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ABSTRACT

This thesis presents results from numerical studies of the dynamics of three classical nonlinear field

theories, each of which possesses stable, localized solutions called solitons. We focus on two of the

theories, known as Skyrme models, which have had application in various areas of physics. The

third, which treats a complex scalar field, is principally viewed as a model problem to develop

solution techniques. In all cases, time dependent, nonlinear partial differential equations in several

spatial dimensions are solved computationally. Simulation of high energy collisions of the solitons

is of particular interest.

The solitons of the complex scalar field theory are known as Q-balls and carry a charge Q. We

investigate the scattering of these objects, reproducing previous findings for collisions where the

Q-balls have charge of the same sign. We obtain new results for interactions where the Q-balls

have opposite charge, and for scattering of Q-balls against potential obstructions.

The chief contributions of this thesis come from simulations performed within the context of a

Skyrme model in two spatial dimensions. This is a multi-scalar theory with solitons known as baby

skyrmions. We concentrate on the rich phenomenology seen in high-energy scattering of pairs of

these objects, each of which has a topological charge that can be either positive or negative. We

extend the understanding of the role of different parameters of the model in governing the outcome

of head-on and off-axis collisions.

The study of instabilities seen in previous simulations of Skyrme models is of central interest.

Our results confirm that the governing partial differential equations become of mixed hyperbolic-

elliptic type for interactions at sufficiently high-energy, as originally suggested by Crutchfield and

Bell [1]. We present strong evidence for the loss of energy conservation and smoothness of the

dynamical fields in these instances. This supports the conclusion that the initial value problem at

hand becomes ill-posed, so that the observed instabilities result from the nature of the equations

themselves, and are not numerical artifacts.

Finally, we present preliminary results for the typical phenomenology seen in head-on scattering
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of solitons in the Skyrme model in three spatial dimensions.
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CHAPTER 1

INTRODUCTION

The study of nonlinear wave equations arising from classical field theories is among the most

active and exciting areas of mathematical physics. An especially interesting feature of many of

these equations is that they admit solutions describing localized concentrations of energy known

as solitons. It is widely accepted that the identification of solitons is one of the most important

discoveries in nonlinear science [2, 3].

As we shall see, there are many different classes of solitons. Historically, the first to be studied

in detail are governed by time-dependent partial differential equations having the property that

dispersion is counterbalanced by nonlinearities. In this case the solitonic solutions are persistent,

particle-like solitary waves that have remarkable stability properties [4, 5, 2]. Famously, the first

report of this type of soliton was published by Russell in 1845, and described the observation

of stable, large amplitude solitary water waves generated by a horse-drawn boat in a narrow

channel [6]. The first documented search for a mathematical model that could explain these

waves was made by Boussinesq and Rayleigh in the 1870s [7], and in 1895 Korteweg and De Vries

showed that a nonlinear hydrodynamic equation—the celebrated KdV equation—had solutions

corresponding to Russell’s observations [2].

Despite this and some other early work1 the investigation of complex nonlinear systems did

not begin in earnest until the 1950s, when computer resources started to be sufficient to allow

direct assault on otherwise intractable problems. Particularly notable in this regard are the 1953

numerical experiments of one-dimensional lattices by Fermi, Pasta and Ulam [8, 9] that produced

surprising results that were in apparent contradiction with statistical mechanics. The lattice model

was further considered by Zabusky and Kruskal in the 1960s [10], who found that in the continuum

limit the dynamics of the lattice was governed by the KdV equation. Furthermore, they discovered

that the results of Fermi et al [8, 9] were explained by the existence of KdV solitons and showed

that the solitary waves could propagate through one another without disturbing each other’s shape.
1Here, Frenkel and Kontorova’s model for crystal dislocation is especially worth mentioning [7, 2].
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CHAPTER 1. INTRODUCTION

They also found that the collisions preserved the localized energy density of each wave. Indeed,

it was in the work of Zabusky and Kruskal that the term “soliton”—intended to emphasize the

particle-like properties of the waves—first appeared [2, 10].

Since that time, stable localized solutions of wave-type equations arising in many disciplines have

been identified [11, 4]. These include biology (neural pulses), plasma physics, ferromagnets (domain

walls), superfluids (vortices) and nonlinear optics (solitary electromagnetic pulses) [12, 11, 4, 2].

Perhaps the most spectacular examples are found in the Earth’s atmosphere (tornadoes) and in

the ocean (tsunamis), although it is still debated whether the latter are really solitons [13].

This thesis is focused on the study of nonlinear classical field theories called Skyrme models,

which have solitonic solutions aptly named skyrmions [14, 15, 16, 17, 4]. The dynamical behaviour

of skyrmions is rich and complicated, and can only be examined in detail by numerical means. We

thus aim to use computational techniques to probe some of the phenomenology of the models, as

well as to investigate some interesting mathematical features that will be subsequently described.

As we will discuss, Sykrme models have physical applications, but this aspect of the theories

will not be our main concern. Rather, we adopt the view that, in the context of nonlinear science,

understanding the dynamical nature of skyrmions—and, in particular, interactions between them—

is a worthy pursuit in its own right.

We consider two specific Skyrme theories. One is the original model proposed by Skyrme in

which the fields have dependence on all three spatial dimensions and time. The other, known as

the baby-Skyrme model, is closely related to the first, but is restricted to two spatial dimensions.

Because of the reduced dimensionality, calculations in the baby-Skyrme theory are much less com-

putationally expensive than those in the full model. Primarily for this reason, the bulk of the

computations described in this thesis involve the baby-Skyrme model.

Since the equations of motion that govern the Skyrme systems are quite complicated, we found it

useful to begin our numerical work by considering an even simpler model field-theory that describes

the evolution of a complex scalar field with a non-trivial potential. This model also has localized

solutions—known as Q-balls—that can be interpreted as solitons. We use this theory primarily

to develop a computational approach and infrastructure that is then applied to the studies of

the Skyrme systems. As a consequence of a particular symmetry of this theory, Q-balls carry a

conserved Nöther charge Q [18], which can either positive, or negative. In spite of the role of Q-balls

as a model problem for this work, we found novel results on the interaction of Q-ball pairs where

2
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each soliton carries a charge Q of opposite sign—an issue so far absent from the literature—and

on the scattering of Q-balls against potential obstructions. We will elaborate on this aspect in

Chap. 3.

All of the theories that we study are governed by sets of partial differential equations (PDEs)

of evolutionary type, and thus we must formulate and solve initial-value problems2. Assuming

well-posedness—a concept which is crucial to our studies, and which will be discussed in more

detail in Sec. 1.5.2—if we specify smooth initial data, we can expect a unique solution. We will

be especially interested in evolutions describing two initially-separated solitons that subsequently

collide (or otherwise interact), and where the relative initial speed (boost factor) between the

solitons is viewed as a control parameter. Attention will further be concentrated on cases where

the boost factor is large, so that—since our models are all Lorentz-invariant—we say that the

dynamics is in the ultrarelativistic regime.

1.1 Skyrme Model in Three Spatial Dimensions

The Skyrme model provides a description of nuclear matter in which only meson fields appear

explicitly. Nucleons (the proton and the neutron) then emerge precisely as skyrmions [19, 20],

i.e. as collective excitations of mesons [16, 21]. Although the model superficially appears to

describe bosonic matter, a key property that provides physical plausibility is that quantization

of the skyrmion is consistent only if the associated quantum state has spin-1/2, i.e. if it is a

fermion [20, 15, 16].

Skyrmions share some of the properties seen in the “classical” solitons mentioned previously,

including localization [3, 4, 5, 2, 22]. However, they do not necessarily preserve their shape after

interacting with one another: in particular they can merge, annihilate or radiate energy. Nonethe-

less, in this work we follow Coleman [23] and Vachaspati [24] and use the term soliton to refer to

a static, localized classical lump.

The Skyrme model is usually presented in terms of an SU(2)-valued field, U , with a Lagrangian

density [25, 26, 20, 27],

L =
F 2
π

16
Tr(∂µU∂µU†) +

1
32e2

Tr
[
(∂µU)U†, (∂µU)U†

]2
, (1.1)

2Strictly speaking we must deal with initial-boundary-value problems, since our computational domains do not
extend to spatial infinity.

3
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where the Greek indices µ, ν . . . = 0, 1, 2, 3 run over the dimensions of spacetime, while † and Tr

denote the adjoint and trace operators respectively. In addition, Fπ is taken to be the pion weak

decay constant [28], and e is a dimensionless real parameter. We observe that (1.1) includes an

ordinary kinetic term, and a second term which is fourth order in the derivatives of the fields.

The latter is required for the existence of static skyrmions3 [31, 32, 33]. Its functional form is

not arbitrary, but is the most general fourth order term compatible with chiral symmetry. This

symmetry is observed in nuclear phenomenology, and it treats “left-handed” and “right-handed”

particles independently. In other words, chiral transformations do not “mix” left and right-handed

particles, so a left-handed particle can not be mapped into a right-handed, or vice versa. The

inclusion of a potential (or mass term) in the Lagrangian is optional, and we have not added one

in our work.

We can write U and U† in terms of a four component real-valued vector representation of

SU(2) [25, 26, 20, 27] (see Sec. 5.2), by defining φa(xµ) ≡ (φ1(xµ), φ2(xµ), φ3(xµ), φ4(xµ)). We

then have

L =
1
2
∂µφa∂

µφa +
1
4

(∂µφa∂µφa)2 − 1
4

(∂µφa∂νφa)(∂µφb∂νφb) + λLM(φaφa − 1) . (1.2)

Here the Latin indices a, b, . . . = 1, 2, 3, 4 label the components of the fields and obey an Einstein

summation convention (see Sec. 1.8). The parameters Fπ and e have been scaled away by means of

a change of our units of energy (Fπ/4e) and length (2/eFπ) [20]. Chiral invariance of (1.2) requires

that the φa satisfy the chiral constraint φaφa = φ2
1 + φ2

2 + φ2
3 + φ2

4 = 1, which is enforced by the

addition of a Lagrange multiplier (λLM) term to (1.2) (see Chap. 5 for details). The equations of

motion derived from the Lagrangian density (1.2) are

(1 + ∂µφa∂
µφa) 2φa + ∂µ∂νφb∂

µφb∂
νφa − ∂µφb∂νφb∂µ∂νφa −2φb∂

νφb∂νφa + λLMφa , (1.3)

where 2 ≡ ∂α∂α is the usual wave (d’Almbertian) operator.

3The Hobart-Derrick argument [29, 15, 30, 31] provides a criteria for the existence of minimal energy static
solutions, according to the dimensionality and field content of the model. We discuss this topic in detail in (D.1).
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1.1.1 Topological Solutions

A novel feature of skyrmions is that they possess a particular type of conserved quantity known as

a topological charge, [23, 24, 31, 16, 34], and thus are examples of what are known as topological

solitons 4. This concept can be understood in the following way. The space of physical configura-

tions of the theory can be divided into a number (finite or infinite) of topologically disconnected

sub-regions. Although all configurations evolve according to the same equations of motion, they

satisfy different boundary conditions. A configuration can be viewed as a map from physical space

to the internal space of the theory, and maps corresponding to configurations in different sub-

regions can not be deformed into each other continuously. In other words, the configurations have

distinct homotopies [16, 24, 21]. In general, every sub-region can be labelled with an integer, or

topological invariant, which is precisely the topological charge [15, 16, 35].

In theories with topological solitons, the ground state is degenerate; that is, distinct field states,

known as vacuums, can have the same minimum energy5. This means that in different spatial

regions of the domain, the configuration may tend to different vacuum states, with infinite energy

barriers separating the regions. Skyrme was the first to realize the significance of the topological

charge in a physically motivated model [16], identifying it (for the case of his theory) as the baryon

number, B [35],

B =
1

2π2

∫
εαβγδενρσφa∂

νφβ∂
ρφγ∂

σφδ d3x , (1.4)

(where εαβγδ and ενρσ are anti-symmetric Levi-Civita symbols [36]). He thus provided a interpre-

tation for the (classical) conservation of B based on topological concepts 6.

The Lagrangian density (1.2) defines one example of a general class of theories known as sigma

models, which are scalar field theories with multiple field components [37], and whose Lagrangian

densities can be written in the form

Lσ = gab(φa)∂µφa∂µφb . (1.5)

Here φa(xµ) are the scalar field components, and gab is the metric of the so-called target space. If

4The archetypal example of a simple model with topological solitons is a single real scalar field in 1+1 dimensions,
with a quartic potential, known as the φ4-theory [24]

5In quantum field theory, the vacuum refers to a state with no particle content. It is common in the literature to
abuse this language and refer to the ground state, even in a purely classical theory, as the vacuum.

6The baryon number B allows us to define an anti-skyrmion: a skyrmion has a baryon number B > 0, while an
anti-skyrmion is a skyrmion with baryon number −B.
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gab = gab(φa), the sigma model is nonlinear.

The first application of sigma models in physics was to describe, not surprisingly, chiral inter-

actions. Specifically, Gell-Mann and Levy [37] introduced a fourth non-physical field, σ, along with

the three pions π+, π−, π0, to expand the symmetry group of strong interactions, with the aim

to describe the phenomenology of strange particles (the so called chiral modification [14, 15, 16]).

Again, the fields satisfy a constraint, σ2+(π+)2+(π−)2+(π0)2 = 1, to ensure that chiral symmetry

was always satisfied.

A sigma model (or wave map) defines a map between Lorentzian flat space-time, and a Rie-

mannian target space (i.e. the target space is smooth and equipped with a metric function), such

that the fields can be viewed as taking values on the target space. While properties such as chiral

invariance are interesting to the physicist, the mapping between spaces provides much of the moti-

vation for their study by mathematicians. As we will discuss in detail in subsequent chapters, the

target spaces of the Skyrme theories considered in this thesis are S2 (baby Skyrme model) and S3

(“full” Skyrme model).

1.1.2 Historical Background

During the 1950’s and early 1960’s, solitons emerged as obvious candidates for modelling entities

such as monopoles, kinks and domain walls [23, 24, 31, 34]. Not surprisingly, the concept was

taken even further, with the suggestion that what were previously viewed as fundamental fields

could themselves be solitons of some underlying self-organizing structures, with properties that

emerge from the more basic degrees of freedom [29, 38]. In 1961, and following this trend, Skyrme

was the first to propose a topological model for nuclear matter [14, 16]. It is important to note

that at that time understanding of hadrons—particles that interact through the strong nuclear

force—was basically limited to the interaction of pions and nucleons. In 1962, Perring and Skyrme

hypothesized that an elementary solitonic solution of the sine-Gordon equation might be relevant

to hadron physics [39, 40], and the skyrmion is the direct descendant of these ideas [14, 16, 4, 17].

In the late 60’s and early 70’s, deep inelastic scattering at high energy revealed that hadrons had

an underlying substructure. Quantum chromodynamics (QCD) successfully described the observed

phenomenology, and largely sidelined Skyrme’s approach for several decades [15, 41]. However,

QCD turned out to be very difficult to solve in the strong coupling regime (low energies), even when

numerical (lattice) methods were adopted. Attention thus turned to simpler phenomenological
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models, including Skyrme’s, that could provide reasonably accurate descriptions of low-energy

hadron physics. Such models exploit the fact that since quarks are confined it is possible to

eliminate degrees of freedom not directly relevant to phenomenology, while still retaining many of

the fundamental symmetries of QCD (Lorentz, chiral, etc.) [42]. The resulting effective models,

cast in terms of pion fields, simplified calculations at the expense of providing an incomplete

(approximate) physical picture.

At the beginning of the 1980’s, Witten [43, 44] discovered that the Skyrme approach is equivalent

to QCD in the large Nc limit (where Nc is the number of colors), with baryons being identified as

quantized states of the classical soliton solutions. This realization sparked a resurgence of interest

in the Skyrme model as an effective theory of pions (mesons), and specifically how to describe

baryons and their interactions within the formulation.

1.1.3 Applications

A discussion of the calculation of low-energy observables of baryons including comparison to exper-

imental data can be found in [17, 42, 45]. The calculations of baryonic structure by Adkins, Nappi

and Witten [44] based on the Skyrme model achieved an accuracy of the order of 20− 30%. Later

calculations on bound two-baryon systems produced similar results [17]. More recent phenomeno-

logical work is based on the chiral quark-soliton model (χQSM ), which is an extended version of the

original Skyrme theory [45]. Additionally, and although controversial, claims of the observation of

a pentaquark state Θ+ [46] in the mid 2000s brought renewed focus on low energy QCD and the

relative merits of constituent-quark versus solitonic interpretations of light baryons.

We conclude this brief synopsis of the Skymre model by noting that many excellent reviews of

the subject are available, including [15, 16, 17, 46, 47, 48, 49, 27, 50, 28, 51, 52, 41, 53]

1.2 The Skyrme Model in Two Spatial Dimensions

As mentioned before, the baby-Skyrme model (also known as the pseudo-Skyrme model) is an

analog of the original Skyrme model, but in this case the fields depend on two spatial dimensions

plus time [20, 35, 54]. Interestingly enough, this theory also has stable localized solitonic solutions,

which are known as baby skyrmions.

The Lagrangian density of the model [31, 35, 55, 56], which is similar to its three dimensional
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counterpart (1.2), is given by

L =
1
2
∂µφa∂

µφa +
1
4

(∂µφa∂µφa)2 − 1
4

(∂µφa∂νφa)(∂µφb∂νφb) + V (φa) . (1.6)

Once again, Latin indices a, b, . . . = 1, 2, 3 label the components of the fields, while Greek indices

label the dimensions of spacetime, µ, ν . . . = 0, 1, 2. Analogously to the three dimensional model,

the first term in (1.6) is an ordinary kinetic term for a O(3) sigma model, the second and third

terms are fourth order in the derivatives, and an additional potential term V (φa)—which breaks the

manifest O(3) symmetry—is included [31, 32, 33]. Besides the reduced dimensionality of the baby

theory with respect to the full three dimensional model, the key differences between the two are:

(1) (1.6) describes the dynamics of a three component vector field, φa ≡ (φ1, φ2, φ3), rather that

the four component field appearing in (1.2). (2) Correspondingly, in this case the chiral constraint

is φaφa = φ2
1 + φ2

2 + φ2
3 = 1. (3) The existence of non-trivial static solutions in the baby Skyrme

model requires the Lagrangian density to have both the fourth order terms and the potential term

(See App. D.1) [31, 32, 33]. The functional form of the latter defines the overall properties of the

model [35], and we will elaborate on our choice of potential function in Chap. 4.

The equations of motion derived from (1.6) are

(1 + ∂µφa∂
µφa) 2φa + ∂µ∂νφb∂

µφb∂
νφa − ∂µφb∂νφb∂µ∂νφa −2φb∂

νφb∂νφa

+ λLMφa −
dV (φa)
dφa

= 0 . (1.7)

As in the case of the full model, λLM is a Lagrange multiplier introduced to enforce the chiral

constraint.

1.2.1 Historical Background

Interest in two-dimensional sigma models has its roots in the work of Belavin and Polyakov

(1975) [33, 57], who pointed out the presence of non-trivial static solutions in an O(3) model

of ferromagnets. Further work focused on their use as toy models for Yang-Mills theories and

supersymmetry [58, 59]. The direct ancestor of the baby-Skyrme model is the O(3) theory written

in terms of complex variables, and is known as the CP1 model [60]. The theory also possesses

non-trivial localized (albeit unstable) solutions that are referred to as CP1 lumps [20]. Subsequent
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work by Leese [61] introduced modifications to the theory, which has static stable solutions known

as Q-lumps (in analogy with the Q-balls that we will subsequently describe). In view of these

developments, Wilczek and Zee [58, 57] suggested that a two dimensional sigma model could be

interpreted as a toy model for skyrmions. Finally, we note that the term “baby skyrmion” first

appeared in the literature in the 1994 work of Piette, Schroers and Zakrzewski [55].

1.2.2 Applications

Progress in the understanding of ferromagnetic materials and liquid crystals led to the realization

that the two dimensional baby-Skyrme model is not just a toy theory, but can describe real physics,

such as that seen in ferromagnetic quantum Hall systems [20, 62, 63, 64, 65, 66]. In that context,

baby skyrmions correspond to texture (extended) excitations in the spin density which have been

observed in the laboratory [67].

1.3 Q-balls in Two Dimensions

The term Q-ball was coined by Coleman [68, 69, 70] to refer to stable, localized (solitonic) solutions

of a relativistic complex scalar field theory with a nonlinear quartic potential. Here we note that

supersymmetric models of the type proposed to exist in nature generally have a field content

that includes several scalars [18]. In particular, this is the case for the Minimal Supersymmetric

Standard Model (MSSM), which has both baryonic and leptonic Q-ball solutions [71, 18, 72]. In

addition, Q-balls have been suggested as possible fossil dark matter in the universe, and have also

been postulated to be trapped in the interiors of gravitationally-compact astrophysical objects [73].

Q-ball type solutions also appear in nonlinear Schrödinger systems (e.g. Gross-Pitaevskii), where

they can be used, for example, to describe Bose-Einstein condensates of weakly interacting atoms

in harmonic traps [74, 75]. They also arise in planar models of the quantum-Hall effect (Maxwell-

Chern-Simons Q-balls) [76]. Other examples include non-Abelian Q-balls, spinning Q-balls and

Q-rings [77].

Despite their possible physical relevance, in this work we regard our study of Q-balls primarily

as a “warm up” problem that allows us to develop our computational methods and infrastructure.

The Q-ball model we consider is described by the Lagrangian density for a complex scalar field,
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φ, in two spatial dimensions [18, 78, 79, 80],

L = ∂µφ∂
µφ∗ − U(|φ|2) , (1.8)

where Greek indices range over 0, 1, 2. Due to the invariance of the Lagrangian density under the

U(1) symmetry transformation, φ → φeiα, the theory has a conserved Nöether current, Jµ (see

Sec. 3.2 for details). The corresponding conserved charge, Q, is given by

Q =
∫
d2x J0 =

1
2i

∫
d2x (φ∗∂0φ− φ∂0φ∗) . (1.9)

We emphasize that, in contrast to the Skyrme model, Q (1.9) is not a topological invariant [18, 78].

1.3.1 Existence of Q-ball Solutions

There are certain requirements that the potential U(σ) in (1.8) must satisfy in order for the model

to admit Q-ball configurations. These will be discussed in detail in Sec. 3.2 and App. B.2. In our

study, we have used a polynomial potential for which Q-ball solutions are known to exist [18, 78, 81].

Specifically, we take

U(|φ2|) =
1
2
m2|φ|2 − 1

3
α|φ|3 +

1
4
β|φ|4 , (1.10)

where m, α and β are positive real-valued parameters. Using this form for the potential, and

performing suitable rescalings that are described in Sec. 3.2, the equations of motion derived

from (1.8) read

φ̈−∇2φ+ φ− |φ|φ+B|φ|2φ = 0 . (1.11)

Here, an overdot denotes differentiation with respect to time, |φ| is the modulus of the complex

scalar field φ, ∇2 is the usual Laplacian operator in the plane, and B is another positive real-valued

parameter.
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1.4 Overview of Previous Numerical Work

1.4.1 Skyrme Model in Three Spatial Dimensions

As discussed previously, the Skyrme model provides an effective-field framework in which to perform

calculations relevant to nuclear physics phenomenology. The first attempts to solve the Skyrme

equations of motion numerically aimed to calculate nucleon-nucleon scattering amplitudes [82],

where atomic nuclei were viewed as semi-classical bound states of solitons [83]. Additional pio-

neering work was due to Verbaarschot, Walhout and Wambach [84] (1986), who carried out cal-

culations of head-on collisions of skyrmions in axisymmetry (1986), and Allder, Koonin, Seki and

Sommermann [85] (1987), who performed the first truly three dimensional numerical calculations

of skyrmion-skyrmion collisions (i.e. in three dimensional Cartesian coordinates), although the in-

teractions studied were still head-on. In an attempt to reproduce the properties of the deuteron,

Crutchfield, Snyderman and Brown [83] (1992) simulated the classical evolution of bound-states of

skyrmions. The same year, Sommermann, Seki, Larson and Koonin [86] carried out the first three

dimensional simulation of baryon–anti-baryon annihilation in the Skyrme model [86]. Wambach [28]

provides a review about the Hamiltonian formulation of the model that was popular at that time,

as well as the numerical techniques employed during the 1980’s and early 1990’s.

In an influential study, Battye and Sutcliffe [25] (1996) considered the scattering of multi-soliton

skyrmions—minimal energy solutions that describe a bound state of multiple skyrmions. The latter

work represents the beginning of what one might call the “modern era” of the field, since most

subsequent work (including this thesis) has adopted the Lagrangian formulation of the equations

of motion that they presented. The same authors [26] (2001) showed that the numerical evolution

of clusters of static skyrmions can lead to end states resembling the complex structures known

as fullerenes that are observed in large carbon molecules [26]. Other relevant work involving the

numerical solution of the Skyrme field equations includes Amado et al [87] (1999) and Halasz et

al [88] (2000). Both of these papers focus on the stabilization the skyrmion by means of vector

meson fields.

A more thorough discussion of relevant numerical work is given in Sec. 5.3.
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1.4.2 Skyrme Model in Two Spatial Dimensions

The literature concerning the numerical study of the baby Skyrme model is very rich and goes

back to the works of Leese, Peyrard and Zakrzewski on the scattering of CP1 lumps and Q-lumps

(see Sec. 4.5) [89, 90]. During the 1990s there was a plethora of investigations that explored

the properties of different variations of the model, each defined by the specific potential function

under consideration. Among the main contributors here were Sutcliffe [91], Peyrad et al [92],

Piette [93, 55], Kudryavtsev et al [56] and Weidig [35]. The versatility of the baby-Skyrme model

was further illustrated by the work of Dwyer and Rajagopal [94], who employed it as a toy model

for more sophisticated physics—namely electroweak solitons.

Once more, we will provide additional details about these previous studies in a subsequent

section (Sec. 4.5).

1.4.3 Observed Instabilities in the Skyrme Model

Over the years, one of the most interesting and challenging aspects of simulations of the Skyrme

model is that instabilities have often been encountered in numerical evolutions. This has been

the case for both the full three-dimensional and baby models [85, 86, 88]. In an effort to improve

stability, some authors introduced artificial viscosity in their implementations [84], or used discrete

time steps that seemed unnaturally small. Although such strategies proved useful in many cases,

there remained evidence of instabilities that were not associated (at least completely) with the

numerical approximations being employed per se [85].

In 1991, Crutchfield and Bell [1] suggested two possible causes of the latter type of instability.

The first was due to an inadequate enforcement of the chiral constraint when a leap-frog time-

evolution scheme was adopted. The second, and far more consequential, was associated with

a possible loss of hyperbolicity—and thus well-posedness (see Sec. 1.5.2)—of the field equations

[1, 26, 25, 95]. Specifically, the authors argued that evolution of certain types of initial data

would lead to the development of regions in the solution domain where, heuristically, the equations

would become of mixed hyperbolic-elliptic type. Thus, for such initial conditions, one could not

expect solutions to exist, and, in fact, “instabilities” of the type that had been reported in some

investigations were precisely what one would expect from numerical calculations. Crutchfield and

Bell further posited that a loss of hyperbolicity could actually be expected on physical grounds, since

the Skyrme model is a low energy effective theory [1, 26], and is thus, by definition, incomplete. In
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particular, they noted that the model would not be suitable to describe high energy regimes. The

presumed loss of hyperbolicity is of concern since, among other things, it would determine the limits

of the application of the Skyrme model as an approximation to QCD and chiral interactions [96].

Such behaviour is also highly interesting from a mathematical point of view.

1.4.4 Q-balls in Two Spatial Dimensions

There is also significant literature on the numerical computation of Q-ball collisions. Particularly

notable is the pioneering work of Battye and Sutcliffe [72] who adopted polynomial potentials and

solved the full nonlinear equations of motion in one, two and three dimensions plus time. Their

studies established the complex nature of Q-ball dynamics, including fragmentation and charge

transfer. Using the same type of potential, Axenides et al. [18] classified the general outcome of Q-

ball scattering as a function of the velocity of initial approach. In contrast, work by Multamaki and

Iiro considered Q-ball scattering using potentials with a functional form inspired by phenomeno-

logical models, principally the Minimal Supersymmetric Standard Model (MSSM) [81, 97, 79]. We

will review this literature in more detail in Sec. 3.5.1.

Another aspect of Q-ball dynamics that we find interesting is their scattering by potential

obstructions. Numerical experiments of this type of interaction using topological solitons are nu-

merous, see e.g. Collins and Zakrzewski [98]. However, to our knowledge the only numerical study

of Q-ball–obstruction scattering is due to Al-Alawi and Zakrzewski [99], and this paucity of results

inspired the calculations we describe in Sec. 3.7.

1.5 Aims of This Thesis

1.5.1 Phenomenology of General Collisions

We emphasize once more that this work is motivated by the rich and complex dynamics of the

scattering of skyrmions and Q-balls, both in two and three spatial dimensions. One of our pri-

mary objectives is to use large scale numerical computations to study the nature of the nonlinear

interactions of these solitons. All of the field theories that we simulate are characterized by large

parameter spaces (especially when details of the initial data are taken into account), and our survey

of these spaces can not be comprehensive. We thus consider what we feel are representative calcu-

lations with the hope that they can provide general insight into the phenomenology (collisions) on

13



1.5. AIMS OF THIS THESIS

which we focus.

1.5.2 High Energy Collisions and Hyperbolicity

We are also very interested in better understanding the nature of the instabilities observed in pre-

vious numerical evolutions of the Skyrme equations of motion. Specifically, we wish to investigate

the possible breakdown of hyperbolicity and well-posedness postulated by Crutchfield and Bell [1]

that was sketched above (Sec. 1.4.3).

Since we feel that the results from our study of this issue are among the most significant

contributions of this thesis, it is worth spending some time at this point to be more specific about

what we mean by hyperbolicity. Intuitively, hyperbolicity is associated with finite speeds for the

propagation of signals, such as is the case for solutions of ordinary (linear) wave equations. The

rigorous definition of hyperbolicity (see e.g. [100]), is expressed as an algebraic condition on the

(constant) coefficients on the system of partial differential evolution equations written in first-

order-in time form (see App. C.1)7. Full details aside, the key idea is that a hyperbolic PDE

system represents a well-posed initial value problem [101]. This means that, at least for some

amount of time8, the evolution of initial data having suitable smoothness properties will result

in a unique solution. Furthermore, well-posedness means that the solution depends continuously

on the (smooth) initial data and its derivatives, so that the future developments of two initial

configurations that differ slightly only diverge slightly as the evolutions proceed, and (at least

locally) in direct proportion to the initial separation of the data. In contrast, when a problem is

ill-posed (i.e not well-posed), the difference between the evolution of “nearby” initial states will

have no bound as a function of time (no matter how short a time interval is considered), and there

will be no solution for given initial data.9

In the case of a relativistic theory, such as the Skyrme model, Lorentz invariance may give the

impression that hyperbolicity (which, again, we heuristically associate with causality) is guaranteed.

Indeed, for so called semi-linear equations—in which the coefficients appearing in the principal part
7Specifically, the coefficients of a first order PDE system are used to construct a principal symbol matrix, P . If

P has only real eigenvalues, the system is hyperbolic. However, the extent of the degeneracy of the eigenvalues and
linear independence of the eigenvectors of P determine if the system is weakly, strongly or strictly hyperbolic. Only
the latter two guarantee well-posedness of the initial value problem. See App. C.1 for details.

8We add this caveat since there are systems of evolution equations that have well-posed initial value problems,
but for which sufficiently “strong” initial data leads to blow-up of the solution in finite time [102, 103, 104, 105].

9Note that ill-posed behaviour is different than the sensitivity to initial conditions seen in chaotic systems, for
example. In the latter case we still expect that the difference in solutions evolving from nearby states will remain
small (i.e. bounded in time) provided that the evolution time is sufficiently short.
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of the PDEs do not depend on the solution itself—a result due to Hawking [106] implies that if the

energy-momentum tensor of the theory satisfies a relation known as the dominant energy condition

(DEC) [96], then energy cannot flow superluminaly. Here we note that Gibbons [96] has shown that

the energy momentum tensor of the Skyrme model satisfies the DEC. However, Wong [95] points

out that since the Skyrme equations are only quasi-linear—i.e. the coefficients in the principal part

do depend on the solution—the requirement of the DEC alone might not be sufficient to rule out the

existence of superluminal propagation of signals (as encountered in the case of elliptic equations).

In fact, in [95], Wong rigorously establishes some conditions under which the Skyrme model will

lose hyperbolicity. However, his results are highly mathematical, and their precise relationship to

previous numerical work, and our own, are not clear to us at this time.

We should note that the the breakdown of hyperbolicity is not unheard of in evolution equations

associated with physical systems. The situation here may be analogous to the case of other PDEs,

such as the Tricomi equation of gasdynamics, where trans-sonic flow triggers instabilities that signal

a breakdown in hyperbolicity.

Gibbons [96], as well as Crutchfield and Bell [1], state that the loss of pure hyperbolicity is

likely to occur when the kinetic energy of the field configuration exceeds the potential energy.

This is expected to occur in situations such as the high-velocity scattering of two skyrmions, or in

skyrmion-anti-skyrmion annihilation. We thus concentrate much of our effort on the simulation of

such processes.

1.6 Summary of Numerical Approach and Methodology

We have implemented a computational infrastructure that provides automation and flexibility in

the development of finite difference codes for the approximate solution of hyperbolic time dependent

PDEs. We test this infrastructure using the complex scalar field model given its simplicity relative

to the Skyrme models (1.6) and (1.2). We consistently use second order (in the mesh spacing)

approximations to discretize our PDEs and, in particular, use a centred two time-step discretization

to treat time derivatives. The discrete nonlinear equations that result from the finite-differencing

are solved using relaxation techniques. A key aspect of our codes is the incorporation of parallel

adaptive mesh refinement (AMR). Here we make use of a set of libraries written by Pretorius [107,

108] that implement the Berger and Oliger AMR algorithm [109]. Full details of our numerical
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methods, along with a description of the diagnostic tools that we have used, are given in in Chap. 2.

1.7 Summary of Thesis

In this section we briefly summarize the organization and main contributions of this work.

Chap. 2 is devoted to an in-depth description of the computational infrastructure and the

numerical techniques that constitute the core of our methodology.

In Chap. 3 we investigate the scattering of Q-balls as a model problem to develop and test

the infrastructure. We perform adaptive (AMR) calculations that reproduce previously reported

phenomenology for collisions of Q-balls having the same charge [18]. We also carry out similar ex-

periments for oppositely-charged Q-ball collisions which, so far as we know, have not been reported

previously. Next, we investigate the dynamics of Q-balls as a function of the charge itself, find-

ing, for example, that right-angle scattering is completely absent if the configurations have small

enough charge. We conclude by studying the scattering of Q-balls against potential obstructions,

observing final states that represent combinations of transmission and reflection of the solitons.

The main contributions of the thesis are described in Chap. 4, which details the adaptive

(and non-adaptive), convergent numerical evolutions that we have performed within the context

of the baby-Skyrme model. We focus on two types of head-on collisions: one involving two baby

skyrmions, and the other using one skyrmion and one antiskyrmion. Both of these processes display

rich dynamical behaviour. Some instances of more general grazing (i.e. off-axis) collisions are also

modeled, further adding to our understanding of skyrmion scattering.

Our most novel results involve the investigation of the transition from pure-hyperbolic to mixed

hyperbolic-elliptic behaviour in Skymre models, posited by Crutchfield and Bell [1, 26, 95], and

described above. We find strong evidence that evolutions of initial configurations describing col-

lisions of baby skyrmions with sufficiently large relative boosts become ill-posed. Specifically, we

observe a loss of conservation of energy and smoothness of the dynamical fields, with indications

that both of these deficits worsen as the finite-difference mesh scale decreases.10 For certain types

of collisions, we determine specific parameter settings at which the lack of well-posedness sets in.

We also show that evolution of generic smooth initial data specifically designed to have kinetic

energy significantly greater than potential leads to a breakdown of hyperbolicity.
10Additionally, in App. C.2 we provide some corroborating evidence for loss of hyperbolicity that is based on a

linearized mode analysis of the equations of motion.
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In terms of the computational approach itself, we find that the simple method that we use

to enforce the chiral constraint, as well as the specific finite-difference adopted, results in an im-

provement of stability relative to some earlier numerical work [85, 84]. Most importantly, through

careful analysis of convergence properties, we establish that our approximate results do tend to

the desired continuum solutions as the mesh spacing tends to zero (and in those cases where the

evolution is apparently well-posed).

Chap. 5 describes preliminary results from simulations of the head-on scattering of skyrmions

in three spatial dimensions, and where AMR is employed. Although our computer resources are

insufficient to establish definitive convergence behaviour (for which non-adaptive computations had

to be used), the phenomenology that we observe is consistent with previous studies [85, 28, 26].

Finally, Chap. 6 provides a further summary of our results and a discussion of possible future

research avenues and applications of our codes.

1.8 Notation and Conventions

We adopt the following index notations. Latin letters such as a, b, c, . . . denote field components,

while Greek indices µ, ν, . . . run over the spacetime values 0, 1, 2, 3 (where 0 is the time index). Latin

letters such as i, j, k, . . . range over the spatial dimensions. The Einstein summation convention

applies to all types of indices. For example,

∂µφa∂
µφa ≡

N∑
a=1

d∑
µ=0

∂µφa∂
µφa , (1.12)

where N is the number of field components of the tensor, and d (sometimes D) is the number of

spatial dimensions. For the specific models considered we have: d = 2, N = 1 for Q-balls; d = 2,

N = 3 for baby skyrmions and d = 3, N = 4 for skyrmions. The metric signature is (−,+,+,+)

and we denote the flat metric by ηµν . Since all of our calculations are carried out in flat spacetime,

ηµν is used to raise and lower all spacetime indices. Geometric units are used throughout this

thesis: in particular, the speed of light in vacuum is c = 1. When we speak of a model being

2 + 1 or 3 + 1 (equivalently 2D or 3D), we mean that the fields have dependence on 2 or 3 spatial

dimensions plus time, respectively. The usual vector cross product is denoted by ×.

The ordinary derivative of the function φ = φ(t, x, y, z) with respect to a spatial coordinate x
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is denoted variously
∂φ

∂x
≡ ∂xφ ≡ φx , (1.13)

while for the time coordinate, t, we have

∂φ

∂t
≡ ∂tφ ≡ φt ≡ φ̇ . (1.14)

For functions of a single variable, we will also use the prime notation. E.g. if we have φ = φ(r),

then

φ′ ≡ dφ

dr
. (1.15)

We need to stress that here and below—and due to our use of superscripts for other purposes—we

will often adopt a notation whereby φ1, φ2 and φ3 (and similarly π1, π2 and π3), rather than φ1,

φ2 and φ3, denote field components.

For the baby-Skyrme model (Chap. 4), we fix units so that Fπ = κ = 1. Fπ then has dimensions

of energy and κ and 1/µ have dimensions of length. Similarly, for the Skyrme model (Chap. 5),

the parameters Fπ and e are scaled away by choosing suitable units of energy (Fπ/4e) and length

(2/eFπ) [20]. We note that κ−2 in the baby-Skyrme model is the analogue of e in the full theory.
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CHAPTER 2

NUMERICAL METHODS

This chapter is devoted to the description of the numerical techniques used to solve the time

dependent partial differential equations that govern the various models of interest in this thesis. We

begin with a discussion of elementary concepts of finite difference approximation (FDA) (Sec. 2.1),

which is the discretization technique used to compute all of our numerical solutions. This is followed

by a description of the relaxation algorithm used to solve the discrete equations that result from

the finite difference process (Sec. 2.3), and a discussion of our use of Kreiss-Oliger dissipation

(Sec. 2.2) for the stabilization/regularization of our difference schemes. The chapter concludes

with an overview of our specific approach to (parallel) adaptive mesh refinement (Sec. 2.4). We

note that much of the discussion below closely follows the style and conventions of [110, 111], and

Chap. 4 of [112].

2.1 Finite Difference Basics

The solution of a partial differential equation via finite differencing first requires the discretization

of the domain of the problem. Let u(t, x, y, z) be a solution of a certain partial differential equation

(PDE) on a continuum spatial domain. In 3D11 we discretize this domain using Nx, Ny and Nz

points in the x, y and z directions respectively, resulting in sets of discrete coordinates that we

label xi, i = 1, . . . , Nx, yj , j = 1, . . . , Ny and zk, k = 1, . . . , Nz. We restrict attention to so-called

uniform meshes, which means that the spatial domain is an ordered set of points, (xi, yj , zk),

where the separation between contiguous points in any coordinate direction is some constant, h.

Specifically we have

xi+1 − xi = h, yj+1 − yj = h, zk+1 − zk = h . (2.1)

11The discussion here focuses on the case of 3 spatial dimensions: the restriction to 2 space dimensions is straight-
forward and should be clear to the reader.
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We will refer to h variously as the mesh spacing, the grid spacing, or the discretization scale.

The specific grid points making up the mesh are easily determined from the coordinate ranges

defining the continuum domain. Thus, for

xmin ≤ x ≤ xmax, (2.2)

ymin ≤ y ≤ ymax, (2.3)

zmin ≤ z ≤ zmax, (2.4)

the grid points are

xi = xmin + (i− 1)h, i = 1 . . . Nx, (2.5)

yj = ymin + (j − 1)h, j = 1 . . . Ny, (2.6)

zk = zmin + (k − 1)h, k = 1 . . . Nz, (2.7)

such that

x1 = xmin and xNx
= xmax, (2.8)

y1 = ymin and yNy
= ymax, (2.9)

z1 = zmin and zNz = zmax. (2.10)

There are therefore a total of Ng = Nx × Ny × Nz points in the mesh. The time domain, which

without loss of generality we take to be

0 ≤ t ≤ tmax, (2.11)

is similarly discretized using time steps of size ∆t, resulting in a set of Nt discrete time values,

denoted tn and defined by

tn ≡ n∆t, n = 0, 1, . . . Nt, (2.12)

where Nt, ∆t and tmax must satisfy Nt∆t = tmax.

We make one further demand on our finite difference discretization, which is that whenever
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we consider a fixed problem (specific model parameters, initial data etc.), but vary the spatial

and temporal mesh spacings, h and ∆t—as we will do when investigating the convergence of our

numerical solutions—we keep the so-called Courant number, λ, defined by

λ =
∆t
h
, (2.13)

fixed. This means that we can always view our finite difference solutions as being characterized by

a single discretization scale, h.

Having defined our discrete domain (FD mesh, FD grid), we can introduce discrete functions,

or grid functions, which are defined on the mesh, and which are to approximate their continuum

counterparts. Here, and in subsequent chapters, we will denote grid function values—either indi-

vidually or as a whole—in a variety of ways. The first is to use a standard finite difference notation

whereby unijk denotes a single grid function value with

unijk ≈ u(tn, xi, yj , zk) . (2.14)

In instances where the subscript notation for the spatial grid indices could become confusing, we

will use un(i, j, k) to label the same value. At times it will be convenient to refer to all of the grid

function values defined at a specific discrete time, tn, and we will use un for that purpose. Finally,

and more abstractly, when referring to the grid function values as a whole (i.e. all values defined

on the spatio-temporal mesh), we will use the notation uh. Here the superscript emphasizes that

we are considering the discrete case with a finite difference mesh that is dependent on a single,

fundamental control parameter, namely the discretization scale, h.

The problems we wish to solve are generally expressed as systems of hyperbolic partial differ-

ential equations (PDEs). Let L represent a set of m differential operators acting on a vector, u,

of m unknown dependent functions: u = (u1, . . . , um). Then any of our systems of interest can be

cast in the form

Lu− f = 0 . (2.15)

Here—and again specializing to the 3 + 1 case, each ui is a function of the independent variables,

that is, ui = ui(t, x, y, z) for i = 1 . . .m. Similarly f is a vector of m source functions, with

fi = fi(t, x, y, z). We note that a unique solution of (2.15) will require the specification of initial
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and boundary conditions: an appropriate treatment of these conditions is implicit in what follows.

For simplicity, we now restrict our discussion to the case when m = 1 (a scalar equation), but we

emphasize that the development is equally applicable to the general case.

In the finite difference approach to the solution of (2.15) we replace

1. L by a finite difference approximation, Lh (also an operator),

2. u and f with grid functions uh and fh respectively.

These replacements then yield the following finite difference version of (2.15):

Lhuh − fh = 0 . (2.16)

We observe that (2.16) will generally represent a system of algebraic equations—linear or nonlinear,

dependent on the nature of Lh and the (suppressed) discrete boundary conditions—in the grid

function values, uh.

The difference between the finite difference solution uh and the continuum solution u defines

the solution error,

eh ≡ u− uh . (2.17)

We note that eh is sometimes referred to as the “truncation error” (see e.g. [109]), but, as will be

discussed shortly, we reserve that nomenclature for a different quantity. The relation between h

and the solution error is a crucial aspect of any finite difference approximation. Fundamentally,

we want eh → 0 as h→ 0, a behaviour known as convergence of the finite difference scheme. The

following definitions of convergence are obviously equivalent:

lim
h→0

eh = 0 ,

lim
h→0

uh = u .

The order of accuracy of a FDA measures how quickly the solution error decreases as a function

of h. Specifically, the solution of a FDA shows convergence of order p if

lim
h→0

eh = O(hp) , (2.18)

where p is an non-negative integer, and is then said to be p-th order accurate. In this thesis we
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have aimed to construct difference solutions that are second order accurate, i.e. with eh = O(h2).

In the numerical solution of finite difference equations resulting from the discretization of time

dependent PDEs, the computation generally proceeds discrete time step by discrete time step.

That is, we can write (2.16) in the schematic form

Q1u
n+1 = Q0

(
un, un−1, un−2, . . . , un−r

)
, n = r, r + 1, . . . (2.19)

where Q1 and Q0 are operators (again, linear or nonlinear, depending on the nature of the PDEs

and the difference scheme). Given initial conditions

un = un0 , n = 0 . . . r , (2.20)

where the un0 are specified quantities, (2.19) provides the means to successively determine the grid

function values at discrete times tn = tr+1, tr+2, . . . tNt . Equation (2.19) tells us that the advanced

solution values, un+1, depend on the most recently computed values, un, and those at a further

r time-levels. However, it is also important to note that the operator Q1 may be such that the

individual advanced-time unknowns un+1
ijk are coupled in a nontrivial fashion. When this is the

case, we say that the scheme is implicit. On the other hand, if there is no such coupling, then

we may be able to write down explicit expressions for each unijk in terms of previously computed

values (i.e. values defined at earlier time steps), and the scheme itself is said to be explicit. We

note that the total number of time levels of data (i.e. r+2) that appears in (2.19) provides another

characterization of the finite difference method: in particular, an approximation which couples

a total of k time levels is often known as a k-level scheme. In Sec. 2.1.3 below we will briefly

consider two specific and illustrative discretizations of the 1D wave equation, one a three-level

explicit method, the other a two-level implicit scheme.

When implicit difference schemes are employed—which is the case for the systems studied

in this dissertation—it may be desirable (or essentially necessary in the nonlinear case) from a

computational standpoint to solve the algebraic equations defined by (2.16) or (2.19) using an

iterative process. That is, we introduce another grid function, ũh, which is to be initialized in some

fashion, and with ũh → uh in the limit of infinite iteration (assuming, of course, that the iteration
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converges).12 Associated with ũh is another important quantity, the residual, rh, defined by

rh ≡ Lhũh − fh , (2.21)

and which thus quantifies by how much the current estimate of the discrete solution fails to satisfy

the difference equations. Clearly, the iterative procedure of determining uh can be equivalently

viewed as the process of driving the residual to 0.

A final basic notion that we will need is that of the truncation error associated with a finite

difference scheme. Given the FDA (2.16), and the continuum solution, u, of the PDE being

approximated, the truncation error is defined by

τh ≡ Lhu− fh . (2.22)

The difference scheme is said to be consistent, if and only if

lim
h→0

τh = 0 , (2.23)

and consistency is a necessary condition for convergence. Paralleling the above discussion of the

solution error, eh, we say that a finite difference scheme is p-th order accurate if

lim
h→0

τh = O(hp) , (2.24)

where p is again a non-negative integer. Finally, the Lax equivalence theorem [113]—originally

proven for linear difference equations, but expected to hold for the PDEs and difference schemes

studied in this thesis—states that given consistency, stability is a necessary and sufficient condition

for convergence. Although stability is a crucial issue in the solution of time dependent PDEs using

finite difference methods, we will not employ any rigorous definitions of the concept here. appeal to

the intuitive notion that a difference scheme for a time dependent problem is stable if the solutions

generated by the time iteration do not “blow up”, unless the continuum solutions themselves do. 13

12We note that we are abusing notation a bit here, in that ũh should more properly be denoted ũn+1, n =
r, r + 1, . . ..

13However, for completeness we have included a standard definition of the stability of a numerical scheme in A.1
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2.1.1 Richardson Expansions and Convergence Tests

So far it is not possible to say anything about the solution error, eh, since it involves the continuum

solution, u, which is of course unknown. However, two important observations provide insight

about the functional form of the solution error. The first is that the form of the truncation error,

τh, defined by (2.22) can always be inferred from the FDA and the differential equations (2.15)

(typically by means of a Taylor expansion) [111]. In particular, over a century ago Richardson [114]

noted that a completely centred (we will discuss the notion of centering below) O(h2) FDA defined

on a uniform mesh would have truncation error, τh, of the form

τh = h2τ2(t, x) + h4τ4(t, x) + h6τ6(t, x) + . . . (2.25)

Richardson then conjectured the second key point, which is that the solution error, eh, in this case

would be of the form

eh = h2e2(t, x) + h4e4(t, x) + h6e6(t, x) + . . . (2.26)

where e2, e4, e6, are continuum error functions, i.e. having no h-dependence.

