
2 Mathematics with Maple:
The Basics

This chapter introduces the Maple commands necessary to get you
started. Use your computer to try the examples as you read.

In This Chapter
• Exact calculations

• Numerical computations

• Basic symbolic computations and assignment statements

• Basic types of objects

• Manipulation of objects and the commands

Maple Help System
At various points in this guide you are referred to the Maple help system.
The help pages provide detailed command and topic information. You
may choose to access these pages during a Maple session. To use the help
command, at the Maple prompt enter a question mark (?) followed by
the name of the command or topic for which you want more information.

?command

2.1 Introduction

This section introduces the following concepts in Maple.

• Semicolon (;) usage

5

6 • Chapter 2: Mathematics with Maple: The Basics

• Representing exact expressions

The most basic computations in Maple are numeric. Maple can func-
tion as a conventional calculator with integers or floating-point numbers.
Enter the expression using natural syntax. A semicolon (;) marks the
end of each calculation. Press enter to perform the calculation.

> 1 + 2;

3

> 1 + 3/2;

5

2

> 2*(3+1/3)/(5/3-4/5);

100

13

> 2.8754/2;

1.437700000

Exact Expressions
Maple computes exact calculations with rational numbers. Consider a
simple example.

> 1 + 1/2;

3

2

The result of 1 + 1/2 is 3/2 not 1.5. To Maple, the rational number
3/2 and the floating-point approximation 1.5 are distinct objects. The
ability to represent exact expressions allows Maple to preserve more
information about their origins and structure. Note that the advantage
is greater with more complex expressions. The origin and structure of a
number such as

0.5235987758

2.2 Numerical Computations • 7

are much less clear than for an exact quantity such as

1

6
π

Maple can work with rational numbers and arbitrary expressions.
It can manipulate integers, floating-point numbers, variables, sets, se-
quences, polynomials over a ring, and many more mathematical con-
structs. In addition, Maple is also a complete programming language that
contains procedures, tables, and other programming constructs.

2.2 Numerical Computations

This section introduces the following concepts in Maple.

• Integer computations

• Continuation character (\)

• Ditto operator (%)

• Commands for working with integers

• Exact and floating-point representations of values

• Symbolic representation

• Standard mathematical constants

• Case sensitivity

• Floating-point approximations

• Special numbers

• Mathematical functions

Integer Computations
Integer calculations are straightforward. Terminate each command with
a semicolon.

> 1 + 2;

8 • Chapter 2: Mathematics with Maple: The Basics

3

> 75 - 3;

72

> 5*3;

15

> 120/2;

60

Maple can also work with arbitrarily large integers. The practical limit
on integers is approximately 228 digits, depending mainly on the speed
and resources of your computer. Maple can calculate large integers, count
the number of digits in a number, and factor integers. For numbers, or
other types of continuous output that span more than one line on the
screen, Maple uses the continuation character (\) to indicate that the
output is continuous. That is, the backslash and following line ending
should be ignored.

> 100!;

933262154439441526816992388562667004907\
15968264381621468592963895217599993229\
91560894146397615651828625369792082722\
37582511852109168640000000000000000000\
00000

> length(%);

158

This answer indicates the number of digits in the last example. The
ditto operator, (%), is a shorthand reference to the result of the previous
computation. To recall the second- or third-most previous computation
result, use %% and %%%, respectively.

2.2 Numerical Computations • 9

Table 2.1 Commands for Working with Integers

Function Description

abs absolute value of an expression
factorial factorial of an integer
iquo quotient of an integer division
irem remainder of an integer division
iroot approximate integer root of an integer
isqrt approximate integer square root of an integer
max, min maximum and minimum of a set of inputs
mod modular arithmetic
surd real root of an integer

Commands for Working With Integers
Maple has many commands for working with integers, some of which
allow for calculations of the factorization of an integer, the greatest com-
mon divisor (gcd) of two integers, integer quotients and remainders, and
primality tests. See the following examples, as well as Table 2.1.

> ifactor(60);

(2)2 (3) (5)

> igcd(123, 45);

3

> iquo(25,3);

8

> isprime(18002676583);

true

10 • Chapter 2: Mathematics with Maple: The Basics

Exact Arithmetic—Rationals, Irrationals, and Constants
Maple can perform exact rational arithmetic, that is, work with rational
numbers (fractions) without reducing them to floating-point approxima-
tions.

> 1/2 + 1/3;

5

6

Maple handles the rational numbers and produces an exact result.
The distinction between exact and approximate results is important.
The ability to perform exact computations with computers enables you
to solve a range of problems. Maple can produce floating-point estimates.
Maple can work with floating-point numbers with many thousands of
digits, producing accurate estimates of exact expressions.

