
PHYS 410/555 Computational Physi
s: Solution of Non Linear Equations(a.k.a. Root Finding) (Referen
e Numeri
al Re
ipes, 9.0, 9.1, 9.4)� We will 
onsider two 
ases1: f(x) = 0 \1-dimensional"2: f(x) = 0 \d-dimensional"x � [x1; x2; : : : ; xd℄f � [f1(x1; x2; : : : ; xd); : : : ; fd(x1; x2; : : : ; xd)℄1. Solving Nonlinear Equations in One Variable� We have brie
y dis
ussed bise
tion (binary sear
h), will 
onsider one other te
hnique:Newton's method (Newton-Raphson method).Preliminaries� We want to �nd one or more roots off(x) = 0 (1)We �rst note that any nonlinear equation in one unknown 
an be 
ast in this 
anoni
alform.� De�nition: Given a 
anoni
al equation, f(x) = 0, the residual of the equation for agiven x-value is simply the fun
tion f evaluated at that value.� Iterative te
hnique: Assume f(x) = 0 has a root at x = x?; then 
onsider sequen
e ofestimates (iterates) of x?, x(n)x(0) ! x(1) ! x(2) ! � � � ! x(n) ! x(n+1) ! � � � ! x?� Asso
iated with the x(n) are the 
orresponding residualsr(0) ! r(1) ! r(2) ! � � � ! r(n) ! r(n+1) ! � � � ! 0k k k k k kf(x(0)) f(x(1)) f(x(2)) f(x(n)) f(x(n+1)) f(x?)Lo
ating a root � Driving the residual to 0� Convergen
e: When we use an iterative te
hnique, we have to de
ide when to stop theiteration. For root �nding 
ase, it is natural to stop when1



jÆx(n)j � jx(n+1) � x(n)j � � (2)where � is a pres
ribed 
onvergen
e 
riterion.� A better idea is to use a \relativized" ÆxjÆx(n)jjx(n+1)j � � (3)but we should \swit
h over" to \absolute" form (2) if jx(n+1)j be
omes \too small"(examples in on-line 
ode).� Motivation: Small numbers often arise from \unstable pro
esses" (numeri
ally sensi-tive), e.g. f(x + h) � f(x) as h ! 0, or from \zero 
rossings" in periodi
 solutionset
.|in su
h 
ases may not be possible and/or sensible to a
hieve stringent relative
onvergen
e 
riterionNewton's method� Requires \good" initial guess, x(0); \good" depends on spe
i�
 nonlinear equation beingsolved� Refer to Numeri
al Re
ipes for more dis
ussion; we will assume that we have a goodx(0), and will dis
uss one general te
hnique for determining good initial estimate later.� First 
onsider a rather 
ir
uitous way of solving the \trivial" equationax = b �! f(x) = ax� b = 0 (4)Clearly, f(x) = 0 has the root x? = ba (5)� Consider, instead, starting with some initial guess, x(0), with residualr(0) � f(x(0)) � ax(0) � b (6)Then we 
an 
ompute an improved estimate, x(1), whi
h is a
tually the solution, x?,via x(1) = x(0) � Æx(0) = x(0) � r(0)f 0(x(0)) = x(0) � f(x(0))f 0(x(0)) (7)
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\Proof": x(1) = x(0) � r(0)a = x(0) � ax(0) � ba = ba (8)� Graphi
ally, we have
f(x)

xx   (0)

f(x   )(0)

Rise = f(x   ) = r(0) (0)

Run = x    −  x (1)(0)

