
IV. COMPACT BINARIES: 
QUASISTATIONARY EQUILIBRIA

A.  Data sets and full solutions with helical symmetry

B.  1st law of thermodynamics for binary black holes
and neutron stars; turning point instability;
locating the ISCO  



A. Data Sets and Full Solutions 
with Helical Symmetry

In the newtonian limit, because a binary system does 
not radiate, it is stationary in a rotating frame. Because 
radiation appears only in the 2 1/2 post-newtonian 
order (to order (v/c)5 ), one computes radiation for 
most of the inspiral from a stationary post-newtonian 
orbit:



WAVES FROM THE INSPIRAL CAN BE 
FOUND FROM A POST-NEWTONIAN POINT-

PARTICLE TREATMENT;

WAVES FROM AFTER LATE COALESCENCE 
CAN BE FOUND FROM A PERTURBATIVE 

TREATMENT OF THE FINAL BLACK HOLE;

LATE INSPIRAL THROUGH COALESCENCE 
WILL REQUIRE A NUMERICAL EVOLUTION 

OF THE FULL EINSTEIN EQUATIONS. 



Codes running for a few orbits are now possible for 
neutron stars 

e.g., coalescence of two neutron stars

Shibata-Uryu

Less than an orbit in current BH simulations



SHORT RUN-TIMES MAKE ACCURATE 
INITIAL DATA AND QUASISTATIONARY 

APPROXIMATIONS MORE VALUABLE

Inaccurate data has elliptical orbits and spurious 
initial radiation.  Although the spurious radiation 
quickly radiates away, an initially elliptical orbit 
takes an impractically large number of orbits to 
circularize.  



In constructing initial data sets (and quasistationary 
solutions that piece them together), one uses the fact
that  A BINARY SYSTEM WITH

HAS LITTLE RADIATION.



Approximate it for a few orbits by a 
SPACETIME STATIONARY 
IN A ROTATING FRAME



Time translations in a rotating frame are generated by 
a helical Killing vector kα. The Killing vector is 
timelike near the binary system, but is spacelike 
outside a cylinder on which a corotating observer 
moves with speed c.



A STATIONARY BINARY
SPACETIME HAS A 

SYMMETRY VECTOR k.

SEEN FROM AN  
INERTIAL FRAME, 

k IS HELICAL





QUASISTATIONARY APPROXIMATION: 
REPRESENT SYSTEM BY SEQUENCE OF 
SUCH SPACETIMES.

Blackburn & Detweiler Wilson,Mathews,Marronetti

Price,Krivan,Whelan,Beetle,Landry Uryu,Eriguchi,Shibata

Baumgarte, Cook, Scheel, Shapiro & Teukolsky,    Pfeiffer   Baker 

Bonazzola, Gourgoulhon, Marck, Grandclement, Taniguchi
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Althoughkα is spacelike outside a large cylinder, one can write
the 3+1 split as usual in the formkα = αnα + βα,

ds2 = (−α2 + β jβ j)dt2 +2β jdxjdt + γi jdxidxj, (4.1)

wheregαβ, α, βa), andγab are the 4D metric, lapse function, shift
vector, and 3D spatial metric of the intitial hypersurfaceΣ. The
extrinsic curvatureKab can be written as

γab = gab+nana, (4.2)

Kab =−γ α
a γ β

b ∇αnβ, (4.3)

where∇α is the covariant derivative with respect togαβ.
Quasiequilibrium models are helically symmetric spacetimes in
which five field equations and the equation of hydrostatic
equilibrium are solved for five independent equations. Because a
solution to the full Einstein equations has six independent
equations, the solutions so far have been to a truncated set, in
which the spatial metric is conformally flat
(Isenberg-Wilson-Mathews). The five equations are



• Hamiltonian constraint

•Momentum constraint (3 components)

• Spatial trace of the Einstein equation:γαβ(Gαβ−8πTαβ) = 0.

They have the form

∆flatψ =−2πEψ5−ψ5

8
ÃabÃ

ab,

∆flatβ̃b +
1
3

∇b∇kβ̃k + ∇a ln

(
ψ6

α

)
(Lβ)ab

= 16παJb, (4.4)

∆flat(αψ) = 2παψ5(E +2S)+
7
8

αψ5ÃabÃ
ab, (4.5)

(4.6)

where

(Lβ)ab = ∇aβ̃b + ∇bβ̃a−
2
3

ηab∇bβ̃b, (4.7)

Ãab =
1

2α
(Lβ)ab, (4.8)



We can always write the 4-velocity in the 3+1 form

uα = ut(kα +vα),

with vαnα = 0. For irrotational flow (a good approximation),
hvα = ∇αΨ. The equation of hydrostatic equilibrium again has a
first integral (for a barotropic EOS), namely

h
ut

+huav
a = E . (4.9)

The iteration proceeds exactly as in the case of a rotating star for
a barotropic EOS. One is now solving six equations (the
integrated equation of hydrostatic equilibrium and five
components of the field equation) for the enthalpyh, the lapseα,
the 3 components of the shiftβa, and the conformal factorψ.
Again one specifies a velocity field - here by specifying the
velocity potentialΨ.



