
PHYS 210: Introduction to Computational Physics Fall 2009 Homework 3
Final Version, November 6

Due: Friday, November 13, 11:59 PM
PLEASE report all bug reports, comments, gripes etc. to Matt: choptuik@physics.ubc.ca

Please make careful note of the following information and instructions:

1. The following assignment requires you to write three octave functions to accomplish various tasks.

2. For each problem, there is an associated instructor-supplied “driver” script that you will use to generate the
final results for the question. In each case these results will consist of an inventory of files which is listed at
the end of the problem description. Also note that for each problem you will have to prepare a single .m file
that will contain the definition of the required octave function: that .m file will be part of the inventory.

You can also use the instructor-supplied driver scripts as guides / templates for the design of your own scripts
to test your octave functions as you code them.

Warning!! If you do modify these scripts for your own purposes, ensure that you give them different names.
That is, the scripts tchaos, tfdas and tvdp that you must eventually execute to complete the homework must
be the ones defined in /home/phys210/octave/hw3, not your own versions.

You will definitely lose marks if you don’t heed this warning, so let me know if there is anything about it that
you don’t understand!!

3. Important!! In order to ensure that you can execute the driver scripts from within octave (executing on
hyper), you need to add the following line to your ∼/.octaverc file.

addpath(’/home/phys210/octave/hw3’)

This needs to be done before you start octave if you want the driver scripts to be available in that session.

4. If you want to work on this homework using octave on your laptop or home machine, then you will need to
copy the contents of /home/phys210/octave/hw3 from hyper to some directory on your personal machine(s),
and ensure that the target directory has been added to your octave path as above.

5. Although you could use MATLAB to develop and test the functions that you need to write to complete this
homework, it is recommended that you do not do so, since the driver scripts will generally not work as
expected under MATLAB due to differences in the plotting facilities between octave and MATLAB.

6. Since all of the driver scripts produce Postscript files, recall that you can use gv to view such files. Please use
gv to ensure that all of the files that are to contain Postscript versions of plots, actually do contain plots.

7. As usual, it is your responsibility to ensure that when your homework it complete, all requested files are in
their correct locations with the correct names, and that all code executes properly on hyper.

Warning!! At this stage in the course, the TA has the authority to begin deducting marks if you do not follow
this protocol!!

Also as usual, note that any reference below to the directory hw3 is implicitly a reference to
/phys210/$LOGNAME/hw3.

8. Comments and error checking: Your functions should be commented at about the same level as my driver
scripts are. Also, unless explicitly stated otherwise, your functions do not have to perform any checks for
validity of input arguments.

9. Loopless coding: In the spirit of making use of octave’s powerful facilities for performing whole-array
operations, you should attempt to solve problem 2 using as few for or while loops as possible.

10. Due to the amount of programming involved in this assignment relative to the previous two, as well as to the
fact that it involves some mathematics that may be somewhat unfamiliar to you, this problem set may be
quite challenging for some of you.

However, the homework, it has also been designed to help you gain a level of proficiency in octave programming
that will be necessary, in most cases, for the successful completion of your term projects (for those of you who
will be using octave for your projects).

Moreover, as you probably suspect, the length of this handout does not reflect the total length of code that
must be written to complete the homework. Excluding comments (but including some tracing code), my
solutions amount to about 80 lines of code.

In any case I strongly recommend that you begin work on the assignment as soon as possible, and to seek help
should you find yourself spending an undue amount of time (i.e. hours and hours) on any given problem.

1

PROBLEM 1: The Chaos Game

1.1 Mathematical specification

Consider the x-y plane and let
Vi ≡ (xi, yi) i = 1, 2, 3 (1)

be the vertices of an equilateral triangle that lies in that plane and which is inscribed in the unit circle defined by
x2 + y2 = 1 (i.e. the circle with unit radius whose center is located at the origin (0, 0)). Specifically, the coordinates
of the Vi are as follows:

V1 =
(

cos
(π

2

)

, sin
(π

2

))

(2)

V2 =

(

cos

(

7π

6

)

, sin

(

7π

6

))

(3)

V3 =

(

cos

(

11π

6

)

, sin

(

11π

6

))

(4)

The game is to be initialized by choosing, at random, some point—also in the xy plane—that lies on the circle
centred at the origin, but with a radius r = 1.25. Call this randomly chosen point the active point, Vp. With this
initialization, the game is played by repeating the following operations any desired number of times (steps):

1. Choose one of the three vertices, Vi, of the triangle randomly.

2. Consider the line segment ViVp between the active point, Vp, and the randomly chosen triangle vertex, Vi.

3. Bisect ViVp to define a new point, Vq, that thus lies exactly at the midpoint of ViVp.

4. Make this new point Vq the active point Vp.

If one plots all the active points Vp which are generated, an interesting pattern appears after a sufficiently large
number of iterations.

