
Physics 210: Unix / Linux

Please report all errors/typos. etc to choptuik@phas.ubc.ca

Last updated September 29, 2009.

Index

Introduction and Motivation
Interaction with the Shell: Keyboard and Mouse Features
Linux Desktop Environments
Files and Directories

Absolute and Relative Pathnames, Working Directory
Home directories
"Dot" and "Dot-Dot"
Filenames

Commands Overview
General Structure
Executables and Paths
Control Characters
bash Startup Files
Hidden Files
Shell Aliases
Default 210 Startup Files
Shell Options

Basic Commands
Getting Help or Information

man
Communicating with Other Machines

ssh
Mail

Exiting bash / Logging out
exit
logout

Changing Your Password
passwd

Creating, Manipulating and Viewing Files
Text editors: kate, gedit, vi/vim (gvim) or emacs (xemacs)
more
lpr
cd and pwd
ls
mkdir
cp
mv
rm
chmod
scp

More about bash
Local Variables
Environment Variables
Using bash Pattern Matching
The bash History
Standard Input, Standard Output and Standard Error
Input and Output Redirection
Pipes
Regular Expressions and grep
Using Quotes: (' ', " ", and ` `)

Forward quotes: ' '
Double quotes: " "
Backward quotes: ` `

Job Control
Basic Shell Programming

INTRODUCTION AND MOTIVATION

These notes aim to get you familiar with the interactive use of Unix for day-to-day organizational and programming
tasks, as well as to introduce you to the art of writing shell scripts. A natural question that you might have is, "Why

should I learn Unix?" Entire essays could be devoted to this topic, but in the context of computational physics, let us
first observe that Unix is the operating system of choice for many computational physicists, especially those who do
significant development of new programs, as well as those who use very large and powerful computers (i.e. those
involved in High Performance Computing (HPC)). Unix is powerful, extensible, and in the case of Linux, the code for
the entire operating system is so-called open source, meaning it is non-proprietary and can be modified by any user
as he or she wishes. Additionally, Linux is generally available free of charge, which is important for those on a
budget, especially if they operate a large number of computers. Of course, this fact doesn't constitute a particularly
compelling argument from a scientific or operational point of view, but in the "real world", and certainly in academia,
affordability often does make a huge difference. I could go on, but perhaps it is sufficient to conclude by stating that
in the current era, most physicists would consider at least a basic knowledge of Unix to be an essential part of the
training of undergraduate physics students.

Having provided some rationale for our study, let us first note that Unix is an operating system (OS), which we can
loosely define as a collection of programs (often called processes) that manage the resources of a computer for one
or more users. These resources include the CPU (Central Processing Unit), network facilities, terminals, file
systems, disk drives and other mass-storage devices, printers, and many more. During the course, one common
way you will be encouraged to use Unix is through a command-line interface; you will type commands to create and
manipulate files and directories, start up applications such as text-editors or plotting packages, communicate with
other machines etc. etc. As some of you may be aware, various Unix vendors have written GUIs (Graphical User
Interfaces) for their particular versions of Unix. As with similar systems on Macs and PCs, these GUIs largely
eliminate the need to issue commands by providing intuitive visual metaphors for most common tasks. However, the
command-line approach is still well worth mastering for a variety of reasons, including:

Portability: All Unix systems support the command-line approach, and by sticking with standard features,
what you learn on the Linux machines that you will be using in the course will be applicable on virtually all
Unix systems.
Power: Commands can be extended and combined in a straightforward way. These new commands include
not only those supplied by the operating system, but also new commands (programs) that you can create
using shell scripting and programming features, or with specific programming languages such as C, Fortran,
Java, Python and many others.
Speed: Command-line interfaces minimize the amount of information that needs to be passed from machine
to machine when working remotely. If you just want to accomplish a few quick tasks, few things are more
annoying than a sluggish GUI. As available network speeds get faster and faster, this becomes less of a
concern, but one still encounters situations where the command-line is more effective than a GUI.

The versions of Unix implemented by specific vendors (or programming teams) typically have specific names. In
particular, on the Physics & Astronomy machine, hyper (full internet address hyper.phas.ubc.ca: note that phas
and physics are synonymous in the context of this type of domain name, so you can use either interchangeably),
you will be using the Linux variant of Unix, originally coded in large part by Linus Torvalds for PCs (and building on
a huge amount of previous and continuing work by the GNU project), and now widely distributed (typically at no
cost!) by many different companies and organizations. Further, the specific flavour of Linux that is installed on hyper
is Ubuntu. Again, however, what is described in the following should work largely as-is on other Linux flavours, as
well as on other vendor-specific versions of Unix. You should also note that the TAs and I will be happy to help you
install Linux on your laptop and/or PC, although we will recommend that you install Mandriva on your machines,
primarily since that is the distribution of Linux with which we are most familiar.

When you type commands in Unix, you are actually interacting with the OS through a special program called a shell,
which provides a more user-friendly command-line interface than that defined by the basic Unix commands
themselves. In this course, we will focus on the use of bash ("bourne again shell") which over the years has
become the most commonly used shell in the Linux community. However, you should be aware that there are other
shells available for your use, and that you can, in fact, change your default shell using the chsh command. In
particular, tcsh is still in widespread use and if you are interested in learning a bit about its features, you can start
with a version of these notes that discusses it in some detail. Unfortunately, at this time there is an unresolved issue
with the use of tcsh when using the workstations in the computer lab, so for this course it is best that you
adopt/keep bash as your default shell.

In the notes that follow, commands that you type to the shell, as well as the output from the commands and the shell
prompt (usually denoted "% ") will appear in typewriter font. Here's an example

% pwd
/home/choptuik
% date
Mon Aug 31 13:58:54 PDT 2009
%

Note that the appearance of the prompt is the shell's way of telling you that is waiting for you to enter a command.

If you are going through these notes online (and if you aren't familiar with Unix, then you should!), then you should
have at least one active shell running in which to type sample commands. I will often refer to a window in which a
shell is executing as the terminal.

Interacting with the Shell: Keyboard and Mouse Features

One very useful feature of bash is the ability to recall previously executed commands, and to edit them via the
"arrow" keys (as well as "Delete" and "Backspace"). After you have typed a few commands, hit the "up arrow" key a
few times and note how you scroll back through the commands you have previously issued. Use the "down arrow"
the same number of times to return to the basic prompt.

There is another handy feature of bash and other shells (which should be enabled by default on your hyper
accounts), which is generically known as completion. The basic idea is that you can type the first few characters of a
command name (i.e. the first word typed after the prompt), or a filename (i.e. essentially any word that follows a
command name), and then type the TAB key. If there is a unique command name (filename) that begins with the
characters that you have typed, the shell will automatically complete the command name (filename). Especially for
long names this can save a considerable amount of typing. If the initial few characters that you have typed do not
uniquely identify a command or filename, then if you type a second TAB (with no other intervening characters), the
shell will display a listing of all possible matches, then allow you to continue typing. As you enter additional
characters you can again use TAB at any point to attempt a completion (or two consecutive TABS to see all possible
completions).

You should also become familiar with the use of the mouse (or equivalent mouse device) to select, cut and paste
text within a shell, as well as within many other Unix applications. Unix systems tend to use a three button mouse,
and the following instructions assume that you are using one: if your mouse (device) only has two buttons, then
third-button-actions can often be emulated by depressing the two buttons simultaneously. Here, then, are the basic
text manipulation actions that can be achieved using the mouse:

Select (highlight) arbitrary text: Depress and hold down the left mouse button while sweeping over the
desired selection. The selected text will be highlighted.
Select a single whitespace-delimited string (word): Double click on the word using the left button. The
selected word will be highlighted. (Note: whitespace = spaces/blanks or TAB characters)
Select a single line of text: Triple click with the left button anywhere on the desired line. The selected line
will be highlighted.
Paste selected (highlighted) text: Position the cursor at the desired insertion point using a single click of
the left mouse or via the arrow keys. Notice that this action will clear the highlighting of the selected text, but
that in all of the above cases, the selection process has automatically copied the selected text to a global
buffer (what you might know as a clipboard). Depress the middle button, and the previously selected text will
be inserted before the cursor. The buffer/clipboard contents remain intact until the next selection action.
Cut text: Select text as above and then depress either the delete or backspace key. The selected text will
be deleted and stored in the buffer/clipboard so you can, for example, subsequently paste it per the previous
instruction.

Note that you can you these techniques to transfer selected text between different windows; i.e. between different
shells, a shell and a text editor window, text displayed in some window, and the URL type-in of your browser etc.
etc. Also observe that in many applications, depressing the right mouse button (which is not used for the actions
described above) will bring down a menu that will typically have selections such as copy, paste, cut, undo ..., and it's
a good idea to become familiar with that mechanism. In addition, the mapping of mouse buttons tends to be
configurable in Linux distributions, so you may sometimes encounter a system where the right button acts like the
left normally does and vice versa. Finally, if you intend to use a Mac to do some of the course work, I assume that
you already know how to accomplish text selection, cut and paste and the like.

Linux Desktop Environments

As mentioned above, modern implementations of Unix, including Linux, typically come with GUIs, more specifically
known as desktop environments (DEs), through which users interact. These environments are quite similar to what
you are no doubt used to from your experience with PCs running Windows, or Macs running Mac OS. Even though
the notes below focus on command-line Unix / Linux, when you login to one of the workstations in the computer lab,
you will be fundamentally interfacing with the operating system through a DE. In particular, you will actually have to
start up (launch) a terminal application (window) within the DE in order to perform the type of command-line work
detailed below.

Although many desktop environments are available for use with Linux, the two most popular are

KDE
GNOME

Both of these are available on hyper, and you should be able to use either for doing your coursework. However,
unless you are already using GNOME, I suggest that you use KDE, since it is somewhat easier to configure and
customize, and because the TAs and I have more experience with it. Also, each of these DEs tends to come with a
similar set of applications (e.g. terminal (shell) windows, text editors, web browsers, calendar programs etc.), and
the applications written for KDE will generally work under GNOME and vice versa.

In our first lab session, the TAs and I will demonstrate how to choose the DE at login time, as well as how to do
some basic configuration and customization of the KDE desktop

FILES AND DIRECTORIES

It is important that you be familiar with the notion of a hierarchical organization (tree structure) of files and directories
that most modern operating systems employ. If you are not, refer to one of the Unix references or on-line tutorials
that I have suggested, or ask myself or one of the TAs for help. There are essentially only two types of files in Unix:

Plain files: that contain specific information such as plain text, MATLAB code, executable code, PDF code, a
Maple worksheet etc.
Directories: special files that serve as containers for other files (including other directories). In the
Windows/Mac worlds, directories are known as folders, and although the 'directory' terminology is used
exclusively in these notes, I fully expect that many of you will only find it natural to use 'folder'

Absolute and relative pathnames, working directory: All Unix filesystems are rooted in the special directory
called / (forward slash). All files within the filesystem have absolute pathnames that begin with / and that describe
the path down the file tree to the file in question. Thus

/home/choptuik/junk

refers to a file named junk that resides in a directory with absolute pathname

/home/choptuik

that itself lives in directory

/home

that is contained in the root directory

/

In addition to specifying the absolute pathname, files may be uniquely specified using relative pathnames. The shell
maintains a notion of your current location in the directory hierarchy, known, appropriately enough, as the working
directory (hereafter abbreviated WD). The name of the working directory may be printed using the pwd command:

% pwd
/home/choptuik

If you refer to a filename such as

foo

or a pathname such as

dir1/dir2/foo

so that the reference does not begin with a /, the reference is identical to an absolute pathname constructed by
prepending the WD, followed by a /, to the relative reference. Thus, assuming that my working directory is

/home/matt

the two previous relative pathnames are identical to the absolute pathnames

/home/matt/foo
/home/matt/dir1/dir2/foo

Note that although these files have the same filename foo, they have different absolute pathnames, and hence are
distinct files.

