only be identified
as such by use of the | NTRI NSI C statement,
described below.)

Intel® Fortran Statements 1 O

The syntax of the | NTRI NSI C statement is:

INTRINSIC intrinsic-procedure-nane-1|ist
i ntrinsic-procedure-isacomma-separated list of procedure names.
name-| i st

NOTE. Like the EXTERNAL statement, the | NTRI NSI C statement does
not have optional colons.

Description

The | NTRI NSI C statement and attribute identifies a specific or generic
name as that of an intrinsic procedure, enabling it to be used as an actual
argument. The | NTRI NSI Cstatement is necessary to inform the compiler
that a name is intrinsic and is not the name of a variable. Whenever an
intrinsic name is passed as an actual argument and no other appearance of
the name in the same scoping unit indicates that it is a procedure, it must be
specified by the calling program in an | NTRI NS| C statement, or (if a
function name) in a type declaration statement that includes the

I NTRI NSI C attribute.

Each name can appear only once in an | NTRI NS| C statement and in at
most one | NTRI NSI C statement within the same scoping unit. Also, a
name cannot appear in both an EXTERNAL and an | NTRI NSI C statement
within the same scoping unit.

Examples

The following | NTRI NSI C statement informs the compiler that si n and

t an are intrinsics, enabling them to be passed to the subroutine MATH:
INTRINSIC sin, tan

CALL mat h(sin, tan)

The following REAL statement does the same thing, using the | NTRI NSI C
attribute to inform the compiler that si n and t an are intrinsics:

REAL, INTRINSIC :: sin, tan

10-121

1 () Intel Fortran Programmer s Reference

10-122

Related Statements
EXTERNAL

LOGICAL

Declares entities of type logical.

LOd CAL [kind-spec] [[, attrib-list] ::] entity-1list

ki nd- spec specifies the size of the logical entity in bytes.
kind-spec takes the form:

([KIND=] ki nd-param

where ki nd- param can be a named constant or a constant expression
that has the integer value of 1, 2, 4, or 8. The size
of the default type is 4.

As an extension, ki nd- spec can take the form:
*| en- param

where | en- par am is the integer 1, 2, 4, or 8 (default = 4).
attrib-1ist is a list of one or more of the following attributes,
separated by commas:

ALLOCATABLE | NTRINSI C PRI VATE

DI MENSI ON OPTI ONAL PUBLI C
EXTERNAL PARAMETER SAVE
I NTENT PO NTER TARGET

For information about each of the attributes, see the corresponding
statement in this chapter.

entity-1list is a list of entities, separated by commas. Each
entity takes the form:

nane [(array-spec)] [= initialization-expr]

Intel® Fortran Statements 1 O

where nane is the name of a variable or function,
arr ay- spec is a comma-separated list of
dimension bounds, and
initialization-expr is the initial value for
the entity.

Description

The LOG CAL statement is constrained by the rules for type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the LOG CAL statement overrides any
implicit typing rules in effect.

Ifattrib-1ist orinitialization-expr appearsin the declaration,
entity-1ist mustbe preceded by the double colon.

Ifarr ay- spec is specified for an entity, it overrides any DI MENSI ON
attribute.

Initialization

initialization-expr mustbe aconstant logical expression that can
be evaluated at compile time.

The following entities may not be initialized:

* Dummy arguments

* Function results

® Allocatable arrays

* Pointers

* External names

® Intrinsic names

* Automatic objects

Ifattrib-1ist includes the PARAMETER attribute, each entity in
entity-1ist mustinclude an initialization expression.

To initialize an array in a LOG CAL statement, you must use an array
constructor, as in the following example:

LOG CAL, DI MENSION(2) :: Ivec=(/.TRUE. ,.FALSE./)

10-123

1 () Intel Fortran Programmer s Reference

10-124

If an array is initialized, all items in the array must be initialized.
Implied-DOloops cannot be used to initialize an array in a type declaration
statement.

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:
LOG CAL | ogl/.TRUE./, 1o0g2/.FALSE./

The double colon (: :) may not be used with this initialization format.

Length Specification Extension

As a portability extension, Intel Fortran allows the following syntax for
specifying the length of an entity:
name [*len] [(array-spec)] [= initialization-expr]

If (array-spec) is specified, *| en may appear on either side of
(array-spec).

If nane appears with *| en, it overrides the length specified by
LOG CAL*si ze. For example, the following statements are equivalent
declarations of | 0g:

LOG CAL (KIND = 8) |og8
LOG CAL*4 | 0g8*8

Example

The following are valid declarations:

LOd CAL | ogl, |og2

LOG CAL(KIND=2) :: 1o0g3

LOG CAL(2), PARAVETER :: test=. TRUE.

Related Statements

See the statement form of each of the attributes that can be specified for the
LOGE CAL statement.

Related Concepts
The following are discussed elsewhere in this manual:

* Implicit typing rules: Chapter 3. Data Types and Data Objects

® Expressions: Chapter 5, Expressions and Assignment

Intel® Fortran Statements 1 O

* Initialization expressions: Chapter 5, Expressions and Assignment

® Data representation models: Chapter 3. Data Types and Data Objects

® Storage classes for variables: Chapter 3. Data Types and Data Objects

* Automatic objects: Chapter 3. Data Types and Data Objects

® Arrays: Chapter 4, Arrays

MAP

Defines a union within a structure.

VAP
field-def

END MAP

field-def

is one of the following:

* A type declaration statement
® Another nested structure

®* A nested record

®* A union definition

Description

The MAP statement is an Intel Fortran extension that is used with the UNI ON
statement to define a union within a structure. For detailed information
about the MAP and UNI ON statements, see the description of the
STRUCTURE statement in this chapter.

10-125

1 () Intel Fortran Programmer s Reference

10-126

MODULE

Introduces a module.

MODULE nodul e- nane

nodul e- name is a unique module name.

Description

Modules are nonexecutable program units that can contain type definitions,
object declarations, procedure definitions (module procedures), external
procedure interfaces, user-defined generic names, and user-defined
operators and assignments. Any such definitions not specified to be private
to the module containing them are available to those program units that
specify the module in a USE statement. Modules provide a convenient
sharing and encapsulation mechanism for data, types, procedures, and
procedure interfaces.

NOTE. The current version of the Intel® Fortran Compiler does not
support STRUCTURES within the Fortran modules.

Examples
! Make data objects and a data type
! shareable via a nodul e.
MODULE shar ed
COWPLEX gtx (100, 6)
REAL, ALLOCATABLE :: y(:), z(:,:)
TYPE peak_item
REAL peak val, energy
TYPE(peak_iten), PO NTER :: next
END TYPE peak_item
END MODULE shar ed

Intel® Fortran Statements 1 O

! Define a data abstraction for rational
! arithnmetic via a nodul e.
MODULE rational _arithnetic

TYPE rational

PRI VATE
| NTEGER numer at or, denoni nat or
END TYPE rational ! CGeneric extension of =

| NTERFACE ASSI GNVENT (=)

MODULE PROCEDURE eqrr, eqri, eqir
END | NTERFACE
I Generic extension of +

| NTERFACE OPERATOR (+)

MODULE PROCEDURE addrr, addri, addir
END | NTERFACE

CONTAI NS
I A specific definition of
FUNCTION eqrr (...)

! Aspecific definition of +
FUNCTI ON addrr (...)

END MODULE rational _arithnetic

Related Statements
CONTA!I NS, END, PRI VATE, PUBLI C, and USE

Related Concepts

Use association, module procedures, program units, and encapsulation are
discussed in

10-127

1 () Intel Fortran Programmer s Reference

10-128

MODULE PROCEDURE

Specifies module procedures in a
generic interface.

MODULE PROCEDURE npdul e- procedur e- name-1i st
nodul e- procedur e- is a comma-separated list of
name- | i st nodul e- pr ocedur e- nanes.

Description

A MODULE PRCCEDURE statement appears within an interface block. It is
used when the specification is generic and a specific procedure is defined
within the module rather than as an external procedure. The MODULE
PROCEDURE statement only names the subprograms; it does not contain the
definition of the interface. The named subprograms must be defined within
the current module or within another module that is accessible by use
association.

Examples

MODULE pat h

! Modul e data environnent.

! Modul e procedures contained in this nodul e
! have access to this data environnent.
REAL x, vy, z

I Generic nane substance for procedures
! air and water.

| NTERFACE subst ance
MODULE PROCEDURE air, water
END | NTERFACE

| NTERFACE OPERATOR (*)
MODULE PROCEDURE rational _multiply

Intel® Fortran Statements 1 O

END | NTERFACE

! Modul e procedures are preceded by CONTAI NS.
CONTAI NS
SUBRQUTI NE air (contents)

END SUBRQOUTI NE ai r

SUBROUTI NE water (x, a, z)

a=x+y

! X is a dumry argunent.

! yis fromthe nodul e data environnent.

END SUBROUTI NE wat er

FUNCTION rational _nmultiply (x, Yy)
TYPE (rational) :: rational _nmultiply
TYPE (rational), INTENT (IN) :: x, ¥y
rational _nmultiply = ...

END FUNCTION rational _rmultiply

END MODULE path

Related Statements
FUNCTI ON, SUBRQUTI NE, and | NTERFACE

Related Concepts

Modules and procedure interfaces are discussed in

10-129

1 () Intel Fortran Programmer s Reference

10-130

NAMELIST

Names a group of variables for /0O

processing.

NAMELI ST / grp-nane/var-list [[,]/grp-nane/
var-list]...

gr p- nane is a unique namelist group name.

var-|i st is a comma-separated list of scalar and array variable
names.

Description

The NAMELI| ST statement declares var - | i st as a namelist group and
associates the group with gr p- nane.

Variables appearing in var - | i st may be of any type, including objects of
derived types or their components, saved variables, variables on the local
stack, and subroutine parameters. The following, however, are not allowed:
* Record or composite references

® Pointers or their targets

®* Automatic objects

® Allocatable array

® Character substrings

* Assumed-size array parameters

® Adjustable-size array parameters

* Assumed-size character parameters

* Individual components of a derived type object

The var -1 i st explicitly defines which items may be read or written in a
namelist-directed I/O statement. It is not necessary for every item in
var-1i st to be defined in namelist-directed input, but every input item
must belong to the namelist group. The order of items in var -1 i st
determines the order of the values written in namelist-directed output.

Intel® Fortran Statements 1 O

More than one NAMELI ST statement with the same gr p- nane may appear
within the same scoping unit. Each successive var - | i st in multiple
NAMELI ST statements with the same gr p- nane is treated as a
continuation of the list for gr p- nane.

The same variable name may appear in different NAMELI ST statements
within the same scoping unit.

Examples

PROGRAM

I NTECER i, j(10)

CHARACTER*10 ¢

NAMELI ST /n1/ i, j, ¢

! Define the nanmelist group nl.
READ (UNI T=5, NML=n1)

WRI TE (6, nl)

END

When this program is compiled and executed with the following input
record:

&nl

j(8 =6, 7, 8
i =5

C = " XXXXXXXXX"'
j =5*0, -1, 2

c(2:6) = 'abcde'
/
its output is:

&nl

I =5

J =00000-226728
C = xabcdexxx'

/

Related Statements
ACCEPT, OPEN, | NQUI RE, PRI NT, READ, and WRI TE

10-131

1 () Intel Fortran Programmer s Reference

10-132

Related Concepts

Namelist-directed I/O is described in

NULLIFY

Disassociates a pointer from a target.

NULLI FY (poi nter-object-1list)

poi nter-object-Iist
is a comma-separated list of variable names and
derived-type components.

Description

The NULLI FY statement disassociates a pointer from any target. A
NULLI FY statement is also used to change the status of a pointer from
undefined to disassociated.

Examples

The following example shows the declaration and use of a variable with the
pointer attribute:

REAL, TARCGET :: value ! value can be a target

REAL, PONTER :: pt ! for the pointer pt.pt => val ue
! Associate pt with val ue.
NULLI FY (pt) ! Disassociate pt.

I F (. NOT. ASSOCl ATED(pt)) pt => X
! The ASSOCI ATED intrinsic is valid here if (and
! only if) pt has been previously allocated,
I assigned (as above) or nullified (as above).
The next exanple shows how a derived type can be used
in list processing applications:
TYPE |ist_node
| NTEGER val ue
TYPE (list_node), PO NTER :: next

Intel® Fortran Statements 1 O

END TYPE |ist_node

TYPE (list_node), PO NTER :: |ist

ALLOCATE (i st) I Create new |ist node.

list % value = 28 I Initialize data field.

nullify (list %next) ! Nullify pointer to the
I next node.

Related Statements
ALLOCATE, DEALLOCATE, PO NTER, and TARGET

Related Concepts

Pointers and pointer association are discussed in

OPEN

Connects file to a unit.

OPEN (i o-specifier-list)

i o-specifier-list isalistofthe following comma-separated I/O
specifiers:

[UNI T=] uni t specifies the unit to connect to an external file.
uni t must be an integer expression that evaluates
to a number greater than 0. If the optional
keyword UNI T= is omitted, uni t must be the
firstitem in i 0- specifier-1ist.

ACCESS=char act er - specifies the method of file access.

expressi on char act er - expr essi on can be one of the
following arguments:

' DI RECT' Open file for direct access.

10-133

1 () Intel Fortran Programmer s Reference

10-134

' SEQUENTI AL’ Open file for sequential access
(default).

' APPEND Open existing file to append
to end of file.

To open a file for append (that is, to position the file just before the
end-of-file record), use POSI TI ON=APPEND. For information about file
access methods, see Chapter 8. /O and File Handling.

ACTI ON=char act er - specifies the allowed data-transfer operations.
expression char act er - expr essi on can be one of the
following arguments:

' READ Do not allow WRITE and
ENDFILE statements.
"WRI TE' Do not allow READ statements.

' READVWRI TE' Allow any data transfer
statement (default).

ASSOCI ATEVARI ABLE=i nt eger-vari abl e
indicates a variable that is updated after each
direct access I/O operation; this variable contains
the record number of the next sequential record in
the file. The restriction is that this variable cannot
be a dummy argument to the routine in which the
OPEN statement appears. It is valid only for
direct access, in all other access modes, it is
ignored.

For information about data transfer operations, see the READ, PRI NT, and
V\RI TE statements in this chapter; see also Chapter &, 1/0 and File
Handling.

BLANK=char act er- specifies treatment of blanks within numeric data
expressi on on input. This specifier is applicable to formatted
input only. char act er - expr essi on can be
one of the following arguments:

" NULL' Ignore blanks (default).
' ZERO Substitute zeroes for blanks.

Intel® Fortran Statements 1 O

BLOCKSI ZE=i nt eger - indicates the physical I/O transfer size for the file.

expr essi on

CARRI AGECONTROL=
string

If the value is non-zero, it should be rounded up to
a multiple of 512. If it is zero or not specified, it
defaults to system default, generally 512.
indicates the type of carriage control used when a

file is displayed on a terminal device. The string
values are:

" FORTRAN Default for code files.
"LI ST' Default for formatted file.
" NONE' Default for binary and

unformatted file.

BUFFERCOUNT=i nt eger expression

specifies the number of buffers associated with

the unit for multibuffered 1/0. If zero or not
specified or, assumes system default.

DEFAULTFI LE=char act er - expr essi on

DELI M=char act er -
expressi on

indicates a default file specification string.

Supplies the missing components of a file
specification. If not specified, Fortran uses the
default value FORT.n, where n is the UNI T
number with leading zeros. You can indicate the
following file specification components: a device,
a directory, a file name, and a file type.

specifies the delimiter to use (if any) when
delimiting character constants in list-directed and
namelist-directed formatting. This specifier is
applicable to formatted output only.

char act er - expr essi on can be one of the
following arguments:

10-135

1 () Intel Fortran Programmer s Reference

10-136

ERR=st nt - | abe

FI LE=char act er -
expressi on

or NAME

' APOSTROPHE' Use the apostrophe to delimit
character constants in
list-directed and
namelist-directed formatting.

' QUOTE' Use double-quotation marks to
delimit character constants in
list-directed and
namelist-directed formatting.

" NONE' Use no delimiter to delimit
character constants in
list-directed and
namelist-directed formatting
(default).

specifies the label of the executable statement to
which control passes if an error occurs during
statement execution.

specifies the name of the file to be connected to
uni t.charact er - expr essi on can also be
the ASCII representation of a device file. If this
specifier does not appear in the OPEN statement, a
temporary scratch file is created.

DI SPOSE or DI SP=i nt eger - expr essi on

returns the status of the file after the unit is closed.
The default is ' KEEP' except for a scratch file
which cannot be saved, printed or submitted. The
default for scratch file is ' DELETE' .

i nt eger - expr essi on can be one of the
following arguments:

" KEEP or SAVE' Keeps the file after the unit
closes.

' DELETE' Deletes the file after the unit
closes

Intel® Fortran Statements 1 O

" PRI NT' Submits the file to the system
line printer spooler and keeps it.
Note that this specifier can be
used on sequential files only.

" PRI NT/ DELETE' Submits the file to the system
line printer spooler and then
deletes it

'"SUBM T' Submits the file to the batch job
queue and keeps it.

' SUBM T/ DELETE Submits the file to the batch job
' queue and then deletes it.

FORME=char act er - specifies whether the file is connected for
expressi on formatted or unformatted I/0.
char act er - expr essi on can be one of the
following arguments:

' Bl NARY' Binary file access.

' FORMATTED Specify formatted 1/O. If the file
is to be opened for sequential
access, this is the default.

' UNFORVATTED Specify unformatted I/O. If the
file is to be opened for direct
access, this is the default.

| OFOCUS=I ogi cal -vari abl e
returns the following values indicating whether
the specified UNIT is the current active window:

. TRUE. Specified UNIT is the current
active
window in a Quickwin application.

. FALSE. Specified UNIT is not the current
active window.

| OSTAT=i nt eger - returns the I/O status after the statement executes.

10-137

1 () Intel Fortran Programmer s Reference

vari abl e

MAXREC=i nt eger -
expr essi on

If the statement successfully executes,

i nt eger-vari abl e is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

specifies the maximum number of records that
can be transferred from or to a direct access file
while the file is connected. The default is an
unlimited number of records.

ORGANI ZATI ON=scal ar - char at cer

PAD=char act er -
expression

" SEQUENTI AL’

returns a scalar character variable indicating the
following record access types:

File is connected for a sequential
access, records are accessed in
order.

File is connected for a direct
access, records can be accessed
in any order.

" RELATI VE'

It cannot be determined whether
the file is connected for sequential
or relative access.

" UNKNOWN

specifies whether or not to pad the input record
with blanks if the record contains fewer characters
than required by the format specification. This
specifier is applicable to formatted input only.
char act er - expr essi on can be one of the
following arguments:

" YES' Pad input records with blanks (if
necessary) to fill it out to length required
by format specification (default).

"' NO Do not pad input record with blanks if it

is not as long as record specified by
format specification.

PCSI TI ON=char act er - expr essi on

10-138

specifies the position of an existing file to be

Intel® Fortran Statements 1 O
opened for sequential access.

char act er - expr essi on can be one of the
following arguments:

"ASI S Leave file position unchanged
(default).
" REW ND' Position the file at its start.

' APPEND' Position the file just before the
end-of-file record.

If the file to be opened does not exist, this specifier is ignored. New files are
always positioned at their start.

READONLY

RECL=i nt eger -
expressi on
or RECORDSI ZE

indicates that only READ statements can refer to
this connection. This specifier is similar to
ACTI ON=" READ' but READONLY prevents
deletion of the file if it is closed with
STATUS=' DELETE' in effect. The Fortran I/O
system’s default file access is READWRI TE. If
access is denied, the I/O system automatically
retries accessing the file for READ access.

specifies the length of each record in a file to be
opened for direct access. The length is measured

in characters (bytes). This specifier must be
present when a file is opened for direct access and
is ignored if file is opened for sequential access.

RECORDTYPE=char act er - expr essi on

specifies a scalar default variable r t ype of
default CHARACTER type with one of the
following values:

' FI XED Indicates fixed-length records.

' VARl ABLE' Indicates variable-length records.
' SEGVENTED Indicates segmented records.

' STREAM Indicates stream-type

variable-length records.

10-139

1 () Intel Fortran Programmer s Reference

' STREAM CR Indicates stream-type

variable-length records
terminated with a carriage return.

' STREAM _LF' Indicates stream-type

variable-length records
terminated with a line feed.

" UNKNOWN! File is not connected.

When you open a file, the default record types are as follows:

SHARE=char act er -
vari abl e

10-140

' FI XED For relative files

' FI XED For direct access sequential
files

' STREAM LF' For formatted sequential
access files

" VARl ABLE' For unformatted sequential
access files

A segmented record is a logical record consisting

of segments that are physical records. Use

segmented records only for unformatted

sequential access to disk or raw magnetic tape

files because the length of a segmented record can

be greater than 65,535 bytes.

If an output statement does not specify a full

record for a file containing fixed-length records,

the following occurs:

® In formatted files, the record is filled with
blanks.

* In unformatted files the record is filled with
Zeros.

indicates whether the file locking is applied while

the unit is open. The following values are used:

Intel® Fortran Statements 1 O

" DENYRW Deny-read/write mode. No
process can open this file.

" DENYWR Deny-write mode. No process
can open the file with write
access.

' DENYRD Deny-read mode. No process can

open the file with read access.

" DENYNONE' Deny-none mode. Any process
can open the file in any mode.
This is the default value.

SHARED indicates that the file is connected for shared
access by more than one program executing
simultaneously. SHARED access is the default for
Fortran I/O system.

STATUS=char act er - specifies the state of the file when it is opened.
expressi on char act er - expr essi on can be one of the
following arguments:

'ALD Open an existing file. FILE= must also
be specified and the named file must
exist.

" NEW Create a new file. FILE= must also be
specified and the named file must not
exist.

" UNKNOWN If the file named in FILE= exists, open
it with the status of OLD; if it does not
exist, open it with the status of NEW.
This is the default status.

10-141

1 () Intel Fortran Programmer s Reference

10-142

' REPLACE' If the file does not exist, create it with
a status of OLD; if it does exist, delete
it and open it with a status of NEW. If
STATUS='REPLACE!' is specified,
FILE= must also be specified.

' SCRATCH Create a scratch file. FILE= specifier
must not be specified. For information
about scratch files, see Chapter 8, 1/O
and File Handling.

Tl TLE=char act er indicates the name of a child window in a
expressi on QuickWin application.
Specifying TITLE in a non-QuickWin application
causes a run-time error.
USEROPEN=f unct i on- indicates a user-written external function name
name that controls the opening of the file.

The function must be declared in a previous
EXTERNAL statement; if it has a type, the type
should be | NTEGER(4) (| NTEGER*4) . This
specifier allows you to use features of the
operating system additionally to Fortran.

Description

The OPEN statement connects a unit to a file so that data can be read from or
written to that file. Once a file is connected to a unit, the unit can be
referenced by any program unit in the program.

1/0 specifiers do not have to appear in any specific order in the OPEN
statement. However, if the optional keyword UNI T= is omitted, uni t must
be the first item in the list.

Only one unit can be connected to a file at a time unless the file is opened
SHARED. That is, the same file cannot be connected to two different units.
Attempting to open a file that is connected to a different unit will produce
undefined results.

However, multiple OPENs can be performed on the same unit. In other
words, if a unit is connected to a file that exists, it is permissible to execute
another OPEN statement for the same unit. If FI LE= specifies a different

Intel® Fortran Statements 1 O

file, the previously opened file is automatically closed before the second file
is connected to the unit. If FI LE= specifies the same file, the file remains
connected in the same position; the values of the BLANK=, DEL| M=, PAD=,
ERR=, and | OSTAT= specifiers can be changed, but attempts to change the
values of any of the other specifiers will be ignored.

Examples
The examples in this section illustrate different uses of the OPEN statement.

The following OPEN statement connects the existing file i nv to unit 10 and
opens it (by default) for sequential access. Only READ statements are
permitted to perform data transfers. If an error occurs, control passes to the
executable statement labeled 100 and the error code is placed in the
variable i 0S:
OPEN(10, FILE="inv', ERR=100, |O0STAT=ios, &

ACTI ON=' READ' , STATUS=' OLD')
The following OPEN statement opens the file whose name is contained in the
variable next 1, connecting it to unit 4 as a formatted, direct-access file
with a record length of 50 characters:
OPEN(ACCESS="DI RECT", UNI T=4, RECL=50, &

FORME" FORMATTED", FI LE=next 1)

The following two OPEN statements produce the same results. Both open a
scratch file that is connected to unit 19 (if the FI LE=nane specifier had
appeared in the first statement, the named file would have been opened
instead):

OPEN (UNI T=19)

OPEN (UNI T=19, STATUS="SCRATCH")

Because the 1/0 specifiers that can be used in an OPEN statement do not
have to appear in any specific order, the following three OPEN statements
are all equivalent:

OPEN(UNI T=3, STATUS=' NEW, FILE=" QUT. DAT')

OPEN(3, STATUS=' NEW, FILE=" QUT. DAT")

OPEN(STATUS=' NEW, FI LE=" QUT. DAT', UNI T=3)

10-143

1 () Intel Fortran Programmer s Reference

10-144

Note, however, that in the second OPEN statement 3 must appear first
because of the omission of the optional keyword UNI T=. Thus, the
following OPEN statement is illegal:

OPEN(STATUS='" NEW, 3, FILE="QUT.DAT') ! illegal

Related Statements
CLOSE, | NQUI RE, READ, and WRI TE

Related Concepts

For information about I/O concepts and examples of programs that perform
I/0, see . For information about I/O
formatting, see

OPTIONAL (Statement and Attribute)

Identifies optional arguments for
procedures.

The syntax of the type declaration statement with the OPTI ONAL attribute
is:

type , attrib-list :: dunmy-argunent-nane-|ist
type is a valid type specification (I NTEGER, REAL,

LOG CAL, CHARACTER, TYPE (nane), etc.), as
described in

attrib-1ist is a comma-separated list of attributes including
OPTI ONAL and optionally those attributes compatible
with it, namely:
DI MENSI ON | NTENT TARGET
EXTERNAL PO NTER VOLATI LE

dunmy- ar gunent - nane- | i st
is a comma-separated list of

Intel® Fortran Statements 1 O

dummy-argument-names.
The syntax of the OPTI ONAL statement is:
OPTIONAL [::] dunmy-argunent - nane-|i st

Description

If a dummy argument has the OPTI ONAL attribute, the corresponding actual
argument need not appear in a procedure reference. In cases where there are
arguments that generally do not change from one reference to another, it is
convenient to specify that the arguments are optional and provide default
values for them. They can then be omitted from references in these general
cases. The presence of an optional argument in a procedure may be
determined by using the PRESENT intrinsic function.

Many uses of the ENTRY statement in FORTRAN 77 programs can be
replaced by the use of optional arguments.

Rules and Restrictions
® The OPTI ONAL attribute may be specified only for dummy arguments.
It may occur in a subprogram and in any corresponding interface body.

®* An optional dummy argument whose actual argument is not present
may not be referenced or defined (or invoked if it is a dummy
procedure), except that it may be passed to another procedure as an
optional argument and will be considered not present.

®* When an argument is omitted in a procedure reference, all arguments
that follow it must use the keyword form.

* Ifaprocedure has an optional argument, the procedure interface must
be explicit.

Examples

The following are two examples of the OPTI ONAL statement. In the first
example, the call to the subroutine t ri p can legally omit the path argument
because it has the OPTI ONAL attribute:
CALL TRIP (distance = 17.0) ! path is omtted.
SUBROQUTINE trip (distance, path)

OPTI ONAL di st ance, path

10-145

1 () Intel Fortran Programmer s Reference

In the next example, the subroutine pl ot uses the PRESENT function to
determine whether or not to execute code that depends on the presence of
arguments that have the OPTI ONAL attribute:
SUBRQUTI NE pl ot (pts, o_xaxis, o_yaxis, snooth)
TYPE (point) pts
REAL, OPTIONAL :: o_xaxis, o_yaxis
I Origin - default (0.,0.)
LOG CAL, OPTIONAL :: snooth
REAL ox, oy
| F (PRESENT (o0_xaxis)) THEN
OX = 0_Xaxis
ELSE
ox = 0.
! Note that the o_xaxis dumry argunent
I cannot be referenced if the actua
I argument is not present. The same
I applies to o_yaxis (bel ow).
END | F
| F (PRESENT (o_yaxis)) THEN
oy = o_yaxis
ELSE
oy = 0.
END | F
| F (PRESENT(snooth)) THEN
I F (snoot h) THEN
c I Snooth al gorithm
RETURN
END | F
END | F
C I Plot points
END SUBROUTI NE pl ot
! Sorme valid calls to plot.
CALL pl ot (points)

CALL pl ot (observed, o_xaxis = 100., &
0_yaxis = 1000.)