Provided that such an expansion exists, we have a powerful method for investigating the con-

vergence properties of finite difference solutions. For example, assume that we have an FDA which

is O(h2) accurate (as is the case for the discretizations considered in this thesis). We then consider

performing computations using fixed initial data, but with uniform grids having resolutions h, 2h

and 4h respectively. We then have

uh = u+ h2e2 + h4e4 + . . . (2.27)

u2h = u+ (2h)2e2 + (2h)4e4 + . . . (2.28)

u4h = u+ (4h)2e2 + (4h)4e4 + . . . (2.29)

We now combine these solutions to define a convergence factor, Qh(t), which we can use to measure

the rate at which the numerical solutions are approaching the continuum one. 14 Specifically, we

define

Qh(t) ≡ ‖u
4h − u2h‖2
‖u2h − uh‖2

, (2.30)

14The Qh notation is standard in the numerical relativity literature. In this work it should not be confused with
the conserved Nöether charge of the Q-ball solitons, Q.
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where ‖ · ‖2 is the l2 norm,

‖uh‖2 =
[∑n

i=1 |uhi |2

n

]1/2

. (2.31)

Here, our definition of ‖ · ‖2 includes division by the number of grid points so that the norm is

relatively independent of the mesh resolution used.

Substituting the expansions (2.29) in (2.30), we easily see that the convergence factor as h→ 0

should be

lim
h→0

Qh(t) =
12h2 ‖e2‖
3h2 ‖e2‖

= 4 . (2.32)

In practice, it is an easy task to compute Qh (modulo resource limitations when fine meshes

are used), and observing values that are close to what is expected provides confidence that the

numerical solutions are convergent. However, it is important to stress that this type of convergence

test does not establish that the numerical solutions are tending to the correct continuum solution.

It is for this reason that we consider the independent residual tests, described in Sec. 2.1.4, to be

so vital.

2.1.2 Construction of Finite Difference Approximations

There are various means to construct a finite difference approximation for a given differential sys-

tem. Arguably, the most straightforward approach uses Taylor series expansion. For the sake of

exposition, we first restrict attention to the one-dimensional case—extension to additional dimen-

sions is straightforward.

We thus consider a uniform mesh of grid points at locations xi where xi = xi−1 + h and h is

the mesh spacing. We again adopt the notation ui ≡ u(xi) where u is the continuum function that

satisfies the differential equation to be solved approximately.

By Taylor series expansion we then have (for example)

ui−1 = ui − hDxui +
1
2
h2D2

xui −
1
6
h3D3

xui +O(h4) (2.33)

ui = ui (2.34)

ui+1 = ui + hDxui +
1
2
h2D2

xui +
1
6
h3D3

xui +O(h4) (2.35)

where Dx, D2
x, D3

x, . . . are the first-, second-, third-order, etc. derivative operators.

We can now take linear combinations of the above expressions (as well as expansions for
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ui+2, ui−2 etc.) to generate finite difference approximations for various derivatives. For exam-

ple, from (2.33) and (2.35) we have

ui+1 − ui−1 = 2hDxui +O(h3) (2.36)

which yields the O(h2) FDA for the first derivative:

Dxui =
ui+1 − ui−1

2h
+O(h2) . (2.37)

This type of FDA is known as a centred approximation, since the grid locations of the function

values used in the approximation are symmetric with respect to xi. This approximation can be

used at all xi, except for the first and last mesh points. At these locations, and to maintain O(h2)

accuracy, so-called forward and backward formulae can be used:

Dxui =
−3ui + 4ui+1 − ui+2

2h
+O(h2), Dxui =

3ui − 4ui−1 + ui−2

2h
+O(h2). (2.38)

We can also construct first order forward and backward approximations to the first derivative from

the Taylor expansions:

Dxui =
ui+1 − ui

h
+O(h), Dxui =

ui − ui−1

h
+O(h) (2.39)

Approximations to higher differential-order operators can be constructed either using the Taylor

expansion approach we just illustrated, or by nesting formulae for lower differential-order operators.

For example, from the Taylor series expansions (2.33–2.35) we find the standard O(h2) centred

approximation of the second derivative:

D2
xui =

ui+1 − 2ui + ui−1

h2
+O(h2). (2.40)

On the other hand, using the nesting approach—which is particularly useful for some multi-
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dimensional operators—we have

∂2uij
∂x∂y

=
∂

∂x

(
∂uij
∂y

)
=

1
2hx

[(
∂u

∂y

)
i+1,j

−
(
∂u

∂y

)
i−1,j

]
+O(h2

x) (2.41)

∂2uij
∂x∂y

=
ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4hxhy
+O

(
h2
x, h

2
y

)

2.1.3 Explicit and Implicit Schemes for the Wave Equation

We have already defined the notions of explicit and implicit FDAs for the case of time dependent

PDEs, but in an abstract manner (Sec. 2.1). Here we discuss specific examples of such schemes

which, for the implicit case, has the added benefit of introducing the time-discretization method

used throughout this thesis.

We thus consider the wave equation

φ(t, x)tt = φxx (2.42)

where, without loss of generality, we have set the propagation speed to unity. (Here and below

we will often used φ to denote a fundamental field, while π will be used for the time derivative of

that field, i.e. π ≡ φt.) Using (2.40) to approximate both the temporal and spatial derivatives, and

again noting that we will always take ∆t = λh, where λ is to be held fixed as h→ 0, we have the

following O(h2) approximation of (2.42):

un+1
i − 2uni + un−1

i

(λh)2
=
uni+1 − 2uni + uni−1

h2
. (2.43)

The structure of the grid points that are involved in this approximation—the so-called stencil

of the FDA—is shown in Fig. 2.1. We note that the scheme is three-level and is fully-centred, both

in space and in time. The scheme (2.43) is explicit since we can explicitly solve for the advanced

time unknowns, un+1
i , from the retarded values uni and un−1

i :

un+1
i = 2uni − un−1

i + λ2(uni+1 − 2uni + uni−1) . (2.44)

We now turn to an FDA for (2.42) which we call the Crank-Nicholson scheme since it uses the

same type of temporal discretization proposed by Crank and Nicholson in the 1940’s [115] in the
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Figure 2.1: Finite difference stencil for fully-centred O(h2) approximation of the wave equa-
tion (2.42).

context of the solution of diffusion equations.

We first rewrite (2.42) in first-order-in-time form by introducing the auxiliary variable π defined,

as noted above, by

π ≡ φt . (2.45)

Eqn. (2.42) can then be recast as the system:

φt = π , (2.46)

πt = φxx . (2.47)

As illustrated in Fig. 2.2, the Crank-Nicholson scheme involves two time levels. Like the approx-

imation (2.43) it is also fully centred in time, but in this instance the centering is at a “fictitious”

time, tn+1/2, indicated by the solid dot in the figure. The centred time discretization is based on

the observation that for any grid function unj we have

un+1
j − unj

∆t
= [ut]

n+1/2
j +O(∆t2) . (2.48)

In order to complete the discretization of (2.46) we need an O(h2) approximation for πn+1/2
j . This

is achieved by simply averaging the values of πnj and πn+1
j . Similarly, for the spatial derivative that

appears in (2.47), second order accuracy in time as well as in space is accomplished by averaging

the O(h2) approximation of φxx applied at each of the two time levels. The full Crank-Nicholson
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Figure 2.2: Finite difference stencil for O(h2) Crank-Nicholson approximation of the wave equation
(2.42) written in the first-order-in-time form (2.46–2.47).

scheme then reads:

φn+1
i − φni
λh

=
πn+1
i + πni

2
, (2.49)

πn+1
i − πni
λh

=
1
2

[
φn+1
i+1 − 2φn+1

i + φn+1
i−1

h2
+
φni+1 − 2φni + φni−1

h2

]
. (2.50)

We observe that, as the term implicit implies, equations (2.49) and (2.50) have non-trivial cou-

plings among various of the advanced-time unknowns, φn+1
j and πn+1

j , and to advance the solution

from tn to tn+1 we must solve a system of equations—linear in this case—at least approximately.

As mentioned previously, we use the Crank-Nicholson approach to discretize all of the evolution

equations studied in this thesis.

2.1.4 Independent Residual Evaluation

As discussed above, we can use convergence tests to establish whether a sequence of finite difference

solutions computed with the same initial data, but using grids with different mesh spacings, is

converging to some continuum function in the limit h → 0. However, we also noted that these

tests by themselves do not guarantee that that function is the desired solution of the underlying

differential equations

Particularly for complex systems of PDEs it is very easy to make one or more mistakes—such

as coding a specific term incorrectly in the finite difference implementation—that will lead to

precisely the case of convergence to the wrong continuum solution. In order to detect such errors

and, ultimately, to provide very strong evidence for convergence to a correct solution, we use the

technique of independent residual evaluation [116, 117].
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The independent residual method involves the construction of a finite difference discretization

of the PDEs which is distinct from (independent of) the one used to generate the fundamental

discrete approximation, uh, of those PDEs. To illustrate the technique we again consider a general

set of PDEs written in the abstract form

Lu = 0 , (2.51)

with an associated finite difference approximation

Lhuh = 0 . (2.52)

We note that, without loss of generality, we have suppressed the source functions used in (2.15)

and (2.16) in the above two equations. We now introduce a second discretization of (2.51)

L̃hũh = 0 . (2.53)

The difference operator L̃h is distinct from Lh and consequently ũh is different from uh. Now,

in the independent residual approach we do not solve (2.53) for ũh, rather we apply the second

difference operator, L̃h, to the discrete solution, uh (which we do compute from (2.52)) in order to

establish convergence.

To see how this works, we note that L̃h can be expanded as

L̃h = L+ h2E2 + . . . (2.54)

where we have assumed that L̃h is an O(h2) approximation of L. Here E2 is a differential operator

that, in general, will involve higher-order derivatives than those appearing in L, and whose form

can be deduced from the truncation error of the scheme. Assuming that Lh is also a second-order

approximation, then we can further expect uh to have the expansion (see Sec. 2.1.1)

uh = u+ h2e2 + . . . (2.55)

where e2 is a continuum function (no h-dependence). We now consider the action of L̃h on uh—this

defines the independent residual. Using the above two expansions, and assuming that L is linear

31



2.1. FINITE DIFFERENCE BASICS

(a similar argument works in the nonlinear case) we have

Ihu ≡ L̃huh =
(
L+ h2E2 + . . .

) (
u+ h2e2 . . .

)
= Lu+ h2Le2 + h2E2u+ . . . (2.56)

= h2 (Le2 + E2u) + . . . (2.57)

where Ihu denotes the independent residual and in the last step we have used the original PDE

itself, Lu = 0. The key observation is that if uh is converging to the correct solution, then the

computed independent residual Ihu ≡ L̃huh will vanish as h → 0 (in this case, from (2.57), as an

O(h2) quantity). On the other hand, if uh was converging, but not to the exact solution, then we

would have an expansion of the form

uh = v + h2f2 + . . . (2.58)

where v would not satisfy Lv = 0. Indeed, since v would be some essentially arbitrary (smooth)

function, then the action of the differential operator on it would yield some other smooth function,

w, i.e. we would have Lu = w. The leading order terms corresponding to (2.57) would then be

w + h2 (Lf2 + e2v) (2.59)

so that as h→ 0 we would find that the independent residual would be an O(1) quantity.

It should be clear from the above that it is extremely unlikely that the basic finite difference

solution, uh, could be tending to some fixed function other than u as h → 0, but with Ihu still

vanishing in that limit. Thus, if we find that this residual is going to 0 in the limit of infinitesimal

mesh spacing, we can be very confident that our finite difference values are converging to the desired

continuum solution.

It is important to note that L̃h is used strictly in an applicative fashion: again, we never solve

for the corresponding difference solution ũh. This means that we do not have to be concerned with

issues such as the stability, or computational complexity, in solving (2.53). Furthermore, L̃h need

not be the same order as L. If, for example, L̃h is first-order accurate, while Lh is second order,

then Ihu ≡ L̃huh will also be O(h) but will still tend to 0 as h→ 0 if and only if uh → u.

The major wrinkle in the use of independent residuals is that if we find that Ihu does not vanish
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as h → 0, then we do not know if there is a problem with the original discretization (2.52) or

with the independent one (2.53). It is thus crucial that (2.53) be constructed and implemented

in as error-free a manner as possible. Use of symbolic manipulation can be very useful in this

context, since it enables the discretization process used to generate L̃h to be automated from a

high level specification of the PDEs. If the latter is not easily determined to be manifestly correct

by inspection, it is often possible—as is done in this thesis—to derive the PDEs using symbolic

techniques.

In terms of specifics of the construction of L̃h, we note that we can, for example, use backwards

or forwards difference approximations of derivatives should centred approximations be used for

Lh. Again the accuracy order of L̃h is not important: all we require is that it be a consistent

approximation to L.

2.2 Kreiss-Oliger Dissipation

There is another effect associated with finite difference discretization that has bearing on the

work described in this thesis. For illustrative purposes let us again consider the simple wave

equation (2.42). We can consider the decomposition of the solution, φ(t, x), into Fourier modes.

Because the PDE is non-dispersive, all modes propagate with the same speed. When one uses a

finite difference approximation—such as (2.43)—of the equation, one finds that this is not the case:

the discrete solution, φh ≡ φi, has a non-trivial dispersion relation. In particular, the high frequency

components of the finite difference solution travel more slowly than the low frequency ones, and

for some schemes the highest frequency components do not propagate at all. Most importantly for

us, the high frequency components of φi—and the fact that they travel too slowly—can often lead

to instability (blow-ups) of the finite difference solution. This effect tends to be exacerbated for

nonlinear systems. Moreover, the use of adaptive mesh refinement of the type described in Sec. 2.4,

and used in this thesis, can magnify this problem.

Now, since the high frequency modes are not treated properly by the FDA, and since they can

be problematic, it can be argued that it is a good idea to modify the difference scheme so that

the highest frequency components are dissipated. This is a strategy that is commonly used in the

difference solution of hyperbolic PDEs.

The specific approach we use for incorporating dissipation is originally due to Kreiss and

33



2.2. KREISS-OLIGER DISSIPATION

Oliger [118] (hereafter often abbreviated KO) and we will illustrate it here with a simple example

We first consider a difference operator, DKO, whose action on an arbitrary difference solution,

ui, in one spatial dimension is given by

DKOui ≡
ε

16
(ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2) . (2.60)

Here ε is an adjustable positive constant whose role will be discussed below. We now perform a

Fourier transform on ui ≡ (xi), yielding a transformed solution, ũ(ξ), where ξ ≡ k∆x ≡ kh is the

dimensionless wave number with corresponding frequency k. Note that from Nyquist’s theorem we

have that the highest frequency that can be represented on the mesh is ξmax = π. A straightforward

calculation shows that the transform, D̃KO, of DKO has the following action on ũ(ξ):

D̃KOũ(ξ) = ε sin4 (
ξ

2
)ũ(ξ) . (2.61)

We thus see that DKO acts as a high-pass filter. For high frequency components, where ξ → π,

D̃KOũ(ξ)→ ũ(ξ), while for low frequencies, where ξ → 0 we have D̃KOũ(ξ)→ 0.

Consider now the simple evolution equation (sometimes known as the advection equation)

ut = aux , (2.62)

where the constant a is the single characteristic speed. We discretize (2.62) using the centred O(h2)

explicit scheme
un+1
i − un−1

i

2λh
= a

uni+1 − uni−1

2h
. (2.63)

Here, as usual, λ ≡ ∆t/∆x ≡ ∆t/h. Solving for the most-advanced-time unknowns, un+1
i , we have

un+1
i = un−1

i + aλ
(
uni+1 − uni−1

)
. (2.64)

Now, to add KO dissipation to this scheme we apply DKO to the most retarded values, un−1
i , and

then subtract the result from the right hand side of (2.64). This yields

un+1
i = un−1

i + aλ
(
uni+1 − uni−1

)
− ε

16
(
un−1
i−2 − 4un−1

i−1 + 6un−1
i − 4un−1

i+1 + un−1
i+2

)
, (2.65)
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The subtraction effectively converts the operation of DKO to a low-pass filter on the solution, which

is precisely what we want for effective dissipation of high-frequency components.

We note that the addition of KO dissipation does not change the order of accuracy of the

difference scheme. To see this, we observe that when written in the form (2.64), where we have

multiplied the fundamental form (2.63) by ∆t ≡ λh, the per-step truncation error is now O(h3).

At the same time we have

DKOu
n−1
i = h4(uxxxx)n−1

i +O(h6),

and

DKOu
n
i = h4(uxxxx)ni +O(h5) = O(h4), (2.66)

so (2.65) is an O(h2) approximation of (2.62) as well.

The application of DKO to the most-retarded time values in (2.65) is motivated from consid-

erations of stability. Depending on the specifics of the difference scheme, it may be possible to

effectively apply the operator to other time levels (including more than one level). Additionally,

for Crank-Nicholson schemes DKO can often be applied as a filter on the un+1
i values, once they

have been updated from the basic form of the difference equations. This is the approach we have

generally used in this thesis.

Finally, the value of the parameter ε is typically restricted to the range 0 < ε < 1, with

increasing values of ε corresponding to more dissipation. For sufficiently large values of ε one can

expect the overall scheme to become unstable.

2.3 Newton-Gauss-Seidel Relaxation

As discussed in Sec. 2.1.3, Crank-Nicholson differencing requires the solution of systems of equations

to determine advanced time values. If the finite difference mesh has ng points, and there are nf

grid functions per point, then there are a total of N = ngnf unknowns to be determined at each

time step. Clearly, the FDA—including differencing of both the interior equations (the PDEs

themselves) as well as any boundary conditions—should yield N equations. If the equations of

motion are nonlinear, as is the case for the models studied here, then we have the additional

complication that the system of algebraic equations to be solved is also nonlinear.
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In this thesis, we use the simple but effective technique of one-step point-wise Newton-Gauss-

Seidel (NGS) relaxation to solve these nonlinear systems. It is best to first consider the case

when nf = 1, so that there is a single grid function. We denote the collection of N advanced

time-unknowns by

UI , I = 1, 2, . . . N . (2.67)

It is then convenient to arrange the UI into a length-N vector, U

U ≡ [U1, U2, . . . , UN ] . (2.68)

The equations that need to be solved at each time step can then be written in the form

F [U] = [F1(U1, U2, . . . , UN ), F2(U1, U2, . . . , UN ), . . . FN (U1, U2, . . . , UN )] = 0 (2.69)

The NGS algorithm proceeds as follows. We first note that the procedure is iterative. We start

with some initial estimate U(0) for the advanced-time solution—typically using the values from the

previous time step—and then generate a sequence of approximations

U(0) → U(1) → U(2) → . . .→ U(m) → U(m+1) → . . . (2.70)

until some convergence criteria is achieved. Each relaxation sweep that takes U(m) to U(m+1)

involves a pass through all of the points in the finite difference mesh. In the current case, since

nf = 1, those points can also be labelled by the index I in (2.67), and we will assume that we

visit the points in the order I = 1, 2, . . . , N . We now view the I-th component of (2.69) as a single

nonlinear equation with unknown U
(m+1)
I whose value we wish to update. We thus have

FI(U
(m+1)
I ; U (m+1)

1 , U
(m+1)
2 , . . . U

(m+1)
I−1 , U

(m)
I+1, . . . , U

(m)
N ) = 0 , (2.71)

or simply

FI(U
(m+1)
I ) = 0 . (2.72)

In going from (2.71) to (2.72) we observe that we are considering all of the unknowns other than

U (m+1) to be “frozen” as we perform the update. Furthermore the frozen values will correspond
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to the current iteration (m + 1) for unknowns with indices J , such that J < I and iteration (m)

otherwise. (This use of “most recently updated” values is what we mean by Gauss-Seidel iteration.)

As the nomenclature suggests, the actual update is now accomplished using the familiar Newton

technique. Specifically we have

U
(m+1)
I = U

(m)
I − δUI = U

(m)
I − FI(U (m))

JII
, (2.73)

where the “diagonal Jacobian element”, JII , is 15

JII ≡
∂FI
∂UI

∣∣∣∣
UI=U

(m)
I

. (2.74)

Once we have updated UI via (2.73), we move on to the next unknown UI+1, i.e. we do not

perform additional Newton steps on the scalar equation (2.73) The restriction of the update to a

single Newton step for a single unknown at a single point is what is meant by ”one-step point-wise”.

The NGS method was originally used for the solution of FDAs of elliptic systems, where the

convergence of the method—which gets worse as h→ 0—is so slow as to render it useless. This is

not the case for FDAs of hyperbolic PDEs, where acceptable convergence can usually be achieved

in just a few complete sweeps (arguably as few as 2, see [119]), and with the number of sweeps

needed independent of h. In the work described subsequently we have typically used 2–5 sweeps.

For the case of multiple grid functions, i.e. when ng > 1, there are two natural ways of extending

the scheme. The first is to update each of the grid function values at each grid point separately,

with all other values frozen. This means that the Newton step continues to be applied to scalar

equations. The second method is to update the ng function values at each point simultaneously

(this is sometimes known as collective relaxation). A Newton step for a system of ng equations is

then needed, which in turn requires the evaluation of the ng × ng Jacobian matrix of that system.

As discussed in more detail in the subsequent two chapters, this is the approach that we have

adopted in our calculations.
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Figure 2.3: A typical grid hierarchy with Lf = 3. Child grids are contained inside parent grids,
and their boundaries are parallel to each other.

2.4 Adaptive Mesh Refinement

The dynamics of nonlinear field theories often span a wide range of time and space scales. Phe-

nomena in some regions of the computational domain may need a fine grid to be resolved properly,

while a coarser spacing may be enough in other areas. Use of a single uniform grid with a meshing

sufficiently small to accurately treat the smallest-scale features can then be very inefficient and,

particularly for calculations in multiple space dimensions, may in fact be computationally pro-

hibitive. One solution to this problem, which is used in many areas of computational science, is

to adopt a single non-uniform grid which is constructed to provide an appropriate (local) mesh

spacing throughout the domain. However, for problems such as those considered in this thesis, the

regions needing higher (or lower) resolution are not known a priori and will generically evolve in

tandem with the solution itself.

This last consideration (and others) has prompted the development of methods that are col-

lectively known as adaptive mesh refinement (AMR) techniques. In this work we use a specific

AMR methodology due to Berger and Oliger [109] that was designed for the solution of hyperbolic

systems, and which has now been coded in one form or another by many researchers and research
15The full Jacobian is associated with the system (2.69) and has elements JKL ≡ ∂FK/∂UL.
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groups.

In particular, Pretorius has implemented a version of the Berger and Oliger algorithm in the

form of two C libraries called AMRD (for Adaptive Mesh Refinement Driver) and PAMR (for

Parallel Adaptive Mesh Refinement) [120, 121, 107, 108]. These libraries are designed so that a

user can incorporate AMR into his/her finite difference calculations in a straightforward fashion,

without having to be concerned with most of the details of the AMR algorithm per se. Importantly,

the libraries produce code that can be run on massively parallel architectures and, again, the user

is freed from the non-trivial task of code parallelization.

We will not discuss the Berger and Oliger algorithm, nor Pretorius’ implementation of it, in

full detail here. Rather, we will provide a summary of the approach and refer the interested reader

to [120, 109, 121, 107, 108] and references therein for more information. We also note that our

synopsis closely follows the presentation of [120, 121, 107, 108].

Key features of the Berger and Oliger algorithm include the following;

1. The capability for a (finest) mesh spacing that varies from place to place in the solution

domain is achieved through the use of a hierarchy of uniform grids. The hierarchy consists of

a pre-specified number, Lf , of levels of discretization, labelled by L, so that L = 1, 2, . . . , Lf .

Each level is characterized by a constant mesh spacing, hL, which satisfies hL = hL−1/2. 16

(See Fig. 2.4 for an example with Lf = 3.) L = 1 defines the coarsest level of discretization,

and at this level there is a single uniform grid (called the base grid) that covers the entire

domain. At subsequent levels L = 2, ...Lf there may be multiple grids, each of which has

boundaries which are aligned with those of the base grid (i.e. non-rotated with respect to

the underlying coordinate system). Each grid at level L = 2 or higher must be properly

contained within a single level L − 1 grid. The latter is known as the parent of the former

and, conversely, the former is a child of the latter.

2. There are distinct time steps, ∆tL, associated with each level, which also satisfy ∆tL =

∆tL−1/2: i.e. refinement is performed in time as well as in space.

3. Evolution of the finite difference solution from one time step to the next is done recursively

by level. First, we assume that the solution on all grid levels is defined at the same discrete
16By this condition we say that the hierarchy has a “refinement factor of 2”. In the original Berger and Oliger

work other integer-valued refinement factors were allowed, but Pretorius’ implementation makes the restriction to
2.
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time. To initiate the stepping cycle, the coarse grid solution (L = 1) is first advanced, using

the same discrete equations that would be used in a unigrid (i.e. non-adaptive) computation.

Then a step on all level L = 2 grids is performed, again using the fundamental discretized

equations of motion, except that for those boundaries that do not coincide with physical

boundaries, boundary values are computed via interpolation in the parental grid (the desire

to perform interpolation rather than extrapolation motivates taking the coarse grid step first).

If there are any L = 3 grids the L = 2 process is repeated, otherwise an additional L = 2 step

is taken, which brings L = 2 into time-synchronization with L = 1. An overall time-cycle is

then complete and a new one can begin. It is also important to note that whenever level L−1

has been integrated to the same time as level L, level L grid function values are overwritten

by child values defined at the same spatial locations.

The process sketched here is easily and naturally extended in recursive fashion for arbitrary

Lf and is described in full detail in the references given above.

4. The composition of the hierarchy—i.e. how many levels of discretization are required and

where the various grids should be located—is determined dynamically using local truncation

error (TRE) estimates as will be described subsequently. These estimates are periodically

generated on all levels except L = Lf , and then regions requiring refinement are identified,

clustered into grids, and a new hierarchy is constructed. For any refined level, L = 2, . . . , Lf ,

the initialization of grid function values in the new structure will generally involve a combi-

nation of copying old values from the same level, and interpolation of level L− 1 values. We

note that this process will also automatically derefine regions where resolution requirements

become less stringent.

Truncation error estimates are computed with a procedure completely analogous to that used

in adaptive-step-size ODE integrators. For the purpose of illustration, let Lh be a second order

two-level difference operator and u(t, x) the continuum solution of the corresponding differential

system. Then the local (one-step) truncation error, τ , is defined by

u(t+ λh, x)− Lhu(t, x) = τ +O(h3) (2.75)

where h is the spatial grid spacing and we have again assumed that the temporal spacing satisfies
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∆t = λh with λ constant as h→ 0. If we evolve another time step we have

u(t+ 2λh, x)− [Lh]2u(t, x) = 2τ +O(h3) (2.76)

We now consider a 2:1 coarsening of the finite difference grid, and use the corresponding difference

operator, L2h, defined on that grid, to advance the solution. We find

u(t+ 2λh, x)− L2hu(t, x) = 22+1τ +O(h3) = 8τ +O(h3) (2.77)

Subtracting (2.77) from (2.76) and manipulating, we obtain the following estimate for τ

τ ≈ [Lh]2u(t, x)− L2hu(t, x))
6

(2.78)

Provided that we can Richardson-expand the finite difference approximation, uh, as

uh(t, x) = u(t, x) + h2e2(t, x) + . . . (2.79)

(see Sec. 2.1.1), then it easy to argue that, to the same order of approximation, we can replace

u(t, x) with uh in (2.78). Pretorius’ implementation uses a minor modification of this procedure

which is especially straightforward to code within the context of the overall Berger and Oliger

algorithm. His approach does, however, require that the entire domain be covered by a single

L = 2 grid (in addition to the base L = 1 grid) whenever Lf > 2.

The overall placement of grids is controlled by a single parameter, the truncation error threshold,

τmax, which is user-adjustable. Regions where the estimated τ exceeds τmax will be covered with

finer grids, whereas areas where τ is below the threshold will experience derefinement. For cases

such as ours where there are multiple grid functions, the overall truncation error estimate is some

function, such as the `2 norm, of the individual estimates.

In addition to τmax and Lf , there are a number of additional parameters which control an AMR

calculation. Among these are

1. nregrid, which specifies the frequency of regridding,

2. wbuffer, which gives the number of grid points along any and all coordinate directions that a

region flagged as having high truncation error is extended prior to the recomposition of the
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grid hierarchy.

We will discuss the significance of these parameters in more detail in Sec. 3.6, which describes

some specific AMR computations.

We again note that the AMRD/PAMR infrastructure provides for parallel execution and we

have used this facility extensively in the calculations described below (we typically run on 64-128

cores). Since we used this feature strictly in a black-box capacity we will not discuss it here: details

are provided in [107, 108].

The use of Berger and Oliger AMR is not without cost. There is some computational overhead

associated with the (re-)construction of the grid hierarchy, as well as with the various inter-level

operations. More seriously, the finite difference solutions tend to systematically develop unphysical

high frequency components at those locations where grid function values are interpolated in parental

meshes [121]. The use of dissipation can help in this regard, but treatment of this problem remains

an active research topic.

If we assume the execution time on any mesh to be proportional to the number of grid points

it contains, then the expected speedup of an AMR run can be estimated by comparing the total

number of points on all levels L = 1...Lf of our hierarchy with the number of points for a uniform

grid with resolution at level Lf . Clearly, significant speedup is only achieved when the filling factors

of fine grids shrink sufficiently rapidly that the finest-level grids do not occupy a large part of the

computational domain.
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CHAPTER 3

RELATIVISTIC SCATTERING OF Q-BALLS IN

2 + 1 DIMENSIONS

3.1 Introduction

In this chapter we describe our implementation of a code to perform numerical experiments of the

scattering of Q-ball solutions in 2 + 1 dimensions. The objective is to use the relatively simple

model of a complex scalar field with a quartic potential to develop an infrastructure to study

highly boosted matter collisions in more complicated theories. In particular, the latter include the

Skyrme models which are discussed in the next two chapters. Following an introduction to Q-balls,

Sec. 3.3 presents a derivation of the dynamical equations of motion for a complex scalar field, as

well as the specific implementation of the numerical methods—described in the previous chapter—

that we use to approximately solve them. We then discuss the generation of suitable initial data

for stationary and boosted Q-balls (Sec. 3.3.4 and 3.3.3). Code validation strategies—including

convergence testing, consistency checks and monitoring of conserved quantities—are developed in

Sec. 3.4. Secs. 3.5–3.7 detail the results of our investigations of head-on Q-ball collisions, and

interactions between Q-balls and potential obstructions. Finally, Sec. 3.8 concludes the chapter

with a summary of our experiences.

3.2 Planar Q-balls

Let us begin by considering the general features of Q-balls in 2 spatial dimensions, following [78,

79, 80, 18]. The model is described by the U(1) invariant Lagrangian density

L = ∂µφ∂
µφ∗ − U(|φ|2) . (3.1)
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The complex scalar field possesses a conserved Nöether current, a consequence of the symmetry

under the transformation φ→ φeiα,

Jµ =
1
2i

(φ∗∂µφ− φ∂µφ∗) , (3.2)

with a corresponding conserved charge, Q, for any configuration of φ given by

Q =
∫
d2x J0 =

1
2i

∫
d2x (φ∗∂0φ− φ∂0φ∗) . (3.3)

The energy, E, (which is also conserved) is defined by

E =
∫
d2x

[
1
2
|φ̇|2 +

1
2
|∇φ|2 + U(|φ|2)

]
, (3.4)

where we have adopted the notation φ̇ ≡ ∂tφ for time differentiation. As discussed in more

detail in B.2, one can argue for the existence of Q-ball solutions—i.e. stable, stationary, localized

“solitons”—through energetic arguments in which the energy is minimized subject to a constraint

derived from the expression (3.3) for the conserved charge, Q. The constraint is incorporated in the

Lagrangian using a Lagrange multiplier, and the energy minimization is performed at fixed charge.

Heuristically, if the energetic balance favours the creation of a Q-ball instead of a more-or-less

freely propagating configuration (in other words, if E < mQ, where m is the mass parameter for

the field), then we expect the resulting soliton to be stable.

When Q-balls are considered in the context of particle physics (i.e. in quantum field theory),

the particulars of the potential are often dictated by renormalization considerations [69]. Since we

are only considering classical dynamics, and since we are not attempting to perform a study of

Q-balls that is comprehensive in any way, we adopt a specific potential form for which Q-balls are

known to exist [18, 78, 81]. Specifically, we take

U(φ2) =
1
2
m2|φ|2 − 1

3
α|φ|3 +

1
4
β|φ|4 , (3.5)

where m, α and β are positive real-valued parameters. Without loss of generality we can perform

the rescalings φ→ φ/α and x→ mx. Doing this, and then substituting (3.5) in (3.1), we have

L =
1
2
∂µφ

∗∂µφ− 1
2
|φ|2 +

1
3
A|φ|3 − 1

4
B|φ|4 . (3.6)
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The (rescaled) values, A and B, can now be viewed as dimensionless control parameters for the

theory. In particular, the specific values of A and B that are chosen can ultimately determine if

Q-ball solutions exist or not, and will also have an impact on the overall dynamical behaviour of the

model. Again, since our principal goal here is to gain experience with nonlinear theories admitting

solitons, we have made no attempt to make any survey of the phenomenology as a function of A

and/or B. Rather, for our numerical experimentation, and following [18], we will set A = 1 and

B = 0.5. The reader should also note that in the formal development that follows, we will tend to

drop explicit mention of A (since it has been set to unity), but will not do so for B.

With A = 1, the equation of motion obtained by varying the Lagrangian density (3.6) (see B.1)

is

φ̈−∇2φ+ φ− |φ|φ+B|φ|2φ = 0 , (3.7)

where we again emphasize that an overdot denotes differentiation with respect to time.

Derrick’s theorem (Sec. D.1 and [122]) provides some insight into necessary conditions that a

field theory must satisfy in order for it to admit stable, time-independent solutions: in general

these conditions depend on both the spatial dimensionality, D, of the theory, and the specific field

content. For the current case, where D = 2, and the matter is a single complex scalar field with

a polynomial potential, the theorem implies that there can be no stable, static solutions. On the

other hand, the theorem does not exclude stationary configurations, i.e. solutions with “internal”

dynamics, but where, for example, the energy distribution is static. Motivated by this observation,

and by fact that φ is complex, we seek circularly-symmetric stationary solutions of the form

φ(r, t) = σ(r) eiωt , (3.8)

where r ≡
√
x2 + y2 and σ(r), which is real and strictly positive, will be referred to as the profile

function. The conserved charge then becomes

Q = 2πω
∫ +∞

0

r dr σ(r)2 . (3.9)
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Substitution of (3.8) into the equation of motion (3.7) yields

∇2σ(r) + (ω2 − 1)σ(r) +Aσ2(r)−Bσ3(r) = 0 , (3.10)

or
d2σ(r)
dr2

+
1
r

dσ(r)
dr

+ σ(r)(ω2 − 1) +Aσ2(r)−Bσ3(r) = 0 . (3.11)

(3.11) is to be viewed as an eigenvalue problem. For any given central value, σ0 ≡ σ(0), of the

profile function, a solution satisfying the appropriate boundary conditions—specified below—will

only exist for specific values of ω ≡ ω(σ0).

As with other eigenvalue problems of this type we in fact expect a countable infinity of solutions

that it this case can be labelled conveniently by the number of times that the profile function crosses

the σ = 0 axis. In our studies we will restrict attention to the case where there are no such crossings,

or what one might view as “ground state” profile functions.

3.2.1 Solution of the Q-ball ODE

We first introduce an auxiliary variable, u(r) ≡ dσ/dr, and recast (3.11) in the form:

dσ

dr
= u ,

du

dr
= −1

r
u− σ(r)(ω2 − 1)−Aσ2(r) +Bσ3(r) . (3.12)

As just discussed, (3.12) is to be viewed as a boundary-eigenvalue problem. The boundary condi-

tions are
dσ

dr
(0) ≡ u(0) = 0, (3.13)

which is required for regularity at the origin, and

lim
r→∞

σ(r) = 0 , (3.14)

which is needed for the total energy of the Q-ball to be finite.17 Solution of the ODE system (3.12),

subject to the boundary conditions (3.13) and (3.14), is achieved by treating the system as an initial

17More properly, we need to demand that σ(r) decays sufficiently rapidly as r → ∞ to maintain finite energy.
However, the configurations that are found with the simple condition limr→∞ σ(r) = 0 satisfy this requirement.
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Figure 3.1: This figure displays a typical Q-ball radial profile function, σ(r) (left), and the asso-
ciated bare and effective potentials, U(σ2) and Uω(σ2), (right), respectively. (See App. B.2) for a
discussion of the effective potential interpretation of Q-ball solutions.) As discussed in the text,
σ(r) is computed using a shooting technique. Here, with σ0 = 1.375, A = 1 and B = 0.5, we find
ω ≈ 0.7739293. We note that the plots are actually comprised of subsets of discrete collections of
points, rp, p = 1, . . . , N , where N is of the order of 1300, r1 = 0 and rN ≡ rmax ≈ 300 (i.e. only
a small portion of the radial integration domain is shown here). The LSODA error tolerance is of
the order of 1.0× 10−9 which guarantees that the error in the profile function σ(r) is much smaller
than the error of the evolved finite difference solutions that we subsequently generate. Note the
rapid falloff of σ(r) once r & 15. This is typical of Q-ball configurations for this potential and
justifies the view of Q-balls as “solitonic” (particle-like) entities.

value problem, and using shooting. Specifically, the initial values are σ(0) = σ0 and u(0) = 0. Then,

for given σ0, ω is iteratively adjusted until (3.14) is satisfied. Also implicit in this process is the

requirement that σ(r) have no zero-crossings. We also note that to compute the central value of

du/dr, we apply L’Hopital’s rule to the first term of (3.12) which yields

d2σ

dr2
(0) =

du

dr
(0) =

1
2
(
(ω2 − 1)σ0 − σ2

0 +Bσ3
0

)
. (3.15)

Our shooting technique is a standard one [123, 124]. For any given σ0, successive estimates,

ω̃, of the desired eigenvalue ω = ω(σ0) are generated, based on the observation that depending

on whether ω̃ < ω or ω̃ > ω, the behaviour of σ(r) as we integrate to large r will tend to be

distinct. On one hand, we find that σ diverges to ±∞, while on the other σ becomes oscillatory.

Starting from an initial bracket [ω−, ω+], such that ω− < ω < ω+—and which is generally easy to

locate through experimentation—we can then use a bisection search [124] to successively narrow

the bracket until the eigenvalue ω ≈ ω̃ has been computed to some specified tolerance. Depending
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σ0 ω
0.05 0.9896261
0.2 0.9593800
0.5 0.9033547
1.0 0.8250378
1.3 0.7858791
1.35 0.7785407
1.375 0.7739293

Table 3.1: This table lists selected central values, σ0, of the Q-ball profile function, along with the
associated eigenvalues, ω(σ0), computed using the shooting method described in the text.

on the values of the parameters σ0, A and B, and the desired maximum radius of integration rmax,

it may not always be possible to determine ω̃ (even by iterating to machine precision) which satisfies

limr→rmax σ(r) = 0. In such cases it is straightforward to truncate σ(r) at some relatively large

distance, and then fit to an exponentially decreasing tail function. The integration of the ODEs

is performed by the LSODA routine, one of several robust solvers contained in the ODEPACK

package [125] of Fortran-callable procedures.

Table 3.1 enumerates a number of (σ0, ω) pairs that were computed using our shooting algo-

rithm, and a typical profile function σ(r) (along with the potential V (|φ|)) is shown in Fig. 3.1. To

summarize, for a specific potential (which in our case is fixed by the specification of the constants

A and B), we can compute an entire family of (ground state) Q-balls, which are characterized

(labelled) by σ0, and which have corresponding eigenfrequencies, ω = ω(σ0).

3.3 Equations of Motion

We now return to the time-dependent equation of motion (3.7),

φ̈−∇2φ+ φ− |φ|φ+B|φ|2φ = 0 , (3.16)

where an overdot again denotes differentiation with respect to time. For the purposes of our

numerical treatment of the model, it is convenient to express φ in terms of its real and imaginary

components, φ1 and φ2, respectively, each of which is to be viewed as an independent real-valued

dynamical field. Thus, restricting attention to the 2 + 1 case, and adopting the usual Cartesian
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coordinates (t, x, y) we set

φ(t, x, y) ≡ φ1(t, x, y) + iφ2(t, x, y) , (3.17)

with the modulus, |φ|, of the field given by

|φ| =
√
φ2

1 + φ2
2 . (3.18)

With the above definitions, we can take the real and imaginary parts of (3.16) to derive the evolution

equations for φ1 and φ2:

φ̈1 −∇2φ1 + φ1 − |φ|φ1 +B|φ|2φ1 = 0 , (3.19)

φ̈2 −∇2φ2 + φ2 − |φ|φ2 +B|φ|2φ2 = 0 . (3.20)

We intend to use a two time-level Crank-Nicholson scheme for the finite difference treatment of the

above equations. In order to eliminate the second order time derivatives (which would require a

minimum of three discrete time levels) we introduce auxiliary fields π1 and π2, defined by

πa(t, x, y) =
∂φa
∂t

, a = 1, 2 . (3.21)

Using these definitions, the equation of motion for the scalar field can be written as the following

system of 4 first-order-in-time evolution equations:

∂φ1

∂t
= π1

∂φ2

∂t
= π2

∂π1

∂t
− ∂2φ1

∂x2
− ∂2φ1

∂y2
+ φ1 − |φ|φ1 +B|φ|2φ1 = 0 (3.22)

∂π2

∂t
− ∂2φ2

∂x2
− ∂2φ2

∂y2
+ φ2 − |φ|φ2 +B|φ|2φ2 = 0 .

These equations must be supplemented with appropriate boundary values and initial conditions.

The former are discussed in App. E, the latter in Sec. 3.3.3 below.
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φ
φn+1
ij +φnij

2

φt
φn+1
ij −φnij

∆t

φxx
1
2

[
φn+1
i+1,j−2φn+1

i,j +φn+1
i−1,j

∆x2 +
φni+1,j−2φni,j+φ

n
i−1,j

∆x2

]
Table 3.2: Crank-Nicholson (CN) two-(space) dimensional finite difference stencils used to convert
the differential equations to difference equations for any of the four dynamical variables φa or πa,
a = 1, 2. Here we use the notation φnij ≡ φni,j ≡ φ(tn, xi, yj). We remind the reader that we use
(component) finite difference grids that are characterized by a single discretization scale, h, so that
∆x = ∆y = h, and ∆t = λh, where λ is the Courant number. Each of the above expressions is a
second order (O(h2)) approximation to its continuum counterpart, and is centred at (tn+1/2, xi, yj).

3.3.1 Finite Difference Approach

We proceed to discretize the equations of motion (3.23) using a second order, Crank-Nicholson

finite difference scheme. As described in the previous chapter, we use finite difference grids which

are characterized by a single discrete scale, h, so that ∆x = ∆y = h, and ∆t = λh, where λ is the

Courant number.18

Using the finite difference stencils summarized in Table 3.2 and adopting the notation φn(i, j) ≡

φ(tn, xi, yj) for grid functions, we can express the difference approximations of (3.23) in residual

form. For the φ fields we have

φres
1 (i, j) ≡ πn+1

1 (i,j)+πn
1 (i,j)

2 − φn+1
1 (i,j)−φn

1 (i,j)
∆t ,

φres
2 (i, j) ≡ πn+1

2 (i,j)+πn
2 (i,j)

2 − φn+1
2 (i,j)−φn

2 (i,j)
∆t , (3.23)

18As discussed in Chap.2, when we use adaptive mesh refinement (AMR) each of the component grids in the
grid hierarchy satisfies these conditions for some hL, where L labels the level of the grid in the hierarchy and
hL = hL−1/2.

50



3.3. EQUATIONS OF MOTION

and for the π fields,

πres
1 (i, j) ≡ πn+1

1 (i,j)−πn
1 (i,j)

∆t

− 1
2

[
φn+1

1 (i+ 1, j)− 2φn+1
1 (i, j) + φn+1

1 (i− 1, j)
∆x2

]
− 1

2

[
φn1 (i+ 1, j)− 2φn1 (i, j) + φn1 (i− 1, j)

∆x2

]
− 1

2

[
φn+1

1 (i, j + 1)− 2φn+1
1 (i, j) + φn+1

1 (i, j − 1)
∆y2

]
− 1

2

[
φn1 (i, j + 1)− 2φn1 (i, j) + φn1 (i, j − 1)

∆y2

]
+ φn1 (i, j)− |φn(i, j)|φn1 (i, j) +B|φn(i, j)|2φn1 (i, j) , (3.24)

πres
2 (i, j) ≡ πn+1

2 (i,j)−πn
2 (i,j)

∆t

− 1
2

[
φn+1

2 (i+ 1, j)− 2φn+1
2 (i, j) + φn+1

2 (i− 1, j)
∆x2

]
− 1

2

[
φn2 (i+ 1, j)− 2φn2 (i, j) + φn2 (i− 1, j)

∆x2

]
− 1

2

[
φn+1

2 (i, j + 1)− 2φn+1
2 (i, j) + φn+1

2 (i, j − 1)
∆y2

]
− 1

2

[
φn2 (i, j + 1)− 2φn2 (i, j) + φn2 (i, j − 1)

∆y2

]
+ φn2 (i, j)− |φn(i, j)|φn2 (i, j) +B|φn(i, j)|2φn2 (i, j) . (3.25)

We emphasize that the process of computing a solution to the discrete equations is equivalent to

driving all of the residual quantities defined above to 0. We also note that each of the above finite

difference equations is naturally associated with the grid point (xi, yj).

As also discussed in Chap. 2, we solve the discrete equations using a point-wise Newton-Gauss-

Seidel scheme. This means that we sweep through the mesh, visiting each grid point (xi, yj) ≡ (i, j)

in turn, and updating the four grid function values associated with that point by taking a single

Newton step applied to the 4 nonlinear equations defined by (3.23-3.25). We observe that the

difference equations couple values defined at (i, j) to the nearest neighbours (i + 1, j), (i − 1, j),

(i, j + 1) and (i, j − 1). The Gauss-Seidel nomenclature refers to the fact that in our point-wise
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updates we always use the most recently computed (updated) values of those neighbour values in

the Newton step. This process is schematically illustrated in Fig. 3.3. Black points have already

been updated, while white points still hold “old” values for the grid functions. The points at the

physical boundaries (red) are updated according to the boundary condition selected (see App. E).

The Newton step to simultaneously (collectively) update the 4 unknowns defined at (i, j) re-

quires the construction of the 4 × 4 Jacobian matrix. The elements of this matrix are defined

by

J11 =
∂φres

1

∂φ1
J12 =

∂φres
1

∂φ2
J13 =

∂φres
1

∂π1
J14 =

∂φres
1

∂π2

J21 =
∂φres

2

∂φ1
J22 =

∂φres
2

∂φ2
J23 =

∂φres
2

∂π1
J24 =

∂φres
2

∂π2
(3.26)

J31 =
∂πres

1

∂φ1
J32 =

∂πres
1

∂φ2
J33 =

∂πres
1

∂π1
J34 =

∂πres
1

∂π2

J41 =
∂πres

2

∂φ1
J42 =

∂πres
2

∂φ2
J43 =

∂πres
2

∂π1
J44 =

∂πres
2

∂π2

where we have suppressed the (i, j) indexing, noting that all quantities in the above are evaluated

at the point (i, j). We then solve the linear system



J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44





δφ1(i, j)

δφ2(i, j)

δπ1(i, j)

δπ2(i, j)


=



φres
1 (i, j)

φres
2 (i, j)

πres
1 (i, j)

πres
2 (i, j)


(3.27)

using the direct solver DGESV from the LAPACK package [126] to obtain the corrections δφ and δπ

. Using the corrections, the unknowns are updated via



φ1(i, j)

φ2(i, j)

π1(i, j)

π2(i, j)


:=



φ1(i, j)

φ2(i, j)

π1(i, j)

π2(i, j)


−



δφ1(i, j)

δφ2(i, j)

δπ1(i, j)

δπ2(i, j)


(3.28)

When our code that implements this solution process is run in parallel, each processor updates

its designated portion of the finite difference grid (or grids when adaptive mesh refinement is also

used), and then a global l2 norm (see 2.31) of the residuals through the entire computational domain
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is calculated. If this norm is larger than the specified convergence criteria, another Newton-Gauss-

Seidel sweep is performed. Once convergence is achieved we advance the discrete time from tn to

tn+1. A pseudo-code version of the full time-stepping algorithm is given in Figure 3.2.

3.3.2 Implementation Strategy

As a first step, a prototype serial unigrid (i.e. non-parallel, non-adaptive) code was developed using

RNPL (Rapid Numerical Prototyping Language [127]). Since the continuum and finite difference

equations are relatively simple, RNPL can handle the full generation of residual-evaluating and

update routines routines automatically, and thus a minimum of coding is required.19 This prototype

runs as a single computer process (again, with no parallelization) and it established the feasibility

of the approach.

Our parallel, adaptive production code still uses RNPL, but the core driver is written using

the AMRD (Adaptive Mesh Refinement Driver) / PAMR (Parallel Adaptive Mesh Refinement)

infrastructure [120, 107, 108] that was mentioned briefly in Chap. 2. These packages constitute a

set of routines layered on top of the Message Passing Interface (MPI) library, which itself provides

low-level parallel functionality. AMRD/PAMR is designed so that a user is shielded from most

of the details of both the parallelization and adaptive-mesh capabilities of a finite difference code.

The key user input comes in the form of various hook functions which perform operations such

as evaluating the finite difference residuals or effecting an update sweep to (ultimately) advance

the solution from one discrete time to the next. Our main driver (written in C) uses the supplied

AMRD/PAMR routines, but also incorporates a few specific MPI calls for miscellaneous tasks, such

as gathering contributions to conserved quantities from each parallel sub-domain (each processor).