Home directories: Each user of a Unix system typically has a single directory called his/her home directory that
serves as the base of his/her personal files. The command cd (change [working] directory) with no arguments will
always take you to your home directory. On hyper you should see something like this

% cd
% pwd
/home2/phys210t

When using bash, you may refer to your home directory using a tilde (~). Thus, assuming my home directory is

/home/choptuik

then

% cd ~

and

% cd ~/dir1/dir2

are identical to

% cd /home/choptuik

and

% cd /home/choptuik/dir1/dir2

respectively. (Note that cd dirname cause the shell to change the working directory to dirname, assuming that
dirname is a directory.) bash will also let you abbreviate other users' home directories by prepending a tilde to the
user name. Thus, provided I have permission to change to phys210t's home directory,

% cd ~phys210t

will take me there.

"Dot" and "Dot-Dot": Unix uses a single period (.) and two periods (..) to refer to the working directory and the
parent of the working directory, respectively:

% cd ~phys210t/dir1
% pwd
/home2/phys210t/dir1
% cd ..
% pwd
/home2/phys210t
% cd .
% pwd
/home2/phys210t

Note that

% cd .

does nothing---the working directory remains the same. However, the . notation is often used when copying or
moving files into the working directory.

Filenames: There are relatively few restrictions on filenames in Unix. On most systems (including Linux systems),
the length of a filename cannot exceed 255 characters. Any character except slash (/) (for obvious reasons) and
"null" may be used. However, you should avoid using characters that are special to the shell (such as () * ? $!) as
well as blanks (spaces). In fact, it is probably a good idea to stick to the set:

a-z A-Z 0-9 _ . -

As with other operating systems, the period is often used to separate the "body" of a filename from an "extension"
as in:

program.c (extension .c)
paper.tex (extension .tex)
the.longextension (extension .longextension)
noextension (no extension)

Note that in contrast to some other operating systems, extensions are not required, and are not restricted to some
fixed length (often 3 on other systems). In general, extensions are meaningful only to specific applications, or
classes of applications, not to all applications. The underscore and minus sign are often used to create more
"human readable" filenames such as:

this_is_a_long_file_name
this-is-another-long-file-name

You can embed blanks in Unix filenames, but it is not recommended.

Unix generally makes it difficult for you to create a filename that starts with a minus. It is also non-trivial to get rid of
such a file, so be careful. If you accidentally create a file with a name containing characters special to the shell (such
as * or ?), the best thing to do is remove or rename (move) the file immediately by enclosing its name in single
quotes to prevent shell evaluation:

% rm -i 'file_name_with_an_embedded_*_asterisk'
% mv 'file_name_with_an_embedded_*_asterisk' sane_name

Note that the single quotes in this example are forward-quotes (' '). Backward quotes (` `). have a completely
different meaning to the shell.

COMMANDS OVERVIEW

General Structure: The general structure of Unix commands is given schematically by

command_name [options] [arguments]

where square brackets ('[...]') denote optional quantities. Options to Unix commands are frequently single
alphanumeric characters preceded by a minus sign as in:

% ls -l
% cp -R ...
% man -k ...

On Linux systems, many commands also accept options that are longer than a single character; by convention,
these options are preceded by two minus signs as in:

% ls --color=auto -CF

Arguments are typically names of files or directories or other text strings that do not start with - (or --). Individual
arguments are separated by whitespace (one or more spaces or tabs):

% cp file1 file2
% grep 'a string' file1

There are two arguments in both of the above examples; note the use of single quotes to supply the grep command
with an argument that contains a space. The command

% grep a string file1

which has three arguments has a completely different meaning.

Executables and Paths: In Unix, a command such as ls or cp is usually the name of a file that is known to the
system to be executable (see the discussion of chmod below). To invoke the command, you must either type the
absolute pathname of the executable file or ensure that the file can be found in one of the directories specified by
your path. In bash, the current list of directories that constitute your path is maintained in the environment variable,
PATH (note that case is significant for bash variables). To display the contents of this variable, type:

% echo $PATH

(Observe that the $ mechanism is the standard way of evaluating local variables and environment (global) variables
alike, and that the echo command simply "echoes" its arguments). On hyper, the resulting output should look
something like

.:/home2/phys210t/bin:/home/phys210/bin:/etc:/usr/etc:/usr/ucb:/bin:/usr/bin:/usr/local/bin

Note that the directories in the path are separated by a colon (:) and no whitespace and that the . in the output
indicates that the working directory is in your path. The order in which path-components appear in the path (first .
(dot), then /home2/phys210t/bin, then /home/phys210/bin, etc.) is important. When you invoke a command
without using an absolute pathname as in

% ls

the system looks in each directory in your path---and in the specified order---until it finds a file with the appropriate
name. If no such file is found, an error message is printed:

% helpme
-bash: helpme: command not found

The path variable is often set for you in a special system file each time a shell starts up, and it is conventional to
modify the default setting by setting the PATH environment variable in your ~/.bashrc file. For an example, view the
contents of the course default ~/.bashrc below.

Control Characters: The following control characters typically have the following special meanings or uses within
bash. (If they don't, then your keyboard bindings are "non-standard" and you may wish to contact the system

administrator about it.) You should familiarize yourself with the action and typical usage of each. I will use a caret (̂)
to denote the Control (Ctrl) key. Then

% ^Z

for example, means depress the z-key (upper or lower case) while simultaneously holding down the Control key.

^D: End-of-file (EOF). Type ^D to signal end of input when interacting with a program (such as Mail) that is
reading input from the terminal. Here's an example using Mail on hyper machines:

% Mail -s "test message" choptuik@physics.ubc.ca
This is a one line message.
^D
Cc:
%

If you try the above exercise, you will notice that the shell does not "echo" the ^D. This is typical of control
characters---you must know when and where to type them and what sort of behaviour to expect. In this case,
Mail prompts for an optional list of addresses to which the message is to be carbon-copied, but other
commands, such as cat, will not echo anything. In almost all cases, however, you should be presented with a
command prompt, once you have typed ^D. Also, by default, bash exits when it encounters EOF, so if you
type ^D at a shell prompt, you may find that you are logged out from the terminal session. If you don't like this
behaviour (I don't), include the following line in your ~/.bashrc (it is included in the course default ~/.bashrc):

set -o ignoreeof

Note that set is a bash builtin command (i.e. a sub-command of the bash interpreter) that controls many
features of the operation of bash, and is discussed in slightly more detail in the shell options section below.

^C: Interrupt. Type ^C to kill (stop in a non-restartable fashion) commands (processes) that you have started
from the command-line. This is particularly useful for commands that are taking much longer to execute or
producing much more output to the terminal than you had anticipated.

^Z: Suspend. Type ^Z to suspend (stop in a restartable fashion) commands that you have started from the
shell. It is often convenient to temporarily halt execution of a command as will be discussed in job control
below.

^V: Escape Special Characters: Type ^V in order to "escape" (protect from shell evaluation) certain other
control characters and special keys.

Example 1: Search for [TAB] characters in file foo using grep:

% grep '^V[TAB]' foo

Example 2: Removing "Carriage returns" (^M) using vi

:%s/^V^M//g

bash Startup Files: You can customize the environment that results whenever a new bash starts by creating and/or
modifying certain startup files that reside in your home directory. Before proceeding, however, we must note that
bash makes a distinction between login shells and purely interactive shells, and executes a different startup file
(assuming that it exists) in each case. You will start a bash login shell if, for example, you connect to hyper from a
remote machine such as your home computer. In this case you will have to go through the login procedure of typing
your user (account) name and your password. On the other hand, shells that you start from the Linux GUI on one of
the workstations in the computer lab, for example, will be purely interactive. In this instance the computer already
"knows" who you are and that you are logged in, and does not ask you for your login name or password. Given this,
the two most important startup files (there are more, but we don't have to discuss them here, and you can get the full
details from the bash man page) are as follows

~/.profile
Commands in this file are executed each time a login bash is started.
~/.bashrc
Commands in this file are executed each time a purely interactive bash is started.

For the purposes of this course (and for most users, in my opinion) it is a bit of a nuisance to have two separate
startup files, each of which is executed only when a particular type of bash starts, since one will generally want the
same customization commands executed in both cases. Fortunately, there is a relatively easy fix to this nuisance
which is to

Do all of your customizations in the ~/.bashrc file,1.
Keep the ~/.profile file as simple as possible2.
As the last command in the ~/.profile file, execute the commands in the ~/.bashrc file, using for example the 3.

lines

if [-f ~/.bashrc]; then
 source ~/.bashrc
fi

Note that the first and third lines of the above constitute a test for the existence of the ~/.bashrc file, while the
source ~/.bashrc command then executes the contents of the ~/.bashrc file, provided that it exists (i.e. the
source command tells the shell to execute the commands in the file that is supplied as an argument to it).
When sourcing or otherwise manipulating files in startup files, you should always perform this type of
existence check. Otherwise an error message is apt to be generated, and this can sometimes cause
problems with the overall startup process.

IMPORTANT!! Whenever you modify ~/.profile and/or ~/.bashrc on hyper (or any other Unix system, for that
matter) you should abide by the following procedure:

ALWAYS MAKE A BACKUP COPY of the startup file, using for example

% cp ~/.bashrc ~/.bashrc.O

1.

During the process of modifying one of the startup files, always keep at least one terminal window open to the
machine until you have tested (via ssh to the machine, for example, see below for information on ssh) that
you can still login. The reason that this is so vital is that it is possible that your modifications will introduce
one or more bugs into the startup files which can make it impossible for you to login. However, as long as the
terminal window to the machine remains open, you can kill the failed login process (e.g. the ssh command)
as necessary using ^C, try to correct the bugs, and repeat the test login procedure. Finally, if you can't get
your desired modifications to work, you can then restore the original contents of the startup file(s) from the
saved copy using, e.g.

% cp ~/.bashrc.O ~/.bashrc

2.

Hidden Files: Note that files whose name begins with a period (.) are called hidden files since they do not normally
show up in the listing produced by the ls command. Use

% cd; ls -a

for example, to print the names of all files in your home directory. Note that I have introduced another piece of shell
syntax in the above example; the ability to type multiple commands separated by semicolons (;) on a single line.
There is no guaranteed way to list only the hidden files in a directory, however

% ls -d .??*

will usually come close. At this point it may not be clear to you why this works; if it isn't, you may want try to figure it
out after you have gone through these notes and possibly looked at the man page for ls.

Shell Aliases: As you will discover, the syntax of many Unix commands is quite complicated and, furthermore, the
"bare-bones" version of some commands is less than ideal for interactive use, particularly by novices. bash provides
a simple mechanism called aliasing that allows you to easily remedy these deficiencies in many cases. The basic
syntax for aliasing is

% alias name=string

where name is the name (use the same considerations for choosing an alias name as for filenames; i.e. avoid
special characters) of the alias and string is a text string that is substituted for name when name is used as if it were
a command. The following examples should illustrate the basic idea, (see the bash documentation (man bash) for a
few more details, should you wish):

% alias ls='ls -FC'

provides an alias for the ls command that uses the -F and -C options (these options are described in the discussion
of the ls command below). Note that the single quotes in the alias definition are essential if the definition contains
special characters, including whitespace (recall that whitespace = spaces/blanks and or TAB characters); it is good
defensive programming to always include them.

The following lines define aliases for rm, cp and mv (see below) that will not clobber (destroy/overwrite) files without
first asking you for explicit confirmation. They are highly recommended for novices and experts alike.

% alias rm='rm -i'
% alias cp='cp -i'
% alias mv='mv -i'

The following lines define aliases RM, CP, and MV that act like the "bare" Unix commands rm, cp and mv (i.e. that
are not cautious). Use them when you are sure you are about to do the correct thing: the presumption being that you
have to think a little more to type the upper-case command.

