
PHYS 210: Introduction to Computational Physics Fall 2009 Homework 4

Due: Wednesday, November 18, 11:59 PM

PLEASE report all bug reports, comments, gripes etc. to Matt: choptuik@physics.ubc.ca

Please refer to the preamble for Homework 3, which is generally applicable to this Homework as well. In addition,

please note the following.

1. The following assignment requires you to write 1 octave function, wave, which is to be coded in the file
/phys210/$LOGNAME/hw4/a1/wave.m.

2. As with the previous homework, there is an associated instructor-supplied “driver” script that you will use to
generate the final results for the question.

In this case the script is

/home/phys210/octave/hw4/twave.m

Once again, you can use this script as a guide / template for the design of your own script to test your
implementation of wave as you code it.

Warning!! If you do modify the script for your own purposes, ensure that you give it a different name. That
is, the script twave that you must eventually execute to complete the homework must be the one defined in
/home/phys210/octave/hw4, not your own version.

3. Important!! To ensure that you can execute the driver script from within octave (executing on hyper), add
the following line to your ∼/.octaverc file.

addpath(’/home/phys210/octave/hw4’)

This needs to be done before you start octave if you want the driver script to be available in that session.

% This code is based in part on ’<whatever>.m’, written by M.W. Choptuik

4. As discussed in the e-mail that I sent on November 6, you are again free to use code that I have written to
solve other problems as a template / guide for your implementation of wave. However, should you use that
code in a substantial way (e.g. should you copy some specific file and then modify it to produce your wave.m),
then, following usual academic protocol, you should acknowledge that fact in a comment near the top of the
source file. For example

5. Loopless coding: Attempt to solve the problem using as few for or while loops as possible, but, as discussed
below, if that proves difficult, feel free to at least start (and perhaps end) with a version that uses loops and
references to individual array elements.
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PROBLEM 1: The Wave Equation

1.1 Mathematical specification

The wave equation is a partial differential equation (PDE) that plays an extremely important role in mathematics
and physics, and most of you will encounter it (and variations of it) many times in your future studies. Although
some of the mathematics below may be unfamiliar to many of you, the finite difference solution of the (simple) wave
equation that will be described is quite straightforward, and not significantly more involved than the solution of the
advection equation that we have discussed in class.

The simplest wave equation is the following PDE in one spatial variable, x, and time, t, for a scalar function, u(t, x):

∂2u

∂t2
= c2 ∂2u

∂x2
, (1)

where c is a positive constant whose significance we will discuss momentarily.

We will solve (1) on the domain
0 ≤ x ≤ 1 0 ≤ t ≤ tmax , (2)

where tmax is the final time to which we wish to solve the equation.

In order to compute a specific solution of (1) we must provide both initial conditions and boundary conditions. Since
the PDE (1) is second order in time (and in analogy to our treatment of the oscillator equation in the previous
problem), for the initial conditions, we have to give values for the wave variable u and its first time derivative at
t = 0. That is, we must specify two functions u0(x) and v0(x) such that

u(0, x) = u0(x) , (3)

∂u

∂t
(0, x) = v0(x) . (4)

For boundary conditions, we will choose fixed or Dirichlet conditions—demanding that there be no wave motion at
the end points, x = 0 and x = 1, of the spatial domain at any time:

u(t, 0) = 0 , (5)

u(t, 1) = 0 . (6)

We note that we must then ensure that the initial condition (3) is compatible with the boundary conditions, i.e. we
must have

u0(0) = u0(1) = 0 . (7)

If you wish to have a physical picture for this setup, imagine a string stretched snugly between two fixed attachment
points. Assuming that the string is sufficiently elastic (i.e. so that it does not dissipate energy as it vibrates),
then sufficiently small transverse displacements of the string (i.e. motions perpendicular to the line defined by the
equilibrium configuration of the string) will be described by the above set of equations.