10-146

Intel® Fortran Statements 1 O

CALL plot (random pts, snooth = . TRUE.)

Related Statements
SUBROUTI NE and FUNCTI ON

Related Concepts

Procedures, argument association, argument keywords are discussed in
Chapter 7, Program Units and Procedures.

OPTIONS

Overrides or confirms the compiler
options for a unit.

OPTI ONS option [option...]
option can be one of the following:
| CHECK=ALL, [NO| BOUNDS,
[NO] OVERFLOW NONE
/ NOCHECK
/ [NO| EXTEND_SOURCE
/[NO| F77
/[NO I 4
/ [NO| RECURSI VE
Some options of the OPTI ONS statement are
equivalent to the compiler options.

S NOTE. A4n option must be always preceded by a slash (/).

Description

The OPTI ONS statement overrides or confirms the compiler options in
effect for a program unit.

When using the OPTI ONS statement, follow these rules:

10-147

1 () Intel Fortran Programmer s Reference

10-148

® The OPTI ONS statement must be the first statement in a program unit,
preceding the PROGRAM SUBROUTI NE, FUNCTI ON, MODULE, and
BLOCK DATA statements.

® The options of the OPTI ONS statement override compiler options, but
only until the end of the program unit for which they are defined.

Examples
OPTI ONS / CHECK=ALL/ F77
OPTIONS /14

PARAMETER (Statement and Attribute)

Specifies a named constant.

A type declaration statement with the PARAMETER attribute is:

type , attrib-list :: cnanel = cexpr
[, cname2 = cexpr]
type is a valid type specification (I NTEGER, REAL,

LOd CAL, CHARACTER, TYPE (nan®e), etc.), as
described in Chapter 3., Data Types and Data Objects.

attrib-1ist is a comma-separated list of attributes including
PARAMETER and optionally those attributes compatible
with it, namely:
DI MENSI ON PUBLI C
PRI VATE SAVE

Specifying the SAVE attribute in a PARAMETER statement has no effect.

charme is the name that will represent the constant.

Intel® Fortran Statements 1 O

cexpr is an initialization expression that evaluates to the
constant represented by cname. In the case of an array
constant, cexpr must be an array constructor. In the
case of a derived type constant, cexpr must be a
structure constructor.

The syntax of the PARAMETER statement is:
PARAMETER (cnanel = cexprl [, cname2 = cexpr2]...)

Description

The PARAMETER statement associates a symbolic name with a constant. A
symbolic name defined in a PARAMETER statement is known as a named
constant. A named constant must not become defined more than once in a
program unit. Once defined, it can be used only as a named constant. This
means that a named constant cannot be assigned a value like a variable.

When the PARAMETER attribute is used, the value of the named constant
must be provided by the initialization part of the statement in which the
PARAMETER attribute appears.

The type of a named constant is determined by the implicit typing rules,
unless its type is specified by a type declaration statement prior to its first
appearance in a PARAVETER statement or by a type declaration statement
that includes PARAVETER as one of its attributes. If a PARAMETER
statement declares and implicitly types a named constant, the named
constant may appear in a subsequent type declaration or | MPLI CI T
statement, but only to confirm the type of the named constant.

When the type of the symbolic name and the constant do not agree, the
value of the named constant is assigned in accordance with assignment
statement type-conversion rules, as given in

The following rules apply to type agreement between the constant and the
symbolic name:

* Ifcnane is of numeric type, cexpr must be an arithmetic constant
expression.

* Ifcnan® is of type character, the corresponding cexpr must be a
character constant expression.

10-149

1 () Intel Fortran Programmer s Reference

10-150

* Ifcnane is of type logical, the corresponding cexpr may be either an
arithmetic or logical constant expression.

Any symbolic name of a constant that appears in cexpr must have been
defined previously in the same or a different PARAMVETER statement in the
same program unit. For example, the expression in the second PARAMETER
statement below is built from the expression in the first PARAMETER
statement, and is legal:

PARAMETER (Iimt = 1000)

PARAMETER (limt_plus_1 =1limt + 1)

The logical operators (. EQ, .NE., .LT., .LE, .GI., and

. GE.), as well as the following intrinsic functions, can appear in the
PARAMETER statement:

ABS I AND I XCR MAX
CHAR | CHAR LEN M N
CMPLX | ECR LGE MOD
CONJB | MAG LGT NI NT
Dl M I OR LLE NOT
DPROD | SHFT LLT

If these intrinsic functions are used in a PARAMETER statement, their
arguments must be constants.

If the named constant is of type character and its length is not specified, the
length must be specified in a type declaration statement or | MPLI CI T
statement prior to the first appearance of the named constant. Its type and/or
length must not be changed by subsequent statements, including | MPLI CI T
statements. If a symbolic name of type CHARACTER* (*) is defined in a
PARAMETER statement, its length becomes the length of the expression
assigned to it.

If the named constant is an array, the bounds must be explicit and
determined by an initialization expression.

Once such a symbolic name is defined, that name can appear in any
subsequent statement of the defining program unit as a constant in an
expression or DATA statement.

Intel® Fortran Statements 1 O

Example

! PARAMETER used in a type declaration

I statenent as an attribute.

REAL, DI MENSI ON(4), PARAMETER :: const = &
(/1.2, 1.45, 0.9, 24.3/)

I PARAMETER used as a statenent.
| NTEGER year
PARAMETER year = 1996

I Type declaration statenent declaring a

! derived-type constant.

TYPE (postal _info), PARAMETER :: package = &
postal info (9.5, (/10.0, 5.5, 2.25/))

Related Concepts

For information about data types and objects, see

PAUSE

Temporarily stops program execution.

PAUSE pause- code

pause- code is a character constant or a list of up to 5 digits.
Description

The PAUSE statement suspends program execution and prints a message,
depending on whether digits, characters, or nothing has been specified in
the PAUSE statement:

* Ifdigits, the message “PAUSE di gi t S” is written to standard error.

10-151

1 () Intel Fortran Programmer s Reference

10-152

® Ifa character expression, the message “PAUSE
char act er - expr essi on” is written to standard error.

* Ifnothing appears after PAUSE, the word “PAUSE” is written to
standard error.

After displaying the appropriate message, the PAUSE statement writes to

standard output one of two messages that give information on resuming the

program. If the standard input device is a terminal, the message is:

To resume program execution, type GO.

At this point the program is suspended and remains so until the operator
types the word GOand presses the Return key. The program will terminate if
anything other than GOis entered.

If the standard input device is other than a terminal, the message is:
To resume execution, execute a kill -15 pi d &

command where pi d is the unique process identification number
of the suspended program. This command can be issued
at any terminal at which the user is logged in.

Examples

! Wite "PAUSE 7777" to standard error
PAUSE 7777

I Wite "PAUSE MOUNT TAPE" to standard error
PAUSE ' MOUNT TAPE'

I Wite "PAUSE" to standard error

PAUSE

Related Statements
STOP

Related Concepts

For information about the PAUSE statement and other flow control
statements, see

Intel® Fortran Statements 1 O

E NOTE. PAUSE is obsolescent in Fortran 95 and later.

POINTER (Cray*-style)

Declares Cray-style pointers and their
objects. (Extension)

PO NTER (poi nterl, pointeel) [, (pointer2,

poi ntee2)]...

poi nter is a pointer.

poi ntee is a variable name or array declarator.
Description

Intel Fortran supports both the standard Fortran 95 POl NTER statement as
well as the Cray-style PO NTER statement. The Cray-style PO NTER
statement is supported for compatibility with older, FORTRAN 77
programs. The following information applies only to the Cray-style

PO NTER statement; the Fortran 95 PO NTER statement is described
elsewhere in this chapter.

E NOTE. The current version of the Intel® Fortran Compiler does not
support STRUCTURES within the Fortran modules.

The following restrictions also apply to poi nt er :

® [t should be of type | NTEGER(4) . If it is not, the compiler interprets
its type as | NTECER(4) regardless of other implicit or explicit type
declarations.

® It cannot be declared of any other data type.

® Another pointer cannot point to it.

® It cannot appear in a PARAMETER or DATA statement.

10-153

1 () Intel Fortran Programmer’s Reference

10-154

® [t cannot be in a derived type object.

poi nt ee may be of any type, including an array, a derived type, a

structure, or a character string.

The following restrictions apply to the pointee:

® [t cannot be a dummy argument, function name, function value,
common block element, automatic object, generic interface block
name, or derived type.

¢ [t cannot be used in a COMVION, DATA, EQUI VALENCE, or NAMELI ST
statement.

® [t cannot have any of the following attributes: ALLOCATABLE,
EXTERNAL, | NTENT, | NTRI NSI C, OPTI ONAL, PARAMETER,
PO NTER, SAVE, and TARCET.

* Pointees that are arrays with nonconstant bounds can be used only in
subroutines and functions, not in main programs.

® Variables used in an array-bound expression that appears in a
PO NTER statement must be either subprogram formal arguments or
common block variables. The value of the expression cannot change
after subprogram entry.

You associate memory with a pointer by assigning it the address of an

object. Typically, this is done with the function, LOC. The LOC function

returns the address of its argument, which can be assigned to a pointer. The

following example assigns 0 to the pointee i :

| NTECER i, |

PO NTER (p, i)

p = LOX(j)

j =0

You can also use the MALLOC intrinsic to allocate memory from the heap

and assign its return value to a pointer. Once you are done with the allocated

memory, you should use the FREE intrinsic to release the memory so that it

is available for reuse.

If you are using the pointer to manipulate a device that resides at a fixed

address, you can assign the address to the pointer, using either an integer

constant or integer expression.

Under certain circumstances, Cray-style pointers can cause erratic program

behavior—especially if the program has been optimized. To ensure correct

behavior, observe the following:

® Subroutines and functions must not save the address of any of their
arguments between calls.

Intel® Fortran Statements 1 O

* A function must not return the address of any of its arguments.
® Only those variables whose addresses are explicitly taken with the
LOC function must be referenced through a pointer.

Example

In the following example, the function MALLCC returns either the address of
the block of memory it allocated or 0 if MALLOC was unable to allocate
enough memory. The formal argument nel emcontains the number of array
elements and is multiplied by 4 to obtain the number of bytes that MALLOC
is to allocate. The FREE intrinsic returns memory to the heap for reuse.

SUBRQUTI NE print_iarr(nelem
PO NTER (p, iarr(nelen)
p = MALLOC(4*nelem)
I F (p. EQ 0) THEN
PRI NT *, ‘MALLOC failed.’
ELSE
DOi = 1,nelem
iarr(i) =i
END DO
PRINT *, (iarr(i),i=1,nelem
CALL FREE(p)
ENDI F
RETURN
END

NOTE. Pointers can be different sizes on different architectures.
EQUI VALENCE of pointers may have unpredictable results.

NOTE. Using Cray pointers with LOC or | ADDR fo initialize them is
discouraged. It has detrimental effects on performance. Use Fortran 95
style pointers instead.

10-155

1 () Intel Fortran Programmer s Reference

10-156

Related Statements
PO NTER (standard Fortran 95)

Related Concepts

For more information about pointers, see Chapter 3, Data Types and Data
Objects.

POINTER (Statement and Attribute)

Specifies variables with the POINTER

The syntax of a type declaration statement with the PO NTER attribute is:

type, attrib-list :: dummy-argunent-name-1i st

type is a valid type specification (I NTEGER, REAL,
LOG CAL, CHARACTER, TYPE (nane), etc.), as
described in

attrib-1ist is a comma-separated list of attributes including
PO NTER and optionally those attributes
compatible with it, namely:

DI MENSI ON PRI VATE SAVE
OPTI ONAL PUBLI C

dunmy- ar gunment - naneis a comma-separated list of
l'i st dunmy- ar gunent - nanes.
The syntax of the PO NTER statement is:
PO NTER [::] object-nane [(deferred-shape-spec-list)]
[, object-nane [(deferred-shape-spec-list)]]...
obj ect - nane is a data object or function result.

Intel® Fortran Statements 1 O
def err ed- shape- spec-1i st

is a comma-separated list of colons.

Description

A PO NTER attribute or statement specifies that the named variables may
be pointers to some target object. Pointers provide a capability for creating
dynamic objects, such as dynamic-sized arrays and linked lists. An object
with a pointer attribute initially has no space reserved for its target. A
pointer is assigned space for its target when an ALLOCATE statement is
executed or when it is assigned to point to a target using a pointer
assignment statement.

Examples

In the first example, two array pointers are declared and used.
REAL, PO NTER :: weight (:,:,:)

REAL, PO NTER :: wreg (:,:,:)

! Extents are not specified; they are
I determ ned during execution.
READ *, i, j, k
ALLOCATE (weight (i, j, k))
I weight is created.
wreg => weight (3:i-2, 3:j-2, 3:k-2)
! wreg is an alias for an array section.
avg_w = sum (w_reg) / ((i-4) * (j-4) * (k-4))
DEALLOCATE (wei ght)
! weight is no |onger needed.
The next example illustrates the use of pointers in a list-processing
application.
TYPE 1ink
REAL val ue
TYPE (link), PO NTER :: next
END TYPE I|ink

TYPE(link), PONTER :: list, save_list
NULLIFY (list) ' Initialize list.

10-157

1 () Intel Fortran Programmer s Reference

10-158

DO
READ (*, *, | COSTAT=no_nore) val ue
IF (no_nore /=0) EXIT
save_list => |ist
ALLOCATE (list) ! Add link to head of list.
list % value = val ue
list %next => save |ist
END DO
! Linked list renpbved when no | onger needed.
DO
I F (. NOT. ASSOCI ATED (list)) EXIT
save_list => list % next
DEALLOCATE (list)
list => save_ |ist
END DO

Related Statements
ALLOCATE, DEALLOCATE, NULLI FY and TARGET

Related Concepts
The elements of the Fortran 95 pointer facility are:
* The PO NTERand TARGET attributes: see

® The ALLOCATE, DEALLOCATE, and NULLI FY statements: see

The following topics related to pointers are discussed elsewhere in this
manual:

* Declaring pointers:

* Pointer arrays:

* Pointer assignment:

Intel® Fortran Statements 1 O

PRINT

Writes to standard output.

The syntax of the PRI NT statement can take one of two forms:

* Formatted and list-directed syntax:
PRINT format [, output-list]
® Namelist-directed syntax:
PRI NT nanme

f or mat is one of the following:

* Anasterisk (*), specifying list-directed I/O. For
information about list-directed 1/0, see

¢ The label of a FORMAT statement containing the
format specification.

® Aninteger variable that has been assigned the label
of a FORVAT statement.

®* Anembedded format specification. For information
about format specifications, see

nane is the name of a namelist group, as previously defined
by a NAMELI ST statement. Using the namelist-directed
syntax, the PRI NT statement sends data in the namelist
group to standard output. To direct output to a connected
file, you must use the WRI TE statement and include the
NML=specifier.

out put-1i st is a comma-separated list of data items for output. The
data items can include expressions and implied-DOlists;
see for more detailed
information.

10-159

1 () Intel Fortran Programmer s Reference

10-160

Description

The PRI NT statement transfers data from memory to standard output.
The PRI NT statement can be used to perform formatted, list-directed, and
namelist-directed I/O only.

To direct output to a connected file, use the WRI TE statement.

Examples

The examples in this section illustrate different uses of the PRI NT
statement.

Formatted Output

The following statement writes the contents of the variables num and des
to standard output, using the format specification in the FORMAT statement
at label 10:

PRI NT 10, num des

List-directed Output

The following statement uses list-directed formatting to print the literal
string X= and the value of the variable x:

PRINT *, 'x=', X

Embedded Format Specification

The following statement uses an embedded format specification to print the
same output:

PRINT ' (A2, F8.2)', 'x=', X

Namelist-directed Output

The following statement prints all variables in the namelist group coor d,
using namelist-directed formatting:

PRI NT coord

Related Statements
VRl TE

Intel® Fortran Statements 1 O

For information about I/O concepts, see ,
which also gives example programs that perform I/O. For information about
I/O formatting, see

Related Concepts

PRIVATE (Statement and Attribute)

Prevents access to module entities by
use association.

The syntax of a type declaration statement with the PRI VATE attribute is:
type, attrib-list :: access-id-list
type is a valid type specification (I NTEGER, REAL,

LOd CAL, CHARACTER, TYPE (name), etc.), as
described in

attrib-1ist is a comma-separated list of attributes including
PRI VATE and optionally those attributes compatible
with it, namely:

ALLOCATABLE I NTRI NSI C SAVE
DI MENSI ON PARAMETER TARGET
EXTERNAL PO NTER

access-id- i stisacomma-separated list of one or more of the
following:

¢ constant-name

® variable-name

¢ procedure-name

¢ defined-type-name

* namelist-group-name

* OPERATOR(operator)
® ASSIGNMENT (=)

The syntax of the PRI VATE statement is:
PRI VATE [[::] access-id-list]

10-161

1 () Intel Fortran Programmer s Reference

Description

The PRI VATE attribute may appear only in the specification part of a
module. The default accessibility in a module is PUBLI C; it can be changed
to PRI VATE using a statement without a list. However, only one PRI VATE
accessibility statement without a list is permitted in a module.

The PRI VATE attribute in a type statement or in an accessibility statement
restricts the accessibility of entities such as module variables, type
definitions, functions, and named constants. USE statements may restrict
accessibility further.

A derived type may contain a PRI VATE attribute or an internal PRI VATE
statement, if it is defined in a module. The internal PRI VATE statement in a
type definition makes the components unavailable outside the module even
though the type itself might be available.

The PRI VATE statement may also be used to restrict access to subroutines,
generic specifiers, and namelist groups.

The PRI VATE specification for a generic name, operator, or assignment
does not apply to any specific name unless the specific name is the same as
the generic name.

Examples

MODULE fouri er
PUBLI C
I PUBLI C unl ess explicitly PRI VATE
COWPLEX, PRIVATE :: fft
! FFT is accessible only in nodul e.
TYPE (structure_nane), PRIVATE :: &

structure_a, structure_b

PRI VATE a, b, ¢
I a, b and c are accessible only within
! this nodul e.
PUBLIC r, s, t
' r, s, and t are accessible outside the
I nodul e.

END MODULE f ouri er

10-162

Intel® Fortran Statements 1 O

MODULE pl ace
PRI VATE
I Change default accessibility to PRI VATE
| NTERFACE OPERATOR (.st.)
MODULE PROCEDURE xst
END | NTERFACE

PUBLI C OPERATOR (. st.)
! This makes .st. public; everything else is
I private.
LOG CAL, DI MENSION (100) :: It
CHARACTER(20) :: name
| NTEGER ix, iy
END MODULE pl ace

Related Statements
PUBLI Cand USE

Related Concepts

The following are discussed elsewhere in this manual:
® Derived types: Chapter 3,

®* Modules: Chapter 7,

® Use association: Chapter 7,

* Interface blocks: Chapter 7,

®* OPERATORand ASSI GNVENT clauses: Chapter 7,

PROGRAM

Identifies the main program unit.

PROGRAM nane

10-163

1 () Intel Fortran Programmer s Reference

name is the name of the program.

Description

The optional PROGRAMstatement assigns a name to the main program unit.
name does not have to match the main program’s filename. However, if the
corresponding END PROGRAMstatement specifies a name, it must match
nane.

If the PROGRAMSstatement is specified, it must be the first statement in the
main program unit.

Example

! A programw th a nane.
PROGRAM nai n_pr ogram

PRINT *, 'This programdoesn''t do nuch.'
END PROGRAM mei n_program

Related Statements
END

Related Concepts

For information about the main program unit, see

PUBLIC (Statement and Attribute)

Enables access to module entities by use
association.

The syntax of a type declaration statement with the PUBLI C attribute is:
type, attrib-list :: access-id-list

10-164

Intel® Fortran Statements 1 O

type is a valid type specification (I NTEGER, REAL,
LOG CAL, CHARACTER, TYPE (nane), etc.), as
described in

attrib-list isacomma-separated list of attributes including
PUBLI Cand optionally those attributes compatible with

it, namely:

ALLOCATABLE I NTRINSI C SAVE

DI MENSI ON PARAMETER TARGET
EXTERNAL PO NTER VOLATI LE

access-id-1i st isacomma-separated list of one or more of the following:
¢ constant-name
® variable-name
® procedure-name
® defined-type-name
®* namelist-group-name
* OPERATOR(operator)
® ASSIGNMENT (=)
The syntax of the PUBLI C statement is:
PUBLIC [[::] access-id-list]

Description

The PUBLI C attribute may appear only in the specification part of a
module. The default accessibility in a module is PUBLI C; it can be
reaftfirmed using a PUBLI C statement without a list. However, only one
PUBLI C accessibility statement without a list is permitted in a module.

The PUBLI Cattribute in a type statement or in an accessibility statement
permits access to entities such as module variables, type definitions,
functions, and named constants. USE statements may control accessibility
further.

A derived type may contain a PUBLI C attribute or an internal PUBLI C
statement, if it is defined in a module.

The PUBLI C statement may also be used to permit access to subroutines,
generic specifiers, and namelist groups.

10-165

1 () Intel Fortran Programmer s Reference

The PUBLI C specification for a generic name, operator, or assignment does
not apply to any specific name unless the specific name is the same as the
generic name.

Examples

MODULE fouri er
PUBLI C
I PUBLI C unl ess explicitly PRI VATE
COVPLEX, PRIVATE :: fft
I fft is accessible only in the nodule.
PRI VATE a, b, ¢
PUBLIC r, s, t
I a, b, and ¢ are accessible only in the
! module. r, s, and t are accessible
I outside the nodul e.

END MODULE fouri er

MODULE pl ace
PRI VATE
I Change default accessibility to PRI VATE
| NTERFACE OPERATOR (. st.)
MODULE PROCEDURE xst
END | NTERFACE

PUBLI C OPERATOR (. st.)
I This makes .st. public; everything else is
I private.
LOd CAL, DI MENSION (100) :: It
CHARACTER(20) :: nane
I NTEGER i x, iy
END MODULE PLACE

Related Statements
PRI VATE and USE

10-166

Intel® Fortran Statements 1 O

Related Concepts
The following are discussed elsewhere in this manual:

® Derived types: Chapter 3. Data Types and Data Objects

® Modules: Chapter 7. Program Units and Procedures

® Use association: Chapter 7, Program Units and Procedures

® Interface blocks: Chapter 7., Program Units and Procedures

® OPERATORand ASSI GNVENT clauses: Chapter 7, Program Units and
Procedures

READ

Inputs data from external and internal

files.

The syntax of the READ statement can take one of the following forms:

* Long form (for use when reading from a connected file):

®* READ (io-specifier-list) [input-list]

® Short form (for use when reading from standard input):

* READ format [, input-list]

® Short namelist-directed form (for use when reading from standard
input into a namelist group):

* READ nane

f or mat is one of the following:

® Anasterisk (*), specifying list-directed I/O. For
information about list-directed I/O, see Chapter 8.
I/O and File Handling.

® The label of a FORMAT statement containing the
format specification.

* An integer variable that has been assigned the label
of a FORMAT statement.

10-167

1 () Intel Fortran Programmer s Reference

10-168

name

i nput-1ist

i 0-specifier-
l'ist
[UNI T=] uni t

®* Anembedded format specification. For information
about embedded format specifications, see

is the name of a namelist group, as previously defined
by a NAMELI ST statement. Using the namelist-directed
syntax, the READ statement takes its input from standard
input. To read from a connected file, you must use the
NML= specifier with the full syntax form, as described
below.

is a comma-separated list of data items for input. The
data items can include variables and implied-DOlists;
see for more
information.

is a list of the following comma-separated I/O
specifiers:

specifies the unit connected to the input file. uni t can
be one of the following:

® The name of a character variable, indicating an
internal file

* Aninteger expression that evaluates to the unit
connected to an external file

®* An asterisk, indicating a pre-connection to unit 5
(standard input)

If the optional keyword UNI T= is omitted, uni t must be the first item in
i o-specifier-list.

[FMT=] f or mat

specifies the format specification for formatting the
data. f or mat can be one of the following:

® Anasterisk (*), specifying list-directed I/O. For
detailed information about list-directed 1/O, see

® The label of a FORMAT statement containing the
format specification.

®* Aninteger variable that has been assigned the label
of a FORMAT statement.

Intel® Fortran Statements 1 O

® A character expression that provides the format
specification. For detailed information about format
specifications, see

If the optional keyword FMI'= is omitted, f or mat must be the second item
ini o-specifier-list.

NOTE. The NM_= and FMI= specifier may not appear in the same
io-specifier-list.

[NML=] nane specifies the name of a namelist group for
namelist-directed input. name must have been
defined in a NAMELI ST statement. If the optional
keyword NML= is omitted, nane must be the
second item in the list. The first item must be the
unit specifier without the optional keyword
UNI T=.

The NML= and FMT= specifier may not both
appear in the same i o- speci fier-1ist.

ADVANCE=char act er - specifies whether to use advancing I/O for this

expressi on statement. char act er - expr essi on can be
one of the following arguments:

" YES' Use advancing formatted sequential /O
(default).
' NO Use nonadvancing formatted sequential 1/O.

If the ADVANCE= specifier appears ini 0- speci fi er-1ist,unit must
be connected to an external file opened for formatted sequential 1/0. Also,

ADVANCE=" NO must be specified if the EOR= or S| ZE= specifier appear

in the list. Nonadvancing I/O is incompatible with list-directed and namelist
/0.

For more information about nonadvancing I/O, see

10-169

1 () Intel Fortran Programmer s Reference

10-170

END=st nt - | abel

EOR=st nt - | abe

specifies the label of the executable statement to which
control passes if an end-of-file record is encountered.
This specifier is only valid for reading files opened for
sequential access.

specifies the label of the executable statement to which
control passes if an end-of-record condition is
encountered. This specifier may appear in

i o-specifier-list onlyif ADVANCE=' NO also
appears in the list.

| OSTAT=i nt eger-vari abl e

REC=i nt eger -
expr essi on

S| ZE=i nt eger -
vari abl e

Description

returns the I/O status after the statement executes. If
the statement successfully executes,

i nt eger -vari abl e is set to zero. If an end-of-file
record is encountered without an error condition, it is set
to a negative integer. If an error occurs,

i nt eger -vari abl e is set to a positive integer that
indicates which error occurred.

specifies the number of the record to be read from a file
connected for direct access. This specifier cannot appear
ini o-specifier-1list withthe NML=, ADVANCE=,
Sl ZE=, and ECR= specifiers, nor with FMI=* (for
list-directed 1/0).

returns the number of characters that have been read by
this READ statement. This specifier may appear in

i o-specifier-1list onlyif ADVANCE=' NO also
appears in the list.

The READ statement transfers data from an external or internal file to
internal storage. An external file can be opened for sequential access or
direct access. If it is opened for sequential access, the READ statement can
perform the following types of 1/O:

®* Formatted

Intel® Fortran Statements 1 O

* Unformatted
* List-directed
® Namelist-directed

If the file is opened for direct access, the READ statement can perform
formatted or unformatted I/O.

READ statements operating on internal files can perform formatted or
list-directed I/O.

Examples

The examples in this section illustrate different uses of the READ statement.

Formatted Sequential 1/0

The following READ statement reads 10 formatted records from a file
opened for sequential access, using an implied-DOlist to read the data into
the array x_ar r ay. If the end-of-file record is encountered before the array
is filled, execution control passes to the statement at label 99.

READ (41, '(F10.2)', END=99) (x_ array(i),i=1,10)

Nonadvancing I/0

The following READ statement takes its input from a file that was opened

for sequential access and is connected to unit 9. It uses nonadvancing I/O to

read an integer into the variable key. If the statement encounters the

end-of-record condition before it can complete execution, control will pass

to the executable statement at label 100. After the statement executes, the

number of characters that have been read will be stored in cnt .

| NTEGER :: key

READ (UNI T=9, '(14)', ADVANCE='NO, SIZE=cnt, &
EOR=100) key

Internal File

The following statement inputs a string of characters from the internal file
cfil e, uses an embedded format specification to perform format
conversion, and stores the results in the variables i and X:

READ (cfile, FMI=' (15, F10.5)') i, x

10-171

1 () Intel Fortran Programmer s Reference

10-172

Namelist-directed 1/O

Each of the four READ statements in the next example uses a different style
of syntax to do exactly the same thing:

NAMELI ST /nl/ a, b, ¢

READ (UNI T=5, NML=nl) ! 5 = standard i nput

READ (5, nl)

READ (*, NML=nl) ! * = standard input

READ nl ! assume standard i nput

List-directed 1/O

The following statement takes its data from standard input, storing the
converted value in i nt _var. The format conversion is based on the type of
i nt_var.
READ *, int_var
If you knew the format, you could substitute for the asterisk one of the
following:
® The label of the FORMAT statement with the format specification, as in
the following:
— READ 100, int_var
— 100 FORMAT(I 4)
®* An embedded format specification, as in the following:
— READ ' (14)', int_var

Unformatted Direct-access I/O

The following statement takes its input from the file connected to unit 31.
The REC= specifier indicates that the file has been opened for direct access
and that this statement will read the record whose number is stored in the
variable r ec_num If an I/O error occurs during the execution of the
statement, an error number will be stored in i 0s, and execution control will
branch to the executable statement at label 99.

