
Lie derivatives
The equation

[u,v]a = 0

has a geometric description that can be stated this way:va is
dragged along with the motion of a fluid having velocity fieldua,
and for smallλ,λva behaves like an arrow embedded in the fluid,
always connecting the same two fluid elements. One can make
the description precise and extend the notion of Lie derivative

£uv
a≡ [u,v]a

to arbitrary tensor fields.
The idea will be that a vector fieldua generates a family of
smooth maps of the spacetime to itself. Think of the fieldua

generating the fluid motion and of the maps—call them
ψτ—moving any pointP a proper distanceτ up the fluid
worldline throughP. The motion of the fluid is described by the
family of mapsψτ: Underψτ, each spacetime pointPis mapped



to the place where the fluid element atP has moved after the
proper timeτ.
More generally, under any family of smooth maps (diffeos),ψt,
of M into itself, the orbit of each pointP is a curvet→ ψt(P).
The vector fieldua tangent to the family of curves is said to
generatethe family of diffeos.
Let us now make the connection with Lie derivatives, making
precise the notion thatva is Lie derived byua ([u,v]a = 0) if the
curvec(λ) to whichva is tangent is dragged along by the fluid
motion. This can be stated in terms of the diffeos generated by
ua. A curvec: R→M is mapped by a diffeoψ to a new curve
ψc = ψ◦c
The vectorva tangent toc atP = c(0) is mapped byψ to the
vectorψva tangent toψc at ψ(P)
A vector fieldva is in this way mapped byψ to a vector fieldψva

with ψva|ψ(P) tangent toψc, wherec is any curve throughp with
tangentva|p. A vector fieldva is Lie derived byua if ψλva = va,



that is, ifva at ψλ(P) is obtained fromva(P) by the mapψλ.
In terms of the components in a chart,ψvi is given by
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Finally

[u,v]a =− d
dτ

ψτv
a|τ=0, (2.81)

and we have shown that[u,v]a = 0 is simply the infinitesimal
version ofψτva = va, the statement thatva is dragged along by
the diffeos generated byua. Since[u,v]a =−[v,u]a,ua Lie-derives
va if and only if va Lie-derivesua.



The Lie derivative can be extended to arbitrary tensor fields in
the following way. First extend the action of diffeos to tensors:

ψ(vawb) = ψvaψwb givesψTa···b (2.82)

ψ f = f ◦ψ−1 : a function f onM aboutP gives a functionψ f aboutψ(P):
(2.83)

ψ f |ψ(P) = f |p or ψ f |p = f |ψ−1(P) or ψ f = f ◦ψ−1.

Covectors:

∇a f |p→ ∇a

(
f ◦ψ−1

)∣∣
ψ(P) (2.84)

so that the covector field∇a f is dragged byψ to ψ∇a f ,

ψ∇a f = ∇a(ψ f ) = ∇a( f ◦ψ−1),

and, writing a general covector in the form

σa = σi∇ax
i,



we have

ψσa = σi ◦ψ−1∇a(xi ◦ψ−1) (2.85)

Components:
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The Lie derivative of a tensorTa···b
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field ua is then defined by
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For a covector, for example,
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In general,
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Exercise: Obtain eq. (2.90) for£u algebraically from the
following axioms:

(1) £u f = ub∇b f

(2) £uva = ub∇bva−vb∇bua

(3) Leibnitz: £u(S······T ······) = S······£uT ······+(£uS······)T ······



Note that£uTa···b
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