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One can pick local charts for which the metric has the form

ds’ = —e#Pdt? + e dr? + r2dQ?; (2.2)
or (withr — exp /' r~te*dr), one obtains the isotropic form

ds = —adt® 4 P*(dr? 4 rédQ?). (2.3)
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time, but, if desiredg;, can locally be set to zero:



For a collapsing or oscillating stab, A, a, andy depend on
time, but, if desiredg;, can locally be set to zer@omoving
coordinates
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Static, spherically symmetric spacetimes

As you know, the Einstein tens@g has as its only
nonvanishing components
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with vacuum solution,

ds’ = —(1— ZTM)dtZ—I— (1+ ZTM)dr2+ r’dQ?%,  r#£2M.

(2.6)




with vacuum solution,
2M 2M
ds’ = —(1— T)o|t2+ (1+T)dr2+ rdQ?%,  r #2M.
(2.6)

Fromu® = u't® andu®u, = —1 we have
u = e %< (2.7)
Hydrostatic equilibrium is then

0gE = logh— loguf = /Pﬁﬂb (2.8)
g% =logh—logu' = | = -
(0]§
P/
e 2.
e e+P (2.9)

The G} = 8T andG', = 8nT"; equation give\ and® in the
form,

eZ)\_

with m= / g 4Tr4dr. (2.10)
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M+ 41Pre
- r(r—2m)’
Equating the two expressions @ in (2.11) and (2.9), we

obtain the equation of hydrostatic equilibrium, the
Tolman-Oppenheimer-Volkov Equation,

CD/

(2.11)

dP m+ 41Pr3
—=—(e+P 2.12
dr (£+P) r(r—2m) (2.12)
Note that the Newtonian limitP < e, R< M) of (2.11) is
m
CD/ — ﬁ ]

so that® becomes the Newtonian potential.

One obtains a barotropic star by integrating Eq. (2.12) and the
defining equation (2.10) fan, with a given equation of state

P = P(¢g). Explicitly, one begins with a central densiyand
Integrates up to the radidsat whichP drops to zeroR is a
decreasing function af).



® Is fixed outside the star b = —A, inside byE = @,
® = E —logh.



Rotating Relativistic Stars
The metricg,p of a stationary axisymmetric rotating fluid has
two commuting Killing vectors¢g” andt® , generating rotations
and time-translationstq{ agrees asymptotically with
time-translation, but within an ergosphere or horizényill be
spacelike.) As before, the fluid velocity has the form

Ut = Ut + QgP),
and the equation of hydrostatic equilibrium has the first integral

h
— = F = constant
ut
Geometry of a Rotating Star
The metric,gq.p, can be written in terms of dot products of the

Killing vectors,

Uy, '@, @@, (2.13)
and a conformal factoe?, that characterizes the geometry of the
orthogonal 2-surfaces:
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Opp = ¢y =€,
O = t%Q@y = —we?.




Ogp = @ =€,
o = t%@y = —we™.

Then
O = t%y = —” + eV, (2.15)
and
ds = e dt* + e(do— wdt)* + e*(dw’ +dZ), (2.16)

wherew andz are cylindrical coordinates labeling the 2-surfaces
orthogonal ta“® andg’.
The Killing vectors have components,

th =3, ¢ =2 (2.17)

and the symmetry means that the potentalg), w andp

depend only oo andz. Because of the choice of an overall
conformal factore?*, to describe the geometry of the— z

surfaces, the exterior of a spherical star given by Eq. (2.16) is the



Schwarzschild geometry in isotropic coordinates,
& _ 1-M/2r
1+M/2r

! =w(l+M/2r)%, €'=(1+M/2r)°
(2.18)
Asymptotically, the relations

d=w(eV+0(r ), e=e’+0(r 2, (2.19)

hold for the potentials, (2.18), and for the metric (2.16) as well,
because any stationary, asymptotically flat spacetime agrees with
the Schwarzschild geometry to ordet'. If, following Bardeen

and Wagoner (1971), we write

B=y+v, (=ptv, (2.20)

then, asymptotically;, which vanishes for isotropic
Schwarzschild, is itself of order 2.