READ (31, REC=rec_num ERR=99, |COSTAT=ios) a, b

Related Statements
CLOSE, OPEN, and WRI TE.

Intel® Fortran Statements 1 O
Related Concepts

For more about I/O concepts, including information about files and different
types of I/O, see . This chapter also gives
example programs using different types of I/O. For information about I/O
formatting, see

REAL

Declares entities of type real.

REAL [kind-spec] [[, attrib-list] ::] entity-1list

ki nd- spec is the kind type parameter that specifies the range and
precision of the entities in entity-list. kind-spec takes the
form:
([KI ND=] ki nd- par am
where ki nd- par amcan be a named constant or a
constant expression that has the integer value of 4, §, or
16. The size of the default type is 4.

As an extension, ki nd- spec can take the form:

* | en- param

where | en- par amis the integer 4, 8, or 16 (default = 4).

attrib-1ist is a list of one or more of the following attributes,
separated by commas:

ALLOCATABLE I NTRI NSI C PRI VATE
DI MENSI ON OPTI ONAL PUBLI C
EXTERNAL PARAMETER SAVE

I NTENT PO NTER TARGET

For information about each of the attributes, see the
corresponding statement in this chapter.

10-173

1 () Intel Fortran Programmer s Reference

10-174

entity-list isalist of entities, separated by commas. Each entity
takes the form:

nane [(array-spec)] [= initialization-expr]

where nane is the name of a variable or function, ar r ay- spec is a
comma-separated list of dimension bounds, and

initialization-expr isthe initial value for the
entity.

Description

The REAL statement is used to declare the length and properties of data that
approximate the mathematical real numbers. A kind parameter (if present)
indicates the representation method.

The REAL statement is constrained by the rules for all type declaration
statements, including the requirement that it precede all executable
statements.

Explicitly declaring an entity with the REAL statement overrides any
implicit typing rules in effect.

Ifattrib-1ist orinitialization-expr appear in the declaration,
entity-1ist mustbe preceded by the double colon.

Ifar r ay- spec is specified for an entity, it overrides any DI MENSI ON
attribute.

Initialization

initialization-expr mustbe aconstant expression that can be
evaluated at compile time.

The following entities may not be initialized:

®* Dummy arguments

®* Function results

® Allocatable arrays

* Pointers

* External names

* Intrinsic names

* Automatic objects

Intel® Fortran Statements 1 O

Ifattrib-1ist includes the PARAMETER attribute, each entity in
entity-1ist mustinclude an initialization expression.

To initialize an array in a REAL statement, you must use an array
constructor, as in the following example:

REAL, DIMENSION(4) :: rvec=(/ 1.1,2.2,3.3,4.4 /)
If an array is initialized, all items in the array must be initialized.

Implied-DOloops cannot be used to initialize an array in a type declaration
statement.

As an extension, an initializer may appear between slashes in a type
declaration statement, as follows:
REAL x/2.87/, y/93.34/, z/13.99/

The double colon (: :) may not be used with this initialization format.

Length Specification Extension

As a portability extension, Intel Fortran allows the following syntax for
specifying the length of an entity:

nane [*len] [(array-spec)] [= initialization-expr]
If (array- spec) is specified, *| en may appear on either side of
(array-spec).

If name appears with *| en, it overrides the length specified by

REAL*si ze. For example, the following statements are equivalent
declarations of X:

REAL (KIND = 8)::x
REAL*4 x*8

Example

The following are valid declarations:
REAL, TARGET :: X, Vy

REAL(KI ND=16) :: z

REAL(4), PARAMETER :: pi=3.14

Related Statements
DOUBLE PRECI SI ON

10-175

1 () Intel Fortran Programmer s Reference

10-176

Related Concepts
The following are discussed elsewhere in this manual:

* Implicit typing rules: Chapter 3, Data Types and Data Objects

® Data representation models: Chapter 3. Data Types and Data Objects

® Storage classes for variables: Chapter 3. Data Types and Data Objects

®* Automatic objects: Chapter 3, Data Types and Data Objects

® Arrays: Chapter 4, Arrays

® Expressions: Chapter 5, Expressions and Assignment

* Initialization expressions: Chapter 5. Expressions and Assignment

RECORD

Declares a record of a previously
defined structure.

RECORD/ st ruct - nane/ rec-nane [, rec-nane]...
[/struct-nane/rec-nane [, rec-nane]]...
struct-name is the name of a structure declared in a previous
structure definition.

rec- nane is a record name.

Description

Intel Fortran supports the RECORD statement as a compatibility extension.
New programs should use the derived type, a standard feature of Fortran 95.
For more information about derived types, see Chapter 3, Data Types and
Data Objects and the TYPE statement in this chapter.

The RECORD statement declares a record variable of a structure that has
been previously defined by a STRUCTURE statement. A record variable can
consist of multiple data items, called f i el ds. The STRUCTURE statement
is described separately in this chapter.

Intel® Fortran Statements 1 O

Referencing Record Fields

The syntax for referencing a field in a record depends on whether the field
itself is another record (a composite reference) or not (a simple reference).
Composite references have the following syntax:

rec-name [. substruct-fieldnane]...
Simple references have the following syntax:
rec-name [. substruct-fieldnanme]... sinple-fieldnane
rec-nane is the name of the record in which a composite or
simple field is being referenced.
substruct-field- isthe name of a nested structure or nested record
name field name, if applicable.
sinpl e-fi el d- name is the name of a lowest-level field, defined with a
type declaration statement. As indicated by the
syntax, the field could be part of a nested structure
or nested record.
Given the following structure definition and record declarations:
STRUCTURE [/ abc/
REAL a, b, c(5)
STRUCTURE / xyz/ xyz, xyzs(5)
I NTEGER X, vy, z(3)
END STRUCTURE
END STRUCTURE

RECORD / abc/ abc, abcs(100)

RECORD / xyz/ xyz

the following are composite references:

abc Iconposite record references
abcs(1)

Xyz

abcs(i dx)

abc. xyz !conposite field references
abc. xyzs(3)

and the following are simple references:

abc. a

10-177

1 () Intel Fortran Programmer s Reference

10-178

abc. c(1)

XYyZ. X

xyz.z(1)

abc. xyz. x

abcs(idx).xyz.y(1)

abcs(2).xyzs(3).z(1)

Composite references can be either to an entire record or to a record field
that is itself a structure or record.

Rules for Record Field

Arrays of records can be created as follows:
RECORD / student/ students(1000)
or

RECORD /st udent/ students

DI MENSI ON st udents (1000)

In either case a 1000-record array called st udent s of structure st udent
is declared.

Records can be placed in common blocks. The following code places the
st udent s array (declared above) in the common block f r osh, along with
variables a, b, and c:

COMWON /frosh/ a, b, c, students

Simple field references can appear wherever a variable can appear. The
following assigns values to the fields of record r of structure st r uct :

STRUCTURE /struct/
| NTEGER i
REAL a

END STRUCTURE

RECORD /struct/ r

r.i =r.i +1

r.a = FLOAT(r.i) - 2.7

Composite assignment is allowed for two records or two composite fields of
the same structure—that is, the record declaration statements for both

records must have specified the same st r uct - nane. For example, the
following is legal:

STRUCTURE /string/ BYTE | en

Intel® Fortran Statements 1 O

CHARACTER*1 str(254)

END STRUCTURE

RECORD /string/ strl, str2
strl = str2

The following example is also valid and uses composite assignment to
assign the value of the record edat e of structure dat e to a field of the
same structure (when) in the record event:

STRUCTURE / event/
CHARACTER* 20 desc
STRUCTURE / dat e/ when

BYTE nont h, day

| NTEGER* 2 year
END STRUCTURE
END STRUCTURE

RECORD / date/ edate

RECORD / event/ event
edate.nonth =1

edat e. day = 6edate.year = 62
event.desc = 'Party for Joanne'

I conposite assignnent of record to field
I of record--both have sane structure
event.when = edate

Even though the following records are of identical structures—that is, the
fields of both structures have the same type, size, and format—the code is
invalid because the structures have a different name:

STRUCTURE /i ntarray/
BYTE el em _count
| NTEGER arr (100)
END STRUCTURE

STRUCTURE /i array/

BYTE el em count
| NTEGER arr (100)

10-179

1 O Intel Fortran Programmer’s Reference

10-180

END STRUCTURE

RECORD /intarray/ iarrayl
RECORD /i array/ iarray2

I The next assignnent won't work. The two

! records are not of the same structure.

iarrayl = iarray2 ! Invalid

When performing I/O on structures and records, composite record and field
references can appear only in unformatted I/O statements. They are not
allowed in formatted, list-directed, or namelist-directed I/O statements.
However, simple field references can appear in all types of I/O statements.
(For information about formatted and unformatted I/O, see Chapter 9. [/O
Formatting.)

A record name or composite field reference can appear as either a formal or
an actual argument to a subroutine or function. Formal and actual arguments
must have the same size as well as the same number, type, and order of
fields. (For information about procedure arguments, see

Chapter 7, Program Units and Procedures.)

Composite record and field arguments to subroutines and functions are
passed by reference, just like other Intel Fortran arguments.

Adjustable arrays are allowed in RECORD statements that declare formal
arguments.

Do not name a field with any of the following:

* Logical constants, . TRUE. and . FALSE.

®* Logical operators, such as . OR. , . AND. , and . NOT.

® Relational operators, such as. EQ ,. LT. , and . NEQV.
® The name of a defined operator

Related Statements
STRUCTURE and TYPE

Related Concepts

For information about derived types, see Chapter 3, Data Types and Data
Objects.

Intel® Fortran Statements 1 O

RETURN

Returns control from a subprogram.

RETURN [scal ar -i nt eger - expr essi on]

scal ar-i nt eger- is an optional scalar integer expression that is
expressi on evaluated when the RETURN statement is
executed. It determines which alternate return is
used.
Description

A RETURN statement can appear only in a subprogram.

An expression may appear in a RETURN statement only if alternate returns
(one or more asterisks) are specified as dummy arguments in the relevant
FUNCTI ON, SUBROUTI NE, or ENTRY statement of the subprogram. An
expression with a value i in the range will return to the i th asterisk
argument (specified as *| abel) in the actual argument list. A normal
return is executed if i is not in the range 1 to n, where n is the number of
dummy argument alternate returns specified.

Example

SUBRQUTI NE cal ¢ (y, 2z)

! Subroutine calc checks the range of y. If
! it exceeds the pernitted range, it calls
! an error handler and stops the program
IF (y > ymax) GO TO 303

RETURN

' It returns to the caller of calc if the

I calculation proceeds to normal conpletion.
303 CALL err (3, "OUT OF RANGE")

STOP 303

END

10-181

1 () Intel Fortran Programmer s Reference

Related Statements
SUBRQOUTI| NE and FUNCTI ON

Related Concepts

Procedures are described in

REWIND

Positions file at its initial point.

The syntax of the REW ND statement can take one of the following forms:

® Short form:

REW ND i nt eger - expr essi on

* Long form:

REW ND (i o-specifier-list)

i nt eger - expr essi onis the unit connected to a sequential file or device.

i 0-specifier-1list isalistofthe following comma-separated I/O
specifiers:

[UNI T=] uni t specifies the unit connected to an external file
opened for sequential access. uni t must be an
integer expression that evaluates to a number
greater than 0. If the optional keyword UNI T= is
omitted, uni t must be the first item in
i o-specifier-list.

ERR=st nt - | abel specifies the label of the executable statement to
which control passes if an error occurs during
statement execution.

| OSTAT=i nt eger - returns the I/O status after the statement executes.

vari abl e If the statement executes successfully,
i nt eger-vari abl e is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

10-182

Intel® Fortran Statements 1 O

The REW ND statement repositions the file connected to the specified unit at
the start of the first record. If the file is already at its starting point or if the
unit is not connected to a file, the REW ND statement has no effect.

Description

Examples

The following example of the REW ND statement repositions the file
connected to unit 10 to its initial point:

REW ND 10

The next example repositions to its initial point the file connected to unit 21.
If an error occurs during the execution of the statement, control passes to
the statement at label 99, and the error code is returned in i 0s:

REW ND (21, ERR=99, | OSTAT=i 0s)

Related Statements
BACKSPACE, ENDFI LE, and OPEN

Related Concepts

For information about I/O concepts, see
This chapter also gives example programs performing /0.

SAVE (Statement and Attribute)

Stores variables in static memory.

A type declaration statement with the SAVE attribute is:
type , attrib-list :: save-list

type is a valid type specification (I NTEGER, REAL,
LOG CAL, CHARACTER, TYPE (nane), etc.), as
described in

10-183

1 () Intel Fortran Programmer s Reference

10-184

attrib-list A comma-separated list of attributes including SAVE and
optionally those attributes compatible with it, namely:

ALLOCATABLE PRI VATE TARGET
DI MENSI ON PUBLI C
PO NTER STATI C
save-li st is a comma-separated list of names of objects to save.

The syntax of the SAVE statement is:
SAVE [[::] save-list]

Description

The SAVE statement and attribute cause objects in a subroutine or function
to be stored in static memory, instead of being dynamically allocated
whenever the procedure is invoked (the default case). A saved object retains
its value and definition, association, and allocation status between
invocations of the program unit in which the saved object is declared.

If save-|i st is omitted, everything in the scoping unit that can be saved
is saved. No other explicit occurrences of the SAVE attribute or the SAVE
statement are allowed.

The names of the following may appear in save- i st :

® Scalar variables

* Arrays

®* Named common blocks

® Derived type objects

®* Records

If the name of a common block appears in save- | i st , it must be
delimited by slashes (for example, / my_bl ock/); all variables in the
named common block are saved. If a common block is saved in one
program unit, it must be saved in all program units (except main) where it
appears.

Intel Fortran always saves all common blocks unless they appear in a
dynamic COMMON command-liner switch.

The following must not appear in save- | i st :

Intel® Fortran Statements 1 O

* Formal argument names

® Procedure names

® Selected items in a common block

® Variables declared with the AUTOVATI C statement or attribute

* Function results

* Automatic data objects (such as automatic arrays, allocatable arrays,
automatic character strings, and Fortran 95 pointers)

Initializing a variable in a DATA statement or in a type declaration statement
implies that the variable has the SAVE attribute, unless the variable is in a
named common block in a block data subprogram.

A SAVE statement in a main program unit has no effect.

NOTE. SAVE, used on variables that are often used in your program, is
likely to have a negative impact on your program’s performance. It is
better to make sure early in the routine that you assign a value to often
used variables or declare them in COMMON and use a temporary copy of
the COMMON variable for USEs in a routine.

Example

The SAVE statement in the following example saves the variables a, b, and
c, as well as the variables in the common block dot :

SUBRQUTI NE mat ri x

SAVE a, b, c, /dot/

RETURN

The SAVE statement in the next example saves the values of all of the
variables in the subroutine f i xi t :

SUBROUTI NE fi xit

SAVE

RETURN

Related Statements
AUTOVATI Cand STATI C

10-185

1 () Intel Fortran Programmer s Reference

10-186

Related Concepts

Storage classes are described in ,
and recursion is described in

SELECT CASE

Begins CASE construct.

[construct-nane :] SELECT CASE (case-expr)
const r uct - naneis the name given to the CASE construct.

case-expr is a scalar expression of type integer, character, or
logical.

Description

The SELECT CASE statement, the first statement of a CASE construct,
causes case- expr to be evaluated, resulting in the case index. The CASE
construct uses the case index to determine which of its statement blocks to
execute.

If const ruct - namne is specified, it must also appear in the END SELECT
statement.

Example

For an example of the SELECT CASE statement, see the CASE statement in
this chapter.

Related Statements
CASE and END (construct)

Related Concepts

For information about the CASE construct, see

Intel® Fortran Statements 1 O

SEQUENCE

Imposes storage sequence on
components of derived type object.

SEQUENCE

Description

The SEQUENCE statement can appear once within any derived type
definition; its presence specifies that the storage sequence of the elements is
the same as their definition order. The derived type then becomes a
sequence derived type. The SEQUENCE statement is used:

* To allow objects of this type to be storage associated, or
®* To allow actual and dummy arguments to have the same type without
use or host association.
Points to note:
* Ifacomponent of a sequence derived type is a derived type, then it
must also be a sequence derived type.
® The storage association statements COMMON and EQUI VALENCE can be
applied to structures when sequencing is imposed on their type
definitions.
® The corresponding actual and dummy arguments of derived types are
of the same derived type if the structures refer to the same type
definition. Alternatively, they are of the same type if all of the
following conditions are true:
— They refer to different type definitions with the same name.
— They have the SEQUENCE statement in their definitions.
— The components have the same names and types and are in the
same order.
— None of the components is of a private type or of a type that has
private access.

10-187

1 () Intel Fortran Programmer s Reference

Examples
TYPE weat her
! weather is a sequence derived type with two
I character conponents & two integer conponents.
SEQUENCE
CHARACTER(LEN=32) pl ace
| NTEGER hi gh_tenp, |ow_ tenp
CHARACTER(LEN=16) conditi ons
END TYPE weat her

Related Statements
TYPE, COVMON, and EQUI VALENCE

Related Concepts

Storage association is discussed in Chapter 3. Data Types and Data Objects,
and argument association in Chapter 7, Program Units and Procedures.

STATIC (Statement and Attribute)

Gives variables and arrays static
storage. (Extension)

The syntax of a type declaration statement with the STATI C attribute is:

type, attribute-list :: entity-list

type is a valid type specification (I NTEGER, REAL,
LOGICAL, CHARACTER, TYPE (nane), etc.), as
described in Chapter 3, Data Types and Data Objects.

10-188

Intel® Fortran Statements 1 O

attribute-list isacomma-separated list of attributes including
STATI Cand optionally those attributes compatible with

it, namely:

ALLOCATABLE PRI VATE VOLATI LE
DI MENSI ON SAVE

PO NTER TARGET

entity-1ist isacomma-separated list of variables and arrays.
The syntax of the STATIC statement is:
STATIC [::] entity-list

Description

The STATI Cstatement and attribute is a Intel Fortran extension. Variables
possessing the STATI C attribute retain their storage location for the
duration of the program. A STATI C variable declared within a procedure
will therefore retain its value between calls of the procedure.

Examples
SUBROUTI NE wor k_out (first_call)
LOG CAL first _call
| NTEGER, STATIC :: ncalls
IF (first_call) ncalls =0
ncalls = ncalls + 1
! Record the number of tines the subroutine
I has been call ed.

Related Statements
AUTOVATI C and SAVE

Related Concepts

Storage classes for variables are discussed in Chapter 3, Data Types and
Data Objects.

10-189

1 () Intel Fortran Programmer s Reference

STOP

Terminates program execution.

STOP [st op-code]

st op- code is a character constant, a named constant, or a list of up
to 5 digits.

Description

The STOP statement terminates program execution and optionally prints a
message to standard error or standard list.

STOP also sends a message to standard error, dependent on whether digits,
characters, or nothing was specified with the STOP statement:

* Ifdigits are specified, the message “STOP di gi t S” is written to
standard error.

® [fa character expression is specified, the message “STOP
char act er - expr essi on” is written.

* Ifnothing appears after STOP, nothing is written.

Example
IF (b .LT. c) STOP ' BAD VALUE!'

Related Statements
PAUSE

Related Concepts

For information about the STOP statement and other flow control
statements, see

10-190

Intel® Fortran Statements 1 O

STRUCTURE

Defines a named structure.

STRUCTURE / struct - nane/
field-def

END STRUCTURE

struct-name is the structure’s name, delimited by slashes.
st ruct - nane can be used later to declare a record.

field-def 1s a field definition.

Description

Intel Fortran supports the STRUCTURE statement as a compatibility
extension. New programs should use the derived type, a standard feature of
Fortran 95; derived types provide the same functionality as named
structures. For more information about derived types, see Chapter 3, Data
Types and Data Objects and the TYPE (declaration) statement in this
chapter.

The STRUCTURE statement defines the type, size, and layout of a structure’s
fields, and assigns a name to the structure. Once a structure is defined, you
can declare records of that structure using the RECORD statement and can
manipulate the record’s fields.

A structure definition pertains only to the program unit in which it is
defined. For example, you cannot define a structure in the main program
unit and then declare a record of that structure in a subprogram unit. Instead,
the structure must be explicitly defined again in the subprogram unit.

fiel d-def canbe any of the following:

®* A type declaration statement
®* A nested structure definition
®* A nested record declaration
® A union definition

Each type of field definition is described in the remaining sections.

10-191

1 () Intel Fortran Programmer s Reference

10-192

Field Definition as Type Declaration

At the simplest level, f i el d- def can be a type declaration statement. As
such, fi el d- def has the same syntax as a standard Fortran 95 type
declaration statement, except that the only attribute that can be specified is
the DI MENSI ON attribute. A variable defined with a type declaration
statement is called af i el d.

The following code uses simple type declaration statements to define a
structure named dat e with three fields: nont h and day of type BYTE, and
year of type | NTEGER(KI ND=2) :

STRUCTURE / dat e/

BYTE :: nonth, day

| NTEGER(KI ND=2) :: year
END STRUCTURE

A type declaration statement in a structure definition can optionally define
initial values for the fields. For example:

STRUCTURE / xyz/
REAL :: x = 1.0, y =2.0, z = 3.0
END STRUCTURE

Thereafter, any record declared of structure xyz will have its X, y, and z
fields initially set to 1.0, 2.0, and 3.0 respectively. Consider the following:

RECORD / xyz/ xyz
PRI NT *, Xyz.X, Xyz.y, Xyz.z
Even though no values have been assigned to the fields of xyz with an
assignment statement, the above code will display:
1.0 2.0 3.0
Implicit typing is not allowed in a structure definition. For example, the
following code would cause a compile error:
STRUCTURE / di mensi ons/
X, ¥y, z ! illegal
END STRUCTURE
A correct way to code this would be:
STRUCTURE / di nmensi ons/
REAL(KIND=8) :: x, y, z ! legal
END STRUCTURE

A field type declaration statenment can al so define an
array, as in the foll ow ng:

Intel® Fortran Statements 1 O

STRUCTURE /f oo_bar/

| NTEGER f 0o(10)

END STRUCTURE
or, using Fortran 95 syntax:
STRUCTURE /f oo_bar/

REAL, DI MENSI ON(30, 50) :: bar
END STRUCTURE

The array’s dimensions must in any case appear in the type statement. The
DI MENSI ON statement (but not the DI MENSI ON attribute) is illegal in a
structure definition. The following code defines the structure, st ri ng,
which uses a type declaration statement to define an array field st r of type
CHARACTER(LEN=1) , containing 254 elements:

STRUCTURE /stri ng/

CHARACTER(LEN=1) :: str(254)! Contains string
I NTEGER :: length I string’s length
END STRUCTURE

As mentioned, the DI MENSI ON statement cannot be used in a structure
definition. For example, the following code would cause a compile error:

STRUCTURE /real _array/
REAL :: rarray
DI MENSI ON arr (100) I illegal exanple
END STRUCTURE
A correct way to code this would be:
STRUCTURE /real _array/
REAL :: rarray(100)
END STRUCTURE
or
STRUCTURE /real _array/
REAL, DI MENSI ON(100) :: arr
END STRUCTURE
Assumed-size and adjustable arrays are also illegal in structure definitions.
For example, the following is illegal:
STRUCTURE /assuned_si ze/ ! illegal exanple
CHARACTER*(*) :: carray
END STRUCTURE

10-193

1 () Intel Fortran Programmer s Reference

10-194

The following is also illegal:

STRUCTURE /adj _array/ ! illegal exanple
| NTEGER :: size
REAL :: iarray(size)

END STRUCTURE

For alignment purposes, Intel Fortran provides the %I LL field name. It
enables the programmer to pad a record to ensure proper alignment. The
padding does not have a name and is therefore not accessible. For example,
the following structure, si xbyt es, creates a 6-byte structure, of which 4
bytes are inaccessible filler bytes:

STRUCTURE / si xbyt es/
| NTEGER(KI ND=2) :: twobytes
CHARACTER(LEN=4) :: %I LL
END STRUCTURE
%1 LL can be of any type and may appear more than once in a structure.

%-1 LL should not be needed in normal usage. The compiler automatically
adds padding to ensure proper alignment.

Nested Structures

A field-def canitself be a structure definition, known as a nested
structure. The syntax of a nested structure definition is:

STRUCTURE /struct-nanme/struct-field-Ilist
field-def

END STRUCTURE

struct-nane isthe structure’s name (delimited by slashes), which can
be used later to declare a record.

struct-fiel d- isalist of one or more names of nested structure field

Iist names separated by commas.

field-def can be one of the following regular field definitions
(defined in the same way as an unnested structure field):
* A type declaration statement

Intel® Fortran Statements 1 O

® Another nested structure
¢ A nested record
® A union definition
Note that a structure definition allows multiple levels of nesting.
A nested structure definition is the same as an unnested structure definition,
with two exceptions:
®* /struct-nane/ isoptional in a nested structure.

®* A nested structure definition must include a list of one or more
structure field names (struct-field-1ist).

If/ struct - name/ is present in a nested structure definition, the structure
st ruct - nane can also be used in subsequent record declarations. For
example, the following code defines a structure named per son, which
contains a nested structure named name. The structure’s field name is nm
and contains three CHARACTER* 10 fields: | ast, fi rst,and m d.

STRUCTURE / per son/
| NTECER :: person_id
! Define the nested structure '"name' with the
I field nane 'nni.
STRUCTURE / nane/ nm
CHARACTER(LEN=10) :: last, first, md
END STRUCTURE
END STRUCTURE

Given this definition, the following code defines the record p of structure
per son and the record n of structure nane:

RECORD / person/p
RECORD / name/ n

If / st ruct - nane/ is not present, then the structure can be used only in
this declaration. For example, we could redefine the per son structure so
that the nested structure no longer has a name:

STRUCTURE / per son/
I NTEGER :: person_id
STRUCTURE nm
CHARACTER(LEN=10) :: last, first, md
END STRUCTURE
END STRUCTURE

10-195

1 () Intel Fortran Programmer s Reference

10-196

There is no way to declare a separate record of the nested structure because
it has no name. Note, however, that the nested structure still has a field
name, M The field name is required.

To declare an array of nested structures, simply specify a dimension
declarator with the structure’s field name. For example, the following
structure definition contains a nested, 3-element array of structures with
field name phones of structure phone:

STRUCTURE [/ per son/
| NTEGER :: person_id
! Define the nested structure 'nane' with the
I field name 'nni.
STRUCTURE / nanme/ nm
CHARACTER(LEN=10) :: last, first, md
END STRUCTURE
! Nested array of structures.
STRUCTURE / phone/ phones(3)
| NTEGER(KI ND=2) :: area_code
| NTEGER :: nunber
END STRUCTURE
END STRUCTURE

Nested Records

A fiel d-def can be arecord declaration, known as a nested record. (See
the RECORD statement in this chapter for information about record
declarations.) A nested record declaration must use a structure that has
already been defined. The following code first defines the structure dat e. It
then declares the structure event , which contains the nested record when
of structure dat e:

STRUCTURE / dat e/

BYTE :: nonth, day
| NTEGER :: year

END STRUCTURE

STRUCTURE / event/
CHARACTER :: what, where
RECORD / dat e/ when

END STRUCTURE

Intel® Fortran Statements 1 O

A structure definition can also declare an array of nested records. For
example, the following code defines the structure cal endar, which
contains a 100-element array of records of structure event :

STRUCTURE / cal endar/

! nunber of events
| NTEGER(KI ND=2) :: event_count
I array of event records
RECORD / event/ event s(100)

END STRUCTURE

Unions

Afiel d-def can be aunion—a form of nested structure in which two or
more map blocks share memory space. The UNI ONand MAP statements
together define a union. The syntax of a union definition is:

UNI ON
map- bl ock
map- bl ock

END UNI ON

where map- bl ock is defined by a MAP statement and one or more field
definitions. All map blocks within the enclosing UNI ON statement share the
same memory space in a record. The syntax for defining a map block is:

VAP
field-def

END NMAP

where fi el d-def can be one of the following:
* A type declaration statement

®* Another nested structure

®* A nested record

®* A union definition

Note that a structure definition allows multiple levels of nesting.

