PHYS 410/555 Computational Physics: Solution of Non Linear Equations
(a.k.a. Root Finding) (Reference Numerical Recipes, 9.0, 9.1, 9.4)

e We will consider two cases

L. f(z)=0 “l-dimensional”
2. f(x)=0 “d-dimensional”
X = [21,%9,...,24]
f=[fi(x1,29,...,2q), ..., falx1, 22, ..., 24)]

1. Solving Nonlinear Equations in One Variable

e We have briefly discussed bisection (binary search), will consider one other technique:
Newton’s method (Newton-Raphson method).

Preliminaries
e We want to find one or more roots of

flz)=0 (1)

We first note that any nonlinear equation in one unknown can be cast in this canonical
form.

e Definition: Given a canonical equation, f(z) = 0, the residual of the equation for a
given x-value is simply the function f evaluated at that value.

e [terative technique: Assume f(x) = 0 has a root at x = x*; then consider sequence of
estimates (iterates) of 2*, 2(™

x(o) — x(l) N x(Q) . x(n) — x(n‘l'l) T G 1

e Associated with the 2(™ are the corresponding residuals

T(O) N ’I“(l) N 7“(2) | r(") N 7«(”+1) Y 0

I I I I I I
f(=©) f=®) f(=®) @) faty) flar)

‘Locating a root = Driving the residual to 0‘

e Convergence: When we use an iterative technique, we have to decide when to stop the
iteration. For root finding case, it is natural to stop when

62| = [z — W] < ¢ (2)
where € is a prescribed convergence criterion.

e A better idea is to use a “relativized” iz

|92
|x(n+1)‘

<e (3)

but we should “switch over” to “absolute” form (2) if [x(®*V| becomes “too small”
(examples in on-line code).

e Motivation: Small numbers often arise from “unstable processes” (numerically sensi-
tive), e.g. f(x + h) — f(z) as h — 0, or from “zero crossings” in periodic solutions
etc.—in such cases may not be possible and/or sensible to achieve stringent relative
convergence criterion

Newton’s method

e Requires “good” initial guess, (%); “good” depends on specific nonlinear equation being
solved

e Refer to Numerical Recipes for more discussion; we will assume that we have a good
2 and will discuss one general technique for determining good initial estimate later.

e First consider a rather circuitous way of solving the “trivial” equation
ax=0b — f(x)=ar—-b0=0 (4)

Clearly, f(x) = 0 has the root

(5)

r® = f(20) = az® — b (6)
Then we can compute an improved estimate, z("), which is actually the solution, z*,
via
(0) (0)
() _ 0 _5p0 _ 0 _ " o f@7)
=z o = EO x F) (7)

“Proof”:

e Graphically, we have

6 4 slope = a = df/dx(x®) = Rise / Run

ax—-b
FXO) fmmmmmmmmeeeeeee e 1

XO

x D = x*

Run=x0@- x@®

e Summary

LU 0 _ 5,0 9)
where 620 satisfies
F(@@)5z© = f(2(0) (10)
or
f’(x(o))5x(0) — 0 (11)

e Equations (9-10) immediately generalize to non-linear f(z) and, in fact, are precisely
Newton’s method.

e For a general nonlinear function, f(z), we have, graphically

f(x)
fx©) = r ©
f(x(l)) =r®
f(x@) = @

1

e Newton’s method for f(z) = 0: Starting from some initial guess z(*), generate iterates
(n+1) 3
x via

gD = g 5 (12)
F(@™)sz™ = ¢ = f(zM) (13)
or more compactly
o) _ g _ S (14)
()

e Convergence: When Newton’s method converges, it does so rapidly; expect number of
significant digits (accurate digits) in (™ to roughly double at each iteration (quadratic
convergence)

e Frample: “Square Roots”

Application of (14) yields

L))

which we can write as

1 a
(n+1) _ = (n) s
T =3 (:1: + a:(“)> (16)

e Try it manually, compute /2 = 1.414 2135 6237 using 12-digit arithmetic (hand cal-
culator)

[terate Sig. Figs
1
(1.5 4+ 2.0/1.5) = 1.416 6666 6667 3
(1.416---+2.0/1.416---) = 1.414 2156 8628 6
(1.4142---+2.0/1.4142--+) = 1.414 2135 6238 11

S
C
Il

3

N|—= N[—= N~ =

71 =
x(Q) —
73 =
Note the quadratic convergence of the method, as advertised.

