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Abstract

The production of axisymmetric initial data for distorted black holes at a moment

of time symmetry is considered within the (3+1) context of general relativity. The

initial data is made to contain a distorted marginally trapped surface ensuring that,

modulo cosmic censorship, the spacetime will contain a black hole. The resulting

equations on the complicated domain are solved using the piecewise linear finite ele-

ment method which adapts to the curved surface of the marginally trapped surface.

The initial data is then analysed to calculate the mass of the space time as

well as an upper bound on the fraction of the total energy available for radiation.

The families of initial data considered contain no more than few percent of the

total energy available for radiation even in cases of extreme distortion. It is shown

that the mass of certain initial data slices depend to first order on the area of the

marginally trapped surface and the gaussian curvature of prominent features.
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Chapter 1

Introduction

General relativity is the modern theory of the gravitational field. Black

holes are a natural consequence of this theory and provide a model for studying the

dynamics of the gravitational field alone. In order to study the dynamics of the

gravitational field, the initial state must be specified. This data must in general

conform to a set of constraint equations which complicate the specification of initial

states. This thesis generates initial data for axisymmetric spacetimes which contain

non-spinning black holes by specifying that the initial data contain a marginally

trapped surface with a specified “shape” in coordinate space. This is done by solving

the conformally decomposed constraint equations subject to initial time symmetry.

Numerical methods are used to solve these equations, namely the finite element

method. The following subsection provides the background and motivation for this

problem and the methods used to solve it.
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1.1 Motivation for studying the problem

Numerical analysis seeks to solve those problems which are intractable by

other forms of analysis. Specifically, numerical relativity seeks to solve problems

in general relativity in the dynamic and strong field regimes where other forms of

analysis generally fail. The most natural way to accomplish this is to first specify

the initial state of the gravitational field and then use the laws of physics to describe

its subsequent evolution. This defines the initial value problem of general relativity.

There are various ways to specify initial data and arrive at physically rea-

sonable spacetimes that satisfy the Einstein equations, for instance characteristic

approaches [26] which specifies initial data on a null hypersurface and Cauchy for-

mulations (such as the 3+1 decomposition) where the initial data is specified on

a spacelike hypersurface [10] [9]. Early and influential Cauchy formulations were

introduced by Arnowitt, Deser and Misner [20] and Choquet-Bruhat [8] and is sim-

ilar to other Cauchy initial value problems in that it is assumed that a field can be

known for all space at some initial time. The ADM formulation yields a system of

second order hyperbolic evolution equations and four elliptic constraint equations.

In this approach, the physical variables chosen to represent the gravitational field in

the ADM picture are, roughly, a spatial metric for each spatial hypersurface and the

time derivative of that metric. The extrinsic curvature is used as a natural expres-

sion of the instantaneous time derivative of the gravitational field on the Cauchy

slice [25]. Counting the components of the spatial metric and the extrinsic curva-

ture, there are twelve unknown quantities of which four are fixed by the constraint

equations and another four are arbitrary buy fixed by any particular choice of coor-

dinates leaving four free quantities but no unique way of knowing which quantities

should be specified to arrive at a particular and distinct physical spacetime.
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This problem was studied by Lichnerowicz [19] and then later in detail by

York [28] who developed what is now known as the conformal transverse traceless

decomposition later the Thin-Sandwich decomposition was also developed to give an

approach which connected the extrinsic curvature with certain physical quantities

[30]. The conformal decomposition treats the initial spatial metric as a conformal

transformation of a chosen background metric, and uses conformal formulas to easily

calculate derivative terms. This corresponds to a choice of five dynamical variables

and simultaneously a coordinate choice on the initial spatial hypersurface. The

conformal factor is then used to satisfy the Hamiltonian constraint. Due to the

simplicity of conformal transverse traceless decomposition constraint equations for

time symmetric initial data, this thesis uses this approach for decomposing the

constraint equations and choosing the free data. A point of time symmetry is a

time where for t′ = −t one has for any quantity u, ∂u/∂t = ∂u/∂t′. Asymmetric

points are all other points. The reason for producing time symmetric initial data is

essentially due to the automatic satisfaction of three of the four constraint equations

and a simpler remaining constraint. For these reasons, time symmetric initial data

is produced in this thesis.

Black holes play a prominent role in the field of general relativity as the

physical manifestation of gravitational fields so strong that the pressures supplied

by the other forces of nature were not enough to prevent the collapse of a star into

a singularity. Because of this fact and the fact that they can exist without the

presence of further mass distributions, their dynamic behaviour has been studied

for decades because they are strong sources of gravitational waves, the implications

of pure geometrodynamics, and as a simple curiosity. These reasons motivate this

study of distorted black holes; in order to study directly their behavior in general
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situations. By definition, a black hole is a region in spacetime from which no particle

can escape to infinity, even photons; technically speaking it is the boundary of the

causal past of future null infinity [25][16]. This definition demands knowledge of the

entire spacetime in order to determine if a black hole is present or not. Knowing

only the metric and its time derivative at a single instant of time, it is impossible to

know exactly where the boundary of the interior of a black hole occurs. However,

due a theorem by Penrose [22] it is known that initial data possessing a marginally

trapped surface or an apparent horizon will develop singularities and under certain

assumptions a black hole. Under general circumstances it is necessary to assume

cosmic censorship, that all singularities in General Relativity are hidden behind

event horizons, however, for the conformally flat, time symmetric initial data studied

in this thesis it was proven by Jang and Wald [18] that the singularity would be

hidden by an event horizon, and so the spacetime will contain a black hole. Since a

black hole is a surface out of which no physical influence, even light, can propagate,

one had the intuition that the physical data on the interior of the horizon could

be ignored. This has led to the development of excision techniques, where the

spacetime whithin the horizon (in fact the trapped surface) is ignored. While it is

true that no physical information can escape the horizon, coordinate information

can escape with no limit to the speed of propagation. Thus an alternative approach

to excision was developed: the puncture technique. Coupled to gauge conditions

which rapidly ensure that spacetime region outside the horizon is populated by

coordinates. Further, initial data is described for any variable u in the system as

u = ubounded + usingular (1.1)

and a particular expression for usingular is used so that ubounded is genuinely bounded

and is subject to modified constraint equations [5]. While the puncture method has
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advantages, we are primarily interested in looking at the effects of changing the

shape of the apparent horizon on the initial data for the black hole. This is much

easier to do in the “excision” picture, and therefore the excision approach is used in

this thesis.

The marginally trapped surface has now been extensively used in numerical

relativity to excise the singular regions of black holes from the numerical evolution

experiments. A quasi-equilibrium (a Cauchy slice is said to be in quasi-equilibrium

if some of its instantaneous time derivatives vanish, which ones and how many differ

by author and method) method for generating initial data with arbitrary spin black

holes has been developed and tested by Cook and Pfeiffer [12][11]. In the applications

of these initial data they used apparent horizons which were coordinate spheres even

though the boundary condition defined in these papers enables one to use arbitrary

shapes of the excised region: so long as a conformal transformation is found which

takes the actual shape of the surface to a sphere, a Killing vector representing the

spin of the black hole in the spherical coordinates can then be transformed back onto

the deformed surface as a conformal Killing vector which is all that is required to

specify the spin for this type of initial data. Because of the difficulty in computing

conformal transformations for arbitrary distortions, the distorted black hole initial

data produced in this thesis is non-spinning.

Some previous studies have been carried out on the dynamics of single, dis-

torted black hole spacetimes. The initial data in Bernstein et al. [3] was specified in

a way so that the spacetime contains two asymptotically flat universes connected by

a coordinate sphere throat superimposed on a Brill type gravitational wave back-

ground. The distortion in this spacetimes is generated by the shape and amplitude of

the gravitational wave and is aimed at studying the interaction between black holes
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and gravitational waves. Some static solutions have been investigated by Geroch and

Hartle [15] where the black hole was distorted by external matter sources. Husa [17]

studied black hole spacetimes generated by specifying a toroidal marginally trapped

surface. Husa [17] looked at some particular distorted marginally trapped surfaces.