10-197

1 () Intel Fortran Programmer s Reference

10-198

For programmers who are familiar with C or Pascal, Intel Fortran unions are
similar to unions in C and variant records in Pascal. Intel Fortran unions
differ from C unions in that they must be defined inside a structure
definition.

The structure below contains a union with two map blocks. The first
contains the integer field i nt ; the second contains the real field f | oat .

STRUCTURE /var/
INTEGER :: type ! 1=INTEGER, 2=REAL
UNI ON
VAP
I NTEGER :: int
END MAP
VAP
REAL :: fl oat
END MAP
END UNI ON
END STRUCTURE
To declare a record of this structure named v, use the following RECORD
statement:
RECORD /var/ v

The declaration of the record v reserves 8 bytes of storage: 4 bytes for the
t ype field and 4 bytes to be shared by i nt and f | oat . If you use the i nt
field to access the 4 bytes, they will be interpreted as an integer; if you use
the f | oat field, they will be interpreted as a real.

It is the programmer’s responsibility to ensure that appropriate values are
assigned to each field in a union. For instance, given the previous
declaration of v, the following assignments make sense:

v.type =1 ! set the type to integer

! access the storage shared by 'int' and 'fl oat'

I as an integer

v.int =3

In contrast, the following code would yield unexpected results, although it
would compile without errors:

v.type = 1! set the type to integer

I the next statenent contradicts the previous

I statenent

Intel® Fortran Statements 1 O
v.float = 3.14

Once a value is assigned to a map block, all other map blocks become
undefined. The reason is that all map blocks share memory space within a
union; therefore, the values of one map block may become altered if you
assign a value to a field in another map block. Consider the following
definition of a structure called st ruct and the declaration of a record
called r ec:

STRUCTURE /struct/
UNI ON
MAP
CHARACTER*8 :: s
END MAP
VAP
CHARACTER*1 :: c¢(8)
END MAP
END UNI ON
END STRUCTURE

RECORD /struct/ rec

If we made the following assignment to the s field:
rec.s = ' ABCDEFGH

and then executed the next two PRINT statements:
PRINT *, rec.s

PRINT *, rec.c

the output would be:

ABCDEFGH

ABCDEFGH

Now, if we set values in the ¢ field and display both fields again
rec.c(1) ="'1

rec.c(8) ='8
PRINT *, rec.s
PRINT *, rec.c
the output would be:
1BCDEFG8
1BCDEFG3

10-199

1 () Intel Fortran Programmer s Reference

10-200

Note how the s field has changed, even though it was not directly assigned
any new values. This is a result of the s and c field sharing the same
storage space in the union. Although this is valid coding—that is, it will not
cause a compiler or runtime error—it may cause unexpected results.

However, you can also use shared memory mapping to your benefit. The
fact that map blocks share space within a union makes unions useful for
equivalencing data within a record. For example, the following structure
could be used to mask off individual bytes in a 4-byte word:
STRUCTURE / wor dnmask/
UNI ON
MAP
| NTEGER(KI ND=4) :: word
END MAP
MAP
BYTE :: byteO, bytel, byte2, byte3
END MAP END UNI ON
END STRUCTURE

RECORD / wor dmask/ nmaskr ec

If we assign a value to the wor d field of maskr ec, we can then get the
individual values of all four bytes in maskr ec by looking at the fields

byt e0, byt el, byt e2, and byt e3. To see how the integer variable wor d
maps onto the byte variables byt €0, byt el, byt e2, and byt €3, use the
following statements:

maskrec. word = 32767

WRI TE(*, fmt=100) 'word ="', nmaskrec.word
WRI TE(*, 200) 'byte 0 = ', maskrec. byteO
WRI TE(*, 200) 'byte 1 ="', naskrec. bytel
WRI TE(*, 200) 'byte 2 ="', naskrec. byte2
WRI TE(*, 200) “byte 3 ="', naskrec. byte3

100 FORMAT(A, Z8.8)

200 FORMAT(A, Z2.2)

This code displays the following output:
word = 00007FFF

byte 0 = 00

Intel® Fortran Statements 1 O

byte 1 00
byte 2 7F
byte 3 FF

Such code, depending as it does on a specific word size, is inherently
nonportable.

Related Statements
RECORD and TYPE

Related Concepts
Derived Types are described in Chapter 3, Data Types and Data Objects.

SUBROUTINE

Begins the definition of a subroutine
subprogram.

[RECURSI VE] SUBROUTI NE subr-nane [([dumy-arg-1list])]

dunmy- ar g- | i st is a comma-separated list of zero or more of the

following:
® dummy- ar g- nanme

As indicated by the syntax, the parentheses surrounding the dummy
arguments may be omitted if there are no dummy arguments.

Description

The SUBROUTI NE statement is the first statement of a subroutine
subprogram.

Points to note:

* A subroutine subprogram is either an external, module, or internal
subprogram.

10-201

1 () Intel Fortran Programmer s Reference

10-202

If a subroutine calls itself directly or indirectly, the word RECURSI VE
must appear in the SUBROUT| NE statement. If the keyword

RECURSI VE is specified, the subroutine interface is explicit within the
subprogram.

The keyword SUBROUTI NE must appear on the END statement if the
subroutine is a module or internal procedure.

An asterisk in a subroutine dummy argument list designates an
alternate return.

The interface of an internal subroutine is explicit in its host. The
interface of a module subroutine is explicit within the module, and if it
is public, it is explicit in all program units using the module. The
interface of an external subroutine is implicit, but may be made explicit
by the use of an interface block.

Examples

Consider the following subroutines:
SUBROUTI NE exchange (X, V)

A subroutine definition with two argunents.

temp = x; X =y; y =tenp
END SUBROUTI NE exchange
SUBROUTI NE altitude (*, long, |at)

An alternate return

| MPLI CI' T NONE
| NTEGER, OPTIONAL :: long, |at
RETURN 1

END SUBROUTI NE al titude

The preceding subroutines may be referenced with the CALL statement, as
in the following program:

PROGRAM r ej ect

A subroutine reference.

CALL exchange (a,t)

I'A subroutine reference, including an

alternate return label, nissing optional
argunent, and an argunment keyword

Intel® Fortran Statements 1 O

CALL altitude (*90, lat = 49)
END PROGRAM r €] ect

Following are some other examples of subroutine statements:

SUBROUTI NE PRESSURE_SURFACE ! No argunents
SUBRQUTI NE TAFFY () ! Also no argunents
RECURSI VE SUBROUTI NE FACT (N, X)

Related Statements
CALL, END, ENTRY, FUNCTI ON, and RETURN

Related Concepts

Module procedure, internal procedure, generic procedure, defined
assignment, recursion, argument association, and scope are all covered in

TARGET (Statement and Attribute)

Allows variables and arrays to be
pointer targets.

The syntax of a type declaration statement with the TARGET attribute is:
type, attrib-list :: entity-1list
type is a valid type specification (I NTEGER, REAL,

LOG CAL, CHARACTER, TYPE (nane) , etc.), as
described in

attrib-1ist isacomma-separated list of attributes including
TARGET and optionally those attributes compatible with

it, namely:

ALLOCATABLE OPTI ONAL SAVE
DI MENSI ON PRI VATE

| NTENT PUBLI C

10-203

1 () Intel Fortran Programmer s Reference

10-204

entity-1list is a comma-separated list of entities. Each entity is of
the form:

array-nanme [(deferred-shape-spec-list)]

If (def err ed- shape- spec- i st) is omitted, it must be specified in
another declaration statement.

array- name is the name of an array being given the attribute
ALLOCATABLE.
def err ed- shape-spec-1i st
is a comma-separated list of colons, each colon
representing one dimension. Thus the rank of the array
is equal to the number of colons specified.
The syntax of the TARGET statement is:
TARGET [::] object-nanme [(array-spec)]
[, object-name [(array-spec)]]...
array-spec is one of the following:
* explicit-shape-spec
® assumed-shape-spec
® deferred-shape-spec
® assumed-size-spec
explicit-shape-specis|[| ower-bound :] upper-bound
assuned- shape- specis [| ower - bound]
def err ed- shape- specis :
assuned- si ze-spec is[explicit-shape-spec-list ,]
[l ower-bound :] *
That is, an assuned- si ze- spec isanexpl i ci t - shape-spec- i st
with the final upper bound given as *.

Description

The TARGET attribute or statement specifies that namne is a target that may
be pointed at by a pointer. A target may be either a scalar or an array.

The TARGET attribute allows the compiler to generate efficient code
because only those objects specified with the TARGET or PO NTER
attribute can be dynamically aliased.

Intel® Fortran Statements 1 O

If the target in a pointer assignment is a variable, then one of the following
must be true:
* It must have the TARGET attribute.

® [t must be the component of a structure, the element of an array
variable, or the substring of a character variable that has the TARGET
attribute.

*]t must have the PO NTER attribute.

If the target of a pointer assignment is an array section, the array must have
either the TARGET or the PO NTER attribute.

Examples

I NTEGER, PO NTER, DIMENSION(:,:) :: p

! pis a pointer array.

I NTEGER, TARGET :: t(10, 20, 30)

! 't is an array with the TARGET attribute.
p => t(10, 1: 10, 2: 5)

! p points to a rank-2 section of t.

REAL, PO NTER :: nootka(:), talk(:)

REAL, ALLOCATABLE, TARGET :: x(:)
ALLOCATE (x(1:100), STAT=is)

noot ka => x(51: 100) I Poi nter assignnent
tal k => x(1:50) I statenents

REAL r, pl, p2

TARGET r

PO NTER pl, p2

r =4.7

pl =>r I pl and p2 are both
p2 => pl I aliases of r.

ALLOCATE (pl)
pl = 9.4

10-205

1 () Intel Fortran Programmer s Reference

Related Statements
PO NTER, ALLOCATE, DEALLCOCATE, and NULLI FY

Related Concepts

For more information about pointer association and pointer assignment, see

TYPE (Declaration)

Declares a variable of derived type.

TYPE (type-nane) [[, attrib-list] ::] entity-Ilist
t ype- nane is the name of a previously defined derived type.

attrib-1ist isacomma-separated list of one or more of the
following attributes:

ALLOCATABLE | NTRI NSI C PRI VATE
DI MENSI ON OPTI ONAL PUBLI C
EXTERNAL PARAMVETER SAVE
| NTENT PO NTER TARGET
For information about the attributes, see the corresponding statements in
this chapter.
Description

The TYPE declaration statement specifies the type and attributes of
derived-type objects, sometimes called structured objects or simply
structures. (Note that, as used here, structures is not to be confused with the
structure defined by the Intel Fortran STRUCTURE statement.) A
derived-type object may be an array, which may be deferred shape (pointer
or allocatable), assumed shape (dummy argument), or assumed size
(dummy argument).

10-206

Intel® Fortran Statements 1 O

Assignment is intrinsically defined for each derived type but may be
redefined by the user. Operators appropriate to a derived type may be
defined by procedures with the appropriate interfaces.

When a derived-type object is used as a procedure argument, the types of
the associated actual and dummy arguments must be the same. For sequence
derived types different physical type definitions may be used for the actual
and dummy arguments, as long as both type definitions specify identical
type names, components, and component order. For nonsequenced types the
same physical type definition must be used, typically accessed via host or
use association, for both the actual and dummy arguments.

Examples
I Weather is a sinple derived type with two
I character conponents and two integer
I conponents.
TYPE Weat her
CHARACTER(LEN=32) PI ace
| NTEGER Hi gh_tenp, Low tenp
CHARACTER(LEN=16) Conditi ons
END TYPE Weat her

TYPE (Weat her) Jul y(numws, 31)
I A two-di mensi onal Weat her array for July.
July(:,:) %Lowtenmp = -40
' Initialize all lowtenps in July.
TYPE Pol ar
! Polar is a derived type with two rea
! conponents that cannot be directly accessed
! in Polar objects outside the nodule.
PRI VATE
REAL rho, theta
END TYPE Pol ar

! Point is a derived type with three
I conponents, one of which is itself

10-207

1 () Intel Fortran Programmer s Reference

10-208

I of derived type
TYPE Poi nt

REAL x, y

TYPE (Polar) p
END TYPE Poi nt

TYPE (Pol ar) r, q(500)

! Two vari abl es of type Pol ar.

TYPE (Point) a, b, t(100,100)

! Three variabl es of type Point.

b = Point(0.,0.,Polar(0.,0.))

I Use of nested structure constructors.

Related Statements
| NTERFACE, PRI VATE, PUBLI C, SEQUENCE, and TYPE (definition)

Related Concepts

See for information about derived
types.

TYPE (Definition)

The first statement of a derived type

TYPE [[, access-spec | ::] derived-type-nanme
access- spec is the keyword PUBLI Cor PRI VATE
deri ved-type- nane isa legal Fortran 95 name.

Intel® Fortran Statements 1 O

Description

This statement introduces the definition of a derived type. A derived type
name may be any legal Fortran 95 name, as long as it is not the same as an
intrinsic type name or another local name (except component names and
actual argument keyword names) in that scoping unit.

A derived type may contain an access specification (PUBLI Cor PRI VATE
attribute) or an internal PRI VATE statement only if it is in a module.

Examples
! This is a sinple exanple of a derived type
! with two conponents, high and | ow.
TYPE tenp_range
| NTEGER hi gh, | ow
END TYPE tenp_range
! This type uses the previous definition for one
I of its conponents.
TYPE tenp_record
CHARACTER(LEN=40) city
TYPE (tenp_range) extremes(1950: 2050)
END TYPE tenp_record
! This type has a pointer conmponent to provide
! links to other objects of the same type,
! thus providing linked lists.
TYPE linked_|ist
REAL val ue
TYPE(linked_list), PONTER :: next
END TYPE |inked_|i st
! This is a public type whose conponents
! are private; defined operations
! provide all functionality.
TYPE, PUBLIC :: set; PRIVATE
I NTEGER cardinality
| NTEGER el enent (max_set _si ze)
END TYPE set

10-209

1 () Intel Fortran Programmer s Reference

10-210

! Declare scalar and array structures of type
I set.
TYPE (set) :: baker, fox(1l:size(hh))

Related Statements
| NTERFACE, PRI VATE, PUBLI C, SEQUENCE, and TYPE (declaration)

Related Concepts
See Chapter 3. Data Types and Data Objects for information about derived
types.

TYPE (1/0)

Writes to standard output.

Description

The TYPE statement is a synonym for the PRI NT statement and has the
same functionality and syntax. It is provided as an Intel Fortran extension
for compatibility with earlier versions of Fortran. For more information, see
the description of “PRINT”.

NOTE. The TYPE statement as an | | Ostatement cannot appear as the
first executable statement in a program unit. It must be preceded by at
least one other executable statement. There are cases where the syntax
permitted for TYPE as an executable statement conflicts with the TYPE
statement used to declare a derived type. Placing some other executable
Statement first in the program unit after all declarations causes the
compiler to be able to determine what kind of statement TYPE is.

Intel® Fortran Statements 1 O

UNION

Defines a union within a structure.

UNI ON
map- bl ock
map- bl ock
END UNI ON
map- bl ock is one or more of the following:
*ATYPE(I/ O declaration statement
® Another nested STRUCTURE
* A nested RECORD
*A UNI ON definition
Description

The UNI ON statement is an Intel Fortran extension that is used with the
MAP statement to define a union within a structure. For detailed
information about the MAP and UNI ON statements, see the description of the
STRUCTURE statement in this chapter.

USE

Provides controlled access to module
entities.

A USE statement has one of the following forms:

® USE npdul e- nanme
® USE npodul e- nane, renane-|i st
® USE npdul e-nanme, ONLY : access-li st

10-211

1 () Intel Fortran Programmer s Reference

rename-| i st is a comma-separated list of r enane
rename is | ocal -nane => nodul e-entity-nane

access-list isacomma-separated list of the following:
* [local-nanme =>] nodul e-entity-nane
® OPERATOR (operator)
® ASSIGNMENT (=)

Description

The USE statement provides access to a module’s public specifications and
definitions. These include declared variables, named constants,
derived-type definitions, procedure interfaces, procedures, generic
identifiers, and namelist groups. The method of access is called use
associ ati on. Such access may be limited by an ONLY clause on the USE
statement, or the accessed entities may be renamed.

All USE statements must appear after the program unit header statement and
before any other statements. More than one USE statement may be present,
including more than one referring to the same module.

Modules may contain USE statements referring to other modules; however,
references must not directly or indirectly be recursive.

The local-name in a renaming operation is not declared: it assumes the
attributes of the module entity being renamed.

The first two forms of the USE statement make available by use association
all publicly accessible entities in the module, except that the USE statement
may rename some module entities. The third form makes available only
those entities specified in access- | i st, with possible renaming of some
module entities.

Entities made accessible by a USE statement include public entities from
other modules referenced by USE statements within the referenced module.

The same name or specifier may be made accessible by means of two or
more USE statements. Such an entity must not be referenced in the scoping
unit containing the USE statements, except where specific procedures can
be distinguished by the overload rules. A rename or ONLY clause may be
used to restrict access to one name or to rename one entity so that both are
accessible.

10-212

Intel® Fortran Statements 1 O

Examples
MODULE rat _arith
TYPE rat
| NTEGER n, d
END TYPE

TYPE(rat), PRIVATE, PARAMETER :: &
zero = rat(0,1)
I All entities are public except zero.
TYPE(rat), PUBLIC, PARAMETER :: &
one = rat(1,1)
TYPE(rat) r1, r2
NAMELI ST /nm _rat/ rl, r2
| NTERFACE OPERATOR(+)
MODULE PROCEDURE rat _plus_ rat, int_plus_rat
END | NTERFACE
CONTAI NS
FUNCTION rat _plus_rat(l, r)
END FUNCTI ON
END MODULE

PROGRAM M ne
! Fromthe nmodule rat_arith, access only the
! entities rat, one, rl1, r2, nm _rat but
! use the nane one_rat for the rational
! val ue one.
USE rat _arith, ONLY: rat, one_rat => one, &
rl, r2, nnm _rat
I The OPERATOR + for rationals and the
I procedures rat_plus_rat and int_plus_rat
I are not avail abl e because of the ONLY
I clause.
READ *, r2; rl = one_rat
WRITE(*, NML = nml _rat)
END PROGRAM

10-213

1 () Intel Fortran Programmer s Reference

Related Statements
MODULE

Related Concepts

Modules, scope, and association are discussed in Chapter 7, Program Units

and Procedures.

VIRTUAL

Declares an array.

VI RTUAL array-declarator-1ist

array-decl arator-1ist is a comma-separated list of array
declarators.

Description

The VI RTUAL statement is provided as an extension in Intel Fortran for
compatibility with earlier versions of Fortran. It is an alternative to the
DI MENSI ON statement. VI RTUAL cannot be used as an attribute in type
declaration statements.

Example
VI RTUAL A(10), B(1:5,2:6)

Related Statements
DI MENSI ON

Related Concepts
Arrays are discussed in Chapter 4. Arrays.

10-214

Intel® Fortran Statements 1 O

VOLATILE

Provides for data sharing between
asynchronous processes.

VOLATILE [::] object-nane-Iist

obj ect-name-1ist isacomma-separated list of the following:
® variable-name
® array-name
®* common-block-name

Description

It is only necessary to declare an object as VOLATI LE when its value may
be altered by an independent asynchronous process or event (for example, a
signal handler). All optimization processes are inhibited for objects with the
VOLATI LE attribute. Data objects declared as VOLATI LE will be
addressable by otherwise independent processes.

If an array or common block is declared as VOLATI LE then all of the array
elements or common block variables are considered VOLATI LE. Similarly,
use of EQUI VALENCE with a VOLATI LE object implies that any associated
object is also volatile.

Examples

| NTEGER al arm trem

EXTERNAL wakeup

COMMVON/ FLAGS/ i al arm

VOLATI LE ialarm

| Set an alarmto execute in 60 seconds.
trem = ALARM 60, wakeup)

wakeup
| ALARM = 0
DO
IF (ialarm NE.O) EXIT
END DO

10-215

1 () Intel Fortran Programmer s Reference

10-216

SUBROUTI NE wakeup
COMMON/ f | ags/i al arm
VOLATI LE i al arm
ial ar m=1

END

WHERE (Statement and Construct)

Performs masked array assignments.

WHERE (array-| ogi cal - expr)
[array-assi gnnent - st at enent]

If the optional array-assignment clause is present, the WHERE statement is
syntactically complete and does not require the END WHERE statement.

If the array-assignment clause is not present, the WHERE statement is the
first statement of a WHERE construct. The syntax of the WHERE construct is:
VWHERE (array-1 ogi cal - expr)

array-assi gnment - st at enent

! Arrays before WHERE/ ELSEVWHERE
' MFI1 3] N=1]2 2 |IRESUT = |[-100 -100|
! | 2 4] |2 2] | -100 -100]|
VWHERE M > N
| RESULT = 1
ELSEVWHERE (M==N)
| RESULT = 0
EL SEWHERE
| RESULT = -1
END WHERE

! Arrays after WHERE/ ELSEWHERE
' MF|1 3] N=1]2 2 |RESUT =
! | 2 4] |2 2]

11
01

Intel® Fortran Statements 1 O

[ELSEWHERE (array-| ogi cal _expr)
array-assi gnment - st at enent
v]
END WHERE
array- | ogi cal - expr isa logical array expression.
array- assi gnment -
st at enent is an array assignment statement.

Description

Certain array elements can be selected by a mask and assigned in
array-assignment statements using the WHERE statement or WHERE
construct. arr ay- 1 ogi cal - expr establishes the mask.

For any elemental operation in the array assignments, only the elements
selected by the mask participate in the computation. The elemental
operations include the usual intrinsic operations and the elemental intrinsic
functions such as ABS. Masked array assignments are useful when certain
elemental operations involving arrays need to be avoided because of
program exceptions.

The following rules and restrictions apply:

® The shape of the result of arr ay- | ogi cal - expr and the arrays in
each array- assi gnnent - st at ement must be the same; they may
be of size zero.

®* array-assi gnment - st at enent must be an intrinsic array
assignment statement; no defined assignment statements are permitted.

* Each elemental operation in ar r ay- assi gnnment - st at ement is
masked by the array logical expression.

® The elements of the arrays that are used in the WHERE part (the
assignments after the WHERE keyword) are those corresponding to the
true elements of the array logical expression.
Similarly, for masked ELSEWHERE statements, the elements of the
arrays used are those corresponding to the true elements of the array
logical expression after the EL SEWHERE keyword. The elements of the
arrays that are used in the EL SEWHERE part (the assignments after the
EL SEWHERE keyword and before the END WHERE keywords) are those
corresponding to the false elements of the array logical expression.

10-217

1 () Intel Fortran Programmer s Reference

10-218

®* WHERE constructs can be nested. The array logical expression of the
outer WHERE statement is conjoined with all array logical expressions
of the nested WHERE construct.

®* Eacharray-assi gnnent - st at ement executes in the order in
which it appears in both the WHERE and EL SEWHERE part of the WHERE
construct.

* In a WHERE construct, only the WHERE statement may be a branch
target statement.

Examples
REAL, DI MENSI ON(150) :: a, recip_a
REAL(DOUBLE), DI MENSI ON(10, 20,30) :: b, sgrt_b
! Assign 1.0/a to recip_a only where a is
I nonzero.
WHERE(a /= 0.0) recip_.a=1.0/ a
WHERE(b .GE. 0.0) ! Assign to sqrt_b only
I where b is nonnegative.
sqrt_b = SQRT(b)
ELSEWHERE ! Set sqrt_b to 0.0 where b is -ve.
sqgrt_b = 0.0
END WHERE
| NTECER, DI MENSI ON(no_of tests, student):: score

CHARACTER, DI MENSI ON(no_of tests, student) &
| etter_grade

! Assign letter grades for nuneric scores.

WHERE(score >= 92) letter_grade = "'A

WHERE(score >= 82 . AND. score <= 91) &
letter _grade = 'B

WHERE(score >= 72 . AND. score <= 81) &
letter _grade = 'C

WHERE(score >= 62 . AND. score <= 71) &
letter _grade = 'D

WHERE(score >= 0 .AND. score <= 61) &
letter _grade = 'FE

Intel® Fortran Statements 1 O

In the next example, the arrays val ues, del t a, and count must all be of
the same shape:

WHERE (ABS(val ues) .LT. 10.0)
val ues = ABS(val ues) + delta
count = count + 1

EL SEWHERE
values = 0
count = count + 1

ENDWHERE

The first two assignment statements are processed for elements
corresponding to true elements of the mask. The second two assignment
statements are processed for elements corresponding to false elements of
the mask. Unlike the ELSE clause of an | F statement, the assignment
statements in both the WHERE and EL SEWHERE parts are processed.

Note the different behavior of the calls to ABS. In evaluating the mask
expression, the entire VALUES array is passed to ABS, producing an array
result whose elements are then compared to 10. In the assignment
statement, however, ABS is only invoked for those particular elements of
VAL UES corresponding to true elements of the mask. Also, note the mixed
use of arrays and scalars in the assignment statement expressions.

The mask expression must have the same shape as the arrays in the
assignment statements, but it might involve completely separate arrays. In
the following example, A, B, and C can be independent of D and E, as long
as they are all conformable:

VWHERE (a+b .EQ c¢) d = SIN(e)
The following example illustrates why the order of processing is important
for dependency reasons:

REAL a(100)

REAL b(100)

EQUI VALENCE b, a

VWHERE(a(1:20:1) .GI. 0) a(20:1:-1) =-1.0

WHERE(a(61: 100:2) .LT. 1) &
b(20:1:-1) = a(1:20:1) * 100.0

10-219

1 () Intel Fortran Programmer s Reference

10-220

In the first WHERE statement, changing elements of a in the assignment
might be thought to affect the mask expression. However, because the mask
is evaluated before the assignment is processed, the behavior of WHERE
statement is well defined. A similar situation arises in the second WHERE
statement. Assignment values to elements of the assignment variable b alter
the elements of the assignment expressiona * 100. 0. Because the
assignment expression is evaluated for all true elements of the mask before
any transfer of values to B, the behavior is again well defined.

It is important to note that assignment statements in a WHERE construct are
processed sequentially. In the next example, the second assignment is not
processed until the first is completely finished. This means that the values
of b used in the second assignment have been modified by the first
statement:

WHERE (SQRT(ABS(a)) .gt. 3.0)

b = SINa)
¢ = SQRT(b)
ENDWHERE

Related Statements
END WHERE and EL SEWHERE

A WHERE statement may be nested within a FORALL construct, or a
FORALL construct may be nested within a WHERE construct.

Related Concepts

Elemental intrinsic functions, conformable arrays, and array language are
described in

Intel® Fortran Statements 1 O

WRITE

Outputs data to external and internal

files.

WRI TE (i o-specifier-list) [output-list]
out put-1ist is a list of comma-separated data items for output.
The data items can include expressions and
implied-DOlists; see
for more detailed information.
i 0-specifier-1list isalistofthe following comma-separated I/O
specifiers:
[UNI T=] uni t
specifies the unit connected to the output file.
uni t can be one of the following:
®* The name of a character variable, indicating
an internal file
* An integer expression that evaluates to the
unit connected to an external file

® An asterisk, indicating the preconnected unit
6 (standard output)

If the optional keyword UNI T= is omitted, uni t must be the first item in
i 0-speci fier-1list. This is the only specifier required in
i o-specifier-list.
[FMT=] f or mat specifies the format specification for formatting
the data. f or mat can be one of the following:
®* An asterisk (*), specifying list-directed 1/O.
For detailed information about list-directed
1/0, see .
® The label of a FORMAT statement containing
the format specification.

®* Aninteger variable that has been assigned
the label of a FORMAT statement.

10-221

1 () Intel Fortran Programmer s Reference

10-222

®* Anembedded format specification. For
information about embedded format
specifications, see
If the optional keyword FMI'= is omitted, f or mat must be the second item
ini o-specifier-list.

NOTE. The NML.= and FMT= specifier may not appear in the same
i o-specifier-list.

[NML=] nane specifies the name of a namelist group for
namelist-directed output. name must have been
defined in a NAMELI ST statement. If the optional
keyword NML= is omitted, nane must be the
second item in the list. The first item must be the
unit specifier without the optional keyword
UNI T=.