We also note that we developed our own software infrastructure that was designed to tackle

more complicated problems than the relatively simple equations governing a complex scalar field

in 2 + 1 dimensions. For example, the continuum equations of motion are derived using a Maple

[128] script, as well as a Maple-based tensor-manipulation package, TensorV6 [129]. Maple is also

used to replace the continuum derivatives with finite difference expressions, as well as to generate

the corresponding residuals and Jacobian matrix. These last quantities are converted to Fortran 77

using the codegen and CodeGeneration Maple functions. The initialization routines are generated

using RNPL, while the evolution routines are typically written directly in Fortran 77.
19It should be noted, however, that RNPL does not implement collective relaxation—rather single Newton-step

-Gauss-Seidel updates are applied pointwise, and to each individual (scalar) equation at every point in turn.
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1: for tn = ∆t, 2∆t, . . . do
2: for i = 1 to Nx do
3: for j = 1 to Ny do
4: Set initial estimate for the solution vector φ(0)

b ≡ [φ(0)
1 , φ

(0)
2 , π

(0)
1 , π

(0)
2 ]T

5: Calculate the 4× 4 Jacobian matrix Jab and the residual vector Ba at
this point using nearest neighbour values (some new, some old)

6: Solve Jab δbφ = Ba for the update δbφ = [δφ(0)
1 , δφ

(0)
2 , δπ

(0)
1 , δπ

(0)
2 ]T

using DGESV and obtain a new estimate φnew
b = φ

(0)
b − δbφ

7: end for
8: end for
9: Calculate the l2 norm of the residuals using the new guess φnew

b (This is a
global norm for all subdomains used by the parallel infrastructure)

10: if l2 norm of the residuals < tolerance then
11: Convergence achieved
12: Goto 17
13: else
14: φ

(0)
b = φnew

b

15: Goto 2
16: end if
17: end for

Figure 3.2: Time stepping algorithm for Q-ball evolution

Figure 3.3: Gauss-Seidel update of the two dimensional finite difference mesh. The update proceeds
from left to right and top to bottom. Grid function values are coupled to their nearest neighbours,
which include points already updated during the sweep (black) and points with old values (white).
The points at the physical boundaries (red) are updated according to the boundary condition
selected (see App. E).
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This strategy of using symbolic computing and script-based automation for code generation

provides us with a high degree of confidence in the correctness of our residual and Jacobian el-

ements, while minimizing both the overall amount of coding required as well as the number of

implementation errors. We stress that since the tools we have developed have very few “hard-

wired” components, the infrastructure is not restricted in any way to the problem currently under

consideration. In particular, our tools can be readily used to solve other hyperbolic problems

in a relatively straightforward fashion, and with a high degree of confidence. Again, the core of

any specific implementation is a main driver that is written in C, and which incorporates all of

the numerical subroutines—typically produced using Maple or RNPL, but also possibly coded by

hand.

3.3.3 Interpolation and Translation of Q-ball Data

In order to evolve Q-ball initial data, we must set corresponding values for φ0
a(i, j) and π0

a(i, j),

a = 1, 2. We remind the reader that our finite difference domain is comprised of Nx×Ny grid points

and that (i, j) denotes the point with coordinates (xi, yj). For the case when the Q-ball is at rest in

the (t, x, y) coordinate system, this process is very easy to accomplish using interpolation. We first

specify a location (xc, yc) at which we wish to center the Q-ball, and which need not coincide with

a grid point. For each (i, j) pair we compute the distance, rij =
√

(xi − xc)2 + (yj − yc)2, of the

grid point from the Q-ball center. We then use a polynomial interpolation routine that implements

Neville’s algorithm [124] to compute σ(i, j) from the σp values. The routine allows the order of the

interpolation to be adjusted, and through trial and error we determined fifth order to be adequate.

Once the values σ(i, j) are in hand, we can initialize the dynamical fields. For a single Q ball

at rest, we can assume without loss of generality that the scalar field is purely real at the initial

1: for i = 1 to Nx do
2: for j = 1 to Ny do
3: Calculate interpolation radius rij =

√
(xi − xc)2 − (yj − yc)2

4: Interpolation routine computes the value σ(rij) = σ(i, j)
5: end for
6: end for

Figure 3.4: Interpolation and translation of the Q-ball soliton to (xc, yc).
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time. For the φa we thus have

φ0
1(i, j) = σ(i, j) , (3.29)

φ0
2(i, j) = 0 . (3.30)

For the πa we have (recalling the ansatz (3.8))

π0
1 = 0 , (3.31)

π0
2 = ω · σ(i, j) . (3.32)

3.3.4 Boosted Initial Data

To provide a Q-ball with some velocity at t = 0, we apply a Lorentz transformation (or Lorentz

boost) in the x direction. In Cartesian coordinates this transformation takes the form

t′ = γ(t+ vx) x′ = γ(x+ vt) y′ = y (3.33)

and their inverse transformations,

t = γ(t′ − vx′) x = γ(x′ − vt′) y = y′ (3.34)

where γ is the boost factor, and which is a key control parameter in most of the computations

described in the thesis. Primed and unprimed quantities correspond to the rest and laboratory

frames, respectively, and we continue to work in units where c = 1. In the rest frame the complex

field is (again from the Q-ball ansatz (3.8))

φ′(t′, x′, y′) = σ(x′, y′) exp(iωt′) = φ′1 + iφ′2 , (3.35)

The real and imaginary components of φ′, in the rest frame, are thus given by

φ′1(t′, x′, y′) = σ(x′, y′) cosωt′ φ′2(t′, x′, y′) = σ(x′, y′) sin(ωt′), (3.36)
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and their time derivatives π′,

π′1(t′, x′, y′) =
∂φ′1
∂t′

= −ωφ′2 π′2(t′, x′, y′) =
∂φ′2
∂t′

= ωφ′1 . (3.37)

We now “boost” the coordinates according to the transformations (3.33), and since the φ1 and φ2

are scalars we can write,

φ1(t, x, y) = φ′1(t′, x′, y′) = σ(x′, y′) cos(ωt′) = σ(γ[x+ vt], y) cos(ω[γ(t+ vx)]),

φ2(t, x, y) = φ′2(t′, x′, y′) = σ(x′, y′) sin(ωt′) = σ(γ[x+ vt], y) sin(ω[γ(t+ vx)]), (3.38)

π1(t, x, y) =
∂φ1

∂t
(t, x, y) =

∂φ′1
∂t

(t′, x′, y′),

π2(t, x, y) =
∂φ2

∂t
(t, x, y) =

∂φ′2
∂t

(t′, x′, y′) .

Since t′ = t′(t, x, y), x′ = x′(t, x, y) and y′ = y′(t, x, y), the derivatives transform as components of

(co)-vectors,

π1(t, x, y) =
∂φ′1
∂t

(t′(t, x, y), x′(t, x, y), y′(t, x, y)) =
∂φ′1
∂t′

∂t′

∂t
+
∂φ′1
∂x′

∂x′

∂t
+
∂φ′1
∂y′

∂y′

∂t
, (3.39)

π2(t, x, y) =
∂φ′2
∂t

(t′(t, x, y), x′(t, x, y), y′(t, x, y)) =
∂φ′2
∂t′

∂t′

∂t
+
∂φ′2
∂x′

∂x′

∂t
+
∂φ′2
∂y′

∂y′

∂t
.

Again, using the inverse transformations (4.31), equations (3.39) simplify to:

π1 =
∂φ′1
∂x′

γv +
∂φ′1
∂t′

γ , (3.40)

π2 =
∂φ′2
∂x′

γv +
∂φ′2
∂t′

γ , (3.41)

Substituting equation (3.36) in the first term of (3.40) we obtain,

∂φ′1
∂x′

(t′, x′, y′) =
∂

∂x′
(σ(x′, y′) cos(ωt′))) = cos(ω[γ(t+ vx)]))

∂σ(γ[x+ vt], y)
∂x′

(3.42)

Using (3.37) in the second term of (3.40) yields,

∂φ′1
∂t′

(t′, x′, y′) = −ωφ′2 = −ωφ2 (3.43)
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and similarly for ∂φ′2/∂t
′ in (3.41).

The coordinates in the rest frame corresponding to the initial time (t = 0) in the laboratory

(boosted) frame are given by transformations (4.31),

t′ = γvx x′ = xγ y′ = y, (3.44)

We interpolate in σ(x′, y′) (obtained from LSODA) the values of σ(γx, y) in the lab frame. We

actually accomplish this using r′ =
√
x′2 + y′2, given that in the rest frame, σ(x′, y′) is a circularly

symmetric function σ(r′).

Collecting results from above, we have the following initial values for a boosted Q-ball:

φ0
1 = σ(γx, y) cos(ωγvx) ,

φ0
2 = σ(γx, y) sin(ωγvx) ,

π0
1 =

(
∂σ(γx, y)
γ∂x

)
cos(ωγvx)γv − ωφ2γ , (3.45)

π0
2 =

(
∂σ(γx, y)
γ∂x

)
sin(ωγvx)γv + ωφ1γ .

Here, the derivatives ∂σ/∂x in the last two equations are calculated numerically.

3.4 Code Validation

In this section we test the convergence and consistency of the solutions generated by our code by

means of the computation of convergence factors (eqn. (2.30)) for: 1) smooth Gaussian data, 2) a

stationary Q-ball, and 3) a boosted Q-ball. We also monitor the conservation of the Nöether charge,

Q, of Q-ball solutions, and demonstrate that independent residuals converge as expected. We will

show the results of these tests for two of the four dynamical functions of our model, namely φ1 and

π1. However, we emphasize that their counterparts φ2 and π2 converge in the same manner. Our

runs implement two types of boundary conditions: Sommerfeld outgoing and Dirichlet (reflective)

conditions (see App. E). For testing purposes there is no particular reason to prefer one or the

other.
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3.4.1 Natural Scales of Length and Time

In finite difference computations, specification of a particular grid resolution, h, is in itself largely

meaningless if not accompanied with a specification of natural, or characteristic, scales of length, L,

and time, T , associated with the solution under study. Clearly, we want to have h� L and h� T

to ensure that the finite difference solutions are close to their continuum counterparts, and this is

especially true for the relatively low-order approximations we use here and throughout this thesis.

In the current case, a natural length scale is set by the size of the Q-balls, while the reciprocal of

the eigenfrequency, ω, sets a time scale.

We restrict our calculations below to Q-balls corresponding to the profile function shown in

Fig. 3.1, which, we recall, is computed with parameters A = 1.0, B = 0.5, σ0 = 1.375 and

ω = 0.7739293. The associated oscillation time scale is thus 2πω ≈ 8. It is desirable that our

numerical experiments last significantly longer than this time, and this is the case. We selected this

particular Q-ball solution partly since it has been previously studied extensively in the literature

[18], so we can compare at least some of our results with prior work in a direct manner.

Returning to the issue of finite difference resolution, we note that the diameter of our Q-ball is

≈ 30 in our units. A typical evolution of a non-boosted configuration will be performed in a 40×40

box, where we adopt the nomenclature that an “X × Y box” means our discrete spatial domain is

0 ≤ x ≤ X, 0 ≤ y ≤ Y . For a resolution of 513 × 513, which we consider moderate, we thus have

h = 40/512 = 0.078. This means that the Q-ball is spanned by about 380 points in each coordinate

direction. For boosted data, this number of points is reduced along the boost direction (the x

direction), by the boost factor γ and is, of course, one of the reasons that we require increasing

resolution as the boost velocity increases in order to maintain the same accuracy.

3.4.2 Computation of the Conserved Charge, Q

We calculate the total charge, Q, after every update of the grid functions. When the code is run in

parallel, the domain is divided in subregions, each of which is assigned to a certain processor. We

thus first compute the charge density, q, at every point of the subdomain. From (3.3) we calculate

q = φ1 π2 − φ2 π1 , (3.46)
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which is discretized trivially as

q(i, j) = φ1(i, j)π2(i, j)− φ2(i, j)π1(i, j) . (3.47)

We integrate this function, using a second order trapezoidal rule, to obtain the total charge per

subdomain,

Qsub =
∆x ∆y

4

Nx−1,Ny−1∑
i,j

(qi,j + qi+1,j + qi,j+1 + qi+1,j+1) , (3.48)

where ∆x and ∆y are the grid spacings of the two-dimensional mesh as usual. Finally, one of the

processors gathers the Qsub from every subdomain, and sums the contributions to yield the final

value of Q. Care needs be taken to select correct limits for i and j in the summation in (3.48),

in order to avoid double-summing contributions due to the use of ghost points in the parallel

decomposition of the computational domain. We also note that our ability to calculate Q is limited

to unigrid (non-adaptive) calculations, since the coding required for the adaptive case is beyond

the scope of the current project.

3.4.3 Independent Residual Evaluators

As discussed in Chap. 2, the use of independent residual evaluators is a powerful and general

technique to demonstrate the convergence of finite difference solutions to continuum solutions of

the PDEs under consideration. Our specific independent residual evaluators are constructed as

follows. For the φa variables, we replace the Crank-Nicholson approximation with the following

expression, which is first order accurate in time:

Iφa
(i, j) =

φa(i, j)n+1 − φa(i, j)n

∆t
− πa(i, j)n+1 . (3.49)

For the πa unknowns, we use a first order forward approximation for the second spatial derivatives

of the φa:

Iπa(i, j) =
πn+1
a (i, j)− πna (i, j)

∆t
−
[
φn+1
a (i, j)− 2φn+1

a (i+ 1, j) + φn+1
a (i+ 2, j)

∆x2

]
−

[
φn+1
a (i, j)− 2φn+1

a (i, j + 1) + φn+1
a (i, j + 2)

∆y2

]
+

(
dV n+1(i, j)
d|φn+1(i, j)|

+
dV n(i, j)
d|φn(i, j)|

)
. (3.50)
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where

dV n+1(i, j)
d|φn+1(i, j)|

= φn+1
a (i, j)− |φn+1(i, j)|φn+1

a (i, j) +B|φn+1(i, j)|)2φn+1
a (i, j) , (3.51)

and a = 1, 2. As with the residuals (3.23)–(3.25) that define the governing finite difference system

itself, these quantities should vanish in the limit h→ 0, provided that our finite difference solutions

are converging to the appropriate continuum solutions. However, convergence is expected to be

only first order in the mesh spacing for any of the independent residuals. Again, we emphasize

that the stability of the independent discretization is not an issue, since we are not using the

expressions (3.49)–(3.50) to evolve any quantities.

3.4.4 Gaussian Initial Data

As a first step in the validation of our finite difference code, we consider the evolution of some

generic, smooth initial data. To this end we prepare an initial configuration where the component

scalar fields are Gaussian pulses of the form,

φ1(0, xi, yj) = A1 exp

[
−
(
xi − xc

40

)2

−
(
yj − yc

3

)2
]
,

φ2(0, xi, yj) = A1 exp

[
−
(
xi − xc

40

)2

−
(
yj − yc

3

)2
]
, (3.52)

where A1, A2, xc and yc are parameters, and where

π1(0, xi, yj) = 0 π2(0, xi, yj) = 0 . (3.53)

This type of initial data is known as time symmetric since evolution backwards in time will generate

the same dynamics as evolution forwards in time.

Fig. 3.5 shows the evolution of the modulus |φ| of the complex field for the above initial con-

figuration. The main dynamical behaviour that is observed in φ is a quasi-periodic oscillation of

the modulus, accompanied by outgoing radiation of circular (due to the symmetry of the initial

conditions) waves. The component fields, φ1 and φ2, as well as their time derivatives, execute

roughly sinusoidal oscillations at any given spatial location.

Convergence factors for the fields φ1 and π1 are shown in Fig. 3.6. We observe Qh → 4 as h→ 0,
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Figure 3.5: Evolution of the complex scalar field modulus |φ| for smooth Gaussian initial data of
the form (3.52) with A1 = A2 = 0.25. The displayed results come from a unigrid (non-adaptive)
calculation with 513 × 513 resolution, on a 50 × 50 box (so each square in the figure has an edge
length of 1.25), and Courant number λ = 0.2. Both the real and imaginary Gaussian components
of the field, and the modulus, |φ|, are confined to a circle of diameter ≈ 28, so the pulse is resolved
by about 290 points in each coordinate direction. The maximum amplitude of the modulus |φ| is
≈ 0.35. We do not use Kreiss-Oliger dissipation for this calculation, i.e. εKO = 0. The wave packet
oscillates, and dissipates some charge quasi-periodically in (circular) outgoing waves.
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signalling the expected second order convergence.20 The small bumps that are seen in the plots,

especially at lower resolution appear to be correlated with times when much of the corresponding

field is passing through a value of zero. In this instance, the computation of the convergence factor

can be expected to be relatively irregular and, in any case, all indications are that these fluctuations

die away with increasing resolution.

Fig. 3.7 shows the results of the independent residual test for the functions φ1 and π1 using four

distinct resolutions, hL, L = 1, 2, 3, 4, where hL = hL−1/2. It is crucial to note that here, and in all

other plots of this type that follow in this thesis, the residual norms have been rescaled by factors

of 2L−1 so that coincidence of the resulting plots indicates the expected first order convergence

of the residuals. We note that the oscillatory nature of the fields is also evident from this test.

Finally, we observe that the choice between reflective (Dirichlet) or outgoing radiation boundary

conditions (those used here) did not seem to affect convergence appreciably for this type of initial

data.

3.4.5 Stationary Q-ball and Stability

In this section we analyze our code’s convergence properties for the case of initial data describing

a single Q-ball located at the centre of the computational domain, and at rest in the coordinate

system. As mentioned previously, the Q-ball we use is calculated using parameters A = 1.0,

B = 0.5, σ0 = 1.375 and ω = 0.7739293, resulting in an oscillation time of the component fields of

about 8. The numerical grid spans a 50× 50 box, and, again, the diameter of the Q-ball is about

30 units. We compute using a Courant number, λ = 0.2 and Kreiss-Oliger dissipation parameter

εKO = 0.0, since dissipation was not necessary for this test. We also describe a cursory investigation

of the dynamical stability of the Q-ball by integrating initial data that represents, in some sense,

a perturbation of the configuration.

Fig. 3.8 shows the evolution of the modulus |φ| for a period of time corresponding to about

8 oscillations of the component fields φ1 and φ2. To “eye-ball” accuracy at least, |φ| is time-

independent as expected.

Convergence factors for φ1 and π1 are displayed in Fig. 3.10. As was the case for Gaussian

initial data, these plots provide strong evidence that the code is O(h2) accurate. In particular,

20The apparent lack of convergence at early times (also seen in many other convergence plots that follow in this
and the subsequent two chapters) is due to the fact that the solution is initialized with identical data, so that the
convergence factor—which amounts to 0/0—is formally undefined at the initial time, and is arbitrarily set to 0.
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Figure 3.6: Convergence factors for smooth Gaussian initial data for the fields φ1 and π1. Details
of the calculation are given in Fig. 3.5. We observe second-order convergence in both fields.

Figure 3.7: Independent residual test for Gaussian initial data. Plotted are the rescaled l2 norms
of the independent residuals of φ1 and π1 for the calculation described in Fig. 3.5 (see the text
for a description of the rescaling). The near-coincidence of the curves demonstrates the expected
first-order convergence of the residuals.
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Figure 3.8: Evolution of the modulus |φ| for stationary Q-ball data. The box domain is of di-
mensions 50 × 50, with a Courant number of λ = 0.2, and a dissipation parameter of εKO = 0.0.
Visually, at least, φ is time-independent.

Figure 3.9: Evolution of the real component φ1 of the stationary Q-ball field. Both components
are oscillatory functions. For ω ≈ 0.77 we have a period of T ≈ 8, consistent with the two zero
crossings at t ≈ 2 and t ≈ 6 observed in the plot. The impact of the zero crossings on convergence
of the solution can be seen in the plots of the independent residuals for the calculation (Fig. 3.11).
The parameters for the run are listed in the caption of the previous figure.
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Figure 3.10: Convergence factors for the fields φ1 and π1 for the evolution of the stationary Q-ball
shown in Fig. 3.8. Second order convergence is observed.

note that, modulo the early time behaviour—which can again be attributed to the fact that the

initial data is identical on all meshes—the convergence improves (Qh is closer to 4) as h→ 0.

Fig. 3.11 plots the rescaled independent residuals for φ1 and π1. As previously, the near-

coincidence of the curves demonstrates that the residuals are first-order convergent in the mesh

spacing. We note that the oscillations in the l2-norm of the independent residuals occur at about

twice the frequency of the Q-ball field components themselves. This is due to the positive definite

character of the l2-norm, whose oscillation only reflects the change of magnitude regardless the

sign of the φ1 or π1 components. While the latter perform positive and negative excursions to

maximum amplitude, comprising one cycle, the l2-norm reflects this as two positive excursions.

Fig. 3.12 shows the results of the computation of the conserved charge Q at various resolutions.

At any given mesh scale, there appears to be a roughly linear “dissipation” of charge with time,

but there is clearly convergence to charge conservation as h → 0. Indeed, and as investigated

in more detail, the charge is apparently converging as O(h3) rather than the naively expected

O(h2). This behaviour is not understood at this time, although we suspect that it is at least

partly dependent on our combined use of a Crank-Nicholson evolution scheme and the trapezoidal

integration rule (3.48) for the computation of the total charge. To further investigate this effect,
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Figure 3.11: Rescaled l2-norms of the independent residuals of φ1 and π1 for the evolution of
the stationary initial data shown in Fig. 3.8. The near-coincidence of the graphs signals first
order convergence, which is consistent with the order of the finite difference approximation of the
independent residual. This coincidence constitutes strong evidence for convergence to the correct
continuum solution. The period of oscillation in the l2-norm of the independent residuals is half
that of the Q-ball field components themselves. This is a consequence of the positive definite nature
of the l2-norm of the residuals.
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Figure 3.12: Resolution-dependence of the evolution of the computed total charge, Q, using station-
ary initial data. As with the calculation described in the last few figures, a 50× 50 computational
box was used and the Courant number was λ = 0.2. The top plot shows that the calculated Q con-
verges to conservation as h→ 0, while the bottom 4 plots show details for each resolution used. We
found that the conserved charge Q exhibits better-than-second-order convergence, possibly O(h3).
We suspect that this feature may be due to our combined use of a Crank-Nicholson time-stepping
scheme and a trapezoidal integration rule for computing Q.
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we integrated the modulus |φ| of the complex field on each subdomain, using the same trapezoidal

rule as (3.48),

|φ|sub =
∑
i,j

=
∆x ∆y

4
(|φ|i,j + |φ|i+1,j + |φ|i,j+1 + |φ|i+1,j+1) . (3.54)

Results from this integration also converge as O(h3).

To test the dynamical stability of our Q-ball we approximated (through trial and error) the

numerically computed profile, σ(r), shown in Fig. 3.1, with the closed form trial function,

σtrial(r) =
4 arctan(exp(−0.75(r − 6)))

4.5
. (3.55)

As can be seen from Fig. 3.13 we can view σtrial as a perturbation of σ(r), but we also emphasize

that we have not made any attempt to make the notion of perturbation precise. Given σtrial we

initialize the dynamical fields using (3.30)–(3.32) with σ(r)→ σtrial(r). When this data is evolved

we find that the modulus |φ| oscillates slightly at early times, but then eventually settles into a

stationary state very close to the Q-ball defined by σ(r). This provides evidence that our soliton is

indeed stable under small (but finite) perturbations. Additional analysis of the convergence of the

charge and the integrated field modulus for this computation yield the same rates of convergence

as the computation using the true Q-ball profile.

3.4.6 Boosted Q-ball

We are ultimately interested in studying collisions of Q-balls in the ultrarelativistic regime, that

is when two Q-balls collide with a large relative velocity. As a preliminary step towards this goal,

we investigate our code’s convergence properties for initial data describing a single boosted Q-ball,

prepared as described in Sec. 3.3.4. Apart from Fig. 3.16, we will restrict attention here to the

case of a small boost, γ = 1.15, but will consider Q-balls with larger boosts in subsequent sections.

We note that a principal and rather obvious observation is that due to effects such as Lorentz

contraction along the boost direction, calculations for larger γ require increased grid resolution for

fixed accuracy. Equivalently, we expect and observe that at fixed resolution the convergence of our

code degrades with increasing γ. This provides a major motivating factor for our use of AMR in

such calculations, since maintaining constant accuracy through the use of an increasingly fine mesh
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Figure 3.13: Numerical and trial profile functions used to test dynamical stability of a stationary
Q-ball solution.

spacing globally is computationally expensive (not to mention wasteful).

Our convergence and independent residual tests for a boosted Q-ball were performed in a

40 × 40 box, with λ = 0.4, and εKO = 0.5 (we also tried increasing εKO to 0.6 and 0.7, which

did not appreciably affect the results). Fig. 3.14 shows the convergence factors for φ1 and π1,

while Fig. 3.15 shows the evolution of the l2 norms of the independent residuals for those fields.

Once more we observe second order convergence of the dynamical grid functions and first order

convergence of the independent residuals, as expected.

As for the non-boosted case, we apparently have O(h3) convergence of the total charge, but in

this instance we also seem to have the same rate of convergence for the integrated modulus of the

scalar field. The source of this last behaviour also remains a mystery. However, we must emphasize

that as for the case of the “superconvergence” of the charge, this is of course not indicative of any

defect in the code.

Finally, Fig. 3.16 shows the evolution of |φ| for our usual Q-ball data, but where a more

substantial boost, γ = 2.4, has been applied in the x-direction. Although not apparent from the

plots, the lab-frame shape of the Q-ball (as projected into the x–y plane) is elliptical due to Lorentz

contraction. Again, to visual accuracy, there is no change in the overall shape of the Q-ball (as

defined by |φ|) as it propagates through the computational domain.

70



3.4. CODE VALIDATION

Figure 3.14: Convergence factors for the fields φ1 and π1 for a γ = 1.15 boosted Q-ball, displaying
second order convergence. The computational box was 40 × 40, a Courant number λ = 0.4 was
used and Sommerfeld (outgoing radiation) boundary conditions were applied. The Q-ball begins
to leave the domain at t ≈ 120 resulting in the increased fluctuations in the Qh at that time.

Figure 3.15: Independent residual test for the computation described in the caption of Fig. 3.14.
The expected first order convergence is observed.

71



3.5. HEAD-ON SCATTERING OF Q-BALLS

Figure 3.16: Evolution of the modulus |φ| for a boosted Q-ball with γ = 2.4. The calculation was
performed on a 60×60 box using a 513×513 mesh, λ = 0.3, and Sommerfeld boundary conditions.
In the x-y plane the Q-ball has an elliptical profile: due to Lorentz contraction its diameter in the
x direction is ≈ 12.5 units, while its y-diameter is ≈ 30. The latter is, of course, the same as its
diameter in the rest frame. (See Fig. 3.17 for a more extreme and visible example of the Lorentz
contraction.) The soliton travels unscathed towards the boundary of the computational domain.

To summarize the last three subsections, we have subjected our finite difference code to a

comprehensive set of tests and have found that it displays the expected rate of convergence in

the mesh spacing and, through the use of independent residual evaluation, are confident that

the solutions that are generated are indeed good approximations to continuum solutions of the

governing PDEs. We now proceed to use the code to investigate various phenomena related to

Q-ball scattering.

3.5 Head-on Scattering of Q-balls

We first consider an analysis of the head-on collision of two Q-balls, with an emphasis on the

ultrarelativistic regime. We continue to use Q-balls defined by a single profile function σ(r) and

associated eigenfrequency ω (the same ones used in all of the calculations described thus far in

this chapter). However, as we will shortly describe in more detail, for any Q-ball having total

charge Q, we can construct a configuration with the opposite charge −Q by taking ω → −ω in

the ansatz (3.8). As we will see, the dynamics of the collisions is dependent on the relative sign
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of the total charges of the Q-balls. The issue of Q-ball scattering in 2 + 1 dimensions is one that

has been studied in the literature, and we review the main findings of this previous work in the

next subsection. Our main result, which is consistent with the prior studies, is that high-energy

collisions of Q-balls is primarily elastic (solitonic) in nature. In particular for large γ, we observe

that the scattering is almost entirely forward in nature, with the two Q-balls passing through one

another and emerging essentially unscathed.

3.5.1 General Features of Q-ball Scattering: Previous Work

Past work has focused mostly on low energy scattering. This regime is germane for standard

cosmological and astrophysical scenarios, where, for example, Q-balls are considered dark matter

candidates (relics from the early universe), or as exotic matter trapped within neutron stars. The

most comprehensive study of Q-ball appears to be due to Battye and Sutcliffe [72]. The highest

velocity (given to each Q-ball) they analyzed was v = 0.8 (γ = 1.6) and for this data they reason

that the Q-balls pass through one another so quickly that they do not have time to interact. The

calculations were performed on a uniform grid having 200× 200 points, with h = 0.2 and λ = 0.25,

and with a second order finite difference scheme that employed a time-explicit update. Similar

work by Axenides et al. [18] was performed with a 300×300 grid and h = 0.3. They do not specify

the order of the discretization scheme they used to approximate the spatial derivatives. However,

they do mention the use of fourth order Runge-Kutta for the time discretization (also explicit).

The highest velocity they considered was v = 0.7 (γ = 1.4).

This previous work [18, 72] established the following facts about head-on Q-ball collisions:

• There is a region of low velocities, 0 < v ≤ 0.3, where we observe that Q-balls with the same

charge undergo right angle scattering (similar to that of topological solitons): scattering is

consistent with the fact that Q-balls with the same charge repel one another. In contrast, Q-

balls with opposite charge fuse into a oscillatory state, consistent with the mutual attraction

of the pair in this case.

• For the intermediate range of velocities 0.3 < v ≤ 0.7, scattering of Q-balls of the same charge

produces a much richer mixed end state—sometimes referred as fragmentation—with both

forward and right angle scattering. The size of the ejected Q-balls depends on the initial

velocity. If v ≈ 0.3, the forward scattered Q-balls are small, and those scattering at right
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angles are larger. As the velocity tends to v ≈ 0.7, the situation is reversed. Sometimes a

small residual Q-ball is left in the center of the interaction region. We were able to reproduce

one of these events at v = 0.5 (γ = 1.15), which is shown in Fig. 3.32.

• For larger velocities—above v = 0.7 (γ = 1.4)— Q-balls of the same charge simply forward

scatter, emerging from the collision mostly unscathed, and then propagate away from one

another. An example of a collision at v = 0.7 is shown in Fig. 3.33.

Q-balls of opposite charge are not mentioned for the intermediate and high velocity regions. The

above phenomenology appears to hold for a variety of polynomial potentials, including the one

adopted here. However, numerical work by Multamäki and Vilja [97], who adopted a more phe-

nomenologically inspired logarithmic potential, did not show evidence of right angle scattering,

even though the velocities used seem to be quite low (v ≈ 0.01).

It is worth noting that none of the above cited works discuss the convergence of their codes, nor

do they monitor the behaviour of conserved quantities. We thus feel that the work described here

(and throughout this thesis) represents the use of a more rigorous methodology for the numerical

analysis than prior research.

It is also worth mentioning that, beyond the Q-ball model considered here, there have been

many other numerical studies of the dynamics of interacting scalar fields that have bearing on our

work. For example, in [130] it has been shown that scalar fields with only potential interactions

behave like free fields during high-energy colisions: their ”free-passage” through each other is quite

similar to what we see in our high-speed Q-ball collisions. In addition, there has been extensive

investigations of oscillons [131, 132] which are long-lived metastable configurations of a single real

scalar field with a non-linear polynomial self-interaction potential.

3.5.2 Unigrid Calculations of Q-ball Collisions

In this section we summarize typical results of our simulation of relativistic Q-ball collisions, ob-

tained using the unigrid operation of our code. Subsequent sections will describe our experience

with similar calculations performed using AMR. In addition, as our interest here is primarily in

illustrating the convergence of the code, and in determining typical resolutions that are required

to observe good convergence, we will largely focus attention on two specific scenarios. We also

continue to use the same profile function, σ(r), that has been adopted for all of the calculations
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thus far in this chapter.

The first scenario is the head-on collision of two Q-balls with equal charges, both in magnitude

and sign. We will refer to this configuration as a Q+ Q+ collision, where Q1 = Q2 = Q+ = Q.

This unigrid (non-adaptive) calculation was performed at γ = 1.6 (v = 0.8). Fig. 3.18 shows

the Convergence factors Qh of the component field φ1 and its derivative, π1. The graphs show

second order convergence as h → 0. The box domain has dimensions 50 × 50, a Courant number

of λ = 0.2 and the boundary conditions are of Dirichlet type. No dissipation is used (εKO = 0.0).

The independent residual tests for this calculation are shown in Fig. 3.19, which display first-order

convergence. The evolution of the charge Q is shown in Fig. 3.20.

The second scenario is the head-on collision of two Q-balls with equal and opposite charges,

Q1 = Q+ = Q and Q2 = Q− = −Q, respectively. We will refer to this set-up as a Q+ Q− collision.

Fig. 3.17 compares the initial-time field modulus, |φ|(0, x, y), for Q+ Q− configurations with no

boost (left) and with γ = 2.41 (right). The Lorentz contraction of the Q-balls, which are centred

at (−20, 0) and (20, 0), is evident in the plot of the boosted data.

Figs. 3.22 and 3.23 show the results of convergence and independent residual tests, respectively,

for a series of calculations performed with these boosted initial conditions, but a larger value of

γ = 2.4 (v = 0.91). The computations were done on a 60 × 60 box with λ = 0.2 and εKO = 0.5,

Similarly to the first scenario, Dirichlet boundary conditions were used. The plots indicate second

order convergence of the difference scheme and first order convergence of the independent residuals.

However, it is also clear from comparison with Figs. 3.10 and 3.11 that significantly more resolution

is required here, relative to the case of a single Q-ball at rest, to see “good” convergence (e.g. Qh

nearly 4). This is to be expected, of course, since evolution of even a single boosted Q-ball requires

larger field gradients to be resolved (compared to the non-boosted case), and the interaction of

the two solitons places even more demands on the finite difference approximation. Evidence for

this last observation can be seen in the fluctuations of the convergence factors and independent

residuals starting at t ≈ 25.

Fig. 3.21 shows the time evolution of the field modulus |φ| from this calculation. In accord

with previous simulations (although none of the published work describes collisions with γ as large

as 2.4), the interaction of the Q-balls can clearly be described as principally a forward-scattering

process. In addition, there is little deformation of the individual Q-balls as a result of the collision;

i.e. the interaction is largely solitonic.
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Figure 3.17: This figure illustrates the significant Lorentz contraction of the initial Q-ball config-
uration for some of our scattering experiments. The modulus, |φ|, of the complex scalar field is
plotted. The left Q-ball is at rest, with a diameter of about ≈ 30 units (given a radius of ≈ 15
units from Fig. 3.1). The right one is boosted to γ = 2.41, and we can see that its diameter in
the x direction has contracted to about 12.5 units. The contraction can be computed from the
relation l = l0/γ, where l is the length in the laboratory reference frame, and l0 is the length at
rest (proper length). This relativistic effect is largely responsible for the need for higher resolutions
at high boosts (for fixed accuracy).

We performed simulations of similar head-on collisions with boosts as large as γ = 7, and using

a maximum (unigrid) resolution of 2049× 2049. All of these calculations exhibited essentially the

same elastic forward-scattering of the Q-balls.

We also experimented with off-axis collisions, in which each Q-ball was given a boost of equal

magnitude in the x-direction, but where the initial centres of the Q-balls were offset by b units in

the y direction, so that b represents the usual impact parameter. Results from a typical calculation

with γ = 2.4 and b = 10—which yields a grazing collision—are shown in Fig. 3.24. As with

the head-on case, the individual Q-balls emerge from the collision largely unscathed. The charge

density, Q, of a similar calculation, this time with b = 8 and γ = 1.09, is shown in Fig. 3.25. A

head-on collision at this value of γ ends in right-angle scattering, and it is interesting to note that

a small deviation from b = 0 completely changes the outcome of the scattering.

3.6 AMR Calculations of Q-ball Collisions

We now discuss the results from calculations of the sort described in the previous section, but

where we enable the AMR capability of our code (provided by the AMRD/PAMR infrastructure,

as described in Sec. 2.4). As usual, we are interested in convergence properties, and computing Qh
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Figure 3.18: Convergence factors, Qh, for a head-on Q+ Q+ collision with γ = 1.6 (v = 0.8). The
graphs show second order convergence as h → 0. Results are from unigrid computations using a
domain 50 × 50 and a Courant number λ = 0.2. The boundary conditions are Dirichlet and no
dissipation is used (εKO = 0.0).

Figure 3.19: Rescaled l2 norms of the independent residuals for π1 and φ1 from the Q+ Q+ head-on
collision described in the caption of the previous figure (Fig. 3.18). The plots show the expected
linear convergence as h→ 0.
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Figure 3.20: Evolution of the computed total charge, Q, for the Q+ Q+ collision described in
Figs. 3.18. Convergence is evident as h→ 0, and we find that the rate of convergence is quadratic,
as expected.

for adaptive calculations is more involved than it is for the unigrid case. The complications arise

from the fact that the grid pattern in space and time is determined dynamically and automatically

by the code, in an attempt to keep a measure of the local solution error (which, following Berger

and Oliger, we will tend to call the local truncation error) below some specified threshold. Recall

that the mesh refinement algorithm starts with some base grid, having mesh spacing h, that covers

the entire computational domain. In order to perform a basic three-level convergence test we will

need the results from calculations that use base grids with spacings h, h/2 and h/4, and we further

require that the regridding patterns be the same for all of the computations. This last restriction

ensures that the h/2 and h/4 calculations are true 2 : 1 and 4 : 1 refinements, respectively, of the

computation carried out at scale h. To achieve such a set of computations we make use of a feature

implemented in AMRD/PAMR and described in Sec. 2.3.9 of [121]. The code is first run in fully

adaptive mode, with a base mesh spacing h, and a record of the regridding pattern is saved in a

script. For the h/2 and h/4 calculations, the adaptivity is disabled and the regridding operations
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Figure 3.21: Evolution of the modulus |φ| for a Q+ Q− collision with γ = 2.4. This data comes
from a unigrid run on a 50×50 domain, with a mesh resolution of 513×513. The Courant number
was λ = 0.2 and the dissipation parameter was εKO = 0.4. At the level of detail visible in the plot
the solitons emerge from the interaction unscathed.
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Figure 3.22: Computed convergence factors for the head-on Q+ Q− collision described in Fig. 3.21.
We observe O(h2) convergence as h→ 0.

Figure 3.23: Rescaled l2-norms of the independent residuals for the fields π1 and φ1 from the
γ = 2.4, Q+ Q− collision described in Fig. 3.21. Again, the plots show the expected linear
convergence as h→ 0.
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Figure 3.24: Evolution of the modulus |φ| for a grazing Q+ Q− collision at γ = 2.4, with impact
parameter b = 10. The numerical parameters are the same as those listed in Fig. 3.21. It is evident
that—at least at this velocity—the off-axis nature of the collision does not appreciably affect the
dynamics of the Q-balls, which again emerge unscathed.
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Figure 3.25: Evolution of the charge density, Q, for a grazing Q+ Q+ collision at γ = 1.09 (v = 0.4),
and impact parameter b = 8. The numerical parameters are the same as those listed in Fig. 3.21.
The Q-balls appear to lose some charge to a small “remnant” in the center, although the remnant
is probably unstable. The same set-up with b = 0 leads to right-angle scattering. We note that
each Q-ball has a diameter in the y direction ≈ 30. It is thus interesting that a small change in
b seems to affect the outcome of the encounter dramatically. In particular, right-angle scattering
appears to be largely a consequence of a very symmetric initial configuration.
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are driven by the information in the script. The results from the three calculations can then be

used to compute Qh as usual.21

Following this prescription, we performed an AMR convergence test of our code using the

Q+ Q− collision data described in the previous section (again, with γ = 2.41). The computations

were carried out in a 40 × 40 box, with λ = 0.3, εKO = 0.6, and τmax = 5 × 10−4. Following the

notation introduced in Sec. 2.4, L = 1 had a resolution of 257 × 257, and the evolution reached

Lf = 4 levels of refinement during the calculation. Results from the test are shown in Fig. 3.27,

from which we see that convergence appears to be second order.

Fig. 3.27 compares the convergence factors for the AMR run with those from a set of unigrid

calculations with comparable resolutions, namely 257 × 257, 513 × 513 and 1025× 1025. Overall,

the convergence behaviour is quite similar, although the fluctuations in Qh during the time the

Q-balls are interacting is somewhat smaller for the AMR calculations.

As mentioned in Sec. 2.4, AMRD/PAMR’s implementation of the Berger and Oliger algorithm

includes a number of key parameters that can be tuned in order to optimize code performance.

Two of these which are related to one another are the regridding interval, nregrid, and the buffering

width, wbuffer. The first of these specifies the number of time steps to be taken on any level

between regridding operations, while the second determines the width (in number of grid spacings)

by which a region flagged as needing refinement is extended in each direction (±x,±y in the 2D

case). Assuming a maximum speed of signal propagation of 1 (which is true in our case), then

provided that

λnregrid < wbuffer (3.56)

where λ is the Courant factor, signals travelling out of the flagged region will remain within the

(refined) buffered region until the next regrid operation. Adjustment of nregrid and wbuffer amounts

to an optimization process: increasing nregrid reduces the regridding overhead, while increasing

wbuffer adds to the overall computational cost of the calculation. For typical Q-ball collisions with

γ = 2.4 or larger we found that nregrid in the range 50 to 60 produced good results.

Another very important control parameter of the adaptive algorithm is the truncation error

threshold, τmax. In principle, this parameter, more than any other, controls the overall behaviour of

the algorithm: in particular, decreasing τmax should result in better resolution of extreme solution
21However, due to limitations imposed by the utility we use to compute Qh, we must first restrict the grid function

values that are defined on the adaptive hierarchy to a (global) uniform grid.
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Figure 3.26: Top view of the evolution of the modulus, |φ|, for a head-on Q+ Q− collision at γ = 2.4,
and where AMR was used. The collision is almost elastic, except for the radiation released. The
AMR parameters (see Sec. 2.4) were: 513×513 base level (L = 1), finest level Lf = 4 and truncation
error threshold, τmax = 5×10−4. The Courant number was λ = 0.2, the dissipation parameter was
εKO = 0.5 and Dirichlet boundary conditions were used. Each snapshot has been clipped from the
60× 60 complete domain to about 60× 30 units.
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Figure 3.27: Comparison of the convergence factors from unigrid and AMR runs for a collision at
γ = 2.41.

features, and in increased solution accuracy. However, we have not done much in the way of

experimentation with τmax apart from determining a value for which good convergence was observed

when evolving typical collision data.

3.6.1 Stability of Unigrid and AMR Calculations

Stability is a key issue in the solution of time-dependent PDEs using finite difference approxi-

mations, and the fact that the iterated Crank-Nicholson scheme has proven to be quite robustly

stable in this context [115, 133, 119] was a prime motivating factor in our adopting it. In order

to address the question of stability of our code, we performed experiments in which we varied the

Courant factor for fixed initial data. We set the Kreiss-Oliger dissipation parameter to εKO = 0.5.

For unigrid computations we observed that for 0.1 ≤ λ ≤ 0.6, there was little, if any, variation in

the stability or rate of convergence of the code. However, for adaptive calculations, we found that

λ was restricted to significantly smaller values. For example, a typical AMR run for a γ = 2.4

collision that used 2 or 3 additional levels of refinement beyond a 513×513 base grid would become

unstable for λ ≥ 0.4. The instability would manifest itself as a nonconvergence of the overall point-

wise Newton-Gauss-Seidel iteration that advances the difference solution from t = tn to t = tn+1.

Enabling additional levels of refinement exacerbated this problem: if a total of 5 levels were used,

we found that we needed λ ≤ 0.2. We were not able to definitively identify the source of this

instability, although we suspect that it may be associated with the interpolation of values at fine

grid boundaries (from coarse grids) that occurs in the Berger and Oliger algorithm.
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3.6.2 Comparison of Equal-Charge and Opposite-Charge Collisions

We now compare collisions between Q-balls having opposite charge (a Q+ Q− collision, as con-

sidered thus far), and the same charge (a Q+ Q+ collision). Figs. 3.29 and 3.30 show edge-on

snapshots of |φ(t, x, y)| for Q+ Q− and Q+ Q+ collisions, respectively, during intermediate times

when the interaction of the Q-balls is most significant. The key qualitative difference that is evident

from these plots is that the Q+ Q− case appears to exhibit purely constructive interference, while

the Q+ Q+ collision shows signs of destructive interference.

Closer examination of the evolution of the field modulus |φ| reveals another interesting difference

in the two types of collisions. Fig. 3.28 shows contour plots of |φ(t, x, y)| from the late stages of

the two collisions (left panel, Q+ Q−; right panel, Q+ Q+). As was already seen in Fig. 3.26, the

opposite-charge collision generates a small but significant amount of scalar radiation that seems

largely absent in the Q+ Q+ case. Convergence testing strongly suggests that this is a genuine

effect. We thus conclude that Q+ Q+ collisions are even more elastic than Q+ Q− ones.

Figs. 3.31–3.37 illustrate the most typical scattering patterns that Q+ Q+ and Q+ Q− collisions

exhibit as a function of velocity The former were discussed in Sec. 3.5.1, and we reproduced these

results using AMR runs, as shown in Figs. 3.31, 3.32 and 3.33. We note that there has been

little reference to Q+ Q+ scattering in previously reported work [18, 72]. We investigated Q+ Q−

scattering for the same dynamical regimes as for our earlier Q+ Q+ collisions and found that

these produce significant residual outgoing scalar radiation, supporting the conclusion of the last

paragraph about the elasticity of Q+ Q+ and Q+ Q− collisions. This is the case independently of

the type of boundary condition used (Dirichlet or Sommerfeld). The evolution of the modulus |φ|

for Q+ Q− interactions is illustrated in Figs. 3.34, 3.35 and 3.37. Below γ = 1.09 (v = 0.4), Q+ Q−

initial data resulted in the formation of a bound state, with the Q-balls performing oscillations

around the center of the collision. At γ = 1.09 (v = 0.4) the outcome of the interaction is quite

complex, and it is difficult to determine a defined trend either towards forward or right-angle

scattering. For larger boosts, forward scattering seems to be dominant, with little evidence of

right-angle scattering. Nonetheless, the end state of the evolutions typically contains a significant

amount of scalar radiation which complicates the identification of the actual Q-ball products. In

order to shed some light on this issue, we looked at the evolution of the charge density for the

collisions. Figures 3.36 and 3.38 show the time development of the charge density for Q+ Q−

collisions at γ = 1.09 and γ = 1.4, respectively. These results provide a much clearer picture of
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Figure 3.28: Late stages of AMR calculations for Q-ball collisions with γ = 2.41. At these times
the Q-balls are receding from one another. The sequence on the left shows a +Q −Q calculation
(opposite charge), while the one on the right displays a ±Q ± Q computation (same charge).
Radiation is observed in the opposite-charge case, and we believe this a genuine physical effect
since the pattern converges as the resolution is increased. Generally, collisions between Q-balls
with the same charge are “cleaner”, than those with opposite charges; again, the latter usually
emit radiation, and are thus less elastic. Each snapshot of the collision has been clipped from the
60× 60 computational domain, to about 60× 15 units. The AMR parameters here are a 257× 257
base grid, Lf = 4 and τmax = 10−4.

the interaction. In particular, since scalar radiation does not carry charge, effects from radiation

do not appear in the plots of the charge density. From the plots of Q we unambiguously conclude

that Q+ Q− collisions always exhibit forward scattering.

We have made a crude effort to assess the degree of elasticity of Q+ Q+ collisions by estimating

the post-interaction speeds of the Q-balls. For example, we simulated a Q+ Q+ collision with

γ = 3.2 (v = v0 = 0.95) in a 50×50 box, and with the Q-balls initially centred at (x1, y1) = (−20, 0)

and (x2, y2) = (20, 0).

By tracking relative maxima in |φ(t, x, y)|, we estimate the time tA at which one of the Q-balls

reaches the center of the computational domain, as well as the time tB when the Q-ball reaches the

starting position of its counterpart. Estimates of the average velocities in the intervals 0 ≤ t ≤ tA

and tA ≤ t ≤ tB are then given by vA = 20/tA and vB = 20/(tB − tA) respectively. We found

tA ≈ 21.25 and tB ≈ 42.5, yielding vA ≈ 0.94 and vB = 0.95—which is to be compared with the

initial velocity v0 = 0.95. Another computation with γ = 5.0 (v = v0 = 0.98) gave tA = 20.625 and

tB = 41.25− 20.625 = 20.625. The estimated velocities were vA = vB ≈ 20/20.625 = 0.97. These

estimates provide additional support for the claim that high energy head-on collisions of Q-balls

are increasingly elastic for larger and larger relative velocities.
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Figure 3.29: Central stages of a γ = 2.41 collision between two Q-balls with equal and opposite
charges. During the interaction a transient state that looks like a larger Q-ball develops. The
calculation used AMR with a 257× 257 base grid, Lf = 4 and τmax = 8× 10−4.