To create initial data representing distorted black holes, Teukolsky [24] use

perturbation theory to generate small deviations away from known, highly symmet-

ric solutions. For strong distortions, with the hope of creating strong gravitational

wave signals, perturbation theory cannot be used. The number of multipole mo-

ments needed to be computed for some initial data is simply too large. For this

reason numerical methods are used in this thesis to study distorted black hole ini-

tial data.

The preceding has outlined the mathematical problem to be solved in this

thesis, namely the problem of producing initial data for black hole spacetimes using

the conformal decomposition of the constraints, choice of time symmetry, and the

use of a marginally trapped surface to ensure the space time will be black hole initial

data. The remaining problem to solve is still quite difficult, namely because of the

arbitrary shape that will be used for the marginally trapped surface. To solve this

problem, this thesis uses numerical methods.

The most common numerical method implemented to solve a partial differ-

ential equation in general is the finite difference method, a numerical method of

solving partial differential equations by approximating derivatives with differences

between nearby points. This method becomes more complicated when the domain

is irregular because the grid points of uniform square meshes will not generally

intersect curved boundaries and finite difference formulae become complicated for

non-uniform meshes, meshes which can be easily adapted to a curved domain. The
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boundary conditions for uniform rectangular meshes become quite complicated [13]

for curved domains. With a curved domain, the finite element method is the natural

computational method of choice [4] for solving partial differential equations. The

domain of distorted black hole initial data with an excised region will in general

be curved and so this thesis uses the finite element method to solve the constraint

equations.

The finite element method casts the elliptic constraint equations into an

integral formulation known as the weak form by multiplying the equations by a test

function and integrating by parts to transfer one derivative operator onto the test

function. In this way the solution need only be once differentiable and the solution

is found by solving a variational problem: finding the function such that the integral

equation is satisfied for all test functions. The domain is then discretised piecewise

polynomial basis functions are defined with compact support over this discretised

domain. The function space spanned by these basis functions is a subspace of the

space of once differentiable functions to which the actual solution is an element. By

solving the variational problem in this limited subspace an approximation to the

true solution is found, the approximation being the function which minimizes a the

distance to the actual solution in a norm defined by the weak form [4].

The first choice in specifying a finite element method is in choosing how the

domain is discretised. The lowest order discretisation of a domain is a triangulation,

and is used in this thesis due to the straightforwardness of triangulating a curved

domain. The next choice of specifying a finite element method is in choosing the

basis functions. For piecewise constant basis functions, each triangle becomes asso-

ciated with a single degree of freedom (the coefficient of the basis function in the

linear combination of basis functions representing the solution) and the resulting
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approximation is only first order accurate in the average mesh size. For a piece-

wise linear, continuous polynomial basis functions each node of the triangulation

becomes associated with a coefficient of a basis function (usually simply the value of

the approximation at the vertices) and the resulting method is second order. This

thesis uses the second order accurate piecewise linear finite element method.

Much research has been done on the finite element method. Of particular

interest is the use of superconvergent gradient recovery techniques to estimate the

a posteriori error associated with a given triangular subdomain [21]. In general

a numerical method will have a given order of convergence, but in finite element

solutions one can show that at certain points inside each element, the order of con-

vergence is up to one order higer. This phenomenon is known as superconvergence

and when it is used to estimate the gradient, it is called superconvergent gradi-

ent recovery. The a posteriori errors this method yields are ideal for determining

where a mesh needs refinement to locally achieve a desired accuracy. This type of

refinement is used frequently, for instance in the publicly available finite element

solver PLTMG [2]. This tool is ideal for the solution of the problem at hand: it

uses adaptive mesh refinement on a triangularization of a general two dimensional

domain to find a piecewise linear approximation to the smooth solution. Due to the

public availability of PLTMG and its level of sophistication in mesh refinement, it

is used in this thesis to study the problem at hand.

An overview of this thesis is as follows: using the piecewise linear finite

element method package PLTMG 9.0, initial data representing axisymmetric black

hole spacetimes at a point of time symmetry is generated in the 3+1 decomposition of

Einstein’s equations with a marginally trapped surface inner boundary. The theory

outlining the constraint equations and their formulation for this particular problem
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(Chapt. 2) as well as the theory of the finite element method and other numerical

methods (Chapt. 3) is reviewed. In Chapt. 4 the initial data is tested for convergence

and the masses and maximum radiation limits of various spacetimes is presented.

None of the initial data produced permits more than 6% of the mass contained

in the spacetime to be radiated, as computed through the difference between the

horizon mass and the ADM mass. It is seen that some surfaces chosen as marginally

trapped surfaces are not the apparent horizons (the outermost marginally trapped

surface), another surface in these spacetimes surrounding the chosen inner boundary

is the actual apparent horizon. In this thesis, axial symmetry, maximal slicing and

time symmetry are used to decompose the constraint equations. A curve is used

to generate a surface a revolution on which a boundary condition is imposed by

forcing it to be a marginally trapped surface. A large radius is chosen at which the

domain is truncated and a boundary condition is imposed on conformal metric here

to enforce asymptotic flatness. Finally, the finite element method is used to solve

the resulting boundary value problem for the conformal factor. Conclusions and the

results of thesis are presented in Chapt. 5.
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Chapter 2

The Physical Problem

In this chapter the mathematical framework required to study the specific

problem of generating axisymmetric initial data with specified marginally trapped

surfaces is developed. The final section contains the exact mathematical statement

of the initial value problem to be solved.

2.1 Conventions

Units will be adopted such that G = c = 1 and metric signature (−,+,+,+)

will be used. Greek indices {µ, ν} will denote four dimensional quantities, latin

indices near the beginning of the alphabet {a,b,...} will be used to denote two di-

mensional and indices {i,j,k} will represent three dimensional spatial quantities;

spatial quantities are distinguished by orthogonality to the timelike vector, nµ de-

scribed in the following section. Equations will always be written in terms of a

coordinate basis. In some cases it will be necessary to distinguish between the three

dimensional quantitiy and a two dimensional quantity and this will be accomplished

by prepending a (2) superscript.
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2.2 ADM formalism and York’s conformal transverse

traceless procedure

In order to foliate spacetime into a sequence of spacelike hypersurface a scalar

function t is defined over the entire spacetime. The timelike vector associated with

this coordinate is the vector field tµ which is tangent to the xi =constant curves.

The infinite number of level sets of the time function define the hypersurfaces Σt.

There is a unit, future directed, timelike vector orthogonal to these hypersurfaces,

denoted nµ, related to the vector field of the time function as tµ = βµ +αnµ, where

βµ and α are called the lapse vector and shift function [20]. In terms of these

quantities the line element of the complete spacetime is

ds2 = −(α2 − βiβi)dt
2 + 2βidx

idt+ hijdx
idxj , (2.1)

where hij denotes the spatial metric of the hypersurfaces. It describes the gravita-

tional field on a hypersurface, and can also be written as

hµν = gµν + nµnν , (2.2)

which can be treated as a completely spatial tensor since it is of non maximal rank

and so will now be written as hij .

Initial data consists of two symmetric, spatial tensors hij and Kij , the ex-

trinsic curvature, chosen to represent the first derivative of the gravitational field

because of its behaviour under spatial coordinate transformations, in the 3+1 de-

composition is is given by

Kij = −1

2
Lnhij , (2.3)

where L is the Lie derivative. This contains a total of twelve independent compo-

nents. In general, a maximum of eight of these components can be specified and the
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other four are fixed by the constraints.

In general, it is not known what is the “physically relevant” way of choosing

which of the twelve components are freely specifiable, it is mathematically arbitrary.

Although choosing coordinates and the constraints themself in some way constrain

some of them. Various useful ways of choosing these free quantities have been

developed [29][30] which can be used to decouple the equations, both attributable

largely to York. The first aspect of these methods is to assume that the metric of

the spatial slice (hij) is conformally related to a freely chosen metric (h̄ij),

hij = ψ4h̄ij . (2.4)

With this, one is able to easily write down the covariant derivative in terms of the co-

variant derivative of the chosen metric and extra terms from the conformal factor, as

well as to write down the Ricci scalar in terms of the same. The final choice involved

in these methods involves treating the trace of the extrinsic curvature K = Ki
i as

a freely specifiable quantity and the methods differ by how they accomplish this.