The NML= and FMT= specifier may not both appear in the same

i o-specifier-list.

ADVANCE=char act er - specifies whether to use advancing I/O for this

expressi on statement. char act er - expr essi on can be
one of the following arguments:

'"YES' Use advancing formatted sequential I/O
default.

' NO Use nonadvancing formatted sequential I/O.

If the ADVANCE= specifier appears in i 0- speci fier-1ist,unit must
be connected to an external file opened for formatted sequential 1/0.
Nonadvancing I/O is incompatible with list-directed and namelist I/O.

For more information about nonadvancing 1/O, see

Intel® Fortran Statements 1 O

ERR=st nt - | abel specifies the label of the executable statement to
which control passes if an error occurs during
statement execution.

| CSTAT=i nt eger - returns the I/O status after the statement executes.

vari abl e If the statement executes successfully,
i nt eger-vari abl e is set to zero. If an error
occurs, it is set to a positive integer that indicates
which error occurred.

REC=i nt eger - specifies the number of the record to be written to

expressi on the file connected for direct access. This specifier
cannot appear ini o- speci fier-1list with
the NML= and ADVANCE= specifiers, nor with
FMI=* (for list-directed 1/O).

Description

The WRI TE statement transfers data from internal storage to an external or
internal file. An external file can be opened for sequential access or direct
access I/O. If it is opened for sequential access, the WRI TE statement can
perform the following types of 1/O:

* Formatted

* Unformatted

* List-directed

* Namelist-directed

If the file is opened for direct access, the WRI TE statement can perform
formatted or unformatted 1/O.

WRI TE statements operating on internal files can perform formatted or
list-directed I/O.

For detailed information about files and different types of I/0O, see

Examples

The examples in this section illustrate different uses of the WRI TE
statement.

10-223

1 () Intel Fortran Programmer s Reference

10-224

Nonadvancing I/0

CHARACTER(LEN=80) :: pronpt

WRI TE (6, '(14)', ADVANCE='NO) pronpt

The WRI TE statement outputs to the file connected to unit 6, which is

preconnected to standard output. The ADVANCE="' NO specifier indicates
the following:

The file has been opened for formatted sequential I/O.

The statement uses nonadvancing I/0O to write an integer formatted as four
characters from the variable pr onpt .

The effect of the nonadvancing WRI TE is to output the character string in
pronpt to standard output without a terminating newline. This means that
anything subsequently entered by the user will appear on the same line.

Internal File

CHARACTER(LEN=80) :: cfile

WRI TE (cfile, '(I5, F10.5)") i, X

The statement writes a string of characters into the internal file cfi | e,
using the embedded format specification to perform the format conversion.

Namelist-directed 1/0

In the next example, each of the four WRI TE statements following the
NAMEL| ST statement uses a different style of syntax to do exactly the same
thing:

NAMELI ST /nl/ a, b, ¢

WRI TE (UNI T=6, NML=nl) ! 6 = standard out put

WRI TE (6, nl)

WRITE (*, NM.=nl) ! * = standard out put

VWRI TE nl I assume standard out put

List-directed I/O
WRI TE (6, *) int_var

Intel® Fortran Statements 1 O

This statement converts the value of i nt _var to character format and
outputs the character string to standard output. The format conversion is
based on the type of i nt _var. If you knew the format, you could substitute
for the asterisk one of the following:
® The label of the FORMAT statement with the format specification, as in:
WRI TE (6, 100) int_var
100 FORMAT(I 4)
®* Anembedded format specification itself, as in:
WRITE (6, '(14)") int_var

Unformatted Direct-access 1/O

WRI TE (31, REC=rec_num ERR=99, |OSTAT=ios) a, b

This statement outputs to the file connected to unit 31. The REC= specifier
indicates that the file has been opened for direct access and that this
statement will output to the record whose number is stored in the variable

r ec_num If an I/O error occurs during the execution of the statement, an
error number will be stored in i 0S, and execution control will branch to the
executable statement at label 99.

Related Statements
CLOSE, OPEN, PRI NT, and READ

Related Concepts

For information about I/O concepts, see ,
which also gives example programs that perform I/O. For information about
I/0O formatting, see

10-225

1 () Intel Fortran Programmer s Reference

10-226

Intel® Fortran Extensions

This appendix summarizes all of the Intel® Fortran extensions to the
Fortran 95 Standard. It does not include nonstandard features that are
enabled by command-line options (see the Intel® Fortran Compiler User's
Guide for the command-line options).

The following sections are organized according to the chapters in which
each extension is described. If an extension is described in more than one
place, additional references are included. The only exception is the
Extended Directives group of extensions: this group is described in this
appendix only.

E NOTE. Most of the extensions provide compatibility with features
found in other implementations of Fortran. If it is important that your
program have maximum portability, you should avoid using the
extensions. By default, the compiler will issue warnings for all
non-standard features in your program. If you want to suppress these
warnings, use | W90 or / WO5 and | cm(only - cmfor Linux) options.

Language Elements

The following extensions are described in Chapter 2, Language Elements:

* Symbolic names exceeding 31 characters in length
* Up to 99 continuation lines

A Intel Fortran Programmer s Reference

A-2

Extended Unix Character (EUC) encoding for multibyte characters in
string constants, comments, and file names

Dollar sign ($) accepted as alphabetical character in names including as
the first character of a name. $ is equivalent to Z for purposes of
| MPLI CI T typing.

Tab formatting in fixed format source files
D-marked debug lines in fixed format source files
Use of pound (#) character in column 1 to denote comment

Alternative statement continuation, using an ampersand (&) in fixed
format

Data Types and Objects

The following are the extensions presented in Chapter 3, Data Types and
Data Objects, and detailed in Chapter 10, Intel® Fortran Statements:

BYTE statement

DOUBLE COMPLEX statement

REAL*16 statement

POINTER (Cray*-style) statement

VAX structures (see also the STRUCTURE statement in Chapter 10)

Alternate form for initializing data: (variable-declaration / constant-list
/

Byte length notation (*n) in type declaration; for example,
INTEGER*8

AUTOMATIC, STATIC (Statement and Attribute), VIRTUAL, and
VOLATILE statements

Use of Q exponent for quadruple-precision real constants

CHARACTER and noncharacter items in the same common block
COMMON always saved
Alignment of variables in common blocks

Equivalencing of character and noncharacter data (see also the
EQUIVALENCE statement in Chapter 10)

Alternate syntax for binary, octal, and hexadecimal constants

Initialization of character variables with unsigned integers

Intel® Fortran Extensions A

® Structures and records (see also the STRUCTURE and RECORD
statements in Chapter 10)

Array Concepts

The following extensions are described in Chapter 4, Arrays:

® Alternate array constructor syntax ([])
® Array subscripts of type real

Expressions

The following extensions are described in Chapter 5, Expressions and
Assignment:

* Allowa**-b

® Use of binary, octal, and hexadecimal constants in expressions; type

can be other than integer, as determined by context (see also typeless
constants in Chapter 3. Data Types and Data Objects)

® Use of Holleriths in expressions with type determined by context (see
also Hollerith constants in Chapter 3, Data Types and Data Objects)

® Use of noninteger expressions as array subscripts
* Logical operations on integers

* Integer operations on logicals

® The .XOR. operator (equivalent to .NEQV.)

Execution Control

The following extensions are described in Chapter 6, Execution Control:

®* Branches into statement block of DO, CASE, or IF constructs

* Extended-range DO loops (see also the DO statement in Chapter 10,
Intel® Fortran Statements)

Scope, Program Units, and Procedures

The following extensions are described in Chapter 7, Program Units and
Procedures:

A-3

A Intel Fortran Programmer s Reference

* %VAL, %LOC, and %REF built-in functions (see also the CALL
statement in Chapter 10, Intel® Fortran Statements.

® Alternate return labels preceded by ampersand (&) character

* Initialization of blank common in a BLOCK DATA subprogram (see
also BLOCK

®* DATA statement in Chapter 10, Intel® Fortran Statements).

I/0 and File Handling

The following extensions are described in Chapter 8, I/O and File Handling:
® Unit numbers can exceed 99

® ACCEPT, TYPE (as synonym for PRI NT), ENCODE, and DECCODE
statements (see also Chapter 10, Intel® Fortran Statements)

* Auto-opening of files
® Alternate form for namelist-directed input records
®* Use of an integer or real array as an internal file

1/0 Formatting

The following extensions are described in Chapter 9, 1/0 Formatting:
®* Rand Q edit descriptors

® Use of $ edit descriptor to suppress new line

® Default field widths for data edit descriptors

®* Omission of comma between edit descriptors

® Use of A edit descriptor for any type

* Relaxation of rules governing data types that may be edited by certain
repeatable edit descriptors

* Use of an integer array to contain a format specification

Statements

The following statements and attributes are extensions and are described in
Chapter 10, Intel® Fortran Statements:

* ACCEPT
* AUTOMATIC

A-4

Intel® Fortran Extensions A

BYTE

DECODE

DOUBLE COMPLEX
ENCODE

MAP

POINTER (Cray-style)
RECORD

STATIC
STRUCTURE

TYPE (1/0O)

UNION

VIRTUAL

VOLATILE

Intrinsic Procedures

Nonstandard intrinsic procedures provided in Intel Fortran are listed and

described in Intel® Fortran Libraries Reference.

Miscellaneous

The following extensions are described in the referenced chapters:

Output from f pp is accepted (see the description of the / Qf pp (- f pp
for Linux) option in the /nte/® Fortran Compiler User's Guide).

Compiler directives described in this appendix and the Intel® Fortran

Compiler User'’s Guide).
Shi f t - JI Sencoding for multibyte characters.

Use of the DATA statement for variables in common outside BLOCK
DATA subprogram (see DATA statement in Chapter 10, Intel® Fortran

Statements).

Extended Directives

Intel Fortran Compiler directives perform various tasks during compilation
in addition to the compiler options. To enable directives, no specific options
are required.

A-5

A Intel Fortran Programmer s Reference

A-6

Directives’ Syntax

To compile your program with extended directives, follow the syntax rules.
The general format for the directives is:

cDEC$ DI RECTI VE_NAME ar gunent or

cDI R$ DI RECTI VE_NAME ar gunent

or a synonym (Windows* only):

I M5$ DI RECTI VE_NAME ar gunent

Each directive has a prefix (tag) in the following form: cDEC$ where

c is one of the following: C(orc),! or*.

* For directive prefixes, these are the source form rules:

— Prefixes beginning with C(or ¢) or * are only allowed in fixed and
tab source forms.

— Prefixes beginning with ! are allowed in all source forms.

® The directives cannot be continued.
®* A comment can follow a directive on the same line, preceded by a ‘!”.

ATTRIBUTES Directive

To specify additional information about a variable, variable types, and
subprograms and their formal arguments, you can use the ATTRI BUTES
directive containing a set of attributes. These attributes allow you to do the
following:

* Pass arguments by reference or value
® Use calling conventions of Microsoft* C
® Specify an external name for a subprogram or common block.

You can use attributes in subroutine function definitions, type declarations,
and with the | NTERFACE and ENTRY statements.

Syntax

The syntax of the ATTRI BUTES directive is as follows:

cDECS$ ATTRI BUTES att[,att]... :: object[, object or
cDIR§ATTRIBUTES att[,att]... :: object[, object]

or a synonym (Windows* only):
I MS$ ATTRIBUTES att[,att]... :: opject[, object]

Intel® Fortran Extensions A

Functionality of both attributes is the same.
att Is one of the attributes listed in Table A-1.
obj ect The name of a data object or procedure

For example:

| NTERFACE
SUBROUTI NE FOO(X)
cDEC$ ATTRI BUTES C :: FOO
END SUBROUTI NE FOO
END | NTERFACE

In the preceding example, the subroutine FOO has been given the C
attribute. This ensures that calling procedure will use the Microsoft C
calling convention to call FOO.

Restriction

When using the ATTRI BUTES directive, some of the attributes affect the
declaration of a variable, array, or procedure name used in the directive. For
this type of the compiler directive, the compiler enforces a restriction that
the directive must appear before the first executable statement in the
procedure that contains the directive.

Correct usage:

FUNCTI ON MYFUNC ()
I MPLI CI' T NONE
cDEC$ ATTRI BUTES DLLEXPORT:: MYFUNC
CHARACTER*8 MYFUNC
MYFUNC=" XXXXXXXX
RETURN
END
Incorrect usage:
FUNCTI ON MYFUNC ()
I MPLI CI' T NONE
CHARACTER*8 MYFUNC
MYFUNC=" XXXXXXXX'
RETURN
cDEC$ ATTRI BUTES DLLEXPORT:: MYFUNC
END

A-7

A Intel Fortran Programmer s Reference

A-8

The first executable statement in the example is MYFUNC=" XXXXXXXX' .
Placing the ATTRI BUTES directive after the executable statement is an
error.

Attributes and Associated Objects

The following table shows which attributes can be used with various
objects.

Table A-1 Attributes and Associated Objects
EXTERNAL

Variable and Statements &

Array Common Subprogram
Attribute Declarations Block Names Specification Platform
ALIAS No Yes Yes
ALIGN
ALLOCATABLE Yes (arrays No No

only)
DLLIMPORT Yes Yes Yes Windows only
EXTERN Yes No No
INLINE | No No Yes
NOINLINE |
FORCEINLINE
REFERENCE Yes Yes Yes
STDCALL No No No Windows only
VALUE Yes Yes Yes
VARYING No No Yes

L)

NOTE. 4 common block name in the third column of the above table is
specified as [/]common-block namel/].

These attributes can be used in function and subroutine definitions, in type
declarations, and with the | NTERFACE and ENTRY statements.

Intel® Fortran Extensions A

The attributes are described in the following sections.

ALIAS

Specifies an external name for a subroutine.

Syntax

cDEC$ ATTRI BUTES ALI AS: string::routine_nane

string is a character constant delimited by apostrophes or
quotation marks. The character constant is used as is: the
string is not changed to uppercase, and the blanks are
not removed.

Description

Within the source file you can only refer to a subprogram by its name given
in the declaration. The ALI AS attribute specifies the external name of a
procedure.ALI AS overrides the C attribute. If you use the C attribute on a
subprogram along with the ALI AS attribute, the subprogram will be given
the C calling convention but not the C naming convention. Consequently, it
will receive the ALI AS name with no modifications. This means that the
new name is case-sensitive, which is useful when you interface with
case-sensitive language like C.

The ATTRI BUTES ALI AS directive has the same affect as the c DEC$
ALI AS directive.

Example
SUBROUTI NE O dNane [cDEC$ ATTRI BUTE ALI AS:’ NewNane’]
The subroutine O dNam is given the external name NewNane.

ALIGN

Specifies the byte alignment for a variable.

cDEC$ ATTRIBUTES ALICGN : n ::var

n number of bytes for alignment boundary

var variable to be aligned

A-9

A Intel Fortran Programmer s Reference

A-10

ALLOCATABLE

The attribute ALLOCATABLE is provided for compatibility with older
programs that use this attribute. It permits you to delay allocation of storage
for a particular declared entity until some point at run time when you
explicitly call a storage allocation routine. The routine ensures that storage
for that entity is dynamically allocated. In general, you should use the
standard Fortran ALLOCATABLE statement and attribute instead (see
Chapter 3, Attributes).

Syntax
DIMENSION A ! allocatable array

An entity declared with the ALLOCATABLE attribute must have a
deferred-shape.

Example

You can allocate storage for the array as follows:
DIMENSION A ! allocatable array
ALLOCATE(A(10))

C ATTRIBUTE

Defines the subprogram as having the same calling conventions as a
Microsoft C procedure.

Syntax
cDEC$ ATTRIBUTES C::function_nane

Description

Arguments to subprograms with the C attribute are passed by value unless
you specify the formal argument with the REFERENCE attribute.
Subprograms that use the C attribute are modified automatically so that you
can more easily match the naming conventions used in C. External names
are matched to lowercase and start with an underscore (_).

When you assign an integer variable the C attribute, it becomes a C variable
and assumes the default size according to the microprocessor on the system.
For information on mixing C and Fortran, see the /nte/® Fortran Users
Guide.

Intel® Fortran Extensions A
DLLEXPORT and DLLIMPORT

These attributes (Windows* only) allow you to import symbols to dynamic
link libraries (DLLs) and to create Fortran DLLs that export symbols to
other programs. You can use the DLLI MPORT and DLLEXPORT attributes
on both data objects and routines.

When you use the DLLEXPORT attribute, you are asking for the identifier
associated with the attribute to be exported to other programs or DLLs. The
advantage to allowing other programs to access a routine in your DLL is that
the routine doesn’t have to actually be linked into the program, allowing the
executable to be smaller.

Example

To create a Fortran DLL, issue these commands on Windows:
ifl /c test _dll.f90
ifl /LD add_dll.f90
ifl /Fetest dll.exe test dll.obj add dll.lib

In the above commands, t est _dl | . f 90 and add_dI | . f 90 are the
following programs:

TEST_DLL
PROGRAM TEST_DLL
| NTERFACE
SUBROUTI NE ADD (A, B)
cDEC$ ATTRI BUTES DLLI MPORT :: ADD
| NTEGER A, B
END SUBROUTI NE ADD
END | NTERFACE
CALL ADD (1, 2)
END PROGRAM TEST DLL
ADD DLL
SUBROUTI NE ADD (A, B)
cDEC$ ATTRI BUTES DLLEXPORT :: ADD

| NTECER A, B

PRINT *, "Value of A=", A
PRINT *, "Value of B=", B
PRINT *, "Sumof A+ B =", A+B

A Intel Fortran Programmer s Reference

END SUBROUTI NE ADD

The/LDin thei f| compile command is a linker option that tells the
compiler to execute a link step to create the DLL.

EXTERN

Specifies that a variable is allocated in another source file. It can be used in
global variable declarations.You must use EXTERN when you are accessing
variables used in other languages. You cannot apply EXTERN to dummy
arguments.

INLINE, NOINLINE, and FORCEINLINE

These attributes may be used to control inline decisions taken by the
compiler. The | NLI NE directive is a hint and may be ignored by the
compiler if the inline heuristics determines it may have a negative impact on
performance or will cause too much of code size increase. The NOl NLI NE
attribute will disable inlining of a function. FORCEI NLI NE will force the
inlining of a function unless it can cause errors.

®* Thel NLI NE attribute hints that a function or subroutine can be inlined.

Syntax
cDEC$ ATTRIBUTES | NLINE :: xyz
Xyz Is the function or subroutine to be inlined.
®* The NO NLI NE attribute hints that a function or subroutine should not
be inlined.
Syntax
cDEC$ ATTRI BUTES NO NLI NE: : xyz
Xyz Is the function or subroutine not to be inlined.

® The FORCEI NLI NE attribute forces a function or subroutine to be
inlined whenever possible.

Syntax
cDEC$ ATTRI BUTES FORCEI NLI NE: : xyz
Xyz Is the function or subroutine forced to be inlined.

Intel® Fortran Extensions A

These attributes are placed in the procedure that calls the routine whose
inline preference is specified.

REFERENCE

The REFERENCE attribute specifies an argument’s memory location instead
of the argument’s value. It means the argument is passed by “reference”
rather than by value. This is similar to obtaining values using a pointer
instead of copying the value and then passing it.

Syntax
cDEC$ ATTRI BUTES REFERENCE: : addr ess

STDCALL

The STDCALL (Windows* only) attribute allows you to call external
routines written in C that have been compiled with the STDCALL option. To
determine how to compile your C routines with STDCALL, consult your C
compiler documentation. STDCALL changes the name of the external
symbol that the Fortran compiler emits for your routine, unless you also
have an AL| AS attribute specified. Most Win32* API functions assume that
you will call them using STDCALL.

When you compile with the / Gz compiler command line option, all of the
routines in the source file compiled with that option are compiled for
STDCALL. You can also declare that a given routine should be compiled for
STDCALL using Microsoft attributes.

If you use STDCALL on the Linux* [1A-32 platform, where it is not a
supported calling convention, the directive is recognized and you get
Warning 139 at (4:stdcall.f90): “This Microsoft attribute is not supported on
this platform and has been ignored.” On Linux, STDCALL is supported on
the Itanium® architecture platforms

The same warning occurs on the Windows platform based on Itanium
architecture, where STDCALL is not supported.

Example
| NTERFACE

| NTEGER(4) FUNCTI ON CREATEEVENT(| pEvent Attributes, &
bManual Reset, blnitial State, | pNanme)

A-13

A Intel Fortran Programmer s Reference

TYPE SECURI TY_ATTRI BUTES
SEQUENCE
| NTEGER(4) NLENGTH
| NTEGER(4), PO NTER :: LPSECURI TYDESCRI PTOR
LOGd CAL(4) BI NHERI THANDLE
END TYPE
TYPE (SECURI TY_ATTRI BUTES), PO NTER: : | pEvent Attri but es
LOG CAL(4) bManual Reset
LOd CAL(4) blnitial State

| NTEGER(1), PO NTER :: | pNane

cDEC$ ATTRI BUTES &

STDCALL, ALIAS.' CreateEvent A@6' :: CreateEvent
END FUNCTI ON

END | NTERFACE

Usage

When you compile a routine for STDCALL, parameters are passed to the
routine by value. Normally, Fortran routines have their parameters passed
by reference, that is, the address of each parameter is passed, rather than its
value. For this reason, it usually is not advisable to try to compile a Fortran
routine for STDCALL, and attempt to call it from Fortran. Arrays and
CHARACTER variables are still passed by reference. You must exercise some
care when calling a routine that is compiled for STDCALL from Fortran and
passing a CHARACTER argument.

STDCALL will pass only the address of the CHARACTER argument, just as if
your routine were written in C, and you were passing a char * v argument.
Usually Fortran passes both the address and the length of a CHARACTER
variable. The C routine that you are calling will expect that it is receiving a
null-terminated string. Fortran normally pads strings with blanks.

You can declare a null-terminated CHARACTER constant in Fortran by
placing a C after the constant. For example:

“This is a null terminated string”C

This facility, which can be used in assignment or data statements, allows

you to set up the string correctly for passing it to C. You must be careful to
allow for the extra unseen null character when you declare a length for a

Intel® Fortran Extensions A

CHARACTER variable to hold the constant. For example, the string above is
32 characters long. To place it in a CHARACTER variable, the CHARACTER
variable must be declared CHARACTER* 33. You can also add null
characters to Fortran CHARACTER strings using concatenation:

“This is a null terminated string, too”//Char(0)

Compiling a routine for STDCALL changes the name of the external symbol
that the compiler emits for the call. An underscore (_) is added as a prefix to
the name, and a suffix of @ is added to the end of the name, where n is the
total length in bytes of parameters passed to the routine. The external
symbol name is also changed to all lower-case letters. Note that in the
example above, the ALI AS attribute is also used, so the prefix and suffix
must be made explicit in the ALI AS — the compiler will not add them
automatically when the ALI AS attribute is used.

Some other compilers, such as Compaq* Visual Fortran*, use a calling
convention as their default which causes the names of external symbols to
be changed in a manner similar to the STDCALL calling convention, but still
passes parameters by reference. This is not the same as STDCALL, and is not
supported in Intel Fortran Compiler.

NOTE. The STDCALL attribute can only be used on Win32* with IA-32
systems.

You can only use the STDCALL on routine names. You can use STDCALL
with FORTRAN-77-style syntax as follows:

EXTERNAL BAR

cDEC$ ATTRI BUTES STDCALL :: BAR
CALL BAR

END

This results in a call to the external symbol _bar @.

A-15

A Intel Fortran Programmer s Reference

A-16

VALUE

Specifies that the argument’s value is to be passed rather than a reference to
its memory location address. In C, the attribute is specified on the
subprogram definition, and all arguments are assumed to be passed by value
because this is the default.

If you specify VALUE and your argument is of a different type, a type
conversion is required and it you must perform it before the call.

In C, arrays are always passed by reference rather than by value. If you
specify the C attribute and your subprogram has an array argument, the
array is passed as a St r uct (a C aggregate type). To pass an array so that it
is handled as an array instead of a St r uct , you must do one of the
following:

* Use the REFERENCE attribute on the dummy argument.

® Pass the address returned by the LOC function by value.

Example

SUBROUTI NE SubFoo (x)

cDEC$ ATTRI BUTES VALUE: : x

| NTEGER x

Integer X is passed by value to SubFoo.

VARYING

In Fortran, you must define a dummy argument for each actual argument.
Languages like C let you have arguments without having you specify
dummy arguments for them. The actual arguments are implicitly passed by
value without automatic data-type conversion. You can specify VARYl NG
when you specify the C attribute and this lets the actual number of
arguments differ from the dummy number.

However, actual arguments must still follow the type rules of the dummy
arguments. When you are writing a Fortran procedure with VARYI NG use
only arguments that you actually passed or your results will be undefined.

The VARYI NG attribute has no effect unless you have also specified the C
attribute on the routine.

Intel® Fortran Extensions A
DISTRIBUTE POINT Directive

The DI STRI BUTE PO NT directive indicates to the compiler a preference
of performing loop distribution.

Syntax
The DI STRI BUTE PO NT directive has the following format:
cDEC$ DI STRI BUTE PO NT

Description

Loop distribution may cause large loops be distributed into smaller ones.
This may enable more loops to get software-pipelined. If the directive is
placed inside a loop, the distribution is performed after the directive and any
loop-carried dependencies are ignored. If the directive is placed before a
loop, the compiler will determine where to distribute and data dependencies
are observed. Currently only one distribute directive is supported if it is
placed inside the loop.

Example
cDEC$ DI STRI BUTE PO NT
doi =1, m

b(i) = a(i) +1

(i)

=a(i) + b(i) ! Conpiler will decide
! where to distribute.
! Data dependencies are
! observed
d(i) =c(i) +1
enddo
doi =1, m

b(i)7 = a(i) +1

cDEC$ DI STRI BUTE PO NT

A-17

A Intel Fortran Programmer s Reference

cal |

(i)
(i)

enddo

sub(a, n)! Distribution will start here,
! ignoring all |oop-carried
I depedenci es

=a(i) + b(i)

=c(i) +1

IF and IF DEFINED Directives

Thel Fand | F

DEFI NED directives specify conditional compilation

constructs. | F tests whether a logical expression is . TRUE. or. FALSE. .
| F DEFI NED tests whether a symbol has been defined.

Syntax

The directives have the following format:
cDEC$ | F (expression) [or cDEC$ | F DEFI NED (nane)]

bl ock
[cDEC$ ELSE

bl ock]. ..

[cDEC$ ELSE
bl ock]
cDEC$ ENDI F

expression

nane

bl ock

A-18

| F (expression) or cDEC$ ELSE
| F DEFI NED (nane)]

Is the logical expression that evaluates to . TRUE. or
. FALSE. .

Is the name of a symbol to be tested for definition. It can
be defined with a DEFI NE directive and can optionally
be assigned an integer value. If the symbol has been
defined, with or without being assigned a value, | F
DEFI NED(nane) evaluates to .TRUE. ; otherwise, it
evaluates to . FALSE. .

The Fortran statements that are compiled (or not)
depending on the logical value in the | F directive
construct.

Intel® Fortran Extensions A
Description

The | Fand | F DEFI NED directive constructs end with an ENDI F directive
and can contain one or more ELSE | F directives and at most one ELSE
directive.

If the logical condition in the | F or | F DEFI NED directive is . TRUE. ,
statements within the | F or | F DEFI NED block are compiled. If the
condition is . FALSE. , control transfers to the next ELSE | F or ELSE
directive, if any.

If the logical condition in the ELSE | F directive is . TRUE. , statements
within the ELSE | F block are compiled. If the expression is . FALSE. ,
control transfers to the next ELSE | F or ELSE directive, if any.

If control reaches the ELSE directive because all previous | F construct
evaluated to . FALSE. , the statements in an ELSE block are compiled
unconditionally.

You can use any Fortran logical or relational operator or symbol in the
logical expression of the directive, including: . LT. ,<,. GI. ,>,. EQ. , ==,
.LE. ,<=,.GE.,>=,.NE.,/=.EQV.,. NEQV.,. NOT.,. AND., . OR.,
and . XOR. . The logical expression can be as complex as you like, but the
whole directive must fit on one line.