As you might expect (or know), the constant c represents the speed at which disturbances in the wave variable
propagate. As we discussed for the case of the advection equation, we can always choose a system of units in which
this constant becomes 1, and since it is convenient both mathematically and computationally to do so, we will
hereafter assume, without any loss of generality, that c = 1. Thus (1) becomes

∂2u

∂t2
=

∂2u

∂x2
. (8)

Paralleling our study of the advection equation, if we momentarily consider the solution of (8) on an infinite spatial
domain, −∞ < x < ∞, and for t ≥ 0, we can write down the general solution of (8):

u(t, x) = l(x + t) + r(x − t) . (9)

Here l and r are two arbitrary functions, each of which depends on a single independent variable. I will leave it as
an exercise for you to convince yourself that (9) does satisfy (8)—if you are unable to do so, please see me during
office hours or in one of the labs for an explanation.
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Now, consider the case where u(t, x) is such that r(t, x) ≡ 0. Then we have

u(t, x) = l(x + t) , (10)

which is the same general solution that we derived for the advection equation, and thus represents propagation of the
initial wave profile, l(x), (i.e. u(t, 0) = l(x)) leftwards with unit speed. Again, we identify the lines t = −x + const.
as characteristics of the wave equation, and for a solution of the form (10), the wave amplitude, u, is constant along
these characteristics.

Similarly, if we assume that u(t, x) is such that l(t, x) ≡ 0, we have

u(t, x) = r(x − t) (11)

which now represents propagation of the initial profile, r(x), rightwards with unit speed. For the wave equation
there is thus a second set of characteristics defined by t = +x + const. along which u is constant for solutions of the
form (11).

Fig. 1 provides a pictorial summary of our discussion of the general solution of the wave equation and its characteristic
structure.

t

: "left−directed" characteristics,      x + t  =  constant  ,   l(x + t) = constant

: "right−directed" characteristics,    x − t  =  constant  ,  r(x − t)  = constant

x

Figure 1: Characteristics of the wave equation: utt = uxx. Signals (disturbances) travel along the characteristics

(dashed and dotted lines).

Returning now to the solution of the wave equation on the (finite) domain given by (2), we note that we can use
the notion of the left- and right-moving “profile” functions, l and r, as a convenient way of specifying the initial
conditions (3) and (4). First, for the initial value of the wave variable u itself, we simply superimpose the two profile
functions:

u(0, x) = l(x) + r(x) . (12)

Second, to specify the first time derivative of u at the initial time, we observe that since as a function of space and

time we have l = l(x + t) and r = r(x − t), we get

∂u

∂t
(0, x) = l′(x) − r′(x) , (13)

where the prime (′) denotes ordinary differentiation of the functions l and r with respect to their single independent
variable. Again, if you have difficulty understanding this last equation, be sure to ask me for a more detailed
explanation.

In our numerical solution of the wave equation using finite difference techniques, we will use this technique of
specifying (initially) left-moving and right-moving profiles to provide initial conditions. Moreover, we will restrict
attention to one specific profile shape, namely that of a “gaussian”, so that we will have

l(x) = al exp

[

−

(

x − x0l

δl

)2
]

, (14)
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r(x) = ar exp

[

−

(

x − x0r

δr

)2
]

. (15)

Here al, ar, x01, x0r , δl and δr are to be viewed as parameters which control the amplitude, a, the effective width,
δ, and the “center point”, x0, of each profile.

For example, Fig. 2 shows the initial profile, u(0, x), for the case al = 1.0, x0l = 0.45, δl = 0.05, ar = 0.5, x0r = 0.55
and δr = 0.1 (which, not coincidentally, is the case implemented in the driver script for this problem twave.m).
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Figure 2: Typical initial data for the wave equation where both the initially left- and right-moving profiles, l(x) and

r(x) are gaussians.

Let us now proceed to a discussion of the solution of (1)–(6) using finite difference techniques. (Note that the
description of the mesh set-up is precisely the same as that which was discussed in the context of the advection
equation, but is repeated here for the sake of completeness, as well as for the benefit of those of you who may not
have taken complete notes in class!)

As always, we begin the discretization process by replacing the continuum domain (2) with a finite difference grid,
(tn, xj). For simplicity, as well as from considerations of accuracy, this mesh will have constant spacings, ∆t and
∆x, respectively, in the two coordinate directions t and x (i.e. the grid is uniform). Moreover, the nature of solutions
of wave equations such as (1) is such that if one uses the same order of finite difference approximation for both the
time and space derivatives, then it is natural to choose the spacings ∆t and ∆x to be roughly of the same size. We
thus introduce the parameter, λ, often known as the Courant number

λ ≡
∆t

∆x
, (16)

and note that when we perform convergence tests in which the mesh spacings are varied, λ will be kept fixed. This
means that even though superficially there seem to be two mesh parameters, ∆t and ∆x, in reality the grid will be
characterized by a single discretization scale, h, which we can conveniently identify with ∆x. In particular, we will
then always have

O(∆x) = O(∆t) = O(h) , (17)

O(∆x2) = O(∆t2) = O(h2) , (18)

etc. Additionally, following our usual practice, we will specify the number of spatial points, nx, using a level
parameter, ℓ, such that

nx = 2ℓ + 1 . (19)
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The spatial coordinates, xj , of the grid are then given by

xj = (j − 1)∆x, j = 1, 2, . . . , nx , (20)

where

∆x =
xmax − xmin

nx − 1
=

1

nx − 1
, (21)

and we have used the fact that we are solving the wave equation on the spatial interval 0 ≤ x ≤ 1.