The major difference between the conformal transverse traceless decomposition and

the conformal thin sandwich approximaiton is how they decompose the conformal

extrinsic curvature. Because of the assumptions made in this thesis, outlined below,

the methods become equivalent.

Here we choose the maximal slicing condition K = 0 and time symmetry

so that Kij = 0, and a conformally flat spatial metric h̄ij = δij . The choice of

maximal slicing allows the momentum constraint to decouple from the Hamiltonian

constraint, while the choice of conformal flatness simplifies the derivative operators.

The choice of flat metric fixes the coordinate degrees of freedom other than the

conformal factor which is fixed by the Hamiltonian constraint and an overall unit

of distance measure. The choice of maximal slicing and time symmetry fixes the
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dynamical degrees of freedom to contain zero momentum and zero spin and the only

remaining degree of freedom is a quadrupole and higher multipole moment which

can be specified by the choice of marginally trapped surface.

The only remaining constraint equation after these choices is the Hamiltonian

constraint which is given by

∇̄2ψ +
1

8
K̄ijK̄

ijψ−7 = 0, (2.5)

where ∇̄ represents the flat space derivative operator.

These are the equations that conformally flat, maximally embedded, instan-

taneously time symmetric initial data in the ADM-York picture must satisfy. Any

initial space which satisfies these equations will generate a spacetime consistent with

general relativity, but not necessarily a black hole space time. In order to ensure

that there is a black hole within the spacetime, we need proper boundary conditions,

which we describe next.

2.3 Black hole horizons and asymptotic flatness

In order to have a black hole within our spatial slice we will excise a region

and specify a boundary condition which guarantees the existence of a black hole. As

noted in Sec. 1.1 this is merely one method for constructing black hole spacetimes

chosen over the puncture technique because of its adaptability to a distorted horizon.

The problem with this approach is that a black hole has a global definition: the

region from which no light can escape to infinity. Since we are generating initial data,

we have no way of tracing light rays to infinity to ensure that a surface is an event

horizon. To ensure that the initial spatial slice describes a black hole spacetime,

we impose that a freely specified surface be a marginally trapped surface. If the
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spatial unit normal to the surface is denoted sµ then the condition that must be

imposed on the marginally trapped surface is that the divergence of the outgoing null

geodesics must vanish on the surface. Physically this means that neighboring null

geodesics whose tangent is normal to the marginally trapped surface will converge

to a point shortly after being continued off the marginally trapped surface [22].

Assuming cosmic censorship, this then ensures that the marginally trapped surface

is contained in the event horizon. The outgoing null vector, kµ, orthogonal to the

trapped surface can be written in terms of the spatial normal vector sµ and the

timelike vector normal to the Cauchy surface, nµ, as

kµ = nµ + sµ; (2.6)

using this equation and the fact that gµν = hµν + nµnν , the condition that the

surface be a marginally trapped surface, ∇µk
µ = 0, becomes

hµν∇µkν + (kµ − sµ)(kν − sν)∇µkν = 0. (2.7)

Then kµ∇µkν = 0 because kµ is tangent to a null geodesic and

kν∇µkν = ∇µ(kνkν) − kν∇µk
ν = −kν∇µk

ν = 0, (2.8)

where the last equality follows since raising and lowering an index commutes with

covariant differentiation. So we have,

hµν∇µkν + sµsν∇µkν = hµν∇µ(nν + sν) + sµsν∇(µkν) = 0, (2.9)

because of the symmetry of sµsν . Now note that Kµν = ∇(µnν) and sµsν∇µsν = 0,

so that we have

hµν∇(µnν) + hµν∇µsν + sµsν∇µnν = Kµ
µ +Dµs

µ + sµsνKµν = 0, (2.10)
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where Dµ is the spatial covariant derivative. Now, keeping in mind that all the

above quatities have vanishing temporal components and that Kij = 0, si = ψ−2s̄i

and ∇is
i = ∇̄is

i + 6si∇̄i lnψ where ∇̄i is the flat space derivative operator [25], the

boundary condition imposed on the marginally trapped surface becomes

∇̄is̄
i + 4s̄i∇̄i(lnψ) = 0, (2.11)

in the flat coordinate system. This is the boundary condition prescribed on the

inner boundary used to construct black hole initial data.

We want to study a physical system in isolation, so at a sufficient distance

from the black hole we want the space to appear flat. This means that the conformal

factor of the previous section must approach unity (in “inertial coordinates”) as the

distance from the centre approaches infinity. Perhaps more realistically for a physical

system which will never be totally isolated, we can demand that the spacetime have

the correct asymptotic behaviour, that is asymptotic flatness. Asymptotic flatness

ensures that far from the origin, the conformal factor will have the asymptotic

expansion in non-rotating non-boosted coordinates, [27]

ψ = 1 +
E

2r
+O(r−2). (2.12)

for some as yet, undetermined E. Differentiating this condition, solving for E and

resubstituting the expression to eliminate E yields the boundary condition.

∂ψ

∂r
+
ψ − 1

r
= O(r−3). (2.13)

By treating the right hand side of the above equation as if it were zero and imposing

this condition at a finite radius, it describes an approximate boundary condition to

enforce asymptotic flatness. This ensures that sufficiently far from the black hole,

the conformal factor drops off at the correct rate and approaches unity.
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Satisfying the first equation on an inner boundary and the second equation

on an outer boundary ensures that the initial data will represent an asymptotically

flat spacetime containing a black hole. There is a certain freedom in choosing both

of these surfaces, although the proper physical outer boundary condition in the

inertial coordinates used here is a Dirichlet boundary condition specified at infinity;

the Robin type (mixed) boundary condition of Eq. (2.13) is merely an approximation

chosen for the computational simplicity of having an outer boundary at finite radius.

A sphere or cube is perhaps the most natural choice for the outer boundary to

ease computations, but for the marginally trapped surface we have freedom to use

our intuition and imagination to construct black hole spacetimes which contain a

marginally trapped surface with a specified shape in the conformally flat coordinates.

Next we choose a coordinate system and simplify the problem, mathemati-

cally and computationally, by imposing axisymmetry.

2.4 Final formulation of the problem

Although fully three dimensional evolution problems are cutting edge, and

initial data for these problems are routinely generated, they still present great chal-

lenges. By imposing axisymmetry, one can reduce the complexity of the problem

and still study problems of interest. For the purpose of computational simplicity,

this thesis studies problems with this symmetry imposed.

With these assumptions, we choose axisymmetric coordinates (r, z, φ), where

∂φ is a Killing vector and consequently, ∂φψ = 0. The computational domain then

is Ω ⊂ R
2 and there are three distinguishable parts of the boundary ∂Ω: the curve

which generates the marginally trapped surface, ΓA, the axis of rotation, ΓR, and

the boundary, Γ∞, where space is truncated and boundary conditions derived from
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Figure 2.1: Typical problem domain.
Shown is a typical domain for the initial value problem. The outer, semi-circular
boundary, Γ∞, represents the truncation of the domain. The inner, irregular bound-
ary, ΓA, represents the marginally trapped surface. The z-axis, ΓR, is used as the
axis of symmetry.

asymptotic flatness are prescribed, (see Fig. 2.1). If sa is the outward pointing unit

normal to the domain then the equations which govern this physical problem are

simply:

(

∂2
r +

1

r
∂r + ∂2

z

)

ψ = 0 on Ω, (2.14)

sa∇aψ + ψ
∇as

a

4
= 0 on ΓA, (2.15)

sa∇aψ +
ψ − 1√
r2 + z2

= 0 on Γ∞, (2.16)

sa∇aψ = 0 on ΓR. (2.17)

As pointed out in personal correspondence by Choptuik, in analogy to the
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(3+1) decomposition, one has on the 2-surface that

∇asb = ∇(asb) + ∇[asb], (2.18)

and the first term of the right hand side is merely the extrinsic curvature of the two

surface,

Hab ≡ ∇(asb). (2.19)

Then taking the trace of the above derivative results in the antisymmetric part

dropping out, yielding

∇as
a = Ha

a = H. (2.20)

Where the conformal background of the problem is merely euclidean space, the

trace of the extrinsic curvature for a surface of revolution is known: the sum of

the gaussian curvature of the generating curve, κγ and the rotational curvature, κφ.