Examples
! When the following code is compiled and run, the output depends
! on whether one of the expressions tests . TRUE. , or all test . FALSE. .
cDEC$ DEFI NE fl ag=3
cDEC$ IF (flag .LT. 2)
wite (*,*) “This is conpiled if flag is less &
& “than 2.”
cDEC$ ELSE I F (flag>= 8)
wite (*,*) “Or this is compiled if flag is &
& “greater than or equal to 8.~
cDEC$ ELSE
wite (*,*) “Or thisis conpiled if all 7 &

& “preceding conditions are . FALSE.”
cDEC$ ENDI F

A-19

A Intel Fortran Programmer s Reference

A-20

IVDEP Directive

The | VDEP directive instructs the compiler to vectorize a DOloop,
regardless of any apparent dependences that would otherwise prevent
vectorization. Use this directive immediately preceding a counted DO loop.

Syntax
The format of this directive is:

cDEC$ | VDEP or
DI R$ | VDEP

Description
Use this directive when you know that the assumed loop dependences are

safe to ignore. The proven dependeces that prevent vectorization are not
ignored (only assumed dependeces are ignored).

For example, consider the following loop:
doi =1, N
a(i) = a(i +k) *c

The above loop will not vectorize with the | VDEP directive, since the value
of k is not known (vectorization would be illegal if k<0).

The usage of the directive differs depending on the loop form, see examples
below.

For loops of form 1:

do i

= a(*) + 1! use old values of a
a(*) = I define new val ues
snddo

For loops of form 1, | VDEP asserts that there is no loop-carried
dependencies from the definition to the use.

For loops of form 2:

do i

a(*) =! use new values of a
=a(*) +1

enddo

Intel® Fortran Extensions A

For loops of form 2, | VDEP asserts that there are no loop-carried
anti-dependencies from use to definition.

In both cases, the loop can be legally distributed and there is no loop-carried
output dependency.

| VDEP has options: | VDEP: LOOP and | VDEP: BACK. The | VDEP: LOOP
option implies no loop-carried dependencies. The | VDEP: BACK option
implies no backward dependencies.

For more information on compiler vectorization, refer to the /nte/® Fortran
Compiler User’s Guide.

Examples
cDEC$ | VDEP
doj =1, n
a(j) =a(j+tm +1
enddo

In the preceding example, the possible backward dependencies are ignored;
the loop gets software pipelined and vectorized.

cDEC$ | VDEP
doj =1, n
a(j) =b(j+m +1
b(j) = a(j+m +1
enddo

The preceding example shows possible forward and backward
dependencies involving array a in this loop, creating a dependency cycle.
With | VDEP, the backward dependencies are ignored.

LOOP COUNT Directive
The LOOP COUNT (N) directive indicates the loop count is likely to be
N.

Syntax

The format of this directive is:
cDEC$ LOOP COUNT (N)

A-21

A Intel Fortran Programmer s Reference

N Is an integer constant .

The value of loop count affects heuristics used in software pipelining,
vectorization, and loop-transformations.

Example
cDEC$ LOOP COUNT (10000)
doi =1, m
b(i) = a(i) +1 ! This is likely to enable
! the | oop to get software-
I pipelined
enddo

PARALLEL and NOPARALLEL Directives

The PARALLEL directive instructs the compiler to ignore dependencies
which it assumes may exist and which would prevent correct parallelization
in the immediately following loop. However, if dependencies are proven,
they are not ignored.

The NOPARALLEL directive disables auto-parallelization for the
immediately following loop.

Syntax

The format of these directives is:

cDEC$ PARALLEL
cDEC$ NOPARALLEL

Example

program main
par anet er (n=100)
i nteger x(n),a(n)
! DEC$ NOPARALLEL
do i=1,n
x(i) =i

enddo

A-22

Intel® Fortran Extensions A

! DEC$ PARALLEL

do i=1,n

a(x(i)) =i
enddo
end

PREFETCH and NOPREFETCH Directives

The PREFETCH and NOPREFTCH directives assert that data prefetches
should or should not be generated for some memory references. This affects
the heuristics used in the compiler.

Syntax

The format of these directives:

cDEC$cPREFETCH
¢ DEC$c NOPREFETCH
cDEC$cPREFETCH A, B

Example

If loop includes expression A(j), placing PREFETCH A in front of the
loop, instructs the compiler to insert prefetches for A(j + d) within the
loop. d is determined by the compiler. This directive is supported when
option / 8 is on.
cDEC$cNOPREFETCH ¢
cDEC$cPREFETCH a

doi =1, m

b(i) = a(c(i)) + 1
enddo

SWP and NOSWP Directives

The SWP and NOSWP directives indicate preference for a loop to get
software-pipelined or not. The SWP directive does not help data
dependence, but overrides heuristics based on profile counts or
lop-sided control flow.

Syntax

The format of the directives:

A-23

A Intel Fortran Programmer s Reference

A-24

cDEC$ SWP
cDEC$ NOSWP

Example
CDEC$ SWp
doi =1, m
if (a(i) .eq. 0) then
b(i) a(i) + 1
el se
b(i)
endi f
enddo

a(i)/c(i)

UNROLL and NOUNROLL Directives

The UNROLL directive tells the compiler how many times to unroll a
counted loop.

Syntax
The format of the directives:

cDEC$ UNRCLL
cDEC$ UNROLL [n]
cDEC$ NOUNRCLL

n Is an integer constant. The range of n is 0 through 255.

Description
The UNROLL directive must precede the DO statement for the DOloop it
affects.

If n is specified, the optimizer unrolls the loop # times. If # is omitted or if it
is outside the allowed range, the optimizer assigns the number of times to
unroll the loop.

The UNROLL directive overrides any setting of loop unrolling from the
command line.

Intel® Fortran Extensions A

Currently, the directive can be applied only for the innermost loop nest. If
applied to the outer loop nests, it is ignored. The compiler generates correct
code by comparing n and the loop count.

Example
cDEC$ UNROLL
doi =1, m

b(i) =a(i) +1
d(i) =c(i) +1
enddo

VECTOR ALWAYS and NOVECTOR Directives

The VECTOR ALWAYS directive vectorizes a loop, overriding the default
behavior of the compiler. The VECTOR ALWAYS directive overrides the
efficiency heuristics of the vectorizer, but it only works if the loop can
actually be vectorized, that is: use | VDEP to ignore assumed dependences.

The NOVECTOR directive disables vectorization of a loop.

Syntax
The format of these directives is:

| DEC$ VECTOR ALWAYS
! DEC$ NOVECTOR

Description

The VECTOR ALWAYS directive overrides the default behavior of the
compiler in the following situation. Vectorization of non-unit stride
references usually does not exhibit any speedup, so the compiler defaults to
not vectorizing loops that have a large number of non-unit stride references
(compared to the number of unit stride references). The loop in the example
1 has two references with stride 2. Vectorization would be disabled by
default but the directive overrides this behavior.

A-25

A Intel Fortran Programmer s Reference

A-26

Example 1
| DEC$ VECTOR ALWAYS
doi =1, 100, 2
a(i) = b(i)
enddo

If, on the other hand, avoiding vectorization of a loop is desirable (if
vectorization results in a performance regression rather than an
improvement), the NOVECTOR directive can be used to disable vectorization
of the loop. For instance, the compiler vectorizes the following example
loop by default. If this behavior is not appropriate, the NOVECTOR directive
can be used, as shown below.

Example 2
! DEC$3 NOVECTOR
doi =1, 100
a(i) = b(i) + c(i)
enddo

VECTOR ALIGNED and UNALIGNED Directives

The VECTOR ALI GNED directive asserts that all data in the loop are
aligned. The VECTOR UNAL| GNED directive asserts that all data in the loop
are not aligned.

Syntax
The format of these directives is:

I DEC$ VECTOR ALI GNED
I DEC$ UNALI GNED

Description

These directives override the efficiency heuristics. The qualifiers
UNALI GNED and ALI GNED instruct the compiler to use, respectively,
unaligned and aligned data movement instructions for all array references.

Intel® Fortran Extensions A

This disables all the advanced alignment optimizations of the compiler,
such as determining alignment properties from the program context or using
dynamic loop peeling to make references aligned.

NOTE. The directives VECTOR [ALWAYS, UNALIGNED,
ALIGNED] should be used with care. Overriding the efficiency
heuristics of the compiler should only be done if the programmer is
absolutely sure the vectorization will improve performance.
Furthermore, instructing the compiler to implement all array references
with aligned data movement instructions will cause a runtime exception
in case some of the access patterns are actually unaligned.

A-27

A Intel Fortran Programmer s Reference

A-28

Glossary

actual argument

alocatable array

argument

argument association

argument keyword

A value, variable, or procedure that is passed by a
call to aprocedure (function or subroutine). The
actual argument appears in the source of the
calling procedure. See aso dummy argument.

A named array with the ALLOCATABLE attribute
whose rank is specified at compile time, but
whose bounds are determined at run time. Storage
for the array must be explicitly allocated before
the array may be referenced.

(1) A variable, declared in the argument list of a
procedure or ENTRY statement, that receives a
value when the procedureiscaled (a dummy
argument).

(2) The variable, expression, or procedure that is
passed by acall to a procedure (an actual
argument).

The correspondence between an actual argument
and adummy argument during execution of a
procedure reference.

A dummy argument name. Argument keywords
can be used to pass actual argumentsto a
procedure in any order if the procedure has an
explicit interface.

Glossary-1

Intel Fortran Programmer’s Reference

array

array constructor

array element

array section

array-valued
assumed-shape array

assumed-size array

attribute

Glossary-2

A rectangular pattern of elements of the same data
type. The properties of an array include its rank,
shape, extent, and data type. See also bounds and
dimension.

A rank-one array represented as a sequence of
scalar or array values that may be constant or
variable.

Anindividual, scalar component of an array that
is specified by the array name and, in parenthesis,
one or more subscripts that identify the elementOs
position in the array.

A subset of an array specified by a subscript
triplet or vector subscript in one or more
dimensions. For an array a(4, 4),
a(2:4:2,2:4:2) isan array section containing
only the evenly indexed elements a(2, 2),
a4,2),a(2,4),anda(4,4).

Having the property of being an array.

An array that isadummy argument to a procedure
and whose shape is assumed (taken) from that of
the associated actual argument. An
assumed-shape arrayOs upper bound in each
dimension isrepresented by acolon (:) . Seeaso
assumed-size array.

Anolder FORTRAN 77 feature. An array thatisa
dummy argument to a procedure and whose size
(but not necessarily its shape) is assumed (taken)
from that of the associated actual argument. The
upper bound of an assumed-size arrayOs last
dimension is specified by an asterisk (*). See adso
assumed-shape array.

A property of aconstant or variable that may be
specified in atype declaration statement. M ost
attributes may alternately be specifiedin a
separate statement. For instance, the

Glossary

automatic array

automatic data object

bit
blank common

block

block data subprogram

bounds

byte

character
character string

ALLOCATABLE statement has the same meaning
asthe ALLOCATABLE attribute, which appearsin a
type declaration statement.

An explicit-shape array that islocal to aprocedure
and is not adummy argument. One or more of an
automatic arrayOs bounds is determined upon
entry to the procedure, allowing automatic arrays
to have a different size and shape each time the
procedure isinvoked.

A data object declared in a subprogram whose
storage space is dynamically allocated when the
subprogram is invoked; its storage isreleased on
return from the subprogram.

A binary digit, either 1 or 0. See also byte.

A common block that is not associated with a
name.

A series of consecutive statements that are treated
as a complete unit and are within a SELECT
CASE, DO, | F, or WHERE construct.

A procedure that establishes initial values for
variablesin named common blocks and contains
no executable statements. A block data
subprogram begins with aBLOCK DATA
statement.

The minimum and maximum values permitted as
asubscript of an array for each dimension.

A group of 8 contiguous bits starting on an
addressable boundary. See also gigabyte,
kilobyte, megabyte, and terabyte.

A digit, letter, or other symbol in the character set.

A sequence of zero or more consecutive
characters.

Glossary-3

Intel Fortran Programmer’s Reference

column-major order

common block

command-line option

compiler directive

compl ete executable

component

conformable

Glossary-4

The default storage method for arraysin
Fortran 95.

Memory representation of an array is such that the
columns are stored contiguously. For example, in
thearray a(3, 4) elementa(1, 2) follows
a(3, 1), whichfollowsa(2, 1) in memory.

See also row-magjor order.

A block of memory for storing variables. A
common block is a global entity that may be
referenced by one or more program units.

A flag that can be specified with the f 90
command line to override the default actions of
the Intel® Fortran compiler.

A specially-formatted comment within a source
program that affects how the programis
compiled. Compiler directives are not part of the
Fortran 95 Standard. In Intel Fortran, compiler
directives provide control over source listing,
optimization, and other features.

An executable program that is created using only
archive libraries and thus containsits own copy of
thelibrary routinesreferenced in the program. See
also incompl ete executable.

A constituent that is part of a derived type. A
derived type may consist of one or more
components. For example, t i me%our refersto
thehour componentoftine (andti neisa
variable whose datatypeis a derived type defined
in the program).

Two arrays are conformable if both arrays have
the same rank (number of dimensions) and the
same extent (number of elements for each
dimension). A scalar is conformable with any
array.

Glossary

connected

constant

constant expression

construct

data type

deferred-shape array

defined assignment

(1) A unitisconnected if it refersto an external
file.

(2) Anexternd fileis connected if aunit refers
toit.

In both cases, connection is established either by
the OPEN statement or by preconnection. See also
preconnected.

A data object that retains the same value during a
programOs execution. A constantOs valueis
established when a program is compiled. A
constant is either aliteral constant or anamed
constant.

An expression whose value does not vary during
theprogramOsexecution. A constant expressionOs
operands are all constants.

A series of statements that begins with a SELECT
CASE, DO, | F, or WHERE statement and endswith a
corresponding END SELECT, END DO, END | F,
or ENDWHERE statement.

A named category of datathat has a set of values,
away to denote its values, and a set of operations
for interpreting and manipulating the values.
Fortran 95 intrinsic data types include character,
complex, double precision, integer, logical, and
real. Intel Fortran also provides the byte and

double complex data types as extensions. See also
derived type.

An alocatable array or apointer array (an array
with the ALLOCATABLE or PO NTER attribute).

A non-intrinsic assignment statement that is
defined by an ASSI GNMVENT(=) interface block and
asubroutine.

Glossary-5

Intel Fortran Programmer’s Reference

defined operator

definable

demand-loadable

derived type

designator

dimension

directive
disassociated

Glossary-6

An operator that is present in an | NTERFACE
statement and has its operation implemented by
one or more user-defined functions.

A variableis definableif its value may be
changed by its name or designator appearing in an
assignment context (for example, in aREAD
statement or on the left-hand side of an
assignment statement).

A process is demand-loadable if its pages are
brought into physical memory only when they are
accessed.

A user-defined (non-intrinsic) data type that
consists of one or more components. Each
component of aderived typeis either anintrinsic
data type or another derived type.

A name that references a part of a data object that
can be defined and referenced separately from
other parts of the data abject. A designator may be
aderived type component, array section, array
element, substring, or actual argument with

| NTENT(1 NOUT) or | NTENT(OUT) .

Each subscript of an array correspondsto a
dimension of the array; arrays may have from one
to seven dimensions. The number of dimensions
isan arrayOs rank. See also extent.

See compiler directive.

A pointer that is disassociated pointsto no target.
A pointer becomes disassociated following a
DEALLOCATE or NULLI FY statement involving
the pointer or by the pointer being associated with
(pointing to) a disassociated pointer.

Glossary

dummy argument

dusty deck program

element

elemental

equivalencing

executable program

executable statement

explicit-shape array

explicit interface

An entity whose name appears in the argument
list of a procedure or ENTRY statement. It is
associated with an actual argument when the
procedure is called. The dummy argument
appears in the source of the called procedure.

An older, pre-FORTRAN 77 program.
Presumably called a Odusty deckO program
because it was stored on punched cards and has
not been changed since. Such programs generally
rely on nonstructured programming techniques
such as the GOTO statement.

See array €lement.

To beelemental, an intrinsic operation, procedure,
or assignment must apply independently to every
element of an array or apply independently to the
corresponding el ements of a set of conformable
arrays and scalars

The process of sharing storage unitsamong two or
more data objects by means of the EQUI VALENCE
Statement.

A set of program units, including one main
program, that can be run as a self-contained
program.

An instruction that causes the program to perform
one or more computational or branching actions.

An array with explicitly-declared bounds for each
dimension.

A procedureinterface whose properties (including
the name and attributes of the procedure and the
order and attributes of its arguments) are known
by the calling program unit. A procedure may
have an explicit interface in a scoping unit if it:

® isdescribed by aninterface block, or

® isan| NTERNAL procedure, or

® isaMODULE procedure

Glossary-7

Intel Fortran Programmer’s Reference

Glossary-8

expression

extended operator
extent
external file

external procedure

file

function

function result
generic procedure

gigabyte
global entity

host

host association

incomplete executable

A series of operands and (optionally) operators
and parentheses that forms either a datareference
or a computation.

See defined operator.

The number of elementsin one dimension of an
array.

A filethat is stored on a medium external to the
executing program.

A procedure that is not contained in amain
program, module, or another subprogram.

A sequence of records (characters or values
processed as a unit).

See also external file and internal file.

A procedure that returns avalue (the function
result) and that can be referenced in an
expression.

The data object returned from acal to afunction.

A procedurein which at least one actual argument
may have more than one data type. Generic
procedures may beintrinsic or user-defined.

1073741824 bytes (230 bytes). See also byte.

A program unit, common block, or external
procedure whose scopeis the entire executable
program.

A program unit or subprogram that contains an
internal procedure or module.

The process by which an internal procedure,
modul e procedure, or derived type definition
accesses the entities of its host.

An executable program that is created using at
least one shared library. Copies of shared library
routines are not present in an incomplete

Glossary

inquiry function

intent

internal file

internal procedure

intrinsic

keyword
kilobyte
kind type parameter

|abel

executable; instead, the executable has a linkage
table that lists the routinesO addresses in the
shared library. See also complete executable.

An intrinsic function whose return value provides
information based on the principa argumentsO
properties and not the argumentsO val ues.

An attribute of a dummy argument that indicates
whether the argument is used for transferring data
into the procedure, out of the procedure, or both.

A variable that is used as a file storage medium
for formatted 1/0. Internal files are stored in
memory and typically are used to convert data
from a machine representation to a character
representation by use of edit descriptors.

A procedure contained in a main program or
another subprogram.

Assignment statements, data types, operations,
and procedures areintrinsic if they are defined in
the Fortran 95 Standard and may be used, without
being defined, in any scoping unit.

See argument keyword and statement keyword.
1024 bytes (210 bytes). See also byte.

An integer parameter whose value determines the
range for an intrinsic data type; for example

I NTEGER(KI ND=2) . The kind type parameter
also determines the precision for complex and rea
data types.

An integer, oneto five digitslong, that precedes a
statement and identifies it with a unigue number.
A statementOs label provides away to transfer
control to the statement or to reference it asa
FORMAT statement.

Glossary-9

Intel Fortran Programmer’s Reference

library

literal constant

linker

|loader

main program

megabyte
module

modul e procedure

name

Glossary-10

A file that contains object code for subroutines
and data that can be used by programs written in
Fortran 95, among other languages. See also
linker.

A constant that does not have aname. A literal
constantOsvalueiswritten directly into aprogram.
See al'so named constant.

The linker resolves referencesin a programOs
source to routines that are not in the sourcefile
being compiled. The linker matches each
reference, if possible, to the corresponding library
routine.

A loader takes an executable file, the output of a
linker, and loads it into physical memory. While
doing so, it changes the virtual address to the
physical address and prepares the executablefile
for running by the operating system.

Thefirst program unit that starts executing when a
program isrun. The first statement of amain
program usualy is the PROGRAM statement.

1048576 bytes (220 bytes). See also byte.

A program unit that contains definitions of
derived types, procedures, name lists, and
variables that are made accessible to other
program units. A module begins with the
MODULE statement and its public definitions are
made available to other program units by means
of the USE statement.

A procedurethat is contained in amodule and is
not an internal procedure.

A letter followed by up to 254 alphanumeric
characters (letters, digits, underscores, and $) that
identifies an entity in an Intel Fortran program
unit, such as a common block, dummy argument,
procedure, program unit, or variable.

Glossary

named constant
numeric type

obsol escent feature

operand

operation

operator

option
optional argument

pointer

pointer association

A constant that has a name. See also literal
constant.

A complex, double precision, integer, or real data
type.
A feature defined in the FORTRAN 77 Standard

that still isin common use but is considered to be
redundant, such as the arithmetic | F statement.

The use of obsolescent features is discouraged.
The Fortran 95 Standard summarizes the
obsol escent features.

An expression that precedes or follows an
operator. For example, ina + b, botha and b are
operands.

A computation performed on one or two
operands.

A sequence of one or more charactersin an
expression that specifies an operation. For
example, ina + b, +isan operator.

See command-line option.

A dummy argument that does not require a
corresponding actual argument to be supplied
when its procedure is invoked.

A variable that has the POl NTER attribute, which
enables it to reference (point to) variables of a
specified data type (rather than storing the data
itself).

The process by which a pointer becomes
associated with the storage space of its target.
Pointer association occurs during pointer
assignment or avalid ALLOCATE statement.

Glossary-11

Intel Fortran Programmer’s Reference

Glossary-12

preconnected

present

procedure

program

program unit

rank

record

return value
row-major order

scalar

scope

Three input/output units are preconnected to files
by the operating system and need not be
connected by the OPEN statement. The
preconnected units are:

® Unit 5 (standard input)

® Unit 6 (standard output)

® Unit O (standard error)

An optional dummy argument is present in an
instance of a procedure if it is associated with an
actual argument passed by the invoking
procedure.

A unit of program code that may be invoked. A
procedure can be either afunction or a subroutine.

A sequence of instructions for execution by a
computer to perform a specific task. See also
executable program.

A main program, amodule, an external
procedure, or ablock data subprogram.

The number of dimensions of an array. Scalars
have arank of zero.

A sequence of values treated as awhole within a
file.

See function result.

The default storage method for arraysin C.
Memory representation is such that the rows of an
array are stored contiguously. For example, for
thearray a[3] [4] , thedement a[1] [0]
immediately followsa[0] [3] . Seealso
column-major order.

A dataitem that has arank of zero and thereforeis
not an array.

The part of an executable program in which a
name or declaration has a single interpretation.

Glossary

scoping unit

shape

size

specific procedure

Statement

statement function
statement keyword
statement | abel

stride

structure
structure component
subprogram

A derived-type definition, an interface body
(excluding derived-type definitions or interface
bodiesit contains), or aprogram unit or
subprogram (excluding any derived-type
definitions, interface bodies, or subprograms it
contains).

An arrayOs extent (number of elements) in each
dimension and rank (number of dimensions).

The total number of elementsin an array; the
product of all its extents.

A procedure for which each actual argument must
be of a specific data type. See also generic
procedure.

A sequence of characters that represents an
instruction or step in aprogram. A single
statement usually, but not always, occupies one
line of aprogram.

A statement may consist of multiple lines by
using the ampersand (&) continuation character.
Similarly, multiple statements may appear on a
single line separated by semicolons (;).

A function that returns a scalar value and is
defined by asingle scalar expression.

A word that is part of a statementOs syntax, such
as CHARACTER, DO, ELSE, or FORMAT.

See label.

The increment that may optionally be specified in
asubscript triplet. If it is not specified, the stride
has avalue of one.

A data object that is scalar and is of derived type.
See component.
See procedure.

Glossary-13

Intel Fortran Programmer’s Reference

Glossary-14

subroutine A procedurethat is referenced by a CALL
statement; values returned by a subroutine are
usually provided through the subroutineOs
arguments.

subscript A scalar value within the bounds of one
dimension of an array. To specify asingle array
element, a subscript must be specified for each of
the arrayOs dimensions.

subscript triplet An array section specification that consists of a
starting element, an ending element, and
(optionally) a stride separated by colons (:).

substring A contiguous segment of ascalar character string.
Note that a substring is not an array section.
target A named data object that may be associated with a

pointer. A target is specified in aTARGET
statement or in atype declaration statement that
has the TARGET attribute.

terabyte 1099511627776 bytes (2%° bytes). See also byte.
type See data type.

type declaration A statement that specifies the data type and,
statement optionally, attributes for one or more constants,

functions, or variables.

unit number A logica number that can be connected to afile to
provide a means for referring to the filein
input/output statements.

use association The association of names among different scoping
units as specified by a USE statement. See also
module.

user-defined operator ~ See defined operator.
user-defined assignment See defined assignment.

Glossary

variable

vector subscript

Zero-size array

A data object whose value may be defined and
redefined during a programOs execution. For
example, array elements or array sections, named
data objects, structure components, and substrings
al can be variables.

A method of referencing multiple, possibly
discontinuous elements of an array by using a
rank-one array of integer values as a subscript.

An array with at least one dimension that has at
least one extent of zero. A zero-sized array has a
size of zero and contains no el ements.