% alias RM='/bin/rm'
% alias CP='/bin/cp'
% alias MV='/bin/mv'

To see a list of all your current aliases, simply type

% alias

Note that all of the preceding aliases (and a few more) are defined in the file ~phys210/.aliases on hyper. If you
adopt your .bashrc and .profile from ~phys210/.bashrc and ~phys210/.profile, respectively, as we will ask you to
do in an early lab session, and also copy ~phys210/.aliases to your home directory, then the aliases will
automatically be available for your use when bash starts up, since the lines

if [-f ~/.aliases]; then
 source ~/.aliases
fi

appear in the template .bashrc. (Recall that source file tells the shell to execute the commands in the file file).
Although the use of a separate ~/.alias file is not a "standardized" approach, I commend it to you as a means of
keeping your ~/.bashrc relatively uncluttered if you define a lot of aliases. However, if you wish, you can simply add
alias definitions to your ~/.bashrc, or define them interactively at the command line at any time.

Note that (in contrast to the tcsh, for example) there is no facility for processing command arguments when using
bash aliases: the alias mechanism simply (non-recursively) replaces one piece of text with another. However,
should you wish to define your own shell commands that do process arguments, this can be readily done using shell
scripts or shell functions, both of which are discussed below in the Basic Shell Programming section.

Default 210 Startup Files: You can view the contents of ~phys210/.bashrc, ~phys210/.profile and
~phys210/.aliases by clicking on the links below.

.bashrc

.profile

.aliases

Shell Options: As already mentioned above in the context of the End-of-file control character, ^D, many features of
bash can be controlled using the set builtin command. You can refer to the set builtin section of the online manual
(as well as the man page for bash) for complete details on what can be configured, and how to use set to do the
configuration.

The local variable SHELLOPTS stores a colon-delimited list of the currently defined options, so you can view the
current options using

% echo $SHELLOPTS
braceexpand:emacs:hashall:histexpand:history:ignoreeof:interactive-comments:monitor:noclobber

where the output from the echo command is typical of what you can expect to see on your hyper account.

BASIC COMMANDS

The following list is by no means exhaustive, but rather represents what I consider an essential base set of Unix
commands (organized roughly by topic) with which you should familiarize yourself as soon as possible. Refer to the
man pages, or one of the suggested Unix references for additional information.

Getting Help or Information:

man

Use man (short for manual) to print information about a specific Unix command, or to print a list of commands that
have something to do with a specified topic (-k option, for keyword). It is difficult to overemphasize how important it
is for you to become familiar with this command. Although the level of intelligibility for commands (especially for
novices) varies widely, most basic commands are thoroughly described in their man pages, with usage examples in
many cases. It helps to develop an ability to scan quickly through text looking for specific information you feel will be
of use. Examples of man invocations include:

% man man

to get detailed information on the man command itself,

% man cp

for information on cp and

% man -k compiler

to get a list of commands having something to do with the topic 'compiler'. The command apropos, found on most
Unix systems, is essentially an alias for man -k.

Output from man will typically look like

% man man

NAME
 man - an interface to the on-line reference manuals

SYNOPSIS
 man [-C file] [-d] [-D] [--warnings[=warnings]] [-R encoding] [-L
 locale] [-m system[,...]] [-M path] [-S list] [-e extension] [-i|-I]
 [--regex|--wildcard] [--names-only] [-a] [-u] [-P pager] [-r prompt]
 [-7] [-E encoding] [--no-hyphenation] [-p string] [-t] [-T[device]]
 [-H[browser]] [-X[dpi]] [-Z] [[section] page ...] ...
 man -k [apropos options] regexp ...
 man -f [whatis options] page ...
 man -l [-C file] [-d] [-D] [--warnings[=warnings]] [-R encoding] [-L
 locale] [-P pager] [-r prompt] [-7] [-E encoding] [-p string] [-t]
 [-T[device]] [-H[browser]] [-X[dpi]] [-Z] file ...
 man -w|-W [-C file] [-d] [-D] page ...
 man -c [-C file] [-d] [-D] page ...
 man [-hV]

DESCRIPTION
 man is the system’s manual pager. Each page argument given to man is
 normally the name of a program, utility or function. The manual page
 associated with each of these arguments is then found and displayed. A
 section, if provided, will direct man to look only in that section of
 the manual. The default action is to search in all of the available
 sections, following a pre-defined order and to show only the first page
 found, even if page exists in several sections.
 .
 .
 .

for a specific command and,

% man -k language

QLocale (3qt) - Converts between numbers and their string representati...
asy (1) - Asymptote: a script-based vector graphics language
awk (1) - pattern scanning and text processing language
bc (1) - An arbitrary precision calculator language
conjure (1) - interprets and executes scripts written in the Magick ...
debconf-getlang (1) - extract a language from a templates file
 .
 .
 .
ruby (1) - Interpreted object-oriented scripting language
ruby1.8 (1) - Interpreted object-oriented scripting language
runantlr (1) - ANother Tool for Language Recognition
texlua (1) - An extended version of pdfTeX using Lua as an embedded...
texluac (1) - An extended version of pdfTeX using Lua as an embedded...
Text::WrapI18N (3pm) - Line wrapping module with support for multibyte, fullw...
update-language (1) - update various TeX-related configuration files
vmsish (3perl) - Perl pragma to control VMS-specific language features
xasy (1x) - script-based vector graphics language
XtSetLanguageProc (3) - set the language procedure .

for a keyword-based search. Note that the output from man -k ... is a list of commands and brief synopses. You can
then get detailed information about any specific command (say awk in the current example), with another man
command:

% man awk

Also note that the output from man is fed (piped) into the more command, so refer to the description of more below
(or the man page for more!) for some details that will allow you to page forward and backward, and search for text,
in a particular man page.

Communicating with Other Machines:

ssh

Use ssh to establish a secure (i.e. encrypted) connection from one Unix machine to another. This is the basic
mechanism that can be used to (1) start a Unix shell on a remote host and (2) execute one or more Unix commands
on such a machine.

Typical usage of ssh is

bh0% ssh hyper.phas.ubc.ca -l choptuik

which will initiate a remote-login for user choptuik on the machine hyper.phas.ubc.ca. When I enter this
command, I will be prompted for my password (for the account choptuik) on hyper.

choptuik@hyper.phas.ubc.ca's password:

The following commands are equivalent to the above invocation:

% ssh choptuik@hyper.phas.ubc.ca
% slogin hyper.phas.ubc.ca -l choptuik
% slogin choptuik@hyper.phas.ubc.ca

The first of the above alternate forms is generally the most convenient to type, and is the one that I use.

If additional arguments are supplied to ssh, they are interpreted as commands to be executed remotely. In this
case, control immediately returns to the invoking shell after completion (successful, or otherwise) of the
command(s), as seen in the following examples, where the password prompts have been suppressed:

hyper% ssh matt@bh0.phas.ubc.ca date
Mon Aug 31 18:57:41 PDT 2009

hyper% ssh matt@bh0.phas.ubc.ca 'pwd; date'
/home2/matt
Mon Aug 31 18:58:18 PDT 2009

hyper%

Enabling X-forwarding with ssh: One very useful option to the ssh command is -X, which enables X11
forwarding. In a nutshell, this means that if you initiate the ssh command from a Unix graphical desktop
environment (including Mac OS, as well as KDE, GNOME and others on Linux), and then start a graphical
application (such as konsole, kate, gedit, xmaple, matlab, etc.) on the remote machine, the application will display
on the local graphical desktop. Typical usage with this option would be

hyper% ssh -X matt@bh0.phas.ubc.ca

bh0% kate

and, assuming that I was logged into hyper using one of the Computer Lab workstations, the kate window running
on bh0 would be displayed on my workstation desktop. If I had not enabled X11 forwarding in the ssh command,
then when I tried starting kate, I would get an error message such as the following:

bh0% kate
kate: cannot connect to X server

Note that X is the venerable windowing software---developed at MIT---on which almost all Unix desktop
environments are ultimately based. X11 is the current version of the software, and has actually been current since
1987! See the Wikipedia entry for X11 additional information should you be interested.

Gory Details of ssh: In contrast to many of the other commands described here, the behaviour of ssh depends
crucially on the current context for the command, which, by convention, ssh stores as a number of files in the
directory ~/.ssh (i.e. as a number of files in a directory named .ssh, located in your home directory). If ~/.ssh does
not exist (which nominally means that you have yet to issue the ssh command from that specific account), it will
automatically be created, and certain files within ~/.ssh will be created and/or modified.

For example, assume that as choptuik@hyper.phas.ubc.ca, I have never used the ssh command. However, I can
and do login into hyper.phas.ubc.ca (as choptuik) using one of the worstations in the computer lab, and start up a
command shell. I can now establish a secure connection to my account on bh0.phas.ubc.ca via ssh as follows:

hyper% ssh matt@bh0.phas.ubc.ca

The authenticity of host 'bh0.phas.ubc.ca (142.103.234.164)' can't be established.
RSA key fingerprint is 14:82:47:40:80:9f:52:7f:39:1f:17:a1:df:76:b2:54.
Are you sure you want to continue connecting (yes/no)?

This message from ssh is a warning that essentially tells me that I have not connected before to the host
bh0.phas.ubc.ca. It gives me a chance to check the ssh invocation to ensure that I've typed everything correctly,
to safeguard against security issues that we won't delve into here. Because I'm sure that I want to connect, I enter
yes. The output from the ssh command then continues:

Warning: Permanently added 'bh0.phas.ubc.ca,142.103.234.164' (RSA) to the list of known hosts.
matt@bh0.phas.ubc.ca's password:

After correctly typing my password for matt@bh0, I am left in a shell running on bh0, and I can now "work" (i.e.
issue Unix commands) within that shell.

When I'm done my work on bh0, I can use the logout (or exit) command

bh0% logout
Connection to bh0.phas.ubc.ca closed.
hyper%

to return to hyper.

Assuming I've done the above, I now see that the directory ~/.ssh has been created, and contains the file
known_hosts:

hyper% cd ~/.ssh
hyper% ls
known_hosts

The purpose of the known_hosts file is to maintain identification information for hosts to which I've previously
ssh'ed. In particular, the next time I ssh from hyper to bh0, the message 'The authenticity of host ...'
will not appear, and ssh will "automatically" connect to bh0.

hyper% ssh matt@bh0.phas.ubc.ca
matt@bh0.phas.ubc.ca's password:

Refer to the man page on ssh for full details on this command.

Mail

I believe that it is a safe assumption that all of you are already experts in the sending and receiving of e-mail, using
one or more of your favorite mail clients, and, at least initially, I will be using the broadcast facility provided via the
Student Service Centre (as well as the course News page) to communicate electronically with the class as a whole.
At least at the current time, all of the students registered in the course have an e-mail address linked into this facility,
so, in principle, if I send a broadcast message, and assuming everyone checks their appropriate mailbox, you
should all receive it. Note that the SSC setup does not allow me to directly see your individual e-mail addresses, so
if you want to get personalized e-mail from myself or the TAs, you will need to first send us a message to which we
can reply.

In this course, we will not require you to regularly use any mail client on hyper unless you wish to do so. If you do,
however, be aware that there are a large number of clients available, and that the TAs and I may have little, if any,
experience with the client that you choose. That said, there is one text-based (i.e. doesn't use a GUI) client that
many peoples in the Physics and Astronomy Dept use (especially the older folk), which is called alpine (a variant of
an older client called pine). alpine is relatively easy to use, has an extensive on-line help facility, and the TAs will
be able to provide you assistance with it as necessary. The home page for alpine, which contains links to thorough
documentation, is located here. In addition, should you decide to use mail on hyper on a regular basis, I
recommend that you consult the PHAS Computing Staff's on-line E-mail FAQ.