Similarly, the discrete time coordinates, tn are given by

tn = (n − 1)∆t, j = 1, 2, . . . , nt , (22)

where from (16) we have
∆t = λ∆x , (23)

and there is thus an implicit assumption that we have chosen λ and tmax so that ∆t as computed from (23) is
consistent with the value that could also be calculated using

∆t =
tmax

nt − 1
. (24)

Assuming that this is the case, the number of discrete time values (“time steps”), nt then becomes a derived quantity.

Having defined the finite difference mesh, we introduce the discrete approximation to the continuum solution of (1),
denoting it by un

j :
un

j ≡ u((n − 1)∆t, (j − 1)∆x) . (25)

We then discretize the second time and space derivatives in (1) using the standard O(h2) centred finite difference
approximation for a second derivative (the same one used in the previous problem) to get our basic set of difference
equations for the wave equation

un+1

j − 2un
j + un−1

j

∆t2
=

un
j+1 − 2un

j + un
j−1

∆x2
, j = 2, 3, . . . , nx − 1, n + 1 = 3, 4, . . . , nt . (26)

As was the case for the non-linear oscillator, we view (26) as defining algebraic equations for the advanced time
unknowns

un+1

j , j = 2, 3, . . . , nx − 1 (27)

but in this instance I will leave it to you to do the simple algebra that solves (26) for un+1

j (you will need the result
in your implementation of the octave function wave that is prototyped below).

The system of equations (26) must be supplemented with discrete versions of the initial conditions (3)–(4) and the
boundary conditions (5)–(6). Discrete boundary conditions are easy to “derive” in this case: we simply have

un
1 = 0 n = 1, 2, . . . nt , (28)

un
nx

= 0 n = 1, 2, . . . nt . (29)

The discrete initial conditions are a little trickier to implement. Again, in precise analogy with our treatment of the
Van der Pols equation, we have adopted a three-time-level finite difference approximation, and thus must use the
continuum initial conditions (3)–(4), or equivalently (12)–(13) to initialize u1

j and u2
j for j = 1, 2, . . . nx. We also

must ensure that the initialization is consistent with the boundary conditions—i.e. we must have u1
1 = u1

nx

= 0.

Appropriate values of u1
j follow directly from (3)

u1
j = u0(xj) . (30)

The tricky bit is working out sufficiently accurate values for u2
j . Once more paralleling the development in the

previous problem, we proceed by Taylor series expansion in t about t = 0.

u2
j ≡ u(∆t, xj) = u(0, xj) + ∆t

∂u

∂t
(0, xj) +

1

2
∆t2

∂2u

∂t2
(0, xj) + O(∆t3) . (31)

We eliminate the second time derivative using the wave equation (1) itself to get

u2
j ≡ u(∆t, xj) = u(0, xj) + ∆t

∂u

∂t
(0, xj) +

1

2
∆t2

∂2u

∂x2
(0, xj) + O(∆t3) . (32)
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Then, using (3) and (4) and neglecting the O(∆t3) and higher order terms, we have

u2
j = u0(xj) + ∆t v0(xj) +

1

2
∆t2u′′

0(xj) , (33)

where the prime (′) denotes ordinary differentiation (recall that u0 is a function of only one independent variable).

In terms of the initially left- and right-moving profiles, l(x) and r(x), we can show that (30) and (33) become

u1
j = l(xj) + r(xj) , (34)

u2
j = l(xj) + r(xj) + ∆t [l′ (xj) − r′ (xj)] +

1

2
∆t2 [l′′ (xj) + r′′ (xj)] . (35)

Now, if your eyes have completely glazed over by this point, the good news is that you won’t have to concern yourself
with all of these gory details concerning the proper initialization of the grid function values. Rather, as detailed
below, you will simply need to call instructor-supplied octave functions that will return appropriate values for u1

j

and u2
j .

