Lie derivatives

The equation

$$[u,v]^a=0$$

has a geometric description that can be stated this way: v^a is dragged along with the motion of a fluid having velocity field u^a , and for small λ , λv^a behaves like an arrow embedded in the fluid, always connecting the same two fluid elements. One can make the description precise and extend the notion of Lie derivative

$$\pounds_u v^a \equiv [u, v]^a$$

to arbitrary tensor fields.

The idea will be that a vector field u^a generates a family of smooth maps of the spacetime to itself. Think of the field u^a generating the fluid motion and of the maps—call them ψ_{τ} —moving any point P a proper distance τ up the fluid worldline through P. The motion of the fluid is described by the family of maps ψ_{τ} : Under ψ_{τ} , each spacetime point P is mapped

to the place where the fluid element at P has moved after the proper time τ .

More generally, under any family of smooth maps (diffeos), ψ_t , of M into itself, the orbit of each point P is a curve $t \to \psi_t(P)$. The vector field u^a tangent to the family of curves is said to *generate* the family of diffeos.

Let us now make the connection with Lie derivatives, making precise the notion that v^a is Lie derived by u^a ($[u,v]^a=0$) if the curve $c(\lambda)$ to which v^a is tangent is dragged along by the fluid motion. This can be stated in terms of the diffeos generated by u^a . A curve $c: \mathbb{R} \to M$ is mapped by a diffeo ψ to a new curve $\psi c = \psi \circ c$

The vector v^a tangent to c at P = c(0) is mapped by ψ to the vector ψv^a tangent to ψc at $\psi(P)$

A vector field v^a is in this way mapped by ψ to a vector field ψv^a with $\psi v^a|_{\psi(P)}$ tangent to ψc , where c is any curve through p with tangent $v^a|_p$. A vector field v^a is Lie derived by u^a if $\psi_{\lambda} v^a = v^a$,

that is, if v^a at $\psi_{\lambda}(P)$ is obtained from $v^a(P)$ by the map ψ_{λ} . In terms of the components in a chart, ψv^i is given by

$$(\psi v)^{i}(\psi(P)) = \frac{d}{d\lambda} \psi^{i}(c(\lambda)|_{\lambda=0}) = \frac{\partial \psi^{i} dc^{j}}{\partial x^{j}}|_{\lambda=0} = \frac{\partial \psi^{i}}{\partial x^{j}} v^{j}(P)$$

$$(\psi v)^i(P) = \frac{\partial \psi^i}{\partial x^j} v^j [\psi^{-1}(P)].$$

Now

$$\psi_{\tau}v^{a} = v^{a} \Longleftrightarrow \frac{d}{d\tau}\psi_{\tau}v^{a} = 0$$

and

$$\frac{d}{d\tau} \left(\psi_{\tau} v^{i} |_{P} \right) \big|_{\tau=0} = \frac{d}{d\tau} \left[\frac{\partial \psi_{\tau}^{i}}{\partial x^{j}} v^{j} \left(\psi_{\tau}^{-1}(P) \right) \right]_{\tau=0}
= \frac{\partial}{\partial x^{j}} \left(\frac{d\psi_{\tau}^{i}}{d\tau} \right)_{\tau=0} v^{j}(P) + \frac{\partial \psi_{\tau}^{i}}{\partial x^{j}} \Big|_{\tau=0} \frac{d}{d\tau} v^{j} \left(\psi_{\tau}^{-1}(P) \right).$$

$$\psi^i_{\tau}(P) = c^i_P(\tau) \Longrightarrow \frac{d}{d\tau} \psi^i_{\tau}(P) = \frac{d}{d\tau} c^i_p(\tau) = u^i(P).$$

From

$$\frac{d}{d\tau}v^{i}\left(\psi_{\tau}^{-1}(P)\right) = \frac{\partial v^{i}}{\partial x^{j}}\frac{d\psi_{-\tau}^{j}(P)}{d\tau} = -u^{j}\partial_{j}v^{i},$$

and

$$\left. \frac{\partial \psi_{\tau}^{i}}{\partial x^{j}} \right|_{\tau=0} = \delta_{j}^{i},$$

we have

$$\frac{d}{d\tau} \Psi_{\tau} v^{i}|_{\tau=0} = \partial_{j} u^{i} v^{j} - u^{j} \partial_{j} v^{i}$$
$$= -[u, v]^{i}.$$

Finally

$$[u,v]^a = -\frac{d}{d\tau} \psi_{\tau} v^a |_{\tau=0},$$
 (2.81)

and we have shown that $[u, v]^a = 0$ is simply the infinitesimal version of $\psi_{\tau}v^a = v^a$, the statement that v^a is dragged along by the diffeos generated by u^a . Since $[u, v]^a = -[v, u]^a$, u^a Lie-derives v^a if and only if v^a Lie-derives u^a .

The Lie derivative can be extended to arbitrary tensor fields in the following way. First extend the action of diffeos to tensors:

$$\psi(v^a w^b) = \psi v^a \psi w^b \text{ gives } \psi T^{a \cdots b}$$
 (2.82)

 $\psi f = f \circ \psi^{-1}$: a function f on M about P gives a function ψf about $\psi(P)$ (2.83)

$$|\psi f|_{\psi(P)} = f|_p \text{ or } \psi f|_p = f|_{\psi^{-1}(P)} \text{ or } \psi f = f \circ \psi^{-1}.$$