However, in the spirit of mastering command-line Unix we conclude this section with a brief illustration of the use of
a very old, and, especially for your generation, a very primitive, mail client known as Mail (we've already
encountered this program in our discussion of special characters):

Again, here's a basic example showing how to use Mail to send a message:

% Mail -s "this is the subject" choptuik@phas.ubc.ca

This is a one line test message.
^D
Cc:
%

Note that multiple recipients can be specified on the command line. Another form involves redirection from a file.

% Mail -s "sending a file as a message" matt@laplace.phas.ubc.ca < message

sends the contents of file message with the subject field of the e-mail set to 'sending a file as a message'.

If you are interested, you can consult the man page for Mail for additional information on its use, but primarily you
should note that although it may seem like obsolete technology, the type of usage illustrated above (which, I should
mention, can also be achieved using alpine), can be quite useful. For example, you might write a script that takes a
long time to accomplish some task. It can then be convenient to have the script send you a message when it has
completed. This is cumbersome, if not impossible, to accomplish using fancy GUI-based mail clients, but is
essentially trivial with Mail.

Exiting bash / Logging out:

exit

Type exit to leave both login and purely interactive shells.

If there are suspended jobs (see job control below), you will get a warning message, and you will not be logged out.

% exit
There are stopped jobs

If you then type exit a second time (with no intervening command), the system assumes you have decided you don't
care about the suspended jobs, and will log you out. Alternatively, you can deal with the suspended jobs, and then
exit.

logout

logout has the same effect as exit, but can only be used in login shells. If you enter logout in a purely interactive
shell, you will receive the message

% logout
bash: logout: not login shell: use `exit'

Changing your passwd

passwd

If you decide that you want to change your password on the physics machines, you will have to login to the main
physics server, warp.physics.ubc.ca---which can also be referenced as simply physics.ubc.ca---and use the
passwd command to make the change. When you execute passwd, you will first be prompted for your current
password, and then be asked to type your new password twice. The new password should be 8 characters in
length---if it's longer, the extra characters are ignored---and must include a mix of upper and lower case alphabetic
characters, numbers and special characters other than '&'. The program will tell you if it doesn't like the new
password that you have chosen, and will ask you to make up a new one.

If the change is successful, you should see something like this, where I first login to warp.physics.ubc.ca using ssh
from a terminal session on hyper, and where none of the passwords I type (new or old) are echoed to the terminal:

hyper% ssh choptuik@warp.physics.ubc.ca

Last login: Sun Sep 13 13:31:36 2009 from hyper.phas.ubc.

* 08-11-04 warp had a disk failure. System was restarted from an
* alternate boot disk. Please report problems to sysadmins.

To print one-sided use "lpr -Zsimplex file".
Undergraduate students will need to arrange for a quota.
--
 type "more /etc/motd" on physics to re-read this message.
 type "more /etc/motd.full" on physics to read the complete message file
==

 Authorized uses only. All activity may be monitored and reported.
==

warp% passwd
Old password:
Password:
Reenter password:
Checking, please wait ...
Password okay. Changing password ...
The command completed successfully.

warp% exit
Connection to warp.physics.ubc.ca closed.

hyper%

A successful password change on warp will eventually be propagated to the other physics Unix machines, including
hyper, but the propagation may not be immediate. You may thus find that you have to use your old password for
some time to access your hyper account before the new one becomes active.

Unless you intend to use Mathematica, which will not be covered in 210, and which is not installed on hyper, you
should not have to use physics.ubc.ca for any other purpose during this course.

Creating, Manipulating and Viewing Files (including Directories):

Text editors: kate, gedit, vi / vim (gvim) or emacs (xemacs)

Although you may find it somewhat painful (especially if you've developed a serious relationship with Microsoft
Word), I consider it an absolutely key goal for everyone in this course to become reasonably proficient in at least
one of the text editors: kate, gedit, vi or emacs. Note that a text editor, although similar in spirit to a word
processor, really has a different fundamental purpose. As the name suggests, this is to create and manipulate files
that contain plain text (i.e. files for which many of the features of modern word processors, such as the ability to
create documents that use different fonts, font-sizes, styles, colors, include figures etc. etc. are completely
irrelevant). Plain text files are central to the use of most programming languages and programming environments in
Unix, as well as to the configuration and customization of the operating system itself. During the course, many of the
homework assignments, as well as many of your term projects, will require the creation of this type of file.

For many, if not most of you, kate and gedit are probably the most straightforward choices (they are part of the KDE
and GNOME graphical desktop environments, respectively, but both can run within either KDE or GNOME) . Of all
of the editors listed above, they provide the most intuitive interface, namely GUIs which, though not as snazzy
looking, closely resemble those of word processors with which you will no doubt be familiar. I expect that most of
you will be able to start using either, and to readily master whichever you choose, with little, if any, help, If you do
need assistance, the applications provide extensive help facilities. Note that both editors implement the
mouse-text-manipulation features discussed in the introductory section, although they also have GUI menus and
buttons for those actions. Also observe that kate and/or gedit may not be available on some non-Linux Unix
systems that you may need to work on, but given the introductory nature of this course, I don't consider that
sufficient reason to dissuade you from their use.

vi and emacs are the two major "traditional" text-editors that are found on most Unix implementations (certainly vi
should be!) Both are themselves text-based; that is, they do not provide a GUI, and for the most part, do not allow
for manipulation of the text being edited with the mouse. Moreover, vi developed a reputation for being suitable
mainly for "hardcore" users, who didn't mind dealing with its rather unique, simplistic, and not entirely intuitive (to put
it mildly!) user interface. emacs, on the other hand, was viewed as a much more elegant, powerful and full-featured
editor, to the point that with a suitable configuration, you could get emacs to do just about everything but make
coffee. Personally, I use vi, since that's the editor I first encountered on Unix, and although it is a good idea for any
Unix user to know a bit about vi (if only because some of its syntax appears in many other standard Unix
commands), I would strongly recommend that any of you who know neither vi or emacs, and who wish to learn one
of them, seriously consider learning emacs, at least to start. In addition, if you intend to become a serious Unix
user, then you really should learn how to use one of these text-based editors---probably vi due to its ubiquity and
relative simplicity---since you will almost certainly encounter situations where you need to edit files using a basic
terminal session that will not support the use of a GUI.

Over the years, vi on Linux systems has evolved to become vim (for Vi IMproved), so that, for example, if you
execute vi on hyper, it is actually vim that starts up. This is a minor point, but something to keep in mind should
you be looking online for information concerning vi (i.e. you should probably search for information on vim).

The good news is that there are now GUI-based versions of both of these editors, gvim, for vi / vim and xemacs for
emacs and you are more than welcome to use these rather than their text-based antecedents for course work. Note,
however, that these GUIs are not as user friendly as the word processing software that you are probably
accustomed to (or kate / gedit for that matter) but they will, for example, allow you to use the mouse to position the

cursor as well as to highlight text and cut. Again, it is up to you which text editor you choose to use, but we really
want you to learn to use at least one that isn't a Microsoft or Mac/Apple product!

Not least because all of these text editors are complex pieces of software, it is impossible to give any sort of an
overview of their use in these introductory notes. You are therefore directed to the help facilities supplied by the
editors themselves, as well as to the online resources listed in the course Online Resources page, for links to web
sites and specific documents that should aid in you in your task of mastering your editor of choice. This in one job
that we expect you to do largely on your own, but the TAs and I, will of course, be more than happy to help out as
we can, and, I hope, some of your classmates will be able to be of assistance as well.

Finally, if you know of, or find, another text editor on hyper that you would prefer to use, please send me an e-mail
message and I will let you know whether I approve of its use, or whether I would rather you make another choice.

more

Use more to view the contents of one or more files, one page at a time. For example:

% more /usr/share/dict/words
A
a
aa
aal
aalii
aam
Aani
aardvark
aardwolf
Aaron
Aaronic
Aaronical
Aaronite
--More--(0%)

In this case I have executed the more command in a shell window containing only a few lines (i.e. my pages are
short). The

--More--(0%)

message is actually a prompt: hit the space bar to see the next page, type b to backup a page, and type q to quit
viewing the file. You can also search for a string in the output by typing a '/' (forward slash) followed by the text to be
located:

/misspell

...skipping
misspeak
misspeech
misspell
misspelling
misspend
misspender
misstate
misstatement
misstater
misstay
misstep
missuade
--More--(49%)

Refer to the man page for additional features of the command. We have already noted that output from man is
typically piped through more.

lpr

Use lpr to print files. If no options are passed to lpr, files are sent to the system-default printer, or to the printer
specified by your PRINTER environment variable, if it is set. Typical usage is

lpr file_to_be_printed

The default printer on hyper machines is the HP LaserJet 4520dn in Hennings 205 and, by default, printing will be
two-sided (duplex). Should you need to make one-sided hard copy, print the file using the -o sides=one-sided
option:

hyper% lpr -o sides=one-sided file_to_be_printed

Note that this last form of the lpr command is specific to hyper.

cd and pwd

Use cd and pwd to change (set) and print, respectively, your working directory. We have already seen examples of
these commands above. Here's a summary of typical usages (again note the use of semi-colons to separate distinct
Unix commands issued on the same line):

% cd
% pwd
/home/choptuik
% cd ~; pwd
/home/choptuik
% cd /tmp: pwd
/tmp
% cd ~phys210; pwd
/home/phys210
% cd ..; pwd
/home
% cd phys210; pwd
/home/phys210

Recall that .. refers to the parent directory of the working directory so that

% cd ..

takes you up one level (closer to the root) in the file system hierarchy.

ls

Use ls to list the contents of one or more directories. On Linux systems, I advocate the use of the alias

% alias ls='ls --color=auto -FC'

which will cause ls to

Append special characters (notably * for executables, / for directories and @ for symbolic links) to the names
of certain files (the -F option),

1.

List in columns (the -C option).2.
Color-code the output, again according to the type of the file. 3.

Example (with color coding suppressed)

% cd ~phys210t
% ls
cmd* dir1/ dir2/
%

Note that the file cmd is marked executable while dir1 and dir2 are directories. To see hidden files and directories,
use the -a option:

% cd ~phys210t; ls -a
./ .aliases .bashrc dir1/ .profile .Xauthority
../ .bash_history cmd* dir2/ .viminfo

and to view the files in "long" format, use -l:

% cd ~phys210t; ls -l
-rwxr-xr-x 1 phys210t ugrad 53 2009-08-31 20:12 cmd*
drwxr-xr-x 4 phys210t ugrad 4096 2009-08-31 20:15 dir1/
drwxr-xr-x 2 phys210t ugrad 4096 2009-08-31 20:16 dir2/

The output in this case is worthy of a bit of explanation. First observe that ls produces one line of output per
file/directory listed. The first field in each listing line consists of 10 characters that are further subdivided as follows:

first character: file type: - for regular file, d for directory.
next nine characters: 3 groups of 3 characters each specifying read (r), write (w), and execute (x) permissions
for the user (owner of the file), user's in the owner's group and all other users. A - in a permission field
indicates that the particular permission is denied.

Thus, in the above example, cmd is a regular file, with read, write and execute permissions enabled for the owner
(user phys210t) and read and execute permissions enabled for members of group ugrad and all other users. dir1
and dir2 are seen to be directories with the same permissions. Note that you must have execute permission for a
directory in order to be able to cd to it, and read permission in order to access any of the files it contains (including
getting a listing of those files via ls). See chmod below for more information on setting file permissions. Continuing
to decipher the long file listing, the next column lists the number of links to this file (advanced topic) then comes the
name of the user who owns the file and the owner's group. Next comes the size of the file in bytes, then the date
and time the file was last modified, and finally the name of the file.