Figure 3.30: Central stages of a γ = 2.41 collision between two Q-balls with the same charge.
In contrast to what is seen in Fig. 3.29 for oppositely-charged Q-balls, an interference pattern is
observed during the interaction.
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Figure 3.31: Scalar field modulus, |φ|, for a Q+ Q+ collision at γ = 1.04 (v = 0.3). For the range of
low velocities, 0 < v ≤ 0.3, we observe right-angle scattering as in the case illustrated here: this is
similar to what is seen in the collision of topological solitons. The plots also show the development
of a small “remnant” Q-ball—which is at rest at the centre of the computational domain—as
well as an additional pair of small Q-balls that are forward-scattered. This phenomenology has
previously been reported in [18, 72]. For this and the subsequent collision experiments described
in this section and illustrated in Fig. 3.31 to Fig. 3.37 we used AMR with a fixed set of control
parameters. Specifically, we used a base mesh with 257× 257 points, Lf = 4 and τmax = 5× 10−5.
In addition we imposed Dirichlet boundary conditions (unless otherwise stated) and set the Kreiss-
Oliger dissipation parameter to εKO = 0.5 (we could also achieve stable evolution with εKO = 0.0).
The computational domain was [−25, 25] × [−25, 25] and the Q-balls were initially centred at
(−20, 0) and (20, 0). The domain and starting locations are also the same in the calculations
described in the rest of this subsection.
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Figure 3.32: Scalar field modulus, |φ|, for a Q+ Q+ collision at γ = 1.15 (v = 0.5). For an
intermediate range of velocities 0.3 < v < 0.7, Q+ Q+ scattering produces a mixed end state,
with both forward and right angle scattering. On the time scales simulated, we find a small
residual Q-ball remaining in the center of the computational domain, while the rest of the collision
products eventually escape through the domain boundaries. We refer to this mixed scattering as
fragmentation. Similar results were previously reported in [18]. The relative size of the Q-balls that
are forward- or right-angle scattered depends on the initial velocity. At low velocities the right-
angle products are larger than the forward ones, while the situation is reversed for higher velocities
(close to v = 0.7). The field excitations that join the different Q-balls eventually dissipate.
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Figure 3.33: Scalar field modulus, |φ|, for a Q+ Q+ collision at γ = 1.4 (v = 0.7). For velocities
above v = 0.7 (γ = 1.4)—a Q+ Q+ collision exhibits almost purely forwarding scattering. The
process is quite elastic, with the solitons emerging from the interaction mostly unscathed. This
behaviour is to be expected since the soliton potential and rest mass energies are much smaller
than the kinetic energy at high γ. Similarly to the mixed scattering case shown in Fig. 3.32, the
waves between the Q-balls eventually dissipate.
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Figure 3.34: Scalar field modulus, |φ|, for a Q+ Q− collision at γ = 1.04 (v = 0.3). In this
instance—and, more generally, for initial velocities below ≈ v = 0.4—the Q-balls fuse and form
an oscillatory bound state. This can be understood in terms of an effective trapping potential
that results from the attractive interaction between Q-balls with charges of opposite sign: here the
kinetic energy initially imparted to the Q-balls is insufficient to allow them to escape the trap.
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Figure 3.35: Scalar field modulus, |φ|, for a Q+ Q− collision at γ = 1.09 (v = 0.4). The dynamics in
this case is quite complex, and at late times it is difficult to distinguish between outgoing radiation,
and scattered Q-balls (both right-angle and forward).
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Figure 3.36: Charge density, Q, for a Q+ Q− collision at γ = 1.09 (v = 0.4). In contrast to the
previous plot of |φ| from the same calculation (except that outgoing radiation conditions are used
here) it is evident from this sequence that the collision describes a primarily forward-scattering
process. The opposite signs of the Q-ball charges can also be clearly inferred. We note that many
of the features appearing in the |φ| plot do not appear here, indicating that the corresponding
excitations do not carry charge (this is also the case for the scalar radiation that is seen in some of
the previous figures).
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Figure 3.37: Scalar field modulus, |φ|, for a Q+ Q− collision at γ = 1.4 (v = 0.7). For initial
velocities γ ≥ 1.4 (v ≥ 0.7) the forward-scattering nature of the interaction becomes evident in the
plot of the modulus. (this was also the case for Q+ Q+ collisions, where the velocity threshold was
approximately the same). Again, this is an indication of kinetic-energy dominance of the process.
Relative to the Q+ Q+ collisions, there seems to be more radiation emitted here, an effect that was
previously seen in Fig 3.26. This provides additional support for the claim that Q+ Q+ collisions
are more elastic than Q+ Q− ones.

95



3.6. AMR CALCULATIONS OF Q-BALL COLLISIONS

Figure 3.38: Charge density, Q, for the Q+ Q− collision at γ = 1.4 (v = 0.7) described in the
previous figure. Again, examination of the evolution of Q gives a clear picture of the forward-
scattering nature of the interaction. Outgoing radiation conditions were used in the computation.
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3.6.3 Q-ball Collisions with Varying Q

So far our numerical experiments have used only a single static profile, namely the configuration

with ω ≈ 0.7739293 as listed in Table 3.1 of Sec. 3.2.1. It is of interest to ask if evolutions involving

other Q-ball solutions defined by that table result in similar dynamics. We thus performed a set

of AMR experiments to investigate this issue. The σ(r) profiles of the additional configurations

that we considered are shown in Fig. 3.39, along with the corresponding values of ω and Q. Note

that all of the configurations have about the same size (≈ 10) for a fairly wide range of charges

(Q = 2.8–127).

The numerical experiments involved head-on Q+ Q+ and Q+ Q−, equal-Q collisions (i.e. both

participants had the same value of Q) with Q varying from 2.8 to 127.3, and with γ in the range

1.005 ≤ γ ≤ 5 (0.1 ≤ v ≤ 0.98). A very interesting feature emerged from the calculations. For

charge values below Q = 71.3 (Q = 2.8, 8.2 and 26.6) and for both the Q+ Q+ and Q+ Q− cases,

we saw neither right-angle scattering nor fragmentation, but only forward scattering. For values

of γ < 0.2 the Q-balls form a bound, oscillatory state, while for larger velocities, we observe only

forward scattering. We note that Multamäki and Vilja [97] have previously reported the absence

of right angle scattering—even at low velocities—for a Q-ball model whose potential includes both

polynomial and logarithmic terms. At first glance this seemed surprising, but our current results

with low Q configurations seem consistent with their results. We will return to this issue in the

context of the baby Skyrme model in Sec. 4.5.

3.7 Q-ball Scattering by a Potential Obstruction

One of the most interesting aspects of the dynamics of Q-balls is scattering by obstacles, which we

will define here to be obstructions that are generated through ad hoc, position-dependent modifi-

cations of the scalar field’s self-interaction potential. These obstacles can take the form of barriers,

wells, etc. and which aspects of Q-ball phenomenology—such as wave/particle “duality”22—are

seen will depend on the precise nature of the obstruction. Although there is substantial literature

on the interaction of topological solitons with obstructions—in particular, see the extensive work

due to Collins and Zakrzewski [98]—there has not been much research that uses Q-balls. A notable

22We emphasize that the notion of wave/particle duality that we use here is different from that encountered in
quantum mechanics. In our case, the notion of “particle” corresponds to a “solitonic” solution of a nonlinear PDE,
while the “wave” nomenclature appeals to the fact that the PDE generally describes wave-like behaviour (i.e. is of
hyperbolic type).
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Figure 3.39: Profile functions of Q-ball solutions for different values of ω, previously listed in
Table 3.1. The charge, Q, decreases as ω increases. We compared the dynamics of Q-balls of
varying Q, and we found that right-angle scattering is completely absent from the dynamics of
small Q-balls, specifically for Q . 71.3.

exception is the study by Al-Alawi and Zakrzewski [99] who considered the relativistic scattering of

Q-balls in both 1+1 and 2+1 dimensions, for different values of the Q-ball internal phase ω. They

found that the 1+1 case was very similar to the topological one, provided that the Q-balls remained

dynamically stable. They determined the critical velocity necessary to overcome a given barrier

or hole, of a specified height or depth, respectively, and found that the critical velocity was also a

function of the charge (ω) of the Q-ball. They also observed that some Q-balls became unstable

and fragmented into smaller ones. This type of fragmentation is not possible in the topological

case, where the solitons have specific (quantized) charges. On the other hand, their investigations

in 2 + 1 were limited to determination of the deflection angles for scattering of a Q-ball against a

localized hole or barrier. The maximum γ they used was 1.02 (v = 0.2).

We note that the calculations reported in [99] used grid sizes of the order of 300× 300, with a

mesh spacing h = 0.1 and λ = 0.2. The Q-balls used had typical diameters ≈ 6. Further details

on the numerics, such as the FDA scheme, were not discussed.

In this section we report results that extend the study of Al-Alawi and Zakrzewski to higher

energies, using Q-balls boosted to γ of the order of 2 to 3. A main aim of this work is to see
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whether high energy Q-balls still fragment into stable end-products following interaction with an

obstacle. As usual we will provide evidence through convergence tests and monitoring of conserved

quantities that our results are trustworthy.

Following [99] we implement a potential obstacle as follows. Consider the equations of motion

(3.23). We modify the self-interaction potential of the complex field by introducing a position-

dependent (but time-independent) multiplicative obstacle function, Σ(x, y), yielding new evolution

equations for the πa variables:

∂π1

∂t
− ∂φ1

∂x
− ∂φ1

∂y
+ Σ(x, y)

(
φ1 − |φ|φ1 +B|φ|2φ1

)
= 0 (3.57)

∂π2

∂t
− ∂φ2

∂x
− ∂φ2

∂y
+ Σ(x, y)

(
φ2 − |φ|φ2 +B|φ|2φ2

)
= 0 (3.58)

The specific form of the obstacle function that we adopt is defined by three parameters, Xmin,

Xmax and H:

Σ (x, y;Xmin, Xmax, H) =

 H If Xmin ≤ x ≤ Xmax

1 Otherwise
(3.59)

Loosely speaking, we can view H as the “height” of the obstacle, and we note that in the region

where Σ (x, y;Xmin, Xmax, H) 6= 1 (i.e. for Xmin ≤ x ≤ Xmax), which is the part of the domain

occupied by the obstruction23, the original Q-ball configurations are no longer stationary solutions

of the (modified) equations of motion.

We now turn to the results and convergence properties of some numerical experiments involving

the scattering of boosted Q-balls against obstacles of the form (3.59).

3.7.1 Unigrid Calculations for Potential Barriers

Potential barrier H = 2, γ = 2.4

Our first simulation used a potential barrier of unit width and height H = 2, located slightly to the

right of the centre of a 50×50 computational box: the obstacle function was thus Σ(x, y; 0.0, 1.0, 2).

The initial data consisted of a single boosted Q-ball (once again with σ0 = 1.375) centred at

(−20, 0). The boost parameter was γ = 2.4, the Courant number was λ = 0.2 and no Kreiss-Oliger

dissipation was used, i.e. εKO = 0.0.

As can be seen from Fig.3.40, it appears that the initial Q-ball fragments into two stable
23In our coordinate system, the origin (0, 0) is always located at the center of the domain
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products after encountering the barrier at this velocity. Most of the original soliton penetrates the

barrier, and a small Q-ball is reflected. No outgoing scalar radiation is observed. The convergence

factors for the representative fields φ1 and π1 are shown in Fig. 3.42. We observe second order

convergence in the Qh for high enough resolution, and the independent residuals of both fields

(Fig. 3.43) show first order convergence. The Q-ball collides with the barrier at t ∼ 21, and

convergence degrades somewhat during the collision.

Potential barrier H = 10, γ = 2.4

We increased the barrier parameter toH = 10 (so the obstacle function becomes Σ(x, y; 0.0, 1.0, 10))

and left the rest of the parameters as above. The exception is that we used εKO = 0.6 since a

non-zero value of the dissipation parameter improved convergence, especially at high resolution.

Repeating the scattering experiment, we found this time that—not surprisingly—most of the Q-

ball reflected back from the barrier while only a small component penetrated to the other side

(Fig. 3.44). The convergence properties of this experiment are shown in Figs. 3.46 and 3.47. We

observe that the deviation from O(h2) convergence (O(h) for the independent residuals) during the

encounter is more pronounced than for the H = 2 case.

Potential barrier H = 10, γ = 3.5

For the next experiment we increased the boost of the Q-ball to γ = 3.5, keeping the same obstacle

function, Σ(x, y; 0.0, 1.0, 10). In this case we performed the computation in a 40×40 box, since the

Q-ball length in the boost direction x is significantly more contracted than for the previous two

experiments. The use of the smaller domain yields higher resolutions at fixed grid sizes (these are

unigrid calculations and practical concerns limit us to a maximum grid size of 2049× 2049) which

aids in keeping the solution error reasonable.

With this setup we again find an end state describing one Q-ball that has penetrated the barrier,

and another of smaller amplitude that has reflected from it (see Fig. 3.48). Both end products are

stable, and no scalar radiation is observed. The calculation shows O(h2) convergence of the Qh,

as can be seen from Fig. 3.49, but the independent residual convergence is even more degraded in

this case than previously. However, there is still evidence that the independent residuals will tend

to 0 as h→ 0. Investigation of charge conservation in this case yields a graph similar to Fig. 3.45.

Further experimentation for the case of the obstacle function used in the previous two compu-
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Figure 3.40: Plot of scalar field modulus |φ| for the scattering of a Q-ball by a barrier defined by
an obstacle function Σ(x; y, 0.0, 1.0, 2) (see (3.59) for the definition of Σ). The initial boost of the
Q-ball is γ = 2.4 (v = 0.91). The barrier is located slightly to the right of the center of the domain
and the Q-ball is initially centred 20 units from it. The interaction of the Q-ball with the barrier
begins at t ≈ 21. The end products are a small reflected Q-ball and a larger transmitted one. The
computation was performed on a 50×50 box with λ = 0.2, εKO = 0.0, and with Dirichlet boundary
conditions. The domain has been cropped in the y direction for illustrative purposes.

Figure 3.41: Resolution-dependence of the evolution of the computed total charge, Q, for the
calculation described in Fig. 3.40.
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Figure 3.42: Convergence factors for the fields π1 and φ1 from the calculation described in Fig. 3.40.
Evidence for second-order convergence is seen, although there is a degradation of convergence during
and after the interaction of the Q-ball with the barrier.

Figure 3.43: Rescaled l2 norm of the independent residuals for the fields π1 and φ1 from the
calculation described in Fig. 3.40. The expected linear convergence as h→ 0 is observed.
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Figure 3.44: Plot of scalar field modulus |φ| for the scattering of a Q-ball by a barrier defined by an
obstacle function Σ(x; y, 0.0, 1.0, 10). As in the previously described computation, the initial boost
of the Q-ball is γ = 2.4 (v = 0.91), the barrier is located slightly to the right of the center of the
domain and the Q-ball is initially centred 20 units from it. In this case, most of the soliton reflects
from the barrier with a small Q-ball penetrating it. Both end products are stable. Computational
parameters are as listed in Fig. 3.40, except that εKO = 0.6.

Figure 3.45: Resolution-dependence of the evolution of the computed total charge, Q, for the
calculation described in Fig. 3.44.
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Figure 3.46: Convergence factors for the fields π1 and φ1 from the calculation described in Fig. 3.40.
Again, a trend to second order convergence is observed. However the effect of the collision of the
Q-ball with the obstruction is even more pronounced here than it is in Fig. 3.44.

Figure 3.47: Rescaled l2 norms of the independent residuals for the fields π1 and φ1 from the
calculation described in Fig. 3.44. The graphs show a trend to linear convergence with high
resolution, but the degradation of convergence due to the interaction is again apparent.
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Figure 3.48: Plot of scalar field modulus |φ| for the scattering of a Q-ball by a barrier defined by
an obstacle function Σ(x; y, 0.0, 1.0, 10), and with γ = 3.5 (v = 0.91). Relative to the calculation
described in Fig. 3.44 (γ = 2.4), the initial boost in this case is significantly higher. Otherwise the
setup of the numerical experiment is the same. In this instance the end state also contains reflected
and transmitted Q-balls, with the latter being slightly larger than the former. Both end products
are stable, and minimal scalar radiation is seen.
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Figure 3.49: Convergence factors for the fields π1 and φ1 from the calculation described in Fig. 3.48.
A trend to second order convergence is observed, but with fluctuations in the convergence factors
during and after the collision.

Figure 3.50: Rescaled l2 norms of the independent residuals for the fields π1 and φ1 from the
calculation described in Fig. 3.48. Again, although there is degradation of convergence during the
interaction, the plots provide good evidence for the expected behaviour of the residuals.
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tations, Σ(x, y; 0.0, 1.0, 10), showed that the critical γ factor at which the two end-product Q-balls

have the same size is somewhere in the range 3.2 ≤ γ ≤ 3.5 (0.95 ≤ v ≤ 0.96).

In total, the experiments described above demonstrate that Q-balls behave as we might expect

when scattered against a potential barrier. For fixed barrier height, if we increase the velocity of the

Q-ball, we find that, as expected, a larger fraction of the field penetrates the barrier. In all cases

we observe conservation of charge (see e.g. Fig. 3.45) for the combined reflected and transmitted

components. It is perhaps most notable that the end-products of the interactions appear to be

Q-balls (or at least approximate Q-balls) themselves. This is another indication that it is legitimate

to view Q-balls as solitons.

3.7.2 AMR Calculations for Potential Barriers

In this section we will discuss further phenomenological results involving potential obstructions,

but now exploiting the AMR capability of our code (as discussed in Sec. 3.6 and Sec. 2.4). In the

computations described here we used, for the most part, a fixed set of parameters to control the

AMR algorithm. In particular we used an L = 1 base grid having 257× 257 mesh points, Lf = 5

and τmax = 0.01. The computations were performed on a 50× 50 box with λ = 0.2 and εKO = 0.5

(we could also get stable evolutions with εKO = 0.0).

We also used outgoing radiation (Sommerfeld) boundary conditions in order to minimize the

effects of reflections on the dynamics.

Wide Barrier H = 10, γ = 3.5

The first experiment involved scattering of a boosted Q-ball with γ = 3.5 (v = 0.96) by a barrier

with H = 10 but now with width 8 units, corresponding to an obstacle function Σ(x, y; 0.0, 8.0, 10).

This width of the barrier is comparable to the (contracted) diameter of the Q-ball for this value of

γ, which is ≈ 8.5.

The resulting evolution of the modulus |φ| of the complex scalar field is shown in Fig. 3.51. As

the Q-ball enters the barrier region it loses amplitude, while another Q-ball is ejected backwards—

typical of what we have seen in previous experiments of this type. However, at late times there is

now a small amount of field remaining in the barrier region, similar to those found in some of the

Q+ Q+ and Q+ Q+ collisions described in Sec. 3.6. At the end of the computation the reflected

Q-ball has a larger amplitude than the transmitted one. Considering that the adaptive algorithm

reached a Lf = 5, and the fact that Sec. 3.7.1 provided evidence that the code is O(h2) convergent,
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we feel that the observed features of the interaction are genuine. Additionally, computation of

the charge density reveals that all three end products are charged. However, calculations carried

out to later times (and perhaps the use of a more stringent truncation error threshold) would be

needed to more definitively determine if the field in the barrier region is indeed a stable product

of the scattering.

Shallow trench H = −2, γ = 3.5

Next we considered the following scenario: a γ = 3.5 boosted Q-ball is scattered by a potential

obstruction describing a shallow trench having unit width and H = −2. The trench is centred

in the same position as the barriers used above, and thus corresponds to an obstacle function

Σ(x, y; 0.0, 1.0,−2). Again, the x-diameter of the Q-ball at this velocity is ≈ 8.5. We note that

we discovered by trial and error that for deeper trenches, i.e. for H < −2—and independently of

the value of γ—the code becomes unstable, in the sense that the point-wise Newton iteration stops

converging.

The Q-ball encounters the obstruction at t ∼ 21, and the end-state seen in this instance is

again quite rich. Specifically, we see a small reflected Q-ball, and a larger Q-ball that penetrates

the trench. Perhaps the most interesting outcome of the scattering is that part of the field “falls”

into the trench, and forms an oscillating wall that persists for the rest of the evolution. This is

perhaps not surprising, since a region with negative potential is expected to give rise to bound-

states, or trapped configurations. In order to further investigate the nature of the end product in

the trench, we examined the charge density: interestingly, we found that the field trapped in the

obstruction contained no charge. We suspect this is due to the boundary conditions on the trench

at the edges of the computational domain. It appears that only field configurations that vanish at

infinity carry charge, and the trench clearly does not satisfy this requirement.

Potential Barrier H = 10, γ = 7

The last configuration we considered was a boosted Q-ball with γ = 7, scattered by a a potential

barrier having unit width and H = 10. The obstacle function is thus Σ(x, y; 0.0, 1.0, 10). At this

value of γ the Q-ball has an x-diameter of ≈ 4.2. In this case, as can be seen in Fig. 3.53 the Q-ball

is largely unaffected by the barrier, emerging mostly unscathed from the encounter, with only a

small lump of the field back-scattered. In other words, the kinetic energy of the soliton completely

dominates the potential obstruction.
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Figure 3.51: Plot of scalar field modulus |φ| for the scattering of a Q-ball by a barrier defined by
an obstacle function Σ(x; y, 0.0, 8.0, 10), and with γ = 3.5 (v = 0.91). The setup of this experiment
is similar to that described in Fig. 3.48, except that the barrier is wider in this case (8 units vs 1).
The boosted Q-ball is initially centred 20 units to the left of the obstruction. We again see both
transmitted and reflected Q-balls, as well as some remnant field in the barrier: the latter probably
decays away. The calculation was performed using AMR on a 50 × 50 computational domain, a
base grid having 257× 257 points, Lf = 5, τmax = 0.01, λ = 0.2 and εKO = 0.5
.
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Figure 3.52: Plot of scalar field modulus |φ| for the scattering of a Q-ball by a trench obstruction
defined by an obstacle function Σ(x; y, 0.0, 1.0,−2), and with γ = 3.5 (v = 0.91). Other than
the use of a different obstacle (in particular a well rather than a barrier) the numerical setup—
including the AMR parameters—is the same here as in Fig. 3.51. The final configuration includes
a large transmitted Q-ball, a small reflected one—both of which are stable—and little evidence of
radiation. There is also some scalar field trapped in the well which carries no charge.
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Figure 3.53: Plot of scalar field modulus |φ| for the scattering of a Q-ball by a barrier defined by
an obstacle function Σ(x; y, 0.0, 1.0, 10), and with γ = 7.0 (v = 0.99). This calculation is similar to
that described in Fig. 3.44 except that the boost factor is significantly higher. Indeed, the extreme
amount of Lorentz contraction is readily apparent. In this case, and as expected, the interaction is
characterized by almost total transmission of the initial Q-ball. However, a small reflected Q-ball
can also be seen. The numerical parameters here are the same as those listed in the caption of
Fig. 3.51 apart from the truncation error threshold which is τmax = 0.001.
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3.8 Summary

We now conclude with a summary of this chapter.

• With the aid of symbolic manipulation techniques, we successfully developed a computational

infrastructure that we could use to develop finite difference codes for the approximate solution

of hyperbolic time dependent partial differential equations. As a model problem, we studied a

theory describing the dynamics of a complex scalar field, and which possesses stable, localized

(solitonic) solutions called Q-balls.

• For the temporal discretization of the equations of motion, and motivated by its stability

properties observed in previous computations of this type [133, 119], we used an implicit

two-level Crank-Nicholson scheme.

• We validated our code using different types of initial data, including smooth Gaussian profiles

and single Q-balls, which were either at rest, or boosted to moderate values of γ. Our

tests displayed the expected O(h2) convergence for the dynamical grid functions and O(h)

convergence for the independent residuals. Together these tests provide strong evidence

that the results produced by our code tend to correct continuum solutions as h → 0. The

computed total charge Q displayed O(h3) convergence, possibly due to the fact that we

combined a Crank-Nicholson scheme with a second order trapezoidal rule for the integration

of the charge density.

• We studied some aspects of the dynamics of Q-balls. We concentrated on two main scenarios:

collisions between Q-balls having opposite charges, Q+ Q−, and those between configurations

with the same charge, Q+ Q+. The observed interactions during the collision were qualita-

tively different for the two scenarios. Q+ Q− interactions exhibited purely constructive

interference, whereas Q+ Q+ collisions showed destructive interference patterns. We investi-

gated the convergence properties of our collision experiments, obtaining the same satisfactory

results as before. We then used the AMR capabilities of our code to perform calculations that

reproduced the previously reported phenomenology of Q+ Q+ scattering that were carried

out for γ < 1.4 [18]. Namely, we found that Q+ Q+ scattering results in (1) bound states

for v < 0.3, (2) fragmentation into a combination of right-angle and forward-scattering (with

the trend depending on the velocity) for 0.3 < v < 0.7, and (3) strictly forward-scattering for

v > 0.7.
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To our knowledge, Q+ Q− collisions have not been described in any previous work, and

we thus performed experiments using AMR to explore their dynamics. We found that the

collisions in this case resulted in bound states for v . 0.4, and exhibited forward scattering

at any higher velocity. In contrast to the Q+ Q+ interactions, Q+ Q− collisions typically

produced a significant amount of scalar radiation, and analysis of the properties of this

radiation required the consideration not only of the modulus |φ| of the complex field, but also

other quantities, such as the charge density.

• For the higher boosts we considered—γ = 1.2 to 7—and for both Q+ Q+ and Q+ Q−

collisions, we observed almost exclusively forward scattering We believe that at such velocities

the nonlinearities which would give rise to significant interaction of the solitons are effectively

very weak. Not surprisingly, we also found that at high boosts, and due to effects such as

Lorentz contraction, substantially more finite-difference resolution was required to maintain

a roughly constant solution error.

• We found that unigrid (non-adaptive) calculations were typically stable for a wide range of

values of the Courant factor: in particular we investigated the regime 0.1 ≤ λ ≤ 0.6 and

found no indications of instabilities. For the AMR computations we found a more restrictive

condition on λ; typically we needed λ . 0.3. We suspect that the instability that set in for

higher values of the Courant number was related to the interpolation of values from coarse

grids to boundaries of fine grids, which is part of the adaptive Berger and Oliger algorithm.

• We investigated the dynamics of Q-balls for different values of ω (Fig. 3.39), noting that

the charge decreases with increasing ω. We found that right-angle scattering was completely

absent from the dynamics of sufficiently low-charge Q-balls.

• We performed numerical experiments of the scattering of Q-balls against potential obstruc-

tions, using boosts in the range 2.4 < γ < 7. We validated the expected convergence prop-

erties of the results, but noted that convergence during the interaction of the Q-balls with

the obstructions was significantly degraded. Scattering against barriers was characterized by

a combination of transmission and reflection of the soliton. Scattering against a trench of a

certain depth resulted in part of the field being trapped in the trench (along with transmitted

and reflected Q-balls). The trapped field possessed no significant charge density.
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CHAPTER 4

RELATIVISTIC SCATTERING OF BABY

SKYRMIONS IN 2 + 1 DIMENSIONS

4.1 Introduction

This chapter is devoted to a description of our numerical simulations performed within the context

of the baby Skyrme model, with an emphasis on the collision of baby skyrmions. Before proceeding

to the scattering work, we discuss the formalism underlying our specific calculations, and describe

some basic computations that were performed principally to test our numerical implementation.

To this end, we start in Sec. 4.2 with a detailed formulation of the model, and discuss the static

solitonic solutions it admits. We then derive the dynamical equations of motion in Sec. 4.3, and

detail the specific implementation of the numerical methods—previously described in Chap. 2—

that we use to approximately solve these equations. Secs. 4.3.4, 4.3.5 and 4.3.6 then discuss the

generation of suitable initial data for static and boosted baby skyrmions, respectively. Code vali-

dation strategies—including convergence testing, independent residual evaluation and monitoring

of conserved quantities—are developed in Sec. 4.4. Once the reliability of our code has been estab-

lished, we proceed to use it as a laboratory to study the dynamics of baby skyrmions by means of a

series of unigrid and adaptive computations. Sec. 4.5 describes general features of baby skyrmion

scattering, and presents a survey of previous work relevant to our calculations. Experiments with

single boosted skyrmions are discussed next in Sec. 4.6, followed by Sec. 4.7, which details the core

results of this work on head-on baby skyrmion collisions (BB). Our investigations of BB grazing

collisions are discussed in Sec. 4.8, while baby skyrmion-baby anti-skyrmion (BB̄) scattering is

covered in Sec. 4.9. The performance of the different constraint enforcement methods is discussed

in Sec. 4.10. We conclude the chapter with a summary of our findings, as well as suggestions for

extensions of our code (Sec. 4.11).

As discussed in the introduction (Sec. 1.5.2), a chief motivation of this work is to study in
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detail the nature of the hyperbolic-elliptic transition (loss of well-posedness) in the baby Skyrme

model [1, 26, 95]. By observing the behavior of the total energy, as well as by direct examina-

tion of the numerical solution, we provide strong evidence for the loss of hyperbolicity in certain

situations—most notably in collisions at sufficiently high energies. By means of detailed explo-

rations of parameter space for the classes of skyrmion interactions summarized above, we find

specific conditions for the loss of well-posedness, and thus the limits for physically meaningful

dynamics in those cases.

4.2 The Model

The baby Skyrme model describes the dynamics of a nonlinear vector field in D = 2 space plus

one time dimension, and which, modulo the appearance of a potential term, possesses an O(3)

rotational symmetry. Extensive reviews have been written on the subject [31, 35, 55, 56], and we

refer the interested reader to these references for details beyond those provided here. The model

has the Lagrangian

L = Fπ

(
1
2
∂µφa∂

µφa +
κ2

4
(∂µφa × ∂νφa)(∂µφb × ∂νφb) +

µ2

2
(1− [φ3]2)

)
, (4.1)

where Latin indices, such as a, label the 3 real components of the field i.e. φa = (φ1, φ2, φ3), Greek

indices label the dimensions of space-time, µ, ν = 0, 1, 2, and summation conventions apply to

both index types. In the above × denotes the usual vector cross product. The vector field is thus

viewed as a triplet of real scalar fields, and due to the “bare” (i.e. without a potential) rotational

symmetry, must satisfy the ”chiral” constraint φaφa = 1. The first term in (4.1)—a quadratic

kinetic energy—defines the ordinary O(3) sigma model. The second term, which is fourth order in

the derivatives, is the planar equivalent of the 3 + 1 Skyrme term in [31, 32, 33], and allows the

model to admit non-trivial static solutions. As we will discuss immediately, the last term, which is

a potential (and which breaks the O(3) symmetry), is needed to stabilize the solitonic solutions of

the theory. The constants Fπ, κ and µ are parameters that are analogous to their 3+1 dimensional

counterparts. Fπ has dimensions of energy and κ and 1/µ have dimensions of length. Here we will

fix units so that Fπ = κ = 1.

A consequence of Derrick’s argument (Sec. D.1) is that for D = 2 we need to include a potential

term (with no derivatives) in order for stable solitonic solutions to exist. The form of the potential
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is largely arbitrary, and this freedom gives rise to a series of different baby Skyrme models [134].

Our specific choice of potential in (4.1) yields what is known as the old baby Skyrme model [35].

We have adopted this potential principally since it is the most widely studied in the literature, and

as a consequence we can compare our results with previous work.

We note, however, that for collisions in the ultrarelativistic regime, intuition suggests that the

particular choice of the potential is not expected to affect the dynamics in a significant way, since

the kinetic energy will be much larger than the potential energy in this case. Thus, we expect that

the phenomenology we observe at high boosts should be generic to most, if not all, baby Skyrme

model variants.

It is convenient and conventional to rewrite the Skyrme term in (4.1) using Lagrange’s identity:

(∂µφa × ∂νφa)(∂µφb × ∂νφb) = (∂µφa∂µφa)2 − (∂µφa∂νφa)(∂µφb∂νφb) . (4.2)

Then, with Fπ = κ = 1, we have,

L =
1
2
∂µφa∂

µφa +
1
4

(∂µφa∂µφa)2 − 1
4

(∂µφa∂νφa)(∂µφb∂νφb) +
µ2

2
(1− [φ3]2) . (4.3)

We will work with µ2 in the range 0.001 ≤ µ2 ≤ 0.4 in order to determine the effect of the potential

term on the dynamics. A typical value used in previous studies is µ2 ∼ 0.1 [135, 35, 55, 56].

4.2.1 Topological Structure and Static Solutions

We are interested in studying baby skyrmions, which are minimum energy static solutions of the

model defined above. We will briefly discuss the existence of these solutions as a consequence of the

non-trivial topology of the theory, and then move on to a description of their concrete computation.

The fields φa can be visualized as orthogonal directions of an Euclidean internal space [31], as

illustrated in (Fig. 4.1). It is easy to see that the constraint φaφa = 1 restricts the fields to “live”

on a S2 unit sphere, in the tridimensional space spanned by (φ1, φ2, φ3). The fields themselves

are functions of the space-time coordinates, φa = φa(t, x, y), and this defines a correspondence,

or a mapping, between physical space (in this case R2) and the space of triplets, or states, S2,

i.e. M : R2 → S2. The S2 manifold is known as the target space of the theory [122].

The non-trivial topology of the maps we consider is provided by a specific choice of boundary

conditions. In particular, we demand that (φ1(x, y), φ2(x, y), φ3(x, y)) → (0, 0, 1) at x → ∞,
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y → ∞, and (φ1(x, y), φ2(x, y), φ3(x, y)) → (0, 0,−1) at the origin, x = y = 0. The first condition

identifies infinity in any direction on the xy plane as the same point, effectively compactifying space

into a sphere, R2 ∪∞ ' S2. Hence our maps become M : S2 → S2. One possible structure arising

from these boundary conditions is illustrated in Fig. 4.1, from which we see that the map M defines

one possible configuration of the vector field in the plane. In accord with the boundary conditions,

the vector (φ1, φ2, φ3) points downwards at the origin, and upwards at large distances—and in any

direction—from (0, 0). At intermediate distances, and, again, in any radial direction, we find a

twist in the field. This (extended) twist is known as a texture. The existence of a baby skyrmion is

possible precisely due to the non-trivial topology of the mapping M , since a solution with a twist

cannot deform continuously into a solution without it, unless we break the twist. Assuming that

such breakages cannot occur, the number of twists is conserved.

In analogy to the classification of kinks and anti-kinks of the φ4-theory into equivalence

classes [24], we can group our mappings, M , of vector field configurations in the plane, according

to the number of twists we encounter as we move outwards from the origin to spatial infinity. This

conserved (integer) number of twists is known as the topological charge, B, and is the analog of

the conserved baryon number in the 3 + 1 Skyrme model. Technically, B is the spatial integral of

the zero component, B0, or baryon number density, associated with the current,

Bµ = εabcεµνρφa∂νφb∂ρφc . (4.4)

Specifically, we have [35],

B =
1

4π

∫
d2x B0 =

1
4π

∫
d2x εabcενρφa∂νφb∂ρφc =

1
4π

∫
dx dy εabcφa(∂xφb)(∂yφc) . (4.5)

It is interesting to mention that by writing the energy density derived from the Lagrangian (4.1)

as a perfect square, and using the the triangle inequality, it is possible to show that, [24, 15],

E ≥ 4πB . (4.6)

This is known as the Bogomol’nyi bound [24], and can be shown to mean that as long as the

topology of the map remains non trivial, minimal energy stable solutions for B 6= 0 will exist.

We will focus on the study of baby skyrmions with B = 1, although static solutions with
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(a)

(b)

Figure 4.1: We can think of a baby skyrmion as a topological structure (twist or texture, Fig. 4.1a)
in a planar configuration of a 3 dimensional vector field, defined by an internal 3D space spanned by
(φ1(t, x, y), φ2(t, x, y), φ3(t, x, y)). Due to the normalization condition, φaφa = 1, the value of the
vector field at any point in the xy plane is equivalent to its direction there. Away from the origin,
x = y = 0, the field approaches one vacuum state (0, 0, 1) (pointing upwards), while at the origin,
it attains the other vacuum state (0, 0,−1) (pointing downwards). Any radial trace of the field
direction from the origin to large distances exhibits a topological twist (kink). Fig. 4.1b shows a
view from above of the xy plane, making manifest the circularly-symmetric hedgehog configuration
of outward-pointing radial vectors.

B = 2 and higher are well known [56, 20]. As already noted, the choice of potential in (4.1) breaks

the target space invariance under O(3) rotations. Specifically, the invariance becomes O(2) × Z2,

where the discrete Z2 symmetry corresponds to the two distinct vacua of the potential, namely

φ3 = φ± = ±1. This in turn allows for domain wall solutions, which are an example of B = 0

configurations.

Clearly, the solution φa = (0, 0, 1), wherein the field is everywhere in the same vacuum state,

is a minimal energy solution. However, it is topologically trivial; that is, it satisfies B = 0. A

more interesting question is whether there are stable static configurations which are topologically

nontrivial (B 6= 0), with localized energy density, and satisfying φa = (0, 0, 1) at infinity. Derrick’s

theorem (App. D.1) provides arguments for the existence of such solutions. More rigorous methods

found that the answer is yes, and that the solutions could be determined via a specific rotationally

symmetric ansatz, known as a hedgehog configuration

Introducing the usual polar coordinates (r, θ), the explicit form of this circularly symmetric
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ansatz is

φa =


sin f(r) sinBθ

sin f(r) cosBθ

cos f(r)

 (4.7)

where f(r) is a radial profile function that must satisfy the boundary conditions f(0) = Bπ and

f(∞) = 0 (localization). As mentioned earlier in this section, we will limit our attention to baby

skyrmions with B = 1, so that central boundary condition is f(0) = π. Substitution of (4.7) in the

Lagrangian (4.3) leads to a static energy density,

E = (4π)
1
2

∫ ∞
0

rdr

(
f

′2
+ n2 sin2 f

r2
(1 + f

′2
) + V(f)

)
, (4.8)

where f ′ ≡ df/dr. Minimization of (4.8) yields a second-order ordinary differential equation [56],

(
r +

sin2 f

r

)
f

′′
+
(

1− sin2 f

r2
+

sin f cos ff ′

r

)
f

′
− sin f cos f

r
− r1

2
dV(f)
df

= 0 . (4.9)

4.2.2 Solution of the Baby Skyrmion ODE

As for the Q-ball ODE described in Sec. 3.2.1, we numerically solve (4.9) using the LSODA routine

from the ODEPACK package [125], which requires that we rewrite the ODE in first-order form.

We thus introduce an auxiliary variable u(r) ≡ df/dr and recast (4.9) as

df

dr
= u (4.10)

du

dr
=

(
−ur cos r sin r − ur + u sin r + r3 cos r sin rµ2 + r cos r sin r

r(1 + sin r)

)
. (4.11)

The boundary conditions are

f(0) = π, lim
r→∞

f(r) = 0 . (4.12)

The system (4.10–4.12) is solved using a shooting method, as previously described in Sec. 3.2.1,

and adapted to this particular context. We first note that µ2, the square of the potential constant,

is a non-zero free parameter of the problem. We thus fix µ to some specific value, set the central

value of f(0) via (4.12), and then adjust the other initial value required by ODEPACK ,

df

dr
(0) ≡ u(0) , (4.13)
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Figure 4.2: This figure displays baby skyrmion radial profile functions, f(r), for various values
of the squared potential parameter, µ2. Also listed are the corresponding values of the shooting
parameter, f ′ = df/dr (We have fixed f0 = π as a boundary condition). The sizes of the baby
skyrmions seem to be roughly inversely proportional to µ2. We note that the plots show subsets
of the full computations, which generally comprise discrete collections of points, rp, p = 1, . . . , N ,
where N is of the order of 1300, r1 = 0 and rN ≡ rmax ≈ 300 (i.e. only a small portion of the radial
integration domain is shown here). The LSODA error tolerance is of the order of 1.0× 10−9 which
guarantees that the error in the profile function f(r) is much smaller than the error of the evolved
finite difference solutions that we subsequently generate. Note the rapid falloff of f(r) once r & 40.
This is typical of a static localized baby skyrmion, and justifies the view of such configurations as
“solitonic” (particle-like) entities.

by trial and error, until the solution satisfies the large-r boundary condition (4.12). As was the case

for the Q-ball profiles of Sec. 3.2.1, we restrict attention to “ground state” profiles, f(r), that are

characterized by no crossings of the f(r) = 0 axis (no nodes). Fig 4.2 shows some profile functions,

f(r), for different values of µ2, along with the corresponding values of the shooting parameter

f ′ = df/dr. We notice that the size of the baby skyrmion is roughly inversely proportional to the

value of µ2.

4.3 Equations of Motion

The time-dependent equations of motion are derived from the Lagrangian (4.1), and details are

provided in App. B. Special attention is required to impose the “chiral” constraint φaφa = φ2
1 +
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φ2
2 +φ2

3 = 1. The addition of a Lagrange multiplier is the traditional method to extremize functions,

or functionals, subject to a constraint [31, 32, 25]. Accordingly, a constraint term is added to the

Lagrangian (4.3)

L =
1
2
∂µφa∂

µφa +
1
4

(∂µφa∂νφa)2 − 1
4

(∂µφa∂aνφa)(∂µφb∂νφb)

+
µ2

2
(1− [φ3]2) + λLM(φaφa − 1) , (4.14)

where λLM is the Lagrange multiplier. We again remind the reader that Latin indices a, b, . . . =

1, 2, 3 label the components of the dynamical fields, while Greek indices label the dimensions of

spacetime, µ, ν . . . = 0, 1, 2. Again, relegating the details of the derivation to App. D.4, we find the

following equations of motion:

(1 + ∂µφa∂
µφa)2φa + ∂µ∂νφb∂

µφb∂
νφa − ∂µφb∂νφb∂µ∂νφa −2φb∂

νφb∂νφa

+ λLMφa + µ2φ3 = 0 . (4.15)

We can further compute the exact form of the Lagrange multiplier term λLM (App. D.4) to obtain

(1 + ∂µφa∂
µφa)2φa + ∂µ∂νφb∂

µφb∂
νφa − ∂µφb∂νφb∂µ∂νφa −2φb∂

νφb∂νφa

+
[
(1 + ∂µφa∂

µφa)(∂νφa∂νφa)− (∂µφa∂νφa)(∂µφb∂νφb)− µ2φ2
3

]
φa + µ2φ3 . (4.16)

As was the case for the Q-ball PDEs described in Sec. 3.3, we wish to rewrite (4.16) as a set of

first-order-in-time equations, in order to employ a two time-level Crank-Nicholson finite-difference

scheme. We thus eliminate the second order time derivatives (which would require a minimum of

three discrete time levels) by introducing auxiliary fields π1, π2 and π3, defined by

πa(t, x, y) =
∂φa(t, x, y)

∂t
. (4.17)

4.3.1 Finite Difference Approach

The discretization of the equations of motion (4.16) follows the same methodology used for the

Q-ball equations in Sec. 3.3.1. We again adopt a second order, Crank-Nicholson scheme, expressed

on finite difference grids that are characterized by a single discrete scale, h. We thus have ∆x =
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∆y = h, and ∆t = λh, where λ is the Courant number.24

Due to the appearance of mixed derivatives, we have more extensive finite-difference expressions

for the baby Skyrme model than for the Q-ball case. The finite-difference formulae used here are

summarized in Tab. 4.1, where we continue to use the notation φn(i, j) ≡ φ(tn, xi, yj) for grid func-

tions. Also following our previous procedure, we will express the difference approximations of (4.16)

in residual form, and remind the reader that the process of computing a solution to the discrete

equations of motion is equivalent to driving all of the residual quantities φres
1 , φres

2 , φres
3 , πres

1 , πres
2 , πres

3

to 0.

For the φ fields the residual form of the difference approximations are simply

φres
1 (i, j) =

πn+1
1 (i, j) + πn1 (i, j)

2
− φn+1

1 (i, j)− φn1 (i, j)
∆t

,

φres
2 (i, j) =

πn+1
2 (i, j) + πn2 (i, j)

2
− φn+1

2 (i, j)− φn2 (i, j)
∆t

,

φres
3 (i, j) =

πn+1
3 (i, j) + πn3 (i, j)

2
− φn+1

3 (i, j)− φn3 (i, j)
∆t

. (4.18)

The task of writing the residuals πres
1 , πres

2 , πres
3 fields explicitly is formidable, since equations

(4.16) are long and complicated. Therefore, a Maple-based script was written to automate this

task, substituting the finite difference stencils (4.1) into the continuum PDEs in order to construct

the residual expressions.

The overall time-stepping methodology is also the same as that employed in Sec 3.3.1 for

the Q-ball equations of motion. However, in contrast to the Q-ball case, where we had four

fields, the baby Skyrme model has six independent dynamical fields. Correspondingly, at any

grid point (i, j) the Crank-Nicholson discretization yields six nonlinear equations (defined by the

three residual expressions (4.18) and πres
1 , πres

2 , πres
3 ) for the unknowns φn+1

a (i, j) and πn+1
a (i, j).

The global system of equations is again solved using point-wise-Gauss-Seidel relaxation sweeps.

During one sweep, each grid point is visited in turn, and the 6 unknowns defined at that point

are simultaneously (collectively) updated by performing a single Newton-step. This step in turn

24As discussed in Chap.2, when we use adaptive mesh refinement (AMR), each of the component grids in the
grid hierarchy satisfies these conditions for some hL, where L labels the level of the grid in the hierarchy and
hL = hL−1/2.
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requires the construction of the 6× 6 Jacobian matrix, Jcd, with matrix elements defined by

Rc = Residual Equations = [φres
1 , φres

2 , φres
3 , πres

1 , πres
2 , πres

3 ] ,

Vc = Variables = [φ1, φ2, φ3, π1, π2, π3] , (4.19)

Jcd =
∂Rres

c

∂Vd
.

Here the auxiliary Latin indices c, d . . . = 1 . . . 6 label the rows and columns for our 6 × 6 linear

system. We have also suppressed the finite-differencing indexing for simplicity of expression, so the

reader should note that we have, for example,

∂φres
1

∂φ1
≡ ∂φres

1 (i, j)
∂φn+1

1 (i, j)
. (4.20)

We then use the routine DGESV from the LAPACK package [126] to directly solve the following

6× 6 linear system at every grid point (xi, yj)



J11 J12 J13 J14 J15 J16

J21 J22 J23 J24 J25 J26

J31 J32 J33 J34 J35 J36

J41 J42 J43 J44 J45 J46

J51 J52 J53 J54 J55 J56

J61 J62 J63 J64 J65 J66





δφ1(i, j)

δφ2(i, j)

δφ3(i, j)

δπ1(i, j)

δπ2(i, j)

δπ3(i, j)


=



φres
1 (i, j)

φres
2 (i, j)

φres
3 (i, j)

πres
1 (i, j)

πres
2 (i, j)

πres
3 (i, j)


. (4.21)

Once the corrections δφ and δπ have been obtained, the advanced-time unknowns are updated

using 

φn+1
1 (i, j)

φn+1
2 (i, j)

φn+1
2 (i, j)

πn+1
1 (i, j)

πn+1
2 (i, j)

πn+1
3 (i, j)


:=



φn+1
1 (i, j)

φn+1
2 (i, j)

φn+1
3 (i, j)

πn+1
1 (i, j)

πn+1
2 (i, j)

πn+1
3 (i, j)


−



δφ1(i, j)

δφ2(i, j)

δφ3(i, j)

δπ1(i, j)

δπ2(i, j)

δπ3(i, j)


. (4.22)

When the global l2 norm of the corrections (see 2.31 and Sec. 3.3.1) is below a specified threshold,

the solution is deemed converged, and we can advance from tn to tn+1; otherwise we execute
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1: for tn = ∆t, 2∆t, . . . do
2: for i = 1 to Nx do
3: for j = 1 to Ny do
4: Set initial estimate for the solution vector

φ
(0)
b ≡ [φ(0)

1 , φ
(0)
2 , φ

(0)
3 , π

(0)
1 , π

(0)
2 , π

(0)
3 ]T

5: Calculate the 6× 6 Jacobian matrix Jab and the residual vector Ba at
this point using nearest neighbour values, (some new, some old)

6: Solve Jab δbφ = Ba for the update
δbφ = [δφ(0)

1 , δφ
(0)
2 , δφ

(0)
3 δπ

(0)
1 , δπ

(0)
2 , δπ

(0)
3 ]T using DGESV and obtain a

new estimate φnew
b = φ

(0)
b − δbφ

7: end for
8: end for
9: Calculate the l2 norm of the residuals using the new guess φnew

b (This is a
global norm for all subdomains used by the parallel infrastructure)

10: if l2 norm of the residuals < tolerance then
11: Convergence achieved
12: Goto 17
13: else
14: φ

(0)
b = φnew

b

15: Goto 2
16: end if
17: end for

Figure 4.3: Time stepping algorithm for the baby Skyrme evolution

another Newton-Gauss-Seidel sweep. A pseudo-code version of the full time-stepping algorithm is

given in Fig. 4.3.

4.3.2 Implementation Strategy

The implementation of the algorithm described above closely followed that for the Q-ball code. In

this case, however, we did not begin with a prototype serial unigrid (i.e. non-parallel, non-adaptive)

version. Rather, we directly implemented our code using the AMRD (Adaptive Mesh Refinement

Driver) / PAMR (Parallel Adaptive Mesh Refinement) infrastructure [120, 107, 108] (see Chap. 2

and Sec. 3.3.2 for more details).

The use of scripting and symbolic manipulation in the implementation process was significant.

The derivation of the initial data equation, the continuum equations of motion, and their ensuing

discretization, were all achieved using Maple [128] scripts and a Maple-based tensor-manipulation

package [129].

The procedure to obtain the initial data ODE (4.9), described in Sec. 4.2.1, is managed by a

Maple script. The script recasts the Lagrangian (4.3) in polar coordinates, substitutes the hedgehog
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ansatz, and, following the Euler-Lagrange prescription, obtains and rewrites the resulting second

order ODE as Fortran 77 code for subsequent solution using LSODA.

The discretization of the field equations, i.e. the replacement of the continuum differential

operators by finite difference expressions, is divided into two steps.

Maple is used to algebraically perform a first partial discretization of the differential operators

that involve values of the fields at (i, j), and the Jacobian matrix elements are then generated using

symbolic differentiation. Finite difference versions of other operators, such as the mixed partial

derivatives, do not reference (i, j) grid values, and can thus can be evaluated in a straightforward

fashion directly in the final Fortran code.

The corresponding residuals for the φ and π fields are also generated symbolically with Maple.

Both the residuals and the Jacobian matrix elements are then exported as Fortran 77 using Maple’s

code generation facility. This capability is essential for the baby Skyrme code since, as we noted in

Sec. 4.3.1, the residuals for the π fields are too complicated to be written explicitly (not to mention

by hand) in an error-free fashion.

Without the strategy of using symbolic computing, and script-based automation for code gen-

eration, it would be impractical to quickly implement any changes to the equations of motion or

the discretization scheme, and the correctness of the residual and Jacobian elements would be very

much in doubt. As stressed in Sec. 3.3.2, the flexibility of our infrastructure was successfully ex-

hibited by the fact that once it had been developed in the context of the Q-ball study, it could be

reused in a straightforward fashion to implement the baby Skyrme code.

4.3.3 Constraint Enforcement

In Sec. 4.3 we discussed a mechanism to impose the ”chiral” constraint φaφa = φ2
1 + φ2

2 + φ2
3 = 1,

which involved the introduction of a Lagrange multiplier λLM
25 [31, 32, 25] to the Lagrangian

(4.3). However, we have found that, in practice, when numerical errors in the integration of the

field equations lead to a violation of the constraint, the Lagrange-multiplier mechanism is not

enough to confine the fields to the vicinity of the unit 2-sphere. Any small perturbations grow

rapidly to the point that the whole evolution becomes unstable.