1.2 The problem per se

Make the directory hw4/a1, and within that directory create an octave source file, wave.m, that defines the function
wave having the following header

function [x t u] = wave(tmax, level, lambda, al, x0l, deltal, ar, x0r, deltar)

The input arguments to wave are as follows

• tmax: tmax, as defined above.

• level: The discretization level, ℓ, as discussed above. Again, this defines the number of discrete spatial
coordinates, nx = 2ℓ + 1, and the mesh spacing ∆x = h = 1/(nx − 1).

• lambda: The ratio of the temporal mesh spacing to the spatial mesh spacing, λ = ∆t/∆x. You should always
compute with a value of λ < 1 and in order to make it easy to ensure that tmax and lambda are consistent
(see equations (23) and (24)), I suggest that you use λ = 1/2.

• al, x0l, deltal: The parameters, al, x0l and δl that define the initially left-moving gaussian profile (14).

• ar, x0r, deltar: The parameters, ar, x0r and δr that define the initially right-moving gaussian profile (15).

As usual, you do not have to do any error checking of the input arguments.

Your implementation of wave must define the 3 output arguments as follows:

• x: A row vector of length nx defining the discrete spatial coordinates, xj .

• t: A row vector of length nt defining the discrete time coordinates, tn.

• u: A nt × nx matrix (two dimensional array) containing the complete finite difference solution, un
j .

Implementation notes

1. As mentioned above, you can use the following two octave functions to set the values u1
j and u2

j

(a) function [u1] = waveu1(x, delt, al, x0l, deltal, ar, x0r, deltar)

(b) function [u2] = waveu2(x, delt, al, x0l, deltal, ar, x0r, deltar)

For both functions, the input argument x is a row vector of length nx containing the discrete x coordinates, xj ,
and delt is the time spacing ∆t. All other input arguments are as per the discussion of the input arguments
to wave. The output arguments are row vectors of length nx containing the values u1

j and u2
j , respectively, as

defined by (34) and (35).
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2. Again, you can use the driver script twave.m located in /home/phys210/octave/hw4/ as the basis for your
own script and/or interactive experimentation to develop, debug and convergence test your implementation of
wave. In particular, note that twave.m illustrates the use of the octave plotting function, mesh, that produces
a “surface plot” (“3D plot”) of a function defined on a mesh such as (tn, xj). Although you may find it useful
to generate your own surface plots while you are implementing wave, you should also consider using plot to
view the grid function un

j at specific (single) discrete times, tn

3. There is a somewhat subtle point that you must be aware of if you use different values for the parameters
defining the gaussian profiles (14) and (15). The observation is the following: although we have stressed above
that the initial conditions must be consistent with the boundary conditions, which state that u must vanish
at x = 0 and x = 1 at all times, in reality the gaussians (14) and (15) only vanish in the limits x → ±∞.
In practice, provided that the centers x0 and widths δ are chosen carefully, the values of l(x) and r(x) at the
spatial boundaries will be so small that, for all intents and purposes, they can be considered to be 0. This is
the case for the parameters defining the initial profile, u(0, x), that is illustrated in Fig. 2. However, if you
do not choose x0 and/or δ appropriately (for either l(x) or r(x)) then the initial data may effectively become
discontinuous. The subsequent evolution will then tend to look rather strange, and the solution will certainly
not converge as h → 0 as expected.

4. Finally, as mentioned in the instruction page, you should attempt to code wave using as few for or while

loops as possible—but don’t go overboard! (my solution, for example, has one for loop). If you find this
difficult, go ahead and write a version of wave that uses loops, but once you have it working, and assuming
you have time, try to code another version (without destroying the working code!) that doesn’t use so many
loops. Such a strategy has the advantage that you will have a working code to generate results that you can
use to test the new program.

When you are satisfied that you have implemented wave correctly, execute the driver twave which should produce
output as follows:

>> twave

Running wave at level 6

Generating surface plot and saving it as wave-6.ps

This will take some time (about 15 seconds). Please be patient!

Type ’Enter’ to continue:

Checking code convergence

Running wave at level 6

Running wave at level 7

Running wave at level 8

Running wave at level 9

Running wave at level 10

Scaled RMS values of soln differences: ...

Type ’Enter’ to continue:

Done!!

Again, some output which is part of the solution has been suppressed. You should also see one nifty surface plot
appear on your screen as the script executes.

File Inventory for directory hw4/a1

1. wave.m

2. wave-6.ps
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