If any of the arguments to ls is a directory, then the contents of that directory are listed. Finally, note that the -R
option will recursively list sub-directories:

% cd ~phys210t; pwd
/home2/phys210t

% ls -R
.:
cmd* dir1/ dir2/

./dir1:
file_1 subdir1/ subdir2/

./dir1/subdir1:
file_s

./dir1/subdir2:
file_3

./dir2:
file_4

Note how each sub-listing begins with the relative pathname to the directory followed by a colon. For kicks, you
might want to try

% cd /
% ls -R

which will list essentially all the files on the system which you can read (have read permission for). Type ̂ C when
you get bored.

mkdir

Use mkdir to make (create) one or more directories. Sample usage:

% cd ~
% mkdir tempdir
% cd tempdir; pwd
/home/choptuik/tempdir

If you need to make a 'deep' directory (i.e. a directory for which one or more parents do not exist) use the -p option
to automatically create parents as needed:

% cd ~
% mkdir -p a/long/way/down
% cd a/long/way/down; pwd
/home/choptuik/a/long/way/down

In this case, the mkdir command made the directories

/home/choptuik/a /home/choptuik/a/long /home/choptuik/a/long/way

and, finally

/home/choptuik/a/long/way/down

cp

Use cp to (1) make a copy of a file, (2) copy one or more files to a directory, or (3) duplicate an entire directory
structure. The simplest usage is the first, as in:

% cp foo bar

which copies the contents of file foo to file bar in the working directory. Assuming that cp is aliased to cp -i, as
recommended, you will be prompted to confirm overwrite if bar already exists in the current directory; otherwise a
new file named bar is created. Typical of the second usage is

% cp foo bar /tmp

which will create (or overwrite) files

/tmp/foo /tmp/bar

with contents identical to foo and bar respectively. Finally, use cp with the -r (recursive) option to copy entire
hierarchies:

% cd ~phys210t; ls -a
./ .aliases .bashrc dir1/ .profile .Xauthority
../ .bash_history cmd* dir2/ .viminfo

% cd ..; pwd
/home2

% cp -r phys210t /tmp
cp: cannot open `phys210t/.bash_history' for reading: Permission denied
cp: cannot open `phys210t/.viminfo' for reading: Permission denied
cp: cannot open `phys210t/.Xauthority' for reading: Permission denied

% cd /tmp/phys210t; ls -a
./ ../ .aliases .bashrc cmd* dir1/ dir2/ .profile

Study the above example carefully to make sure you understand what happened when the command

% cp -r ~phys210t /tmp

was issued. In brief, the directory /tmp/phys210t was created and all contents of /home2/phys210t (including
hidden files) for which I had read permission were recursively copied into that new directory: sub-directories of
/tmp/phys210t were automatically created as required.

mv

Use mv to rename files, or to move files from one directory to another. Again, I assume that mv is aliased to mv -i
so that you will be prompted if an existing file will be clobbered by the command. Here's a "rename" example

% ls
thisfile
% mv thisfile thatfile
% ls
thatfile

while the following sequence illustrates how several files might be moved up one level in the directory hierarchy:

% pwd
/tmp/lev1
% ls
lev2/
% cd lev2
% ls
file1 file2 file3 file4
% mv file1 file2 file3 ..
% ls
file4
% cd ..
% ls
file1 file2 file3 lev2/

rm

Use rm to remove (delete) files or directory hierarchies. The use of the alias rm -i for cautious removal is highly
recommended. Once you've removed a file in Unix there is essentially nothing you can do to recover it other than
restoring a copy from backup media (assuming the system is regularly backed up), and if the file was created since
the last backup, you're really out of luck! Examples include:

% rm thisfile

to remove a single file,

% rm file1 file2 file3

to remove several files at once, and

% rm -r thisdir

to remove all contents of directory thisdir, including the directory itself. Be particularly careful with this form of the
command and note that

% rm thisdir

will not work. Unix will complain that thisdir is a directory.

chmod

Use chmod to change the permissions on a file. See the discussion of ls above for a brief introduction to
file-permissions and check the man pages for ls and chmod for additional information. Basically, file permissions
control who can do what with your files. Who includes yourself (the user u), users in your group (g) and the rest of
the world (the others o). What includes reading (r), writing (w, which itself includes removing/renaming) and
executing (x, and recall that execution permission on a directory is required in order to cd to it). When you create a
new file, the system sets the permissions (or mode) of a file to default values that you can modify using the umask
command. (See the discussion of umask in the man page for bash for more information).

On hyper, your defaults should be such that you can do anything you want to a file you've created, while the rest of
the world (including fellow group members) normally has read and, where appropriate, execute permission. As the
man page will tell you, you can either specify permissions in numeric (octal) form or symbolically. I prefer the latter.
Some examples that should be useful to you include:

% chmod go-rwx file_or_directory_to_hide

which removes all permissions from 'group' and 'others', effectively hiding the file/directory,

% chmod a+x executable_file

to make a file executable by everyone (a stands for all and is the union of user, group and other) and

% chmod a-w file_to_write_protect

to remove everyone's write permission to a file, including yours (i.e. the user's), which prevents accidental
modification of particularly valuable information. Note that permissions are added with a + and removed with a -.
You can also set permissions absolutely using an =, for example

% chmod a=r file_for_all_to_read

scp

Use scp (whose syntax is an extension of cp) to copy files or hierarchies from one Unix system to another. scp is
part of the ssh distribution, so will prompt you for a password for access to the remote account.

For example, assume I am logged into hyper and that I want to copy my ~/.bashrc file to a file named
~/.bashrc-hyper in my home directory on matt@bh0.phas.ubc.ca. The following will do the trick

hyper% scp ~/.bashrc matt@bh0.phas.ubc.ca:~/.bashrc-hyper
matt@bh0.phas.ubc.ca's password:
.bashrc 100% 1813 1.8KB/s 00:00

The last line in the above output is a status report that lists, in order, the name of file that was transferred, the
percentage of the file transmitted (for large files, or on slow connections, you will see this number being updated in
"real time"), the number of bytes transferred, the approximate speed of the transfer, and the elapsed time for the
copy. If you wish to suppress this output use the -q (for quiet) option to the command:

hyper% scp -q ~/.bashrc matt@bh0.phas.ubc.ca:~/.bashrc-hyper

The above example copies a file from the local host to a remote host. You can use scp to go the other way as well:
i.e. the command can be used bi-directionally between hosts. Thus, for example, the following invocation will copy
my ~/.aliases file on bh0 to the file ~/.aliases-bh0 on my account on hyper:

hyper% scp -q matt@bh0.phas.ubc.ca:~/.aliases ~/.aliases-bh0

WARNING!! Be very careful using scp, particularly since there is no -i (cautious) option to warn you if existing files

will be overwritten (there actually is a -i option, but is serves a completely different purpose!). Also note that there is
a -r option for remote-copying entire hierarchies.

MORE ABOUT bash

Local Variables: bash allows for the definition of variables, which are used to store various pieces of information in
the form of text strings. Indeed this basic notion of "variable" should be familiar to you if you have experience
programming in a language such as C, Maple, Mathematica, python, MATLAB etc. Further, bash distinguishes
between two types of variables: local variables, whose values are available only in the current shell, and
environment or global variables, whose values are inherited (accessible) by processes (including other shells) that
are started within the current shell.

The syntax for defining a new local variable (or for changing its value) is simple:

% varname=value

As with file names and aliases, you should avoid names for shell variables (of either type) that contain special
characters. Also, a variable name cannot begin with a number. To access the value of a variable (or,
synonymously, to evaluate the variable) we simply prefix the variable name with a $ (dollar sign). We can then use
the echo command, which, as already mentioned in the section on executables and paths, simply "echoes" its
arguments (see man echo for full details), to display the value. Here are some examples:

% var1=val1
% echo $var1
val1

% var1='val1'
% echo $var1
val1

% var2='val1 val2 val3'
% echo $var2
val1 val2 val3

You should observe that the use of the prefix $ to evaluate a shell variable is quite different from the evaluation
mechanism found in many other programming languages (e.g. Maple, C, MATLAB), where use of the variable
name itself generally results in evaluation (except when the name appears on the left hand side of an assignment).
When writing scripts that use variables it is a common mistake to forget to use the $ when needed, so be extra
vigilant about this point.

Also, note the usage of the single quote characters (') to delimit the assignment value in the second and third
examples: this is completely analogous to their use in our previous discussion of alias definitions. In the third
example, the quotes are necessary since the value being assigned contains whitespace. In the second example, the
quotes aren't needed, but they don't hurt either (i.e. we can view their inclusion as a bit of defensive programming).
It is also important to understand that the quotes themselves do not become part of the assigned value. Finally, the
double quote character (") can also be used as a delimiter in variable assignment, but as we will discuss in the
section on using quotes, depending on the string that is enclosed in quotes, the ultimate value that is assigned to the
variable can differ from that which would be obtained by using single quotes.

For us, a major use of local variables will be in the context of bash programming (writing bash scripts), as we will
see below.

Environment Variables: As mentioned above, bash uses another type of variable---called an environment
variable---which is often used for communication between the shell and other processes (possibly another shell,
which does not necessarily have to be bash). To see a list of all currently defined environment variables, use the
env command:

% env

TERM=xterm
SHELL=/bin/bash
XDG_SESSION_COOKIE=dd7960f4980905b6f1adf1bb4a82e093-1251778554.439092-1315938975
SSH_CLIENT=174.6.42.200 44784 22
SSH_TTY=/dev/pts/22
USER=choptuik
MAIL=/var/mail/choptuik
 .
 .
 .

or the printenv command:

% printenv

TERM=xterm
SHELL=/bin/bash
XDG_SESSION_COOKIE=dd7960f4980905b6f1adf1bb4a82e093-1251778554.439092-1315938975
SSH_CLIENT=174.6.42.200 44784 22
SSH_TTY=/dev/pts/22
USER=choptuik
MAIL=/var/mail/choptuik
 .
 .
 .

and to display the values of one or more specific environment variables, supply the variable name(s) to printenv, or
use the echo command in conjunction with the $ evaluation mechanism:

% printenv PWD
/home/choptuik

% printenv HOME PATH
/home/choptuik
.:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

% echo $LOGNAME
choptuik

% echo $SHELL $USER
/bin/bash choptuik

Many environment variables are automatically defined whenever bash starts; a list of a few of these is given below.
If you want to define your own environment variable, MYENV, say, and set its (initial) value, use the syntax

% export MYENV='value'
% printenv MYENV
value

The export keyword tells the shell that you are defining an environment variable, and not a local variable, but
otherwise the assignment syntax is identical to that of local variables. It is conventional, but not mandatory, to use
all-uppercase names for environment variables. Also, once an environment variable is defined, and you wish to
change its value, it is not necessary to use the export keyword again:

% MYENV='newvalue'; printenv MYENV
newvalue

Note that a key aspect of the global nature of environment variables is that they (and their values) are "inherited" by
any shell that is executed within a running bash (which includes the shells that are always started whenever a bash
script is executed). Thus, if after having executed the assignments above, I now start a new shell, the environment
variable MYENV will be defined with its expected value:

% bash
A new shell starts ...
% printenv MYENV
newvalue

Following is a list of a few of the environment variables that are generally predefined and/or redefined as necessary
by bash:

PATH: Stores the current list of directories that are searched for commands (executables).
HOME: Stores the user's home directory;

% cd $HOME/dir1

is equivalent to

% cd ~/dir1

PWD: Stores the current working directory.
USER: Stores the name of the user account (login name)
LOGNAME: Same as USER, but more generically available, so preferred in scripts.

Note that some environment variables, such as PATH, are often modified by the user (typically in a startup file).

Others, such as HOME and PWD, should not be altered from their system-defined values, for reasons that will
hopefully be clear to you.