Useful expressions for these two quantities are

κγ =
dsa

ds
ta, (2.21)

κφ =
s(r)

r
, (2.22)

where ta is the tangent vector associated with the curve ta = dγ
ds , s represents a

parameterisation by arc length so that tatbδab = 1, and s(r) is the r component of

the normal vector. The marginally trapped surface boundary condition becomes

sa∇aψ +
ψ

4

(

dsa

ds
ta +

s(r)

r

)

= 0. (2.23)

Eqns. (2.14-2.17) together with Eq. (2.23) provide the full description of the

problem of finding axisymmetric, time symmetric initial data in the York-ADM

method for black holes with an initially specified non-spherical marginally trapped

surface. The goal is to find solutions of interest and to study physical properties
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like the mass and possible radiation content (both to be described in Chapter 4) of

these snapshots of spacetime.
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Chapter 3

The Tools

Now that the physical problem has been specified in a precise mathematical

language it remains only to solve the problem. Due to the potential complexity

of the domain, it is only practical to seek numerical solutions to the equations as

outlined in Sec. 2.4. A natural choice for a numerical solution of a differential

equation on a non rectangular domain is the finite element method. It is this tool

that will be used to solve the Hamiltonian constraint equations and seek solutions

of the distorted black hole problem.

3.1 The finite element method

As a simple example of how the finite element method works, consider the

boundary value problem

∂2u(x)

∂x2
− g(x) = 0 (3.1)

subject to

u(0) = u(1) = 0. (3.2)
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One multiplies by a test function v(x) satisfying the boundary conditions and inte-

grates by parts to achieve

∫ 1

0

(

∂u

∂x
(x)

∂v

∂x
(x) + g(x)v(x)

)

dx = 0, (3.3)

and the problem is then to find u(x) such that the above integral is satisfied for all

possible v(x). Because this integral only requires the function be once differentiable,

and because it is a variational problem, it is distinguished from the actual differential

equation and called the weak form of the problem. One cannot evaluate this integral

for every function which satisfies the boundary conditions because there are infinitely

many and is so not amenable to computer automation, but if we look only in a finite

dimensional subspace of the total function space we can find the solution to the

corresponding discrete problem computationally. We construct a piecewise linear

subspace in the following way: discretise the domain into n equal intervals of length

h = 1/n and at the endpoint of interval j (for j = 1..n− 1) we define a “hat” basis

function

φj(x) =























0 for |jh− x| > h

(x− (j − 1)h)/h for x < jh

((j + 1)h− x)/h for x > jh

(3.4)

and its first derivative

dφj

dx
(x) =























0 for |jh− x| > h

1/h for x < jh

−1/h for x > jh

(3.5)

which is of course undefined at the interfaces. The span of these basis functions

define the subspace that the approximation will belong to. That is, we solve a

modified variational problem where we search for the function uh in this subspace

21



such that the exact same intregral, Eq. 3.8, is satisfied for all test functions in this

subspace. The solution and test functions are expanded in this basis as

uh(x) =

n−1
∑

j=1

ujφj(x) (3.6)

and

v(x) =
n−1
∑

j=1

vjφj(x), (3.7)

where the test functions now belong to the finite dimensional subspace. The integral

is then evaluated and yields

v · (Ahuh + G) = 0. (3.8)

Above v and uh are R
n−1 vectors whose j’th element is given by vj and uj respec-

tively; Ah is a matrix whose elements are given by

(Ah)ij =

∫ 1

0

dφi

dx
(x)

dφj

dx
(x)dx, (3.9)

it is a tridiagonal matrix with diagonal elements given by 2/h2 and off diagonal

elements given by −1/h2; and G is a R
n−1 vector whose elements are given by

Gj =

∫ 1

0
g(x)φj(x)dx, (3.10)

and is in practice approximated using the midpoint rule as

Gj =

∫ jh+h

jh−h
g(x)φj(x)dx ≈ g(jh). (3.11)

Because the vector v is arbitrary, the term in brackets in Eq. 3.8 must vanish, by

bringing the matrix product to the right hand side one acquires a simple tridiagonal

matrix equation which one may recognize as being identical to the second order

centred finite difference approximation to the differential equation.
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This procedure outlines the finite element method in brief. One casts the

problem in weak form, discretises the domain, defines a basis with a finite number

of elements to approximate the function space, and then solves the system of coupled

coefficients which results from evaluating the weak form. The rest of this section

elucidates how to do this for the distorted black hole initial data problem.

As shown in Fig. 2.1, the domain of the problem is made up of a half-disk

with an arbitrarily curved boundary replacing some portion of the symmetry axis.

Attempting to cover such a domain with a uniform finite difference grid results in

the boundary generally intersecting the grid in between grid points, as shown in

Fig. 3.1. The uniform grid points almost never coincide with the curved boundary

and the use of accurate finite difference formulae becomes complicated. A natural

way to solve this problem is to use the finite element method on an unstructured

mesh adapted to the marginally trapped surface, as shown in Fig. 3.2.

The following development is based upon the normal Ritz-Galerkin treatment

of the finite element method for elliptic problems as outlined in [6] or [4]. To use

the finite element method one first needs to cast the differential equation in its weak

form. The weak form of a differential equation is an integral form that eliminates

second derivatives. For notational simplicity we introduce a vector, a(ψ), defined

by

a(ψ) ≡







∂ψ/∂r

∂ψ/∂z






, (3.12)

and a scalar function, f , defined by

f(ψ) ≡ 1

r

∂ψ

∂r
. (3.13)

Note that f(ψ) = a1(ψ)/r, this duplicate notation is used because it mimics stan-

dard notation in weak forms and makes the input of these functions into PLTMG
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Figure 3.1: Uniform discretization of domain.
Shown is the uniform discretization of the domain shown in Fig. 2.1. The original
boundaries are shown in red. It is seen that the grid points may lay close, but
generally not on the boundary with the exception of the z-axis. This phenomenon
causes various problems.
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Figure 3.2: Non-structured discretization of domain.
Shown is a non-structured discretization of the domain shown in Fig. 2.1 produced
by PLTMG. The grid vertices now intersect the boundary exactly which is now
treated as a polygonisation of the original smooth curves.

simpler. We now use notation such that

∇ ≡







∂r

∂z






. (3.14)

Then, leaving s as the outward pointing unit normal to the domain, the differential

Eq. (2.14) and boundary condition Eqs. ( 2.23, 2.16, 2.17) can be rewritten as

−∇ · a(ψ) − f(ψ) = 0 in Ω, (3.15)

s · a(ψ) = −ψ
4

(

dsa

ds
ta +

s(r)

r

)

≡ gA on ΓA(r, z, ψ), (3.16)

s · a(ψ) =
1 − ψ√
r2 + z2

≡ g∞ on Γ∞(r, z, ψ), (3.17)

s · a(ψ) = 0 ≡ gR(r, z, ψ) on ΓR. (3.18)

The following function spaces are then introduced

H1
c(Ω) = {φ ∈ H1(Ω)|φ is continuous on ∂Ω} (3.19)
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with

H1(Ω) =

{

φ ∈ L2(Ω)

∣

∣

∣

∣

∂φ

∂xi
∈ L2(Ω), i = 1, 2

}

(3.20)

and L2(Ω) is the space of L2 integrable functions on Ω. Then multiply Eq. (3.15)

by v ∈ H1
c integrate over Ω and use integration by parts to arrive at the following

variational form of the differential equations called the weak form of Eqs. (3.15–

3.18)

A(ψ, v) ≡
∫

Ω
(a(ψ) · ∇v + f(ψ) v ) dr dz −

∫

∂Ω
g(r, z, ψ) v ds = 0 (3.21)

with g(r, z, ψ) defined as the piecewise function

g(r, z, ψ) =























gA(r, z, ψ) (r, z) on ΓA

g∞(r, z, ψ) (r, z) on Γ∞

gR(r, z, ψ) (r, z) on ΓR

. (3.22)

By constuction any function satisfying the original differential equations will also

satisfy the variational form, but it is possible that some functions satisfying the weak

form will not satisfy the differential equation. Clearly those solutions which are not

twice differentiable will not satisfy the differential equation, thus the weak form is

seen as a relaxation of the requirements on differentiability. The weak formulation

of the axisymmetric, time symmetric distorted black hole initial data problem is to

find ψ ∈ H1
c such that for all v ∈ H1

c we have A(ψ, v) = 0.