Alternate Derivation of Newton’s Method (Taylor series)

e Again, let 2* be a root of f(x) =0, then

0= f(a*) = fla™) + (" = 2™) f' (&™) + O((a* — 2™)?) (17)

Neglecting the higher order terms, we have

0~ f(z®™) + (@* = ™) f'(z™) (18)

Now, treating the last expression as an equation, and replacing (™ with the new

iterate, ("1, we obtain
0= f(z™) + (2" =2 f'(2™) (19)
or
(n)
(n+1) _ ..(n) _ f(z™)
T =z) (20)

as previously.

2. Newton’s Method for Systems of Equations

e We now want to solve

f(x)=0 (21)
where
X = (T1,T9,...,%q) (22)
f=(/i(x), f2(x),..., fu(x)) (23)
e Example (d=2):
sin(zy) = % (24)
Yy = 62+2 (25)

In terms of our canonical notation, we have

x = (z,y) (26)
f = (fi(x), f2(x)) 1 (27)
hx) = filz,y) =sin(zy) - 5 (28)
f2(x) = folw,y) = y* — 62 — 2 (29)

The method is again iterative, we start with some initial guess, x(?), then generate
iterates

*

€ s Ly 5@))
where x* is a solution of (21)

Note: The task of determining a good initial estimate x(*) in the d-dimensional case
is even more complicated than it is for the case of a single equation—again we will
assume that x(© is a good initial guess, and that f(x) is sufficiently well-behaved that
Newton’s method will provide a solution (i.e. will converge).

As we did with the scalar (1-d) case, with any estimate, x| we associate the residual
vector, ¥ defined by

r = f(x™) (30)

The analogue of f’(x) in this case is the Jacobian matriz, J, of first derivatives. Specif-
ically, J has elements .J;; given by

_Of;
N 8x]~

Jij (31)

For our current example we have

1

filz,y) = sin(zy) ~ 5

folz,y) = y*>—6x—2

| 0f2/0x Ofy/0y —6 2y

We can now derive the multi-dimensional Newton iteration, by considering a multi-
variate Taylor series expansion, paralleling what we did in the 1-d case:

J— df1/0x 0f1/0y] _ [ycos(ry) xcos(zy)

0 = f(x*) = £f(x™) + I[xM] - (x* — x™) + O((x* — x)?) (32)
where the notation J[x(™] means we evaluate the Jacobian matrix at x = x(™.

n+1)

Dropping higher order terms, and replacing x* with x! , we have

0= f(x(")) + J[x(")](x(”+1) — X(")) (33)

Defining dx(™ via

ox™ = —(x(n+D — x() (34)

the d-dimensional Newton iteration is given by

x(M) = x() _ 5x (™) (35)

where the update vector, 0x(™, satisfies the d x d linear system

J[x™]6x™ = £(x™) (36)

e Again note that the Jacobian matrix, J[x(™], has elements

ny _ Ofi
Jij[X()] ~ Oz) o
J Ix=x(n

e At each step of the Newton iteration, the linear system (36) can, of course, be solved
using an appropriate linear solver (e.g. general, tridiagonal, or banded).

General Structure of a Multidimensional Newton Solver

X: Solution vector
res: Residual vector
J: Jacobian matrix
dx: Update vector
X = X(O)

do while ||dx|j2 > €
do i =1, neq
res(i) = fi(x)
do j =1, neq
J(i,3) =[0fi/0x;](x)
end do
end do
dx = solve(J dx = res)
X =x-dx
end do

Finite Difference Example: Non-Linear BVP
e Consider the nonlinear two-point boundary value problem
U(7) g + (urty)? + sin(u) = F(z) (38)
which is to be solved on the interval
0<z<1 (39)
with the boundary conditions
u(0) =u(l) =0 (40)

e As we did for the case of the linear BVP, we will approximately solve this equation using
O(h?) finite difference techniques. As usual we introduce a uniform finite difference
mesh:

rj=(G-1)h j=1,2,---N h=(N-1)" (41)

e Then, using the standard O(h?) approximations to the first and second derivatives

up(ey) = HH_ZEL L O(R) (42)
= Qs A wa
;) = I O (43)

the discretized version of (38-40) is

R Ty . i —uiq]?
Uj+1 hq;]—FUJ 1+(Uj)2 UJ+12hU] 1} +sin(uj)—Fj = 0; 7=2 N -1 (44)
u, = 0 (45)
uy = 0 (46)