Slope = a = df/dx(x   ) = Rise / Run(0)

ax − b

x    = x(1) *

� Summary x(1) = x(0) � Æx(0) (9)where Æx(0) satis�es f 0(x(0))Æx(0) = f(x(0)) (10)or f 0(x(0))Æx(0) = r(0) (11)� Equations (9-10) immediately generalize to non-linear f(x) and, in fa
t, are pre
iselyNewton's method.
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� For a general nonlinear fun
tion, f(x), we have, graphi
ally
f(x)

x

f(x   ) = r(0) (0)

f(x   ) = r(1) (1)

f(x   ) = r(2) (2)

x   (0)x   (1)x   (2)x   (3)� Newton's method for f(x) = 0: Starting from some initial guess x(0), generate iteratesx(n+1) via x(n+1) = x(n) � Æx(n) (12)f 0(x(n))Æx(n) = r(n) � f(x(n)) (13)or more 
ompa
tly x(n+1) = x(n) � f(x(n))f 0(x(n)) (14)� Convergen
e: When Newton's method 
onverges, it does so rapidly; expe
t number ofsigni�
ant digits (a

urate digits) in x(n) to roughly double at ea
h iteration (quadrati

onvergen
e)
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� Example: \Square Roots"f(x) = x2 � a = 0 �! x? = pa (15)Appli
ation of (14) yieldsx(n+1) = x(n) � x(n)2 � a2x(n)= 2x(n)2 � �x(n)2 � a�2x(n)= x(n)2 + a2x(n)whi
h we 
an write as x(n+1) = 12 �x(n) + ax(n)� (16)� Try it manually, 
ompute p2 = 1:414 2135 6237 using 12-digit arithmeti
 (hand 
al-
ulator)Iterate Sig. Figsx(0) = 1:5 1x(1) = 12 (1:5 + 2:0=1:5) = 1:416 6666 6667 3x(2) = 12 (1:416 � � �+ 2:0=1:416 � � �) = 1:414 2156 8628 6x(3) = 12 (1:4142 � � �+ 2:0=1:4142 � � �) = 1:414 2135 6238 11Note the quadrati
 
onvergen
e of the method, as advertised.Alternate Derivation of Newton's Method (Taylor series)� Again, let x? be a root of f(x) = 0, then0 = f(x?) = f(x(n)) + (x? � x(n))f 0(x(n)) +O((x? � x(n))2) (17)Negle
ting the higher order terms, we have0 � f(x(n)) + (x? � x(n))f 0(x(n)) (18)5



Now, treating the last expression as an equation, and repla
ing x(n) with the newiterate, x(n+1), we obtain0 = f(x(n)) + (x(n+1) � x(n))f 0(x(n)) (19)or x(n+1) = x(n) � f(x(n))f 0(x(n)) (20)as previously.2. Newton's Method for Systems of Equations� We now want to solve f(x) = 0 (21)where x = (x1; x2; : : : ; xd) (22)f = (f1(x); f2(x); : : : ; fd(x)) (23)� Example (d = 2): sin(xy) = 12 (24)y2 = 6x + 2 (25)In terms of our 
anoni
al notation, we havex � (x; y) (26)f � (f1(x); f2(x)) (27)f1(x) = f1(x; y) = sin(xy)� 12 (28)f2(x) = f2(x; y) = y2 � 6x� 2 (29)
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� The method is again iterative, we start with some initial guess, x(0), then generateiterates x(0) ! x(1) ! x(2) ! � � � ! x(n) ! x(n+1) ! � � � ! x?where x? is a solution of (21)� Note: The task of determining a good initial estimate x(0) in the d-dimensional 
aseis even more 
ompli
ated than it is for the 
ase of a single equation|again we willassume that x(0) is a good initial guess, and that f(x) is suÆ
iently well-behaved thatNewton's method will provide a solution (i.e. will 
onverge).� As we did with the s
alar (1-d) 
ase, with any estimate, x(n), we asso
iate the residualve
tor, r(n), de�ned by r(n) � f(x(n)) (30)� The analogue of f 0(x) in this 
ase is the Ja
obian matrix, J, of �rst derivatives. Spe
if-i
ally, J has elements Jij given by Jij = �fi�xj (31)� For our 
urrent example we havef1(x; y) = sin(xy)� 12f2(x; y) = y2 � 6x� 2J = " �f1=�x �f1=�y�f2=�x �f2=�y # = " y 
os(xy) x 
os(xy)�6 2y #� We 
an now derive the multi-dimensional Newton iteration, by 
onsidering a multi-variate Taylor series expansion, paralleling what we did in the 1-d 
ase:0 = f(x?) = f(x(n)) + J[x(n)℄ � (x? � x(n)) +O((x? � x(n))2) (32)where the notation J[x(n)℄ means we evaluate the Ja
obian matrix at x = x(n).Dropping higher order terms, and repla
ing x? with x(n+1), we have0 = f(x(n)) + J[x(n)℄(x(n+1) � x(n)) (33)De�ning Æx(n) via 7