1.2 The problem per se

Make the directory ∼/hw3/a1 and within that directory create an octave source file chaos.m that defines an octave

function with the following header:

function [x y] = chaos(nsteps)

The single input argument to chaos is defined as follows:

• nsteps: Number of steps to play. This should be an integer scalar greater than 0, and your implementation
of chaos can assume that it is (i.e. you don’t need to do any error checking of nsteps).

The output arguments of chaos are:

• x and y: Vectors of length nsteps + 4 containing the x and y coordinates, respectively, of all of the active
points generated by playing the game, as well as the vertices of the equilateral triangle. Specifically, on return
x and y should be defined as follows

– x(k), y(k), k = 1, 2, 3: Vertices of triangle as defined in (2)-(4)

– x(4), y(4): Coordinates of randomly chosen initial active point.

– x(k), y(k), k = 5, ... nsteps + 4: Coordinates of subsequently generated active points.

The driver script for chaos is defined in

/home/phys210/octave/hw3/tchaos.m

As noted above, you can use this script as a template for the purposes of guiding the development and testing of
your implementation of chaos, but, as emphasized in the preliminary comments, if you do so, make sure that you
don’t call it tchaos.m !—call it mytchaos.m, or some such, so that there can be no confusion with the true driver.

2

Once you are confident that your implementation of chaos is working properly, invoke the driver script tchaos:
i.e. ensuring that octave is executing in hw3/a1, type tchaos at the octave prompt. As the script executes you
should see the following on your terminal:

>> tchaos

Type ’Enter’ to continue:

This will take a few seconds ... please be patient!

Type ’Enter’ to continue:

This will take even longer (about half a minute) ...

Please be even more patient!

Type ’Enter’ to continue:

Done!!

Here (as well as in subsequent problems) each time you see the text Type ’Enter’ to continue:, you must do as
instructed in order for the script to continue execution. Once you see the text Done!! you can exit octave and
check the various .ps (Postscript) files to ensure that they contain what you expect. You should also see various
plots appear in on your screen as the script executes.

File Inventory for directory hw3/a1

1. chaos.m

2. chaos-1000.ps

3. chaos-10000.ps

4. chaos-100000.ps

Optional! Generalize the game in various ways such as

1. Adding an option which controls the number of fixed vertices used (i.e. so that you can play with 4, 5, 6, . . .
fixed vertices, rather than just 3).

2. Adding an option which controls the placement of new points: new points should continue to be placed along a
line segment connecting the previous point and the randomly chosen vertex, but need not be at the mid-point
of the line segment.

3. Implementing the game in three dimensions.

If you do chose to generalize the game, be sure to create a new .m file that defines an octave function with a
name different than chaos—chaos must execute precisely as specified above. Leave comments describing your
generalization(s) in a README file in the solution directory.

Some bonus marks will be available for successful implementation of one or more of these extensions, as well as for
suitably imaginative generalizations of your own invention.

3

PROBLEM 2: Finite Difference Approximations

2.1 Mathematical specification

Consider a uniform finite difference grid, xj , defined on some domain, xmin ≤ x ≤ xmax

xj = xmin + (j − 1)∆x j = 1, 2, · · ·nx , (5)

where the grid spacing (or mesh spacing or discretization scale), ∆x, is given by

∆x =
xmax − xmin

nx − 1
. (6)

We adopt the following notation (introduced in class) to denote the values of an arbitrary function f(x) at the grid
points, xj :

fj = f(xj) (7)

Then as also discussed in class, the following finite difference expressions define approximations to the first derivative,
f ′(x) = df(x)/dx, evaluated at the grid points xj :

First order forward difference approximation of f ′(xj)

fj+1 − fj

∆x
= f ′(xj) + O(∆x) ≈ f ′(xj) (8)

First order backward difference approximation of f ′(xj)

fj − fj−1

∆x
= f ′(xj) + O(∆x) ≈ f ′(xj) (9)

Second order centered difference approximation of f ′(xj)

fj+1 − fj−1

2∆x
= f ′(xj) + O(∆x2) ≈ f ′(xj) (10)