> Pi;

π

> evalf(Pi, 100);

3.1415926535897932384626433832795028841\
97169399375105820974944592307816406286\
208998628034825342117068

Maple distinguishes between exact and floating-point representa-
tions of values. Here is an example of a rational (exact) number.

> 1/3;

1

3

The following is its floating-point approximation (shown to ten digits,
by default).

> evalf(%);

0.3333333333

These results are not the same mathematically, and they are not the
same in Maple.

2.2 Numerical Computations • 11

Important: Whenever you enter a number in decimal form, Maple treats
it as a floating-point approximation. The presence of a decimal number
in an expression causes Maple to produce an approximate floating-point
result, since it cannot produce an exact solution from approximate data.
Use floating-point numbers when you want to restrict Maple to working
with non-exact expressions.

> 3/2*5;

15

2

> 1.5*5;

7.5

You can enter exact quantities by using symbolic representation,
for example, π in contrast to 3.14. Maple interprets irrational numbers
as exact quantities. Here is how you represent the square root of two in
Maple.

> sqrt(2);

√
2

Here is another square root example.

> sqrt(3)^2;

3

Maple recognizes the standard mathematical constants, such as π
and the base of the natural logarithms, e. It works with them as exact
quantities.

> Pi;

π

> sin(Pi);

0

12 • Chapter 2: Mathematics with Maple: The Basics

The exponential function is represented by the Maple function exp.

> exp(1);

e

> ln(exp(5));

5

The example with π may look confusing. When Maple is producing
typeset real-math notation, it attempts to represent mathematical ex-
pressions as you might write them yourself. Thus, you enter π as Pi and
Maple displays it as π.

Maple is case sensitive. Ensure that you use proper capitalization
when stating these constants. The names Pi, pi, and PI are distinct. The
names pi and PI are used to display the lowercase and uppercase Greek
letters π and Π, respectively. For more information on Maple constants,
enter ?constants at the Maple prompt.

Floating-Point Approximations
Maple works with exact values, but it can return a floating-point approxi-
mation up to about 228 digits, depending upon your computer’s resources.
Ten or twenty accurate digits in floating-point numbers is adequate for
many purposes, but two problems severely limit the usefulness of such a
system.

• When subtracting two floating-point numbers of almost equal mag-
nitude, the relative error of the difference may be very large. This
is known as catastrophic cancellation. For example, if two numbers
are identical in their first seventeen (of twenty) digits, their difference
is a three-digit number accurate to only three digits. In this case,
you would need to use almost forty digits to produce twenty accurate
digits in the answer.

• The mathematical form of the result is more concise, compact, and
convenient than its numerical value. For instance, an exponential func-
tion provides more information about the nature of a phenomenon
than a large set of numbers with twenty accurate digits. An exact
analytical description can also determine the behavior of a function
when extrapolating to regions for which no data exists.

2.2 Numerical Computations • 13

The evalf command converts an exact numerical expression to a
floating-point number.

> evalf(Pi);

3.141592654

By default, Maple calculates the result using ten digits of accuracy,
but you can specify any number of digits. Indicate the number after the
numerical expression, using the following notation.

> evalf(Pi, 200);

3.1415926535897932384626433832795028841\
97169399375105820974944592307816406286\
20899862803482534211706798214808651328\
23066470938446095505822317253594081284\
81117450284102701938521105559644622948\
9549303820

You can also force Maple to do all its computations with floating-point
approximations by including at least one floating-point number in each
expression. Floats are contagious : if an expression contains one floating-
point number, Maple evaluates the entire expression using floating-point
arithmetic.

> 1/3 + 1/4 + 1/5.3;

0.7720125786

> sin(0.2);

0.1986693308

The optional second argument to evalf controls the number of
floating-point digits for that particular calculation, and the special vari-
able Digits sets the number of floating-point digits for all subsequent
calculations.

> Digits := 20;

Digits := 20

14 • Chapter 2: Mathematics with Maple: The Basics

> sin(0.2);

0.19866933079506121546

Digits is now set to twenty, which Maple then uses at each step
in a calculation. Maple works like a calculator or an ordinary computer
application in this respect. When you evaluate a complicated numerical
expression, errors can accumulate to reduce the accuracy of the result
to less than twenty digits. In general, setting Digits to produce a given
accuracy is not easy, as the final result depends on your particular ques-
tion. Using larger values, however, usually gives you some indication. If
required, Maple can provide extreme floating-point accuracy.

Arithmetic with Special Numbers
Maple can work with complex numbers. I is the Maple default symbol for
the square root of minus one, that is, I =

√
−1.