The angular velocityo = —t“cpa/cpecpﬁ, measures the dragging of
Inertial frames in the sense that particles with zero angular
momentum move along trajectories whose angular velocity



relative to infinity isdg/dt = w. A natural tetrad is the frame of

zero-angular-momentum-observers (ZAMOSs), with basis

covectors

W% =e'dt, wl=edep—wdt), w?=édw, «?®=¢edz
(2.21)

and the corresponding contravariant basis vectors are
€o) = e“’(at -+ (Jan)), €1 = e““a(p, €2 = e Moy, €3 = e Ho,.
(2.22)

The nonzero components of the four veloaityalong these
frame vectors can be written in terms of a fluid 3-velowin the

mMmanner
1
(O (1) _
u I 7 u - ° 2-23
vV1—V2 1— V2 ( )

Then

e_v
U = u'qt = , u® = Uy = QU', (2.24)
1— V2




whereQ is the angular velocity of the fluid relative to infinity
(measured by an asymptotic observer with 4-velocity along the
asymptotically timelike Killing vectort®). The 3-velocityyy,
written in terms ofQ, is

v=e""(Q-w). (2.25)

Note that2me? is the circumference of a circle centered about the
axis of symmetry (the-axis); that isg¥ agrees for spherical stars
with r sinB, wherer and0 are the usual Schwarzschild
coordinates (not the isotropic coordinates introduced above).



The nonvanishing tetrad componentsTéf are

€+ PV \
T(0(0) _ — TOW ¢t P (2.26)
2
T _ &8 TP T2 _TOBE = p (2.27)

1—\v2’



The nonvanishing tetrad componentsTéf are

£+ pV Y,

T(0(0) _ TOW _ ¢ 2.26
2

T _ ?’ +V P re@_Tee_p (2.27)

The four potentials are determined by four components of the
fleld equation

GUB - 8T[TO(B, (228)

whose selection is a matter of taste. Following Bardeen and
Wagoner (1971), Butterworth and Ipser (1976) and several
subsequent authors based their code on the following four
equations, in whichl is theflat 3-dimensional covariant
derivative operator of the metricw? + dZ + wd¢’.
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and
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Alternatively, one can use a 4th elliptic equation for
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rns, a public domain
code, available at http://www.gravity.phys.uwm.edu/rns



Lorene/ SF SF BGSM
rotstar (260x400) (70x200)

0.7 le-3
1.41170848318 9e-6 3e-4 3e-3 le-2
0.135798178809 2e-4 2e-5 2e-3 Qe-3
0.186338658186 Z2e-4 2e-4 3e-3 le-2
0.345476187602 5e-5 3e-5 5e-4 3e-3
0.0140585992949 ?2e-5 de-4 5e-4 2e-2
1.70735395213 1le-5 4e-5 le-4 2e-2
—0.162534082217 2e-4 2e-3 2e-2 4e-2
11.3539142587 7e-6 7e-5 le-3 8e-2

.q - - - =--- '-- '~ - =-=-=- == 7=

IGRV3| 4e—13 3e-6 3e-5 le-3 4e-3

Code Comparison



Method:

1. Start with a guessed solution (e.g., for a spherical
configuration).
Solve the 4 field equations by Newton-Raphson, putting the
linearized operator on the left side and the nonlinear terms on
the right. (KEH solve by keeping only a flat-space laplacian
on the each left side and solving by using the known Green’s
function).

2. Updateh from the first integral of the equation of hydrostatic
equilibrium, and use the EOS to firie.

3. Find the new surface of the star.

4. Use the updated, P and the updated potentials to recompute
the right-nand sides of the field equations.

5=1.



Use spherical harmonics (Legendre polynomials) or Chebyshev
polynomials for théd dependence. Fardependence, directly
specify function on the grid, using finite differences for radial
derivatives, or use spectral decomposition with Chebyshev
polynomials.

The accuracy of spectral methods was initially limited by the
Gibbs phenomenon at the stellar surface, but the most recent
spectral codes by the Meudon group and by Ansorg et al.
overcome the problem by using two or three domains fitted to the
stellar surface. Ansorg et al. obtain near-machine accuracy with
two domains and a Chebyshev expansion for bahdo.



Ansorg et al.'s model of a uniformly rotating, uniform-density
star rotating at maximum angular velocf®y: the star rotates at
the angular velocity of a satellite in Keplerian orbit at the
equator. The two lobes mark the boundaries of the ergosphere.
Uniformly rotating stars with realistic equations of state reach
Qk before an ergosphere appears.



The set of equilibrium configurations of a uniformly rotating star
IS two-dimensional, specified, for example, My andQ. The
2-dimensional surface of equilibria shown on the next page is
ruled by lines of constant andMg. For fixedJ, the maximum
mass configuration marks the onset of instability to collapse.
This instabllity line is also the set of points points at whicis a
maximum along a sequence of constislat






Although not shown in the figure, at low density there is a similar
line of minimum mass configurations. Below the minimum mass,
configurations are unstable to explosion - they are unbound.
Candidates for realistic equations of state typically have
maximum masses for uniform rotation bel@bM...