Glossary-15

Intel Fortran Programmer’s Reference

Glossary-16

Index

Symbols

%FILL field name, 10-194

%REF function
ALIAS directive, 7-9
CALL statement, 7-9, 10-19

%VAL function
ALIAS directive, 7-9
CALL statement, 7-9, 10-19

+autodbl option, 3-5, 3-9
+autodbl4 option, 3-9
+dlines option, 2-10
+escape option, 3-15, 3-16
+extend_source option, 2-8, 2-10
+implicit_none option, 3-23
+onetrip option

DO loops, 6-6, 7-42
+save option, 10-11
+source option, 1-2, 2-8
/usr/include, 10-100

A

A edit descriptor, 9-10

ACCEPT statement, 10-4
data list items, 8-27

access to entities, limiting, 10-161, 10-165

ACCESS= specifier

INQUIRE statement, 10-102
OPEN statement, 10-133
accessing files, 8-8
direct, 8-16
examples, 8-35
list-directed, 8-9
namelist I/0, 8-13
sequential, 8-8
ACTION= specifier
INQUIRE statement, 10-102
OPEN statement, 10-134
actual argument, 7-5, 10-115
defined, Glossary-1
ADVANCE-= specifier
READ statement, 10-169
WRITE statement, 10-222
ALIAS attribute, A-9
alignment
%FILL field name, 10-194
rules, 3-25
storage association, 3-25
allocatable arrays, 4-13, 10-6, 10-7, 10-8, 10-45
defined, Glossary-1
ALLOCATABLE statement and attribute, 4-13,
10-5
ALLOCATE statement, 5-10, 10-8
assigning space to pointers, 4-12, 10-156
allocating objects, 10-8
alternate return, 10-181, 10-202

Index-1

Intel Fortran Programmer s Reference

Index-2

arguments

actual, 10-115

array, 7-20

association, 7-3, 10-18, Glossary-1
correspondence, 7-19
defined, Glossary-1
derived-type, 7-21

dummy, 10-115, 10-144
keyword, 10-19, Glossary-1
optional, 10-19

pointer, 7-22

presence, 10-144
procedure, 7-22
subprogram, 7-18

arithmetic IF statement, 6-21, 10-94
arithmetic operators and logical operands, 5-16
array sections

defined, Glossary-2
subscript triplet, 4-21
vector subscript, 4-23

arrays, 10-50

adjustable, 4-8

allocatable, 3-26, 10-6, 10-7, 10-45
assignment, masked, 10-217
assumed-shape, 4-9
assumed-size, 4-15
automatic, 4-8

bounds, 4-3, 10-50
constructors, 4-27, Glossary-2
deallocating, 10-45
declaration, 4-4
deferred-shape, 4-12
defined, Glossary-2
dummy, 4-8

element, 10-50, Glossary-2
element ordering, 4-6
element storage order, 4-6
explicit-shape, 4-7
extensions, A-3

extent, 4-3

1/0 restrictions, 8-28
intrinsic functions, 4-2
lower bound, 4-3

masked array assignment, 4-2, 5-21

operands, 5-14

parent, 4-20

pointer, 4-12

properties, 4-3

rank, 4-3

scalar, 4-17

sections, 4-20

shape, 4-4

size, 4-3

specification expressions, 4-8

stride, 4-21

substring, 4-2

upper bound, 4-3

VOLATILE statement, 10-215

WHERE construct, 10-217

whole array processing, 4-1

zero size, 4-3
array-valued, 4-1, 4-34, Glossary-2
ASA carriage control, 8-30

asa command, 8-31

blanks, 8-12
ASSIGN statement, 10-10
assigned GO TO statement, 6-18, 10-91
assigning space to pointers, 10-156
assignment, 7-31

masked array, 5-21

pointer, 3-27, 4-12, 4-23, 5-10, 5-20

statement, 3-4, 5-1, 5-18, 5-23, 7-14, 7-17,

7-43
user-defined, 7-25
ASSIGNMENT clause, 10-161, 10-164
ASSIGNMENT option, 7-31
associated, 4-12

association
argument, 7-3, 10-18
duplicated, 7-23
host, 7-3, 10-187, 10-207
pointer, 7-3, 10-46
scope, 7-3
sequence, 7-20
status, 10-46

Index

storage, 3-25, 7-23, 10-29, 10-79, 10-187
use, 7-30, 10-128, 10-161, 10-165, 10-187,
10-207, 10-212
assumed-shape arrays, 4-9, Glossary-2
assumed-size arrays, Glossary-2

asynchronous process and VOLATILE
statement, 10-215
attributes
ALLOCATABLE, 4-12, 10-5
compatibility, 10-2
defined, Glossary-2
DIMENSION, 4-3, 10-49
extensions, A-4
EXTERNAL, 10-85
INTENT, 10-115
INTRINSIC, 10-121
OPTIONAL, 10-143
PARAMETER, 10-147
POINTER, 1-5, 3-27, 4-12, 5-20, 10-156
PRIVATE, 7-34, 10-160, 10-209
PUBLIC, 7-34, 10-164, 10-209
SAVE, 10-184
STATIC, 10-189
TARGET, 10-203
type declarations, 3-10
VOLATILE, 10-215
ATTRIBUTES directive, A-6
ALIAS, A-9
ALIGN, A-9
ALLOCATABLE, A-10
C ATTRIBUTE, A-10
DLLEXPORT, A-11
DLLIMPORT, A-11
EXTERN, A-12
INLINE, NOINLINE, and FORCEINLINE,
A-12
REFERENCE, A-13
STDCALL, A-13
VALUE, A-16
VARYING, A-16

automatic arrays, Glossary-3
automatic objects, 3-28, 10-12, Glossary-3

AUTOMATIC statement and attribute, 10-11
automatically opened unit numbers, 8-6
auxiliary I/O statements, 8-17

B

B edit descriptor, 9-12
backslash as escape character, 3-15
BACKSPACE statement, 10-12
binary constants, 3-12
binary edit descriptor, 9-12
bit manipulation intrinsics, 5-16
bit, defined, Glossary-3
blank common, defined, Glossary-3
blank edit descriptor, 9-14
BLANK= specifier, 9-30

B edit descriptor, 9-13

BN and BZ edit descriptors, 9-14

INQUIRE statement, 10-103
OPEN statement, 10-134

block data program unit, 10-85

BLOCK DATA statement, 10-14

block data subprogram, defined, Glossary-3
block IF statement, 10-95

block, defined, Glossary-3

block, statement, 6-1

BN edit descriptor, 9-14

bounds, Glossary-3

array, 4-5, 4-7, 4-8, 4-12, 4-22,4-36, 10-50

upper, 4-31, 4-36
BOZ constants, 3-12, 5-17
extended use, 3-16
branching, 6-18
built-in functions
%REF, 7-9, 10-19
%VAL, 10-19
BYTE statement, 10-16
byte, defined, Glossary-3
bytes-remaining edit descriptor, 9-28

Index-3

Intel Fortran Programmer s Reference

BZ edit descriptor, 9-14

Cc

CALL statement, 7-5, 10-18
carriage control and ASA, 8-30

CASE construct, 1-3, 6-2
CASE statement, 10-21
END SELECT statement, 10-70
SELECT CASE statement, 10-186
CASE statement, 10-21

categories
arrays, 4-1
intrinsic functions, 7-6
statements, 2-4
character, Glossary-3
blank, 2-10
CHARACTER statement, 10-23
concatenation, 5-13
constants, 3-14
edit descriptor, 9-7
escape, 3-15
list-directed 1/0, 8-10, 8-11
special, 2-2
string, 3-15, 3-18, 3-19, 3-28, Glossary-3
substrings, 3-19
character edit descriptor (A and R), 9-10
CHARACTER statement, 10-23
character string edit descriptor, 9-7

clauses
ASSIGNMENT, 10-161, 10-164
DEFAULT, 10-21
IN, 10-115
INOUT, 10-115
ONLY, 10-212
OPERATOR, 10-161, 10-164
OUT, 10-115
RECURSIVE, 10-76, 10-88, 10-202
RESULT, 10-75, 10-89
WHILE, 10-53

CLOSE statement, 10-27

colon edit descriptor, 9-9

column-major order, defined, Glossary-4

comment, 2-12
comment line, 2-10
common blocks, Glossary-4
and sequencing, 10-187
BLOCK DATA statement, 10-14
COMMON statement, 10-29
dummy arguments, 10-31
equivalencing, 10-79
initializing, 10-14
pointers, 10-153
record extension, 10-178
result variables, 10-76
SAVE statement, 10-184
saved variables, 10-184
VOLATILE statement, 10-215
COMMON statement, 10-29
compatibility
attributes, 10-2
compile-line options
+onetrip, 6-6, 7-42
+save, 10-11
-1, 2-15, 10-100
compiler directives, Glossary-4
complete executable, Glossary-4
complex
COMPLEX statement, 10-33
DOUBLE COMPLEX statement, 10-57
list-directed 1/O, 8-10, 8-11
variable, 5-19
COMPLEX statement, 10-33
component of derived type, Glossary-4
composite record references, 10-176
computation, 7-6
computed GO TO statement, 6-19, 10-92
concatenation, 5-13
conformable, 4-31, 10-50, Glossary-4
connecting files for I/0, 8-4, Glossary-5

constants
binary, 3-12
BOZ, 3-16, 5-17

Index

character, 3-14

complex, 3-14

defined, Glossary-5

expressions, 5-7, Glossary-5

hexadecimal, 3-16

Hollerith, 3-18, 5-17

integer, 3-11

literal, 3-11

named, 3-1

octal, 3-12

real, 3-13

truncation, 3-17

typeless, 3-16, 5-17

unsigned, 3-12
constructs, 6-1

CASE, 6-2, 10-186

defined, Glossary-5

DO, 6-4, 10-53

END DO, 10-70

END IF, 10-70

END SELECT, 10-70

END WHERE, 10-70

IF, 6-14, 10-95

WHERE, 10-217
CONTAINS statement, 10-37

continuation line
fixed format, 2-9
free format, 2-12
CONTINUE statement, 6-16, 10-39
control constructs, 6-1, 6-4
CASE, 6-2
DO, 6-4
IF, 6-14
nested, 6-1
cpp
man page, A-5
Cray-style pointer, 3-27, 10-152
precautions when using, 10-154
creating dynamic objects and linked lists, 10-156
CYCLE statement, 6-16, 10-40

D

D edit descriptor, 9-15

data declaration statements
BYTE, 3-5, 10-16
CHARACTER, 3-5, 10-23
COMPLEX, 3-5, 10-33
DOUBLE COMPLEX, 3-5, 10-57
DOUBLE PRECISION, 3-11, 10-60
INTEGER, 3-5, 10-112
LOGICAL, 3-11, 10-122
REAL, 3-5, 10-173

data initialization, 3-24
BLOCK DATA statement, 10-14
DATA statement, 10-41

data initialization. See also initialization., 10-14
data list, I/O, 8-26

DATA statement, 3-9, 3-12, 3-24, 10-41
statement order, 2-6

data transfer statements, 8-17
ACCEPT, 10-4
DECODE, 10-47
ENCODE, 10-66
FORMAT, 10-87
NAMELIST, 10-130
PRINT, 10-158
READ, 10-167
WRITE, 10-221
data transfer. See input/output., 8-1
data types
BYTE statement, 10-16
CHARACTER, 3-2
CHARACTER statement, 10-23
COMPLEX, 3-2
complex, 3-2, 10-33
COMPLEX statement, 10-33
defined, Glossary-5
derived types, 3-1
DOUBLE COMPLEX statement, 10-57
DOUBLE PRECISION statement, 10-60
extensions, A-2
INTEGER, 3-2
INTEGER statement, 10-112

Index-5

Intel Fortran Programmer s Reference

Index-6

intrinsic, 3-4, 3-11
LOGICAL, 3-2
LOGICAL statement, 10-122
nonnumeric, 3-1
numeric, 3-1
REAL, 3-2
real, 3-2
REAL statement, 10-173
DISTRIBUTE POINT directive, A-17
DEALLOCATE statement, 10-45
deallocating objects, 10-45
declaring data
BYTE statement, 3-5, 10-16
CHARACTER statement, 3-5, 10-23
COMPLEX statement, 3-5, 10-33
DOUBLE COMPLEX statement, 3-5, 10-57
DOUBLE PRECISION statement, 3-5,
10-60
INTEGER statement, 3-5, 10-112
LOGICAL statement, 3-5, 10-122
REAL statement, 3-5, 10-173
DECODE statement, 10-47
DEFAULT clause, 10-21
deferred-shape arrays, 4-12, Glossary-5
definable, Glossary-6
defined assignment, 7-26, Glossary-5
defined operator, Glossary-6

DELIM= specifier
INQUIRE statement, 10-103
list-directed output, 8-11
OPEN statement, 10-135
demand-loadable process, Glossary-6
derived types, 3-4, Glossary-6
declaration, 3-5, 10-206
defining, 10-209
definition, 3-19
naming, 10-209
PRIVATE attribute, 10-209
PRIVATE statement, 10-161
PUBLIC attribute, 10-209
PUBLIC statement, 10-165
sequence, 3-20, 10-187

SEQUENCE statement, 10-187
structure constructor, 3-21

determining record length, 10-110
dimension, 4-3, Glossary-6
DIMENSION statement and attribute, 4-3, 10-49

direct access, 8-16
example, 8-35
REC= specifier, 8-16
DIRECT= specifier and INQUIRE statement,
10-104
disassociated, 4-12, Glossary-6
status, 10-46
disassociating a pointer, 4-12, 10-132
DO loops, 6-4
conditional, 6-7
CONTINUE statement, 10-39
counter-controlled, 6-5
CYCLE statement, 10-40
DO statement syntax, 10-53
END DO statement, 10-70
EXIT statement, 10-83
extended range, 10-54
FORTRAN77-style, 6-5, 6-16, 10-39, 10-40,
10-55
implied, 8-28
infinite, 6-8
terminal statement, 6-7
WHILE clause, 10-53
DO statement, 10-53
double complex
DOUBLE COMPLEX statement, 10-57
list-directed 1/0, 8-10, 8-11
DOUBLE COMPLEX statement, 10-57
double precision
changing default size, 3-9
DOUBLE PRECISION statement, 10-60
DOUBLE PRECISION statement, 10-60
dummy argument, 10-115, 10-144, Glossary-7
array, 7-20
automatic character variables, 10-25
CALL statement, 10-18

Index

character length and asterisk (*), 10-25
COMMON statement, 10-31
DATA statement, 10-42

derived type, 10-206
derived-type, 7-21

ENTRY statement, 10-75
EQUIVALENCE statement, 10-79
EXTERNAL attribute, 10-85
FUNCTION statement, 10-89
initialization, 10-174

INTENT statement, 10-115
OPTIONAL statement, 10-144
pointer, 7-22

POINTER (Cray-style), 10-153
procedure, 7-22

RETURN statement, 10-181
scalar, 7-19

SEQUENCE statement, 10-187
SUBROUTINE statement, 10-201

dummy procedures, 7-18, 10-85
duplicated association, 7-23
dusty deck program, Glossary-7
dynamic objects

creating, 10-156

E

E edit descriptor, 9-15
edit descriptors
A, 9-10
B, 9-12
binary, 9-12
blank, 9-14
BN, 9-14
byte remaining, 9-28
BZ,9-14
character (A and R), 9-10
character string, 9-7
colon, 9-9
D, 9-15
E, 9-15
EN, 9-15
ES, 9-15

F,9-15

G, 9-15

H, 9-21

hexadecimal, 9-30

Hollerith, 9-21

1,9-22

integers, 9-22

L,9-24

logicals, 9-24

newline, 9-8

0, 9-25

octal, 9-25

overview, 9-4

P, 9-27

plus sign, 9-29

Q, 9-28

R, 9-10

real, 9-15

repeat factor, 9-4

S, 9-29

scale factor, 9-27

slash, 9-9

SP, 9-29

SS, 9-29

T, 9-29

tab, 9-29

TL, 9-29

TR, 9-29

X, 9-29

Z,9-30
element. See arrays, element., Glossary-7
elemental

defined, Glossary-7
ELSE IF statement, 10-63
ELSE statement, 10-62
ELSEWHERE statement, 10-64, 10-217
embedded format specification, 9-32

ACCEPT statement, 10-4

DECODE statement, 10-47, 10-66

FORMAT statement, 10-87

internal file, 10-171

PRINT statement, 10-158, 10-159

READ statement, 10-167, 10-171

Index-7

Intel Fortran Programmer s Reference

WRITE statement, 10-222
EN edit descriptor, 9-15
ENCODE statement, 10-66

END statements
CASE construct, 10-70
constructs, 10-70
derived type definition, 10-72
DO construct, 10-70
IF construct, 10-70
interface block, 10-71
internal procedure, 10-68
map, 10-70
module procedure, 10-68
program units, 10-68
structure definition, 10-70
union, 10-70
WHERE construct, 10-70
END-= specifier
READ statement, 10-169

ENDFILE statement, 8-2, 10-73

end-of-file

record, 8-2
engineering notation formatting, 9-18
ENTRY statement, 7-12, 10-75
EOR= specifier, 10-169
EQUIVALENCE statement, 3-25, 10-79
equivalencing, 3-21

alignment, 10-80

and sequencing, 3-25, 10-187

arrays, 3-25, 10-81

automatic variables, 10-12

character data, 10-80

common blocks, 3-25, 10-82

DATA statement, 10-43

defined, Glossary-7

result variables, 10-76

union extension, 10-200

VOLATILE statement, 10-215
ERR= specifier

BACKSPACE statement, 10-13

CLOSE statement, 10-27

DECODE statement, 10-48, 10-67

ENDFILE statement, 10-73
INQUIRE statement, 10-104
OPEN statement, 10-136
REWIND statement, 10-182
WRITE statement, 10-223
ES edit descriptor, 9-15
escape characters, 3-15
evaluation of expressions, 5-15
example programs
direct access, 8-35
internal file, 8-31
namelist I/0, 8-13
nonadvancing I/O, 8-33
sequential access, 8-35
executable program, Glossary-7
executable statement, Glossary-7
execution control, 6-1
arithmetic IF statement, 10-94
ASSIGN statement, 10-10
assigned GOTO statement, 10-91
block IF statement, 10-95
CALL statement, 10-18
CASE construct, 6-2
computed GOTO statement, 10-92
CONTINUE statement, 6-16
CYCLE statement, 6-16, 10-40
DO construct, 6-4
DO statement, 10-53
ENTRY statement, 10-75
EXIT statement, 6-17, 10-84
extensions, A-3
FUNCTION statement, 10-88
GO TO (assigned) statement, 6-18
GO TO (computed) statement, 6-19

GO TO (unconditional) statement, 6-20

IF (arithmetic) statement, 6-21

IF (logical) statement, 6-21

IF construct, 6-14

logical IF statement, 10-96
PAUSE statement, 6-22, 10-151
RETURN statement, 10-181
SELECT CASE statement, 10-186
STOP statement, 6-23, 10-190

Index

SUBROUTINE statement, 10-201
unconditional GOTO statement, 10-93

EXIST= specifier, 10-104

Extended UNIX Code, 2-2
extending source lines, 2-10
extensions, 1-1, A-1

EXIT statement, 6-17, 10-55, 10-84
explicit interface, 7-8, 7-26, Glossary-7
explicit typing, 3-22
explicit-shape arrays, 4-7, Glossary-7
expressions
arrays, 5-14
constant, 5-7
defined, Glossary-8
evaluation, 5-15
extensions, A-3
formation, 5-3
initialization, 5-8
integer, 5-16
interpretation, 5-12
logical, 5-21
primary, 5-3
scalars, 5-14
special forms, 5-7
specification, 5-10
Extended Directives, A-5
Extended directives, A-5
ATTRIBUTES, A-6
DISTRIBUTE POINT, A-17
IF | IF DEFINED, A-18
IVDEP, A-20
LOOP COUNT, A-21
PARALLEL and NOPARALLEL, A-22
PREFETCH and NOPREFETCH, A-23
SWP and NOSWP, A-23
UNROLL and NOUNROLL, A-24
VECTOR ALIGNED and UNALIGNED,
A-26
VECTOR ALWAYS and NOVECTOR,
A-25
extended directives, A-5
Extended directives’ syntax, A-6

extended operator
See defined operator., Glossary-8

extended range DO loop, 10-54

$ and namelist I/O, 8-14

%REF function, 7-9, 10-19

%VAL function, 7-9, 10-19

ACCEPT statement, 2-4, 10-4

arrays, A-3

attributes, A-4

AUTOMATIC statement, 2-5, 10-11

BYTE statement, 2-5, 10-16

comment character, 2-1

control transfer, 6-2, 6-3, 10-95

Cray-style POINTER statement, 10-152

data type and objects, A-2

DECODE statement, 2-5, 10-47

DOUBLE COMPLEX statement, 2-5, 3-5,
10-57

ENCODE statement, 2-6, 10-66

END MAP, 2-4, 10-70

END STRUCTURE, 2-5, 10-70

END UNION, 2-5, 10-70

equivalencing character data, 10-80

execution control, A-3

expressions, A-3

extended range DO loop, 10-54

formatting, A-4

I edit descriptor and other types, 9-22

I/0 list items, 9-10

initialization syntax, 10-17, 10-26, 10-35,
10-58, 10-61, 10-114, 10-124, 10-175

initializing common blocks, 7-44, 10-14,
10-31

initializing integers, 3-13, 10-43

input/output, A-4

integer array as format specification, 9-32

kind syntax, 10-34, 10-112, 10-122, 10-173

language elements, A-1

length specification, 10-36, 10-114, 10-124,
10-175

MAP statement, 2-6, 10-125

miscellaneous, A-5

newline ($) edit descriptor, 9-8

numeric array as internal file, 8-3

Index-9

Intel Fortran Programmer s Reference

padding common, 10-32

POINTER (Cray-style) statement, 2-5,
10-152

PRINT and namelist I/0, 8-13

program units, A-3

Q (bytes remaining) edit descriptor, 9-28

Q (real) edit descriptor, 9-15, 9-17

R edit descriptor, 9-10

real edit descriptors and integers, 9-15

RECORD statement, 3-28, 10-176

saving common blocks, 10-30

sequential I/O statements and direct access,

8-16
statements, A-4

STATIC statement and attribute, 2-5, 10-189
STRUCTURE statement, 2-5, 3-28, 10-191

TYPE (I/0O) statement, 2-5, 10-210
UNION statement, 2-5, 10-211

unnamed common, initializing, 7-44, 10-14

VIRTUAL statement, 2-6, 10-214
VOLATILE statement, 2-6, 10-215
extent, 4-7, 10-50, Glossary-8
external files, 8-2, 8-4
defined, Glossary-8
external procedure, 7-7, Glossary-8
EXTERNAL statement and attribute, 10-85

F

F edit descriptor, 9-15

field name, %FILL, 10-194

file control statements
BACKSPACE, 10-12
CLOSE, 10-27
ENDFILE, 10-73
INQUIRE, 10-101
OPEN, 10-133
READ, 10-167
REWIND, 10-182
WRITE, 10-221

file positioning statements
BACKSPACE, 10-12

ENDFILE, 10-73
REWIND, 10-182
FILE= specifier
INQUIRE statement, 10-104
OPEN statement, 10-136
files, 8-2
accessing, 8-8
defined, Glossary-8
external, 8-2
internal, 8-3
positioning, 8-17
scratch, 8-2
fixed source form, 2-8
flow control statements, 6-15
arithmetic IF, 6-21, 10-94
assigned GO TO, 6-18, 10-91
block IF, 10-95
CALL, 10-18
computed GO TO, 6-19, 10-92
CONTINUE, 6-16, 10-39
CYCLE, 6-16, 10-40
DO, 10-53
EXIT, 6-17, 10-84
logical IF, 6-21, 10-96
PAUSE, 6-22, 10-151
RETURN, 10-181
SELECT CASE, 10-186
STOP, 6-23, 10-190
unconditional GO TO, 6-20, 10-93
flow of execution, 6-1
FMT= specifier
READ statement, 10-168
WRITE statement, 10-221
FORM= specifier
INQUIRE statement, 10-104
OPEN statement, 10-137

format rules
list-directed 1/0, 8-9
namelist I/0, 8-14

format specification
character arrays, 9-33
DECODE statement, 10-47

Index

embedded, 9-32

ENCODE statement, 10-66

FORMAT statement, 10-87

interaction with I/O list, 9-34, 9-35

nested, 9-33

PRINT statement, 10-159

READ statement, 10-168

syntax, 9-3

WRITE statement, 10-221
FORMAT statement, 9-2, 10-87

labels, 2-3

statement order, 2-6
formatted I/0

direct-access files, 8-16

edit descriptors, 9-4

format specification, 9-2

PRINT statement, 10-159

READ statement, 10-171

sequential files, 8-8

WRITE statement, 10-223
formatted records, 8-1
FORMATTED-= specifier, 10-105

formatting data
binary, 9-12
blanks, 9-14
bytes remaining, 9-28
character, 9-10
engineering notation, 9-18
extensions, A-4
FORMAT statement, 9-2
hexadecimal, 9-30
Hollerith, 9-21
integers, 9-22, 9-24
newline, 9-8
octal data, 9-25
plus sign, 9-29
reals, 9-15
record termination, 9-9
repeat specification, 9-35
scale factor, 9-27
scientific notation, 9-18
tab, 9-29

FORTRAN 77, 1-2

block data program unit, 10-14
Cray-style pointer, 10-152
DO loop, 6-5, 10-39, 10-40, 10-55
ENTRY statement, 10-77, 10-144
statement function, 7-17, 10-37, 10-89
FREE
intrinsic subroutine, 10-153
free source form, 2-10
finXX, 8-6
function
defined, Glossary-8
result, 7-8, Glossary-8

FUNCTION statement, 7-12, 10-88

functions, built-in
%REF, 7-9, 10-19
%VAL, 7-9, 10-19

G

G edit descriptor, 9-19

generic names, 7-34

generic procedure, 7-26, Glossary-8
generic referencing, 7-9

gigabyte, defined, Glossary-8
global entity, defined, Glossary-8

GO TO statements
assigned, 6-18, 10-91
computed, 6-19, 10-92
unconditional, 6-20, 10-93

H

H edit descriptor, 9-21
hexadecimal

constants, 3-16

edit descriptor, 9-30

notation, 3-12
hexadecimal constants, 3-13
Hollerith

constants, 3-18

edit descriptor, 9-21

Index-11

Intel Fortran Programmer s Reference

Index-12

host association, 7-3, Glossary-8
arguments, 10-207
DATA statement, 10-42
SEQUENCE, 10-187

host, defined, Glossary-8

hpnls man page, A-5

I edit descriptor, 9-22
-I option, 2-15, 10-100
/O
data list, 9-34
See also input/output., 8-1
/O specifiers, 8-20
ACCESS=, 10-102
ACTION=, 10-102, 10-134
ADVANCE=, 8-17, 10-169, 10-222
BLANK=, 9-13, 9-14, 9-30, 10-103, 10-134
DELIM=, 8-11, 10-103, 10-135
DIRECT=, 10-104
END=, 10-169
EOR=, 10-169
ERR=, 10-13, 10-27, 10-48, 10-67, 10-73,
10-104, 10-136, 10-182, 10-223
EXIST=, 10-104
FILE=, 10-104, 10-136
FMT=, 10-47, 10-168, 10-221
FORM=, 10-104, 10-137
FORMATTED=, 10-105
IOSTAT=, 10-13, 10-27, 10-48, 10-67,
10-73, 10-105, 10-137, 10-169, 10-182,
10-223
NAME-=, 10-105
NAMED=, 10-105
NEXTREC=, 10-106
NML=, 10-168, 10-222
NUMBER=, 10-106
OPENED-=, 10-106
PAD=, 10-106, 10-138
POSITION=, 10-107, 10-138
READ=, 10-107
READWRITE=, 10-107

REC=, 8-16, 10-170, 10-223

RECL=, 10-108, 10-139

SEQUENTIAL=, 10-108

SIZE=, 10-170

STAT=, 10-8, 10-45

STATUS=, 8-3, 10-28, 10-140

UNFORMATTED=, 10-109

UNIT=, 10-13, 10-27, 10-47, 10-66, 10-73,
10-102, 10-133, 10-168, 10-182, 10-221

WRITE=, 10-109

IF and IF DEFINED Directives, A-18

IF construct, 6-14
ELSE IF statement, 10-63
ELSE statement, 10-62
END IF statement, 10-70
IF statement, 10-95

IF statements

arithmetic, 6-21, 10-94

block, 6-14, 10-95

logical, 6-21, 10-96
IMPLICIT NONE statement, 10-97, 10-99
IMPLICIT statement, 3-22, 10-97, 10-99
implicit typing, 3-22
implied-DO loops, 8-28

nested, 10-44
IN intent, 7-24, 10-115

INCLUDE line, 2-14, 10-100
labels, 2-3

incomplete executable, defined, Glossary-8

infinite DO loop, 6-8

initial line, 2-9

initialization
BLOCK DATA statement, 10-14
CHARACTER statement, 10-25
COMMON statement, 10-31
COMPLEX statement, 10-35
DATA statement, 10-41, 10-42
DOUBLE COMPLEX statement, 10-57
DOUBLE PRECISION statement, 10-60
EQUIVALENCE statement, 10-81
expression, 5-8
INTEGER statement, 10-113

Index

LOGICAL statement, 10-123
PARAMETER statement, 10-148
REAL statement, 10-174
INOUT intent, 7-24, 10-115
input data
list-directed 1/0, 8-9
namelist I/0, 8-14
input/output
accessing files, 8-8
ASA carriage control, 8-30
data list, 8-26
edit descriptors, 9-4
ENDFILE statement, 8-2
example programs, 8-31
extensions, A-4
files, 8-2
formatted, 8-8
list-directed, 8-9
namelist-directed, 8-13
nonadvancing 1/O, 8-17
overview of statements, 8-17
records, 8-1
specifiers, 8-20
statement syntax, 8-19
unit number, 8-4
input/output statements
ACCEPT, 10-4
BACKSPACE, 10-12
CLOSE, 10-27
DECODE, 10-47
ENCODE, 10-66
ENDFILE, 10-73
FORMAT, 10-87
INQUIRE, 10-101
NAMELIST, 10-130
OPEN, 10-133
PRINT, 10-158
READ, 10-167
REWIND, 10-182
summary, 8-17
WRITE, 10-221
INQUIRE statement, 10-101

inquiry function, Glossary-9

integer, 3-2
BYTE statement, 10-16
constants, 3-11
edit descriptor, 9-22
INTEGER statement, 10-112
list-directed /O, 8-10
literals, 5-17
operands and operators, 5-15
INTEGER statement, 10-112
INTENT statement and attribute, 7-24, 10-115

intents

defined, Glossary-9

IN, 7-24, 10-115

INOUT, 7-24, 10-115

OUT, 7-24, 10-115
interface, 7-8
interface block, 7-25, 7-27, 10-128
interface procedure, 7-24, 10-19
INTERFACE statement, 7-30, 10-117

internal files, 8-3
connecting to unit number, 8-3
DECODE statement, 10-47
defined, Glossary-9
ENCODE statement, 10-66
example, 8-31
READ statement, 10-171
WRITE statement, 10-224

internal procedure, 7-13, Glossary-9

alternative to statement function, 10-37
interpretation of expressions, 5-12
intersection form, 2-13
intrinsic

data types, 3-11

defined, Glossary-9

inquiry functions, 3-9

operators, 5-12

relational operators, 5-13
intrinsic assignment, 5-18
intrinsic procedures

FREE, 10-153

MALLOC, 10-153

Index-13

Intel Fortran Programmer s Reference

Index-14

PRESENT, 10-144

INTRINSIC statement and attribute, 10-121

IOLENGTH= specifier, 10-101, 10-111

IOSTAT= specifier
BACKSPACE statement, 10-13
CLOSE statement, 10-27
DECODE statement, 10-48, 10-67
ENDFILE statement, 10-73
INQUIRE statement, 10-105
OPEN statement, 10-137
READ statement, 10-169
REWIND statement, 10-182
WRITE statement, 10-223

