
Projet 3(b): 2D Ultrarelativisti Fluid.

July 30, 2003

1 Introdution

In this projet we generalize the ode produed in Projet 2 to two dimensions (plus time).

We onsider the equations of a uid with an ultrarelativisti equation of state in Minkowski

spaetime. In general all uid quantities only depend on 2 spatial oordinates, x and y, and

time. We again hoose a oordinate system in whih v

z

vanishes. As in Projet 2, good

general referenes for this one are Mart��, et al. [1℄ and Font [2℄.

2 Equation of Motion

As we have seen in the previous projet the equations of motion an be alulated from:

�

T

ab

�

;a

= 0 (1)

where remember that the stress energy tensor is given by the following expression:

T

ab

= (�+ P )u

a

u

b

+ Pg

ab

; (2)

and we have ultrarelativisti equation of state P = (�� 1) �. We onsider the Minkowski

spaetime with metri, g

��

= �

��

= diagf�1; 1; 1; 1g, therefore the equations of motion an

be written as:

(T

��

)

;�

= 0: (3)

Now we introdue onservative variables analogous to the ones de�ned in Projet 2, see

Hawke [3℄:

� = (�+ P )W

2

� P; (4)

S

x

= (�+ P )W

2

v

x

; (5)

S

y

= (�+ P )W

2

v

y

; (6)

where we have used W

2

= (1� v

2

)

�1

with v

2

= v

x2

+ v

y2

. Note that v

i

= u

i

=u

t

where i take

values fx; yg and that W = u

t

. We left as an exerise to hek that we an write equations

(3) in onservation law form:

�q

�t

+

�f

x

(q)

�x

+

�f

y

(q)

�y

= 0; (7)
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using the following vetors:

q =

2

6

4

�

S

x

S

y

3

7

5

; (8)

f

x

=

2

6

4

(� + P ) v

x

S

x

v

x

+ P

S

y

v

x

3

7

5

; f

y

=

2

6

4

(� + P ) v

y

S

x

v

y

S

y

v

y

+ P

3

7

5

: (9)

These are the equations that are suited for disretization. Note that in this ase we have 2

physial ux vetors.

3 2D Disretization

The disretization in two dimensions is a generalization of the disretization in one dimension.

Starting from the ontinuous equations in di�erential form, (7), and taking the average over

(i, j) (i+1/2, j)

(i, j+1/2)

(i, j−1/2)

y

x

(i−1/2, j)

x∆

∆ y

Figure 1: In this Figure we an see the spatial ell struture. The dots represent the points

where the spatial averages of the onservation variables,
�
q

n

i j

, lie. Note that this quantities

are plaed on full time steps, i.e. t

n

, t

n+1

, et, ... The squares represent the positions of the

uxes F

x

n+1=2

i+1=2 j

and F

y

n+1=2

i j+1=2

whih are positioned on the half step, i.e. t

n+1=2

a spae time ell C

n+1=2

i j

� (t

n

; t

n+1

)� (x

i�1=2

; x

i

i+1=2

)� (y

j�1=2

; y

j+1=2

), we get the following

expression:

�
q

n+1

i j

�
�
q

n

i j

�t

+

F

x

n+1=2

i+1=2 j

� F

x

n+1=2

i�1=2 j

�x

+

F

y

n+1=2

i j+1=2

� F

y

n+1=2

i j�1=2

�y

= 0 (10)
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where �t = t

n+1

� t

n

, �x = x

i+1=2

� x

i�1=2

and �y = y

j+1=2

� y

j�1=2

and we have de�ned

the following average quantities:

�
q

n

i j

�

1

�x�y

Z

x

i+1=2

x

i�1=2

Z

y

j+1=2

y

j�1=2

q

n

(t

n

; x; y)dxdy; (11)

F

x

n+1=2

i+1=2 j

�

1

�t�y

Z

t

n+1

t

n

Z

y

j+1=2

y

j�1=2

f

x

�

t; x

i+1=2

; y

�

dtdy; (12)

F

y

n+1=2

i j+1=2

�

1

�t�x

Z

t

n+1

t

n

Z

x

j+1=2

x

j�1=2

f

y

�

t; x; y

j+1=2

�

dtdx: (13)

In Figure 2 you an see the position on the spaetime of the quantities previously de�ned.