Note that we have cast the discrete equations in the canonical form f(u) = 0

e In order to apply Newton’s method to the algebraic equations (45-46), we must compute
the Jacobian matrix elements of the system.

e We first observe that due to the “nearest-neighbor” couplings of the unknowns u; via
the approximations (42-43), the Jacobian matrix is tridiagonal in this case.

e For the interior grid points, j = 2... N, corresponding to rows 2... N of the matrix,
we have the following non-zero Jacobian elements:

2 Ujr1 — Uj—1 2
Jj i = _ﬁ+2u7 it 57 J } + cos(u;) (47)
1 Uitr1 — Ui
Jig-1 = 55— (u))* 52— 57,2 ’ (48)
1 Uitr1 — Uj—1
Jj g1 = e + (u;)? . 272 ’ (49)

e For the boundary points, 5 = 1 and j = N, corresponding to the first and last row,
respectively, of J, we have

Jl,l — 1 (50)

Jia = 0 (51)
and

IJyy =1 (52)

Tyy-1 = 0 (53)

e Note that these last expressions correspond to the “trivial” equations

fi = w1 =0 (54)
N = uy= (55)
which have associated residuals
SURS (56
r = (57)
N N
e Observe that if we initialize u§°> = 0 and u§3’ = 0, then we will automatically have

sul™ = 6uY = 0, which will yield u{™ = 0 and u{") = 0 as desired.

e This is an example of the general procedure we have seen previously for imposing
Dirichlet conditions; namely the conditions are implemented as “trivial” (linear) equa-
tions (but it is, of course, absolutely crucial to implement them properly in this fashion!)

e Testing procedure: We adopt the same technique used for the linear BVP case—we
specify u(z), then compute the function F'(x) that is required to satisfy (38); F(z) is
then supplied as input to the code, and we ensure that as h — 0 we observe second
order convergence of the computed finite difference solution @(z) to the continuum
solution u(z).

10

e Frample: Taking

u(z) = sin(4rz) = sin(wr) (58)

then

F(z) = g+ (uu,)® + sin(u) (59)

= —w?sin(wr) + w?sin®(wz) cos?(wz) + sin(sin(wr))

e We note that due to the nonlinearity of the system, we will actually find multiple
solutions, depending on how we initialize the Newton iteration; this is illustrated with
the on-line code nlbvpid.

3. Determining Good Initial Guesses: Continuation

e It is often the case that we will want to solve nonlinear equations of the form

N(x;p) =0 (60)

where we have adopted the notation N(--+) to emphasize that we are dealing with a
nonlinear system. Here x = (x1,25...24) is, as previously, a vector of unknowns, with
X = X* a solution of (60).

e The quantity p in (60) is another vector, of length m, which enumerates any additional
parameters (generally adjustable) that enter into the problem; these could include:
coupling constants, rate constants, “perturbation” amplitudes etc.

e The nonlinearity of any particular system of the form (60) may make it very difficult
to compute x* without a good initial estimate x(¥; in such cases, the technique of
continuation often provides the means to generate such an estimate.

e Continuation: The basic idea underlying continuation is to “sneak up” on the solution
by introducing an additional parameter, € (the continuation parameter), so that by
continuously varying e from 0 to 1 (by convention), we vary from:

1. A problem that we know how to solve, or for which we already have a solution.
to
2. The problem of interest.

11

e Schematically we can sketch the following picture:

"Solution space”

e Note that we thus consider a family of problems
N(x;p) =0

with corresponding solutions

*

Xe = X,

e The efficacy of continuation generally depends on two crucial points:

1. No(x;p) has a known or easily calculable root at x}.

2. Can often choose Ae judiciously (i.e. sufficiently small) so that

*
Xe Ae

is a “good enough” initial estimate for

N(x;p) =0

12

(61)

(62)

e Again, schematically, we have

where we note that we may have to adjust (adapt) Ae as the continuation proceeds.
Continuation: Summary and Comments

e Solve sequence of problems with ¢ = 0,€5,€3...1 using previous solution as initial
estimate for each e # 0.

e Will generally have to tailor idea on a case-by-case basis.
e Can often identify e with one of the p; (intrinsic problem parameters) per se.

e The first problem, Ny(x,p) = 0, can frequently be chosen to be linear, and therefore
“easy” to solve, modulo sensitivity /poor conditioning.

e For time-dependent problems, time evolution often provides “natural” continuation;
¢ — t, and we can use x*(t — At) as the initial estimate x(®) (¢).

13