1. Start with a guessed solution.
Each of the 5 field equations can be written with a linear
operator on the left side that is or includes a flat laplacian, and
with the nonlinear terms on the right. Solve the equations by
regarding the right side of each equation as a source.

2. Updateh from the first integral of the equation of hydrostatic
equilibrium, and use the EOS to findP,ε.

3. Find the new surface of the stars.

4. Use the updatedε,P and the updated potentials to recompute
the right-hand sides of the field equations.

5.≡ 1.



When only 5 equations are solved, one does not find the
potentials accurately enough to enforceF = ma- to correctly
obtain the right value ofΩ for a given separationr between the
stars (or black holes).
In the exact theory, one can formally consider a binary system
that is again exactly stationary by requiring equal amounts of
ingoing and outgoing radiation. A unique solution for two
opposite charges in electromagnetism was constructed by Schild,
with field given by the 1/2-advanced + 1/2 retarded Green’s
function.
The energy density agrees with that of the retarded solution to
within a few percent out to several wavelengths. The difference
arises only when one goes out far enough that the change in
energy density from the changing orbital radius is important. For
the inspiral phase, the helically symmetric solution is thus
accurate well into the wave zone. Even when the system is near
the ISCO, helical symmetry gives a fair approximation to the



outgoing-wave energy density to a distance of a few wavelengths.
An exact helically symmmetric solution is not asymptotically
flat, because the energy radiated at all past times is present on a
spacelike hypersurface. At a distance of a few wavelengths
(larger than the present grid size) the energy is dominated by the
mass of the binary system, and the solution appears to be
asymptotically flat. Only at distances larger than about 104M is
the energy in the radiation field comparable to the mass of the
binary system.



If, instead of obtaining initial data by solving a 
truncated set of equations, one models a binary 
system as an exact solution stationary in a rotating 
frame, the error is
O(∆E/E)2:

rtrue( Ω )= r ( Ω ) [1+(∆Ε/Ε)2]

Expect

REDUCED ECCENTRICITY

SOMEWHAT REDUCED SPURIOUS 
RADIATION



Shibata and Uryu have recently solved the full set of equations,
in awavelessapproximation in which time derivatives of the
extrinsic curvature are artificially dropped.
Work in progress by Price, Beetle, Bromley; Friedman, Uryu,
Tsokaros seeks to solve the full equations without truncation for
a helically symmetric spacetime.



Waveless approximation
With outgoing waves

Shibata-Uryu

ERROR OF APPROXIMATION

star



B. First Law of Thermodynamics for Binary Black Holes and
Neutron Stars; Turning Point Instability; Locating the ISCO

One can use the solutions constructed in this way to estimate the
location of the innermost stable circular orbit. One can prove(JF,
Uryu, Shibata)that the Bardeen-Carter-Hawking 1st law of
thermodynamics (for stationary axisymmetric black holes and
rotating perfect fluid configurations) can be generalized to binary
systems with a single Killing vector - in particular to helically
symmetric binary systems: With

dM0 := ρuαdSα, dS:= sdM0, dCα := huαdM0,

T̄ :=
T
ut
, h̄ :=

h+vbub

ut
,

we have

dQ=
∫

Σ
[T̄∆dS+ E∆dM0 +vα∆dCα]+∑

i

1
8π

κi∆Ai, (4.10)



For an asymptotically flat spacetime,dQ= dM−ΩdJ. With two
neutron stars and a change that conserves entropy and vorticity,

dM = ΩdJ+ EdM0

Turning-point stability
(Sorkin, JF, Ipser; Baumgarte, Cook,Scheel, Shapiro, Teukolsky)
WhenM turns over for fixedJ, one one side of the turning point
M will be larger than on the other, for the sameM0. The side on
whichM is smaller is more tightly bound - the stable side. The
other side is unstable. (The argument for the instability does not
imply that one can reach the lower energy state by a dynamical
evolution; the angular momentum distribution might need to be
redistributed by viscosity to allow transition to the lower energy
state. But the fact that there is a lower energy state with the same
vorticity suggests that we have identified the point of dynamical
instability.)



In the figure below(Baumgarte, Cook, Scheel, Shapiro,
Teukolsky)thin solid lines of constantJ are plotted on a graph of
rest mass vs central density. A thick solid curve marks the onset
of orbital instability, the set of models with maximum rest mass
M0 (and maximum massM) along a sequence of models with
constant rest massM0. The segment FE is a sequence of
quasiequilibrium corotating binaries. As the separation
decreases, the angular velocity of the orbit increases, and so does
the angular velocity of each star, because the models here are
corotating. Consequently, lower density models along EF are
models with smaller separation. The innermost stable orbit along
FE is at point E.
At much larger central density, the stars are widely separated,
and another set of mass-maxima along the constantJ curves
(e.g., point B in the inset) mark the the onset of instability to
collapse of the individual stars. The turning point method
identifies both instabilities.