We thus have had to investigate and implement additional methods to enforce the constraint

φaφa = 1 in numerical calculations. The simplest one involves the reprojection ( normalization,

25λLM should not to be confused with the Courant number, λ, used elsewhere.
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φ
φn+1
ij +φnij

2

φx
1
2

[
φn+1
i+1,j−φ

n+1
i−1,j

2∆x +
φni+1,j−φni−1,j

2∆x

]
φt

φn+1
ij −φnij

∆t

φxx
1
2

[
φn+1
i+1,j−2φn+1

i j+φn+1
i−1,j

∆x2 +
φni+1,j−2φni j+φ

n
i−1,j

∆x2

]
+

φxy
1
2

[
φn+1
i+1,j+1−φ

n+1
i−1,j+1−φ

n+1
i+1,j−1+φn+1

i−1,j−1

4∆x∆y +
φni+1,j+1−φni−1,j+1−φni+1,j−1+φni−1,j−1

4∆x∆y

]
Table 4.1: Crank-Nicholson (CN) two-(space) dimensional finite difference stencils used to convert
the differential equations to difference equations, for any of the six dynamical variables φa or πa
Here we use the notation φnij ≡ φni,j = φ(tn, xi, yj). We remind the reader that we use (component)
finite difference grids that are characterized by a single discretization scale, h, so that ∆x = ∆y = h,
and ∆t = λh, where λ is the Courant number. Each of the above expressions is a second order
(O(h2)) approximation to its continuum counterpart, and is centred at (tn+1/2, xi, yj).

rescaling) of the dynamical fields after one or more time steps [35, 136],

φa →
φa√
φbφb

πa → πa −
φb∂tφb
φbφb

φa. (4.23)

As we will see, this is a very effective method to reproject the field back into the S2 sphere.

A more elaborate technique that parallels an approach that has been used very effectively in

numerical relativity [137, 138] is known as constraint damping. One specific implementation of

the technique involves the introduction of the constraints of the Einstein equations as independent

fields, Z, followed by the addition of a damping (or frictional) term. Since the added terms do not

contain higher derivatives, they do not affect the hyperbolicity (and thus the well-posedness) of

the original equations of motion. The evolution equation for Z has the form,

∂Z

∂t
= Einstein constraints + damping terms..., (4.24)
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In our case, the constraint C(t, x, y) ≡ φaφa − 1 is algebraic in the dynamical fields, φ. Thus, it

is not necessary to promote C(t, x, y) to an independent field. We simply add a damping term

−ξ1C = −ξ1(φaφa − 1), where ξ is an adjustable positive parameter, to the evolution equations

(4.17), yielding
∂φa(t, x, y)

∂t
= πa(t, x, y)− ξ1(φaφa − 1) . (4.25)

Authors of previous implementations [137, 138] report that this modification is expected to expo-

nentially damp violations from the constraint on a time scale ≈ ξ−1.

The constraint C = φaφa− 1 only involves the φa fields. However, we have evolution equations

for both the φ and the time derivatives π. We have found that it is advantageous to include

constraint damping for the πa fields. We thus define

C ′ ≡ 1
2
∂C

∂t
= φ1π1 + φ2π2 + φ3π3 = 0 , (4.26)

and then modify the residual form of the equations for the πa (4.16), via

∂πa(t, x, y)
∂t

= ...− ξ2(φbπb) , (4.27)

where ξ2 is another adjustable positive parameter.

4.3.4 Initial Data

In order to investigate the dynamics in the baby Skyrme system we need to construct initial data

φ0
a(i, j) and π0

a(i, j), a = 1, 2, 3 (i.e. initial values defined on the finite difference grid (xi, yj). For

a static baby skyrmion, this is achieved by first interpolating and translating the profile function

f(r) in exactly the same manner as was done for Q-ball initial data in Sec. 3.3.3. The procedure

is summarized in Fig. 4.4.

1: for i = 1 to Nx do do
2: for j = 1 to Ny do do
3: Calculate interpolation radius rij =

√
(xi − xc)2 − (yj − yc)2

4: Interpolation routine computes the value of f(rij) = f(i, j)
5: end for
6: end for

Figure 4.4: Interpolation and translation of a baby skyrmion to (xc, yc).
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Once the profile function has been transferred to the finite difference mesh, yielding values

f(i, j), the dynamical field values φ0
a(i, j) are set via

φ0
1(i, j) = sin f(i, j) cos θ(i, j) ,

φ0
2(i, j) = sin f(i, j) sin θ(i.j) , (4.28)

φ0
3(i, j) = cos f(i, j)

where

θ(i, j) = tan−1

(
yj − yc
xi − xc

)
. (4.29)

Since we are considering a static initial configuration, the values for the π fields are simply given

by

π0
1(i, j) = π0

2(i, j) = π0
3(i, j) = 0 . (4.30)

We refer to the angle θ that appears in (4.28) as the internal phase of the skyrmion, and for

single-skyrmion initial data it can be chosen arbitrarily with no impact on the subsequent evolution.

4.3.5 Boosted Initial Data

The procedure for determining initial data describing a boosted baby skyrmion is essentially the

same as that used for generating boosted Q-ball initial conditions as described in Sec. 3.3.4. We

again consider a boost with Lorentz factor γ in the +x direction, and use primes to denote the

coordinate system associated with the rest frame of the skyrmion. We thus have

t′ = γ(t+ vx) x′ = γ(x+ vt) y′ = y , (4.31)

and

t = γ(t′ − vx′) x = γ(x′ − vt′) y = y′ . (4.32)
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Figure 4.5: Initial data for the fields of a B = 1 baby skyrmion. This figure shows the profile
function f(r), along with the two non-vanishing field components, φ1 and φ2, which follow from
the hedgehog ansatz (4.28) with θ = π/2. A natural length scale is defined by the size of the baby
skyrmion field, which appears to be around ≈ 50 units in radius (≈ 100 in diameter). We use this
size to determine acceptable dimensions for our computational domains, noting that, as usual, the
meaning of high (or low) resolution for a finite difference grid will always be relative to the natural
scale.

From equations (3.39) the dynamical fields φa(t′, x′, y′) have the following values in the boosted

frame:

φ1(t, x, y) = φ′1(t′, x′, y′) = sin f(x′, y′) cos θ(x′, y′) = sin f(γ[x+ vt], y) cos θ([γ(x+ vt), y]) ,

φ2(t, x, y) = φ′2(t′, x′, y′) = sin f(x′, y′) sin θ(x′, y′) = sin f(γ[x+ vt], y) sin θ([γ(x+ vt), y]) ,

φ3(t, x, y) = φ′3(t′, x′, y′) = cos f(x′, y′) = cos f([γ(x+ vt)], y) , (4.33)

where

θ(x, y) = tan−1

(
y − yc

γ[(x− xc) + vt]

)
. (4.34)

The time derivatives, πa(t, x, y), transform according to (3.40) and (3.41), yielding

π1 =
∂φ′1
∂x′

γv , π2 =
∂φ′2
∂x′

γv , π3 =
∂φ′3
∂x′

γv , (4.35)
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where we have used the fact that the rest-frame time derivatives, π′a(t′, x′, y′), are identically 0.

At the initial time, t = 0, the coordinates in the rest frame are

t′ = γvx x′ = xγ y′ = y . (4.36)

Again following the method described in Sec. 3.3.4, we interpolate in f(x′, y′) to determine the

values f(γx, y) in the lab frame, using r′ =
√
x′2 + y′2, as well as the fact that in the rest frame

f(x′, y′) is a circularly symmetric function, i.e. f(x′, y′) ≡ f(r′). A complete set of initial values

for a boosted baby skyrmion then follows by substituting t = 0 in (4.33). For the φa we have

φ0
1(x, y) = sin f(γx, y) cos θ(γx, y) ,

φ0
2(x, y) = sin f(γx, y) sin θ(γx, y) , (4.37)

φ0
3(x, y) = cos f(γx, y) .

while for the πa we find

π0
1(x, y) =

∂φ0
1

∂x′
γv , π0

2(x, y) =
∂φ0

2

∂x′
γv , π0

3(x, y) =
∂φ0

3

∂x′
γv . (4.38)

We note that the derivatives ∂φ0
a/∂x

′ in this last set of expressions are computed numerically.

4.3.6 Initial Data: Two Skyrmions

An important observation is that for the case of initial data describing two skyrmions we are free

to choose separate internal phases to set the t = 0 values of the φa fields.

Specifically, let us consider two skyrmions, each defined by the hedgehog ansatz (4.7), but char-

acterized by separate internal angles θ1 and θ2. Then denoting the fields for the two configurations

by φ(1)
a and φ

(2)
a , respectively, we have from (4.28)

φ(1)
a =


sin f(r1) sin(θ1)

sin f(r1) cos(θ1)

cos f(r1)

 , (4.39)
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φ(2)
a =


sin f(r2) sin(θ2)

sin f(r2) cos(θ2)

cos f(r2)

 , (4.40)

where r1 and r2 are the radial distances from the centres of the corresponding hedgehogs. We then

refer to the parameter Ψ, defined by

Ψ ≡ θ2 − θ1 ,

as the relative phase between the skyrmions. This quantity plays an important role in the dynamics

of skyrmion collisions.

In particular, one of the well-known results from earlier studies is that a pair of skyrmions (or an

skyrmion and antiskyrmion) separated by some distance, and at rest with respect to one another,

will experience mutual forces ranging from maximally attractive to maximally repulsive, dependent

on the value of Ψ [55, 139, 140]. Piette et al [55] define the attractive channel as a configuration of

two hedgehogs with an initial Ψ = ±π, while the repulsive channel corresponds to Ψ = 0 (i.e. no

phase difference). We will adopt this terminology in the following.

4.4 Code Validation

In this section we describe the various tests that we have used to establish the correctness of

our numerical implementation of the baby Skyrme model. These tests include 1) computation of

convergence factors (eqn. (2.30)), and verification that the expected values are apparently achieved

in the limit h→ 0; 2) a similar analysis of the convergence of independent residuals; and (3) where

suitable, investigation of the conservation of the topological charge B and the the total energy E

(defined below), again as function of the grid resolution. We note that the computation of B and

E is limited to unigrid (non-adaptive) calculations, since the coding required for the adaptive case

is beyond the scope of the current project.

We apply our tests to the following initial data sets: 1) smooth Gaussian data, 2) a static baby

skyrmion, and 3) a boosted baby skyrmion. We will show the results of these tests for two of the

six dynamical fields of our model, namely, φ1 and π1. Nevertheless, we emphasize that the other

fields—φ2, φ3 and π2, π3—converge in the same manner. For all of the test calculations described

here we used Dirichlet boundary conditions, (see App. E), and enforced the constraints using
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the reprojection method given by (4.23). Additionally, all of the tests were run with a potential

parameter µ2 = 0.001.

4.4.1 Computation of the Topological Charge B

We calculate the total topological charge (or baryon number), B, in the same fashion as the total

charge, Q, was computed in Sec. 3.4.2. The baryon number density, B0, is given by (4.5),

B0 = εabcενρφa∂νφb∂ρφc = εabc φa(∂xφb)(∂yφc) . (4.41)

The total baryon number, B, is then given by the spatial integral

B =
1

4π

∫
B0 dx dy . (4.42)

When our computations are run in parallel the computational domain is divided into several subre-

gions, and we thus perform the integration locally (i.e. one every subregion), using a second order

trapezoidal rule. For the I-th subregion, we have a contribution, BI , given by

BI =
(

1
4π

)
∆x ∆y

4

Nx−1,Ny−1∑
i,j

([B0]i,j + [B0]i+1,j + [B0]i,j+1 + [B0]i+1,j+1) , (4.43)

where ∆x and ∆y are the grid spacings of the two-dimensional mesh. We then sum the Bi to

determine the final value of B, where care must again be taken to avoid “double counting” in

overlapping regions introduced by the parallelization.

4.4.2 Computation of Energy Quantities

In the course of a calculation we compute the following locally defined energy densities: 1) total,

T00; 2) kinetic, T and 3) potential, P . We also evaluate the integrals of these quantities over the

solution domain, yielding values denoted by E, K and U , respectively.

Computing the local energy density, T00, is accomplished by first calculating the energy-

momentum tensor, Tµν , of the model. As usual, T00 describes the density and flow of the (local)

3-momentum. We have [32],

Tµν =
∂L

∂(∂µφa)
∂νφa − gµνL , (4.44)
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where L is given by (4.14). The local energy density, T00, is then given by

T00 = TµνUµUν = T00 , (4.45)

where Uµ = (1, 0, 0) is the 3-velocity of a coordinate-stationary observer [141]. The calculation of

the kinetic K and potential U energy densities follow from the decomposition of the Lagrangian

density (4.1) as L = K − U , yielding the expressions [55],

K =
∫
d2x

1
2
φ̇aφ̇a +

1
2

(φ̇a × ∂iφa)(φ̇a × ∂iφa) , (4.46)

and26

U =
∫
d2x

1
2
∂iφa∂iφa +

1
4

(∂iφa × ∂jφa)(∂iφa × ∂jφa)− µ2

2
(1− φ2

3) . (4.47)

The specific forms for T00, K and U are calculated using symbolic manipulation, exported to

Fortran 77, and then computed as separate grid functions in our code.

The total energy, E, is then calculated in complete analogy with the computation of B described

above. Sub-integrals, EI , are given by

EI =
∫
d2x E =

∆x ∆y
4

Nx−1,Ny−1∑
i,j

([T00]i,j + [T00]i+1,j + [T00]i,j+1 + [T00]i+1,j+1) , (4.48)

and then the EI are summed to yield the value of E. Correspondingly, the subintegrals for K and

U are calculated via

KI =
∫
d2x T =

∆x ∆y
4

Nx−1,Ny−1∑
i,j

([T ]i,j + [T ]i+1,j + [T ]i,j+1 + [T ]i+1,j+1) , (4.49)

UI =
∫
d2x P =

∆x ∆y
4

Nx−1,Ny−1∑
i,j

([P00]i,j + [P00]i+1,j + [P00]i,j+1 + [P00]i+1,j+1) . (4.50)

Similarly to EI , the KI and UI are summed to yield the values of K and U .
26The potential energy U is the sum of the spatial gradients and the potential function V .
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4.4.3 Independent Residual Evaluators

As in Sec. 3.4.3 for the case of Q-ball evolution, we evaluate independent residuals for the field

equations to provide strong evidence for the convergence of our finite difference approximations to

the continuum solutions (see Chap. 2). Our specific independent residual evaluators are constructed

using the same approach described in that section, although in this case we use a wider variety of

finite difference operators due to the appearance of mixed spatial derivatives in the equations of

motion. For the φa variables, we replace the Crank-Nicholson approximation with the following

expression, which is first order accurate in time:

Iφa
(i, j) =

φa(i, j)n+1 − φa(i, j)n

∆t
− πa(i, j)n+1 . (4.51)

As noted in Sec. 4.3.1, it is not practical to write the explicit expressions for the residuals of

the πa evolution equations, and for the independent residuals we are confronted with the same

problem. Therefore we again use a Maple script to replace differential operations by finite difference

approximations to generate the independent residual expressions Iπa
(i, j). Here we use first order

forward approximations for the first and second spatial derivatives of any of the φa or πa, as well

as a first order approximation for the time derivatives of the πa:

∂πa
∂t

=
πn+1
a (i, j)− πna (i, j)

∆t
+O(∆t) . (4.52)

The differential operators employed to construct the equations for Iπa
(i, j) are summarized in Table

(4.2).

If our finite difference solutions are converging to the appropriate continuum solutions, the

independent residuals Iφa
(i, j) and Iπa

(i, j) should vanish in the limit h→ 0. As is the case for the

Q-ball evolution, although we anticipate the finite difference solution itself to be O(h2) accurate, the

independent residuals—which are constructed with first-order approximations—are only expected

to be O(h) as h → 0. We also re-stress that since the independent residual operators are only

applied to the fundamental difference solution—and not used in any evolutionary capacity—the

stability of the FDAs used to construct them is not relevant.

In the following subsections we show results of independent residual tests for the functions φ1

and π1, and for the three different types of initial data we listed at the beginning of this section.
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φ φn+1
ij

φx
−3φn+1(i,j)+4φn+1(i+1,j)−φn+1(i+2,j)

2∆x

φy
−3φn+1(i,j)+4φn+1(i,j+1)−φn+1(i,j+2)

2∆y

φt
φn+1
ij −φnij

∆t

φxx
φn+1(i,j)−2φn+1(i+1,j)+φn+1(i+2,j)

∆x2

φyy
φn+1(i,j)−2φn+1(i,j+1)+φn+1(i,j+2)

∆y2

φxy
−3φx(i,j)+4φx(i,j+1)−φx(i,j+2)

∆y

Table 4.2: Two-(space) dimensional forward finite difference stencils used to compute independent
residuals for any of the six dynamical variables φa or πa. The mixed derivative is nested, i.e. the φx
terms are to be replaced by the corresponding forward approximation listed in the table. Here we
use the notation φnij ≡ φni,j = φ(tn, xi, yj). We remind the reader that we use (component) finite
difference grids that are characterized by a single discretization scale, h, so that ∆x = ∆y = h,
and ∆t = λh, where λ is the Courant number. Each of the above expressions is a first order (O(h))
approximation to its continuum counterpart at (tn, xi, yj).

We use four distinct resolutions, hL, L = 1, 2, 3, 4, where hL = hL−1/2. The residual norms have

been rescaled by factors of 2L−1, so that coincidence of the resulting plots indicates the expected

first order convergence of the residuals.

4.4.4 Gaussian-smooth Data

We begin our tests with the evolution of “generic” initial data which, as was the case for the Q-ball

test in Sec. 3.4.4, is based on a Gaussian form for the φa fields, and which is time-symmetric,

so that the πa identically vanish at t = 0. The initial data needs to satisfy the chiral constraint
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Figure 4.6: Field components for initial smooth data. The Gaussians φ1 and φ3 are concave down
(left), whilst φ2 is concave up (right). The three fields satisfy the chiral constraint φaφa = 1.

Figure 4.7: Evolution of φ1 for a computation with Gaussian initial conditions. The three compo-
nents of the field satisfy the chiral constraint φaφa = 1. This particular sequence corresponds to a
unigrid resolution of 513×513 points, in a domain of dimensions 160×160 ([−80, 80]× [−80, 80]), a
Courant number of λ = 0.2, and a Gaussian pulse of width 20. The initial amplitude is A = 1/

√
2,

which is the maximum value allowed given (4.55). No KO dissipation was used, i.e εKO = 0.0.
Boundary conditions are reflecting (Dirichlet).
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Figure 4.8: Qh Convergence factors for the functions φ1 and π1, corresponding to the evolution of
the smooth initial data in Fig. 4.7. Second order convergence is observed, since Qh → 4 as h→ 0.

Figure 4.9: Rescaled l2 norm of the independent residuals for the functions φ1 and π1, corresponding
to the smooth initial data in Fig. 4.7. The near coincidence of the lines at different resolutions
indicates first order convergence, as the mesh spacing h→ 0.
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φaφa = 1, so we set

φ1(0, xi, yj) = A exp

[
−
(
xi − xc
w

)2

−
(
yj − yc
w

)2
]

(4.53)

φ2(0, xi, yj) = A exp

[
−
(
xi − xc
w

)2

−
(
yj − yc
w

)2
]

(4.54)

φ3(0, xi, yj) =

√√√√1− 2A2 exp

[
−2
(
xi − xc
w

)2

− 2
(
yi − yc
w

)2
]

(4.55)

where w, A, xc and yc are parameters, and

π1(0, xi, yj) = 0 π2(0, xi, yj) = 0 π3(0, xi, yj) = 0 . (4.56)

From (4.55), the maximum value of A that can be used is 1/
√

2. An illustration of this type of initial

data is given in Fig. 4.6. As shown in Fig. 4.7, the data evolves as an outgoing circularly-symmetric

wavepacket (plots of φ2 and φ3 are very similar).

Results for the convergence factors and independent residuals for φ1 and π1 are shown in

Figs. 4.8 and 4.9. Quadratic convergence of the finite difference solution is evident, since Qh → 4

as h→ 0, consistent with the O(h2) accuracy of the underlying difference scheme. Furthermore, the

near-coincidence of the rescaled independent residuals indicates that, as expected, they converge

linearly as h→ 0. We note that here—as well as in similar plots shown for the hedgehog evolutions

described below—since the initial data is identical on all meshes, the t = 0 value of of Qh is not

defined (see 2.30) and has been arbitrarily set to 0.

The topological charge B for this type of initial data is effectively zero (< 10−10) even for the

coarsest resolution of our calculations (257× 257 points). The computation of the conserved total

energy, E, at various resolutions, is shown in Fig. 4.10. It converges quadratically to conservation

as h→ 0, consistent with the O(h2) approximation of the finite difference scheme and the numerical

integration technique (trapezoidal rule).

4.4.5 Static Hedgehog and Stability

We now turn our attention to the testing of our code using static initial data. Fig. 4.12 shows

the numerical evolution of a single static hedgehog centred in the computational domain, with

a potential parameter µ2 = 0.001 (Fig. 4.2). The numerical domain is 160 × 160 ([−80, 80] ×
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Figure 4.10: The top figure shows the evolution of the total energy E at different resolutions
corresponding to the smooth initial data plotted in Fig. 4.7. Quadratic convergence to conservation
is observed, as expected, since E is integrated using the second order trapezoidal rule on each
subdomain as given by (4.48). The bottom plot shows the decomposition of E into kinetic energy
K and potential energy U , for the same initial data at a resolution of 513 × 513 points. The
kinetic energy increases from zero, while the potential energy proportionally decreases, and after
some oscillations, K and U approach steady state values, corresponding to the circularly symmetric
expanding wave front seen in Fig.4.7.
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(a)

(b)

Figure 4.11: Comparison of the size of a skyrmion as defined by the baryon density, B0, (top) and
the field component, φ1, (bottom). In both cases we define the approximate size via the distance
from the center where the tail of the quantity is sufficiently small. Using B0 this gives a diameter
of ≈ 20 units, while using φ1 we find a diameter of ≈ 100.
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Figure 4.12: Evolution of the baryon density, B0, for a static hedgehog sitting at the origin. The
resolution is 513 × 513 points, on a domain of dimensions 160 × 160 ([−80, 80] × [−80, 80]), but
the figure has been cropped to [−40, 40]× [−40, 40] for illustrative purposes. The Courant number
is λ = 0.2, and the potential parameter is µ2 = 0.001. The boundary conditions are Dirichlet
(reflecting). No dissipation was used (εKO = 0.0). After a brief period of relaxation the hedgehog
reaches a (visually) time-independent state.
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Figure 4.13: Convergence factors for the functions φ1 and π1, corresponding to the static baby
skyrmion evolution in Fig. 4.12. Quadratic convergence is achieved, i.e. Qh → 4 as h → 0, as
expected from our finite difference approximation.

Figure 4.14: Rescaled l2 norms of the independent residuals of φ1 and π1, at different resolutions,
for the static baby skyrmion evolution shown in Fig. 4.12. Once again, the trend to coincidence of
the lines as resolution is doubled signals the expected O(h) convergence.
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(a)

(b)

Figure 4.15: Evolution of the baryon number, B, (Fig. 4.15a) and total energy, E, (Fig. 4.15b) at
different resolutions for the evolution of the static baby skyrmion initial data plotted in Fig. 4.12.
The top plot shows the evolution of the baryon number B, while the bottom one shows the evolution
of the total energy E. The kinetic energy K is of the order of 1 × 10−4, thus for all practical
purposes E is purely potential. Although at any fixed resolution there appears to a roughly linear
“dissipation” of E and B with time, the expected quadratic convergence of both quantities is
clearly observed. The use of a Dirichlet or Sommerfeld boundary condition did not produce any
appreciable difference in the results of this test.
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Figure 4.16: This figure displays a baby skyrmion radial profile function, f(r), with µ2 = 0.001
and a trial profile function g(r) = π exp (−r/8.8).

[−80, 80]). 27 We note that this choice of domain ensures that the hedgehog, which has a diameter

of about 100 units, is properly contained on the grid. The Courant number for this calculation is

λ = 0.1, and Kreiss-Oliger dissipation is not used (εKO = 0.0) since the evolution is not affected

(appreciably) by high frequency components in the solution. Again, the boundary conditions are

Dirichlet (reflecting). After a brief period of relaxation, the skyrmion sets into a (visually) static

state, inferred from the apparent time-independence of B0.

Calculation of the convergence factors, Qh, (Fig. 4.13) unambiguously reveals that they tend

to four, which indicates second order (O(h2)) convergence, consistent with our FDA scheme. The

rescaled independent residuals for φ1 and π1 are shown in Fig. 4.14. As before, the trend to

coincidence of the curves demonstrates that the residuals converge linearly (O(h)) with the mesh

spacing h.

Fig. 4.15 shows the results of the computation of the conserved topological charge, B, and the

total energy, E, at various resolutions. Both quantities converge quadratically to conservation as

h → 0. This is the expected rate of convergence since both the finite difference scheme and the

approximate integration technique (second order trapezoidal rule) are O(h2).

We also devised a test to investigate simultaneously the dynamical stability and convergence

of baby skyrmion data. The experiment involved trial-and-error approximation of the numerically
27We remind the reader that this notation, defined in Sec. 3.4.1, means that the computational domain has extent

[xmin, xmax]× [ymin, ymax]
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computed profile, f(r), with the closed form trial function, g(r),

g(r) = π exp (−r/8.8) . (4.57)

Fig. 4.16 shows plots of both functions. Heuristically, we can consider g(r) a small perturbation of

f(r). Initializing the dynamical fields via (4.28), but with f(r) → g(r), the baryon density of the

“perturbed” hedgehog oscillates slightly at early times, but then eventually settles into a stationary

state, very close to that produced for the corresponding true baby skyrmion. This provides evidence

that this particular soliton is indeed stable under small (but finite) perturbations. Furthermore,

investigation of the conservation of B and E for the perturbed evolution yields the same rates of

convergence as for the computations using f(r).

4.4.6 Boosted Skyrmion

As for the previously described experiments with Q-balls, one of our principal objectives is to study

collisions of baby skyrmions having large relative velocities. As a preliminary step towards this

goal, we investigate our code’s convergence properties using initial data for a single boosted baby

skyrmion, prepared as described in Sec. 4.3.6. We consider a relatively small boost with γ = 1.6

(γ is the boost of the skyrmion relative to the lab frame). Evolutions of baby skyrmions with

much larger boosts will be considered in Sec. 4.6. As an aside, and as stated in Sec. 3.4.6, it is

important to keep in mind that at fixed resolution, and as a consequence of effects such as Lorentz

contraction along the boost direction, the convergence of our code degrades with increasing γ.

In order to perform computations with fixed accuracy as we increase the value of γ, we need an

increase in grid resolution (increasingly fine mesh spacing), albeit not globally, i.e. not required

throughout the whole computational domain. It is therefore evident that maintaining constant

accuracy globally is computationally expensive and grossly inefficient. This constitutes the major

motivating factor for the use of AMR in our calculations, as was the case for the evolution of highly

boosted Q-balls.

We performed convergence and independent residual tests for a γ = 1.6 (v = 0.8) boosted baby

skyrmion (Fig. 4.18), in a box with dimensions 120 × 120 ([−60, 60] × [−60, 60]), with λ = 0.1,

and εKO in the range 0.4–0.6, (the precise choice of εKO did not appreciably affect the results).

We note that the decreased domain limits, with respect to the static baby skyrmion in Fig. 4.12,

145



4.4. CODE VALIDATION

Figure 4.17: Evolution of the baryon density of a perturbed hedgehog, initialized using the trial
function g(r) in Fig. 4.16. The parameters of this run are identical to those in Fig. 4.12. However,
each snapshot has been cropped to [−25, 25] × [−25, 25] for a better illustration. The soliton’s
maximum undergoes damped oscillations, and after some time it settles down around the value of
the maximum of a hedgehog initialized with f(r). Concentric outgoing waves are slightly visible:
these waves carry the excess of energy released by the perturbed hedgehog while it relaxes into a
static state, very close to that of the baby skyrmion initialized with f(r). This behaviour shows that
the hedgehog is indeed stable under small but finite perturbations. We note that the “jaggedness’
apparent in some of the above plots, as well as those in Fig. 4.18, is an artifact of the plotting,
which used a coarsening of the actual finite difference grid.
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Figure 4.18: Evolution of the baryon number density B0 of a boosted hedgehog at γ = 1.6 (v = 0.8).
This data comes from a unigrid calculation with a numerical mesh of 513×513 points, on a domain of
dimensions 120×120 ([−60, 60]× [−60, 60]), but the figure has been cropped to [−60, 60]× [−30, 30]
for clarity. The initial position of the soliton is (x0, y0) = (−30, 0). The Courant number is λ = 0.2
and the dissipation parameter is εKO = 0.5. The diameter of the baby skyrmion (in the x-direction)
for this value of γ contracts to 100/1.6 ≈ 62.5. The boundary conditions are Sommerfeld (outgoing
radiation). We observe that the skyrmion evolves in an essentially unperturbed and stable fashion.
We applied small changes to the value of γ and observed identical behaviour.
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Figure 4.19: Convergence factors for the functions φ1 and π1, corresponding to the boosted baby
skyrmion evolution in Fig. 4.18. O(h2) convergence is achieved, i.e. Qh → 4 as h→ 0, as expected
from our finite difference approximation. As discussed in the text (Sec. 4.4.6), at fixed resolution
the convergence of our code degrades with increasing γ, as a consequence of effects such as Lorentz
contraction along the boost direction. Computations for larger γ require increased grid resolution
(increasingly fine mesh spacing) for fixed accuracy.

Figure 4.20: Rescaled l2 norms of the independent residuals of φ1 and π1, at different resolutions,
for the same boosted skyrmion evolution shown Fig. 4.18, with γ = 1.6 (v=0.8). The trend to
overlap of the lines as h→ 0 signals linear convergence, as expected.
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(a)

(b)

Figure 4.21: Evolution of of the baryon number B (Fig. 4.21a) and total energy E (Fig. 4.21b)
at different resolutions for the γ = 1.6 boosted skyrmion evolution shown in Fig. 4.18. Quadratic
convergence is observed for both quantities. At low resolution, there appears to be roughly linear
“dissipation” of E with time, but there is clearly convergence to conservation as h → 0. The use
of a Dirichlet or Sommerfeld boundary condition did not produce any appreciable difference.
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is motivated and justified by the severe Lorentz contraction of the highly-boosted configurations.

This adjustment attempts to keep the soliton resolved with about the same number of points as

for the static skyrmion. Fig. 4.19 shows the convergence factors for φ1 and π1, while Fig. 4.20

shows the evolution of the (rescaled) l2 norms of the independent residuals for those fields. Once

more we observe the expected second order convergence of the dynamical grid functions and first

order convergence of the independent residuals. Finally, we computed the evolution of the baryon

number, B, and the total energy, E, at different resolutions. At any resolution there appears to

be roughly linear “dissipation” of E with time, but there is clearly convergence to conservation as

h→ 0.

4.5 General Features of Baby Skyrmion Scattering:

Previous Work

The classical scattering of two B = 1 baby skyrmions has been studied extensively: here we briefly

review the work that is most relevant for this thesis.

First, we emphasize that although the original 3+1 Skymre model is of most phenomenological

interest, numerical simulations of the highly nonlinear full 3 + 1 equations of motion are compu-

tationally expensive. This has provided much of the impetus for the focus on the baby Skyrme

model, including the current work.

The earliest discussion of the possible presence of solitons in a sigma model in 2 + 1 dimensions

is due to Belavin and Polyakov (1975) [33, 57], who showed the existence of non-trivial static

solutions in a O(3) model describing the thermodynamics of ferromagnets, subject to the chiral

constraint,

L =
1
2
∂µφa∂

µφa + λLM (1− φaφa) , (4.58)

(following the same notation as in (4.14)). They also suggested that the model be reformulated

in terms of a complex field, W . This was motivated by their ability to then construct a two-

dimensional analog of Euclidean Yang-Mills theories [58, 59], which are better suited for quantiza-

tion using a path integral approach [142]. Since the boundary conditions at infinity are the same

in any direction on the plane, the complex dynamical fields live on a Riemann sphere (that is, the

complex plane plus the point at infinity, C ∪ {∞}). The field W is therefore obtained by stereo-
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graphic projection of the original fields φ in (4.58) [60]. The model (4.58) was thus referred to as

the CP1 model, since the geometry and topology of the target space in this formalism correspond

to the complex projective space CP1. A brief description of the W -formalism can be found in

App. D.3.

The non-trivial solutions found in the CP1 model, although localized, turn out to be unstable

under perturbation of their shape, leading to the solution either shrinking to a point (becoming

an infinite spike in finite time), or expanding without bound [60, 143, 144]. Given that these

solutions are not quite solitons (due to this instability), they were referred to as CP1 lumps [20].

The observed instability seems to arise from the conformal invariance of the model, i.e. for any

fixed energy there is a continuously deformable family of lump shapes (and sizes).

It was found, however, that under certain conditions it was possible to study the head-on

collision of two CP1 lumps before they collapsed to zero size, and Ward [60] used that fact to study

such collisions using analytic methods to calculate geodesics in the internal space [20, 145, 146].

Using calculation of geodesic trajectories, Leese [61, 139] was the first to report the typical right-

angle scattering seen in low velocity (v ∼0.2–0.3) head-on collisions of sigma-model-type solitons28.

Indeed, using the fact that lumps follow geodesic paths, Manton showed that right-angle scattering

can be understood in terms of the geometry of the internal space of the model [20, 147]. Manton

also demonstrated that the scattering angle approaches zero as the impact parameter grows.

These results were verified and extended numerically by Zakrzewski [89] using initial data

describing a two lump configuration. The lumps were specified using the W formalism, and each

had a diameter ∼ 1.0. The calculations were performed on computational domain [−2, 2]× [−2, 2],

using a two dimensional mesh with 201 × 201 points, a mesh spacing of ∆x = ∆y = 0.02, and

a Courant number ∆t/∆x = 0.5. The time stepping was performed using a fourth order Runge-

Kutta method, and the spatial derivatives were approximated with second order stencils. The

chiral constraint was enforced by reprojection of the fields.

Zakrzewski found that head-on collisions always resulted in right angle scattering, and that a

collision triggered shrinking of the lumps, which then became “spiky”. The rate of lump shrinkage

was observed to increase with increasing initial velocity. Furthermore, it was found that head-on

scattering of two lumps of different initial sizes produced two lumps of the same size that had

scattered at right angles. For initial data of this type, but with a non-zero impact parameter,
28Unless stated otherwise, velocities are always those of each soliton relative to the laboratory frame.
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intermediate size lumps were produced (it is interesting to observe that the size of the extended

object is also relevant to non-topological solitons, as discussed in the context of our results with

small Q-balls in Sec. 3.6.3). Radiation from the collisions appeared negligible, except for the case

of relatively large initial velocities (v ∼ 0.4–0.5).

In order to stabilize W -lumps, thus promoting them to “true” solitons, Leese [61] introduced a

term which took advantage of the invariance of the energy of the model under transformations of

the form W → Weiα. The modification effectively adds internal angular momentum to the lump

that prevents collapse. The resulting stable, static solutions are called Q-lumps, in analogy to Q-

balls. Specifically, the nomenclature is motivated by the fact that besides a topological conserved

number, N , a conserved Nöether charge, Q, arises from the U(1) symmetry. In the same paper

cited above, Zakrzewski [89] studied head-on collisions of Q-lumps, observing that the relative

phase did prevent the shrinking of the soliton, and that it introduced repulsive forces that were

important in determining scattering properties.

As discussed in Sec. 4.2, the stabilization of a lump can also be achieved by adding extra terms

to the Lagrangian. Wilczek and Zee [58, 57] were the first to suggest that a 2 + 1 sigma model

could serve as a toy model for skyrmions. Specifically, they advocated the addition of a term that

was fourth order in the field derivatives (a Skyrme term), as well as a mass or, more generally, a

potential with no dependence on the field derivatives.

Within the context of this proposed model, Leese, Peyrard and Zakrzewski [90] then performed

simulations of head-on scattering using the same basic numerical setup described in [89]. In this

case the solitons had diameters of ∼ 2 and velocities in the interval 0.2–0.6 were considered. The

calculations confirmed that the solitons were indeed stable, and that they behaved as quasiparti-

cles; i.e. their shapes were preserved after interaction. The force between the solitons was found

to be repulsive, resulting in back-scattering until some critical velocity v ∼ 0.3. Higher initial

velocities led to right-angle scattering, and significant emission of radiation. These results were

then corroborated by Sutcliffe [91], who calculated the critical velocity analytically, obtaining a

value of ∼ 0.21.

The term baby skyrmion actually first appears in a paper by Piette, Schroers and Zakrzewski

[55]. As previously discussed, each specific potential term defines a particular baby skyrmion model.

The one chosen in the studies just mentioned [90, 91] is V = (1 + φ3)4 and results in the so-called

holomorphic model [35, 91]. The static solutions in this model may describe either a single solition,
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or a multi-skyrmion. The latter is a minimal energy solution describing a bound state of multiple

skyrmions, with each constituent having the same specified topological charge, B [93, 148].

However, the most well-studied members within the baby Skyrme model taxonomy are arguably

1) the old baby Skyrme model [93, 55, 56], with a potential function V = 1 − φ3, and 2) the new

model, V = 1 − φ2
3, which we have adopted in this thesis. The old model gives rise to multi-

skyrmions with complex structures and is the basis for the so called skyrmion crystal [35]. It is

also of interest since it possesses multi-skyrmion ring-like solutions. The skyrmions appearing in

the new and old models are expected to differ primarily at small distances (as measured from their

respective centres), since they tend to the same vacuum state φa = (0, 0, 1) as r →∞.

Again, we have restricted attention to the new model in the studies described here. However,

we are particularly interested in high-boost phenomenology and expect that the generic features

we observe in that case will be largely independent of the details of the potential. We have also

used the hedgehog ansatz (4.7) rather that the W -formalism in the calculation of our static initial

configurations. This choice was largely made on the basis that the former is used in most of

the more recent studies (see below), while the latter was motivated by arguments related to the

quantization of the model, and which are thus not relevant for our classical computations.

We now summarize previous studies of baby skyrmion collisions that are most pertinent to our

work. These include the following:

• One of the studies that is most relevant to this thesis is due to Crutchfield and Bell [1],

whose work was in large part motivated by the observation of instabilities in earlier numerical

investigations of the full 3+1 Skyrme model [85, 84]. Two main possible sources of instability

were posited: 1) a problem with the implementation of the chiral constraint in conjunction

with leap-frog schemes and 2) a conjectured, configuration-dependent change in character

of the dynamical equations from pure hyperbolic to mixed hyperbolic-elliptic. This second

claim is of special interest to us. Crutchfield and Bell provided a non-rigorous argument

for the loss of hyperbolicity based on the linearization of the equations of motion, and an

analysis of the conditions under which some of the characteristics of the system could become

complex (this issue is discussed in somewhat more detail in App. C.2). The argument applies

to both the 3 + 1 and 2 + 1 versions of the Skyrme model, and has apparently become widely

accepted in the field [25]. The authors also heuristically equate the loss of hyperbolicity to

regions in solution space where “kinetic energy” is larger than “potential energy”, although it
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is not entirely clear how the two forms of energy were defined in their paper. In our work we

have been especially concerned with the question of whether or not hyperbolicity loss (loss

of well-posedness) is genuinely an issue in Skymre models.

The specific numerical calculations in [1] involved both the 2 + 1 baby Skyrme model (which

was referred to as the pseudo-Skyrme model)—but with no potential term—as well as the

3 + 1 model. For the 2 + 1 case the authors may have been unaware that the addition of a

potential enables the existence of static solutions, since they noted that there are no localized

solitons in the model and then focused their investigations on the evolution of generic, smooth

Gaussian initial data.

Two separate O(h2) numerical schemes were considered. The first used “leap-frog” time

stepping as employed in [85, 84], but with an improved implementation of the constraint

enforcement relative to previous work (and which is quite similar to ours). The second was

a predictor-corrector type scheme apparently largely motivated by the savings in memory it

afforded relative to the “leap-frog” method, and which was a considerably more important

consideration in the early 1990’s than it is now. The results that are presented are notable in

that convergence tests were performed, with the expected O(h2) convergence being observed

for both 2+1 and 3+1 computations. The 3+1 code was also used in a subsequent study [83].

Typical mesh sizes used were 32×32 to 256×256 in the 2D case, and 8×8×8 to 32×32×32

for the 3D computations. For both the leap-frog and predictor-corrector schemes, Courant

factors of 0.5 were used without the appearance of numerical instability: in the 3D case this

represented an order of magnitude improvement relative to the first numerical efforts [85, 84].

• Peyrad et al, [92], considered head-on BB collisions using the holomorphic potential. The

rational ansatz W -formalism (App. D.3) was adopted, and in addition to the potential pa-

rameter θ2 (corresponding to our µ2), an adjustable coupling constant θ1 was introduced to

the Skyrme term. For a given initial velocity, scattering exit angles as a function of 1) the

Skyrme term parameter θ1, and 2) the relative phase of the skyrmion were computed for a

range of velocities, 0.1 < v < 0.95. An effective repulsive force between the solitons was found

and, at low velocities, very little emitted radiation from the collisions was seen. The authors

further demonstrated that the critical velocity separating back- and right-angle scattering

depended on the parameters θ1 and θ2. In addition, for the case of right-angle scattering
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close to the critical velocity they observed a quasi-bound ring-like intermediate state.

The boosted skyrmions in this study were generated using a Galilean transformation and

there is mention that skyrmions with large initial velocities radiate strongly at the beginning

of the simulation. It is possible that this may be a resolution-dependent phenomenon that

should disappear as h → 0. We note that apart from plots of scattering trajectories (which

show the time evolution of the centres of the skyrmions in the xy plane) there were no results

displayed for high-velocity computations. Additionally, there is no mention of the appearance

of any instabilities.

Calculations were performed on a domain of approximate dimensions [−5, 5]× [−5, 5], using

512 × 512 grids and a mesh spacing ∆x = ∆y = 0.02. The skyrmions had diameters ≈ 2.

The spatial discretization technique was the same as that adopted in [90], and a fourth order

Runge-Kutta method was used for time stepping. The chiral constraint was implemented

using reprojection.

• Piette et al [55] studied BB collisions—both head-on and grazing—using the old model and

the hedgehog ansatz (4.7), with µ2 = 0.1. Initial velocities in the range 0.1 < v < 0.6 were

considered The authors demonstrated that variation of the relative phase would produce

either attraction or repulsion between the skyrmions. They identified a maximum attractive

channel when the relative phase is ±π, and a maximum repulsive channel when the value

is zero. It was reported that during head-on collisions a large amount of energy was lost

through radiation. In fact, it was found that the skyrmions could only re-emerge from the

interaction if the initial velocity was ≥ 0.46. At lower velocities, an intermediate “toroidal”

bound state was formed (which was also observed by Peyrad et al [92] and Kudryavtsev et

al [56]), and radiation continued to be emitted until the configuration relaxed to a static

B = 2 ring soliton. They also reported that the relative phase of the skyrmions was relevant

not only for the exit angle of the scattering, but for the post-collision velocity as well. They

noted that the outcome of grazing collisions is particularly rich, since it depends on the initial

velocity, the impact parameter b and the relative phase of the skyrmions: depending on the

values of these parameters they could form bound orbits or scatter away from each other. For

the particular case where the initial velocity was fixed to 0.4 and with the solitons prepared

in the maximum attractive channel, they identified a critical impact parameter of b = 1.5

beyond which the skyrmions had essentially no effect on one another, with both escaping to
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infinity.

The choice µ2 = 0.1 fixed the diameter of their solitons to ≈ 28 (see Fig. 4.2). The computa-

tional domain had dimensions [−25, 25] × [−25, 25], and a fixed resolution of 250× 250 grid

points was used. However, the description of the rest of their computational methodology is

somewhat sparse.

• Dwyer and Rajagopal [94] studied head-on and grazing BB collisions in the range of velocities

0.1 < v < 0.8, adopting a slightly modified baby Skyrme Lagrangian which they used as a

toy model for electroweak (metastable) solitons. They used a potential V = λ(φaφa − v2)2

and treated λ as a parameter. For each value of λ they found a critical velocity above which

a collision always ended in the annihilation of the skyrmions, i.e. the observed destruction of

the solitons was independent of the details of the initial configuration.

The authors were more explicit about their numerical setup than some of the other works

mentioned thus far. They used a fourth order Runge-Kutta time integrator, with second order

FDAs for the spatial derivatives. Static solutions were obtained by relaxation of an initial

closed form profile function. They worked on a uniform two dimensional mesh with 125×125

points, ∆x = 0.2, and Courant numbers in the range 0.05 < λ < 0.25. Their solitons had

a diameter of ≈ 20. Boosted initial conditions were generated by means of simple Galilean

transformations, and they did not impose any constraint during time evolution. The lack

of such a corrective mechanism, along with the coarseness of their mesh, suggests that the

numerical errors might have been substantial. It thus would have been informative to have

had information on the convergence properties of their code, but this was not provided.

• Soliton-antisoliton (BB̄) configurations of baby skyrmions were studied in [149]. A generic

characteristic of BB̄ collisions mentioned in that work is that the BB̄ pair interacts rather

strongly, with mutual annihilation and the production of large amounts of radiation. It is

notable that the peaks of the outgoing waves exit at 90◦ from the axis of approach of the

solitons, i.e. in the transverse direction of motion. Kudryavtsev et al [56] studied excited

skyrmion states with B = 1, observing decays into a baby skyrmion plus a baby skyrmion-

antiskyrmion pair, which eventually decayed into pure waves.

• The dynamics of hedgehog baby skyrmions B = 1 has also been studied in the presence of

various potential obstructions, such as barriers and holes. The obstructions are modelled
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with the same technique employed in Sec. 3.7 for Q-balls, in which one introduces a localized

spatial inhomogeneity in the coefficient of the potential term. As we mentioned in Sec. 1.2.2,

some condensed matter developments have motivated a surge in activity in this area. One

specific example is the study of magnetic bubbles [150] which are created by exposing a

ferromagnetic material to a pulsed magnetic field. Such bubbles were once considered as the

basis for computer memory storage due to the high spatial densities that could be achieved.

We have not, however, considered any potential obstruction scattering of skyrmions in this

thesis; interested readers can consult references [151, 152, 153, 98, 99].

4.6 Single-boosted Skyrmions

We now briefly describe our simulations of single boosted skyrmions. The chief aim is to understand

the general numerical characteristics of the solutions, with numerical stability being of central

interest. Our main conclusion is that the low-boost behaviour discussed in Sec. 4.4.6 is quite

generic: in particular, baby skyrmion evolution at high values of γ remains stable and convergent.

(We again note that γ is the boost of the skyrmion relative to the lab frame.) In addition, these

results hold for both unigrid and adaptive calculations.

In Sec. 4.4.6 we tested the convergence properties of our code for a boosted baby skyrmion with

γ = 1.6 (v = 0.8). We systematically increased this value of γ, and as we did so we monitored

convergence and the conservation of the total energy E.

We performed two AMR calculations, one with γ = 3.2 (v = 0.95, Fig. 4.22a) and another with

γ = 5.79 (v = 0.985, Fig. 4.22b). The numerical setup is detailed in the figure caption. We applied

outgoing radiation (Sommerfeld) conditions at the outer boundaries (App. E). As usual, this choice

of boundary condition is motivated by a desire to minimize the amount of radiation that reflects

from the boundaries, and which would subsequently “contaminate” the interior solution. We used

reprojection, as defined by (4.23), for constraint enforcement here and, unless otherwise stated, for

all the numerical experiments described in this chapter.

As can be seen in Figs. 4.22a and 4.22b, evolutions at large γ using the resolution parameters

given above display radiation “leaking” from the solition, particularly at early times. We can

interpret this as a relaxation of the skyrmion from its initial configuration (presumably to a slightly

lower energy state) and it is almost certainly a resolution-dependent phenomenon that should
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(a) (b)

Figure 4.22: This figure shows the evolution of the baryon number density B0 of two boosted baby
skyrmions, one at γ = 3.2 (v=0.95, Fig. 4.22a), and another at γ = 5.79 (v=0.985, Fig. 4.22b).
Evolutions at the latter values of large γ, using the resolution parameters given below, display
radiation “leaking” from the solition, particularly at early times. We can interpret this as a
relaxation of the skyrmion from its initial configuration (presumably to a slightly lower energy
state) and is almost certainly a resolution-dependent phenomenon that should disappear as h→ 0.
In addition, although the overall shape of a very rapidly propagating skyrmion stays the same,
the height of the central “spike” decreases slightly, indicating that the gradients of the fields have
decreased too. Note that the skyrmion in (4.22a) has contracted to 100/3.2 = 31.2 in the x
direction, while the x-extent of the fastest skyrmion (4.22b) is 100/5.79 = 17.2. These are AMR
calculations with τmax = 5×10−3, an L = 1 mesh having 257×257 points, and Lf = 5 (according to
the notation established in Sec. 2.4). We set the Kreiss-Oliger dissipation parameter to εKO = 0.5,
and the Courant number to λ = 0.2. The boundary conditions are Sommerfeld outgoing radiation
(App. E), and the domain has dimensions 120 × 120 ([−60, 60] × [−60, 60]). Given the fact that
the baryon density is less extended than the Skyrme fields (see Fig. 4.11), and in order to better
visualize the solitons, the domain has been cropped to [−60, 60]× [−20, 20]. The starting location
of the center of each boosted baby skyrmion is (x0, y0) = (−30, 0). The constraint enforcement
method was reprojection (4.23).
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(a) t=0.0 (b) t=3.0 (c) t=6.0

Figure 4.23: Surface plot of the the evolution of the π1 field corresponding to the AMR calculation
of a single boosted baby skyrmion in Fig. 4.22a. We observe that the field for the soliton remains
smooth as it propagates.

disappear as h→ 0. In addition, although the overall shape of a very rapidly propagating skyrmion

stays the same, the height of the central “spike” decreases slightly, indicating that the gradients of

the fields have decreased too. Use of a more stringent value of τmax, which leads to larger parts of

the computational domain being covered by finer meshes, reduces these effects, providing evidence

for the claim that they will vanish in the limit of infinitesimal grid spacing. Fig. 4.23 illustrates

the grid function, π1, from the γ = 3.2 calculation. We observe that π1 remains smooth and stable

as the skyrmion propagates.