> (2 + 5*I) + (1 - I);

3 + 4 I

> (1 + I)/(3 - 2*I);

1

13
+

5

13
I

You can also work with other bases and number systems.

> convert(247, binary);

11110111

> convert(1023, hex);

3FF

> convert(17, base, 3);

[2, 2, 1]

2.2 Numerical Computations • 15

Maple returns an integer base conversion as a list of digits; otherwise,
a line of numbers, like 221, may be ambiguous, especially when dealing
with large bases. Note that Maple lists the digits in order from least
significant to most significant.

Maple also supports arithmetic in finite rings and fields.

> 27 mod 4;

3

Symmetric and positive representations are both available.

> mods(27,4);

−1

> modp(27,4);

3

The default for the mod command is positive representation, but you
can change this option. For details, refer to ?mod.

Maple can work with Gaussian Integers . The GaussInt package has
about thirty commands for working with these special numbers. For in-
formation about these commands, refer to ?GaussInt help page.

Mathematical Functions
Maple contains all the standard mathematical functions (see Table 2.2 for
a partial list).

> sin(Pi/4);

1

2

√
2

> ln(1);

0

16 • Chapter 2: Mathematics with Maple: The Basics

Table 2.2 Select Mathematical Functions in Maple

Function Description

sin, cos, tan, etc. trigonometric functions
sinh, cosh, tanh, etc. hyperbolic trigonometric functions
arcsin, arccos, arctan, etc. inverse trigonometric functions
exp exponential function
ln natural logarithmic function
log[10] logarithmic function base 10
sqrt algebraic square root function
round round to the nearest integer
trunc truncate to the integer part
frac fractional part
BesselI, BesselJ, Bessel functions
BesselK, BesselY
binomial binomial function
erf, erfc error & complementary error functions
Heaviside Heaviside step function
Dirac Dirac delta function
MeijerG Meijer G function
Zeta Riemann Zeta function
LegendreKc, LegendreKc1, Legendre’s elliptic integrals
LegendreEc, LegendreEc1,
LegendrePic, LegendrePic1
hypergeom hypergeometric function

Note: When Maple cannot find a simpler form, it leaves the expression
as it is rather than convert it to an inexact form.

> ln(Pi);

ln(π)

2.3 Basic Symbolic Computations

Maple can work with mathematical unknowns, and expressions which
contain them.

2.3 Basic Symbolic Computations • 17

> (1 + x)^2;

(1 + x)2

> (1 + x) + (3 - 2*x);

4− x

Note that Maple automatically simplifies the second expression.
Maple has hundreds of commands for working with symbolic expres-

sions. For a partial list, see Table 2.2.

> expand((1 + x)^2);

1 + 2x+ x2

> factor(%);

(1 + x)2

As mentioned in 2.2 Numerical Computations, the ditto operator,
%, is a shorthand notation for the previous result.

> Diff(sin(x), x);

d

dx
sin(x)

> value(%);

cos(x)

> Sum(n^2, n);

∑

n

n2

> value(%);

1

3
n3 − 1

2
n2 +

1

6
n

18 • Chapter 2: Mathematics with Maple: The Basics

Divide one polynomial in x by another.

> rem(x^3+x+1, x^2+x+1, x);

2 + x

Create a series.

> series(sin(x), x=0, 10);

x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 +O(x10)

All the mathematical functions mentioned in the previous section also
accept unknowns as arguments.

2.4 Assigning Expressions to Names

This section introduces the following concepts in Maple.

• Naming an object

• Guidelines for Maple names

• Maple arrow notation (->)

• Assignment operator (:=)

• Predefined and reserved names

Syntax for Naming an Object
Using the ditto operator, or retyping a Maple expression every time you
want to use it, is not always convenient, so Maple enables you to name
an object. Use the following syntax for naming.

name := expression;

You can assign any Maple expression to a name.

> var := x;

var := x

2.4 Assigning Expressions to Names • 19

> term := x*y;

term := x y

You can assign equations to names.

> eqn := x = y + 2;

eqn := x = y + 2

Guidelines for Maple Names
Maple names can include any alphanumeric characters and underscores,
but they cannot start with a number. Do not start names with an un-
derscore because Maple uses these names for internal classification.

• Examples of valid Maple names are polynomial, test_data, RoOt_lOcUs_pLoT,
and value2.

• Examples of invalid Maple names are 2ndphase (because it begins
with a number) and x&y (because & is not an alphanumeric character).

Maple Arrow Notation in Defining Functions
Define functions by using the Maple arrow notation (->). This notation
allows you to evaluate a function when it appears in Maple expressions.
You can do simple graphing of the function by using the plot command.