Figure 2: Struture of one ell C

n+1=2

i j

. The bottom plane represents the spatial surfae

t

n

while the top one is t

n+1

. The blue spheres on these planes are the spatial averages

�
q

n

i j

and
�
q

n+1

i j

. The red spheres, on the left and far right, are loated at the positions of

spaetime where the numerial uxes in the x diretion, F

x

n+1=2

i+1=2 j

and F

x

n+1=2

i�1=2 j

, are loated.

Similarly the green spheres, on front and behind faes, are loated at the positions where

the numerial uxes in the y diretion, F

y

n+1=2

i j+1=2

and F

y

n+1=2

i j�1=2

, are plaed. Note that the

eah sphere orresponds to an average of a ertain quantity over the fae of the ube where

it is plaed.

4 Roe Solver

The proedure to alulate the Roe uxes is idential as in the one dimensional ase. We

will onsider two di�erent linearizations depending on whih ux we want to alulate. For
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the x numerial ux we solve the following problem at the ell interfaes loated at x

i+1=2

:

�q

�t

+

�f

x

�q

�q

�x

= 0 (14)

and for the y, at the y

j+1=2

interfaes:

�q

�t

+

�f

y

�q

�q

�y

= 0 (15)

The result for the Roe ux in the x diretion is:

F

x

Roe

i+1=2 j

=

1

2

"

f

x

�

~
p

R

i+1=2 j

�

+ f

x

�

~
p

L

i+1=2 j

�

�

X

�

j�

x

�

j!

x

�

r

x

�

#

; (16)

and the one in the y diretion:

F

y

Roe

i j+1=2

=

1

2

"

f

y

�

~
p

R

i j+1=2

�

+ f

y

�

~
p

L

i j+1=2

�

�

X

�

j�

y

�

j!

y

�

r

y

�

#

: (17)

Now we have four groups of reonstruted variables. Reonstruted variables along the x di-

retion, (
~
p

R

i+1=2 j

;
~
p

L

i+1=2 j

) and the reonstruted variables along the y diretion (
~
p

R

i j+1=2

;
~
p

L

i j+1=2

).

In the x diretion we alulate the reonstrution of the primitive variables in a similar way

we did in the one dimensional ase:

~
p

L

i+1=2 j

=
�
p

i j

+ �

i j

�

x

i+1=2

� x

i

�

; (18)

~
p

R

i+1=2 j

=
�
p

i+1 j

+ �

i+1 j

�

x

i+1=2

� x

i+1

�

; (19)

where �

i j

is:

�

i j

= minmod

�

s

i�1=2 j

; s

i+1=2 j

�

: (20)

Here:

s

i+1=2 j

=

�
p

i+1 j

�
�
p

i j

x

i+1

� x

i

; (21)

with minmod de�ned exatly the same way as in Projet 2. Analogously you an alulate

the reonstruted variables along the y diretion interhanging the x by the y indexes and

oordinates.

In formulas (16) and (17) we also have the harateristi struture of the two Jaobian

matries:

A

x

=

�f

x

�q

�

�

�

�

�

1=2 (
~
q

R

i+1=2 j

+
~
q

L

i+1=2 j

)

; A

y

=

�f

y

�q

�

�

�

�

�

1=2 (
~
q

R

i j+1=2

+
~
q

L

i j+1=2

)

: (22)

As before (�

a

�

; r

a

�

; !

a

�

) are the eigenvalues, right eigenvetors and the jumps in the hara-

teristi variables of the matrix A

i

with i taking values fx; yg, note that now � takes values

(1; 2; 3)

1

beause we have 3 equations and therefore 3� 3 matries. The jumps in this ase

are still de�ned by:

~
q

R

i+1=2 j

�
~
q

L

i+1=2 j

=

X

�

!

x

�

r

x

�

: (23)

1

As in Projet 2 here we are not using the onvention in Projet 1, although � is a Greek index it labels

the equation number, it is not a spaetime index.
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And analogously for the jumps along y. In the one dimensional ase we ould solve this

equation easily to get the values of !