Æx(n) � �(x(n+1) � x(n)) (34)the d-dimensional Newton iteration is given byx(n+1) = x(n) � Æx(n) (35)where the update ve
tor, Æx(n), satis�es the d� d linear systemJ[x(n)℄ Æx(n) = f(x(n)) (36)� Again note that the Ja
obian matrix, J[x(n)℄, has elementsJij[x(n)℄ = �fi�xj �����x=x(n) (37)� At ea
h step of the Newton iteration, the linear system (36) 
an, of 
ourse, be solvedusing an appropriate linear solver (e.g. general, tridiagonal, or banded).General Stru
ture of a Multidimensional Newton Solverx: Solution ve
torres: Residual ve
torJ: Ja
obian matrixdx: Update ve
torx = x(0)do while kdxk2 > �do i = 1 , neqres(i) = fi(x)do j = 1 , neqJ(i,j) = [�fi=�xj ℄(x)end doend dodx = solve(J dx = res)x = x - dxend do
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Finite Di�eren
e Example: Non-Linear BVP� Consider the nonlinear two-point boundary value problemu(x)xx + (uux)2 + sin(u) = F (x) (38)whi
h is to be solved on the interval0 � x � 1 (39)with the boundary 
onditions u(0) = u(1) = 0 (40)� As we did for the 
ase of the linear BVP, we will approximately solve this equation usingO(h2) �nite di�eren
e te
hniques. As usual we introdu
e a uniform �nite di�eren
emesh: xj � (j � 1)h j = 1; 2; � � �N h � (N � 1)�1 (41)� Then, using the standard O(h2) approximations to the �rst and se
ond derivativesux(xj) = uj+1 � uj�12h + O(h2) (42)uxx(xj) = uj+1 � 2uj + uj�1h2 +O(h2) (43)the dis
retized version of (38-40) isuj+1 � 2uj + uj�1h2 + (uj)2 �uj+1 � uj�12h �2 + sin(uj)� Fj = 0 ; j = 2 : : : N � 1 (44)u1 = 0 (45)uN = 0 (46)Note that we have 
ast the dis
rete equations in the 
anoni
al form f(u) = 0� In order to apply Newton's method to the algebrai
 equations (45-46), we must 
omputethe Ja
obian matrix elements of the system.� We �rst observe that due to the \nearest-neighbor" 
ouplings of the unknowns uj viathe approximations (42-43), the Ja
obian matrix is tridiagonal in this 
ase.
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� For the interior grid points, j = 2 : : :N , 
orresponding to rows 2 : : :N of the matrix,we have the following non-zero Ja
obian elements:Jj ; j = � 2h2 + 2uj �uj+1 � uj�12h �2 + 
os(uj) (47)Jj ; j�1 = 1h2 � (uj)2 uj+1 � uj�12h2 (48)Jj ; j+1 = 1h2 + (uj)2 uj+1 � uj�12h2 (49)� For the boundary points, j = 1 and j = N , 
orresponding to the �rst and last row,respe
tively, of J, we have J1;1 = 1 (50)J1;2 = 0 (51)and JN;N = 1 (52)JN;N�1 = 0 (53)� Note that these last expressions 
orrespond to the \trivial" equationsf1 = u1 = 0 (54)fN = uN = 0 (55)whi
h have asso
iated residuals r(n)1 = u(n)1 (56)r(n)N = u(n)N (57)� Observe that if we initialize u(0)1 = 0 and u(0)N = 0, then we will automati
ally haveÆu(n)1 = Æu(n)N = 0, whi
h will yield u(n)1 = 0 and u(n)N = 0 as desired.� This is an example of the general pro
edure we have seen previously for imposingDiri
hlet 
onditions; namely the 
onditions are implemented as \trivial" (linear) equa-tions (but it is, of 
ourse, absolutely 
ru
ial to implement them properly in this fashion!)� Testing pro
edure: We adopt the same te
hnique used for the linear BVP 
ase|wespe
ify u(x), then 
ompute the fun
tion F (x) that is required to satisfy (38); F (x) isthen supplied as input to the 
ode, and we ensure that as h ! 0 we observe se
ondorder 
onvergen
e of the 
omputed �nite di�eren
e solution û(x) to the 
ontinuumsolution u(x). 10