> f := x -> 2*x^2 -3*x +4;

f := x → 2x2 − 3x+ 4

> plot (f(x), x= -5..5);

10

20

30

40

50

60

70

–4 –2 0 2 4
x

20 • Chapter 2: Mathematics with Maple: The Basics

For more information on the plot command, see chapter 5 or enter
?plot at the Maple prompt.

The Assignment Operator
The assignment (:=) operator associates a function name with a function
definition. The name of the function is on the left-hand side of the :=.
The function definition (using the arrow notation) is on the right-hand
side. The following statement defines f as the squaring function.

> f := x -> x^2;

f := x → x2

Evaluating f at an argument produces the square of the argument of
f.

> f(5);

25

> f(y+1);

(y + 1)2

Predefined and Reserved Names
Maple has some predefined and reserved names. If you try to assign to a
name that is predefined or reserved, Maple displays a message, informing
you that the name you have chosen is protected.

> Pi := 3.14;

Error, attempting to assign to ‘Pi‘ which is protected

> set := {1, 2, 3};

Error, attempting to assign to ‘set‘ which is protected

2.5 Basic Types of Maple Objects • 21

2.5 Basic Types of Maple Objects

This section examines basic types of Maple objects, including expression
sequences, lists, sets, arrays, tables, and strings. These ideas are essen-
tial to the discussion in the rest of this book. Also, the following concepts
in Maple are introduced.

• Concatenation operator

• Square bracket usage

• Curly braces usage

• Mapping

• Colon (:) for suppressing output

• Double quotation mark usage

Types Expressions belong to a class or group that share common proper-
ities. The classes and groups are known as types. For a complete list of
types in Maple, refer to the ?type help page.

Expression Sequences
The basic Maple data structure is the expression sequence . This is a
group of Maple expressions separated by commas.

> 1, 2, 3, 4;

1, 2, 3, 4

> x, y, z, w;

x, y, z, w

Expression sequences are neither lists nor sets. They are a distinct data
structure within Maple and have their own properties.

• Expression sequences preserve the order and repetition of their ele-
ments. Items stay in the order in which you enter them. If you enter
an element twice, both copies remain.

• Sequences are often used to build more sophisticated objects through
such operations as concatenation.

22 • Chapter 2: Mathematics with Maple: The Basics

Other properties of sequences will become apparent as you progress
through this manual. Sequences extend the capabilities of many basic
Maple operations. For example, concatenation is a basic name-forming
operation. The concatenation operator in Maple is “||”. You can use
the operator in the following manner.

> a||b;

ab

When applying concatenation to a sequence, the operation affects each
element. For example, if S is a sequence, then you can prepend the name
a to each element in S by concatenating a and S.

> S := 1, 2, 3, 4;

S := 1, 2, 3, 4

> a||S;

a1 , a2 , a3 , a4

You can also perform multiple assignments using expression se-
quences. For example

> f,g,h := 3, 6, 1;

f, g, h := 3, 6, 1

> f;

3

> h;

1

2.5 Basic Types of Maple Objects • 23

Lists
You create a list by enclosing any number of Maple objects (separated
by commas) in square brackets.

> data_list := [1, 2, 3, 4, 5];

data_list := [1, 2, 3, 4, 5]

> polynomials := [x^2+3, x^2+3*x-1, 2*x];

polynomials := [x2 + 3, x2 + 3x− 1, 2x]

> participants := [Kathy, Frank, Rene, Niklaus, Liz];

participants := [Kathy , Frank , Rene , Niklaus , Liz]

Thus, a list is an expression sequence enclosed in square brackets.

Order Maple preserves the order and repetition of elements in a list.
Thus, [a,b,c], [b,c,a], and [a,a,b,c,a] are all different.

> [a,b,c], [b,c,a], [a,a,b,c,a];

[a, b, c], [b, c, a], [a, a, b, c, a]

Because order is preserved, you can extract a particular element from a
list without searching for it.

> letters := [a,b,c];

letters := [a, b, c]

> letters[2];

b

Use the nops command to determine the number of elements in a list.

> nops(letters);

3

24 • Chapter 2: Mathematics with Maple: The Basics

Section 2.6 Expression Manipulation discusses this command, in-
cluding its other uses, in more detail.

Sets

Maple supports sets in the mathematical sense. Commas separate the
objects, as they do in a sequence or list, but the enclosing curly braces
identify the object as a set.

> data_set := {1, -1, 0, 10, 2};

data_set := {−1, 0, 1, 2, 10}

> unknowns := {x, y, z};

unknowns := {x, y, z}

Thus, a set is an expression sequence enclosed in curly braces.

Order Maple does not preserve order or repetition in a set. That is,
Maple sets have the same properties as sets do in mathematics. Thus, the
following three sets are identical.