The Sobolev space H1
c is still infinite dimensional, and the problem is not

yet amenable to a computational solution. The finite element method remedies this

by looking at a finite dimensional subspaces of H1
c, designated H1

c,h (here h is

an abstract quantity specifying the general scale of discretization of a particular

domain), and defining the finite element problem as: find ψh ∈ H1
c,h such that

A(ψh, v) = 0 for all v ∈ H1
c,h. It can be shown that the ψh found in this way is
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the closest possible approximation to ψ in the chosen subspace, that is it minimizes

|ψ − ψh| in an appropriate norm [6]. By converting an infinite dimensional vector

space to a finite dimensional one, a numerical solution is easily found through linear

algebra techniques. Now we need to define that subspace.

On a uniform grid of a rectangular domain, the piecewise linear finite ele-

ment method can be converted to a linear system of equations which is identical

to the linear system of equations formed for finite difference method using stan-

dard centred, second order difference formulae. Conceptually however, the finite

element method approximates the solution on the entire domain while the finite

difference method approximates the solution only at the grid points. The finite el-

ement method approximates the solution ψ of the differential equation, while the

finite difference method approximates the differential equation itself. The basis

functions of the linear subspace H1
c,h are chosen so they are non vanishing only on

a few neighbouring elements; that is, the basis functions have compact support. In

this way the integral Eq. (3.21) is converted into a sparse matrix system and typical

sparse matrix methods can be used to quickly find the approximation. In order to

achieve second order accuracy of the approximate solution (where order of accuracy

denotes the power with which the error converges in relation to the average grid

spacing), ψh, piecewise linear basis functions are used. A triangulation of the do-

main is the most flexible and easily adaptable method for discretizing the domain in

conjunction with piecewise linear elements. The basis functions will ensure that the

approximation will be linear over the given triangular subdomains. The following

sets are defined, the triangulation: Th, the set of edges: Eh and the set of vertices

(nodes): Nh. Here, the label h will typically represent an appropriate measure of

the grid spacing, such as maxEi∈Eh
(Ei) or maxTi∈Th

√

∫

Ti
dA. In what follows we
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will assume that h = maxTi∈Th

√

∫

Ti
dA. Because the domains are unstructured the

individual triangles of the domain can only be implicitly defined. The edges are of

course the individual line segments of the boundaries of the triangle and the nodes

are the endpoints of the edges. The triangulation of the domain can be implicitly

defined by the following properties

1. if Ti ∈ Th then Ti ⊂ Ω and
⋃

Ti = Ω,

2. if Ti 6= Tj ∈ Th and Ek ∈ Eh and nl ∈ Nh then Ti ∩ Tj = ∅ or Ti ∩ Tj = nl or

Ti ∩ Tj = Ek.

This essentially means that all the triangles cover the domain and that individual

triangles overlap only by an edge or a vertex at most and is embodied by Fig 3.2. The

inner curved boundary will be polygonated, so the domain is to be interpreted as an

outer semicircle, rotational axis and polygonated inner boundary. The triangles on

the outer boundary are not strictly speaking triangles since they will contain arcs

of triangles in fact, but will be referred to as such in any case. Then define the

particular subsets

Th ⊃ T i = {T ∈ Th|ni ∈ Nh and ni ∈ T} (3.23)

over which the basis functions will be continuous and nonvanishing and will vanish

outside. These domains are merely the set of triangles which have ni as a vertex.

The set of points contained in this domain is defined as

Nh ⊃ N i = {n ∈ Nh|n ∈ T i}. (3.24)

Then associated with this neighbourhood and central node ni the basis function

φi : Ω 7→ R is defined by four characteristics:

28



1. if x 6∈ T i then φi(x) = 0,

2. if T ∈ T i then φi|T ∈ P1, the space of linear polynomials over T ,

3. φi(ni) = 1 for ni ∈ N i, and

4. if n ∈ N i and n 6= ni then φi(n) = 0.

This says in plain language

1. the basis function is vanishing outside of its associated domain (element),

2. the basis function is linear over each triangle in the element and merely con-

tinuous accross edges,

3. the basis function has a value of one on the central vertex of the element,

4. the bassis function takes a value of zero at all other vertices in the element.

Where item 2 and 4 together with 3 imply that over each triangle in the domain, the

basis function decreases linearly to zero. This also implies that the basis function

will be vanishing on the outer boundary of its associated element. Everything is

identical on the boundaries except for the curved outer boundary where the only

difference is that the basis function will not vanish on this edge.

With these definitions in place, any f ∈ H1
c,h can be written as a linear

combination of the basis functions. Defining N as the number of nodes in Nh, the

specific linear combination of the approximation is

ψh =
N
∑

i=1

ψiφi, (3.25)

and more generally

v =

N
∑

i=1

viφi, (3.26)
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where the ψi and vi are coefficients.

With this description in hand, the integral in Eq. (3.21) can be evaluated in

terms of the basis functions and transformed into a system of linear equations in

the unknown coefficients. We define vectors ψ and v

ψ ∈ R
N with 〈ei,ψ〉 = ψi, (3.27)

v ∈ R
N with 〈ei,v〉 = vi, (3.28)

where the set {ei} are the Euclidean basis vectors of R
N and 〈·, ·〉 is the Euclidean

inner product on R
N . Then the integral Eq. (3.21) is approximated by

vTLψ = 0, (3.29)

where the elements of the N ×N matrix L are determined by

Lij = A(φi, φj), (3.30)

where A(u, v) is the weak form functional given in Eq. 3.21.

This then defines the piecewise linear finite element method on the bulk of

Ω. For each ni ∈ ∂Ω one row of L is formed from an analogous approximation of a

boundary condition equation. Then, due to the arbitrariness of v, the linear system

to solve is

Lψ = 0, (3.31)

which has a unique solution so long as the rank of the matrix is maximal. By con-

struction Lii = A(φi, φi) 6= 0 so the only way it could not be of maximal rank is if

columns were not linearly independent. The linear independence of the columns of

L follows directly from the linear independence of the basis functions φi. Therefore,

the linear system has a unique solution. Note that, because nowhere have the lo-

cal sizes of the elements been specified (only, implicitly, their maximum size), it is,

30



in principle, possible to have a mesh with any given triangulation. This will only

result in a different form for L whose specific values are not discussed here. Fur-

thermore, the triangulation of irregularly shaped domains can easily be performed

in an adaptive way if the tesselation is allowed to be unstructured.

This section has surveyed the necessary background to understand the piece-

wise linear finite element method on triangular tesselations of the domain. There

are many freely available programs of varying sophistication that are able to solve

such problems. The program PLTMG 9.0 by Randolph Bank is one such program

[2]. It solves general two dimensional elliptic problems using piecewise linear finite

element methods with adaptive discretization. PLTMG solves the resulting linear

system using the multigrid method. This thesis uses PLTMG to solve the initial

value problem for axisymmetric black holes described above.

3.2 Adaptive polygonisation of parametric curves

As described previously, our goal is to solve the hamiltonian constraint for

the conformal factor on a domain that has an inner boundary which is an arbitrarily

specified curve in the (r, z) plane. A key obstacle that arises in numerically dealing

with such a curved boundary is in polygonising it. PLTMG needs a boundary

specified either by line segments or arcs of circles, so the curved inner boundary

must be polygonised in some way. To do this, a discrete number of points are

chosen with which to represent this curve, assuming a parametrization. The easiest

way to accomplish this is to simply choose a number of points and have them

equally spaced in the curve’s parameter. However, this may cause problems because

a general parameterisation of the curve will not have points equally spaced along

the curve ∂Ω. Also, to correctly capture the shape of the curve the (open) polygon

31



must sample the curve more where the curvature is higher. For this reason the

polygonisation should adapt and increase the number of points sampled at areas of

high curvature. This section outlines one known method of adaptively sampling a

parametric curve[14].

The curve is denoted γ : [0, 1] 7→ R
2 and the parameter is denoted λ ∈ [0, 1].