Using bash Pattern Matching: bash provides facilities that allow you to concisely refer to one or more files whose
names match a given pattern. The process of translating patterns to actual filenames is known as filename
expansion or globbing. Patterns are constructed using plain text strings and the following constructs, known as
wildcards

? Matches any single character

* Matches any string of characters (including no
 characters)

[a-z] (Example) Matches any single character contained
 in the specified range (the match set)---in this
 case lower-case 'a' through lower-case 'z'

[^a-z] (Example) Matches any single character
 not contained in the specified range

(Aside: Note that in bash, what characters are included in a range can depend on the setting of certain environment
variables. In particular, on hyper things are set up so that while the range [a-c] is equivalent to [abc], the range
[A-C] is equivalent to [aAbBcC]. The same settings (environment variables) that controls this behaviour also
controls the sorting order of filenames when commands such as ls are invoked (so that the files appear in an order
which is case-insensitive on hyper. If you want the sort order to be case-sensitive, you can do so by putting the
following line in your ~/.bashrc

% export LC_COLLATE=C

end of aside)

Continuing, match sets may also be specified explicitly, as in

[02468]

Examples:

ls ??

lists all regular (not hidden) files and directories whose names contain precisely two characters.

cp a* /tmp

copies all files whose name begins with 'a' to the temporary directory /tmp.

mv *.f ../newdir

moves all files whose names end with '.f' to directory ../newdir. Note that the command

mv *.f *.for

will not rename all files ending with '.f' to files with the same prefixes, but ending in '.for', as is the case on some
other operating systems. This is easily understood by noting that expansion occurs before the final argument list is
passed along to the mv command. If there aren't any '.for' files in the working directory, *.for will expand to nothing
and the last command will be identical to

mv *.f

which is not at all what was intended.

The bash History

Important note: This section has been extensively edited since I distributed hard copy of the Sep 10 version of
these notes. The old version was based on a discussion of the history and event handling mechanisms in the tcsh
(the shell I previously used in my computational physics courses), and I incorrectly thought that the mechanisms
were (nearly) identical in the two shells. They are not, so some of the information in the old version is, ahem, wrong.
In addition, for various reasons, not least since bash allows you to scroll back and forth through the command
history, and to easily edit the command line, much of the material that was previously here is largely irrelevant for
the purposes of this course.

The key thing to note is that bash maintains a numbered history of previously entered command lines. Type

% history

(which I personally alias as hi) to view your command-line history. The number of commands maintained in the
history list can be controlled using the environment variable, HISTFILESIZE, which is set to 1000 in the default
course .bashrc file, and which you can easily change as needed. Also note that your history generally persists from
login to login---commands are stored in a hidden file ~/.bash_history---but because you can have multiple terminals
executing simultaneously, the precise way that ~/.bash_history gets updated must be considered an advanced
topic. You can get some sense for this by noting that if you type different sets of commands concurrently in two or
more terminals, and then type history in each, you will see that the output varies from terminal to terminal (as it
should!) And yet there is at any given time a unique ~/.bash_history file. Enough said!!

Standard Input, Standard Output and Standard Error: A typical Unix command (process, program, job, task,
application) reads some input, performs some operations on, or depending on, the input, then produces some
output. It proves to be extremely powerful to be able to write programs (including bash scripts) that read and write
their input and output from "standard" locations. Thus, Unix defines the notions of

standard input: default source of input
standard output: default destination of output
standard error: default destination for error messages and diagnostics

Many Unix commands are designed so that, unless specified otherwise, input is taken from standard input (or stdin),
and output is written on standard output (or stdout). Normally, both stdin and stdout are attached to the terminal. The
cat command with no arguments provides a canonical example (see man cat if you can't understand the example):

% cat
foo
foo
bar
bar
^D

Here, cat reads lines from stdin (the terminal) and writes those lines to stdout (also the terminal) so that every line
you type is "echoed" by the command. A command that reads from stdin and writes to stdout is known as a filter.

Input and Output Redirection: The power and flexibility of the stdin/stdout mechanism becomes apparent when we
consider the operations of input and output redirection that are implemented in bash (and many other shells). As the
name suggests, redirection means that stdin and/or stdout are associated with some source/sink other than the
terminal.

Input Redirection is accomplished using the < (less-than) character, followed by the name of a file from which the
input is to be extracted. Thus the command-line

% cat < input_to_cat

causes the contents of the file input_to_cat to be used as input to the cat command. In this case, the effect is
exactly the same as if

% cat input_to_cat

had been entered

Output Redirection is accomplished using the > (greater than) character, again followed by the name of a file into
which the (standard) output of the command is to be directed. Thus

% cat > output_from_cat

will cause cat to read lines from the terminal (stdin is not redirected in this case) and copy them into the file
output_from_cat. Care must be exercised in using output redirection since one of the first things that will happen in
the above example is that the file output_from_cat will be clobbered. If the shell option noclobber has been set
using

set -o noclobber

which is highly recommended for novices (and included in ~phys210/.bashrc), then output will not be allowed to be
redirected to an existing file. Thus, in the above example, and assuming that noclobber is set, if output_from_cat
already existed, the shell would respond as follows:

% cat > output_from_cat
output_from_cat: File exists

and the command would be aborted.

The standard output from a command can also be appended to a file using the two-character sequence >> (no
intervening spaces). Thus

% cat >> existing_file

will append lines typed at the terminal to the end of existing_file.

From time to time it is convenient to be able to "throw away" the standard output of a command. Unix systems have
a special file called /dev/null that is ideally suited for this purpose. Output redirection to this file, as in:

verbose_command > /dev/null

will result in the stdout from the command disappearing without a trace.

Pipes: Part of the "Unix programming philosophy" is to keep input and output to and from commands in
"machine-readable" form: this usually means keeping the input and output simple, structured and devoid of
extraneous information which, while informative to humans, is likely to be a nuisance for other programs. Thus,
rather than writing a command that produces output such as:

% pgm_wrong
Time = 0.0 seconds Force = 6.0 Newtons
Time = 1.0 seconds Force = 6.1 Newtons
Time = 2.0 seconds Force = 6.2 Newtons

we write one that produces

% pgm_right
0.0 6.0
1.0 6.1
2.0 6.2

The advantage of this approach is that it is then often possible to combine commands (programs) on the
command-line so that the standard output from one command is fed directly into the standard input of another. In
this case we say that the output of the first command is piped into the input of the second. Here's an example:

% ls -1 | wc
10 10 82

The -1 option to ls tells ls to list regular files and directories one per line. The command wc (for word count) when
invoked with no arguments, reads stdin until EOF is encountered and then prints three numbers: (1) the total
number of lines in the input (2) the total number of words in the input and (3) the total number of characters in the
input (in this case, 82). The pipe symbol "|" tells the shell to connect the standard output of ls to the standard input of
wc. The entire ls -1 | wc construct is known as a pipeline, and in this case, the first number (10) that appears on the
standard output is simply the number of regular files and directories in the current directory.

Pipelines can be made as long as desired, and once you know a few Unix commands, and have mastered the
basics of the bash history mechanism, you can easily accomplish some fairly sophisticated tasks by interactively
building up multi-stage pipelines.

Regular Expressions and grep: Regular expressions may be formally defined as those character strings that are
recognized (accepted) by finite state automata. If you haven't studied automata theory, this definition won't be of
much use, so for our purposes we will define regular expressions as specifications for rather general patterns that
we will wish to detect, usually in the contents of files. Although there are similarities in the Unix specification of
regular expressions to bash wildcards (see above), there are important differences as well, so be careful. We begin
with regular expressions that match a single character:

a (Example) Matches 'a', any character other than
 the special characters: . * [] \ ^ or $ may be
 used as is

* (Example) Matches the single character '*'.
 Note that `\' is the "backslash" character. A
 backslash may be used to "escape" any of the
 special characters listed above
 (including backslash itself)

. Matches ANY single character.

[abc] (Example) Matches any one of 'a', 'b' or 'c'.

[^abc] (Example) Matches any character that ISN'T an
 'a', 'b' or 'c'.

[a-z] (Example) Matches any character in the inclusive
 range 'a' through 'z'.

[^a-z] (Example) Matches any character NOT in the
 inclusive range 'a' through 'z'.

^ Matches the beginning of a line.

$ Matches the end of a line.

Multiple-character regular expressions may then be built up as follows:

ahgfh (Example) Matches the string 'ahgfh'. Any string
 of specific characters (including escaped special
 characters) may be specified in this fashion.

a* (Example) Matches zero or more occurrences of the
 character 'a'. Any single character expression
 (except start and end of line) followed by a '*' will
 match zero or more occurrences of that particular
 sequence.

.* Matches an arbitrary string of characters.

All of this is may be a bit confusing, so it is best to consider the use of regular expressions in the context of the Unix
grep command.

grep

grep (which loosely stands for (g)lobal search for (r)egular (e)xpression with (p)rint) has the following general
syntax:

 grep [options] regular_expression [file1 file2 ...]

Note that only the regular_expression argument is required. Thus

% grep the

will read lines from stdin (normally the terminal) and echo only those lines that contain the string 'the'. If one or more
file arguments are supplied along with the regular expression, then grep will search those files for lines matching the
regular expression, and print the matching lines to standard output (again, normally the terminal). Thus

% grep the *

will print all the lines of all the regular files in the working directory that contain the string 'the'.

Some of the options to grep are worth mentioning here. The first is -i which tells grep to ignore case when
pattern-matching. Thus

% grep -i the text

will print all lines of the file text that contain 'the' or 'The' or 'tHe' etc. Second, the -v option instructs grep to print all
lines that do not match the pattern; thus

% grep -v the text

will print all lines of text that do not contain the string 'the'. Finally, the -n option tells grep to include a line number at
the beginning of each line printed. Thus

% grep -in the text

will print, with line numbers, all lines of the file text that contain the string 'the', 'The', 'tHe' etc. Note that multiple
options can be specified with a single - followed by a string of option letters with no intervening blanks. Most Unix
commands allow this syntax for providing several options.

Here are a few slightly more complicated examples. Note that when supplying a regular expression that contains
characters such as '*', '?', '[', '!' ..., that are special to the shell, the regular expression should be surrounded by
single quotes to prevent shell interpretation of the shell characters. In fact, you won't go wrong by always enclosing
the regular expression in single quotes.

% grep '^.....$' file1

prints all lines of file1 that contain exactly 5 characters (not counting the "newline" at the end of each line):

% grep 'a' file1 | grep 'b'

prints all lines of file1 that contain at least one 'a' and one 'b'. (Note the use of the pipe to stream the stdout from the
first grep into the stdin of the second.)

% grep -v '^#' input > output

extracts all lines from file input that do not have a '#' in the first column and writes them to file output.

Pattern matching (searching for strings) using regular expressions is a powerful concept, but one that can be made
even more useful with certain extensions. Many of these extensions are implemented in a relative of grep known as
egrep. See the man page for egrep if you are interested.

Using Quotes (' ', " ", and ` `): Most shells, including bash, use the three different types of quotes found on a
standard keyboard

 ' ' -> Known as forward quotes, single quotes, quotes
 " " -> Known as double quotes
 ` ` -> Known as backward quotes, back-quotes

for distinct purposes.

Forward quotes: ' ' We have already encountered several examples of the use of forward quotes that inhibit shell
evaluation of any and all special characters and/or constructs. Here's an example:

% a=100
% echo $a
100

% b=$a
% echo $b
100

% b='$a'
% echo $b
$a

Note how in the final assignment, b='$a', the $a is protected from evaluation by the single quotes. Single quotes are
commonly used to assign a shell variable a value that contains whitespace, or to protect command arguments that
contain characters special to the shell (see the discussion of grep for an example).