In addition, we derived the following finite difference formula that approximates the second derivative, f ′′(x) =
d2f(x)/dx2, once again at the mesh points xj :

Second order centered difference approximation of f ′′(xj)

fj+1 − 2fj + fj−1

∆x2
= f ′′(xj) + O(∆x2) ≈ f ′′(xj) (11)

2.2 The problem per se

Make the directory hw3/a2, and within that directory create an octave source file, fdas.m, that defines the function
fdas having the following header

function [x df db dc ddc] = fdas(fcn, xmin, xmax, level)

The input arguments to fdas are as follows:

• fcn: Function handle for f(x). This will typically be a handle to one of octave’s built-in math functions, such
as sin, sqrt, cosh etc.

• xmin: Minimum coordinate, xmin, of the finite difference grid.

• xmax: Maximum coordinate, xmax, of the finite difference grid.

• level: Discretization level. As discussed in class, this provides a convenient way of specifying the number
of grid points (or equivalently the grid spacing), particularly for the purpose of testing convergence of finite
difference approximations. The finite difference grid will contain nx = 2level + 1 points, and will have a mesh
spacing, ∆x, as defined by (6).

4

Your implementation of fdas must define the 5 output arguments as follows:

• x: Vector of length nx containing the values xj as defined by (5).

• df: Vector of length nx containing the first order forward difference approximation of f ′(xj) as defined by (8).

• db: Vector of length nx containing the first order backward difference approximation of f ′(xj) as defined by (9).

• dc: Vector of length nx containing the second order centred difference approximation of f ′(xj) as defined
by (10).

• ddc: Vector of length nx containing the second order centred difference approximation of f ′′(xj) as defined
by (11).

Note that all of the vectors returned by fdas must be of length nx. This means that you must evaluate all of the finite
difference approximations (8)–(11) at all of the grid points, xj , including the end points x1 = xmin and xnx

= xmax.

Hint (may be helpful for implementing the computations in fdas without the use of for loops):

Assume that we have defined an octave vector x of length nx using (5). We can then “temporarily” add additional
values to the ends of the vector using a statement such as

x = [(x(1) - deltax) x (x(nx) + deltax)];

and then later delete them using the sequence

x(1) = [];

x(nx+1) = [];

The driver script for this problem is

/home/phys210/octave/hw3/tfdas.m

When you are satisfied that you have implemented fdas correctly, execution of the driver should produce output as
follows:

>> tfdas

Type ’Enter’ to continue:

Type ’Enter’ to continue:

Type ’Enter’ to continue:

Type ’Enter’ to continue:

Scaled RMS errors for O(h) forward FDA of d/dx

Level Scaled Error

.

.

.

Scaled RMS errors for O(h) backward FDA of d/dx

Level Scaled Error

.

.

.

Scaled RMS errors for O(h^2) centred FDA of d/dx

Level Scaled Error

.

.

.

Scaled RMS errors for O(h^2) centred FDA of d^2/dx^2

Level Scaled Error

5

.

.

.

where output that constitutes part of the solution has been suppressed. Again, various plots should appear on your
screen as the script executes.

If you examine the output labelled

Scaled RMS errors for O(h^2) centred FDA of d^2/dx^2

you should notice something suspicious about the final few numbers.

Question to be answered in a2/README: What do you notice, and can you provide an explanation for the observed
behaviour?

File Inventory for directory hw3/a2

1. fdas.m

2. dsin-6.ps

3. edsin-6.ps

4. ddsin-6.ps

5. eddsin-6.ps

6. README

6

PROBLEM 3: The Van der Pol Equation

3.1 Mathematical specification

Consider the following non-linear ordinary differential equation (ODE), known as the Van der Pol equation,

d2u(t)

dt2
− ǫ

(

1 − u(t)2
) du(t)

dt
+ u(t) = 0 , 0 ≤ t ≤ tmax , (12)

where t is time, u(t) is the displacement of the Van der Pols oscillator, ǫ > 0 is a specified positive constant, and
tmax is the time to which we wish to compute the dynamics of the oscillator.

Since (12) is a second order ODE, if we are to calculate a particular solution of it we must specific initial values for
the displacement and the first time derivative of the displacement. That is, we must supplement (12) with the initial
conditions:

u(0) = u0 , (13)

du

dt
(0) = v0 , (14)

where u0 and v0 are values that we can choose freely.