Because γ(λ) ≡ (x1(λ), x2(λ)) is a point of R
2, γ(λ1)− γ(λ2) is a Euclidean vector.

The polygon will be defined by a sequence of parameters

Λ = {λi ∈ [0, 1]|i, j ∈ N, ; i, j < Nc; if i < j then λi < λj}, (3.32)

Nc will thus be the number of vertices in the polygon. The opening angle at a given

vertex, γ(λi), is defined for i = 1, 2 . . . , Nc − 1 as

θi = cos−1

( 〈γ(λi−1) − γ(λi), γ(λi−1) − γ(λi)〉
|γ(λi−1) − γ(λi)| |γ(λi−1) − γ(λi)|

)

, (3.33)

with 〈·, ·〉 the Euclidean inner product in R
2 and | · | its associated norm. This is

evaluated using the natural inner product of the flat metric space because we are

specifying the shape of the apparent horizon in the flat space and not the confor-

mally related actual hypersurface. The definition is merely the dot product of two

consecutive segments in the polygon, centred on a vertex under consideration: the

angle measures the angle between two consecutive line segments in terms of positions

on the curve. The polygonisation algorithm also needs a temporary set containing

the current end points of the curve

Σ = {σi ∈ [0, 1]|i, j ∈ N; i, j < Ne; if i < j then σi > σj}. (3.34)

One controls the polygonisation by specifying a critical angle. For a given vertex

there are vectors pointing to the previous vertex and the subsequent vertex, see

Fig. 3.3. If the angle between these two vectors is greater than the critical angle
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Figure 3.3: Illustration of adaptive polygonisation.
Here, the algorithm proceeds from the left to the right as we adaptively poly-
gonise a semi-circle (shown in blue) parameterised by distance along the z-axis:
γ = (

√
1 − z2, z). One sees that the first midpoint was already added to the curve,

this is therefore the second iteration of the algorithm loop. Fig. a: adaptive poly-
gonisation always occurs between endpoints λNc

and λNe
. Fig. b: the midpoint in

parameter space, λNc+1 has been added to the curve and the opening angle, θNc+1,
between the two new line segments has been computed. Fig. c: the opening angle
between the two line segments was too small so the endpoint was added to the set Σ
and the other vertices renumbered. The next possible adaptive polygonisation will
again be between λNc

and λNe
.

(closer to π), it is considered a straight line and information (the vertex) is not

needed there. If the angle is smaller than the critical angle, it is considered to

be curved and the vertex is kept. After choosing a critical opening angle, θc, the

algorithm for producing the set proceeds as:

1. Begin with λ1 = 0 and σ1 = 1 and Nc, Ne = 1.

2. Consider the opening angle of the midpoint θNc+1 with λNc+1 =
λNc

+σNe

2 and

let λNc+2 = σNe
, if θNc+1 < θc then let σNe+1 = λNc+1 and Ne → Ne + 1, else

let λNc+1 = σNe
, Nc → Nc + 1 and Ne → Ne − 1.

3. If Ne = 0 stop, otherwise repeat step 2.

The procedure illustrated in Fig. 3.3. This process will terminate once all the

midpoints between the current vertices would have opening angles greater than the

critical angle. That is to say, the process terminates when adding the midpoint
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would be adding a vertex onto a curve which is essentially a “straight line” in terms

of the critical angle. For θc sufficiently close to π the straight line segments will

provide a suitably accurate representation of the underlying curve. Note that it is

necessary to choose θc < π in order for the algorithm to terminate, since in the limit

that θc → π, Λ → [0, 1].

With the polygonal representation of the curve fully adapted to the curva-

ture, all that remains is to compute the actual curvature of the curve to evaluate the

boundary condition. This all important step amounts to numerical differentiation

on the polygonal curve. This differentiation does not necessarily have access to Λ al-

though it must have access to Γ = {γi ∈ ∂Ω|γi = γ(λi), λi ∈ Λ}. The arclength can

be approximated as the Euclidean distance between points or as integrated distance

along the polygon. This process is described next.

3.3 The boundary conditions

The regularity boundary condition, Eq. (2.17), and the asymptotic flatness

condition, Eq. (2.16), are straightforward to implement exactly in the finite ele-

ment scheme; one simply chooses boundary basis funcitons which automatically

satisfy these conditions. However, approximating at the marginally trapped surface

Eq. (2.23) is problematic since the equation depends heavily on the geometry of the

surface. Specifically, it depends heavily on derivatives of the position of the curve

γ(s). The function that must be computed is

K(γ) ≡ 4gA(ψ)

ψ
=
dsa

ds
ta +

s(r)

r
. (3.35)

where gA was the function defined in Eq. (3.16). There must be at least be C1

smoothness along the entire polygonised curve to evaluate this equation. The normal
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vector will be computed as a π/2 rotation of the tangent vector and will have

the same order of error. Due to interpolation theory the expected error between

the curve and its representative polygon is O(|λi − λi+1|2), so a finite difference

formulae to the same accuracy is desired in order to be consistent with the interior

approximation.

In order to find the tangent to O(h2) at a position x ∈ ΓA along the polygon,

three vertices are necessary. The distances along the polygonised curve to the nearest

two points are labeled in increasing order h1 and h2. These measure distance to the

endpoints of the line segment containing γ(x), the point the derivative is desired

at. On the first line segment of the polygon or on the second half of a general

line segment the third vertex chosen wil come from the succeeding line segment.

Similarly, on the final interval or on the first half of a general line segment the vertex

chosen will come from the preceeding line segment. In both cases the distance along

the polygon to this curve will be denoted h3. The first endpoint of the line segment

will be denoted γ1 ≈ γ(x ± h1), the second endpoint γ2 ≈ γ(x ± h2) and the spare

vertex γ3 ≈ γ(x ± h3); the plus or minus signs depend on the condition described

above and illustrated in Fig. 3.4.

In the case that γ3 comes from the succeeding endpoint, let h1 denote the

distance to the point γ2, h2 to the point γ1 and h3 denote the distance to the third

vertex, as shown in the first part of Fig. 3.4. In practice, these values are measured

using the distance along the polygon which roughly corresponds to true arc length.
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Figure 3.4: Vertices needed for derivatives and step sizes.
In both figures λ increases to the right, and the derivative is to be computed at point
γ(x). Fig. a shows the case where the nearest endpoint, γ1, has a greater value of
λ than γ2; the third vertex, γ3 comes from the endpoint of the succeeding (higher
λ) line segment. In Fig. b, γ(x) comes from the first half of a line segment; γ1 has
a lower value of λ than γ2. Here γ3 must come from an even lower value of λ. In
both cases h3 = h+ h1.

For the case of the γ3 coming from the succeeding line segment the coefficients

a =
h3 − h2

(h3 − h1)(h1 + h2)
, (3.36)

b = − h1 + h3

(h3 + h2)(h1 + h2)
, (3.37)

c =
h2 − h1

(h3 − h1)(h3 + h2)
(3.38)

are used to compute the tangent vector

δ+s γ =
dγ

ds
+ e+ = aγ2 + bγ1 + cγ3. (3.39)

The error term to leading order is again given as

e+ =
1

6

d3g

ds3
(h1h2 + h2h3 − h1h3), (3.40)

where g : [0, 1] − R is any component of γ. In the case that γ3 comes from the

preceeding line segment hi denotes the distance from x to γi (see Fig. 3.4 and the

coefficients take the form

a = − h2 − h3

(h1 − h3)(h1 + h2)
, b =

h1 + h3

(h3 + h2)(h1 + h2)
, c =

h2 − h1

(h1 − h3)(h3 + h2)
, (3.41)
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and the corresponding finite difference formula is

δ−s γ =
dγ

ds
+ e− = aγ1 + bγ2 + cγ3, (3.42)

with the leading order error term given by

e− =
1

6

d3g

ds3
(h1h2 + h2h3 − h1h3), (3.43)

The normal and tangent vectors created in this way will be normalized to O(h2)

because of their definition with respect to arc length, that is 〈δ±γ, δ±γ〉 = 1+O(h2).

However, they can be normalized fully in order to ensure that d
ds〈δ±γ, δ±γ〉 = 0.