IVDEP directive, A-20

K

keywords, Glossary-9
arguments, 1-4, 4-4, 7-19, 10-19
statement keyword, Glossary-13

kill command, 6-23

kilobyte, defined, Glossary-9

kind parameter, 3-2

kind type parameter, defined, Glossary-9

L

L edit descriptor, 9-24
label, defined, Glossary-9

language elements, 2-1
extensions, A-1
left-justifying character data, 9-10
length, inquiring, 10-111
library
defined, Glossary-10
1ibU77 routines
LOC, 10-153
limiting access to entities, 10-161, 10-165
limits, 5-11
dimensions, 4-7
length of formatted record, 8-1

nested INCLUDE lines, 2-14
number of dimensions, 10-50

linked lists, creating, 10-156

linker
defined, Glossary-10
list-directed 1/0, 8-9
DELIM= specifier, 8-11
format, 8-10
input, 8-9
output, 8-11
PRINT statement, 10-159
READ statement, 10-172
sequential access, 8-9
WRITE statement, 10-225

literal
complex, 5-17
constant, defined, Glossary-10
logical, 5-17
real, 5-17
loader. See linker., Glossary-10

LOC
1ibU77 routine, 10-153
logical, 3-2
edit descriptor, 9-24
IF statement, 6-21
list-directed 1/0, 8-10
LOGICAL statement, 10-122
operands and operators, 5-15
operator precedence, 5-5
operators, 5-4
variable, 5-16
LOGICAL statement, 10-122

LOOP COUNT directive, A-21

M
main program, 2-3, Glossary-10
MALLOC
intrinsic function, 10-153
man pages
C preprocessor, A-5
Shift-JIS encoding, A-5

Index

map block, 10-125, 10-197
MAP statement, 10-125, 10-197
masked array assignment, 5-21, 10-217
megabyte, defined, Glossary-10
miscellaneous extensions, A-5
MODULE PROCEDURE statement, 10-128
module procedures

defined, Glossary-10

use association, 7-30, 10-128
MODULE statement, 10-126
modules, 7-33, 10-126

defined, Glossary-10
multiple OPENSs, 10-142

N
NAME= specifier, 10-105

named constant, 10-148
defined, Glossary-11
named DO loops, 10-55
NAMED-= specifier, 10-105
NAMELIST statement, 10-130
ACCEPT statement, 10-4
PRINT statement, 10-159
READ statement, 10-167
WRITE statement, 10-222
namelist-directed 1/0, 8-13
example, 8-13
input, 8-14
NML-= specifier, 8-13
output, 8-15
PRINT statement, 10-160
READ statement, 10-171
sequential access, 8-13
WRITE statement, 10-222, 10-224
names, 2-2
defined, Glossary-10
derived types, 10-209
nesting
DO loops, 10-55
implied-DO loops, 10-44

records, 10-176, 10-196
structures, 10-191, 10-194
new features in Fortran 90, 1-2
newline edit descriptor, 9-8
NEXTREC= specifier and INQUIRE statement,
10-106
NML-= specifier, §-13
READ statement, 10-168
WRITE statement, 10-222
nonadvancing /O, 8-17
ADVANCE= specifier, 8-17
example, 8-33
READ statement, 10-169, 10-171
WRITE statement, 10-222, 10-224
nonnumeric types, 3-1
nonsequenced types, 10-207
normal return from subprogram, 10-181
NULL pointer, 3-27
NULLIFY statement, 10-132
disassociating pointers, 10-46
NUMBER= specifier
INQUIRE statement, 10-106
numeric types
BYTE statement, 10-16
COMPLEX statement, 10-33
defined, Glossary-11
DOUBLE COMPLEX statement, 10-57
DOUBLE PRECISION statement, 10-60
edit descriptors, 9-15, 9-22
INTEGER statement, 10-112
REAL statement, 10-173

o)

O edit descriptor, 9-25
objects, 4-3
allocating, 10-7
deallocating, 10-45

obsolescent feature, defined, Glossary-11

Index-15

Intel Fortran Programmer s Reference

Index-16

octal
constants, 3-12
edit descriptor, 9-25
ONLY clause, 10-212
OPEN statement, 10-133
OPENED-= specifier and INQUIRE statement,
10-106
opening files, 8-3, 8-4
operand, 5-16, 5-18
operands, Glossary-11
operation, defined, Glossary-11
OPERATOR clause, 7-30, 10-161, 10-164
operators, Glossary-11
adjacent, 5-4
and logical operands, 5-16
binary, 5-4
concatenation, 5-13
exponentiation, 5-4
integer operands, 5-15
intrinsic, 5-12
logical, 5-15
precedence, 5-5
relational, 5-4
unary, 5-4
user-defined, 5-1, 7-30
optional argument, 7-19, 10-19, Glossary-11
OPTIONAL statement and attribute, 7-19,
10-143
order of statements within program, 2-6
OUT intent, 7-24, 10-115
output data
list-directed 1/0, 8-11
namelist I/0, 8-15

P

P edit descriptor, 9-27

PAD= specifier
INQUIRE statement, 10-106
OPEN statement, 10-138

padding

%FILL field name, 10-194
PARALLEL | NOPARALLEL Directives, A-22
PARAMETER statement and attribute, 10-147
passing

arguments, 7-9
PAUSE statement, 6-22, 10-151
permitting access, 10-165
plus sign edit descriptor, 9-29
pointer

association, defined, Glossary-11
POINTER statement (Cray-style), 10-152

precautions when using, 10-154
POINTER statement and attribute, 5-3, 10-156
pointers, 3-27, 4-12

allocating, 3-27, 10-7

arrays, 4-12, 5-3

assignment, 5-20

association, 5-19, 10-46

Cray-style, 3-27, 10-152

DEALLOCATE statement, 10-46

deallocating, 3-27, 10-45

defined, Glossary-11

Fortran 90, 10-156

object, 5-20
POSITION= specifier

INQUIRE statement, 10-107

OPEN statement, 10-138
positioning a file

BACKSPACE, 10-13

ENDFILE, 10-73

REWIND, 10-182
precedence of operators, 5-5
preconnected unit numbers, 8-5

defined, Glossary-12
PREFETCH | NOPREFETCH I PREFETCH

A,B Directives, A-23
present (arguments), Glossary-12
PRESENT intrinsic function, 10-144
PRINT statement, 10-158
data list items, 8-27
format specification, 10-159

Index

formatted 1/0, 10-159
list-directed I/0, 8-11, 10-159
namelist-directed 1/0, 10-160
PRIVATE statement and attribute, 10-160,
10-209

procedure
categories of intrinsics, 7-6
defined, Glossary-12
definition, 7-8
dummy, 10-85
external, 7-7, 10-85
interface, 10-19
intrinsic, 7-6
recursive, 7-14, 10-76, 10-88
referencing, 7-9
statement function, 7-17
use, 7-33
program
defined, Glossary-12
See also program units, 2-3
structure, 2-3
subroutine, 7-7
unit, 2-3, 2-6
program execution, 6-1
pausing, 6-22
terminating, 6-24
PROGRAM statement, 7-43, 10-163
program units, 2-14
block data, 7-1, 10-85
defined, Glossary-12
extensions, A-3
function, 7-2, 10-88
main, 7-1
main program, 10-163
module, 7-1, 7-29, 10-126, 10-128
subroutine, 7-2, 10-201
PUBLIC statement and attribute, 10-164, 10-209

Publications
See related publications, xxviii

Q

Q edit descriptor, 9-15, 9-21, 9-28

R

R edit descriptor, 9-10
range, extended (DO loops), 10-54
rank, 10-50, Glossary-12

READ statement, 10-167
data list items, 8-27
formatted 1/0, 10-171
internal files, 10-171
list-directed I/O, 8-9, 10-172
namelist-directed 1/0, 10-171
nonadvancing 1/0, 8-17, 10-171
unformatted 1/0, 10-172
READ-= specifier, 10-107
READWRITE= specifier, 10-107
real, 3-2
constants, 3-13
DOUBLE PRECISION statement, 10-60
edit descriptors, 9-15
list-directed 1/0, 8-10
REAL statement, 10-173
variable, 5-18
REAL statement, 10-173
REC= specifier
direct access, 8-16
READ statement, 10-170
WRITE statement, 10-223
RECL= specifier
INQUIRE statement, 10-108
OPEN statement, 10-139
RECORD statement, 3-28, 10-176
records (extension)
composite references, 10-176
nested, 10-176, 10-196
RECORD statement, 10-176
referencing, 10-176
restrictions on I/0, 8-28
See also structures (extension)., 10-176

Index-17

Intel Fortran Programmer s Reference

Index-18

simple references, 10-176
STRUCTURE statement, 10-191

records (I/0), 8-1
defined, Glossary-12
end-of-file record, 8-2
formatted, 8-1
unformatted, 8-2

RECURSIVE clause, 7-14, 10-76, 10-88, 10-202
recursive procedure, 7-14

recursive procedures, 10-88, 10-202

Related publications, xxviii

repeatable edit descriptors, 9-4

repeating format specifications, 9-35

RESULT clause, 10-75, 10-89

result variables, 7-12
ENTRY statement, 10-76
FUNCTION statement, 10-89

RETURN statement, 7-43, 10-181

return value, 7-5, Glossary-12

returning from subprogram, 7-18, 10-181
REWIND statement, 10-182
right-justifying character data, 9-10
row-major order, defined, Glossary-12
rules, typing, 3-22

S

S edit descriptor, 9-29
SAVE statement and attribute, 10-184
saving variables, 10-184
scalar, Glossary-12
scale factor edit descriptor, 9-27
scientific notation formatting, 9-18
scope, Glossary-12
scope association, 7-3
scoping unit, 2-7, 3-22, 7-3, Glossary-13
scratch files, 8-2

closing, 10-28

opening, 10-140

search paths
include files, 10-100

SELECT CASE statement, 10-186
sequence association, 7-20

sequence derived type, 3-21, 10-187
SEQUENCE statement, 10-187

sequencing and storage association, 10-187

sequential access, 8-8
example, 8-35
formatted 1/0, 8-8
list-directed 1/0, 8-9
namelist I/0, 8-13

SEQUENTIAL= specifier and INQUIRE
statement, 10-108

shape, 10-50, Glossary-13

size of arrays, 4-30
Shift-JIS encoding

man page, A-5
simple record references, 10-176
size of arrays, 10-50, Glossary-13
SIZE= specifier, 10-170
slash edit descriptor, 9-9

slashes
delimiting data values, 3-9
list-directed I/O, 8-10

source lines
fixed format, 2-13
free format, 2-10

SP edit descriptor, 9-29

spaces, multiple, 2-11

special characters, 2-2

specific procedure, Glossary-13
specification expression, 5-10
specifiers. See 1/O specifiers., 8-3
SS edit descriptor, 9-29
standard error, 8-5

standard input, 8-5

standard output, 8-5

STAT= specifier

Index

ALLOCATE statement, 10-8
DEALLOCATE statement, 10-45

statement blocks, 6-1
statement functions, 7-17

defined, Glossary-13
internal procedure as alternative, 10-37

statement keyword, Glossary-13
statement label, 2-3, Glossary-13
statements, 9-1, 10-1, Glossary-13

ACCEPT, 10-4
ALLOCATABLE, 3-6, 4-13, 10-5
ALLOCATE, 4-13, 10-8
arithmetic IF, 6-21, 10-94
ASSIGN, 10-10

assigned GO TO, 6-18
assignment, 3-4, 4-23, 5-18
AUTOMATIC, 10-11
BACKSPACE, 10-12
BLOCK DATA, 7-43, 7-44, 10-14
block IF, 6-14, 10-95

BYTE, 10-16

CALL, 7-9, 10-18

CASE, 5-9, 6-2, 10-21
categories, 2-4
CHARACTER, 10-23
CLOSE, 10-27

COMMON, 4-6, 7-43, 10-29
COMPLEX, 10-33

computed GO TO, 6-19
CONTAINS, 7-7, 7-42, 10-37
continuation, 2-12
CONTINUE, 6-16, 10-39
CYCLE, 1-3, 6-16, 10-40
DATA, 2-6, 3-12, 4-28, 5-17, 7-3, 10-41
DEALLOCATE, 4-13, 10-45
DECODE, 10-47
DIMENSION, 4-3, 10-49
DO, 1-3, 6-4, 10-53
DOUBLE COMPLEX, 10-57
DOUBLE PRECISION, 10-60
ELSE, 10-62

ELSE IF, 10-63
ELSEWHERE, 10-64

ENCODE, 10-66

END, 10-68

END (construct), 10-70

END (structure definition), 10-70
END DO, 10-70

END IF, 10-70

END INTERFACE, 10-71

END MAP, 10-70

END SELECT, 10-70

END STRUCTURE, 10-70
END TYPE, 10-72

END UNION, 10-70

END WHERE, 10-70
ENDFILE, 8-2, 10-73

ENTRY, 7-12, 10-75
EQUIVALENCE, 10-79

EXIT, 6-17, 10-55, 10-84
extensions, A-4

EXTERNAL, 10-85

FORMAT, 2-6, 9-2, 10-87
FUNCTION, 7-34, 10-88

GO TO (assigned), 6-18, 10-91
GO TO (computed), 6-19, 10-92
GO TO (unconditional), 6-20, 10-93
IF (arithmetic), 6-21, 10-94

IF (block), 6-14, 10-95

IF (logical), 6-21, 10-96
IMPLICIT, 10-97, 10-99
IMPLICIT NONE, 10-97, 10-99
INCLUDE, 10-100

INQUIRE, 10-101

INTEGER, 10-112

INTENT, 7-24, 10-115
INTERFACE, 7-26, 7-28, 10-117
INTRINSIC, 10-121

labels, 2-11

LOGICAL, 10-122

logical IF, 6-21, 10-96

MAP, 10-125, 10-197
MODULE, 7-27, 10-126
MODULE PROCEDURE, 10-128
NAMELIST, 10-130
NULLIFY, 10-46, 10-132
OPEN, 10-133

Index-19

Intel Fortran Programmer s Reference

OPTIONAL, 10-143
PARAMETER, 10-147
PAUSE, 6-22, 10-151
POINTER, 10-156
POINTER (Cray-style), 10-152, 10-154
PRINT, 10-158
PRIVATE, 7-34, 10-160, 10-209
PROGRAM, 7-42, 10-163
PUBLIC, 7-34, 10-164, 10-209
READ, 10-167
REAL, 10-173
RECORD, 10-176
RETURN, 7-43, 10-181
REWIND, 10-182
SAVE, 10-184
SELECT CASE, 6-2, 10-186
SEQUENCE, 10-187
STATIC, 10-189
STOP, 6-23, 10-190
STRUCTURE, 10-191
SUBROUTINE, 7-3, 10-201
TARGET, 10-203
TYPE (declaration), 10-206
TYPE (definition), 10-209
TYPE (I/0), 10-210
type declaration, 10-1, 10-16, 10-23, 10-33,
10-57, 10-60, 10-112, 10-122, 10-173,
10-176, 10-206
unconditional GO TO, 6-20
UNION, 10-197, 10-211
USE, 7-36, 10-212
VIRTUAL, 10-214
VOLATILE, 10-215
WHERE, 5-21, 10-217
WRITE, 10-221
STATIC statement, 10-189
status, association, 10-46
STATUS= specifier, 8-3
CLOSE statement, 10-28
OPEN statement, 10-140
scratch files, 8-2

STOP statement, 6-23, 10-190
storage association, 3-25

Index-20

COMMON statement, 10-29
derived types, 10-187
EQUIVALENCE statement, 10-79
modules, 10-77
stride, Glossary-13
strings, 3-15
edit descriptor, 9-7
structure constructor, 3-21
STRUCTURE statement, 10-191
structures (extension)
1/0 restrictions, 8-28
MAP statement, 10-197
nested, 10-191, 10-194
RECORD statement, 10-176
records, 10-176, 10-191
See also records (extension) and derived
types., 10-191
STRUCTURE statement, 10-191
UNION statement, 10-197

structures (Fortran 90)
component, 3-16, Glossary-13
constructor, 3-16
defined, Glossary-13

structures and records, 3-28
ststements
IMPLICIT, 3-22
subprogram
arguments, 7-18
referencing, 7-18
subprograms, 7-43
function, 7-2, 10-88
module procedure, 10-128
See also procedures., Glossary-13
See also program units, 7-5
subroutine, 7-5, 10-201

subroutine
defined, Glossary-14
program, 7-5
SUBROUTINE statement, 10-201
subroutines
alternate returns, 10-202

Index

subscript, Glossary-14 EXTERNAL, 3-6
subscript triplet, 4-21, Glossary-14 INTEGER, 3-11, 10-112
INTENT, 3-6

substring, Glossary-14

INTRINSI -
SWP | NOSWP Directives, A-23 NTRINSIC, 3-6

LOGICAL, 3-5, 10-122

syntax NULLIFY, 3-27
statements and attributes. See Chapter 10., OPTIONAL, 3-6
9-1,10-1 PUBLIC, 3-6
type declaration statement, 3-5 REAL, 3-5, 10-173
RECORD, 10-176
T SAVE, 3-6
statement ordering, 2-6
T edit descriptor, 9-29 syntax, 3-5
tab edit descriptor, 9-29 TARGET, 3-6
tab-format line. 2-10 TYPE (definition), 10-209
target, 5-20, Glossary-14 type declarations, 3-5

Target architecture, xxviii type node, 3-21

TARGET statement and attribute, 10-203 TYPE statement
declaration, 10-206

definition, 10-209
terabyte, defined, Glossary-14 1/0, 10210

tempnam system routine, 8-2

term%nal.statement for DO loop, 6-7 type, derived. See derived types., 10-209
terminating
DO loops, 10-39, 10-54
list-directed input, 8-10
program execution, 6-24
TL edit descriptor, 9-29 typing rules, 3-22
TR edit descriptor, 9-29 overriding, 10-98

trailing comment, 2-12

typeless constant, 5-17
typeless entities, 5-17
types and kind parameters, 3-2

transferring control U

be.glv.een proceduée;, 7-2,7-8 unconditional GO TO statement, 6-20, 10-93
within program, &- unformatted 1/0, 8-16

truncation, constants, 3-17 direct-access files. 8-16

type (data). See data types., Glossary-14 READ statement, 10-172
type declaration statements, 3-7, 3-10, 3-24, sequential files, 8-8
Glossary-14 WRITE statement, 10-225
BYTE, 3-5, 10-16 unformatted record, 8-2
CHARACTER, 10-23 UNFORMATTED= specifier, 10-109

COMPLEX, 10-33
DOUBLE COMPLEX, 3-5, 10-57 UI\.HON statement, 10-197, 10-211
DOUBLE PRECISION, 3-5, 10-60 unions, 10-197, 10-211
EQUIVALENCE, 3-25 unit numbers, 8-4

Index-21

Intel Fortran Programmer s Reference

automatically opened, 8-6 logical, 5-16
connecting to external file, 8-4 real, 5-18
connecting to internal file, 8-3 scalar, 3-1, 3-25
defined, Glossary-14 subobject, 3-1
preconnected, 8-5 vector
UNIT= specifier subscript, 4-23, Glossary-15
BACKSPACE statement, 10-13 VECTOR ALIGNED | UNALIGNED
CLOSE statement, 10-27 Directives, A-26
ENDFILE statement, 10-73 VECTOR ALWAYS | NOVECTOR Directives,
INQUIRE statement, 10-102 A-25

OPEN statement, 10-133

READ statement, 10-168 VIRTUAL statement, 10-214

REWIND statement. 10-182 VOLATILE statement and attribute, 10-215
WRITE statement, 10-221
UNROLL \ UNROLL (n) \ NOUNROLL w

Directives, A-24
use association
arguments, 7-3, 10-207
COMMON statement, 7-3, 10-31
DATA statement, 10-42

WHERE construct, 5-21
ELSEWHERE statement, 10-64
END WHERE statement, 10-70
WHERE statement, 10-217

defined, Glossary-14 WHERE statement, 5-21, 10-217
EQUIVALENCE statement, 7-3, 10-79 WHILE clause, 10-53
module procedures, 10-128 whole array, 4-19
PRIVATE statement, 10-161 processing, 4-1
PUBLIC, 10-165 reference, 4-16
SEQUENCE, 10-187 WRITE statement, 10-221
USE statement, 10-212 data list items, 8-27
USE statement, 7-33, 10-212 internal files, 10-224
PRIVATE statement, 10-161 list-directed I/O, 8-9, 10-225
PUBLIC statement, 10-165 namelist-directed 1/0, 10-222, 10-224
statement order, 2-6 nonadvancing /O, 8-17, 10-222, 10-224
user-defined nunformatted 1/0, 10-225
assignment, 7-25, Glossary-14 WRITE= specifier, 10-109

operator, Glossary-14
operators, 7-30

X
Vv X edit descriptor, 9-29
variables
array, 3-1 Y4
complex, 5-19 Z edit descriptor, 9-30

defined, Glossary-15

. zero-size array, 4-3, Glossary-15
integer, 5-19

Index-22

	Intel® Fortran Programmer’s Reference
	Disclaimer and Legal Information
	About This Manual
	Related Publications
	Notational Conventions

	1 Introduction to Intel® Fortran Compiler
	New Features in Fortran�95
	Source Format
	Data Types
	Operators
	Control Constructs
	Arrays
	Procedures
	Pointers
	Modules
	Non-advancing I/O
	Namelist I/O

	2 Language Elements
	Character Set
	Lexical Tokens
	Names
	Program Structure
	Statement Labels
	Construct Names
	Statements
	Statement Order

	Source Program Forms
	Fixed Source Form
	Free Source Form
	Intersection Source Form

	INCLUDE Line

	3 Data Types and Data Objects
	Terminology
	Intrinsic Data Types
	Derived Types
	Type Declarations
	Examples of Type Declarations
	Alternative Form of Intrinsic Type Spec Declaration
	Intrinsic Inquiry Functions
	Attributes

	Representation of Literal Constants
	Integer Constants
	Real Constants
	Complex Constants
	Character Constants
	Logical Constants
	Typeless Constants

	Character Substrings
	Derived-type Definition
	Structure Constructor

	Implicit and Explicit Typing
	Data Initialization
	Storage Association and Alignment
	Storage Association Alignment Rule

	Dynamic Data Objects
	Allocatable Arrays
	Pointers
	Automatic Objects

	Records and Structures

	4 Arrays
	New Features
	Array Properties
	Array Declaration
	Syntax
	Examples of Array Specifiers
	Array Element Storage Order

	Array Categories
	Explicit-shape Arrays
	Assumed-shape Arrays
	Deferred-shape Arrays
	Assumed-size Arrays

	Whole Arrays and Array Subobjects
	Array Elements
	Whole Arrays
	Array Sections

	Array Constructors
	Syntax

	Zero-sized Arrays
	Array Expressions
	Array Functions
	Intrinsic Functions
	User-defined Functions

	Array Inquiry Functions

	5 Expressions and Assignment
	Expressions
	Formation of Expressions
	Interpretation of Expressions

	Assignment
	Assignment Statement
	Pointer Assignment
	Masked Array Assignment

	6 Execution Control
	Control Constructs and Statement Blocks
	CASE Construct
	DO Construct
	FORALL Construct and Statement
	IF Construct

	Flow Control Statements
	CONTINUE Statement
	CYCLE Statement
	EXIT Statement
	Assigned GO TO Statement
	Computed GO TO Statement
	Unconditional GO TO Statement
	Arithmetic IF Statement
	Logical IF Statement
	PAUSE Statement
	STOP Statement

	7 Program Units and Procedures
	Overview
	Program Units
	Procedures
	Scope and Association

	Procedures
	Procedure Categories
	Referencing Procedures
	Procedure Definition
	Returning to the Calling Unit
	Subprogram Arguments
	Interfaces

	Modules
	Use Statement

	Main Program
	Block Data

	8 I/O and File Handling
	Records
	Formatted Records
	Unformatted Records
	End-of-file Record

	Files
	External Files
	Internal Files

	Connecting a File to a Unit
	Connecting to an External File
	Preconnected Unit Numbers
	Automatically Opened Unit Numbers

	File Access Methods
	Sequential Access
	Namelist-directed I/O
	Direct Access

	Nonadvancing I/O
	I/O Statements
	Syntax of I/O Statements
	I/O Specifiers
	I/O Data List

	ASA Carriage Control
	Example Programs
	Internal-file Example
	Nonadvancing-I/O Example
	Sequential- and Direct-access Example

	9 I/O Formatting
	FORMAT Statement
	Format Specification
	Variable Expressions in Formats
	Edit Descriptors
	Character String (’...’ or "...") Edit Descriptor
	Newline ($) Edit Descriptor
	Slash (/) Edit Descriptor
	Colon (:) Edit Descriptor
	A and R (character) Edit Descriptors
	B (binary) Edit Descriptor
	BN and BZ (blank) Edit Descriptors
	D, E, EN, ES, F, G, and Q (real) Edit Descriptors
	H (Hollerith) Edit Descriptor
	I (integer) Edit Descriptor
	L (logical) Edit Descriptor
	O (octal) Edit Descriptor
	P (scale factor) Edit Descriptor
	Q (bytes remaining) Edit Descriptor
	S, SP, and SS (plus sign) Edit Descriptors
	T, TL, TR, and X (tab) Edit Descriptors
	Z (hexadecimal) Edit Descriptor

	Embedded Format Specification
	Nested Format Specifications
	Interaction Between Format Specification and I/O Data List

	10 Intel® Fortran Statements
	Attributes
	Statements and Attributes
	ACCEPT
	ALLOCATABLE (Statement and Attribute)
	ALLOCATE
	ASSIGN
	AUTOMATIC
	BACKSPACE
	BLOCK DATA
	BYTE
	CALL
	CASE
	CHARACTER
	CLOSE
	COMMON
	COMPLEX
	CONTAINS
	CONTINUE
	CYCLE
	DATA
	DEALLOCATE
	DECODE
	DIMENSION (Statement and Attribute)
	DO
	DOUBLE COMPLEX
	DOUBLE PRECISION
	EJECT
	ELSE IF
	ELSEWHERE
	ENCODE
	END
	END (Construct)
	END (Structure Definition)
	END INTERFACE
	END TYPE
	ENDFILE
	ENTRY
	EQUIVALENCE
	EXIT
	EXTERNAL (Statement and Attribute)
	FORMAT
	FUNCTION
	GOTO(Assigned)
	GOTO(Computed)
	GOTO (Unconditional)
	IF (Arithmetic)
	IF (Block)
	IF (Logical)
	IMPLICIT
	IMPLICIT AUTOMATIC
	IMPLICIT STATIC
	INCLUDE
	INQUIRE
	INTEGER
	INTENT (Statement and Attribute)
	INTERFACE
	INTERFACE TO
	INTRINSIC (Statement and Attribute)
	LOGICAL
	MAP
	MODULE
	MODULE PROCEDURE
	NAMELIST
	NULLIFY
	OPEN
	OPTIONAL (Statement and Attribute)
	OPTIONS
	PARAMETER (Statement and Attribute)
	PAUSE
	POINTER (Cray*-style)
	POINTER (Statement and Attribute)
	PRINT
	PRIVATE (Statement and Attribute)
	PROGRAM
	PUBLIC (Statement and Attribute)
	READ
	REAL
	RECORD
	RETURN
	REWIND
	SAVE (Statement and Attribute)
	SELECT CASE
	SEQUENCE
	STATIC (Statement and Attribute)
	STOP
	STRUCTURE
	SUBROUTINE
	TARGET (Statement and Attribute)
	TYPE (Declaration)
	TYPE (Definition)
	TYPE (I/O)
	UNION
	USE
	VIRTUAL
	VOLATILE
	WHERE (Statement and Construct)
	WRITE

	A Intel ®Fortran Extensions
	Language Elements
	Data Types and Objects
	Array Concepts
	Expressions
	Execution Control
	Scope,Program Units,and Procedures
	I/and File Handling
	I/Formatting
	Statements
	Intrinsic Procedures
	Miscellaneous
	Extended Directives
	Directives ’Syntax
	ATTRIBUTES Directive
	Attributes and Associated bjects
	ALIAS
	ALIGN
	ALLOCATABLE
	C ATTRIBUTE
	DLLEXPORT and DLLIMP RT
	EXTERN
	INLINE,NOINLINE,and FORCEINLINE
	REFERENCE
	STDCALL
	VALUE
	VARYI NG

	DISTRIBUTE POINT Directive
	IF and IF DEFINED Directives
	IVDEP Directive
	LOOP COUNT Directive
	PARALLEL and NOPARALLEL Directives
	PREFETCH and NOPREFETCH Directives
	SWP and NOSWP Directives
	UNROLL and NOUNROLL Directives
	VECTOR ALWAYS and NOVECT R Directives
	VECTOR ALIGNED and UNALIGNED Directives

	Glossary
	Index