Physically, the Van der Pol equation describes the voltage behaviour of a tunnel diode oscillator, although for the
purposes of this homework we will primarily be viewing it as providing a simple yet interesting example of non-linear
dynamics.

We note that ǫ is to be considered a control parameter of the problem: variation of ǫ will induce significant changes in
the behaviour of the oscillator. We will return to this point in the following section. We will solve equations (12)–(14)
using second order finite difference techniques. To that end, and following the basic procedure outlined in class for
treating any differential problem using the finite difference approach, we first replace the continuum solution domain,
0 ≤ t ≤ tmax with a finite difference grid, or mesh, denoted tn and defined by

tn = (n − 1)∆t, n = 1, 2, . . . , nt . (15)

Thus there are a total of nt grid points, and the grid spacing, ∆t, is given by

∆t =
tmax

nt − 1
. (16)

In addition, as in the previous problem—and although not necessary—we will find it convenient to make the number
of mesh intervals a power of 2, and identify that power with the level, ℓ, of discretization, so that we have

nt = 2ℓ + 1 (17)

for some integer ℓ ≥ 1. Note that in practice, and depending on the value of tmax, we will need to take ℓ significantly
larger than 1 to ensure that the grid spacing is sufficiently small to provide a reasonable approximation of the
oscillator’s motion.

Having introduced the finite difference mesh, tn, we define the associated discrete values of the oscillator displacement,
un, by

un ≡ u(tn) (18)

where it is to be understood that for any finite ∆t, the un will only be an approximation to corresponding values of
the continuum solution of (12)–(14)

u(t)|t=tn
. (19)

The next step in the discretization process involves replacement of the derivatives appearing in (12) with finite
difference formulae. Here we will use the “standard” second-order, centred approximations for the first and second
derivatives, namely:

un+1 − un−1

2∆t
=

du

dt

∣

∣

∣

∣

t=tn

+ O(∆t2) (20)

un+1 − 2un + un−1

∆t2
=

d2u

dt2

∣

∣

∣

∣

t=tn

+ O(∆t2) (21)

7

Using (18), (20) and (21) in (12) we get our FDA (finite difference approximation) of the oscillator equation

un+1 − 2un + un−1

∆t2
− ǫ

(

1 − u2
n

) un+1 − un−1

2∆t
+ un = 0 , n + 1 = 3, 4, ...nt . (22)

Note that in solving (22) we will assume that the values un and un−1 are known, leaving un+1 as the single unknown
in the equation. This is why we have written the discrete domain of applicability of the algebraic finite difference
equations as n + 1 = 3, 4, ...nt. It also implies that in order to begin the process of solving (22) for discrete times
t3, t4, . . . , tnt

, we must have the values u1 = u(0) and u2 = u(∆t) in hand.

The appropriate value for u1 follows immediately from the initial condition (13)

u1 = u(0) = u0 (23)

(be careful not to confuse the two uses of subscripts here, u1 refers to the approximate value of u(t) at the first mesh
point, while u0 is the freely specified initial condition for the oscillator’s displacement).

Determining an appropriate value for u2 is a little trickier. We proceed using Taylor series expansion and state
without proof (although we may discuss this issue in class should time permit), that we need to compute terms up to
and including O(∆t2) in the expansion to ensure that the overall solution un is computed to second order accuracy.
Thus, we write

u2 = u(∆t) = u(0) + ∆t
du

dt
(0) +

1

2
∆t2

d2u

dt2
(0) + O(∆t3) (24)

We note that we can evaluate the first 2 terms in (24) using the initial conditions (13) and (14). This leaves us the
third, O(∆t2), term—which involves the second time derivative of u—to calculate, and the initial conditions will not
directly allow us to do so.

However (and this is an approach that can be applied quite generally to second order differential equations that
have been approximated using a three-time-level finite difference scheme such as (22)), we can use the ODE itself to
replace the second time derivative with quantities that can be computed from the initial conditions.

Specifically, solving (12) for d2u/dt2 we have

d2u

dt2
= ǫ

(

1 − u2
) du

dt
− u (25)

Substituting this into (24), and neglecting the O(∆t3) and higher order terms, we find

u2 = u(∆t) = u(0) + ∆t
du

dt
(0) +

1

2
∆t2

[

ǫ
(

1 − u(0)2
) du

dt
(0) − u(0)

]

(26)

Then using the initial conditions (13) and (14) we can rewrite (26) as

u2 = u0 + ∆t v0 +
1

2
∆t2

[

ǫ
(

1 − u2
0

)

v0 − u0

]

(27)

We are now almost done with our mathematical development of the problem. The last thing we need to do before
proceeding to a specification of the octave function that you will code to solve the Van der Pols equation is to
manipulate (22) so that it provides an explicit expression for the (advanced-time) unknown, un+1.