> {a,b,c}, {c,b,a}, {a,a,b,c,a};

{a, b, c}, {a, b, c}, {a, b, c}

For Maple, the integer 2 is distinct from the floating-point approxi-
mation 2.0. Thus, the following set has three elements, not two.

> {1, 2, 2.0};

{1, 2, 2.0}

The properties of sets make them a particularly useful concept in
Maple, just as they are in mathematics. Maple provides many operations
on sets, including the basic operations of intersection and union using
the notation intersect and union.

> {a,b,c} union {c,d,e};

{a, b, c, d, e}

2.5 Basic Types of Maple Objects • 25

> {1,2,3,a,b,c} intersect {0,1,y,a};

{1, a}

The nops command counts the number of elements in a set or list.

> nops(%);

2

For more details on the nops command, see 2.6 Expression Manip-
ulation.

Mapping A common and useful command, often used on sets, is map.
Mapping applies a function simultaneously to all the elements of any
structure.

> numbers := {0, Pi/3, Pi/2, Pi};

numbers := {0, π, 1
3
π,

1

2
π}

> map(g, numbers);

{g(0), g(π), g(1
3
π), g(

1

2
π)}

> map(sin, numbers);

{0, 1, 1
2

√
3}

Further examples demonstrating the use of map appear in 2.6 Ex-
pression Manipulation and 6.3 Structural Manipulations.

Operations on Sets and Lists
The member command verifies membership in sets and lists.

> participants := [Kate, Tom, Steve];

participants := [Kate , Tom, Steve]

26 • Chapter 2: Mathematics with Maple: The Basics

> member(Tom, participants);

true

> data_set := {5, 6, 3, 7};

data_set := {3, 5, 6, 7}

> member(2, data_set);

false

To select items from lists, use the subscript notation, [n], where n
identifies the position of the desired element in the list.

> participants[2];

Tom

Maple recognizes empty sets and lists, that is, lists or sets that have
no elements.

> empty_set := {};

empty_set := {}

> empty_list := [];

empty_list := []

You can create a new set from other sets by using, for example, the
union command. Delete items from sets by using the minus command.

> old_set := {2, 3, 4} union {};

old_set := {2, 3, 4}

> new_set := old_set union {2, 5};

new_set := {2, 3, 4, 5}

2.5 Basic Types of Maple Objects • 27

> third_set := old_set minus {2, 5};

third_set := {3, 4}

Arrays
Arrays are an extension of the concept of the list data structure. Think
of a list as a group of items in which you associate each item with a pos-
itive integer, its index, that represents its position in the list. The Maple
array data structure is a generalization of this idea. Each element is still
associated with an index, but an array is not restricted to one dimen-
sion. In addition, indices can also be zero or negative. Furthermore, you
can define or change the array’s individual elements without redefining it
entirely.

Declare the array to indicate dimensions.

> squares := array(1..3);

squares := array(1..3, [])

Assign the array elements. Multiple commands can be entered at one
command prompt provided each ends with a colon or semicolon.

> squares[1] := 1; squares[2] := 2^2; squares[3] := 3^2;

squares1 := 1

squares2 := 4

squares3 := 9

Or do both simultaneously.

> cubes := array(1..3, [1,8,27]);

cubes := [1, 8, 27]

You can select a single element using the same notation applied to
lists.

> squares[2];

28 • Chapter 2: Mathematics with Maple: The Basics

4

You must declare arrays in advance. To see the array’s contents, you
must use a command such as print.

> squares;

squares

> print(squares);

[1, 4, 9]

The preceding array has only one dimension, but arrays can have more
than one dimension. Define a 3× 3 array.

> pwrs := array(1..3,1..3);

pwrs := array(1..3, 1..3, [])

This array has dimension two (two sets of indices). To begin, assign
the array elements of the first row.

> pwrs[1,1] := 1; pwrs[1,2] := 1; pwrs[1,3] := 1;

pwrs1, 1 := 1

pwrs1, 2 := 1

pwrs1, 3 := 1

Continue for the rest of the array. If you prefer, you can end each
command with a colon (:), instead of the usual semicolon (;), to suppress
the output. Both the colon and semicolon are statement separators.

> pwrs[2,1] := 2: pwrs[2,2] := 4: pwrs[2,3] := 8:
> pwrs[3,1] := 3: pwrs[3,2] := 9: pwrs[3,3] := 27:
> print(pwrs);





1 1 1
2 4 8
3 9 27





2.5 Basic Types of Maple Objects • 29

You can select an element by specifying both the row and column.

> pwrs[2,3];

8

You can define a two-dimensional array and its elements simultane-
ously by using a similar method employed for the one-dimensional ex-
ample shown earlier. To do so, use lists within lists. That is, make a list
where each element is a list that contains the elements of one row of the
array. Thus, you could define the pwrs array as follows.