We also computed the evolution of the total energy, E, at different resolutions (non-adaptive

mode) for the γ = 5.79 boosted skyrmion and this is shown in Fig. 4.24a. The decomposition

of E into kinetic, K, and potential, U , contributions from a 2049 × 2049 unigrid calculation is

shown in Fig. 4.24b. The expected trend towards conservation of E at an O(h2) rate is observed

(higher resolution computations would be useful to make this statement more definitive, but are

too costly). In particular, as the skyrmion travels to the right (Fig. 4.23), we do not observe the

development of any discontinuity in E. As we will describe below, this behaviour is seen in some

of our collision simulations where it is viewed as signalling a loss of hyperbolicity. We also note

that at this value of γ the potential energy barely exceeds the kinetic energy.

We conclude that our numerical evolutions of single boosted baby skyrmions are stable—with

the configurations remaining localized as expected—even at large values of γ.
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(a) (b)

Figure 4.24: Evolution of energy quantities from unigrid calculations of a boosted baby skyrmion
with γ = 5.79 (Fig. 4.22b). We show the time development of the total energy, E, at different
resolutions (Fig. 4.24a), and the decomposition of E into kinetic and potential components (K and
U , respectively) using a 2049 × 2049 grid (Fig. 4.24b). Although higher-resolution calculations—
which are too costly—would allow us to make a more definitive statement, there is evidence that
E is trending towards conservation at the expected O(h2) rate. This bolsters the claim that our
simulations of propagating skyrmions remain stable even at high boosts; i.e. that the evolutions are
well-posed. Note that for this value of γ the potential energy is only marginally greater than the
kinetic energy. Finally, we observe that there was no appreciable difference between calculations
that used Dirichlet instead of Sommerfeld boundary conditions.

4.7 Baby Skyrmion Head-on Collisions

In this section we analyze head-on collisions of two baby skyrmions defined by the same hedgehog

profile function, f(r), used previously and, unless stated otherwise, with a potential parameter µ2 =

0.001. As discussed in Sec. 4.3.6, the interaction of initially separated skyrmions is characterized

by the relative phase, Ψ. One important feature of skyrmion collisions is that the end state exhibits

strong Ψ-dependence.

In the subsections below we present the results from our simulations of various head-on collision

processes using both unigrid and AMR calculations. Our central result is the confirmation of the

existence of mixed hyperbolic-elliptic dynamical regions (loss of hyperbolicity and well-posedness),

and for the various experiments performed we approximately identify values of the critical velocity

in the lab frame (denoted by γ?) where the transition takes place. To this end, we primarily rely

on the monitoring of the conservation of the total energy, E.

We first note that if a baby skyrmion has a baryon charge, B, we define a baby anti-skyrmion

as a configuration with a conjugate topological charge, −B. Specifically, the anti-skyrmion is
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obtained by charge-conjugation of a hedgehog (φ1, φ2, φ3)→ (−φ1,−φ2, φ3) followed by a reflection

(−φ1,−φ2, φ3)→ (φ1,−φ2, φ3) [88]. This results in a hedgehog with charge −B.

We will adopt the following notation to refer to the most common type of scattering that we

consider here and in subsequent sections. BB denotes the collision of two baby skyrmions, each

with topological charge B, while BB̄ refers to the scattering of a baby skyrmion with charge B

and an baby anti-skyrmion with charge −B. The latter case will be discussed in detail in Sec. 4.9.

We begin by describing the initial configuration for a typical BB collision. Given that the

equations of motion are nonlinear, we cannot rely on a general superposition principle to produce

an initial state that genuinely describes two distinct solitons. However, provided that we prepare

hedgehogs that are sufficiently well-separated that there is essentially no overlap between them,

then it is straightforward to argue that data given by

φa =


sin f(r1) sin(θ1) + sin f(r2) sin(θ2)

sin f(r1) cos(θ1) + sin f(r2) cos(θ2)

cos f(r1) + cos f(r2)− 1

 (4.59)

will closely approximate a two-soliton initial configuration.29 In the last expression the subtraction

of 1 in the third component is necessary to ensure that the fields tend to the vacuum state (0, 0, 1)

as r →∞. The key physical parameters characterizing the collisions we consider here include the

Lorentz boost factor, γ, the potential parameter, µ2, the internal phase, Ψ, and, for the grazing (off-

axis) collisions studied later, (see e.g. Sec. 4.8) the impact parameter, b. Computational limitations

preclude an exhaustive exploration of parameter space so we focus attention on specific families of

initial data that produce dynamics that we hope to be representative of the overall phenomenology

of the model.

As well as the physical parameters there are variables that control the numerical scheme itself.

AMR-pertinent values used here include: a regridding interval of nregrid = 20–25, a buffering width

of wbuffer = 6, and a Courant number in the range λ = 0.1–0.2. These values are consistent with

the restriction (3.56), which reads

λnregrid < wbuffer . (4.60)

The truncation error threshold values used are in the interval τmax = 1 × 10−5 to 1 × 10−2,
29We note, however, that we always perform a projection of the t = 0 data to ensure that the constraint is precisely

satisfied.
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but a trial and error search led us to choose τmax = 6 × 10−4 as a default. The Kreiss-Oliger

dissipation parameter was set to εKO = 0.4, and, in order to minimize any interference from

radiation reflection, Sommerfeld boundary conditions were adopted. Our default computational

domain was [−60, 60]× [−60, 60], with the boosted baby skyrmions centred at (−30, 0) and (30, 0).

For the AMR calculations, the base grid (level L = 1) had 257 × 257 points, and we typically set

the maximum refinement level to Lf = 5 or 6.

Finally we point out that given that the computation of the convergence factor Qh for AMR

calculation is more complicated than for a unigrid one (see Sec. 3.6), and given that our code

in unigrid mode is apparently convergent for generic initial data (convergence tests are shown in

Sec. 4.4 and Sec. 4.7.1), we do not perform convergence testing in AMR mode.

4.7.1 Baby Skyrmion Head-on Collisions with the Same Internal Phase

We begin by focusing our attention on one specific computation with the primary goal of inves-

tigating convergence, and thereby estimating typical resolutions that are required for reasonably

accurate results.

We thus consider a γ = 1.6 (v = 0.8), head-on BB collision with an internal phase difference

Ψ = 0 (repulsive channel). Fig. 4.25 shows the evolution of the baryon number density for this

configuration. (We note that here and in the following we will typically list the numerical parame-

ters used in the figure captions and will not repeat the enumeration in the main text.) This event,

which exhibits forward scattering, is typical of what we observe for high velocity interactions in the

repulsive channel. For this initial data setup we observe back scattering for velocities lower than

γ ∼ 1.02 (v ∼ 0.2). In such cases the skyrmions do not have enough kinetic energy to overcome

their mutual repulsion; they thus slow down, stop, and then go back along the axis of approach.

However, for γ in excess of this critical value ∼ 1.02, we always observe forward scattering in the

repulsive channel.

Following the same methodology used for single boosted baby skyrmions in Sec. 4.6, we per-

formed similar collisions to the one we just described (Fig. 4.25) for larger values of γ, and we

observe the same generic forward scattering behaviour. Not surprisingly, the baby skyrmions con-

tract even more, and they emerge from the encounter more perturbed from their original shapes,

a possible effect of the increase in the overall error caused by the more pronounced Lorentz con-

traction.
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Figure 4.25: Evolution of the baryon number density, B0, for a γ = 1.6 (v = 0.8) head-on BB
collision in the repulsive channel—i.e. the relative phase of the baby skyrmions is Ψ = 0. This
interaction exhibits forward scattering. The baryon density grows significantly during the collision
(forming spikes), a consequence of the large gradients in the spatial derivatives of the fundamental
fields. This data comes from a unigrid (non-adaptive) calculation with a 1025 × 1025 mesh and
a domain [−60, 60] × [−60, 60]. For illustrative purposes the region displayed has been cropped
to [−60, 60] × [−40, 40]. The starting locations of the centres of the boosted baby skyrmions are
(−30, 0) and (30, 0), the Courant number is λ = 0.2, and the KO dissipation parameter is εKO = 0.5.
The diameter of the baby skyrmions in the x direction for this value of γ is ≈ 100/1.6 ≈ 62.5. The
boundary condition is outgoing Sommerfeld, which resulted in better convergence properties than
a Dirichlet (reflecting) condition.
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Figure 4.26: Convergence factors for the functions φ1 and π1 corresponding to the head-on BB
collision summarized in Fig. 4.25. O(h2) convergence is observed; i.e. Qh → 4 as h → 0. The
degradation of convergence after the collision for the the 257–513–1025 plot is an indication of the
substantial error in the 257× 257 run.

Figure 4.27: Evolution of the l2 norm of the independent residuals of φ1 and π1, at different
resolutions, for the head-on BB collision shown in Fig. 4.25. The trend to overlap of the lines as
h → 0 signals linear convergence, consistent with the FDA of the independent residual evaluator.
Observe that even during and after the collision this overlap is maintained, at least for sufficiently
high resolution.
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(a)

(b)

Figure 4.28: Resolution dependence of the computed baryon number B (Fig. 4.28a) and total
energy E (Fig. 4.28b) for the γ = 1.6 head-on BB collision shown in Fig. 4.25. Overall, the expected
quadratic convergence to conservation of both quantities is observed. However, the convergence is
clearly affected during the collision (t ≈ 30–45), due to the large gradients in the grid functions
during that time interval. In spite of this, B and E still appear to converge to conservation during
the interaction as h→ 0. The observed jump in both quantities—most visible at low resolution—
pre- and post-collision is probably correlated with the degradation of convergence of the π fields
shown in Fig. 4.26. The boundary condition is outgoing Sommerfeld, which resulted in better
convergence properties than a Dirichlet (reflecting) condition.
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Fig. 4.29 shows the total energy, E, of various head-on BB collisions, in the repulsive channel

(Ψ = 0), with the same numerical setup, except for the value of γ. We also display the decompo-

sition of the total energy E into kinetic (K) and potential (U) components.

One key effect of the presumed departure from pure hyperbolic dynamics is a loss of conservation

of energy that begins to appear around γ ≥ γ? ∼ 2.1, although this is not clearly evident in the

plots of Fig. 4.29 until values of γ ≈ 3.2 (we remind the reader that, throughout this Chapter,

γ? and v? denote the critical velocity in the lab frame where the transition takes place). We note

that conservation of E is always affected during a collision, irrespective of the value of γ. For

γ < γ? the fluctuations in E decrease as h → 0, i.e. E converges to conservation, as in the data

shown Fig. 4.28b. However, for γ ≥ γ? the post-collision values of E show a gap relative to the

pre-collision values, which is most clearly visible in the γ = 5 plot. For γ > 5 the gap becomes

even more pronounced. Moreover, the magnitude of the jumps increase as h→ 0 (see Fig. 4.38a),

a clear sign that the anomalous behaviour is not due to a lack of resolution. We also note that

increasing the value of KO dissipation parameter did not improve the convergence behaviour.

Fig. 4.30 illustrates the features of this type of head-on collision (with Ψ = 0) for a value

of γ = 2.1 ∼ γ?, i.e. very near the upper limit for a boost before the claimed transition to a

mixed hyperbolic-elliptic regime occurs—but still in the purely hyperbolic (physical) regime. As in

Fig. 4.25 we observe forward scattering, and although the baryon density spikes significantly during

the collision, it remains bounded. In comparison to Fig. 4.25 more radiation is seen, particularly

upon closer examination of the data. Overall, the interaction has the same generic features seen in

the repulsive channel calculations.

We also performed an AMR calculation with the near-threshold boost γ = 2.1 and the resulting

time evolution of B0 is shown in Fig. 4.31. Although the results are generally consistent with the

unigrid calculation plotted in Fig. 4.30, some differences are evident: in particular, for the AMR

case the heights of the peaks in B0 during the collision phase are reduced, and post-collision there

is more distortion of the skyrmions, as well as more radiation. However, use of more stringent

values of τmax, which leads to a greater portion of the computational domain being covered by

finer meshes, reduces these differences, providing evidence that the unigrid and AMR calculations

will coincide in the h→ 0 limit. In other words, we suspect that the observed deviations between

the two types of computations are largely attributable to the AMR algorithm—most likely the

interpolation needed to update boundary values on child grids from the corresponding parental
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values.

4.7.2 Baby Skyrmion Head-on Collisions with Different Internal Phase

In this subsection we summarize a series of calculations of BB collisions, showing typical results

computed with different non-zero values of the internal phase shift, Ψ.

We begin with the case of maximal attraction, that is, when the internal phase shift Ψ = ±π.

Fig. 4.33 shows a head-on BB collision at γ = 1.6, with the rest of the parameters as in Fig. 4.25.

The outcome is clearly the right-angle scattering typically seen for topological solitons, particularly

at low velocities (see Sec. 4.5). At t ≈ 32 we see a short-lived intermediate B = 2 bound state

previously reported by some authors (Peyrad [92] and Kudryavtsev [56]). Here the kinetic energy

is large enough to allow the baby skyrmions to easily escape from their mutual attraction, and the

late-time configuration of outwardly-propagating solitons is stable. We also observe that although

maximal values of the baryon density grow significantly during the collision—a consequence of the

enhancement in the spatial gradients of the fundamental fields—B0 remains bounded at all times.

Fig. 4.34 shows convergence tests of the baryon number B and total energy E for the calculation.

Comments concerning the observed convergence to conservation are essentially the same as those

made in Fig. 4.26 for the repulsive-channel computation.

Fig. 4.35 shows the decomposition of the total energy E into kinetic (K) and potential (U)

components for head-on BB collisions in the attractive channel (Ψ = π), and for different values

of γ. In contrast to the repulsive-channel calculations (Fig. 4.29), the values of K and U tend

to approach each other as the evolutions proceed, leading to K > U during the interaction for

larger values of γ. Loss of hyperbolicity appears to set in for γ? ∼ 1.96 (v? ∼ 0.86), when the

values of K at a few grid points near the centre of the computational domain begin to exceed

the corresponding values of U . As for the repulsive-channel evolutions, conservation of energy

is no longer observed during the interaction period for boosts above γ?. Instead, an apparent

discontinuity in E forms; this is most clearly visible in the bottom two plots of Fig. 4.35. Again,

the magnitudes of these discontinuities increase as h→ 0. We note that the loss of hyperbolicity for

the attractive channel evolutions occurs at slightly lower velocities than for the repulsive channel

ones (for which γ? ∼ 2.19, v? ∼ 0.89). This seems plausible since the attractive nature of the force

in this case makes it easier for kinetic energy to exceed potential, as can be deduced by comparing

Fig. 4.35 with Fig. 4.29.
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Figure 4.29: Decomposition of the total energy E into kinetic (K) and potential (U) components
for head-on BB collisions in the repulsive channel (Ψ = 0), and for different values of γ. One key
effect of the presumed departure from pure hyperbolic dynamics for γ ≥ γ? is a loss of conservation
of energy, although this is not clearly evident in plots such as the above until values of γ ∼ 3.2.
We note that conservation of E is always affected during a collision, irrespective of the value of
γ. For γ < γ? the fluctuations in E decrease as h→ 0, i.e. E converges to conservation, as in the
data shown Fig. 4.28b. However, for γ ≥ γ? the post-collision values of E show a gap relative to
the pre-collision values, which is most clearly visible in the γ = 5 plot. For γ > 5 the gap becomes
even more pronounced. Moreover, the magnitude of the jumps increase as h→ 0 (see Fig. 4.38a),
a clear sign that the anomalous behaviour is not due to a lack of resolution. We also note that
increasing the value of KO dissipation parameter did not improve the convergence behaviour. The
calculations were performed on a unigrid mesh of 1025 × 1025, with the rest of the numerical
parameters identical to those listed in Fig. 4.25.
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Figure 4.30: Evolution of the baryon number density B0 for a head-on BB collision in the repulsive
channel at γ = 2.1 (v = 0.88). This value of γ is very near the upper limit, γ?, at which the claimed
transition to a mixed hyperbolic-elliptic regime occurs. As in Fig. 4.25 we observe forward scattering
and although the baryon density spikes significantly during the collision, it remains bounded. In
comparison to Fig. 4.25 more radiation is seen, particularly upon closer examination of the data.
Overall, the interaction has the same generic features seen in the repulsive channel calculations.
Numerical parameters, including the domain-cropping for the plots, are identical to those listed in
Fig. 4.25. The diameter of the baby skyrmions for this value of γ is ∼ 100/2.1 ∼ 47.
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Figure 4.31: This figure shows the time development of the baryon number density B0 from an
AMR calculation that used the same initial configuration described in Fig. 4.30. Although the
AMR results are generally consistent with the unigrid calculation, some differences are evident: in
particular, for the AMR case the heights of the peaks in B0 during the collision phase are reduced,
and post-collision there is more distortion of the skyrmions, as well as more radiation. However, use
of more stringent values of τmax, which leads to a greater portion of the computational domain being
covered by finer meshes, reduces these differences, providing evidence that the unigrid and AMR
calculations will coincide in the h→ 0 limit. In other words, we suspect that the observed deviations
between the two types of computations are largely attributable to the AMR algorithm—most likely
the interpolation needed to update boundary values on child grids from the corresponding parental
values. This particular run was performed with a truncation error threshold τmax = 6 × 10−4, a
coarse level (L = 1) having 257 × 257 points and a finest level Lf = 5 (again, see Sec. 2.4 for a
definition of this notation). The finest resolution is equivalent to a 4097 × 4097 mesh. Numerical
and plotting parameters are identical to those listed in Fig. 4.25. A colour-contour representation
of this data is shown in the next figure (Fig. 4.32).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.32: Wire-mesh contour plot of the evolution of the baryon density B0 as previously
shown in Fig. 4.31. The figure shows the time-development of a typical adaptive mesh refinement
hierarchy. Finer level grids are difficult to distinguish due to resolution limitations of the figure,
as well as the fact that finer grids generally have small extent. For instance, we can identify 3
different levels in image 4.32d, while there are actually 5 levels at that time.
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Figure 4.33: Evolution of the baryon number density for a γ = 1.6 (v = 0.8) head-on BB collision
in the attractive channel—i.e. Ψ = π. This encounter exhibits the right-angle scattering that is
typically seen for topological solitons, particularly at low velocities. At t ≈ 32 we see a short-lived
intermediate B = 2 bound state previously reported by some authors (Peyrad [92] and Kudryavtsev
[56]). Here the kinetic energy is large enough to allow the baby skyrmions to easily escape from
their mutual attraction, and the late-time configuration of outwardly-propagating solitons is stable.
Numerical and plotting parameters are identical to those listed in Fig. 4.25, and the computation
is unigrid.
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(a)

(b)

Figure 4.34: Convergence tests of the baryon number B and total energy E for the attractive-
channel calculation described in Fig. 4.33. Comments concerning the observed convergence to
conservation are essentially the same as those made in Fig. 4.26 for the repulsive-channel compu-
tation.
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Figure 4.35: Decomposition of the total energy, E, into kinetic (K) and potential (U) components
for head-on BB collisions in the attractive channel (Ψ = π), and for different values of γ. In contrast
to the repulsive-channel calculations (Fig. 4.29), the values of K and U tend to approach each other
as the evolutions proceed, leading to K > U during the interaction for larger values of γ. Loss of
hyperbolicity appears to set in for γ? ∼ 1.96 (v? ∼ 0.86), when the values of K at a few grid points
near the centre of the computational domain begin to exceed the corresponding values of U . As for
the repulsive-channel evolutions, conservation of energy is no longer observed during the interaction
period for boosts above the critical value. Instead, an apparent discontinuity in E forms; this is
most clearly visible in the bottom two plots Again, the magnitudes of these discontinuities increase
as h → 0. We note that the loss of hyperbolicity for the attractive channel evolutions occurs
at slightly lower velocities than for the repulsive channel ones (for which γ? ∼ 2.19, v? ∼ 0.89).
This seems plausible since the attractive nature of the force in the current case makes it easier for
kinetic energy to exceed potential, as can be deduced from the plots shown above and in Fig. 4.29.
Numerical parameters are identical to those listed in Fig. 4.33, except for the KO dissipation value,
which is εKO = 0.4
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(a)

(b) (c)

Figure 4.36: Unigrid calculation of a BB collision with Ψ = π and γ = 5 which illustrates a
transition into the mixed hyperbolic-elliptic regime. The top plot shows the evolution of the baryon
density B0. Figs. 4.36b and 4.36c show the resolution dependence of the convergence factors Qh

and the rescaled l2-norms of the independent residuals, respectively, for φ1 and π1. Despite the
fact that the baby skyrmions scatter at right angles, as might be expected from the value of Ψ, at
the end they each disperse, and we interpret this as the solution failing to be physically meaningful
at those times. We observe that the Qh plots seem to indicate a change in convergence behaviour
from O(h2) to O(h) once the interaction begins. However, it is very clear from the behaviour of
the independent residuals that the numerical solution is not converging to a bona fide continuum
solution during and after the collision. This is especially evident from the π1 independent residual
where the rescaled values display less and less overlap as h→ 0. The calculation shown in the top
plot was performed on the computational domain [−30, 30]× [−60, 60], using a 1025× 1025 mesh
and Sommerfeld boundary conditions. The baby skyrmions were initially centred at (−20, 0) and
(20, 0), and the B0 plots have been cropped to [−30, 30] × [−30, 30]. The rest of the parameters
are as given in Fig. 4.25.
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Fig. 4.36 shows a unigrid calculation of a BB collision with Ψ = π and γ = 5 and which

illustrates a transition into the mixed hyperbolic-elliptic regime. The top plot shows the evolution

of the baryon density B0. Fig. 4.36b and 4.36c show the resolution dependence of the convergence

factors, Qh, and the rescaled l2-norms of the independent residuals, respectively, for φ1 and π1.

Despite the fact that the baby skyrmions scatter at right angles, as might be expected from the

value of Ψ, at the end they each disperse, and we interpret this as the solution failing to be

physically meaningful at those times. We observe that the Qh plots seem to indicate a change in

convergence behaviour from O(h2) to O(h) once the interaction begins. However, it is very clear

from the behaviour of the independent residuals that the numerical solution is not converging to a

bona fide continuum solution during and after the collision. This is especially evident from the π1

independent residual where the rescaled values display less and less overlap as h→ 0.

Direct visual inspection of grid functions from calculations with γ > γ? provides additional

evidence for the breakdown of well-posedness. Fig. 4.37 shows the evolution of π1 during the

central stages of a head-on BB collision in the attractive channel (Ψ = π) with γ = 3.2, which

is well above the estimated threshold, γ? ∼ 1.96, for a transition to non-hyperbolicity. Adaptive

mesh refinement with the same parameters listed in Fig. 4.31 was used (except that εKO = 0.4

here), and the evolving structure of the mesh hierarchy is evident. The central region of Fig. 4.37d

clearly illustrates a loss of smoothness of π1. Indeed the solution there seems to be dominated

by high frequency “noise”—which is what one would expect from the time evolution of a problem

lacking a well posed initial value formulation—and this feature only worsens with an increase in

resolution. Fig. 4.38 displays and discusses the expected development of an energy gap for this

initial data set.

We now investigate solution features for a collision with γ = 1.95, which is slightly less than

the estimated value (γ? ∼ 1.96) at which the onset to non-hyperbolic behaviour occurs. Fig. 4.39

shows the baryon number density, B0, from an AMR calculation for this case. The results are

qualitatively consistent with the γ = 1.6 unigrid calculation shown in Fig. 4.33, in the sense that

we also observe right-angle scattering in this instance. However, due to the increase in initial

kinetic energy, the spikes in B0 are larger here. A small amount of radiation is visible in the last

few frames.

In the remainder of this subsection we will further explore head-on BB collisions for values of

Ψ in the interval [0, π], using the adaptive capabilities of our code. Fig. 4.40 shows the baryon
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(a) (b)

(c) (d)

Figure 4.37: This figure shows the evolution of π1 during the central stages of a head-on BB
collision in the attractive channel (Ψ = π) with γ = 3.2. The value of γ used is above the
estimated threshold, γ?, for a transition to non-hyperbolicity. Adaptive mesh refinement with
the same parameters listed in Fig. 4.31 was used (except that εKO = 0.4 here), and the evolving
structure of the mesh hierarchy is evident. The central region of Fig. 4.37d clearly illustrates a loss
of smoothness of π1. Indeed the solution there seems to be dominated by high frequency “noise”—
which is what one would expect from the time evolution of a problem lacking a well posed initial
value formation—and this feature only worsens with an increase in resolution.

number density, B0, from an an AMR calculation of a head-on BB collision with a relative phase

of Ψ = π/2 and γ = 1.6 (v = 0.8). The baby skyrmions form large B0 density spikes at the

collision point, and then scatter at right angles. However, the baby skyrmions that emerge from

the interaction are of different sizes: the large skyrmion scatters at an angle of π/2, while the small

one scatters in the opposite direction; i.e at an angle 3π/2. If we change the relative phase to

Ψ = −π/2, the scattering angles are exchanged.

Fig. 4.41 illustrates the decomposition of the total energy E into its kinetic (K) and potential

(U) components for head-on BB collisions using Ψ = π/2 and varying values of γ. By monitoring

the conservation of E, we estimate that there is a transition to a mixed hyperbolic-elliptic regime

for γ? ∼ 2.
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(a)

(b)

Figure 4.38: Development of energy gap for a head-on BB collision with γ = 3.2 and Ψ = π.
Fig. 4.38a shows the evolution of the total energy E at different resolutions. The observed jump in E
occurs during the period when the colliding skyrmions are most strongly interacting. Furthermore,
as the mesh spacing decreases the jump becomes sharper, and actually increases in magnitude.
We interpret these features as signs of a transition into a mixed hyperbolic-elliptic regime during
the interaction. Although the jump appears to be tending towards a discontinuity for increasing
resolution, we do not yet understand why this might be so. Fig. 4.38b displays the decomposition
of E into kinetic (K) and potential (U) components for the highest resolution computation (2049×
2049). We observe that the variation of total energy pre- and post-collision can primarily be
attributed to a loss of kinetic energy. The choice of Dirichlet or Sommerfeld boundary conditions
did not produce any appreciable difference in the results, nor did the use of different values of the
KO dissipation parameter in the range 0.2–0.6.
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Figure 4.39: This figure shows the baryon number density B0 from an AMR calculation of a head-
on BB collision with a relative phase Ψ = π and γ ≈ 1.95 (v ∼ 0.858); this initial boost is just
below the estimated value, γ?, for loss of hyperbolicity. The results are qualitatively consistent
with the γ = 1.6 unigrid calculation shown in Fig. 4.33, in the sense that we also observe right-
angle scattering in this case. However, due to the increase in initial kinetic energy, the spikes in B0

are larger here. A small amount of radiation is visible in the last few frames. The computational
parameters, including those controlling the AMR algorithm, are identical to those listed in Fig. 4.37.
except that we used εKO = 0.4. The initial skyrmion diameters in the x direction are ≈ 100/1.95 ≈
51.2 units.
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Fig. 4.42 displays the baryon number density, B0, at late times (end states) from AMR calcu-

lations of head-on collisions with γ = 1.6, and using values of the relative phase Ψ in the interval

[π/8, π]. For small values of Ψ we observe that the baryon density, B0, is concentrated along one

of the right-angle exit directions, +π/2. In these cases radiation is emitted in the other direction

in accord with momentum conservation. As Ψ increases, more and more baryon density is ejected

in the 3π/2 direction, culminating with symmetric right-angle scattering for Ψ = π. We observe

that the end state of the collision with Ψ = π/4 (Fig. 4.42b) is somewhat toroidally shaped. If

we vary Ψ from −π/8 to −π, we obtain end states that are reflected with respect to the axis of

approach. These results clearly show that the outcome of head-on BB collisions strongly depends

on the initial value of Ψ.

4.8 Grazing Baby Skyrmion Collisions

We now consider calculations of more general off-axis BB collisions (grazing) for different values

of the impact parameter b. Fig. 4.43 shows an AMR calculation of a BB grazing collision with

γ = 1.6, Ψ = 0 (repulsive channel) and impact parameter b = 5. The baby skyrmions propagate

unscathed until they meet. Surprisingly, when the skyrmions collide they appear to attract one

another, despite the fact that the configuration corresponds to the repulsive channel (at least in

the head-on limit). In fact they seem to fuse into a single skyrmion for a short length of time. The

attractive force seems to act in an orthogonal direction (y) with respect to the axis of approach

(x). After their brief interaction, the skyrmions acquire velocity components in the y direction, and

then exit at nonzero angles with respect to the axis of approach. Conversely, Fig. 4.44 displays the

results of an AMR calculation of a BB grazing collision with γ = 1.6, Ψ = π (attractive channel)

and impact parameter b = 5. The change of the value of Ψ with respect to the calculation shown

in Fig. 4.43 results in the skyrmions exerting a repulsive force on one another in the y direction,

i.e. orthogonal to the axis of approach, x. In contrast to the Ψ = 0 case, the solitons never merge,

but are deflected at larger angles and suffer larger deformations as a result of the interaction. The

initial kinetic energy is enough to preclude the formation of a bound state.

We also experimented with small initial velocities, such as γ = 1.1, in an attempt to form a

bound configuration. However, even this amount of kinetic energy is still enough to prevent the

mutual capture of the baby skyrmions. For sufficiently large impact parameters the baby skyrmions
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Figure 4.40: This figure shows the baryon number density, B0, from an AMR calculation of a
head-on BB collision with a relative phase of Ψ = π/2 and γ = 1.6 (v = 0.8). The baby skyrmions
form large B0 density spikes at the collision point, and then scatter at right angles. However, the
baby skyrmions that emerge from the interaction are of different sizes: the large skyrmion scatters
at an angle of π/2, while the small one scatters in the opposite direction, i.e at an angle 3π/2.
If we change the relative phase to Ψ = −π/2, the scattering angles are exchanged. This run was
performed with the same parameters listed in Fig. 4.31, but this time the domain has been cropped
to [−50, 50]× [−40, 40] in order to better see the small skyrmion. The boosted baby skyrmions are
again centred at (−30, 0) and (30, 0), and their diameters in the x direction are ≈ 100/1.6 ≈ 62
units.
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Figure 4.41: This graph shows the decomposition of the total energy E into its kinetic (K) and
potential (U) components for head-on BB collisions using Ψ = π/2 and varying values of γ. By
monitoring the conservation of E, we estimate that there is a transition to a mixed hyperbolic-
elliptic regime for γ ≈ 2. The parameters for these calculations are identical to those listed in
Fig. 4.25 except that εKO = 0.4.

become essentially non-interacting, as is to be expected.

4.9 Baby Skyrmion–Baby Anti-skyrmion Collisions

Soliton–anti-soliton scattering is one of the most violent processes in skyrmion dynamics: it is

characterized by rapid and extreme growth of gradients of the field variables, as well as the emission

of large amounts of radiation. In this subsection we study the dynamics of this type of interaction

for values of γ similar to those used thus far in this chapter. As before, a key aim of the calculations

is to identify transitions to ill-posed (mixed hyperbolic-elliptic) behaviour.

We first remind the reader that, as discussed at the beginning of Sec. 4.7, a baby anti-skyrmion

is a skyrmion with a conjugate topological charge −B, and is obtained by charge-conjugation of

a hedgehog (φ1, φ2, φ3) → (−φ1,−φ2, φ3), followed by a reflection (−φ1,−φ2, φ3) → (φ1,−φ2, φ3)

[88].

In the calculations we now discuss, the values of the numerical parameters are similar to those

adopted in the preceding subsection. Specifically, unless otherwise stated they are: τmax = 6×10−4,
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(a) Ψ = π/8 (b) Ψ = π/4

(c) Ψ = 3π/8 (d) Ψ = π/2

(e) Ψ = 5π/8 (f) Ψ = 6π/8

(g) Ψ = 7π/8 (h) Ψ = π

Figure 4.42: This figure shows the the baryon number density, B0, at late times (end states) from
head-on BB collisions with γ = 1.6 and using values of the relative phase Ψ between π/8 and π.
For small values of Ψ we observe that the B0 density is concentrated along one of the right-angle
exit directions, +π/2. In these cases radiation is emitted in the other direction in accord with
momentum conservation. As Ψ increases, more and more baryon density is ejected in the 3π/2
direction, culminating with the symmetric right-angle scattering for Ψ = π. We observe that the
end state of the collision with Ψ = π/4 (Fig. 4.42b) is somewhat toroidally shaped. If we vary Ψ
from −π/8 to −π, we obtain end states that are reflected with respect to the axis of approach.
The calculations were performed using AMR with the same parameters given in Fig. 4.31, except
with εKO = 0.4.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.43: AMR Calculation of a BB grazing collision with γ = 1.6, Ψ = 0 (repulsive channel)
and impact parameter b = 5. The baby skyrmions propagate unscathed until they meet. Surpris-
ingly, when the skyrmions collide they appear to attract one another, despite the fact that the
configuration corresponds to the repulsive channel (at least in the head-on limit). In fact they
seem to fuse into a single skyrmion for a short length of time. The attractive force seems to act in
an orthogonal direction (y) with respect to the axis of approach (x). After their brief interaction,
the skyrmions acquire velocity components in the y direction, and then exit at nonzero angles
with respect to the axis of approach. The skyrmions are initially centred at (−30, 5) and (30, 0).
Numerical parameters are the same as those listed in Fig. 4.31, and the maximum level of grid
refinement achieved was Lf = 5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.44: AMR calculation of a BB grazing collision with γ = 1.6, Ψ = π (attractive channel)
and impact parameter b = 5. The change of the value of Ψ with respect to the calculation shown
in Fig. 4.43 results in the skyrmions exerting a repulsive force on one another in the y direction,
i.e. orthogonal to the axis of approach, x. In comparison to the Ψ = 0 case the solitons never merge,
but are deflected at larger angles and suffer larger deformations as a result of the interaction. The
initial kinetic energy is enough to preclude the formation of a bound state. The starting locations
of the centres of the boosted baby skyrmions are (−30, 5) and (30, 0). Numerical parameters are
the same as those listed in Fig. 4.31.
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εKO = 0.5 and λ = 0.2. Again, in order to eliminate any interference from radiation reflected from

the boundaries, we use Sommerfeld conditions. The domain is a box with dimensions 120× 120 (

[−60, 60]× [−60, 60]), and the starting locations of the centres of the boosted baby skyrmions are

(−30, 0) and (30, 0). We continue to use the notation BB and BB̄ to refer to a baby skyrmion–baby

skyrmion collision, and a baby skyrmion–baby anti-skyrmion collision respectively.

Our first set of computations simulate BB̄ scattering in the attractive channel (Ψ = π) for

different values of γ. We begin with a typical BB̄ annihilation with γ = 1.6 (v = 0.8); a plot of the

time evolution of B0 is shown in Fig. 4.45. We see that the two lumps of baryon density—which

have opposite sign—merge and annihilate one another, leaving an outgoing circular wave whose

amplitude quickly decreases to negligible levels, i.e. the baryon density vanishes. By this we infer

that the outgoing wave is not a topological object, but scalar radiation. During the evolution the

total baryon number, B, (which, in the limit h→ 0 should vanish at all times) is conserved to one

part in 105. For this type of interaction it very is instructive to consider the evolution of the energy

density, T00 (defined by (4.45)), as shown in Fig. 4.46. Since T00 is a strictly positive quantity

(unlike B0), “annihilation” is not seen in the time sequence. Rather, after the merger the energy is

radiated away from the center of the collision as an outgoing circular wave pulse, similar to what

was observed when we evolved a Gaussian pulse (Fig. 4.7).

We now turn to a head-on BB̄ collision in the repulsive channel. Here we choose γ = 2.1

(v = 0.88) which is marginally below the critical value, γ? ∼ 2.15, at which the evolutions appear to

become ill-posed (see below). Figs. 4.47a and Fig. 4.47b display the time development of the baryon

number density, B0, and energy density, T00. In contrast to the attractive channel computation

illustrated in Fig. 4.45, the soliton anti-soliton pair does not annihilate in this case. Rather, after

briefly merging and forming the characteristic spikes of baby skyrmion interactions, the solitons

back scatter, emitting a significant amount of radiation that is most visible in the energy density

plot.

Figs. 4.48a and 4.48c shows the evolution of the total energy E (at different resolutions) for the

attractive and repulsive channel collisions, respectively, and provide evidence that in both cases

the total energy converges as h → 0. Not surprisingly the fluctuations in E are most significant

(again, in both instances) while the skyrmions are interacting. Plots of the time evolution of E, K

and U for the 1024 × 1024 for the attractive and repulsive channels are shown in Figs. 4.48b and

4.48d, respectively.
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As we have already intimated, BB̄ collisions also appear to become ill-posed for sufficiently large

γ. The development of gaps in the computed total energy E for attractive-channel computations

with different values of γ is shown in Fig. 4.49a. For the chosen values of γ we observe the same

generic features in the graphs E(t) that are seen for BB collisions (see Fig 4.35 for the attractive

channel BB case). Again, we interpret the appearance of the gap as an indication of a transition

into a hyperbolic-elliptic regime during the interaction of the solitons.

Similarly, the development of the gap in E for the repulsive channel is shown in Fig. 4.49b.

Note that the transition occurs at a higher velocity for the repulsive channel than the attractive

one.

We performed further experiments using the adaptive capabilities of the code. Our adaptive

calculations of head-on BB̄ annihilation in both the attractive and repulsive channels showed the

same generic phenomenology in plots of B0 and T00 that are described in the captions of their

unigrid counterparts, Figs. 4.45, 4.46 and 4.47. We complemented these studies via an AMR

calculation of the evolution of of a grazing BB̄ collision with γ = 1.6, Ψ = π and impact parameter

b = 5. The time development of the energy density, T00, for this case is shown in Fig. 4.50. We

observe that after a brief merger of the soliton-antisoliton pair, the end state is a combination

of scattering—with an exit angle ≈ π/4—and emission of radiation that resembles the outgoing

waves that follow the head-on BB̄ annihilation shown in Fig. 4.45. We conclude that grazing

baby skyrmion-antiskyrmion collisions lead to a mixture of annihilation and scattering. The initial

kinetic energy here is large enough to preclude the formation of a bound state.

Some authors [149, 88] report a continuous emission of radiation after a baby BB̄ annihilation,

rather than the single outgoing pulse that we observe (see Fig. 4.46). Suspecting that this discrep-

ancy was due to model-dependence (or parameter-dependence) of the annihilation phenomenon, we

explored the outcome of a baby skyrmion BB̄ interaction using a different value for potential pa-

rameter than that adopted in all of the calculations described above. Specifically we took µ2 = 0.1

(all of the other computations had µ2 = 0.001), but initialized the solitons with the same profile

function, f(r), used previously. Fig. 4.51 shows the time evolution of the energy density T00 from

a unigrid computation of a BB̄ collision in the attractive channel with γ = 1.1 (v = 0.5), and using

µ2 = 0.1. This boost factor was chosen to ensure that the evolution remained well-posed (i.e. so

that there was no transition to a mixed hyperbolic-elliptic state); our experiments indicate that

γ? decreases as µ2 increases. In contrast to the µ2 = 0.001 skyrmion-antiskyrmion annihilation
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Figure 4.45: Evolution of the baryon number density, B0, for BB̄ annihilation in the attractive
channel (Ψ = π) with γ = 1.6 (v = 0.8). The end state consists of outgoing circular waves with very
small amplitude. The calculation was unigrid, using a computational domain [−60, 60]× [−60, 60]
and a 1025 × 1025 mesh. The Courant number was λ = 0.2, the KO dissipation parameter was
εKO = 0.4 and Sommerfeld boundary conditions were used. For illustrative purposes the domain
has been cropped to [−60, 60] × [−40, 40]. The boosted baby skyrmions are initially centred at
(−30, 0) and (30, 0) and have initial diameters in the x direction of ≈ 100/1.6 ≈ 62.5.
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Figure 4.46: Evolution of the energy density, T00, from the calculation described in Fig. 4.45. Since
T00 is a strictly positive quantity (unlike B0), “annihilation” is not seen in this sequence. Rather,
after the merger, the energy is radiated away from the center of the collision as an outgoing circular
wave pulse.
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(a)

(b)

Figure 4.47: Evolution of the baryon number density, B0, (Fig (a)) and total energy, E, (Fig (b)) for
a BB̄ collision in the repulsive channel (Ψ = 0) with γ = 2.1 (v = 0.88). In contrast to the attractive
channel computation illustrated in Fig. 4.45, the soliton anti-soliton pair does not annihilate. After
briefly merging and forming the characteristic spikes of baby skyrmion interactions, the solitons
backscatter, emitting a significant amount of radiation that is most visible in the energy density
plots. The parameters for this unigrid computation are identical to those listed in Fig. 4.45, except
that the plotted domain has been cropped to [−55, 55] × [−55, 55]. The initial diameters of the
skyrmions in the x direction are ≈ 100/1.6 ≈ 62.5.
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(a) (b)

(c) (d)

Figure 4.48: Convergence of computed energy quantities for the head-on BB̄ collisions described
in the previous figures. Plots (4.48a) and (4.48b) correspond to the γ = 1.6 attractive-channel
collision detailed in the caption of Fig. 4.45, while (4.48c) and (4.48d) come from the γ = 2.1
repulsive-channel computation discussed in Fig. 4.47. Plots (4.48a) and (4.48c) provide evidence
that the total energy converges as h→ 0 in both cases. Not surprisingly the fluctuations in E are
most significant (again, in both instances) while the skyrmions are interacting.
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(a)

(b)

Figure 4.49: Development of the gap in the computed total energy E for head-on BB̄ collisions
with different values of γ, and for both the attractive (top) and repulsive (bottom) channels. For
these values of γ we observed the same generic features in plots of B0 and E that are described in
the captions of Figs. 4.45, 4.46 and 4.47. However, the above graphs demonstrate the same effect
observed in the case of BB collisions and shown—for the attractive channel case—in Fig 4.35. We
again interpret the development of the gap as an indication of a transition into a hyperbolic-elliptic
regime during the interaction of the solitons. The discontinuity can be detected visually for γ? ≈ 2
(Fig. 4.49a). For the repulsive channel we have a similar situation, with an estimate of γ? ∼ 2.15
(v? ∼ 0.886) for the onset of loss of hyperbolicity, and the transition becoming noticeable in a
plot at γ ≈ 2.9 (Fig. 4.49b). Note that the transition occurs at a higher velocity for the repulsive
channel than the attractive one. Numerical parameters for the computations were identical to those
listed in Fig. 4.45.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.50: Evolution of the energy density, T00, from an AMR calculation of a BB̄ grazing
collision with γ = 1.6, Ψ = π and impact parameter b = 5. We observe that after a brief merger
of the soliton-antisoliton pair, the end state is a combination of scattering—with an exit angle
≈ π/4—and emission of radiation that resembles the outgoing waves that follow the head-on BB̄
annihilation shown in Fig. 4.45. We conclude that grazing baby skyrmion-antiskyrmion collisions
lead to a mixture of annihilation and scattering. The initial kinetic energy here is large enough to
preclude the formation of a bound state. Numerical parameters for this calculation were the same
as those given in Fig. 4.43, except that the truncation error threshold was set to τmax = 5× 10−5.
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Figure 4.51: Time evolution of the energy density, T00, for an attractive channel BB̄ collision with
γ = 1.15 (v = 0.5). The potential parameter here is µ2 = 0.1 whereas in all previous calculations
discussed in this chapter we set µ2 = 0.001. In contrast to the µ2 = 0.001 skyrmion-antiskyrmion
annihilation shown in Fig. 4.46, the soliton-antisoliton pair now merges into a circularly symmetric
bound state centred at the origin, then emits a large pulse of radiation followed by a train of
similar waves of smaller amplitude. The emission pattern appears to be largely dipole in nature
(see Fig. 4.52). The central bound state is stable in the sense that it persisted for as long as
the calculation was run. The computation was unigrid with a domain 160 × 160—this is larger
than that used in previous calculations since at this boost the solitons are only slightly Lorentz
contracted in the x direction to ≈ /1.15 ≈ 87. A 1025 × 1025 grid was used and the rest of the
parameters were as listed in Fig. 4.45.
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(a) (b) (c)

(d) (e) (f)

Figure 4.52: Late-time evolution of T00 from the BB̄ computation with µ2 = 0.1 described in
Fig. 4.51. The dipole nature of the radiation emitted from the final bound state is apparent.

(a) (b)

Figure 4.53: Conservation of energy and evolution of energy components for the BB̄ collision
described in Fig. 4.51 (γ = 1.6, Ψ = π, and µ2 = 0.1). Figure 4.53a shows the evolution of the total
energy E at different resolutions while Fig. 4.53b shows the kinetic (K) and potential energy (U)
components from the 2049 × 2049 calculation. There is evidence for convergence to conservation
of E although the rate of convergence is not definitive for the resolutions used here.
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shown in Fig. 4.46, the soliton-antisoliton pair now merges into a circularly symmetric bound state

centred at the origin, then emits a large pulse of radiation followed by a train of similar waves of

smaller amplitude. The emission pattern appears to be largely dipole in nature (see Fig. 4.52). The

observed behaviour is thus at least qualitatively consistent with what has been previously reported.

We also note that the central bound state is stable in the sense that it persists for as long as the

calculation is run. Convergence tests for this setup are shown in Fig. 4.53.

4.9.1 Other Indications of Non-hyperbolicity

We performed additional experiments involving smooth initial data, similar to the Gaussian pulses

evolved in Sec. 4.4.4, but with the time derivatives set to very large values at t = 0. Hence, at

the initial time the kinetic energy was already significantly greater than the potential energy. Not

surprisingly these calculations exhibited a breakdown in the conservation of energy such as we have

reported above and which we again interpret as a loss of hyperbolicity.

4.10 Comparison of Constraint Enforcement Methods

In this subsection we compare the different methods presented in Sec. 4.3.3 that are used to enforce

the chiral constraint φaφa = 1 in the evolution of the grid functions of our baby Skyrme model. In all

of the calculations described thus far we have imposed the constraint by means of the reprojection

technique, (4.23), which keeps the l2 norm of the violations (C = φaφa − 1) everywhere in the

computational domain at the level of machine epsilon (∼ 1 × 10−16) for all the types of initial

data, and the typical values of γ presented in this chapter. This technique is equally effective for

adaptive and non-adaptive calculations.

As also discussed in Sec. 4.3.3, constraint damping is a dynamical alternative for enforcing the

constraint. We experimented with calculations of a head-on BB collision in the attractive channel

(Ψ = π) with γ = 1.6 (v = 0.8), employing constraint damping exclusively (i.e. with the Lagrange

multiplier and reprojection disabled). We remind the reader that the constraint damping procedure

is characterized by two adjustable parameters, ξ1 and ξ2. These control the amount of friction, or

damping, introduced via the “constraint-violating” terms, (4.25) and (4.27), that are added to the

fundamental dynamical equations.

We first consider the search for a suitable value of the parameter ξ2, which controls the constraint
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Figure 4.54: Evolution of the baryon density B0 for an attractive channel head-on BB collision
with γ = 1.6, using constraint damping. The values of the damping constants are ξ1 = −900 and
ξ2 = 80. The results are consistent with a similar experiment that used reprojection and that is
shown in Fig. 4.33. The unigrid calculation was performed on the domain [−60, 60]×[−60, 60] with a
1025× 1025 mesh, and, for clarity, the displayed domain has been cropped to [−60, 60]× [−40, 40].
The baby skyrmions were initially centred at (−30, 0) and (30, 0) and had diameters in the x
direction of ≈ 100/1.6 = 62.5. The boundary conditions were Dirichlet (reflecting).
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Figure 4.55: Natural logarithm of the l2 norm of the constraint violation, C ≡ φaφa − 1, for a BB
collision with γ = 1.6, Ψ = π, and where constraint damping is used. We show results for three
values of ξ1 (−200,−600 and −900) with ξ2 fixed to 80. In all three cases C is quickly damped and
remains small until the collision—at t ∼ 30—when the violations grow (presumably caused by the
strong fluctuation of the gradients) but then are damped once more at a rate which increases with
increasing ξ1. These plots illustrate the difference between reprojection and damping: while the
former imposes the constraint immediately after the solution is updated at each time step, the latter
is a corrective process that takes place over a period of time that is roughly inversely proportional
to the damping parameters. The numerical parameters for these calculations are described in the
caption of Fig. 4.54.

term (4.26) and which involves the field time derivatives (i.e. πa). Too large a value of ξ2 dissipates

kinetic energy in excess, thus leading to the non-conservation of the total energy E (and, in fact,

stopping the propagation of the solitons). Conversely, very small values lead to large violations of

the constraint during collisions, which, naturally, is undesirable. Trial and error led us to a value

of ξ2 = 80. Energy conservation with this choice of ξ2 is similar to that shown in Fig. 4.35 (where

reprojection was employed) for the γ = 1.6 calculation. On the other hand, energy conservation

does not seem to be very sensitive to the value of ξ1. Having found a good setting for ξ2 we found

that, overall, constraint violations were damped exponentially, with the rate of decay controlled by

ξ1: the larger its value, the faster the decay.

Fig. 4.54 shows the evolution of the baryon density, B0, for a unigrid constraint damping run

with the values of the damping constants set to ξ1 = −900 and ξ2 = 80. The observed phenomenol-

ogy is consistent with results obtained using reprojection (Fig. 4.33). Adaptive calculations of this

type are equally consistent with the reprojection technique.

In order to demonstrate the effect of varying ξ1, Fig. 4.55 shows the evolution of the natural

logarithm of the l2 norm of the constraint violations, C = φaφa − 1, for ξ1 = 80 and three values
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of ξ1: −200,−600 and −900. For all three cases C is quickly damped to values of the order of

machine epsilon. At the time of the collision, t ∼ 30, the violations grow (presumably due to the

strong fluctuation of the field gradients) but are damped again following the interaction. In this

last phase one can clearly see the variation of the damping rate as a function of ξ1. The plot also

illustrates the contrast between reprojection and damping: while the former imposes the constraint

immediately after the solution is updated at each time step, the latter is a corrective process that

takes place over a period of time that decreases with increasing ξ1.