�

is terms of the di�erenes
~
q

R

�
~
q

L

and the right

eigenvetors r

�

. In this ase it requires a little bit more algebra. It is useful to introdue the

left eigenvetors de�ned by:

l

x

�

A

x

= �

�

l

x

�

: (24)

Using the appropriate normalization the matrix produed by setting the left eigenvetors on

matrix form row by row is the inverse of the matrix produed setting the right eigenvetors

olumn by olumn. This implies that:

l

x

�

�

�

~
q

R

i+1=2 j

�
~
q

L

i+1=2 j

�

T

= !

x

�

: (25)

An alternative to this proedure is to numerially solve the system of equations (23) for !

x

�

.

As before the Roe uxes (16) and (17) when evaluated using the uid quantities de�ned on

t

n

are only �rst order approximations to the real numerial uxes de�ned by (12) and (13)

beause of the non-linearity of the equations. In order to make the time step seond order in

the absene of shoks, we set the whole proedure in a seond order Runge-Kutta integration

step as in the one dimensional ase.

Charateristi Struture

In the following expressions 

s

=

p

�� 1 stands for the speed of sound in the uid

q

�P=��.

For A

x

, the eigenvalues are:

�

x

o

= v

x

; (26)

�

x

�

=

1

1� v

2



2

s

�

v

x

�

1� 

2

s

�

� 

s

q

(v

2

� 1) (

2

s

v

2

� 1 + v

x2

(1� 

2

s

))

�

: (27)

Right eigenvetors:

r

x

o

=

2

6

4

2v

y

= (1 + v

2

� 2v

x2

)

2v

y

v

x

= (1 + v

2

� 2v

x2

)

1

3

7

5

; (28)

r

x

�

=

2

6

6

6

4

(1� v

x2

)

�

v

x

� �

x

�

�

(1� 

2

s

v

2

)

(1� v

x2

)

h�

�

x

�

v

x

� 1

�



2

s

(1� v

2

) + v

x

(1� 

2

s

)

�

v

x

� �

x

�

�i

v

y

h



2

s

�

�

x

�

(1 + v

x2

)v

2

� v

x2

�

x

�

� 2v

x

v

2

�

+ (1� 

2

s

) v

x2

�

�

x

�

� v

x

�

+ (

2

s

+ 1) v

x

� �

x

�

i

3

7

7

7

5

:

(29)

Left eigenvetors:

l

x

o

=

"

�

v

y

(1 + v

2

� 2v

x2

)

(1� v

x2

) (1� v

2

)

;

v

y

v

x

(1 + v

2

� 2v

x2

)

(1� v

x2

) (1� v

2

)

;

1� v

2

+ 2v

y2

1� v

2

#

; (30)

l

x

�

=

�

�

x

2

6

6

6

6

6

6

6

6

6

4

�

2

s

�

x

�

v

x3

v

2

+ 3

2

s

v

x

(v

y2

)

�

v

x

� �

x

�

�

+

(

2

s

+ 1) (1� v

x2

) + (

2

s

+ 1) (v

y2

) + (

2

s

+ 1)�

x

�

v

x

(3v

x2

� 2)+

�

x

�

v

x

(3� 4v

x2

) + v

x4

� (v

y2

)� 1

[1 + (2

2

s

� 1 + 2v

x2



2

s

) v

x2

℄ v

x

+ (�3

2

s

� v

x2



2

s

) v

x

v

2

+

[�1 + (1� 4v

x2



2

s

) v

x2

+ (3v

x2



2

s

+ 

2

s

) v

2

℄�

x

�

�2

2

s

v

y

(1� v

x2

)