> pwrs2 := array(1..3, 1..3, [[1,1,1], [2,4,8], [3,9,27]]);

pwrs2 :=





1 1 1
2 4 8
3 9 27





Arrays are not limited to two dimensions, but those of higher order
are more difficult to display. You can declare all the elements of the array
as you define its dimension.

> array3 := array(1..2, 1..2, 1..2,
> [[[1,2],[3,4]], [[5,6],[7,8]]]);

array3 := array(1..2, 1..2, 1..2, [

(1, 1, 1) = 1

(1, 1, 2) = 2

(1, 2, 1) = 3

(1, 2, 2) = 4

(2, 1, 1) = 5

(2, 1, 2) = 6

(2, 2, 1) = 7

(2, 2, 2) = 8

])

Maple does not automatically expand the name of an array to the rep-
resentation of all elements. In some commands, you must specify explicitly
that you want to perform an operation on the elements.

30 • Chapter 2: Mathematics with Maple: The Basics

Suppose that you want to define a new array identical to pwr, but
with each occurrence of the number 2 in pwrs replaced by the number 9.
To perform this substitution, use the subs command. The basic syntax is

subs(x=expr1, y=expr2, ... , main_expr)

Note: The subs command does not modify the value of main_expr. It
returns an object of the same type with the specified substitutions. For
example, to substitute x+ y for z in an expression, do the following.

> expr := z^2 + 3;

expr := z2 + 3

> subs({z=x+y}, expr);

(x+ y)2 + 3

Note that the following call to subs does not work.

> subs({2=9}, pwrs);

pwrs

You must instead force Maple to fully evaluate the name of the ar-
ray to the component level and not just to its name, using the com-
mand evalm.

> pwrs3:=subs({2=9}, evalm(pwrs));

pwrs3 :=





1 1 1
9 4 8
3 9 27





This causes the substitution to occur in the components and full evalua-
tion displays the array’s elements, similar to using the print command.

> evalm(pwrs3);

2.5 Basic Types of Maple Objects • 31





1 1 1
9 4 8
3 9 27





Tables
A table is an extension of the concept of the array data structure. The
difference between an array and a table is that a table can have anything
for indices, not just integers.

> translate := table([one=un,two=deux,three=trois]);

translate := table([two = deux , three = trois , one = un])

> translate[two];

deux

Although at first they may seem to have little advantage over arrays,
table structures are very powerful. Tables enable you to work with natural
notation for data structures. For example, you can display the physical
properties of materials using a Maple table.

> earth_data := table([mass=[5.976*10^24,kg],
> radius=[6.378164*10^6,m],
> circumference=[4.00752*10^7,m]]);

earth_data := table([mass = [0.5976000000 1025, kg],

radius = [0.6378164000 107, m],

circumference = [0.4007520000 108, m]

])

> earth_data[mass];

[0.5976000000 1025, kg]

In this example, each index is a name and each entry is a list. Often,
much more general indices are useful. For example, you could construct a
table which has algebraic formulæ for indices and the derivatives of these
formulæ as values.

32 • Chapter 2: Mathematics with Maple: The Basics

Strings
A string is also an object in Maple and is created by enclosing any number
of characters in double quotes .

> "This is a string.";

“This is a string.”

They are nearly indivisible constructs that stand only for themselves;
they cannot be assigned a value.

> "my age" := 32;

Error, invalid left hand side of assignment

Like elements of lists or arrays, the individual characters of a string
can be indexed with square bracket notation.

> mystr := "I ate the whole thing.";

mystr := “I ate the whole thing.”

> mystr[3..5];

“ate”

> mystr[11..-2];

“whole thing”

A negative index represents a character position counted from the
right end of the string. In the example above, −2 represents the second
last character.

The concatenation operator, “||”, or the cat command is used to
join two strings together, and the length command is used to determine
the number of characters in a string.

> newstr := cat("I can’t believe ", mystr);

newstr := “I can’t believe I ate the whole thing.”

> length(newstr);

2.6 Expression Manipulation • 33

38

For examples of commands that operate on strings and take strings
as input, refer to the ?StringTools help page.

2.6 Expression Manipulation

Many Maple commands concentrate on manipulating expressions. This
includes manipulating results of Maple commands into a familiar or useful
form. This section introduces the most commonly used commands in this
area.

The simplify Command
You can use this command to apply simplification rules to an expres-
sion. Maple has simplification rules for various types of expressions and
forms, including trigonometric functions, radicals, logarithmic functions,
exponential functions, powers, and various special functions.