In conclusion, we have found that constraint damping is an effective means for constraint en-

forcement in the numerical treatment of the baby Skyrme model. However, we emphasize that

the simple reprojection method is at least as effective, easier to implement, and less costly com-

putationally than the damping approach. It is for these reasons that we have exclusively used

reprojection for the computations described in previous sections.

4.11 Conclusions and Future Developments

In this chapter we have performed adaptive and non-adaptive convergent numerical evolutions

of single-boosted baby skyrmions, head-on BB collisions, grazing BB interactions, head-on and

grazing BB̄ collisions.

We developed a second order accurate (O(h2)) code with adaptive mesh refinement capabilities,

which were essential for optimal use of computational resources. (Sec. 4.4.6). Of central interest

was the study of the loss of well-posedness (hyperbolic-elliptic transition) [1, 26, 95] for certain

initial configurations in the model. By observing the behavior of the total energy (as well as direct

examination of the behaviour of the dynamical variables) we confirmed the loss of hyperbolicity

for specific types of evolutions, including baby skyrmion–baby skyrmion or baby skyrmion–baby

anti-skyrmion collisions at high enough energies. Using detailed parameter space surveys we were

able to define specific conditions for the loss of well-posedness, thus establishing some limits beyond

which the model ceases to describe physically meaningful dynamics.

Our unigrid calculations are stable for Courant numbers as large as λ = 0.5, despite the fact

that the numerical scheme is effectively explicit (since we update the grid functions using point-wise

Newton-Gauss-Seidel iteration). This represents progress with respect to earlier numerical work

on both the baby and the full 3 + 1 Skyrme models [85, 84, 88, 86], where the Courant number
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was frequently restricted to excessively small values. This improved stability likely results from our

use of a Crank-Nicholson update scheme, as well as our constraint enforcement technique. AMR

calculations required a somewhat smaller Courant factor—typically λ ∼ 0.1–0.2—and this may

be related to the interpolation at parent-child grid boundaries in the AMR hierarchy that is part

of the Berger and Oliger algorithm. For both adaptive and unigrid calculations, and as long as

the evolution remains well-posed (purely hyperbolic), the baryon number B and total energy E

converge to conservation in the limit h→ 0.

The results of our extensive study of baby skyrmion phenomenology in this chapter can be

summarized as follows:

• Adaptive and non-adaptive numerical evolutions of single boosted baby skyrmions (Sec. 4.6)

remain stable and localized, even at large values of γ. Given the fundamental Lorentz invari-

ance of the theory, this is to be expected.

• In contrast to the reported existence of a critical velocity separating right-angle from forward-

scattering (for the same value of Ψ) [92], and given our specific model, our experiments of

head-on BB collisions for the attractive channel always produce right-angle scattering, and

for the repulsive channel always exhibit forward scattering, regardless of the initial velocity

(see Sec. 4.7). The baryon density B0 grows significantly during all collisions (forming spikes),

a consequence of the enhancement of the gradients in the spatial derivatives during the inter-

actions. Sommerfeld outgoing radiation boundary conditions resulted in better convergence

properties than did Dirichlet (reflecting) conditions.

• BB collisions in the repulsive channel (Ψ = 0, Sec. 4.7.1): These collisions generically exhibit

forward scattering. One key effect of the presumed departure from pure hyperbolic dynamics

for γ ≥ γ? is a loss of conservation of energy. When γ exceeds γ?, post-collision values of E

show a gap relative to the pre-collision values. Moreover, the magnitude of the jumps increase

as h→ 0, a clear sign that the anomalous behaviour is not due to a lack of resolution.

• BB collisions in the attractive channel (Ψ = ±π, Sec. 4.7.2): Particularly at low velocities,

these interactions display the right-angle scattering typically seen for topological solitons.

During the collisions, we observe the toroidal, short-lived intermediate B = 2 bound state

previously reported by some authors (Peyrad [92] and Kudryavtsev [56]). However, with our

choice of potential parameter the initial kinetic kinetic energy imparted to the baby skyrmions
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was typically large enough to allow them to easily escape from their mutual attraction, leading

to late-time configurations of stable outwardly-propagating solitons. As for the repulsive-

channel evolutions, conservation of energy is no longer observed during the interaction period

for boosts above γ?. Instead, an apparent discontinuity in E forms, and the magnitude of

the jump increases as h → 0. The loss of hyperbolicity in the attractive channel evolutions

occurs at slightly lower velocities than for the repulsive channel ones.

• BB collisions with intermediate values of the internal phase (0 < Ψ < π, Sec. 4.7.2): Here the

baby skyrmions form large B0 density spikes at the collision point, and then scatter at right

angles. However, the baby skyrmions that emerge from the interaction are of different sizes:

the large skyrmion scatters at an angle of π/2, while the small one scatters in the opposite

direction, i.e at an angle 3π/2. If we change the relative phase to Ψ = −π/2, the scattering

angles are exchanged. For sufficiently large γ we again observe a loss of hyperbolicity.

• BB grazing collisions (Sec. 4.8): In the repulsive channel (Ψ = 0), and with moderate impact

parameter, the skyrmions appear to attract one another, fuse for a short time, then exit at

nonzero angles with respect to the axis of approach. In the attractive channel (Ψ = π) the

skyrmions experience a mutually repulsive force and scatter without a merger period. The

solitons are deflected at larger angles and emerge more deformed relative to the Ψ = 0 case.

With the values of γ that we used no loss of well-posedness was detected in either type of

grazing collision.

• Head-on BB̄ collisions: In the attractive channel (Ψ = π), and in terms of the baryon density,

these result in annihilation, with the total energy of the configuration being released as a

pulse of radiation that propagates outwards as a circularly-symmetric wave. In the repulsive

channel case, the BB̄ pair does not annihilate. Rather, there is a brief merger, followed by

backscattering of the solitons and the emission of a significant amount of radiation.

• BB̄ grazing collision with Ψ = π: This interaction is characterized by a brief merger of

the BB̄ pair, followed by evolution to an end state that is a combination of scattering and

emission of radiation.

• By increasing the value of the potential parameter from µ2 = 0.001 to µ2 = 0.1 we were able

to qualitatively reproduce some previous results wherein a BB̄ collision results in a stable
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circularly-symmetric bound state, accompanied by a train of primarily dipolar outgoing waves

(in the baryon density). Furthermore, loss of hyperbolicity for µ2 = 0.1 set in at a smaller

value of γ than for µ2 = 0.001.

• We found that reprojection (Sec. 4.3.3) is a very robust and reliable method for enforcing

the constraint φaφa = 1. We also experimented with constraint damping (Sec. 4.10) and

found that provided the adjustable parameters, ξ1, and, more importantly, ξ2, were chosen

judiciously the approach was quite effective in preserving the constraint.

Finally, we make the following observation. Crutchfield and Bell [1] have conjectured that a loss

of hyperbolicity should arise when the kinetic energy of a configuration significantly exceeds the

potential energy. Although our findings are in accord with this, we have found that there are

some subtleties in correlating K > U—i.e. not necessarily K � U—with a loss of well-posedness.

For instance, the correlation appears to hold for head-on BB collisions in the attractive channel

(Fig. 4.35), but not for BB̄ collisions in the same channel (Fig. 4.49). The correlation also appears

to fail for BB̄ collisions with µ2 = 0.1 (Fig. 4.53), where K > U but the evolution appears to

be perfectly well posed. We also note that for head-on BB collisions in the repulsive channel

(Fig. 4.29) and head-on BB collisions with Ψ = π/2, hyperbolicity is apparently lost even in cases

where K < U . Our experience thus suggests that the loss of well-posedness is not connected in a

simple manner to the relative magnitudes of the potential and kinetic contributions to the total

energy (considered either globally or locally).

It is quite possible that there are quantities other than the total energy, E, that are computable

from the field variables, and that could serve as additional indicators of the breakdown of hyperbol-

icity. In particular, following Crutchfield and Bell [1], we performed a linear normal-mode analysis

of the characteristic structure of the baby Skyrme model: this is described in App. C.2. Numerical

calculations based on this specific linearization confirmed the presence of unstable modes (complex

eigenvalues) for values of γ > γ?; i.e. the appearance of the unphysical modes was correlated with

the observation of loss of conservation of E in the full nonlinear evolution of the field equations.

Further investigation of this issue is an important way in which our code could be extended.

Other possible extensions of this work include a study of the scattering of a wider set of solu-

tions of the baby Skyrme model. In Sec.4.5 we mentioned that Kudryavtsev et al [56] considered

excited skyrmion highly exited skyrmion-like states with B = 1, observing decays into a skyrmion

and a skyrmion-anti-skyrmion pair, and sometimes nonlinear waves (pseudo-breathers), and other
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interesting non-topological quasi-stable objects such as breathers. Clearly the baby Skyrme model

admits a very rich phenomenology and has dynamics that warrant further investigation. An inves-

tigation of the µ2 dependence of scattering experiments is one such topic that immediately comes

to mind. Additionally, we are especially interested in extending the capabilities of our code to

provide an improved and fuller understanding of the hyperbolicity (well-posedness) properties of

the baby Skyrme model.
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CHAPTER 5

RELATIVISTIC SCATTERING OF

SKYRMIONS IN 3 + 1 DIMENSIONS

5.1 Introduction

This chapter of the thesis presents preliminary results of the phenomenology of head-on skyrmion

collisions in three spatial dimensions. Limitations in computer resources have prevented us from

establishing definitive convergence behaviour for unigrid computations. Nevertheless, by using

AMR we have been able to perform evolution of the dynamics of the full Skyrme model with some

confidence in our results. The development in this chapter closely parallels that of the previous

one in which we discussed our work with baby skyrmions30. Sec. 5.2 begins with a description of

the model and the dynamical equations of motion. In Sec. 5.2.1 and 5.2.2 we discuss the specific

implementation of the numerical methods that we use to approximately solve these equations.

Sec. 5.2.4 then discusses the generation of suitable initial data for boosted skyrmions. Monitoring

of conserved quantities is described in Sec. 5.2.5. Sec. 5.3 describes general features of skyrmion

scattering, and presents a survey of previous work relevant to our calculations. We then make

a brief study of the phenomenology of head-on skyrmion collisions (SS) by means of a series of

adaptive computations—these are summarized in Sec. 5.4. Sec. 5.5 concludes the chapter with a

summary of our findings, as well as suggestions for extensions of our code.

5.2 The Model

The model is described in terms of the right SU(2) valued-current, Rµ, with a Lagrangian density

[25, 26, 20, 27]

L =
F 2
π

16
Tr(RµRµ) +

1
32e2

Tr[Rµ, Rν ]2 , (5.1)

30In fact, the reader will note that some of the text describing the modelling procedure has been recycled with
little or no change.
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where µ, ν = 0, 1, 2, 3. Fπ is the pion weak decay constant—the energy scale of chiral symmetry

breaking [28]—and e is a dimensionless real parameter. The first term is the σ-model, and the

second term is added to stabilize soliton solutions. In contrast to the baby Skyrme model we

studied in Chap. 4, the presence of a potential term V (sometimes referred as a mass term) in

the full 3D Skyrme model is optional, since static solutions exist for V = 0. Though elegant, the

Lagrangian density (5.1) is not suited for numerical treatment. We use the relation31

Rµ = (∂µU)U−1 = −U∂µU−1 , (5.2)

to express (5.1) in sigma-model form in terms of the SU(2)-valued scalar (the Skyrme field), U ,

L =
F 2
π

16
Tr(∂µU∂µU†) +

1
32e2

Tr[(∂µU)U†, (∂µU)U†]2 . (5.3)

The parameters Fπ and e can be scaled away by choosing suitable units of energy (Fπ/4e) and

length (2/eFπ) [20], yielding

L =
1
2

Tr(∂µU∂µU†) +
1
4

Tr[(∂µU)U†, (∂µU)U†]2 . (5.4)

We now construct a four component vector representation of SU(2) [25, 26, 20, 27], by defining

φa ≡ (φ1, φ2, φ3, φ4), which satisfies the constraint φaφa = 1. We then have

U = φ1I + i(φ2σ1 + φ3σ2 + φ4σ3) =

 φ1 + iφ4 φ3 + iφ2

−φ3 + iφ2 φ1 − iφ4

 , (5.5)

where σ1, σ2, σ3 are the Pauli matrices, and I is a suitable identity matrix. We note that U† =

U−1, and φa = φa(xµ), with xµ the spacetime coordinates. Writing U and U−1 in terms of its

components, one finds after lengthy manipulation [154, 25, 26] that

L =
1
2
∂µφa∂

µφa +
1
4

(∂µφa∂µφa)2 − 1
4

(∂µφa∂νφa)(∂µφb∂νφb) + λLM(φaφa − 1) . (5.6)

Here Latin indices a, b, . . . = 1, 2, 3, 4 label the components of the dynamical fields, while, as usual,

Greek indices label the dimensions of spacetime, µ, ν . . . = 0, 1, 2, 3. The last term in (5.6) has

31This relation follows from the Hermiticity of U , i.e. U†U = I → ∂µ(UU−1) = 0
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been added to enforce the constraint φaφa = φ2
1 + φ2

2 + φ2
3 + φ2

4 = 1, analogously to the case of the

baby Skyrme model (4.1). Thus, by varying the Lagrangian constraint with respect to λLM we will

again generate equations of motion which preserve the constraint [31, 32, 25]. The time-dependent

equations of motion derived from the Lagrangian (5.6) are (See App. D.4),

(1 + ∂µφa∂
µφa)2φa + ∂µ∂νφb∂

µφb∂
νφa − ∂µφb∂νφb∂µ∂νφa −2φb∂

νφb∂νφa

+
[
(1 + ∂µφa∂

µφa)(∂νφa∂νφa)− (∂µφa∂νφa)(∂µφb∂νφb)
]
φa , (5.7)

where the exact form of the Lagrange multiplier term λLM has been computed (App. B) and

included. Note that these equations are identical to those describing the dynamics of the baby

Skyrme model (4.16) except that we now have four dynamical fields, φa(xµ) a = 1, 2, 3, 4, that

depend on all 3 space dimensions plus time.

As was the case for the Q-ball PDEs described in Sec. 3.3 and the baby Skyrme model in

Sec. 4.3, we wish to rewrite (5.7) as a set of first-order-in-time equations, in order to employ a

two time-level Crank-Nicholson finite-difference scheme. We thus eliminate the second order time

derivatives by introducing auxiliary fields, π1, π2, π3 and π4, defined by

πa(t, x, y, z) =
∂φa(t, x, y, z)

∂t
. (5.8)

Our central interest is to study the scattering of head-on collisions of skyrmions which, again,

are solitonic solutions of the model sketched above (see Sec. 4.2.1). As with the baby skyrmion

case—which we discussed in some detail in Sec. 4.2.1—skyrmions display non-trivial topologi-

cal properties. Here, the dynamical field φa represents a mapping from the compactified space-

time R3 ∪ ∞ ' S3 into the internal space SU(2) with the condition that U(t, x, y, z) → I when√
x2 + y2 + z2 → ∞. We recall that maps are topologically equivalent [16, 24, 15] if they can

be deformed into one another continuously, and we say that such maps belong to the same class.

These classes are labeled by an integer, known as the topological charge, B, which is a conserved

quantity that is interpreted as the baryon number [16, 24, 15]. B can be defined by first noting

that the model admits a conserved current, Bµ, given by [48, 53],

Bµ = εαβγδεµνρσφa∂
νφβ∂

ρφγ∂
σφδ . (5.9)
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B is then given by the spatial integral over the first component of (5.9). We will consider the

explicit calculation of this quantity in Sec. 5.2.5.

5.2.1 Finite Difference Approach

The discretization of the equations of motion (5.7) is simply a generalization to three spatial

dimensions of the methodology used for the baby Skyrme model equations in Sec. 4.3.1. We

follow the same strategy of adopting a second order, Crank-Nicholson scheme, expressed on finite

difference grids that are characterized by a single discrete scale, h. We thus have ∆x = ∆y = ∆z =

h, and ∆t = λh, where λ is the Courant number.32

Naturally, with the inclusion of an extra spatial dimension, namely z, we have additional finite-

difference expressions for the full Skyrme model relative to the baby Skyrme model. These are

summarized in Tab. 5.1, where we continue to use the notation φn(i, j, k) ≡ φ(tn, xi, yj , zk) for

grid functions. Also following our previous procedure, we will express the difference approxi-

mations of (5.7) in residual form, and remind the reader that the process of computing a so-

lution to the discrete equations of motion is equivalent to driving all of the residual quantities,

φres
1 , φres

2 , φres
3 , φres

4 , πres
1 , πres

2 , πres
3 , πres

4 , to 0.

For any of the the φa fields the residual form of the difference approximations are simply

φres
a (i, j) =

πn+1
a (i, j) + πna (i, j)

2
− φn+1

a (i, j)− φna(i, j)
∆t

, (5.10)

where the Latin index a . . . = 1, 2, 3, 4 labels the dynamical field. We again stress that here and

below—and due to our use of superscripts for other purposes—we will often adopt a notation

whereby φ1, φ2 , φ3 and φ4 (and similarly π1, π2, π3 and π4), rather than φ1, φ2, φ3 and φ4, denote

field components.

As in the case of the baby Skyrme model, the task of writing the residuals πres
1 , πres

2 , πres
3 , πres

4

fields explicitly is formidable, since the equations (5.7) in three spatial dimensions are quite com-

plicated. Therefore, a Maple-based script was again written to automate this task: the script

substitutes the finite difference stencils (5.1) into the continuum PDEs, thereby constructing the

residual expressions.
32Once more we stress that, as discussed in Chap.2, when we use adaptive mesh refinement (AMR), each of the

component grids in the grid hierarchy satisfies these conditions for some hL, where L labels the level of the grid in
the hierarchy and hL = hL−1/2.
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The overall time-stepping methodology is also the same as that employed in Sec 4.3.1 for the

baby Skyrme model. In the current case we have eight dynamical fields so, at any grid point

(i, j, k), the Crank-Nicholson discretization yields eight nonlinear equations (defined by the four

residual expressions (5.10) and πres
1 , πres

2 , πres
3 , πres

4 ) for the unknowns φn+1
a (i, j, k) and πn+1

a (i, j, k).

The global system of equations is again solved using point-wise-Gauss-Seidel relaxation sweeps.

During one sweep, each grid point is visited in turn, and the 8 unknowns defined at that point

are simultaneously (collectively) updated by performing a single Newton-step. This step in turn

requires the construction of the 8× 8 Jacobian matrix Jcd, with matrix elements defined by

Jcd ≡
∂Rc
∂Vd

, (5.11)

where

R ≡ Residual Equations = [φres
1 , φres

2 , φres
3 , φres

4 , πres
1 , πres

2 , πres
3 , πres

4 ] ,

V ≡ Variables = [φ1, φ2, φ3, φ4, π1, π2, π3 π4] . (5.12)

In (5.11) the Latin indices c, d . . . = 1 . . . 8 label the rows and columns of the 8 × 8 linear system.

We also note that we have suppressed the finite-differencing indexing for simplicity of expression,

so that we have, for example,
∂φres

1

∂φ1
≡ ∂φres

1 (i, j, k)
∂φn+1

1 (i, j, k)
. (5.13)

We then use the routine DGESV from the LAPACK package [126] to directly solve the linear

system at every grid point (xi, yj , zk):

JcdδVd(i, j, k) = Vc(i, j, k) . (5.14)

Once the corrections δVd = [δφ,δπ] have been obtained, the advanced-time unknowns are updated

using

φn+1
a (i, j, k) = φn+1

a (i, j, k)− δφa(i, j, k) ,

πn+1
a (i, j, k) = πn+1

a (i, j, k)− δπa(i, j, k) . (5.15)

When the global l2 norm of the corrections (see 2.31 and Sec. 3.3.1) is below a specified threshold,
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1: for tn = ∆t, 2∆t, . . . do
2: for i = 1 to Nx do
3: for j = 1 to Ny do
4: for k = 1 to Nz do
5: Set initial estimate for the solution vector

φ
(0)
b ≡ [φ(0)

1 , φ
(0)
2 , φ

(0)
3 , φ

(0)
4 , π

(0)
1 , π

(0)
2 , π

(0)
3 , π

(0)
4 ]T

6: Calculate the 8× 8 Jacobian matrix Jab and the residual vector Ba

at this point using nearest neighbour values, (some new, some old)
7: Solve Jab δbφ = Ba for the update

δbφ = [δφ(0)
1 , δφ

(0)
2 , δφ

(0)
3 , δφ

(0)
4 , δπ

(0)
1 , δπ

(0)
2 , δπ

(0)
3 , δπ

(0)
4 ]T using

DGESV and obtain a new estimate φnew
b = φ

(0)
b − δbφ

8: end for
9: end for

10: end for
11: Calculate the l2 norm of the residuals using the new guess φnew

b (This is a
global norm for all subdomains used by the parallel infrastructure)

12: if l2 norm of the residuals < tolerance then
13: Convergence achieved
14: Goto 17
15: else
16: φ

(0)
b = φnew

b

17: Goto 2
18: end if
19: end for

Figure 5.1: Time stepping algorithm for the full Skyrme model evolution

the solution is deemed converged, and we can advance from tn to tn+1; otherwise we execute

another Newton-Gauss-Seidel sweep. A pseudo-code version of the full time-stepping algorithm is

given in Fig. 5.1.

5.2.2 Implementation Strategy

The implementation of the algorithm described above closely followed that of the code for the

baby Skyrme model, including the use of the AMRD (Adaptive Mesh Refinement Driver) / PAMR

(Parallel Adaptive Mesh Refinement) infrastructure [120, 107, 108] (see Chap. 2 and Sec. 3.3.2 for

more details).

As described in Sec. 4.3.2 (and briefly above), the use of scripting and symbolic manipulation in

the implementation process was crucial, particularly given the additional complexity introduced by

the addition of a third spatial dimension, z. The derivation of the continuum equations of motion,

and their ensuing discretization, were all achieved using Maple [128] scripts and a Maple-based

tensor-manipulation package [129]. Once again, the discretization of the field equations, i.e. the

209



5.2. THE MODEL

φ
φn+1
ijk +φnijk

2

φx
1
2

[
φn+1
i+1,j,k−φ

n+1
i−1,j,k

2∆x +
φni+1,j,k−φni−1,j,k

2∆x

]
φt

φn+1
ijk −φnijk

∆t

φxx
1
2

[
φn+1
i+1,j,k−2φn+1

i jk+φn+1
i−1,j,k

∆x2 +
φni+1,j,k−2φni jk+φni−1,j,k

∆x2

]
φxy

1
2

[φn+1
i+1,j+1,k−φ

n+1
i−1,j+1,k−φ

n+1
i+1,j−1,k+φn+1

i−1,j−1,k

4∆x∆y

+
φni+1,j+1,k−φni−1,j+1,k−φni+1,j−1,k+φni−1,j−1,k

4∆x∆y

]
φxz

1
2

[φn+1
i+1,j,k+1−φ

n+1
i−1,j,k+1−φ

n+1
i+1,j,k−1+φn+1

i−1,j,k−1

4∆x∆z

+
φni+1,j,k+1−φni−1,j,k+1−φni+1,j,k−1+φni−1,j,k−1

4∆x∆z

]
φyz

1
2

[φn+1
i,j+1,k+1−φ

n+1
i,j−1,k+1−φ

n+1
i,j+1,k−1+φn+1

i,j−1,k−1

4∆y∆z

+
φni,j+1,k+1−φni,j−1,k+1−φni,j+1,k−1+φni,j−1,k−1

4∆y∆z

]
Table 5.1: Crank-Nicholson (CN) three-(space) dimensional finite difference stencils used to convert
the differential equations to difference equations, for any of the eight dynamical variables φa or
πa Here we use the notation φnijk ≡ φni,j,k = φ(tn, xi, yj , zk). We remind the reader that we use
(component) finite difference grids that are characterized by a single discretization scale, h, so
that ∆x = ∆y = ∆z = h, and ∆t = λh, where λ is the Courant number. Each of the above
expressions is a second order (O(h2)) approximation to its continuum counterpart, and is centred
at (tn+1/2, xi, yj , zk).
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replacement of the continuum differential operators by finite difference expressions, was done in

the same way as for the baby Skyrme model (see Sec. 4.3.2 for further details).

5.2.3 Constraint Enforcement

We investigated two constraint enforcement mechanisms. The first was based on the addition of

the Lagrange multiplier, λLM, to the Lagrangian. However, as was the case for the baby Skyrme

model, we found that this approach did not give satisfactory results. We thus opted for simple

reprojection of the fields (see Sec. 4.3.3 for details), and this worked well.

5.2.4 Initial Data: Two Skyrmions

We wish to evolve minimum energy, topologically non-trivial, static solutions of the full Skyrme

model, i.e. skyrmions. In order to construct a skyrmion, we adopt a generalization of the hedgehog

ansatz employed in the baby Skyrme model (4.7). This ansatz also assumes spherical symmetry,

and the configuration can again be described in terms of a radial profile function, f(r). Specifically,

adopting the usual spherical coordinates the ansatz is

φa =



sin f(r) sin θ cos(ϕ)

sin f(r) sin θ sin(ϕ)

sin f(r) cos θ

cos f(r)


. (5.16)

Here

ϕ = tan−1
(y
x

)
, θ = tan−1

(√
x2 + y2 + z2

z

)
, (5.17)

are referred to as the internal phases of the skyrmion. Substitution of (5.16) in (5.7) leads to a a

nonlinear second order ordinary differential equation,

(
r +

n2 sin2 f

r

)
f

′′
+
(

1− n2 sin2 f

r2
+
n2 f ′ sin f cos f

r

)
f ′ − n2 sin f cos f

r
= 0 , (5.18)

where f ′ ≡ df/dr. The radial function f(r) must satisfy the boundary conditions f(0) = Bπ and

f(∞) = 0 (localization), where B is the topological charge (see Sec. 5.2). As in the case of the

baby Skyrme model, we will limit our attention to skyrmions with B = 1, so that the condition at
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the center is f(0) = π. We numerically solved (5.18) using the same shooting technique described

in Sec. 3.2.1 and Sec. 4.2.2. However, in the case of (5.18) there is also approximate closed form

solution (suggested by Battye and Sutcliffe [25]),

f(r) = 4 tan−1 exp(−r) . (5.19)

Both numerical (which we now denote g(r)) and closed form (5.19) profile functions are shown

in Fig. 5.2. Skyrmion scattering using either the numerical solution or the approximation (5.19)

shows no appreciable difference for the type of calculations performed in this chapter. Additionally,

the closed form approximation simplifies the generation of initial data, since the interpolation of

the solution (see 4.3.4) onto our three dimensional domain is easier. We thus adopted (5.19) in

our calculations. Note that although (5.19) is not regular at the origin of an (x, y, z) coordinate

system, the components of (5.16) in those coordinates are (See App. D.5).

Let us consider two skyrmions, each defined by a hedgehog ansatz (5.16). In contrast to the baby

Skyrme model, we now have two phases, θ and ϕ. Therefore we can characterize each skyrmion

by two separate internal angles: θ1, ϕ1 for the first, and θ2, ϕ2 for the second. Then denoting the

fields for the two configurations by φ(1)
a and φ

(2)
a respectively, and using (5.16), we can write:

φ(1)
a =



sin f(r1) sin(θ1) cos(ϕ1)

sin f(r1) sin(θ1) sin(ϕ1)

sin f(r1) cos(θ1)

cos f(r1)


, φ(2)

a =



sin f(r1) sin(θ2) cos(ϕ2)

sin f(r1) sin(θ2) sin(ϕ2)

sin f(r1) cos(θ2)

cos f(r1)


, (5.20)

where r1 and r2 are the radial distances from the centres of the corresponding hedgehogs. We then

refer to the parameters Ψ1 and Ψ2, defined by

Ψ1 ≡ θ2 − θ1 , Ψ2 ≡ ϕ2 − ϕ1 ,

as the relative phases between the skyrmions. In 3 + 1 dimensions it is common to refer to these

phases as the internal isospin orientation [25] of the skyrmions. As in the case of the baby Skyrme

model, these quantities play an important role in the dynamics of skyrmion collisions.

As for baby skyrmions, a pair of skyrmions (or skyrmion and antiskyrmion) separated by

some distance, and at rest with respect to one another, will experience mutual forces ranging
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from maximally attractive to maximally repulsive, dependent on the value of the phase Ψ1. We

will use the nomenclature defined in Sec. 4.3.6 wherein the attractive channel is a configuration

of two hedgehogs with an initial Ψ1 = ±π, while the repulsive channel corresponds to Ψ1 = 0

(i.e. no phase difference). Furthermore, we note that a configuration with Ψ2 = ±π produces two

skyrmions with opposite signs of the baryon number, i.e. a skyrmion-skyrmion pair in transformed

to a skyrmion-antiskyrmion pair.

We can now define initial data φ0
a(i, j, k) and π0

a(i, j, k), a = 1, 2, 3, 4 (i.e. initial values defined

on the finite difference grid (xi, yj , zk)). This is achieved by first interpolating and translating the

profile functions, f(r1) and f(r2), for the two skyrmions, in exactly the manner as was done for

baby skyrmion initial data in Sec. 4.3.4.

Once the profile functions have been transferred to the finite difference mesh, yielding values

f1(i, j, k) and f2(i, j, k), the dynamical field values φ0
a(i, j) are set by

φ0
1(i, j, k) = sin f1(i, j, k) sin θ1(i, j, k) cosϕ1(i, j, k) + sin f2(i, j, k) sin θ2(i, j, k) cosϕ2(i, j, k) ,

φ0
2(i, j, k) = sin f1(i, j, k) sin θ1(i, j, k) sinϕ1(i, j, k) + sin f2(i, j, k) sin θ1(i, j, k) sinϕ1(i, j, k) ,

φ0
3(i, j, k) = sin f1(i, j, k) cos θ1(i, j, k) + sin f2(i, j, k) cos θ1(i, j, k) , (5.21)

φ0
4(i, j, k) = cos f1(i, j, k) + cos f2(i, j, k)− 1 ,

where the internal phases of the skyrmion are given by

ϕ(i, j, k) = tan−1

(
yj − yc
xi − xc

)
,

θ(i, j, k) = tan−1

(√
(xi − xc)2 + (yj − yc)2 + (zk − zc)2

(zk − zc)

)
. (5.22)

Since we are interested in colliding skyrmions with non-zero initial velocities, boosted initial data

is obtained by an analogous procedure to the one described in Sec. 4.3.5. We briefly outline the

procedure for a single boosted skyrmion. Once more we consider a boost with Lorentz factor, γ, in

the +x direction, and use primes to denote the coordinate system associated with the rest frame

of the skyrmion. We thus have

t′ = γ(t+ vx) x′ = γ(x+ vt) y′ = y z′ = z , (5.23)
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and

t = γ(t′ − vx′) x = γ(x′ − vt′) y = y′ z′ = z . (5.24)

From equations (3.39) the dynamical fields, φa(t′, x′, y′, z′), have the following values in the boosted

frame:

φ1(t, x, y, z) = φ′1(t′, x′, y′, z′) = sin f(x′, y′, z′) sin θ(x′, y′, z′) cosϕ(x′, y′, z′) ,

φ2(t, x, y, z) = φ′2(t′, x′, y′, z′) = sin f(x′, y′, z′) sin θ(x′, y′, z′) sinϕ(x′, y′, z′) ,

φ3(t, x, y, z) = φ′3(t′, x′, y′, z′) = sin f(x′, y′.z′) cos θ(x′, y′, z′) ,

.φ4(t, x, y, z) = φ′4(t′, x′, y′, z′) = cos f(x′, y′.z′) , (5.25)

where

ϕ(x, y, z) = tan−1

(
yj − yc

[γ[(x− xc) + vt]

)
,

θ(z, y, z) = tan−1

(√
[γ[(x− xc) + vt]2 + (yj − yc)2 + (zk − zc)2

(zk − zc)

)
. (5.26)

The time derivatives, πa(t, x, y, z), transform according to (3.40) and (3.41), yielding

π1 =
∂φ′1
∂x′

γv , π2 =
∂φ′2
∂x′

γv , π3 =
∂φ′3
∂x′

γv , π4 =
∂φ′4
∂x′

γv , (5.27)

where we have used the fact that the rest-frame time derivatives, π′a(t′, x′, y′, z′), are identically 0.

At the initial time, t = 0, the coordinates in the rest frame are

t′ = γvx x′ = xγ y′ = y z′ = z . (5.28)

Again following the method described in Sec. 3.3.4, we interpolate in f(x′, y′, z′) to determine the

values f(γx, y, z) in the lab frame, using r′ =
√
x′2 + y′2 + z′2, as well as the fact that in the rest

frame f(x′, y′, z′) is a circularly symmetric function, i.e. f(x′, y′, z′) ≡ f(r′). A complete set of

initial values for a boosted baby skyrmion then follows by substituting t = 0 in (5.25). For the φa
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we have

φ0
1(x, y, z) = sin f(γx, y, z) sin θ(γx, y, z) cosϕ(γx, y.z) ,

φ0
2(x, y, z) = sin f(γx, y, z) sin θ(γx, y, z) sinϕ(γx, y, z) , (5.29)

φ0
3(x, y, z) = sin f(γx, y, z) cos θ(γx, y, z) ,

φ0
4(x, y, z) = cos f(γx, y, z) .

while for the πa we find

π0
1(x, y, z) =

∂φ0
1

∂x′
γv , π0

2(x, y, z) =
∂φ0

2

∂x′
γv , π0

3(x, y, z) =
∂φ0

3

∂x′
γv , π0

4(x, y, z) =
∂φ0

4

∂x′
γv .

(5.30)

We note that the derivatives ∂φ0
a/∂x

′ in this last set of expressions are computed numerically.

5.2.5 Computation of Conserved Quantities

In this subsection we will describe the computation of the total topological charge, B, the total

energy, E, and the kinetic (K) and potential (U) components of E. Once more, the procedure is

essentially the same as that implemented for the baby Skyrme model in Sec. 4.4.

The total baryon number, B, is given by the spatial integral [27, 15],

B =
1

2π2

∫
B0 d3x =

1
2π2

∫
εαβγδενρσφa∂

νφβ∂
ρφγ∂

σφδ d3x , (5.31)

where B0 is the baryon number density.

We approximate this integral using a second-order trapezoidal rule, as described in Sec. 4.4.1.

For the I-th subregion, we have a contribution, BI , given by (see Sec. 4.4.1 for details),

BI =
(

1
2π2

)
∆x ∆y; ∆z

8

Nx−1,Ny−1,Nz−1∑
i,j,k

[B0]i,j,k + [B0]i+1,j,k + [B0]i,j,k+1 + [B0]i+1,j,k+1

+ [B0]i,j+1,k + [B0]i,j+1,k + [B0]i,j+1,k+1 + [B0]i+1,j+1,k+1 , (5.32)

where ∆x, ∆y and ∆z are the grid spacings of the three-dimensional mesh. We then sum the BI

to determine the final value of B.

Following Sec. 4.4.2, we compute the following locally defined energy densities: 1) total, T00; 2)
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Figure 5.2: This figure displays the closed form radial profile function, f(r) (5.19) (blue), and the
numerical profile, g(r) (red). The latter is calculated with a shooting parameter g′ = dg/dr =
−2.008 (with boundary condition at the origin g0 = π). The g(r) plot shows a subset of the full
computations, which generally comprise discrete collections of points, rp, p = 1, . . . , N , where N is
of the order of 1300, r1 = 0 and rN ≡ rmax ≈ 300 (i.e. only a small portion of the radial integration
domain is shown here). The LSODA error tolerance is of the order of 1.0× 10−7 which guarantees
that the error in the profile function (r) is much smaller than the error of the evolved finite
difference solutions that we subsequently generate. Note that the functions are almost identical
near the origin. Both then rapidly fall off for r & 5, departing from each other as r → ∞, where
the tail of f(r) decays more rapidly than that of g(r). The form of these profiles demonstrates
manifestly the localized (particle-like) nature of the skyrmions. As for baby skyrmions, a natural
length scale is defined by the size of the skyrmion, which appears to be ≈ 5 in radius (10 in
diameter). We use this size to determine acceptable dimensions for our computational domains,
noting that, as usual, the meaning of high (or low) resolution for a finite difference grid will always
be relative to the natural scale.
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kinetic, T and 3) potential, P . We also evaluate the integrals of these quantities over the solution

domain, yielding values denoted by E, K and U , respectively. Computing the local energy density,

T00, is accomplished by first calculating the energy-momentum tensor, Tµν , of the model using

(4.44). As usual, Tµν describes the density and flow of the (local) 4-momentum. The local energy

density, T00, is then given by (5.33),

T00 = TµνUµUν = T00 , (5.33)

where Uµ = (1, 0, 0, 0) is the 4-velocity of a coordinate-stationary observer [141]. The calculation

of the kinetic K and potential U energy densities follow from the decomposition of the Lagrangian

density of the full Skyrme model (5.6) as L = K − U , which is usually expressed in terms of the

right SU(2) valued-current Rµ introduced in Sec. 5 [155],

K =
∫
d3x − 1

2
Tr(R0 R0)− 1

4
Tr([R0Ri, R0Ri])) , (5.34)

and33

U =
∫
d3x − 1

2
Tr(Ri Ri)−

1
8

Tr([RjRi, RjRi])) , (5.35)

where the Latin index i . . . = 1, 2, 3 runs over the spatial dimensions. Again, the specific expressions

for T00, K and U are calculated using symbolic manipulation—with currents Rµ written in terms

of our sigma model dynamical fields, φa, as prescribed in Sec. 5.2—and then exported to Fortran

77, to be computed as separate grid functions in our code.

The total energy, E, is then calculated in complete analogy with the computation of B described

above. Sub-integrals, EI , are given by

EI =
∫
d3x E =

∆x ∆y; ∆z
8

Nx−1,Ny−1,Nz−1∑
i,j,k

[T00]i,j,k + [T00]i+1,j,k + [T00]i,j,k+1

+ [T00]i+1,j,k+1 + [T00]i,j+1,k + [T00]i,j+1,k + [T00]i,j+1,k+1 + [T00]i+1,j+1,k+1 , (5.36)

and then the EI are summed to yield the value of E. Correspondingly, the subintegrals for K and
33The potential energy U is the sum of the spatial gradients and the potential function V .
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U are calculated via

KI =
∫
d3x T =

∆x ∆y; ∆z
8

Nx−1,Ny−1,Nz−1∑
i,j,k

[T ]i,j,k + [T ]i+1,j,k + [T ]i,j,k+1

+ [T ]i+1,j,k+1 + [T ]i,j+1,k + [T ]i,j+1,k + [T ]i,j+1,k+1 + [T ]i+1,j+1,k+1 , (5.37)

UI =
∫
d3x P =

∆x ∆y; ∆z
8

Nx−1,Ny−1,Nz−1∑
i,j,k

[P00]i,j,k + [P00]i+1,j,k + [P00]i,j,k+1

+ [P00]i+1,j,k+1 + [P00]i,j+1,k + [P00]i,j+1,k + [P00]i,j+1,k+1 + [P00]i+1,j+1,k+1 . (5.38)

The KI and UI are summed to yield the values of K and U .

5.3 General Features of Skyrmion Scattering: Previous

Work

This section provides a detailed summary of previous 3 + 1 skyrmion numerical studies; these have

been mentioned previously in Sec. 1.4.1. We will adopt the following notation to refer to the most

common type of scattering that we consider here and in subsequent sections. SS denotes the

collision of two skyrmions, each with topological charge B, while SS̄ refers to the scattering of a

skyrmion with charge B and an anti-skyrmion with charge −B.

We first need to say a few words about units. The values of the constants Fπ and e, which

appear in our Lagrangian density (5.3), are not relevant for our calculations, since we scaled them

out in Sec. 5.2. However, we need their values when we compare with other works, which usually

express length scales in femtometers (fm), and energy in MeV. To complicate matters, Fπ and e

vary greatly in the literature, depending on the phenomenological context of the model at hand.

We will adopt the values of Sommermann et al. [86], i.e. Fπ = 128 MeV and e = 5.4. Therefore,

our time and length units (as stated before, c = 1 throughout this thesis) are 2/eFπ = 0.57 fm,

and for energy, Fπ/4e ≈ 6 MeV.

The most relevant numerical work in 3 + 1 dimensions for this thesis includes (in chronological

order):

• Verbaarschot, Walhout and Wambach (1986) [84] performed the first numerical work on
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SS and SS̄ collisions in axisymmetry, and included a pion mass term. Their choice of

symmetry effectively reduces the problem to one in two spatial dimensions, and they adopt

cylindrical coordinates, (ρ, z) for their calculations. Their motivation is to determine when

collisions cease to show purely classical behaviour. They argue that the Skyrme model is a

semi-classical approximation, and therefore, at sufficiently high energy, non-classical internal

degrees of freedom are excited at a critical velocity v?—signalling semi-classical effects—and

remain in this state after the interaction. By analyzing the elasticity of collisions as a function

of the velocity, they determined the v? when kinetic energy is no longer conserved.

Their implementation adopts a leap-frog scheme for the time evolution of the Hamiltonian

equations of motion. The canonical momenta of the Skyrme fields are promoted to indepen-

dent dynamical variables. However, no details about the finite difference discretization are

provided. The chiral constraint is imposed by means of a Lagrange multiplier term.

Numerical experiments consisted of head-on encounters with initial velocities 0.2, 0.4 and 0.6.

They discovered that elasticity is maintained below v? = 0.39 (150 MeV) 34 for SS collisions,

and 75 MeV for SS̄ pairs.

Calculations were performed on a grid with a resolution of 100×80 points in (ρ, z), with a mesh

spacing h = 0.075, yielding a domain with dimensions [0, 7.5]× [−3, 3]. The starting locations

of the solitons were z = −3 and z = 3. The configurations evolved were the hedgehogs studied

formerly by Adkins and Nappi [156], where the radius of the skyrmion is ≈ 5 [157, 27]. They

report that stability restricts the Courant number to smaller values as one goes to higher

energy. For instance, λ = 0.1 for v = 0.2–0.4 (35 and 150 MeV respectively) and λ = 0.05

for v = 0.6 (390 MeV). In an effort to improve stability, artificial viscosity is introduced.

However, this modification results in undesirable side effects, such as the dissipation of E,

which prevents the meaningful monitoring of the conservation of energy.

Radiation is observed at v = 0.6, and is dubbed “mesonic” waves. An important observation

is that a SS̄ pair with the internal phase Ψ1 = 0 (see Sec. 5.2.4) does not annihilate, but

forward scatters, while a value of Ψ1 = ±π causes the configuration to end in annihilation

(these results are consistent with ours in Sec. 4.9). It is customary to refer to the latter choice

34Its is customary for scattering calculations of the Skyrme model, in three dimensions, to characterize the collisions
in terms of center of mass energy (i.e. the lab frame where our experiments are described) expressed in MeV. We will
adopt this standard, and will also specify the velocity of the collisions. We remind the reader that, in this chapter,
unless we clearly state that we using MeV, the default units of energy are the ones adopted in Sec. 5.2, Fπ/4e.
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of internal phase as the annihilation channel.

• Allder, Koonin, Seki and Sommermann (1987) [85] pioneered the first true 3 + 1 numerical

calculations of head-on SS collisions, motivated by the possibility of computing cross sections

for baryon resonance and meson production. They study SS collisions at various impact

parameters, for center-of-mass energies of 157 MeV (v = 0.402), 432 MeV (v = 0.603), and

885 MeV (v = 0.75). Their main result is that the inelasticity of the interaction is a function

of the impact parameter, b, as is the deflection angle. Head-on SS collisions appear to be

elastic, while off-axis encounters excite rotational and vibrational modes.

Similarly to [84], they formulate their equations of motion from a Hamiltonian, and spatially

discretize in a uniform Cartesian grid using second order centred stencils. Time stepping is

achieved by means of a staggered leap-frog method. A Lagrange multiplier term is added

to the Lagrangian density to impose the chiral constraint. No pion mass or potential terms

are included. By (chiral) symmetry arguments, they restrict the computation to just one

quadrant of the total domain. The mesh size in this quadrant is 41 × 41 × 21, with h =

0.084 fm (0.14 in our units), corresponding to dimensions [0, 3.36] × [0, 3.36] × [0, 1.68] fm

([0, 5.89]× [0, 5.89]× [0, 2.94] in our units). From the information provided we can infer that

their total domain dimensions are [0, 11.78]× [0, 11.78]× [0, 2.94]. They do not specify the size

of their skyrmion, but from their references it is likely they used a radius ≈ 2–3 fm (≈ 3.5–5

in our units). The baryon number density of the skyrmion shown has a diameter of ≈ 1 fm

(1.7 our units). As reported by Verbaarschot et al [84], the Courant number λ is constrained

to small values in the range from 0.075 to 0.013, in order to keep the evolution stable.

Wambach [28] discusses Allder et al’s [85] physics and numerical setup in further detail, and

from a pedagogical perspective.

• Crutchfield and Bell (1991) [1] represents one of the studies most relevant for this thesis,

and was largely motivated by the numerical instabilities observed in Allder et al [85] and

Verbaarschot et al [84]. We have already described this work in detail in Sec. 4.5.

• Crutchfield, Snyderman and Brown (1992) [83] simulated the classical evolution of bound-

state B = 2 solutions, with the aim of reproducing properties of the deuteron. They found

that pairs of skyrmions (SS) in the maximally attractive channel (Ψ = 1) form bound states

after some time, allowing the detailed measurement of certain phenomenological parameters.
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Their calculations use a numerical grid with 56 × 56 × 28 points, which translates to a

domain box with dimensions [0, 8] × [0, 8] × [0, 4]. Following Allder et al [85], they take

advantage of symmetry properties to reduce the actual computational domain dimensions to

[0, 4] × [0, 4] × [0, 4], with h = 0.07 and a Courant number λ = 0.5. They implemented the

predictor-correct scheme developed in [1] (See Sec. 4.5). The radius of the skyrmion used can

be inferred from information in the paper to be ≈ 2 fm (≈ 3.5 our units). The use of viscous

“attenuation” is briefly mentioned. Notwithstanding the low velocity of these interactions,

they are illustrative of the trends in numerical methods in this area, since stability is largely

improved, allowing for larger values of the Courant number, λ.

• Battye and Sutcliffe (1996) [25] is an important reference for us, since our initial data setup

(Sec. 5.2.4) and equations of motion (Sec. 5.2) follows their work closely. They studied

scattering of multi-soliton skyrmions for B = 1, 2, 3 and 4, with spherical, toroidal and

tetrahedral baryon density topologies. Right angle scattering is observed in SS collisions of

B = 1 skyrmions with an internal phase difference (See Sec. 5.2.4) of Ψ1 = π. An intermediate

B = 2 toroidal bound state is formed at the collision point, before the skyrmions separate and

exit at right angles. The interaction is basically elastic, with little or no radiation observed.

Additional experiments are shown, notably a collision among three B = 1 skyrmions (which

we may denote SSS), each located at a different vertex of an equilateral triangle. The end

state consists of a B = 1 spherical skyrmion, and a B = 2 toroidally shaped one. The focus

of this work is to obtain end state configurations of minimal energy, as potential candidates

for approximations to nuclei (as well as for other applications). A dissipative term added to

the equations of motion guarantees that such configurations can relax in a computationally

reasonable time.

The Lagrangian equations of motion are discretized with fourth order finite difference stencils

in space, and a leap-frog time stepping method is used. The fields equations are cast in first

order form, using auxiliary fields πa = φ̇a. Dirichlet conditions are used, and the chiral

constraint is imposed through a combination of reprojection and a Lagrange multiplier term

(see Sec. 5.2.3).

Collisions were performed between pairs of identical skyrmions with different values of total

baryon number B, and starting locations of their centres at (0, 0, 1.5) and (0, 0,−1.5). Ve-

locities are restricted to v = 0.17 and v = 0.3, a choice justified by the authors in light of the
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breakdown of hyperbolicity conjectured by Crutchfield and Bell [1].

The dynamical domain is discretized by means of uniform Cartesian meshes, of sizes 70 ×

70 × 70 and 100 × 100 × 100 lattice points, with a grid spacing h = 0.1, and Courant

numbers in the interval 0.1 ≤ λ ≤ 0.2. This again corresponds to maximum domain sizes of

[−5, 5]× [−5, 5]× [−5, 5]. A priori, this appears puzzling, since as we have noted above (see

Fig. 5.2), the radius of the static skyrmion is ≈ 5. The size of the computational domain

thus does not seem large enough to contain two well-separated skyrmions. However, it is

possible that the authors were only concerned with the size as defined by the localization of

the baryon density, which is significantly smaller.

• Battye and Sutcliffe (2001) [26] studied clusters of static skyrmions with a total B ≤ 22,

producing complex end states resembling Fullerenes [26]. A dissipative term is added to the

equations of motion in order to remove kinetic energy of the system, thus allowing a quick

relaxation of the skyrmion clusters into Fullerene structures, which are the focus of their

work.

Other than the above considerations, their numerical setup is identical to the one described

in [25]. Results were obtained on Cartesian grids 100× 100× 100 and 200× 200× 200 lattice

points, a Courant number of λ = 0.1, and grid spacings h = 0.1 and h = 0.2. This corresponds

to a maximum domain size [−10, 10]× [−10, 10]× [−10, 10]. Again, the size (in radius) of the

skyrmion is ≈ 5.

5.4 Skyrmion Head-on Collisions

In this section we describe our AMR calculations of SS head-on scattering of skyrmions in three

spatial dimensions. We perform computations in both the attractive (Ψ1 = π) and repulsive (Ψ = 0)

channels. Our aim is to describe the generic phenomenology of these interaction types. Again, we

stress that these results are preliminary, in the sense that we do not have the same evidence for

convergence as we do for the 2 + 1 case. Specifically, lack of sufficient computer resources has

prevented us from establishing definitive convergence behaviour for our computations, and, as

described in Sec. 3.6, it is difficult for us to perform convergence tests when AMR is used.