Double quotes: " " Double quotes function in much the same way as forward quotes, except that the shell "looks
inside" them and evaluates (1) any references to the values of shell variables, and (2) anything within back-quotes
(see below). Example:

% a=100
% echo $a
100

% string="The value of a is $a"
% echo $string
The value of a is 100

Backward quotes: ` ` The shell uses back-quotes to provide a powerful mechanism for capturing the standard
output of a Unix command (or, more generally, a sequence of Unix commands) as a string that can then be
assigned to a shell variable or used as an argument to another command. Specifically, when the shell encounters a
string enclosed in back-quotes, it attempts to evaluate the string as a Unix command, precisely as if the string had
been entered at a shell prompt, and returns the standard output of the command as a string. In effect, the output of
the command is substituted for the string and the enclosing back-quotes. Here are a few simple examples:

% date
Tue Sep 1 16:50:10 PDT 2009

% thedate=`date`
% echo $thedate
Tue Sep 1 16:50:15 PDT 2009

% which true
/bin/true

% file `which true`
/bin/true: ELF 64-bit LSB executable, x86-64, ...

% file `which true` `which false`
/bin/true: ELF 64-bit LSB executable, x86-64, ...
/bin/false: ELF 64-bit LSB executable, x86-64, ...

Note that the file command attempts to guess what type of contents its arguments (which should be files) contain
and which reports full path names for commands that are supplied as arguments. Observe that in the last example,
multiple back-quoting constructs are used on a single command line.

Finally, here's an example illustrating that back-quote substitution is enabled for strings within double quotes, but
disabled for strings within single quotes:

% var1="The current date is `date`"
% echo $var1
The current date is Tue Sep 1 16:50:40 PDT 2009

% var2='The current date is `date`'
% echo $var2
The current date is `date`

Job Control: Unix is a multi-tasking operating system: at any given time, the system is effectively running many
distinct processes (commands) simultaneously (of course, if the machine only has one CPU, only one process can
run at a specific time, so this simultaneity is somewhat of an illusion). Even within a single shell, it is possible to run
several different commands at the same time. Job control refers to the shell facilities for managing how these
different processes are run. It should be noted that job control is arguably less important in the current age of
windowing systems than it used to be, since one can now simply use multiple shell windows to manage several
concurrently running tasks.

Commands issued from the command-line normally run in the foreground. This generally means that the command
"takes over" standard input and standard output (the terminal), and, in particular, the command must complete
before you can type additional commands to the shell. If, however, the command line is terminated with an
ampersand: &, the job is run in the background and you can immediately type new commands while the command
executes. Example:

% grep the huge_file > grep_output &
[1] 1299

In this example, the shell responds with a '[1]' that identifies the task at the shell level, and a '1299' (the process id)
that identifies the task at the system level. You can continue to type commands while the grep job runs in the
background. At some point grep will finish, and the next time you type 'Enter' (or 'Return'), the shell will inform you
that the job has completed:

[1]+ Done grep the huge_file > grep_output

The following sequence illustrates another way to run the same job in the background:

% grep the huge_file > grep_output
^Z
[1}+ Stopped grep the huge_file > grep_output
% bg
[1]+ grep the huge_file > grep_output &

Here, typing ^Z while the command is running in the foreground stops (suspends) the job, the shell command bg
restarts it in the background. You can see which jobs are running or stopped by using the shell jobs command.

% jobs
[1] + Stopped grep the huge_file > grep_output
[2] Running other_command

Use

% fg %1

to have the job labeled '[1]' (that may either be stopped or running in the background), run in the foreground. You
can kill (terminate) a job using its job number (%1, %2, etc.)

% kill %1
[1] Terminated grep the huge_file > grep_output

You can also kill a job using its process ID (PID), which you can obtain using the Unix ps command. See the man

pages for ps and kill for more details.

On many Unix systems, including Linux, there is a killall command, which allows you to kill processes by name.
Finally, the shell will complain if you try to logout or exit the shell when one or more jobs are stopped. Either
explicitly kill the jobs (or let them finish up if that's appropriate) or type logout or exit again to ignore the warning, kill
all stopped jobs, and exit.

Another useful, though Linux-specific, command is pstree, which shows processes currently running on the host
machine in the form of a tree. If you want to limit the output to your own processes (and not, for example, root's),
use

% pstree -u your_userid

BASIC SHELL PROGRAMMING

For the novice user a Unix shell can be viewed primarily as a command interpreter. However, shells are actually
fully functional programming languages and it is extremely useful to know at least a little about shell programming,
also known as writing shell scripts, for the following reasons (not an exhaustive list!):

Scripts can be used to customize or extend Unix commands in a more powerful and robust fashion than the
aliasing mechanism discussed above.

1.

Scripts can be used to automate sequences of Unix commands, with the possibility of changing one or more
of the arguments to one or more of the commands. If you find yourself frequently typing the same sequence
of commands, it takes very little time to create a script to accomplish the task, after which the execution of a
single command does the trick. This has the added bonus that the script per se provides documentation for
the job you are doing.

2.

Many tasks that are cumbersome to perform in the context of a general purpose programming language, such
as Java, C or Fortran, are easy to accomplish using a script. This particularly applies to issues involving file
and directory manipulation, or the processing of output from a number of programs.

3.

Time constraints preclude anything but a basic overview of bash programming; if you wish to become a wizard of
this particular craft, you might want to consult the classic text, The UNIX Programming Environment, by Kernighan
and Pike, cited in the following as reference [1]. In addition, there is plenty of information to be found about the
subject online (see the representative links at the end of this document, for example. which are also available via the
Course Resources page). Finally, should you find yourself in need of complex scripts, you may wish to consider
learning/using perl, which is an extremely powerful scripting language that has become very popular in the Unix
community over the past couple of decades (the python language is another good choice in this regard).

We start with a very simple example. Consider the problem of "swapping" the names of two files, which arises more
often in practice than one might expect, and which cannot be accomplished with a standard Unix command.
Assuming that no file t exists in the working directory, the command sequence

% mv a t
% mv b a
% mv t b

will exchange the names of files a and b. Building on this sequence, here's a script called swap that, naturally
enough, "swaps" the names of an arbitrary pair of files:

#! /bin/bash

Bare-bones script to swap names of two files

Usage: swap file1 file2

mv $1 t
mv $2 $1
mv t $2

The first line of the script

#! /bin/bash

is an important bit of Unix magic that tells the shell that when the name of the file containing the script is used as a
command, the shell should start up a new shell (in this case another bash) and execute the remaining contents of
the script in the context of that new shell. Every bash script that you write should start with this incantation.

IMPORTANT!! When the new bash associated with the execution of any script starts, it does NOT execute the
commands in either ~/.profile or ~/.bashrc. This means, in particular, that none of the aliases that are defined
through execution of ~/.bashrc (including the indirect definitions that may be made via a source ~/.aliases or
equivalent) will be active during the execution of the script, unless you redefine them within the script itself. The

same applies to bash options such as noclobber. So be very careful when using commands such as rm, cp, mv
etc. as well as output redirection, since the commands will be the "bare-bones" versions, and will not prompt for
confirmation in case an existing file will be overwritten. Similarly, output redirection will clobber existing files (unless
you include set -o noclobber somewhere before the first use of output redirection).

In this regard it is impossible to overstate the importance that you develop the habit of making back-up copies of any
files that have value to you, before you start making significant modifications to them, or feeding them to a script
that could potentially and unintentionally change them. This applies not only in the context of writing scripts, but
anytime that you are about to modify a file that has taken you non-trivial effort to create!

Continuing with our dissection of the script, lines that begin with a hash ("number sign") # (excluding the magic first
line) such as

Bare-bones script to swap names of two files

Usage: swap file1 file2

are comments, and are ignored by the shell.

The final three lines of the script

mv $1 t
mv $2 $1
mv t $2

do all the work. The constructs $1 and $2 evaluate to the first and second arguments, respectively, which are
supplied to the script. In general, one can access the first nine arguments of a script using $1, $2, ..., $9, and, if
more than nine arguments need to be parsed (!), using ${10}, ${11}, etc. If a specific argument is missing, the
corresponding construct will evaluate to the null string, i.e. to "nothing".

Having created a file called swap containing the above lines, I set execute permission on the file with the chmod
command

% chmod a+x swap
% ls -l swap
-rwxr-xr-x 1 phys210 public 116 2009-09-07 16:32 swap*

and the script is ready to use:

% ls
f1 f2 swap*
% cat f1
This is the first file.
% cat f2
This is the second file.
% swap f1 f2
% cat f1
This is the second file.
% cat f2
This is the first file.

When developing and debugging a shell program, it is often very useful to enable "tracing" of the script. This is done
by adding the -x option to the header line:

#! /bin/bash -x

Having made this modification, I now see the following output when I invoke swap a second time:

% swap f1 f2
+ mv f1 t
+ mv f2 f1
+ mv t f2

Note how each command in the script is echoed to standard error (with a + prepended) as it is executed. Again,
observe that the mv command used in this instance is the "bare bones" version since any aliases that I have defined
via ~/.bashrc for an interactive bash will not be in effect while the script executes.

Although swap as coded above is reasonably functional, it is not very robust and can potentially generate undesired
"side-effects" if used incorrectly. Observe, for example, what happens when the script is invoked without any
arguments (tracing has now been disabled by removing the -x option in the header)

% swap

mv: missing file argument
Try `mv --help' for more information.
mv: missing file arguments
Try `mv --help' for more information.
mv: missing file argument
Try `mv --help' for more information.

or, worse, with one argument

% swap f1
mv: missing file argument
Try `mv --help' for more information.
mv: missing file argument
Try `mv --help' for more information.
% ls
f2 swap* t

Here's a second version of swap that fixes several of the shortcomings of the naive version, and that also illustrates
many additional shell programming features:

#! /bin/bash

Improved version of script to swap names of two files

Set shell variable 'P' to name of script
P=`basename $0`

Set shell variable 't' to name of temporary file
t=.swap.tempfile.3141

Usage function
usage () {
cat << END
usage: $P file1 file2

 Swaps filenames of file1 and file2
END
exit 1
}

Function that is invoked if temporary file already exists
t_exists () {
cat << END
$P: Temporary file '$t' exists.
$P: Remove it explicitly before executing this script.

/bin/rm -f $t
END
exit 1
}

Function that checks that its (first) argument is an
existing file
check_file () {
if [! -f $1]; then
 echo "$P: File '$1' does not exist"
 error="yes"
fi
}

Argument parsing---script requires exactly 2 arguments
case $# in
2) file1=$1; file2=$2 ;;
*) usage;;
esac

Check that the arguments refer to existing files
check_file $1
check_file $2

Bail out if either or both arguments are invalid
test "X${error}" = X || exit 1

Ensure that temporary file doesn't already exist
test -f $t && t_exists

Do the swap
mv $file1 $t
mv $file2 $file1
mv $t $file2

Normal exit, return 'success' exit status
exit 0

Let us examine this new version of swap in detail.

As the comment indicates, the command

Set shell variable 'P' to name of script
P=`basename $0`

sets the shell variable P to the filename of the script, i.e. to swap in this case. This happens as follows. First, $0 is a
special shell-script variable that always evaluates to the invocation name of the script---i.e. what the user actually
typed in order to execute the script. Second, as man tells us, the basename command deletes any prefix ending in /
from its argument and prints the result on the standard output. Third, the backquotes around the basename
invocation capture the standard output of the command, which is then assigned to the shell variable P via the
assignment statement.

We use basename here so that if someone invokes our script using its full path name, perhaps

% /home/phys210/shellpgm/ex2/swap f1 f2

the shell variable P will still be assigned the value swap. The value of P is subsequently used in diagnostic
messages, to make the origin of the messages clear to the user. Use of this mechanism can save some typing if one
is writing a script that prints many such messages. In addition, if the script is subsequently used as a basis for a new
shell program, a minimum of changes (perhaps none) are necessary in order that the new script output the "correct"
diagnostics.

The next assignment sets the shell variable t to the name of a temporary file that, under normal circumstances,
should never exist in the directory in which swap is executed. This isn't the most bullet-proof of strategies, but it's
better than using t itself for the name for the temporary file!