> expr := cos(x)^5 + sin(x)^4 + 2*cos(x)^2
> - 2*sin(x)^2 - cos(2*x);

expr :=

cos(x)5 + sin(x)4 + 2 cos(x)2 − 2 sin(x)2 − cos(2x)

> simplify(expr);

cos(x)4 (cos(x) + 1)

To perform only a certain type of simplification, specify the type you
want.

> simplify(sin(x)^2 + ln(2*y) + cos(x)^2);

1 + ln(2) + ln(y)

> simplify(sin(x)^2 + ln(2*y) + cos(x)^2, ’trig’);

1 + ln(2 y)

34 • Chapter 2: Mathematics with Maple: The Basics

> simplify(sin(x)^2 + ln(2*y) + cos(x)^2, ’ln’);

sin(x)2 + ln(2) + ln(y) + cos(x)2

With the side relations feature, you can apply your own simplifica-
tion rules.

> siderel := {sin(x)^2 + cos(x)^2 = 1};

siderel := {sin(x)2 + cos(x)2 = 1}

> trig_expr := sin(x)^3 - sin(x)*cos(x)^2 + 3*cos(x)^3;

trig_expr := sin(x)3 − sin(x) cos(x)2 + 3 cos(x)3

> simplify(trig_expr, siderel);

2 sin(x)3 − 3 cos(x) sin(x)2 + 3 cos(x)− sin(x)

The factor Command
This command factors polynomial expressions.

> big_poly := x^5 - x^4 - 7*x^3 + x^2 + 6*x;

big_poly := x5 − x4 − 7x3 + x2 + 6x

> factor(big_poly);

x (x− 1) (x− 3) (x+ 2) (x+ 1)

> rat_expr := (x^3 - y^3)/(x^4 - y^4);

rat_expr :=
x3 − y3

x4 − y4

Both the numerator and denominator contain the common factor x−y.
Thus, factoring cancels these terms.

> factor(rat_expr);

2.6 Expression Manipulation • 35

x2 + x y + y2

(y + x) (x2 + y2)

Maple can factor both univariate and multivariate polynomials over
the domain the coefficients specify. You can also factor polynomials over
algebraic extensions. For details, refer to the ?factor help page.

The expand Command
The expand command is essentially the reverse of factor. It causes the
expansion of multiplied terms as well as a number of other expansions.
This is among the most useful of the manipulation commands. Although
you might imagine that with a name like expand the result would be larger
and more complex than the original expression; this is not always the case.
In fact, expanding some expressions results in substantial simplification.

> expand((x+1)*(x+2));

x2 + 3x+ 2

> expand(sin(x+y));

sin(y) cos(x) + cos(y) sin(x)

> expand(exp(a+ln(b)));

ea b

The expand command is quite flexible. You can you specify that cer-
tain subexpressions be unchanged by the expansion and program custom
expansion rules.

Although the simplify command may seem to be the most useful
command, this is misleading. Unfortunately, the word simplify is rather
vague. When you request to simplify an expression, Maple examines
your expression, tests many techniques, and then tries applying the ap-
propriate simplification rules. However, this might take a little time. As
well, Maple may not be able to determine what you want to accomplish
since universal mathematical rules do not define what is simpler.

When you do know which manipulations will make your expression
simpler for you, specify them directly. In particular, the expand command

36 • Chapter 2: Mathematics with Maple: The Basics

is among the most useful. It frequently results in substantial simplifica-
tion, and also leaves expressions in a convenient form for many other
commands.

The convert Command
This command converts expressions between different forms. For a list of
common conversions, see Table 2.3.

> convert(cos(x),exp);

1

2
e(x I) +

1

2

1

e(x I)

> convert(1/2*exp(x) + 1/2*exp(-x),trig);

cosh(x)

> A := Matrix([[a,b],[c,d]]);

A :=

[

a b
c d

]

> convert(A, ’listlist’);

[[a, b], [c, d]]

> convert(A, ’set’);

{a, b, d, c}

> convert(%, ’list’);

[a, b, d, c]

The normal Command
This command transforms rational expressions into factored normal
form,

numerator

denominator
,

2.6 Expression Manipulation • 37

Table 2.3 Common Conversions

Argument Description

polynom series to polynomials
exp, expln, expsincos trigonometric expressions to exponential form
parfrac rational expressions to partial fraction form
rational floating-point numbers to rational form
radians, degrees between degrees and radians
set, list, listlist between data structures
temperature between temperature scales
units between units

where the numerator and denominator are relatively prime polynomials
with integer coefficients.

> rat_expr_2 := (x^2 - y^2)/(x - y)^3 ;

rat_expr_2 :=
x2 − y2

(−y + x)3

> normal(rat_expr_2);

y + x

(−y + x)2

> normal(rat_expr_2, ’expanded’);

y + x

y2 − 2x y + x2

The expanded option transforms rational expressions into expanded
normal form.

