
III. Gravitational Waves From Rotating Stars

A. Gravitational Waves from Bumps on Rotating Neutron Stars

The simplest source we consider is a neutron star with a bump on
it. Rotational speeds of observed neutron stars are no larger than
c/3, and even atΩ = ΩK, the speed of the equator is less than
c/3. The gravitational-wave energy is then likely to be
dominated by mass quadrupole radiation:
Radiated energy
The linearized equations, in a transverse gauge (deDonder
gauge),∇βh̄αβ = 0, h̄αβ := hαβ− 1

2ηαβh, have the form of a
flat-space wave equation,

�h̄αβ =−16πTαβ.

One way to find the energy radiated in gravitational waves is to
write an action for this linearized field equation and deduce from
it an energy-momentum tensor for the linearized gravitational
field hαβ, regarding it a field on Minkowski space. Varying the



action

K
∫

∇γh̄αβ∇γh̄αβd4x

with respect tohαβ yields−2K�h̄αβ. Using the definition ofTαβ
as the variational derivative of the matter actionIM with respect
to the metric,

Tαβ := 2
δ

δgαβ
IM,

we see that the field equation is obtained (for a Minkowski space
background) by varying the action

I = IG + IM =
1

64π

∫
∇γh̄αβ∇γh̄αβd4x+ IM

with respect tohαβ, with gαβ in IM replaced by its first-order
form, ηαβ +hαβ. The stress energy tensor associated with the
actionIG is

TGαβ =
1

32π
∇αh̄γδ∇βh̄γδ.



The 4-momentum of gravitational waves associated with a
timelike Killing vectortα of Minkowski space isTGαβtβ,
implying a rate of energy loss across a sphereS

dE
dt

=
∫

TGαβt
βdSα.

In particular, the flux of energy across anr = constant sphere
lying in a t = constant hypersurface orthogonal totα is

dE
dt

=
c4

G
1

32π

∫
∂th̄βγ∂rh̄

βγr2dΩ. (3.1)

Similarly, associated with a rotational Killing vectorφα of the flat
background is the angular momentum currentTGαβφβ, whose flux
across anr = constant sphere is

dJ
dt

=
c4

G
1

32π

∫
∂φh̄βγ∂rh̄

βγr2dΩ. (3.2)

For periodic motion with time dependence and angular



dependence given byRe exp[i(mφ−σt)], we immediately have〈
dJ
dt

〉
=

m
σ

〈
dE
dt

〉
(3.3)

For slow motion, mass quadrupole radiation is dominant, leading
to the familiar quadrupole formula,

dE
dt

=
c4

G
1
5

〈...
I ab

...
I

ab〉
, (3.4)

whereIab =
∫

δρ rarbd3V.
More generally, from the energy flux equation and from a
multipole expansion of the solution

h̄αβ =
1
4π

∫ Tαβ(t, r ′)
|r − r ′|

∣∣∣∣
ret

dV′

one finds energy the energy radiated by thelth mass multipole,

Dlm = K Re
∫

ρr lY∗lmdV, (3.5)



is
dE
dt

= k (
dl+1

dtl+1
Dlm)2, (3.6)

(A standard reference for multipole radiation:
Thorne, Rev. Mod. Phys,52, 299, 1980.)
Each time derivative brings in an additional power ofv;
reinstatingc andG, we have fork the dimensionful form
G/c2l+1, leading toĖ ∼ EΩ(

v
c
)(2l+1), whereE is the system’s

energy, of orderGM2/R. ) It is for this reason that, forv/c small,
the lowest nonvanishing multipole dominates.
Because thelth current multipole,

Jlm = K Re
∫

ρr lvvv··· r̂rr×××∇∇∇Y∗lmdV

is smaller by a factor ofv2 than the corresponding mass
multipole, the energy radiated by thelth current multipole,

dE
dt

= k (
dl+1

dtl+1
Jlm)2,



is smaller than the corresponding mass-multipole radiation by
v2/c2.
Quadrupole radiation from a bump
A bump can be described by a changeδρ in the star’s density. If
we denote thel = m= 2 quadrupole by

Q≡ D22 = Re
∫

δρ Y22(r)r2dV, (3.7)

the quadrupole formula (3.4) for this perturbation is equivalent to
the l = m= 2 case of Eq. (3.6)

dE
dt

=
4π
75

...
Q

2
.