Set shell variable 't' to name of temporary file
t=.swap.tempfile.3141

The next section of code defines a shell function, called usage, which can be invoked from anywhere in the script.
When called, the function will print a message to standard output informing the user of the proper usage of the
command, and then exit (stop execution of the script).

Usage function
usage () {
cat << END
usage: $P file1 file2

 Swaps filenames of file1 and file2
END
exit 1
}

The general form of a function definition is

routinename () {
 command
 command
 ...
}

The parentheses pair after routinename tells the shell that a function is being defined, while the braces enclose the
body of the function.

Within the usage routine appears the construct

cat << END
 ...
END

known as a "here document". Here documents can be used anywhere in a script to provide "in-place" input for the
standard input of a command. You can refer to the man page on bash for full details, but the basic idea and
mechanics are quite simple. To provide "in-place" input to an arbitrary command, append << END after the
command name, any arguments to the command, and any output redirection directives. There can be whitespace
before and after the token END. Subsequent lines are then the standard input to the command. A line that exactly
matches the string END (i.e. grep '^END$' succeeds) signals end-of-file (i.e. the end of the here document), so be
sure you have such a line in your script!.

IMPORTANT!! Note that this means that there can be NO whitespace before or after the second occurence of END.
You need to be extremely careful about this point since it is very easy to accidentally add a space or two after the
end-of-file token, and quite difficult to notice that the extra space is there. If there is extraneous white space, bash
is likely to view everything until the end of the script itself as the standard input to the command being fed with the
here document!

Finally, note that the string END is arbitrary; you can use essentially any string you wish as long as you use the
identical string in both contexts. END is simply my convention.

An interesting and useful feature of here-documents is that they are partially interpreted by the shell before being
fed into their destination command. In particular, shell-variable-evaluations

$var

are executed, as are

`command [arguments]`

constructs. Thus, when the usage function is executed, the message

usage: swap file1 file2

 Swaps filenames of file1 and file2

will appear on standard output, after which the execution of

exit 1

will return control to the invoking shell. Here, the argument to the exit command is an exit code indicating a
completion status for the script. Since there is generally only one way for a command to succeed, but often many
ways it can fail, a exit status of 0 indicates success in Unix, while any non-zero value (1 in this case), indicates
failure.

All Unix commands return such codes (scripts that terminate without an explicit exit, implicitly return success to the
invoking shell) and they can be used in the context of shell-control structures such as if, while and until statements.

The function t_exists is very similar in construction to usage, and is used in the unlikely event that a file named
.swap.tempfile.3141 does exist in the directory in which the script is invoked.

Function that is invoked if temporary file already exists
t_exists () {
cat << END
$P: Temporary file '$t' exists.
$P: Remove it explicitly before executing this script.

/bin/rm -f $t
END
exit 1
}

Function check_file illustrates the use of function arguments, as well as the shell if statement.

Function that checks that its (first) argument is an
existing file
check_file () {
if [! -f $1]; then
 echo "$P: File '$1' does not exist"
 error="yes"
fi
}

As with arguments to the script itself, function arguments are accessed positionally, via $1, $2, Note, then, that
the evaluation of $1, for example, depends crucially on context (or scope): within a function, $1 evaluates to the first
argument to the routine, while outside of any function it evaluates to the first argument to the script.

For our purposes, a suitably general form of the shell if statement is

if command a; then
 commands 1
elif command b; then
 commands 2
elif command c; then
 commands 3
 ...
else
 commands n
fi

All clauses apart from the first are optional, as is apparent from the if statement in the check_file routine. The
evaluation of the if statement begins with the execution of command a. If this command succeeds (returns exit
status 0), then commands 1 are executed (commands must appear on separate lines, or be separated by
semicolons) and control then passes to the command following the end of the if statement (i.e. after the fi token).
Otherwise, command b is executed; if it succeeds, commands 2 are performed, otherwise command c is executed,
and so on.

The if statement in our check_file routine

if [! -f $1]; then
 echo "$P: File '$1' does not exist"
 error="yes"
fi

uses the Unix test command, for which [is essentially an alias (the] is "syntactic-sugar" and does nothing but make
the expression "look right"). Thus an equivalent form is

if test ! -f $1; then
 echo "$P: File '$1' does not exist"
 error="yes"
fi

test accepts a general expression expr as an argument, evaluates expr and, if its value is true, sets a zero exit
status (success); otherwise, a non-zero exit status (failure) is set. test accepts many different options for performing
a variety of tests on files and directories, and implements a fairly complete set of logical operations such as
negation, or, and, tests for string equality/non-equality, integer equal-to, greater-than, less-than etc.; see man test
for full details.

In the current case, the -f $1 option returns true if the first argument to the routine is an existing regular file (i.e. not a
directory or other type of special file). The ! is the negation operator, so the overall test command returns success
(true) if the first argument is not an existing regular file.

The next section of code introduces the shell case statement:

Argument parsing---script requires exactly 2 arguments
case $# in
2) file1=$1; file2=$2 ;;
*) usage;;
esac

A general case statement looks like

case word in
pattern) commands ;;
pattern) commands ;;
...
esac

Starting from the top, and using essentially the same pattern-matching rules used for filename matching, the case
statement compares word to each pattern in turn, until it finds a match. When a match is found, the corresponding
commands (and only those commands) are executed, after which control passes to the statement following the end
of the case statement (i.e. after the esac token). Note that the commands associated with each case must be
terminated with a double semi-colon.

In our current example, we match on the built-in shell variable $#, which evaluates to the number of arguments that
were supplied to the shell. The first set of actions

2) file1=$1; file2=$2 ;;

is evaluated if precisely two arguments have been supplied. If the script has been invoked with anything but two
arguments, $# is then matched against *, which will always succeed; i.e.

*) usage ;;

serves as a "default" case, and the usage function will thus be called if we've used an incorrect number of
arguments.

Using the check_file function, the script then ensures that each argument names an existing regular file:

Check that the arguments refer to existing files
check_file $file1
check_file $file2

Note that if either or both of the checks fail, then the shell variable error (all variables are global in a shell script
unless explicitly declared local, see man bash for more information) will be set to yes. The calls to check_file are
followed by a command list that tests whether error has been set, and exits the script if it has:

Bail out if either or both arguments are invalid
test "X${error}" = X || exit 1

The expression

"X${error}" = X

illustrates a little shell trick that tests whether a shell variable has been defined. If error has been set to yes by
check_file, then "X${error}" evaluates to Xyes; otherwise it evaluates to X. The binary operator || (double pipe)
can be used between any two Unix commands (or, more generally, pipelines):

command 1 || command 2

and has the following semantics: command 1 is executed, and if and only if the command fails (returns a non-zero
exit status), command 2 is executed. Thus, the sequence is equivalent to

if [! command 1]; then
 command 2
fi

Similarly, the next piece of the script

Ensure that temporary file doesn't already exist
test -f $t && t_exists

illustrates the use of the binary operator && (double ampersand), which also can be used between any two
commands:

command 1 && command 2

In this case command 1 is executed, and if and only if the command succeeds (returns a 0 exit status), command 2
is executed. Thus, an equivalent form is

if [command 1]; then
 command 2
fi

In the current example, if the temporary file .swap.temp.3141 does exist, the function t_exists is called to print the
diagnostic message and exit.

Finally, if we've made it past all of the error-checking, it's time to actually swap the filenames, and have the script
return a "success" exit status to the invoking environment:

Do the swap
mv $file1 $t
mv $file2 $file1
mv $t $file2

Normal exit, return 'success' code
exit 0

We can now test our improved version of swap, exercising in particular all of the error-checking features that have
been incorporated. Here again is a contents-listing of the directory containing the script:

% ls
f1 f2 swap*
% more f1 f2
::::::::::::::
f1
::::::::::::::
This is the first file.
::::::::::::::
f2
::::::::::::::
This is the second file.

We start with a no-argument invocation:

% swap
usage: swap file1 file2

 Swaps filenames of file1 and file2

followed by single-argument execution:

% swap f1
usage: swap file1 file2

 Swaps filenames of file1 and file2

In both cases swap dutifully prints the usage message to standard output as desired.

We now invoke swap in a "normal" fashion, and verify that it is working properly:

% swap f1 f2
% more f1 f2
::::::::::::::
f1
::::::::::::::
This is the second file.
::::::::::::::
f2
::::::::::::::
This is the first file.

Supplying swap with two arguments that are not names of files in the working directory results in appropriate error
messages:

% swap a1 a2
swap: File 'a1' does not exist
swap: File 'a2' does not exist

as does an invocation where one of the arguments is invalid:

% swap a1 f2
swap: File 'a1' does not exist

Finally, after (perversely) creating .swap.tempfile.3141 using the touch command (touch filename creates the
(empty) file filename if it does not exist, and changes its time of last modification to the current time if it does),

% touch .swap.tempfile.3141

execution of swap with valid arguments triggers the t_exists routine:

swap: Temporary file '.swap.tempfile.3141' exists.
swap: Remove it explicitly before executing this script.

/bin/rm -f .swap.tempfile.3141

Removing the file as instructed, the script once again silently performs its job:

% /bin/rm -f .swap.tempfile.3141
% swap f1 f2

We will conclude our whirlwind tour of shell programming with a description of a few more control structures, some
additional niceties concerning shell variable evaluation, and a glimpse at a command useful for writing scripts that

"interact" with the user.

The shell provides three structures for looping. The first is a for loop:

for var in word list; do
 commands
done

Here, for each word (token) in word list, the commands in the body of the loop are executed, with the shell variable
var being set to each word in turn. As usual, an example makes the semantics clear:

% cat for-example
#! /bin/bash

Illustrates shell 'for' loop

for i in foo bar 'foo bar '; do
 echo "i -> $i"
done

% for-example
i -> foo
i -> bar
i -> foo bar

Note that a "word" can contain whitespace if it has been quoted, as is the case for 'foo bar '

In many instances, a for loop in a script will loop over all of the arguments supplied to the script. The built-in shell
variable $* evaluates to the argument list, so we can write

for i in $*; do
 commands
done

but the shell also has a shorthand for this particular case, namely:

for i; do
 commands
done

In addition to for iterations, there are also while loops:

while command; do
 commands
done

and until loops:

until command; do
 commands
done

For these iterations, the body of the loop is repetitively executed as long as command succeeds or fails,
respectively.

The following table summarizes some built-in shell variables that are particularly useful for script writing [1]:

Variable Evaluates to

$# number of arguments

$* all arguments

$? return value of last command

$$ process-id of the script

Also observe that, as intimated above in the discussion of environment variables, a bash script inherits all of the
environment variables (such as $HOME, $PATH, ...) that have been set in the invoking shell.

As shown in the next table [1], we can also use some tricks in the evaluation of shell variables to make writing
scripts a little easier at times:

Expression Evaluates to

$var value of var, nothing if var undefined

${var} same as above; useful if alphanumerics follow variable name

${var-thing} value of var if defined; otherwise thing; $var unchanged.

${var=thing} value of var if defined; otherwise thing; if undefined $var set to thing

${var+thing} thing if var defined; otherwise nothing

${var?message} if defined, $var; otherwise print message and exit shell.

Finally, the read command can be used to interactively provide input to a script. Here's an example

% cat read-example
#! /bin/bash

echo "Hello there! Please type in your name:"
read name
echo "Pleased to meet you, $name"

% read-example
Hello there! Please type in your name
Matthew Choptuik
Pleased to meet you, Matthew Choptuik

References / Additional Information

Brian W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice Hall, 19841.
Bash Guide for Beginners (Includes sections on writing scripts.)2.
Bash Reference Manual3.
Bash Scripting Tutorial4.
Linux Shell Scripting Tutorial: A Beginner's handbook5.
Advanced Bash-Scripting Guide (An extensive reference, with lots of examples, and which, despite the name,
does not assume prior knowledge of scripting or programming.

6.