The combine Command
This command combines terms in sums, products, and powers into a sin-
gle term. These transformations are, in some cases, the reverse of the
transformations that expand applies.

> combine(exp(x)^2*exp(y),exp);

e(2x+y)

38 • Chapter 2: Mathematics with Maple: The Basics

> combine((x^a)^2, power);

x(2 a)

The map Command
This command is useful when working with lists, sets, or arrays. It pro-
vides a means for working with multiple solutions or for applying an
operation to each element of an array.

The map command applies a command to each element of a data
structure or expression. While it is possible to write program structures
such as loops to accomplish these tasks, you should not underestimate the
convenience and power of the map command. The map command is one of
the most useful commands in Maple.

> map(f, [a,b,c]);

[f(a), f(b), f(c)]

> data_list := [0, Pi/2, 3*Pi/2, 2*Pi];

data_list := [0,
1

2
π,

3

2
π, 2π]

> map(sin, data_list);

[0, 1, −1, 0]

If you give the map command more than two arguments, Maple passes
the last argument(s) to the initial command.

> map(f, [a,b,c], x, y);

[f(a, x, y), f(b, x, y), f(c, x, y)]

For example, to differentiate each item in a list with respect to x, you
can use the following commands.

> fcn_list := [sin(x),ln(x),x^2];

fcn_list := [sin(x), ln(x), x2]

2.6 Expression Manipulation • 39

> map(Diff, fcn_list, x);

[
d

dx
sin(x),

d

dx
ln(x),

d

dx
(x2)]

> map(value, %);

[cos(x),
1

x
, 2x]

You can also create an operation to map onto a list. For example,
suppose that you want to square each element of a list. Replace each
element (represented by x) with its square (x2).

> map(x->x^2, [-1,0,1,2,3]);

[1, 0, 1, 4, 9]

The lhs and rhs Commands
These two commands take the left-hand side and right-hand side of an
expression, respectively.

> eqn1 := x+y=z+3;

eqn1 := y + x = z + 3

> lhs(eqn1);

y + x

> rhs(eqn1);

z + 3

The numer and denom Commands
These two commands take the numerator and denominator of a rational
expression, respectively.

> numer(3/4);

40 • Chapter 2: Mathematics with Maple: The Basics

3

> denom(1/(1 + x));

x+ 1

The nops and op Commands
These two commands are useful for breaking expressions into parts and
extracting subexpressions.

The nops command returns the number of parts in an expression.

> nops(x^2);

2

> nops(x + y + z);

3

The op command allows you to access the parts of an expression. It
returns the parts as a sequence.

> op(x^2);

x, 2

You can also specify items by number or range.

> op(1, x^2);

x

> op(2, x^2);

2

> op(2..-2, x+y+z+w);

y, z

2.6 Expression Manipulation • 41

Common Questions about Expression Manipulation

1. How do I substitute for a product of two unknowns? Use side
relations to specify an identity. Substituting directly does not usually
work because Maple searches for an exact match before substituting.

> expr := a^3*b^2;

expr := a3 b2

> subs(a*b=5, expr);

a3 b2

The subs command was unsuccessful in its attempt to substitute. Use the
simplify command.

> simplify(expr, {a*b=5});

25 a

You can also use the algsubs command, which performs an algebraic
substitution.

> algsubs(a*b=5, expr);

25 a

2. How do I factor out the constant from 2x + 2y? Currently, this
operation is not possible in Maple because its simplifier automatically
distributes the number over the product, believing that a sum is simpler
than a product. In most cases, this is true.

If you enter the following expression, Maple automatically multiplies
the constant into the expression.

> 2*(x + y);

2x+ 2 y

How can you then deal with such expressions, when you need to factor
out constants, or negative signs? To factor such expressions, try this sub-
stitution.

42 • Chapter 2: Mathematics with Maple: The Basics

> expr3 := 2*(x + y);

expr3 := 2x+ 2 y

> subs(2=two, expr3);

x two + y two

> factor(%);

two (x+ y)

2.7 Conclusion

In this chapter you have seen many of the types of objects which Maple
is capable of manipulating, including sequences, sets, and lists. You have
seen a number of commands, including expand, factor, and simplify,
that are useful for manipulating and simplifying algebraic expressions.
Others, such as map, are useful for sets, lists, and arrays. Meanwhile,
subs is useful almost any time.

In the next chapter, you will learn to apply these concepts to solve
systems of equations, one of the most fundamental problems in mathe-
matics. As you learn about new commands, observe how the concepts of
this chapter are used in setting up problems and manipulating solutions.