The tangent vector is therefore defined as

ta ≡ δ±s
|δ±s | , (3.44)

using the standard Euclidean norm, to ensure precise normalization.

For the derivative of the normal vector, it is neceessary to consider the actual

description of the resulting vector in terms of the original curve. Denoting the curve

as γ(s) = (γr(s), γz(s))
T and because the normal vector is a π/2 rotation of the

tangent vector, the derivative of the normal vector is therefore

dsa

ds
=







d2γz

ds2

−d2γr

ds2






. (3.45)

To achieve an O(h2) finite difference formula at any point of the polygon, the formu-

lae need four vertices, the endpoints of the containing line segment and the endpoint

of both the preceeding and succeeding line segment (unless we are in the first or last

line segment). If associated with the point γi is the signed distance si from x then

the general finite difference formula for a function at four separated points is

δ2sg(s)|s−1(x) =
d2f

ds2
+ e2 = aγ1 + bγ2 + cγ3 + dγ4, (3.46)
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with coefficients given by

a = −2
s2 + s3 + s4

(s1 − s2)(s1 − s3)(s1 − s4)
, (3.47)

b = −2
s1 + s3 + s4

(s2 − s1)(s2 − s3)(s2 − s4)
, (3.48)

c = −2
s1 + s2 + s4

(s3 − s1)(s3 − s2)(s3 − s4)
, (3.49)

d = −2
s1 + s2 + s3

(s4 − s1)(s4 − s2)(s4 − s3)
. (3.50)

This formula can be used to calculate the derivative of the normal vector to second

order by correctly inserting γz and γr for g in the above formula. The error of this

formula to leading order is

e2 = − 1

12

d4g

ds4
(s1s2 + s1s3 + s1s4 + s2s3 + s2s4 + s3s4). (3.51)

These are the formulae that can successfully be applied to a polygonal repre-

sentation of a parametric curve to correctly account for the curvature and calculate

the marginally trapped surface condition properly. The above formulae are used to

create a program which automatically applies the correct boundary conditions for a

given curve without knowing the closed form expression of its Gaussian curvature.

As an added benefit, this feature can be used to study marginally trapped surfaces

which are only known numerically; this was done for the collision-like initial data

family(Sec. 4.2.2).
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Chapter 4

The Results

After finding initial data for axisymmetric distorted black holes, a few phys-

ical properties of these systems can be examined. It is possible to place an upper

bound on the energy of the gravitational radiation that could be emitted during

evolution of the data. The mass of the black holes can also be analysed in rela-

tion to their distortion. First, however it is necessary to analyse the initial data

for convergence and accuracy of the numerical solutions. In the following section,

the solutions are shown to converge, and evidence is given that strongly indicates

that there is no error in the implementation. Physical properties of the systems are

discussed in Sec. 4.2.

4.1 Convergence tests

Convergence testing is a crucial aspect of computational methods and nu-

merical analysis. The idea is to estimate the error of the approximate solution in

relation to the continuous solution. In the context of the calculations in this thesis,

there are basically two things that can go wrong
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1. the computational method is not converging, or

2. the computational method is not converging towards the continuum solution.

In the first case the computational method is ill posed or unstable. In the second

case, there has been a mistake in the implementation of the solution to the discrete

equations.

With no knowledge of the continuous solution, testing for these errors is dif-

ficult. However, there are ways around this difficulty, essentially by showing that

a sequence of solutions on finer meshes represents a Cauchy sequence in an appro-

priate norm. That is enough to show that the computational method is converging

to a particular solution. By using an independent method to compute residuals

derived from the differential equation, and showing convergence of these residuals,

the existence of the limit to the continuous solution is justified. In effect, the com-

puted approximate solution is directly shown to be a convergent representation of

the continuum solution.

4.1.1 Convergence of independent residuals

Using the original differential equation, Eq. (2.14), and some finite difference

approximation (FDA) of it, the finite element solution is interpolated to a uniform

rectangular grid and a residual calculated with respect to the FDA operator. The

residual computed in this way is independent of the method used to find the approx-

imate solution and provides proof via an alternate method that the correct solution

is being obtained; it eliminates the possibility of a flaw in the implementation of

the solution algorithm. Using operater notation, L = ∂2
r + 1

r∂r + ∂2
z . Eq. (2.14) is

rewritten as

Lψ = 0. (4.1)
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Then a corresponding second order finite difference operator is denoted by Ldiff and

the approximate solution ψdiff to the approximate differential equation

Ldiffψdiff = 0, (4.2)

will have a Richardson expansion[7]

ψdiff = ψ − h2ediff +O(h4) (4.3)

where ediff is an h independant function of position and h is the spacing between

two adjacent grid points. If the finite element solution is converging towards the

continuous solution then it can be written that

ψelem = ψ + eelem, (4.4)

where e ∈ H1
c and |eelem| tends towards zero as the discretization of the finite

element method is refined. So using Eqs. (4.2,4.3), the application of Ldiff to the

finite element approximation ψelem yields

Ldiffψelem = Ldiff(ψ + eelem) = Ldiff(h2ediff +O(h4) + eelem) (4.5)

The crucial assumption for the efficacy of the use of independent residuals to demon-

strate convergence in this case is that

Ldiffeelem ≪ h2Ldiffediff (4.6)

i.e. that the error of the approximation is negligible even after being operated on by

Ldiff and the measured residual is only dominated by the error of the finite difference

operator. If this were not the case the residual would not converge in the way

expected for the finite difference operator since it would have a contribution based

on the unknown error coming from the approximation. In order to ensure that this
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assumption holds, the approximate solution used for this analysis, the approximate

solution is taken to have as fine a mesh as possible and the finite difference mesh

is taken to be a few orders of magnitude larger. When this condition applies, the

residual becomes

r ≡ Ldiffψelem ≈ h2Ldiffediff , (4.7)

where r is the independent residual vector. If there are η nodes in the uniform mesh

discretization of Ω then r ∈ R
η and using the norm (|v| =

√

1/n
∑

v2
i ) to compute

the average residual gives

r = |r| =

√

1

η

∑

(Ldiffediffh2)2 < h2 supLdiffediff = kh2 (4.8)

for constant k = sup (Ldiffediff) which is also O(1) so long as ediff is bounded and

smooth.

In order for the foregoing derivation to be accurate, it is crucial that Eqn. (4.6)

hold. Because Ldiff is an approximate differential operator and eelem is only piece-

wise smooth, this condition is non trivial. Standard a priori error estimates show

that ∇ψelem converges to first order but ∇2ψelem is no longer square integrable and

local measurements vanish or diverge. However, one expects that the real solution

for the initial data problem studied in this thesis be smooth (at least more than

just once differentiable). So the lack of twice differentiability can be considered an

artifact of the finite element method, a similar phenomenon occurs in the evolution

of the vacuum electromagnetic field using the finite element method. For these rea-

sons one must use a reconstruction method in postprocessing ψelem if one wishes to

analyse its second derivatives and here a bicubic interpolant is used: x = (r, z) ∈ Ω

P (x) =

3
∑

i=0

3−i
∑

j=0

pijr
izj . (4.9)
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The ten coefficients {pij} are determined by requiring that P (x) be an exact in-

terpolant for the vertices on the nearest ten nodes (not the neighbouring ten, but

the ten points out of all points which are closest to this node). This interpolation

smooths the piecewise linear approximation so that the second derivative of the

approximate solution is no longer locally vanishing. The residual we compute is

then

r = LdiffP (x), (4.10)

where P is defined separately for each x.