Covectors:

$$\left. \nabla_a f \right|_p \to \left. \nabla_a \left(f \circ \psi^{-1} \right) \right|_{\psi(P)}$$
 (2.84)

so that the covector field $\nabla_a f$ is dragged by ψ to $\psi \nabla_a f$,

$$\Psi \nabla_a f = \nabla_a (\Psi f) = \nabla_a (f \circ \Psi^{-1}),$$

and, writing a general covector in the form

$$\sigma_a = \sigma_i \nabla_a x^i$$
,

we have

$$\psi \sigma_a = \sigma_i \circ \psi^{-1} \nabla_a (x^i \circ \psi^{-1}) \tag{2.85}$$

Components:

$$(\psi T)^{i\cdots j} = \frac{\partial \psi^i}{\partial x^k} \cdots \frac{\partial \psi^j}{\partial x^l} T^{k\cdots l}$$
 (2.86)

$$(\psi \omega)_{i\cdots j} = \frac{\partial \psi^{-1k}}{\partial x^i} \cdots \frac{\partial \psi^{-1l}}{\partial x^j} \omega_{k\cdots l}$$
 (2.87)

The Lie derivative of a tensor $T^{a\cdots b}_{c\cdots d}$ with respect to a vector field u^a is then defined by

$$\mathcal{L}_{u}T^{a\cdots b}{}_{c\cdots d} = -\frac{d}{d\tau} \psi_{\tau}T^{a\cdots b}{}_{c\cdots d} \Big|_{\tau=0}$$
 (2.88)

For a covector, for example,

$$\pounds_{u}\sigma_{i} = -\frac{d}{d\tau}(\psi_{\tau}\sigma)_{i}$$

$$\pounds_{u}\sigma_{i}|_{P} = -\frac{d}{d\tau}\left[\frac{\partial\psi_{\tau}^{-1j}|}{\partial x^{i}}\Big|_{P}\sigma_{j}\left(\psi_{\tau}^{-1}(P)\right)\right] = \left(\frac{\partial}{\partial x^{i}}u^{j}\right)\sigma_{j}(P) + \frac{\partial\sigma_{j}}{\partial x^{k}}u^{k}(P)$$

$$\Longrightarrow \pounds_{u}\sigma_{a} = \sigma_{b}\nabla_{a}u^{b} + u^{b}\nabla_{b}\sigma_{a} \tag{2.89}$$

In general,

$$\pounds_{u}T^{a\cdots b}{}_{c\cdots d} = u^{e}\nabla_{e}T^{a\cdots b}{}_{c\cdots d} - T^{e\cdots b}{}_{c\cdots d}\nabla_{e}u^{a} - \cdots - T^{a\cdots c}{}_{c\cdots d}\nabla_{e}u^{b}
+ T^{a\cdots b}{}_{e\cdots d}\nabla_{c}u^{e} + \cdots + T^{a\cdots b}{}_{c\cdots e}\nabla_{d}u^{e}.$$

Exercise: Obtain eq. (2.90) for \mathcal{L}_u algebraically from the following axioms:

$$(1) \pounds_u f = u^b \nabla_b f$$

$$(2) \pounds_u v^a = u^b \nabla_b v^a - v^b \nabla_b u^a$$

(3) Leibnitz:
$$\pounds_u(S^{...}T^{...}) = S^{...}\pounds_uT^{...} + (\pounds_uS^{...})T^{...}$$

Note that $\pounds_u T^{a\cdots b}{}_{c\cdots d}$ is independent of connection ∇_a ; in a chart it involves no $\Gamma^i{}_{jk}$'s:

$$u^{m}\nabla_{m}T^{i\cdots j}{}_{k\cdots l}-T^{m\cdots j}{}_{k\cdots l}\nabla_{m}u^{i}-\cdots-T^{i\cdots m}{}_{k\cdots l}\nabla_{m}u_{j}$$

$$+T^{i\cdots j}{}_{m\cdots l}\nabla_{k}u^{m}+\cdots+T^{i\cdots j}{}_{k\cdots m}\nabla_{l}u^{m}$$

$$=u^{m}\left(\partial_{m}T^{i\cdots j}{}_{k\cdots l}+\frac{\Gamma^{i}{}_{nm}T^{n\cdots j}{}_{k\cdots l}+\cdots+\frac{\Gamma^{j}{}_{nm}T^{i\cdots n}{}_{k\cdots l}}{-\frac{\Gamma^{n}{}_{km}T^{i\cdots j}{}_{n\cdots l}-\cdots-\frac{\Gamma^{n}{}_{lm}T^{i\cdots j}{}_{k\cdots n}}\right)$$

$$-T^{m\cdots j}{}_{k\cdots k}\partial_{m}u^{i}-\frac{T^{m\cdots j}{}_{k\cdots l}\Gamma^{i}{}_{nm}u^{n}-\cdots$$

$$-T^{i\cdots m}{}_{k\cdots l}\partial_{m}u^{j}-\frac{T^{i\cdots m}{}_{k\cdots l}\Gamma^{j}{}_{nm}u^{n}}{+T^{i\cdots j}{}_{mn}l}\nabla^{m}{}_{nk}u^{n}+\cdots$$

$$+T^{i\cdots j}{}_{k\cdots m}\partial_{l}u^{m}+\frac{T^{i\cdots j}{}_{k\cdots m}\Gamma^{m}{}_{nl}u^{n}}{+T^{i\cdots j}{}_{k\cdots m}\partial_{l}u^{m}+\cdots-T^{i\cdots m}{}_{k\cdots l}\partial_{m}u^{j}$$

$$=u^{m}\partial_{m}T^{i\cdots j}{}_{k\cdots l}-T^{m\cdots j}{}_{k\cdots l}\partial_{m}u^{i}-\cdots-T^{i\cdots m}{}_{k\cdots l}\partial_{m}u^{j}$$

$$+T^{i\cdots j}{}_{m\cdots l}\partial_{k}u^{m}+\cdots+T^{i\cdots j}{}_{k\cdots m}\partial_{l}u^{m}.$$