
SOLVING GENERAL LINEAR BANDED SYSTEMS

In the following, we will assume that we are solving a system of n equations
in n unknowns so that the number of rows and columns in our matrix A are
equal.

A general banded system is one in which the non-zero elements of A are
confined to a certain number of diagonals of the matrix, usually clustered

about the main diagonal. Tridiagonal systems clearly fall into this cate-
gory. Systems with more than 3 non-zero diagonals also often arise in finite

difference calculations (and other applications) and can also be efficiently
LU-decomposed by taking advantage of the non-zero structure of the array.



EXAMPLE: PENTADIAGONAL (5-DIAGONAL) SYSTEM

Recall the BVP we have considered previously

u′′(x) = f(x) 0 ≤ x ≤ 1 u(0), u(1) specified

Let us approximate u′′(x) using a fourth-order (O(h4)) finite-difference ap-
proximation:

−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2

12h2
= u′′(xj) + O(h4) i = 3, . . . , n− 2

(Part of Homework 4 involves using a Richardson-extrapolation technique
to derive the above formula from the usual O(h2) approximation of the sec-

ond derivative). Because this approximation couples the ith unknown, ui

to its nearest, and next-nearest neighbors, ui−1, ui+1, ui−2 and ui+2, the lin-
ear system which results from applying the approximation at mesh points

xi, i = 3, . . . , n − 2 is (ignoring momentarily the equations for u1, u2, un−1

and un) is clearly pentadiagonal:

We define the total bandwidth, w, of a matrix as the total number of diagonals
which span the non-zero portion of the matrix. In our current example,

the bandwidth is w = 5, and all 5 diagonals are generally comprised of
non-0 elements. However, particularly for finite-difference approximations to
problems in multiple dimensions, some of the diagonals within the bandwidth

of the matrix may have elements which are all 0.



As already stated, LU decomposition can be optimized for banded systems,
both in terms of execution time:

O(cwn) vs. O(n3)

and storage requirements

O(n) ≈ (2kl+ ku + 1)n vs. O(n2)

where

cw ≡ w-dependent constant

kl ≡ number of lower diagonals

ku ≡ number of upper diagonals

Note that although cw is a fairly rapidly varying function of w (must go to n2

as w goes to n), for any fixed bandwidth, the number of operations needed
to solve the banded system is proportional to the size, n, of the system.



LAPACK STORAGE SCHEME FOR BANDED MATRICES

First note that the length of the kth sub- or super-diagonal is nk = n − k.

Thus, particularly for n ≫ w, nk ≈ n, and we can efficiently store the matrix
in a 2-d array in which the diagonals of the matrix are stored in either rows

or columns of the array. LAPACK adopts the former strategy:

• Columns of matrix are stored in corresponding columns of array (but
elements are shifted)

• Diagonals of matrix are stored in rows of array

Example: n = 5, kl = 2, ku = 1, w = 4























a11 a12

a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55























is stored as

















⋆ a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 ⋆

a31 a42 a53 ⋆ ⋆

















Here, ⋆, denotes an “undefined” element which will not be referenced by
LAPACK routines.



ADDITIONAL WRINKLE

To perform the LU decomposition with partial pivoting and row interchanges
(for numerical stability) LAPACK routines require kl additional rows of storage.
(Elements of these rows need not be assigned values prior to calling the

solver.) Thus, in the above example, we would actually need to set-up our
banded array ab as follows:





























− − − − −

− − − − −

⋆ a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 ⋆

a31 a42 a53 ⋆ ⋆





























Note that the leading dimension, ldab, of this array is thus

ldab = 2 kl + ku + 1



FORTRAN IMPLEMENTATION: (illustrative purposes only)

integer maxn

parameter ( maxn = 1 000 )

real*8 a(maxn,maxn)

integer kl, ku, ldab

parameter ( kl = 2, ku = 1, ldab = 6 )

real*8 ab(ldab,maxn)

Assume that we have defined the (full) matrix a (i.e. set a(i,j) for i,

j = 1, . . . , n), then the following code will pack the coefficients using the
LAPACK band-storage scheme.

do j = 1 , n

do i = max( 1 , j - ku ) , min( n , j + kl )

ab( kl + ku + 1 + i - j , j ) = a( i , j )

end do

end do

Note that the above indexing guarantees that (a) elements remain in their

original columns and (b) diagonals (i - j = constant) are stored in rows of
ab. As we will see, in a real application, we will generally compute Aij and
load the value into ab(kl+ku+1+i-j,j) without explicitly storing a(i,j).

However, the “index translation” remains the same.



LAPACK GENERAL BANDED SOLVER: DGBSV

subroutine dgbsv( n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )

integer n ! size of system

integer kl, ku ! # of lower and upper diagonals

integer nrhs ! Number of right hand sides (nominally 1)

integer ldab ! Leading dimension of ab

! Note: ldab must be .ge. 2 * kl + ku + 1

real*8 ab(ldab,*) ! Matrix in LAPACK band-storage form

integer ldb ! Leading dimension of rhs array

real*8 b(ldb,*) ! Right hand side(s) on input

! Solution(s) on output

integer ipiv(n) ! Storage for pivot vector

integer info ! Usual LAPACK return code



EXAMPLE: 1D BVP

We again consider

u′′(x) = f(x) 0 ≤ x ≤ 1 u(0), u(1) specified

and adopt the same uniform discrete domain as previously, but now use
the O(h4) (five-term) approximation to u′′(x) where possible, and the O(h2)

(three-term) approximation elsewhere. Then we have the following system of
equations for the n unknowns, ui:

u1 = u(0) i = 1 (1)

h−2(ui−1 − 2ui + ui+1) = fi i = 2 (2)

(12h2)−1(−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2) = fi i = 3, . . . n − 2 (3)

h−2(ui−1 − 2ui + ui+1) = fi i = n − 1 (4)

un = u(1) i = n (5)

Clearly, this set of equations is of the form

Au = b

where A is an n × n pentadiagonal matrix.



Having derived the linear system we must solve, the only slightly challenging
part of the exercise is correctly setting up the array ab in LAPACK banded
form. Organizationally, this process can be expedited by noting that all of

the equations (1-5) can be written in the form:

k=2
∑

k=−2

ckui+k = bi

where, for each of the 5 sub-cases, the ck are constant coefficients, and it is to

be understood that the limits on the k-sum are to be changed if they result
in references to ui+k such that i + k < 1 or i + k > n.

Specifically, we have

c = [ 0 , 0 , 1 , 0 , 0 ] (1, 5)

c = h−2 [ 0 , 1 , − 2 , 1 , 0 ] (2, 4)

c = (12h2)−1 [ − 1 , 16 , − 30 , 16 , − 1 ] (3)

Refer to the program source for bvp1d4.f (available on-line) for full imple-
mentation details.