(To find the constant, useY22 = (15/32π)1/2(x+ iy)2/r2 to obtain〈
IabIab

〉
= (4π/15)Q2

22.)
Now perturbations with withl = m= 2 have frequency

ω = 2Ω,

becauseY22 is invariant under a rotation byπ about the star’s



rotation axis. Then
dE
dt

=
G
c5

256π
75

Ω6Q2
22. (3.8)

Angular momentum balance and wave amplitude.
From Eqs. (3.3) and (3.8), the rate of loss of angular momentum
is

dJ
dt

=
2
ω

dE
dt

=
G
c5

256π
75

Ω5Q2
22

c5
. (3.9)

There may be accreting neutron stars (perhaps a class of
low-mass X-ray binaries, LMXBs) that are spun up by accretion
until the angular momentum radiated in gravitational waves is as
great as the angular momentum gained in accretion. As
mentioned in the next lecture, Wagoner first worked out this
balance for a gravitational-wave driven (CFS) instability. Here
we consider the simpler case where the radiation is due to a fixed
bump. In LMXBs, the rate of accretion is close to the Eddington
limit, where radiation pressure from infalling matter is as great as
the gravitational attraction on that accreting matter. The



Eddington limit for neutron stars iṡM ≈ 2×10−8M�/yr; the
corresponding rate at which angular momentum is deposited is
then

dJ
dt
≈ ṀvR≈ Ṁ(GMR)1/2,

implying J̇ = 2×1034 erg, forM = 1.4M�, R= 10km,
ν≡Ω/2π = 300Hz (a typical frequency for a neutron star in an
LMXB). Equating this to the rate (3.9) of angular momentum
loss, we obtain (Ushomirsky, Cutler, and Bildsten) a size of the
bump that is needed, namely

Q = 1.6×1038 g cm2

(
M

1.4M�

R
10 km

)1/4
(

Ṁ

2×10−8M�
yr

)1/2(
300Hz

ν

)5/2

(3.10)
The corresponding amplitudeh of gravitational waves at a
distanced can be obtained from Eq. (3.2):

dJ
dt
∼ c3

G
Ωd2h2 ⇒ h∼ 10−26,



for a source at the distance of the galactic center (d∼ 10kpc).
With accretion not quite at the Eddington limit and with
constants kept, a better estimate ish∼ 10−27. This is still an
interesting value: “Prior accurate knowledge of the position on
the sky and orbital periods of many of these X-ray binaries will
allow for deep searches with the suite of laser-interferometric
gravitational wave detectors.”
To produce the necessary displacement, Ushomirsky et al.,
following an earlier paper by Bildsten, show that a temperature
gradient from accretion can lead to a significant deformation of
the inner crust, with heat from accretion driving nuclear
reactions: Heating crustal matter decreases its density; its
original nuclear composition is no longer the equilibrium
composition, and nuclear reactions produce a new equilibrium
with a composition altered most where the temperature is
greatest. The anisotropic composition leads to an anisotropic
density distribution, in which layers of the crust have been



slightly displaced. Because stresses can locally deviate from
isotropy only because of a crustal lattice, the size of the
displacement is limited by the maximum shear strain, the
maximum value of|∇ξ|, whereξ is the displacement. A shear
strain of order10−2 is needed to limit neutron star rotation and
produce waves with the amplitude estimated above.
But Thompson and Duncan’s model for soft gamma repeaters
(SGRs) has a crust cracking at strain∼ 10−3, and earlier
estimates were still smaller.