�

1� 2�

x

�

v

x

+ v

x2

�

3

7

7

7

7

7

7

7

7

7

5

; (31)
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�

x

=

�

1� v

x2

�

3



2

s

�

�

x

�

� �

x

+

� �

1� v

2

� �

1� 

2

s

v

2

�

: (32)

For A

y

: The eigenvalues are:

�

y

o

= v

y

; (33)

�

y

�

=

1

1� v

2



2

s

�

v

y

�

1� 

2

s

�

� 

s

q

(v

2

� 1) (

2

s

v

2

� 1 + v

y2

(1� 

2

s

))

�

: (34)

The right eigenvetors:

r

y

o

=

2

6

4

2v

x

= (1 + v

2

� 2v

y2

)

1

2v

y

v

x

= (1 + v

2

� 2v

y2

)

3

7

5

; (35)

r

y

�

=

2

6

4

(1� v

y2

) (v

y

� �

y

�

) (1� 

2

s

v

2

)

v

x

[

2

s

(�

y

�

(1 + v

y2

)v

2

� v

y2

�

y

�

� 2v

y

v

2

) + (1� 

2

s

) v

y2

(�

y

�

� v

y

) + (

2

s

+ 1) v

y

� �

y

�

℄

(1� v

y2

) [(�

y

�

v

y

� 1) 

2

s

(1� v

2

) + v

y

(1� 

2

s

) (v

y

� �

y

�

)℄

3

7

5

:

(36)

Left Eigenvetors:

l

y

o

=

"

�

v

x

(1 + v

2

� 2v

y2

)

(1� v

y2

) (1� v

2

)

;

1� v

2

� 2v

x2

1� v

2

;

v

x

v

y

(1 + v

2

� 2v

y2

)

(1� v

y2

) (1� v

2

)

#

; (37)

l

y

�

=

�

�

y

2

6

6

6

6

6

6

6

6

4

�

2

s

�

y

�

v

y3

v

2

+ 3

2

s

v

y

(v

x2

) (v

y

� �

y

�

)+

(

2

s

+ 1) (1� v

y2

) + (

2

s

+ 1) (v

x2

) + (

2

s

+ 1)�

y

�

v

y

(3v

y2

� 2)+

�

y

�

v

y

(3� 4v

y2

) + v

y4

� (v

x2

)� 1

�2

2

s

v

x

(1� v

y2

) (1� 2�

y

�

v

y

+ v

y2

)

[1 + (2

2

s

� 1 + 2

2

s

v

y2

) v

y2

℄ v

y

+ (�3

2

s

� 

2

s

v

y2

) v

y

v

2

+

[�1 + (1� 4

2

s

v

y2

) v

y2

+ (3

2

s

v

y2

+ 

2

s

) v

2

℄�

y

�

3

7

7

7

7

7

7

7

7

5

; (38)

�

y

=

�

1� v

y2

�

3



2

s

(�

y

�

� �

y

+

)

�

1� v

2

� �

1� 

2

s

v

2

�

: (39)

Boundary Conditions and Cell Struture

In this setion we explain how the boundary onditions are set in two dimensions. The

proedure is ompletely analogous to the one in Projet 2 using ghost ells. RNPL produes

a mesh of points of size N

x

by N

y

that we will onsider to be entred at positions (x

i

; y

j

). In

Figure 3 we show the spatial ell struture, inluding ghost ells. This grid of points inlude

the entres of the ghost ells. In order to set approximate outgoing boundary onditions we

opy the values of the onservative variables in the last physial ell into the ghost ells:

q

1 j

= q

3 j

(40)

q

2 j

= q

3 j

(41)

q

N

x

�1 j

= q

N

x

�2 j

(42)

q

N

x

j

= q

N

x

�2 j

(43)

where q is one of the onservative variables and j take values on 1; :::; N

y

. Interhanging the

x and y indexes we get the equations for the boundary onditions in y.
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Figure 3: Cell struture on a spatial surfae with 2 ghost ells per boundary and per diretion