A hard upper limit on the mass of uniformly rotating,
self-gravitating stars is found by using the stiffest EOS consistent
with causality ¢soung= dP/de = 1), matching at a densits, to a
known low-density EOS.

(2.33)

. 1/2
M < 6.1M.. (2 x 10 g/crr?)

€m



The next two sections were not part of the oral lectures and can
be regarded as an appendix to topic Il on stellar equilibria.

Injection Energy

The quantityE has a natural physical interpretation, as the
energy per unit mass needed to inject matter into the star, with
the injected fluid in the same local state (same composition,
density, and entropy density as the surrounding star). We will
compute the initial energdM needed to inject a ring of fluid into
a rotating star, after dropping it to its new location, a cikcle
about the axis of symmetry.
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When the freely falling box reaches a point in the star, its energy



measured by an observer at rest with respect to the fluid is
6E — — pO(UO(,

whereu® = u'(t® + Qq¢") is the fluid four-velocity.

OE = u'(pat® 4+ Qpa¢”)
= U'(dM — Q3J).

The relation i1s more often written in the form
OE
oM = —t+Q€'>J. (2.35)
u

In adding baryon massN baryons, with locally measured
£ L . 3
energyﬁ per baryon, one is directly adding an enelﬁgSN.

From the 1st law of thermodynamics, if one adfisbaryons

with entropydS, one is adding energdEe given by

P
5E — T5S4 %a\l.

or



P
5E — T5S+ %wo. (2.36)

Again the presence af+ P instead of arises from the work
POV done to create a spad¥ for the new baryons. With

OMp = pdV, we havePdV = EBI\/IO.



P
5E — T5S+ %&\/Io. (2.36)

Again the presence af+ P instead of arises from the work
POV done to create a spad¥ for the new baryons. With

OMp = pdV, we havePdV = gél\/lo.
Finally from Egs. (2.35) and (2.37)

e

pu'
The coefficient obMg Is the energyE, the injection energy per
unit rest mass of matter with zero initial entropy and angular
momentum.
Why Is ‘E Is constant in a star with constant entropy per baryon
and constant angular veloci€y? An equilibrium configuration Is
an extremum of mass at fixed angular momentum, entropy and
baryon number: Small changes in the structure of the star leave

oM =

.
5Mo + 85+ Q8J. (2.37)



the mass fixed. In particular, suppose one moves a ring of fluid
from one location to another in a uniformly rotating white dwarf
or neutron star, stars that are approximately barotropic bedause
IS approximately zero (that I8 << &f).

Changing the location of the ring is equivalent to moving it out to

Infinity and back in to a new location in the star. According to
Eqg. (2.37) withT =0

e+P e+P
o= [ (29) ~(527) |on+@r-aom. @30

For uniformly rotating staM = O implies

e+P €+ P
(W)f <W>; (2.39)

and we conclude that is constant throughout the star.
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Variational Principle for Relativistic Fluids
We will show that a perfect fluid with EOS= ¢(P), has an
action of the form

lfluid = /5\/—7de (2.40)

The action Is a functional of the fluid’s history. If one thinks of a
fluid as a coherently moving collection of particles, a fluid
configuration is specified by giving the location of each particle.
Beginning with some (arbitrarily chosen) initial fluid spacetime,
g, P, u® and metriog,g, one can specify another fluid spacetime
with the same number of baryons by giving its metriand a
diffeo X that maps the original fluid to its new position.



A precise way of saying that an actibms an extremum is to say
that for any smooth family of histories,, gy qp,

d
3l = —=1(A) =0,

with [ (A) = [(X\,0x op). To Vverify thatl is an extremum when
the field equations are satisfied, we need to waapd,/—g; and
to find the change ina, we will need to find the change u¥.
Variations of the metric and fluid

First order departures from an initial configuration can be
described in two ways. The Eulerian perturbations in the
quantitiesQ(A ) are defined by

d
0Q = d_)\Q()\) A=0 (2.41)

and compare values @f at the same point of the spacetime. In
the region occupied by the original fluid, one can also introduce



the Lagrangian perturbations

d

AQ = d—)\[X—AQ()\)] =0

= (0+£)Q,
where® generates the family of diffeomorphisis. That is,
the curveh — X, (P) has tangent®(P) at the pointP. The field
¢% is termed a Lagrangian displacement and may be regarded as
the connecting vector joining fluid elements in the unperturbed
configuration to the corresponding elements in the perturbed
spacetime.
The first order changes in the variabf@san be expressed in
terms of the displacemegt and the Eulerian change in the
metric

hO(B = 590([3. (244)