Fig. 5.3 shows the evolution of the baryon number density, B0(t, x, y, 0) (i.e. the z = 0 plane

of the 3D data set), for a SS head-on collision in the repulsive channel (Ψ1 = 0). A boost

222



5.5. CONCLUSIONS AND FUTURE DEVELOPMENTS

factor γ = 1.6 (v = 0.8) was used for each skyrmion. Fixing other parameters, we performed

computations for several velocities, ranging from v = 0.3 to v = 0.9. In all cases we found the same

generic phenomenology, i.e. forward scattering with no visible radiation present.

We then carried out runs in the attractive channel (Ψ1 = π) using the same interval of velocities.

In this case we found right-angle scattering for all initial boosts, again with minimal or no radiation

present. Fig. 5.4 shows B(t, x, y, 0) for γ = 1.6: results for the other values of γ used appear very

similar.

The calculations described above, for both the repulsive and attractive channels, were performed

with a relatively large truncation error threshold of τmax = 1×10−2. These generated a hierarchy of

grids with a finest level Lf = 5, (Figs.5.6 and 5.5), with a base grid of 65×65×65. Not surprisingly,

setting a more stringent value of τmax = 6×10−3 causes the AMR algorithm to introduce additional

levels so that, as illustrated in Fig. 5.7, the finest level is Lf = 7.

5.5 Conclusions and Future Developments

In summary, we have performed a preliminary study of head-on skyrmion-skyrmion collisions.

The computations involved both the attractive and repulsive channels and were carried out for

a range of initial velocities. The observed phenomenology is consistent with that reported in

previous work [25, 85, 28]. It is also similar to what we have seen for the scattering of 2 + 1

baby skyrmions as described in Chap. 4. It would be interesting to extend our studies to include

skyrmion-antiskyrmion SS̄ scattering, as well as more general off-axis collisions.

Once more we emphasize that these results are preliminary, since limitations in computer re-

sources have prevented us from establishing definitive convergence of our unigrid computations.

This naturally provides one direction for future improvement of our code. Specifically we could try

to optimize those portions of the code which dominate execution time.

Clearly the issue of a transition from pure hyperbolic to mixed elliptic-hyperbolic behaviour is

still of central interest—as it was for the baby Sykrme case—not least since the “full” model is

actually of phenomenological interest. Our experience is that high resolution is essential in firmly

establishing any such transition, through, for example, monitoring of the behaviour of the total

energy. Thus, although the results from Chap. 4, as well as the experiences of other researchers,

suggest that we should expect a breakdown of hyperbolicity, additional work with our code could
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Figure 5.3: AMR calculation of the evolution of the baryon number density, B0(t, x, y, 0) (i.e. the
z = 0 plane), for a SS head-on collision in the repulsive channel, Ψ1 = 0, at γ = 1.6 (v = 0.8).
The interaction displays forward scattering, and no radiation is visible. A maximum of 5 AMR
levels (Lf = 5) was used in the calculation. The domain is [−9, 9] × [−9, 9] × [−9, 9], and at this
velocity the skyrmions have a diameter ≈ 6.25 in the x direction. We used τmax = 1 × 10−2 on
a 65 × 65 × 65 base grid, with Dirichlet boundary conditions. Other parameters for the run are:
εKO = 0.4, and λ = 0.1. The skyrmions are initially centred at (x(1)

0 , y
(1)
0 , z

(1)
0 ) = (−4.5, 0, 0) and

(x(2)
0 , y

(2)
0 , z

(2)
0 ) = (4.5, 0, 0).
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Figure 5.4: AMR calculation of the evolution of the baryon number density, B0(t, x, y, 0) (i.e. the
z = 0 plane), for a SS head-on collision in the attractive channel, Ψ1 = π, at γ = 1.6 (v = 0.8).
The interaction displays forward scattering, and no radiation is visible. All additional parameters
for the run are identical to those described in the caption of the previous figure (Fig. 5.3).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Wire-mesh contour plot of the evolution of the baryon density, B0, as previously shown
in Fig. 5.4. The slice corresponding to the collision plane z = 0 is shown. The figure shows the
time-development of a typical adaptive mesh refinement hierarchy. Finer level grids are difficult to
distinguish due to resolution limitations of the figure, as well as the fact that finer grids generally
have small extent. For instance, we can identify 3 different levels in images (c)–(g), while there are
actually Lf = 5 levels at that time.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6: Wire-mesh contour plot of the evolution of the baryon density, B0, as previously shown
in Fig. 5.3. Comments made in the caption of the previous figure (Fig. 5.5) also apply here.
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(a)

(b)

Figure 5.7: These figures illustrate the AMR hierarchy of grids at two instants of time for the initial
data described in Fig. 5.3. Here, however, we have computed with a truncation error threshold
τmax = 6× 10−3, and the maximum level of refinement is Lf = 7. All additional parameters are as
listed in the caption of Fig. 5.3.
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shed more light on the subject.
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CHAPTER 6

CONCLUSIONS

We now summarize the main results and conclusions stemming from the work reported in this

thesis.

Chap. 2 described the development of a computational framework used to construct finite-

difference codes for the approximate solution of hyperbolic PDEs. Parallelization and adaptive

mesh refinement (AMR) capabilities were provided by the incorporation of a specific implementa-

tion of the Berger-Oliger algorithm [120, 121, 107, 108].

Primarily to test this framework, in Chap. 3 we studied a theory describing the dynamics of

a complex scalar field theory that possesses stable, localized (solitonic) solutions called Q-balls.

We analyzed some aspects of the dynamics of Q-balls, focusing on two main scenarios: collisions

between Q-balls having opposite charges, Q+ Q−, and those between configurations with the same

charge, Q+ Q+. The observed interactions during the collision were qualitatively different for the

two scenarios: Q+ Q− interactions exhibited purely constructive interference, whereas Q+ Q+

collisions showed destructive interference patterns. Some phenomenology of Q+ Q+ scattering had

been previously reported [18], and we were able to reproduce these results. However, to the best

of our knowledge, the Q+ Q− work was original. Our key findings were that the Q+ Q− collisions

resulted in bound states for v . 0.4, while producing purely forward scattering at any higher

velocity.

We also investigated the dynamics of Q-balls for different values of their charge. We found that

right-angle scattering was completely absent from the dynamics of sufficiently low-charge Q-balls.

Additionally, we studied scattering of Q-balls against potential obstructions, and we discovered

that it was characterized by a combination of transmission and reflection of the soliton.

Chap. 4 reports our main contributions; these come from a detailed study of the dynamics of the

baby Skyrme model. Particular emphasis was placed on the exploration of the rich phenomenology

of the collisions of two baby skyrmions or of a baby skyrmion-antiskyrmion pair. The investigation

of a loss of hyperbolicity (well-posedness) for certain configurations—as suggested by Crutchfield
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and Bell [1, 26, 95]—was of central interest. By monitoring the behavior of the total energy, and

by directly examining the numerical solutions, we provided strong evidence that the evolution of

highly boosted baby skyrmion collisions becomes ill-posed. As discussed in App. C.2, corroborating

evidence for the loss of hyperbolicity was provided by the appearance of complex eigenvalues

computed in the context of a normal mode analysis for a particular linearization of the equations

of motion.

Our experiments also suggest that consideration of global and local values of energy quantities

alone is not sufficient to determine when well-posedness is lost. We present this chiefly as an

observation: claims in the literature (see e.g Crutchfield and Bell’s [1]) are not obviously inconsistent

with what we have seen.

Importantly, since we demonstrated that our code converged in strong-field cases where hyper-

bolicity was maintained, but where small changes in initial data parameters (i.e. the initial boost

parameter, γ) resulted in a loss of convergence, we are confident that the observed behavior with

respect to well-posedness is not due to the finite-difference scheme that was used (i.e. it is not a

“numerical artifact”).

As previously emphasized by Crutchfield and Bell, the loss of hyperbolicity implies a breakdown

of the physical applicability of the Skyrme model. At least heuristically, one can argue that this

is perhaps not unexpected given that the model can be viewed as an effective-field approximation

of a more fundamental underlying theory, in which high-frequency degrees of freedom have been

integrated out. Whether or not hyperbolicity can be restored through modifications of the (effec-

tive) Lagrangian and, if so, whether the resulting models will produce a more accurate description

of nucleon interactions, remain open questions.

In addition, our experiments provided further understanding of the general phenomenology of

collisions in the baby Skyrme model. For instance, previous studies had indicated that the highest-

energy skyrmion collisions (before the evolutions become ill-posed) were not very elastic, since

they were apparently always accompanied by the emission of large amounts of radiation. However,

our calculations with AMR showed reduction of these effects relative to unigrid computations,

suggesting that at least some of the previously observed non-elasticity was due to insufficient

finite-difference resolution.

In Sec. 4.3.3 we studied two different techniques for maintaining the constraint, φaφa = 1, that

must be satisfied by the baby Skyrme fields. One was a simple reprojection that was found to
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be very robust and which was used almost exclusively in our numerical experiments. The other

was based on the idea of constraint damping and, provided that the two adjustable parameters

characterizing the method were chosen judiciously, also worked well.

Finally, in Chap. 5 we presented preliminary results for the head-on scattering of skyrmions in

three spatial dimensions. Although computer resource limitations prevented us from establishing

definitive convergence behaviour for unigrid computations, the phenomenology that we observed

(using AMR calculations) was consistent with previous studies [85, 28, 26].

In terms of the numerical schemes employed, the use of an implicit two-level Crank-Nicholson

scheme for the temporal discretization of the equations of motion (for all the models studied in

this thesis), yielded good stability properties. In particular, our unigrid calculations were stable

for Courant numbers as large as λ = 0.5. This is an improvement relative to some of the earlier

numerical work [85, 84], where use of explicit schemes restricted the Courant number to excessively

small values.

We note that our methodology and computational infrastructure could be readily adapted to

study similar phenomena in theories including 1) sigma models (oscillons [80] and sphalerons [158]),

and 2) extensions of the Skyrme model, such as the Skyrme-Fadeev-Hopf theory [159]. In particular,

it is reasonable to expect that solutions in the latter case will also exhibit a configuration-dependent

breakdown of hyperbolicity: investigation of this conjecture would be worthwhile.

The Einstein-Skyrme model in spherical symmetry [160] has been shown to display interesting

behaviour at the threshold of black-hole formation (critical phenomena), and our studies can be

seen as a preliminary step towards extension of those calculations to the full 3D case.

We conclude by observing that topological skyrmions continue to be studied vigorously, and

that detailed numerical experimentation will become an increasingly valuable tool in such work.

For example, skyrmions emerge as holographic baryons in certain limits of five-dimensional gravity-

gauge duals, and provide a calculational framework for the strong coupling regime [46]. Branes with

low energy (effective) descriptions in terms of solitons have also been studied intensively in recent

years [161]. Finally, it is not unreasonable to expect that a thorough understanding of collisions of

self-gravitating relativistic skyrmions—or similar solitons—may shed light on many issues at the

crossroads of space-time singularity formation, astrophysics and exotic nonlinear physics [162].
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APPENDIX A

FINITE DIFFERENCING: FURTHER DETAILS

A.1 Stability of a Numerical Approximation Scheme

As mentioned in 2.1, the concept of stability of a finite difference scheme captures the notion that

a numerical solution must not “blow-up” in time unless the continuum solution does so. There

are a variety of definitions of stability in the literature, but the following [163] will suffice for our

purposes.

We assume that our finite difference scheme has been written in the two-level form

un+1 = Qun , (A.1)

where un and un+1 are the numerical approximations at the current and advanced discrete times,

respectively, and Q is the finite difference update operator. We further restrict attention to the case

of one spatial dimension—the extension to additional dimensions is trivial—and assume that the

finite difference mesh has spacings ∆x and ∆t in the spatial and temporal directions, respectively.

Then we say that the scheme (A.1) is stable with respect to some norm ‖ · ‖ if there are positive

constants ∆x0 and ∆t0, and non-negative constants K and β such that

‖un+1‖ ≤ Keβt‖u0‖ , (A.2)

for 0 ≤ t ≡ (n+ 1)∆t, 0 < ∆x ≤ ∆x0 and 0 < ∆t ≤ ∆t0.

We note that the possibility for exponential growth of the numerical solution implied by (A.2)

allows for a corresponding growth rate in the continuum, and is a matter of convention. Should it

be known that the growth of the exact solution relative to the initial data can be bounded with a

less-rapidly growing function (including a constant), then the definition of stability can be adjusted

accordingly.
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A.2. THE COURANT NUMBER, λ

A.2 The Courant Number, λ

We consider the usual wave equation with unit propagation speed

u(t, x)tt = uxx , (A.3)

and finite-difference using the standard O(h2) time explicit approximation on a uniform mesh with

spacings ∆x and ∆t in the x and t directions, respectively.

un+1
i − 2uni + un−1

i

∆t2
=
uni+1 − 2uni + un−1

i−1

∆x2
. (A.4)

The Courant factor (or number), λ, is defined by

λ ≡ ∆t
∆x

. (A.5)

For explicit schemes such as (A.4), λ must be generally satisfy a restriction λ < κ, with κ some

positive constant, to ensure stability. This restriction can be understood physically from consid-

erations of the dependence of the advanced solution, un+1, on the retarded values, un and un−1,

and is perhaps easiest to understand in pictorial form.

Consider then Fig. A.1, which shows two finite difference meshes, one with λ < 1 (Fig. A.1a

(a)), the other with λ > 1 (Fig. A.1b (b)). Solid lines denote the physical cones of dependence

for the advanced value un+1
j , while the dotted lines show the numerical cones of dependence. The

structure of the latter reflects the fact that the scheme (A.4) connects only nearest neighbours. The

key observation is that if the numerical cone does not properly contain the physical one then not all

of the information necessary to determine the solution value un+1
j is available, and the numerical

solution will be unstable. In the current case, this translates to the well-known limit, λ ≤ 1. This

restriction can also be obtained easily using a Von Neumann mode analysis.
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(a) (b)

Figure A.1: Physical and numerical domains of dependence. Shown are two finite difference grids
with differing values of the Courant number, λ ≡ ∆t/∆x. In plot (a) we have λ < 1, the physical
light cone is properly contained with the numerical cone, and the explicit scheme (A.4) is stable.
Conversely, in (b), where λ < 1, the physical light cone lies outside the numerical cone and the
scheme is unstable.

244



APPENDIX B

MISCELLANEOUS Q-BALL CALCULATIONS

B.1 Variation of the Q-ball Action

The 2 + 1 model of a complex scalar field φ that is studied in Chap. 3 has a Lagrangian

L =
1
2
∂µφ

∗∂µφ− 1
2
|φ|2 +

1
3
A|φ|3 − 1

4
B|φ|4 , (B.1)

where Greek indices µ, . . . run over the spacetime values 0, 1, 2 (where 0 is the time index). Here

we have adopted the specific choice of potential

U(|φ|2) =
1
2
|φ|2 − 1

3
A|φ|3 +

1
4
B|φ|4 , (B.2)

in which the mass, m, of the field is set to unity and A and B are constants.35

If we write the modulus of the field in terms of the field, φ, and its complex conjugate, φ∗,

i.e. |φ| =
√
φ∗φ, we have

L =
1
2
∂µφ

∗∂µφ− 1
2
φ∗φ+

1
3
A(φ∗φ)3/2 − 1

4
B(φ∗φ)2 . (B.3)

Variation with respect to ∂µφ∗ and φ∗ yields

∂L
∂(∂µφ∗)

=
1
2
∂µφ , (B.4)

and
∂L
∂φ∗

= −1
2
φ+

1
2
Aφ
√
φ∗φ− 1

2
Bφ(φ∗φ) . (B.5)

35As discussed in Sec. 3.2, without loss of generality we can also set A = 1 by a suitable rescaling, but we will not
do so here
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Thus, the Euler-Lagrange field equations of motion are

∂µ
∂L

∂(∂µφ∗)
− ∂L
∂φ∗

=
1
2
∂µ∂

µφ+ φ−A|φ|φ+B|φ|2φ = 0 . (B.6)

B.2 General Arguments for the Existence of Q-balls

In this section we discuss in more detail the manner in which the particular properties of the

potential function, U(|φ|2), determine the existence of Q-ball solutions. Our discussion follows

closely the works of Coleman [68], Kusenko [78], Multamaki [79] and Salmi [80].

The charge of a d-dimensional Q-ball—where d is the spatial dimensionality—is defined by (3.3)

Q =
1
2i

∫
ddx (φ∗φ̇− φφ̇∗) . (B.7)

The energy, E, is given by (3.4)

E =
∫
ddx

[
1
2
|φ̇|2 +

1
2
|∇φ|2 + U(|φ|2)

]
, (B.8)

where we have adopted the notation φ̇ = ∂0φ for time derivatives. We seek to minimize the energy

(B.8) for fixed charge. We thus introduce a Lagrange multiplier, ω, and minimize

Eω = E + ω

[
Q− 1

2i

∫
ddx (φ∗φ̇− φφ̇∗)

]
(B.9)

with respect to φ. Substituting (B.8) in (B.9) and regrouping terms yields

Eω =
∫
ddx

[
1
2
|φ̇|2 +

1
2
|∇φ|2 + U(|φ|2)

]
+ ωQ− ω

2i

∫
ddx

[
(φ∗φ̇− φφ̇∗)

]
. (B.10)

Separating time and spatial terms we have

Eω =
∫
ddx

[(
1
2
|φ̇|2 − ω

2i
(φ∗φ̇− φφ̇∗)

)
+
(

1
2
|∇φ|2 + U(|φ|2)

)]
+ ωQ . (B.11)

Factoring and reordering gives

Eω =
∫
ddx

[
1
2

(
|φ̇|2 + ωiφ∗φ̇− ωiφφ̇∗

)
+
(

1
2
|∇φ|2 + U(|φ|2)

)]
+ ωQ . (B.12)
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Now we complete the square of the time-dependent term,

Eω =
∫
ddx

[
1
2

(
|φ̇|2 + ωiφ∗φ̇− ωiφφ̇∗ + ω2|φ2| − ω2|φ2|

)
+
(

1
2
|∇φ|2 + U(|φ|2)

)]
+ ωQ ,

(B.13)

and since |φ|2 = φ∗φ we can write

Eω =
∫
ddx

[
1
2

(φ̇− iωφ)(φ̇∗ + iωφ∗)− 1
2
ω2|φ2|+

(
1
2
|∇φ|2 + U(|φ|2)

)]
+ ωQ . (B.14)

Defining the effective potential, Uω(|φ|2), by

Uω(|φ|2) = U(|φ|2)− 1
2
ω2|φ2| , (B.15)

we have [78, 79, 80],

Eω =
∫
ddx

[
1
2
|φ̇− iωφ|+ 1

2
|∇φ|2 + Uω(|φ|2)

]
+ ωQ . (B.16)

We now adopt a time-harmonic stationary ansatz for the solution φ(t, xi) (see Sec. 3.2),

φ̇− iωφ = 0 → φ(t, xi) = eiωtσ(xi) , (B.17)

where σ(xi) is a static, positive, real-valued profile function with dependence on the spatial dimen-

sions of spacetime xi, with i = 1, 2, . . . d. Using this form for the solution we obtain a configuration

with charge

Q = ω

∫
ddx σ(xi)2 , (B.18)

and energy

E =
∫
ddx

[
1
2
|∇σ(xi)|2 + Uω(σ(xi)2)

]
+ ωQ . (B.19)

The extremization of (B.19) with respect to two parameters, namely σ and ω, is simplified by

noting that we seek localized solutions that vanish at infinity. It has been shown [78, 79, 80] that,

for ω in some range(s), there exist configurations with monotonically decreasing σ(r) which satisfy

the boundary condition σ(r)→ 0 as r → 0. A subset of these are precisely the static solutions that

we want. By extremizing the energy functional (B.19) with respect to σ we derive the governing
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ODE for the profile function:

∇2σ = −∂Uω(σ2)
∂σ

. (B.20)

Assuming spherical symmetry (circular symmetry for the d = 2 case), we have

d2σ

dr2
+

(d− 1)
r

dσ

dr
− dUω(σ2)

dσ
= 0 , (B.21)

where Uω(σ2) ≡ U(σ2) − ω2σ2/2. There are certain restrictions on the potential, U(σ), in order

that (B.21) admit regular, finite-energy solutions. Specifically, U(σ) must be U(1)-symmetric and

the origin in potential space must be a global minimum; i.e. U(0) = 0. Further, Coleman [68]

showed that the most important condition for the existence of Q-ball solutions in the theory is that

the effective potential, Uω(σ2), have an (additional) minimum where σ 6= 0.

The last requirement can easily be fulfilled through the choice of an appropriate polynomial

potential, such as the one adopted in Chap. 3:

U(|φ|2) =
1
2
|φ|2 − 1

3
A|φ|3 +

1
4
B|φ|4 . (B.22)

The need for a second minimum of Uω(σ2), with σ 6= 0, can be understood heuristically through

an analogy from classical mechanics—also proposed by Coleman [68]—who realized that (B.21)

has the functional form of the equation of a particle moving in an (inverted) effective potential

V eff
ω (σ2) ≡ −Uω(σ2). We emphasize that here we are viewing ω as an adjustable parameter. In

contrast, in the computation of Q-ball solutions described in Sec. 3.2, ω is an eigenvalue whose

value is determined by a specific choice of σ ≡ σ0.

Now, in the single-particle interpretation, σ plays the role of the particle’s position, while r

represents time, so that the governing ODE (B.21) becomes

d2σ

dt2
+

(d− 1)
t

dσ

dt
+
dV eff

ω

dσ
= 0 . (B.23)

The second term in (B.23) acts as a frictional force that is proportional to velocity and inversely

proportional to time. Thus, except for the d = 1 case, the particle energy is not conserved; i.e. the

system is dissipative. Continuing with the analogy, the boundary conditions we seek, namely

σ(r →∞) = 0 and σ′(0) = 0, correspond to σ(t→∞) = 0 and dσ/dt(0) = 0. In other words, any

Q-ball solution can be identified with the motion of a particle that starts at rest at some location,
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σ = σ0(ω), and that ends up at rest at the origin, σ = 0.

Now consider Fig. B.1 which shows a plot of V eff
ω (σ2) for our choice of potential—which is rep-

resentative of the type of V eff
ω that will produce Q-balls—and for the specific choice ω = 0.7739293.

Clearly, due to the presence of friction we must release the particle at some position σ0 such that

V eff
ω (σ2

0) > V eff
ω (0). Moreover, since the frictional term is inversely proportional to time, we can

make the dissipation arbitrarily small by starting the particle arbitrarily close to the maximum

of V eff
ω . By continuity there must be some σ0—as displayed in the figure—such that the particle

arrives at rest at the origin.

For a general potential, Q-ball solutions will exist only for values of ω in a finite range (equiv-

alently, values of σ0 in some finite interval). In our case we have

V eff
ω =

1
2

(ω2 − 1)σ2 +
A

3
σ3 − B

4
σ4 . (B.24)

Since V eff
ω must have a minimum at some σ = σmin, with σmin 6= 0 and V eff

ω (σ2
min) < 0, the

effective potential must have two zero-crossings (at least) in the interval from σ = 0 and the global

maximum. Setting the right hand side of (B.24) to zero and dividing by σ2 then yields

−B
4
σ2 +

A

3
σ +

1
2

(ω2 − 1) = 0 . (B.25)

The discriminant condition for the existence of two additional (real) zeros is thus A2/9 + B(ω2 −

1)/2 > 0, which leads to the condition,

1 < ω2 < 1− 2A2

9B
, (B.26)

or for the specific values A = 1, B = 1/2 adopted in Chap. 3,

1 < ω2 <
5
9
. (B.27)
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Figure B.1: Inverted effective potential V eff
ω (σ2) ≡ −Uω(σ2) for the specific choice ω = 0.7739293.

In the mechanical analog, when the particle is released from rest at σ = σ0 = 1.375, it will arrive
at the origin, σ = 0, also at rest.
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APPENDIX C

HYPERBOLICITY AND LINEARIZED

ANALYSIS

C.1 Hyperbolicity and Well-posedness of Time-dependent

PDEs

In this section we provide further details concerning the issues of hyperbolicity and well-posedness

that were discussed briefly in Sec. 1.5.2. We closely follow the presentations of Reula [164] and

Alcubierre [100], which we emphasize provide reviews of the relevant theory that are directed at

numerical relativists and those working in related fields.

The canonical example of a hyperbolic system is the wave equation in one space variable,

∂ttu(t, x) = ∂xxu(t, x) , (C.1)

where the solution, u(t, x), describes free propagation with unit velocity. The adjective hyperbolic

originates from the hyperbolic conoid that delimits causally connected regions that are defined

with respect to any given point in the spacetime domain. More generally, and in heuristic terms,

a hyperbolic system of PDEs is one in which all signals propagate with finite speed.

We now consider a general set of PDEs of evolutionary type having linear constant coefficients.

Such a system can be cast in the form

ut = Lu(t, xi) , (C.2)

where u ≡ [u1(t, xi), u2(t, xi), . . . , un(t, xi)]T is an n-component vector of dependent variables

(fields), the index i = 1, . . . , d labels the spatial dimensions, and L is an operator whose compo-

nents depend smoothly on the spatial derivatives of u. The issue of central interest is to determine
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C.1. HYPERBOLICITY AND WELL-POSEDNESS OF TIME-DEPENDENT PDES

under what conditions initial data u(0, xi) ≡ u0(xi) will generate a unique solution, u(t, xi): this

is known as the Cauchy or initial value problem for (C.2). If such conditions exist, then we say

that (C.2) is well-posed. Conversely, if there are no such conditions—so that even for short times

t > 0 there is no unique solution for specified u0—then we say that the system is ill-posed. Clearly,

any physically meaningful model characterized by a set of evolutionary PDEs must be well-posed.

Again, restricting attention to the case of systems having linear constant coefficients, precise

mathematical definitions of hyperbolicity for (C.2) (there are, as we shall immediately see, several

types of hyperbolicity) are expressed as algebraic conditions on the coefficients. We further assume

that L depends only on first space derivatives so that we can write

∂u

∂t
+Ai

∂u

∂xi
= 0 . (C.3)

Here, each of the Ai is an n × n matrix of smooth constant coefficients. We define the principal

symbol of the system (C.3) as the matrix P (ni) ≡ Aini, where ni an arbitrary unit vector. The

system (C.3) is strongly hyperbolic if P (ni) has real eigenvalues and a complete set of eigenvectors

for all ni. If P (ni) has real eigenvalues for all ni, but lacks a complete set of eigenvectors, then the

system is only weakly hyperbolic. The system is symmetric hyperbolic if all the Ai are symmetric.

The most restrictive type of hyperbolicity requires that the eigenvalues of P (ni) be not only real, but

also distinct for all ni. Since P (ni) is diagonalizable in this case, we note that strict hyperbolicity

implies strong hyperbolicity. It is well known that the eigenvalues of P (ni) are degenerate for

most physical models. Therefore, strict hyperbolicity is quite an unusual condition. A key result

of interest here is that it can be shown that strongly hyperbolic systems are well-posed, whereas

weakly hyperbolic ones are not.

In contrast, for an elliptic system of PDEs, all the eigenvalues of P (ni) are complex. Physically

this means that the speed of propagation of small perturbations is infinite (superluminal) and thus

incompatible with relativistic dynamics.

For our purposes, the most important observation is that a system of the form (C.3) which has

a P (ni) with at least one complex eigenvalue will not be well-posed. That is, it will not have an

initial-value formulation where initial data u0(xi) yields a unique solution u(t, xi). Furthermore,

in the main body of the thesis we use the terminology mixed hyperbolic-elliptic to refer to a system

where P (ni) has both real and complex eigenvalues. Once more, in this case we cannot expect
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well-posedness.

For illustrative purposes, and again following [100], we analyze the hyperbolicity of the three

dimensional wave equation. We have

∂ttφ(t, x, y, z)− v2∇2φ = 0 , (C.4)

where v is the speed of propagation. (C.4) can be recast as a system of first-order-in-time equations

through the introduction of auxiliary variables, Π(t, x, y, z) and Φi(t, x, y, z), i = 1, 2, 3:

Π ≡ ∂tφ , (C.5)

Ψi ≡ v∂iΨi . (C.6)

With these definitions (C.4) becomes

∂tΠ− v∂iΨi = 0 , (C.7)

∂tΨi − v∂iΠ = 0 . (C.8)

Taking an arbitrary unit vector ni we thus have

P (ni) = v



0 −nx −ny −nz

−nx 0 0 0

−ny 0 0 0

−nz 0 0 0


. (C.9)

Using the fact that n2
x + n2

y + n2
z = 1, we find that the eigenvalues of P (ni) are

λ1 = +v , (C.10)

λ2 = −v , (C.11)

λ3 = 0 , (C.12)

λ4 = 0 . (C.13)

Since two of the eigenvalues are degenerate, the system is not strictly hyperbolic. On the other
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hand, P (ni) does have a complete set of eigenvectors, given in column form by

R(ni) =



1 1 0 0

−nx nx −nz −ny

−ny ny 0 nx

−nz nz nx 0


. (C.14)

Thus the wave equation (C.4) is strongly hyperbolic and, consequentially, is well-posed.

Finally, we reiterate that we have only discussed here the issues of hyperbolicity and well-

posedness for the case of linear constant coefficient systems. For quasi-linear PDEs of evolutionary

type, such as those describing the Skyrme models (as well as more general nonlinear systems), the

theory is much less developed. We thus adopt the assumption that, at a minimum, the equations

that result from freezing and linearizing coefficients must be hyperbolic/well-posed in order for the

full systems to have equivalent properties.

C.2 Linearized Mode Analysis of the Baby Skyrme

Equations

As emphasized in the main body, one of the principal goals of our current work is to study in

detail the previously reported claim [1, 26] that, dependent on the nature of the initial data,

the equations of motion for Skyrme models may become of mixed hyperbolic-elliptic type, rather

than purely hyperbolic. This would then imply a breakdown of the initial-data formulation of the

governing PDEs which, numerically, would presumably be manifested by non-convergence of any

possible (consistent) differencing of the PDEs.

In the numerical experiments that we described in Chapter 4, we have used monitoring of the

behaviour of the total energy E, as well as direct inspection of the grid functions, as diagnostic tools

for detecting transitions from purely hyperbolic (well-posed) to mixed hyperbolic-elliptic (ill-posed)

behaviour. We now discuss an additional method based on a characteristic (normal mode) analysis

of the linearized equations of motion that provides corroborating evidence for these transitions.

The nonlinear PDEs (4.16) that describe our model can be converted into a system with linear

constant coefficients by “freezing” the coefficients of the highest-derivative terms. As discussed

above (App. C.1), it is then relatively straightforward to determine if the system is (strongly)
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hyperbolic and thus well-posed, and this is precisely the approach adopted by Crutchfield and

Bell [1].

In Crutchfield and Bell’s analysis it was found that under certain conditions unstable modes

(i.e. complex eigenvalues of the linearized system) could appear for both the baby and full 3 +

1 Skyrme models. On the basis of this analysis the authors concluded that the models could

then exhibit non-hyperbolicity which, in numerical simulations, would be manifested as unstable

oscillatory solutions.

We now perform an analysis that parallels that in [1], but restrict attention to the baby Skyrme

model in 2 + 1 dimensions. Thus, Latin indices such as a, b, c... label the 3 real components of the

field, i.e. φa = (φ1, φ2, φ3), Greek indices label the dimensions of space-time, µ, ν = 0, 1, 2, and

indices such as i, j, k... range over the spatial coordinates. Again, summation conventions apply to

all index types.

We begin by observing that we can write the equations of motion of the model (4.16) in the

form [1, 26, 35],

(Mab∂tφb),t − (Cab∂iφb),i = 0 , (C.15)

where we ignore the Lagrange multiplier term in (4.16) since it has no relevance for the characteristic

structure analysis (i.e. the calculation does not involve actual evolution of the fields).

Here, the coefficient matrices, Mab and Cab, can be written as 36

Mab = δab

(
1
4

+ [∂iφc]2
)
− ∂iφa∂iφb , (C.16)

Cab = δab

(
1
4

+ [∂µφc]2
)
− ∂µφa∂µφb . (C.17)

The field equations (C.15) can then be rewritten as

Mab∂ttφb − Cab∂iiφb = (Cab),i∂iφb − (Mab),t∂tφb = 0 . (C.18)

It is convenient to write the terms on the right-hand side of (C.18) so that all second order deriva-

36It is worth mentioning that all matrix manipulations in the present analysis are performed using symbolic
computation. Given the Lagrangian of the model as input, the coefficients Mab and Cab are computed using Maple
procedures and then converted to Fortran code. Thus, confidence is high that the numerical calculations related to
the linear analysis are reliable.
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tives of the field variables are manifest [1]:

Mab∂ttφb − Cab∂iiφb = −Gab,iφb,it + Jab,iφb,it −Hab,ijφb,ij , (C.19)

where the matrices Gab,i, Jab,i and Hab,ij are given by

Gab,i = −δabφτ,iφτ,i − φa,iφb,t + 2φa,tφb,i ,

Jab,i = δabφτ,iφτ,i − 2φa,iφb,t + φa,iφb,t , (C.20)

Hab,ij = δabφτ,jφτ,i + φa,jφb,i − 2φa,iφb,j .

The next step in our analysis is to obtain linearized equations of motion for small perturbations,

δφa, of the Skyrme fields. To that end we write

φa = φ(0)
a + δφa = φ(0)

a + exp(−i[~k · ~r − ωt]) , (C.21)

where φ(0)
a is a background field, and i =

√
−1. We now substitute (C.21) in (C.18) and evaluate

to lowest order in δφa. This leads to the following dispersion relation,

(Mω2 +Giωki − Jiωki +Hijkikj − Ckiki)δφa = 0 , (C.22)

where the matrices M,Gi, Ji, Hij and C are to be evaluated using the values of φ(0)
a defined at any

instant of time. However, an important simplification in the calculation of the modes defined by

the dispersion relation (C.22) is achieved by assuming that the small perturbations δφa propagate

only along one of the coordinate directions, x or y. Assuming arbitrarily that this is the x direction,

we have

φa = φ(0)
a + exp(−i[ ~kx · ~r − ωt]) . (C.23)

The dot product in (C.23) between the wave vector ~kx and the position vector ~r is easily evaluated:

~kx · ~r = (kxx̂, 0) · (xx̂, yŷ) = kxx . (C.24)

Thus, if the perturbation (C.23) only depends on x, all terms with mixed spatial derivatives

in (C.21) vanish, while those involving spatial-temporal derivatives cancel. The result is that
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Gab,i, Jab,i and Hab,ij vanish, and we are left with the simplified dispersion relation

(Mω2 − Ckxkx)δφa = 0 . (C.25)

This in turn yields the characteristic equation

det(Mω2 − Ckxkx) = 0 , (C.26)

where, again, M and C are evaluated using the values of φ(0)
a at any given time. Equation (C.26)

leads to a sixth-order polynomial characteristic equation in ω. We perform the change of variable,

z = ω2 , (C.27)

and obtain a cubic equation of the type

az3 + bz2 + cz + d = 0 . (C.28)

The nature of the roots of (C.28) can be determined [165] by calculating the sign of the discriminant,

∆, given by

∆ = 18abcd+ b2c2 − 4ac3 − 4b3d− 27a2d2 . (C.29)

There are three possible cases:

1. ∆ > 0: the equation has three distinct real roots.

2. ∆ = 0: the equation has three real roots; either a double plus single, or a triple.

3. ∆ < 0: the equation has one real root and two roots which are complex conjugates of each

other.

Noting that complex z implies complex ω, we observe that, from the point of view of this linearized

analysis, we can expect a breakdown in hyperbolicity (well-posedness) whenever ∆ ≤ 0. We also

observe that it is straightforward to evaluate ∆ on all mesh points at any discrete time.

We looked for the appearance of complex ω in our numerical calculations by performing simula-

tions of head-on baby skyrmion collisions—similar to those described in Sec. 4.7—for several values

of the boost factor γ, and using initial configurations in both the repulsive and attractive channels.
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As also discussed in Sec. 4.7, for both the repulsive- and attractive-channel cases we find critical

boost parameters, γ?, above which we see an apparent breakdown in hyperbolicity/well-posedness

that is signalled by a loss of conservation of energy and the development of growing, high-frequency

modes on the finite difference mesh. For the computations with γ > γ? we did find grid points

with ∆ < 0. Conversely, when γ < γ? we found that ∆ was strictly positive at all times, and

throughout the computational domain. Thus, the appearance of complex roots in the dispersion

relation is apparently correlated with the loss of conservation of energy and smoothness that we

use as our primary indications of loss of hyperbolicity.

Finally, we also performed calculations involving generic smooth initial data, similar to the

Gaussian pulses evolved in Sec. 4.4.4, but with the time derivatives set to very large values at

t = 0, as discussed in Sec. 4.9.1. As for the highly boosted collisions described above, we detected

complex eigenvalues during the evolutions. The loss of conservation of energy also appears to be

correlated with the observation of ∆ < 0 for this type of initial data.
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APPENDIX D

MISCELLANEOUS SKYRMION

CALCULATIONS

D.1 The Hobart-Derrick Argument

The Hobart-Derrick argument [29, 15, 30, 31] provides a criterion for the existence of static solutions

of minimal energy in a theory, according to dimensionality and field content. We apply this theory

in the contexts of Q-balls, baby skyrmions and skyrmions and view it primarily as providing

justification for the forms of the Lagrangian in the skyrmion cases.

Consider a static solution that minimizes the energy associated with one of the three models

being studied—the Lagrangian for each can be written in the form (4.3), and is a functional of

the fields φ = φ(xi), i = 1, 2 . . . d, where d is the number of spatial dimensions.37 It is straightfor-

ward to show [122, 15] that if we apply a rescaling on the spatial coordinates, x̃i → ηxi, so that

φ′(x̃i) = φ(ηxi) where η a real number, the effect on the energy contributions in each term of the

Lagrangian (4.3) is [122, 15]

∂µφa∂
µφa ≡ ε2 ε2 → η2−dε2 ,

1
2 (∂µφa∂µφa)2 + 1

2 (∂µφa∂νφa)(∂µφb∂νφb) ≡ ε4 ε4 → η4−dε4 ,

−V (φa) V → η−dV . (D.1)

With respect to the rescaling, the static energy, εstatic, is therefore,

εstatic = η2−dε2 + η4−dε4 + η−dV . (D.2)

37Here we are suppressing internal indices for the skyrmion cases—this has no impact on the argument.
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By assumption, the energy is minimized for η = 1. It thus follows that

dεstatic

dη

∣∣∣
η=1

= (2− d)ε2 + (4− d)ε4 − dV = 0 . (D.3)

For the Q-ball case, d = 2 and ε4 = 0: thus (D.3) appears to imply that for the existence of a

stable static solution we must have V = 0.38 However, we know from Chap. 3 (as well as previous

work, of course) that this is not the case. The solution to this apparent paradox is to realize that

the argument only applies to static solitons, and is not valid for stationary objects (i.e. solutions

with an internal time dependence) such as Q-balls. On the other hand, for baby skyrmions, where

d = 2, (D.3) provides a condition for the existence of a stable static solution: both the fourth-order

Skyrme term and a non-zero potential are needed for such a configuration. Finally, for the original

Skymre model, where d = 3, (D.3) dictates that stable solitons can exist when ε2 + 3V = ε4. Thus

even for V = 0, we can have a stable minimum provided that ε2 = ε4.

D.2 Explicit Form of the Lagrange Multiplier

In this section we calculate explicitly the Lagrange multiplier term that we add to the Lagrangian

density of the baby Skyrme model in (4.14). We begin by contracting (4.15) with φa:

φa

[
(1 + ∂µφa∂

µφa)2φa + ∂µ∂νφb∂
µφb∂

νφa − ∂µφb∂νφb∂µ∂νφa −2φb∂
νφb∂νφa + λLMφa

− dV (φ3)
dφa

δa3

]
= 0 . (D.4)

Since the derivative of the constraint φaφa = 1 with respect to any space-time coordinate µ

vanishes—i.e. φa∂µφa = 0—we find that

(1 + ∂µφa∂
µφa)φa2φa − (∂µφb∂νφb)φa(∂µ∂νφa) + λLMφaφa −

dV (φ3)
dφa

δa3φa = 0 . (D.5)

From the second derivative of the constraint we get

φa∂µ∂
µφa + ∂µφa∂

µφa = 0 , (D.6)

38Establishing that a solution is stable requires consideration of the second variation with respect to λ—as in
Derrick’s original argument—so the development here can be viewed as providing necessary conditions for stable,
static solutions.
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which can be rewritten as

φa2φa = −∂µφa∂µφa , (D.7)

and the second term in (D.5) can be expressed as

(∂µφb∂νφb)φa(∂µ∂νφa) = (∂µφb∂νφb)φa(ηνµ∂µ∂µφa) = ∂µφb∂
νφbηνµφa2φa

= ∂µφb∂
νφbηνµ(−∂µφa∂µφa) = ∂µφb∂

νφb(−∂µφa∂νφa) . (D.8)

Substituting (D.7) and (D.8) in (D.5) we find

(1 + ∂µφa∂
µφa)(−∂µφa∂µφa)− ∂µφb∂νφb(−∂µφa∂νφa) + λLMφaφa −

dV (φ3)
dφa

δa3φa = 0 . (D.9)

Setting φaφa = 1 and solving (D.9) for λLM finally yields

λLM = (1 + ∂µφa∂
µφa)(∂νφa∂νφa)− (∂µφa∂νφa)(∂µφb∂νφb) +

dV (φ3)
dφ3

φ3 . (D.10)

The calculation of the Lagrange multiplier in three spatial dimensions is completely analogous,

except that we must set V (φa) = 0.

D.3 The W -formalism, or Rational Ansatz

Belavin and Polyakov [33] suggested that the CP1 model be expressed in terms of a complex field

W (t, x, y) = W (z) = W (z̄) given by a rational function of the fields, φa, a = 1, 2, 3. Specifically,

W (z) =
φ1 + iφ2

1 + φ3
, (D.11)

where z = x+ iy is the complex coordinate in the spatial plane. The Lagrangian density (4.1) then

takes the form

L =
|W0|2 − |Wx|2 − |Wy|2

(1 + |W |2)2
− 2θ1

(W ∗0Wy −W0W
∗
y )2 + (W ∗0Wx −W0W

∗
x )2

(1 + |W |2)4

+ 2θ1

(W ∗xWy −WxW
∗
y )

(1 + |W |2)4
− 4θ2

1
(1 + |W |2)4

. (D.12)
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Solutions of the Euler-Lagrange equations derived from (D.12) are described in [61, 139, 89, 90, 91,

92, 149] (see Sec. 4.5 for more details). The inverse mapping of (D.11) is given by the stereographic

projection of the sphere S2—defined in (φ1, φ2, φ3) space—onto the complex plane, yielding

φ1 =
W +W ∗

1 + |W |2
φ2 =

W −W ∗

1 + |W |2
φ3 =

1− |W |2

1 + |W |2
. (D.13)

Specific static solutions of the equations derived from (D.12), which are reported in [92, 149], are

W (z) = W (x, y) = λ(x+ iy) with λ =
(
θ2

2θ1

)1/4

, (D.14)

where λ is a parameter that fixes the size of the soliton. The corresponding anti-skyrmion is given

by

W (z̄) = W (x, y) = λ(x− iy) , (D.15)

and initial data for two baby skyrmions positioned at ±a is given by,

W = λ
(x+ iy − a)(x+ iy + a)

2a
(D.16)

For the single baby skyrmion case, the explicit form of the solution with topological charge B = 1

is [54] 
φ1(x, y)

φ2(x, y)

φ3(x, y)

 =
1

λ2(x2 + y2) + 1


λ2(x2 + y2)− 1

2λx

−2λy

 . (D.17)

D.4 Variation of the Skyrme Action

The Lagrangian density for either of the Skyrme models considered in this thesis can be written

as

L =
1
2
∂µφa∂

µφa +
1
4

(∂µφa∂νφa)2 − 1
4

(∂µφa∂νφa)(∂µφb∂νφb) + V (φ3) + λLM(φaφa − 1) . (D.18)

where it is understood that 1) spacetime and internal indices range over 0, 1, 2 and 1, 2, 3 for

the baby skyrmion case, and 0, 1, 2, 3 and 1, 2, 3, 4 for the original Skyrme model; 2) there is no

potential term in the latter instance. The variational procedure sketched here is thus suitable for
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both models.

To obtain the equations of motion from (D.18), we follow the Euler-Lagrange prescription [32]:

∂µ

(
∂L
∂µφa

)
− ∂L
∂φa

= 0 . (D.19)

First, we find
∂L
∂µφa

= ∂µφa + (∂νφb∂νφb)∂µφa − ∂νφa(∂µφb∂νφb) . (D.20)

Applying ∂µ to the above yields

(1 + ∂νφb∂
νφb)2φa + ∂µφa∂νφb∂µ∂

νφb + ∂µφa∂
νφb∂µ∂νφb (D.21)

− (∂µφa∂νφb∂µ∂νφb − ∂νφa∂µφb)∂µ∂νφb − ∂νφa∂νφb2φb .

Performing some index manipulation (recall that the flat metric ηµν is used to raise and lower all

indices) and reordering of terms, we obtain the desired result:

(1 + ∂µφa∂
µφa)2φa + ∂µ∂νφb∂

µφb∂
νφa − ∂µφb∂νφb∂µ∂νφa −2φb∂

νφb∂νφa

+ λLMφa −
dV (φ3)
dφa

= 0 . (D.22)

D.5 Regularity of a Hedgehog Configuration at the Origin

Consider a spherically-symmetric hedgehog configuration in three spatial dimensions, as given by

(5.16):

φa =



sin f(r) sin θ cos(ϕ)

sin f(r) sin θ sin(ϕ)

sin f(r) cos θ

cos f(r)


. (D.23)

Here, we have adopted the usual spherical polar coordinates (r, θ, ϕ). The profile function, f(r), is

given by (5.19),

f(r) = 4 tan−1 exp(−r) . (D.24)
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As r → 0 we have

f(r) = 4 tan−1 exp(−r) ∼ π − 2r +O(r3) . (D.25)

We want to show that (D.23) describes a configuration that is regular at the origin, even though

the profile function f(r) is not.

Using elementary trigonometric identities we have

sin(π − 2r) = sin(π) cos(−2r) + cos(π) sin(−2r) = − sin(−2r) , (D.26)

cos(π − 2r) = cos(π) cos(−2r)− sin(π) sin(−2r) = − cos(−2r) .

and for r → 0, − sin(−2r)→ 2r and − cos(−2r)→ −1. Thus, we find

lim
r→0

φa = lim
r→0



2r cosφ sin θ

2r sinφ sin θ

2r cos θ

−1


=



2x

2y

2z

−1


(D.27)

Thus the components, φa, are all regular at the origin, as claimed (a completely analogous argument

holds in the baby Skyrme case).39

39We thank Frans Pretorius for supplying this argument.
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APPENDIX E

BOUNDARY CONDITIONS

We begin by emphasizing that the PDEs studied in this thesis are most naturally posed as true

initial-value (Cauchy) problems, wherein the spatial domain is unbounded. Computationally, how-

ever, and unless we resort to some form of compactification, the spatial domain must be truncated

at some finite distance from the central region where the dynamics of interest unfold. The PDEs

must then be solved as initial-boundary value problems, and appropriate boundary conditions must

be imposed on the dynamical variables to generate a unique solution from given initial data.

For the calculations reported in this thesis, we have adopted two types of conditions that we

now describe briefly.

E.1 Dirichlet (Reflective) Boundary Condition

A Dirichlet boundary condition specifies the value of a function on the boundary of the solution

domain. This type of condition is trivially implemented in our numerical computations.

E.2 Sommerfeld (Outgoing Radiation) Boundary

Condition

This condition was first proposed in 1912 by Arnold Sommerfeld (see, e.g. [166]) in relation to the

Helmholtz equation and some uniqueness theorems for partial differential equations in mathematical

physics [166, 167]. The condition is most easily understood in the 1 + 1 context, where it is based

on the fact that a wave (radiation) can be written as a linear combination of right- and left-

moving pieces. Given that our initial data always describe configurations that are localized near

the center of the computational domain, and which generically lead to dynamics in which radiation

is emitted, it is physically appropriate to demand that there be no incoming radiation from any of

the boundaries for any t ≥ 0.
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To see how the Sommerfeld condition works in the 1 + 1 case, we consider a field, φ(t, x), with

time derivative, π(t, x) ≡ ∂tφ(t, x), that satisfies the wave equation

∂ttφ = ∂xxφ . (E.1)

Here, we have set the speed of propagation to unity as usual. The radiation condition means that

at x = xmin we must have only left-moving signals, so that φ(t, x) ≈ φ(x+ t) and π(t, x) ≈ π(x+ t),

or

φt(t, xmin) = φx(t, xmin) ,

πt(t, xmin) = πx(t, xmin) . (E.2)

Similarly, at x = xmax we require only right-moving waves, so that φ(t, x) ≈ φ(x− t) and π(t, x) ≈

π(x− t), or

φt(t, xmax) = −φx(t, xmax) ,

πt(t, xmax) = −πx(t, xmax) . (E.3)

For problems in higher spatial dimensionality, wave amplitudes will generally diminish as the

radiation propagates outwards. Given the dimensionality, and assuming that the propagation of

the waves is roughly spherical about some origin, r = 0, we can deduce an approximate rate of fall-

off for r →∞. For example, in 2 + 1 circular symmetry, which is the case studied most extensively

in this thesis, and assuming that the asymptotic solution is of the form

φ(t, r) ≈ rαf(t− r) , (E.4)

we find that φ ≈ 1/
√
r, i.e. that α = −1/2. Thus, at r = rmax we should impose

∂(
√
rφ)
∂t

(t, rmax) = −∂(
√
rφ)
∂t

(t, rmax) . (E.5)
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We can then use the chain rule to express this last condition in Cartesian coordinates:

∂(
√
rφ)
∂t

= −x
r

∂(
√
rφ)

∂x
− y

r

∂(
√
rφ)

∂y
. (E.6)

This condition is also straightforward to implement computationally by using forward and backward

difference approximations, as appropriate, for the spatial derivatives.
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