(N

gx

= N

gy

= 2). The ghost ells are the shaded areas. Note that the points (x

i

; y

j

) are

where the q

n

i j

are alulated. In order to alulate the evolution of the interior points, points

with oordinates (x

i

; y

j

) with i 2 fN

gx

+1; :::; N

x

�N

gx

g and j 2 fN

gy

+1; :::; N

y

�N

gy

g, we

need to alulate the x uxes, F

x

n+1=2

i+1=2 j

, at positions (x

i+1=2

; y

j

) with i 2 fN

gx

; :::; N

x

�N

gx

g

and j 2 fN

gy

+ 1; N

y

� N

gy

g. Similarly we need to alulate the y uxes, F

y

n+1=2

i j+1=2

, at

positions (x

i

; y

j+1=2

) with i 2 fN

gx

+1; :::; N

x

�N

gx

g and j 2 fN

gy

; :::; N

y

�N

gy

g. Note that

x

1

= x

min

, x

Nx

= x

max

, y

1

= y

min

and y

Ny

= y

max

.
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PROBLEM 3 a) Using the 1-D ultrarelativisti ode that you have produed in Projet 2

as a template write a 2 dimensional ode that solves equations (7). Note that now before

updating the onservative variables you need to alulate both numerial uxes in the x and

y diretions. After the onservative variables have been updated, both at the half and full

step, you will need to oor � , using the following equation:

� = maxf�; oor +

q

S

x

2

+ S

y

2

g: (44)

You also need to �nd equations in order to alulate the primitive variables from the on-

servative ones inverting equations (4-6).

Ensure that your ode an evolve both smooth and disontinuous initial data. Setting

initial data that is onstant along y and disontinuous in x solve for 1 dimensional Riemann

problem and ompare with the solution obtained from your ode in Projet 2. Interhange

x and y and solve for the Riemann problem along the other diretion. Make sure that your

ode also works for Riemann problems along x+ y, setting initial data suh that is onstant

along x� y.

The following problems are only a ouple of suggestions of systems you an study. Choose

the one, or ones, that interests you most and go for it, be adventurous:

Problem 3 b) There exists a very well known instability usually alled Kelvin Helmholtz

instability or instability of tangential disontinuities, see Landau and Lifshitz [4℄. Although

the real instability happens for uids with the ideal equation of state (more generally uids

that an sustain a ontat disontinuity) we an get an approximation of it using the ul-

trarelativisti uid ode. Set initial data suh that the XY plane has two di�erent regions

divided by the following funtion:

x =

(

x

d

if y < y

d

x

d

+ Asin (w�(y � y

d

)) if y > y

d

:

(45)

Try to hoose values A; w; y

d

; x

d

suh that the disontinuity is almost a straight line with

a small urvature for y > y

d

. Produe initial data for the primitive variables suh that the

density is onstant aross the disontinuity and the omponent of the veloity tangential to

the surfae is large (less than 1) in one of the region and zero on the other. The perpendiular

omponent of the veloity should be zero on both regions. In the Lab web page you an �nd

a ouple of MPEG movies showing this evolution.

Problem 3 ) A very rudimentary way to produe a jet is to set the onservative variables

in a region of the ghost ells to have onstant values, independent of the values of the physial

ells. Set initial onditions suh that you have a onstant density of � = 6:0 and zero veloity

on all the integration range. Choose a small region region in the boundary at x = x

min

with

values of y lose to the entre of grid and set the onservative variables to have values:

�

b

= 0:15; S

xb

= 0:14; S

yb

= 0 for � = 1:5 and floor = 10

�10

at every time step. This should

produe a jet of uid oming into the range of integration. You an set another jet oming

from the opposite boundary and make them ollide one into the other. In the Lab web page

you an �nd animations for this simulation.
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