In fact, we will see that perturbations of the fluid variables can all
be written in terms ofAge,

Ao = hap + Do+ Tgka. (2.45)



We begin with the change in the four-velocity. Lett — c(t) be
the initial path of a fluid element, = X, o c the new path.
BecauseX, dragsc to c,, the Lagrangian change aand in its
tangent vector vanishes. That iswf is tangent ta, then

Wy = X\wis tangent tas,. ThusX_,w; = w”, independent of,

Implying
AW® = 0y (X )Wy ) = ow” = 0. (2.46)

Now w” will not, in general have norm-1; even if we choosé

to be proper time along the original pathwill not be proper

time alongc,. As a result, the Lagrangian change in the
four-velocity is nonzero, depending on the change in the metric
along the fluid trajectory,\gaguo‘uﬁ. We have

weo owe
(—Wwg) 72~ (=gl 2

u’ =




1 wo
AUO( — _é (_Wévvé)g/z(_AgBVWBWy)

The change in baryon density can similarly be written in terms of
Agqp, because the number of baryons in a fluid element is
conserved, and baryon conservation allows us to relate the
change in baryon density to the change in a volvmathogonal

to u®. The rest mass of baryonsVhis

Mo= | pv/3a. (2.49)

with 3g the determinant of the metrig,, orthgonal tou®.
3q=detq (2.50)



FromN(A) =N, we have
0= [ p0)va = [Bpva, @51

Implying
A(p Q) =

Now the volume of a fluid element perpendiculautois
proportional to, /g, and the fractional change in its volume Is

av _AVq
\Y V3 '
Recall, for any matrixv (A),
d d
d—)\detM (A) =detM(A) Trd—)\ (A).
Then
A
—q — qabAqab-

q



Becausea, Is the projection operator onto a subspace
orthogonal tau®, andgyy is the restriction ofy,g to that subspace,

0PPAGap = q*PAGep = G PAYqp-

A
Fq — anAguB;
andA(p+/3%) = 0implies
Ap 1
o = _éanAgaB (2.52)

The equation means that the fractional increaseisiequal to

the fractional decrease in the volume orthogonal to the 4-velocity.
Next, to find the chang&c in the energy density, we use the
energy conservation equation:

0= A(ugOpgT) = —A[(e+ p) TP + UPOge]
1
= —WPOg[Ae + 5(e+ P)o™Ageg]



with first integral

1
Ae = —§(£+ P) 9P Agp. (2.55)
This expresses the fact that the flow Is isentropic. In terms of the
comoving rest-mass denspythe first law of thermodynamics
Implies
At @
e+p P
equivalent to (2.55), with® given by (2.52).
The Lagrangian change in the pressure is similarly given by

JAYS 1

Ap=yp—— = —ZypdPA 2.57

P=YP 5YP A" Adop, (2.57)

where the adiabatic indexis defined by
__Ologp(p,s) &e+po
Y= dlogp  p ot

| (2.56)

P(E,S). (2.58)



Variation of the action
Using, as usual, the relation

a fs:/£5(fe):/£§(f\/7—g)d4x,
dA Jv, V V

we have
6|f|uid = —/A(e\/—g)d“x.

Now

iA\/—gz}@J‘J‘BA@JO(B (OF D50 = £y =0 Adap )

V=9 2 yo¢n Yocn ap /s
Implying
L A(ev=G) = —2[(+ )P — e0™]Agus — Z[EU"WP + pfPlAg
V=g : *2 *

= —ZT%FAgyp.

2



Then
L ap 4 1 ap 4
OTfuid = /QT Adqpv/—9d X:/ET (hop + 20aép) v/ —gd™X

1
_ / (5T hag — CaT*Eg)/~gut'x

Requiring thadly,iq = O for all & gives the equations of motion,

O, TP =0. (2.61)
Requiring thadlgr + lfiuig = O for all hyp with
1
lgr=-— | R/—gd" 2.
or =1 | RV=Gd (2.62)
gives the field equations,
GoP = 8riT ok, (2.63)

Here we use

1
Blor = 7 / (—G™P)hysy/—gd’x (2.64)



Note that to obtain the field equations from an action for matter +
gravity, one must define the energy momentum tensor by

|
TP = 255ma“er. (2.65)
gaB