I thus leave it as an exercise for you (please do it!) to verify that if we define an auxiliary quantity, q, as follows:

q ≡
1

2
ǫ∆t

(

1 − u2
n

)

(28)

then (22) implies that

un+1 = (1 − q)
−1

[(

2 − ∆t2
)

un − (1 + q)un−1

]

n + 1 = 3, 4, ...nt (29)

In summary, equations (29), (23) and (27) provide a complete set of algebraic equations for the unknowns un, n =
1, 2, . . . , nt, and we are now in a position to implement their solution as an octave function.

3.2 The problem per se

Make the directory hw3/a3, and within that directory create an octave source file, vdp.m, that defines the function
vdp having the following header

8

function [t u dudt] = vdp(tmax, level, u0, v0, epsilon)

The input arguments to vdp are as follows

• tmax: tmax as defined above.

• level: The integer-valued discretization level, ℓ, as described above. This argument is used to define the
number of points, nt, in the finite difference mesh, the discrete time step (mesh spacing), ∆t, and the discrete
times, tn, via equations (17), (16) and (15), respectively.

• u0 and v0: The initial values u(0) and du/dt|t=0.

• epsilon: The control parameter ǫ.

You do not have to do any checks of the validity of the input arguments.

Your implementation of vdp must define the 3 output arguments as follows:

• t: A row vector of length nt containing the discrete times tn.

• u: A row vector of length nt containing the discrete solution, un, as given by equations (23) and (27) and (29).

• dudt: A row vector of length nt containing a finite difference approximation of du/dt(tn) computed using
formula (20) for n = 2, 3, . . . , nt − 1. For n = 1 and n = nt you should use the following

dudt(1) = v0;

dudt(nt) = 2 * dudt(nt-1) - dudt(nt-2);

The first of these expressions follows immediately from the initial condition (14), while the second computes
the final value of dudt using linear extrapolation of the second- and third-to-last values.

The driver script for this problem is

/home/phys210/octave/hw3/tvdp.m

and, again you are welcome to use it as an aid in designing your own script and/or interactive experimentation
to develop and test your implementation of vdp. (Remember, though, do not name your script file tdvp.m !!) In
particular, you are urged to make use of octave’s plotting facilities in your development script, since it is almost
always much easier to understand what a program such as vdp is or is not doing through visualization, rather than
staring at numbers.

As part of your testing process, you should try to establish that your finite difference solution is converging as
expected using the basic technique discussed in class, and which is also implemented in tdvp.m.

Once you are convinced that your octave function for approximately solving (12)–(14) is correct, and to the extent
that time permits, you are encouraged to experiment with a variety of values of ǫ (0 ≤ ǫ ≤ 5 suggested), u0

(10−3 ≤ u0 ≤ 10 suggested) and v0 (−5 ≤ v0 ≤ 5 suggested). When performing your studies, ensure that you specify
tmax large enough to determine the long-time behaviour of the oscillator, and, dependent on the values of ǫ and tmax,
choose a minimum value for ℓ so that the oscillator’s behaviour is well resolved.

An interesting way to view the output of vdp is through a phase space plot; i.e. a plot of du(t)/dt vs u(t). Again,
this is something that is done in the driver tdvp.m, and you are encouraged to include phase space plotting in your
own driver script.

You should briefly document what you find through your numerical experiments in hw3/a3/README.

To complete this problem, execute the supplied driver script tdvp, which should produce output as follows

>> tvdp

tvdp

These calculations will take some time (approximately 10 seconds).

Please be patient!

Type ’Enter’ to continue:

Type ’Enter’ to continue:

9

These calculations will take a few more seconds.

Please be patient!

Type ’Enter’ to continue:

Done!!

You should also see three plots appear on your screen as the script executes.

Provide a summary of what you can deduce from the phase space plot (hardcopy in phase 12.ps) that
is produced by running tvdp in your README file.

File Inventory for directory hw3/a3

1. vdp.m

2. u 12 13 14.ps

3. du 12 13 14.ps

4. phase 12.ps

5. README

And that’s it for Homework 3! Whew!!

10