� Example: Taking u(x) = sin(4�x) � sin(!x) (58)then F (x) = uxx + (uux)2 + sin(u) (59)= �!2 sin(!x) + !2 sin2(!x) 
os2(!x) + sin(sin(!x))� We note that due to the nonlinearity of the system, we will a
tually �nd multiplesolutions, depending on how we initialize the Newton iteration; this is illustrated withthe on-line 
ode nlbvp1d.3. Determining Good Initial Guesses: Continuation� It is often the 
ase that we will want to solve nonlinear equations of the formN(x; �p) = 0 (60)where we have adopted the notation N(� � �) to emphasize that we are dealing with anonlinear system. Here x = (x1; x2 : : : xd) is, as previously, a ve
tor of unknowns, withx = x? a solution of (60).� The quantity �p in (60) is another ve
tor, of length m, whi
h enumerates any additionalparameters (generally adjustable) that enter into the problem; these 
ould in
lude:
oupling 
onstants, rate 
onstants, \perturbation" amplitudes et
.� The nonlinearity of any parti
ular system of the form (60) may make it very diÆ
ultto 
ompute x? without a good initial estimate x(0); in su
h 
ases, the te
hnique of
ontinuation often provides the means to generate su
h an estimate.� Continuation: The basi
 idea underlying 
ontinuation is to \sneak up" on the solutionby introdu
ing an additional parameter, � (the 
ontinuation parameter), so that by
ontinuously varying � from 0 to 1 (by 
onvention), we vary from:1. A problem that we know how to solve, or for whi
h we already have a solution.to2. The problem of interest.
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� S
hemati
ally we 
an sket
h the following pi
ture:
"Solution space"

ε = 0

ε = 1

x
❉
0

x
❉
1 x

❉
=

� Note that we thus 
onsider a family of problemsN�(x; �p) = 0 (61)with 
orresponding solutions x� = x?� (62)� The eÆ
a
y of 
ontinuation generally depends on two 
ru
ial points:1. N0(x; �p) has a known or easily 
al
ulable root at x?0.2. Can often 
hoose �� judi
iously (i.e. suÆ
iently small) so thatx?����is a \good enough" initial estimate forN�(x; �p) = 0
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� Again, s
hemati
ally, we have

ε = 0

ε = 1

where we note that we may have to adjust (adapt) �� as the 
ontinuation pro
eeds.Continuation: Summary and Comments� Solve sequen
e of problems with � = 0; �2; �3 : : : 1 using previous solution as initialestimate for ea
h � 6= 0.� Will generally have to tailor idea on a 
ase-by-
ase basis.� Can often identify � with one of the pi (intrinsi
 problem parameters) per se.� The �rst problem, N0(x; �p) = 0, 
an frequently be 
hosen to be linear, and therefore\easy" to solve, modulo sensitivity/poor 
onditioning.� For time-dependent problems, time evolution often provides \natural" 
ontinuation;�! t, and we 
an use x?(t��t) as the initial estimate x(0)(t).
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