With the numerical differentiation and the interpolation to the required

points now defined, the independent residuals can be computed. On initial data

whose outer boundary lies at radius (truncation radius) r0, a geometric sequence

of step sizes, h(l), is used, where the parameter l ∈ R represents the discretization

level:

h(l) =
r0
2

2−l. (4.11)

Then two levels are compared simultaneously with d = l2−l1 > 0. The ratio between

the components of the residual vectors at locations which coincide on both grids is

calculated and averaged. The relationship between the average ratio of residuals at

the two levels, if the above approximation was valid, will be

e(d) =

∣

∣

∣

∣

r(l1)|x
r(l2)|x

∣

∣

∣

∣

= C
(2−l1)2

(2−l2)2
= C22d. (4.12)

By taking logarithms of the above equation, the relation is linearised as

ln(e(d))

ln(2)
=

ln(C)

ln(2)
+ 2d, (4.13)

so the normalized logarithm of the error ratio will scale linearly with the difference

in the levels of discretization and have a slope of 2. With initial data representing
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regression of slope

All data 2.07 ± 0.01
Upper bound 2.41 ± 0.01

Table 4.1: Linear regression of independent residuals
The results of linear regression applied to the independent residual data plotted in
figure 4.1. The regressions performed are for the entire data set and the outlying
upper points, defined as, for a fixed d, the point with the largest value (upper
bound). The slope of 2 represents the expected scaling behaviour of the residuals
under the assumption of small source error and second order finite differencing, as
described by equation 4.13. The upper bound may be an outlying superconvergent
branch.

a sphere with a torus removed from the equator (Sec. 4.2.5), the convergence of

the independent residuals is shown in Fig. 4.1 and the results of the regression are

summarized in Table 4.1.

The scatter in the plot is due to the ill posed nature of differentiation on

scattered data points. For higher order finite element methods, each derivative of

the approximate solution decreases the order of convergence by 1. Naively carrying

this behavior over to the piecewise linear method, one would presume the error

to be O(1), here it is remedied by taking as accurate a solution as possible and

smoothing the result with an interpolation. A more sophisticated approach would

be to use the superconvergent points mentioned in the introduction to compute an

interpolation of higher order. However, the straightforward interpolation used here

was seen to be sufficient for proof of convergence. Because the upper lying branch

of points (denoted as the upper bound in the figure) in the plot of residuals seems

to be outlying, its convergence rate was measured to determine if it was a set of

badly converging points. Its rate of convergence was instead measured to be of

higher order than expected and may be due to unexpected correlations with the
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0
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Figure 4.1: Independent residual analysis of sphere-del-torus initial data with r1 =

5.3, r2 = 1.325, r3 = 2.45, t2 = 0.707π, t1 = sin−1
(

r1−r3

r1
sin t2

)

, and r0 = 600

Lines represent least squares fit to uppermost points (short dash) and all points (solid
line). There is still some oscillation in the derivatives. The error shows second order
dependence on the difference of discretization level, justifying the assumption of
equation 4.6. The initial data represents a sphere with a torus removed, (Sec. 4.2.5),
recall that r0 represents the truncation radius.
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superconvergent points. Its exact origins are not necessary for showing the evidence

of convergence and it is merely fit and displayed here due to its outlier quality.

To summarize, using a higher order interpolation than that defined by the

finite element basis functions, independent residuals were computed on a nontrivial

family of initial data. It is seen that these residuals converge to second order in

the discretization. This implies that the finite element solution as computed is in

fact converging to the correct solution to the initial value problem. In the follow-

ing sections, some of the physical properties of some initial data families will be

presented.

4.2 Mass and radiation analysis

For vacuum initial data describing black hole spacetimes, measures of the

mass of the gravitational system are of specific interest. In the current case there

are two such measures that are of particular interest. The first is the mass defined

by Arnowitt, Deser and Misner when they first considered the problem of dynamics

in general relativity [1]: this quantity is computed as a surface integral for asymp-

totically flat spacetimes, such as those currently under consideration. Specifically,

the ADM mass is given by

MADM = lim
ρ→∞

1

16π

∑

i,j

∮ [

∂γij

∂xi
− ∂γii

∂xj

]

sjdA, (4.14)

where sj is the outward pointing spatial normal to the surface on which the integral

is computed. Computing this in an axisymmetric, conformally flat spacetime and
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on a coordinate semi-circle one finds

MADM = lim
ρ→∞

MADM(ρ), (4.15)

MADM(ρ) = −ρ2

∫ π

0
(ψr sin θ + ψz cos θ)ψ5 cos θdθ, (4.16)

where ρ is the radius of the coordinate sphere on which the mass is computed, θ is an

azimuthal angle measured from the positive z axis in the axisymmetric coordinate

system, and MADM(ρ) will be referred to as the truncated ADM mass. This mass

is found below to monotonically decrease in a way which is inversely proportional

to the radius at which it is measured:

MADM(ρ) ≈M∗ +
k

ρ
(4.17)

for some unknown M∗ and k.

The second mass measure comes from the the area of the marginally trapped

surface. Marginally trapped surfaces are always internal to the apparent horizon

(or coincident with it) and, assuming cosmic censorship, the apparent horizon is

internal to the event horizon. Thus, at any instant of time, the area of a marginally

trapped surface is smaller than the area of the intersection of the event horizon and

the t = const. surface. Because the area of the event horizon is related to the mass

of the black hole in a specific way, one can both bound the mass of the black hole

and, in many cases, determine a reasonable estimate of the mass by using the area of

the marginally trapped surface. The area of a surface of revolution in a conformally

flat spacetime is given by

A = 2π

∫

r(s)ψ4(r(s), z(s))ds (4.18)

where s represents an arclength parameterization of γ(s) ≡ (r(s), z(s)). This area
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is then used to compute the “apparent horizon mass”

MAH =

√

A

24π
, (4.19)

which is just the Hawking energy of the apparent horizon in a vacuum spacetime: the

amount of mass-energy surrounded by the apparent horizon [23]. Jang and Wald [18]

previously showed that for time symmetric initial data where the apparent horizon

can be continuously deformed to a 2-sphere at infinity that the mass determined by

the area of the apparent horizon is always less than the ADM mass.

The two mass measures defined above clearly measure two different quanti-

ties, with the horizon mass only being an approximation of the event horizon mass

and we note that there are additional mass like quantities which may be computed

but we do not[23]. After an evolution of the system, the ADM mass (at infinity,

not truncated) of the system will be the same as the original ADM mass but the

mass associated with the apparent horizon can increase as the black hole absorbs

gravitational radiation. The difference between the two quantities upon reaching

equilibrium in a vacuum spacetime can be interpreted as the total energy emitted

by the system in the form of gravitational radiation. On an initial data slice, the dif-

ference in the two quantities can be interpreted as the maximum amount of energy

available for radiation[3].

Because the initial data is computed on a subdomain of the entire spacetime

only the truncated ADM mass can be calculated and it is necessary to quantify how

the measurement of the mass depends on the radius at which the computational

domain is truncated. This relationship is shown in Fig. 4.2. The data is calculated

with a fixed ratio of the average finite element edge length to the truncation radius.

The two mass measurements, MADM and MAH, are computed approximately
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using the trapezoid integration rule. The estimate of MADM is computed as

MADM = −1
2ρ

2

η∞−1
∑

i=1

ψ(xi)
5 ρ−1 (ψr(xi)ri + ψz(xi)zi

+ ψr(xi+1)ri+1 + ψz(xi+1)zi+1) ∆θ/2,

(4.20)

where xi ≡ (ri, zi) are the ordered vertices comprising the endpoints of the arcs

defining the circular outer boundary Γ∞, η∞ is the number of such points and ρ is

the radius of the outer boundary; ∆θ is computed as

∆θ = tan−1

(

ri+1

zi+1

)

− tan−1

(

ri
zi

)

. (4.21)

The area of the outermost marginally trapped surface is computed as

MAH = 2π

ηA−1
∑

i=1

(

riψ(xi)
4 + ri+1ψ(xi+1)

4
) ∆s

2
, (4.22)

where xi ≡ (ri, zi) are the points actually contained in ΓA and chosen to approximate

it, ηA is the number of such points, and ∆s is computed using the Euclidean norm

(recall that xi ∈ R
2):

∆s = |xi − xi−1| . (4.23)

These mass measurements explictly depend on the size of the mesh as well

as the radius of the outer boundary. Since the error in the solution due to the finite

sized mesh is converging to second order and the gradient of the data converges to

first order, these masses will converge to first order. This behaviour is explicitly

shown in Fig. 4.3 and Fig. 4.4, which, respectively, show the linear dependence

of the ADM mass and the horizon mass on the basic scale of discretization; the

data used in these figures is derived from initial data where the apparent horizon is

cylindrical with rounded edges as described in Sec. 4.2.4. The radius of curvature

of the rounded edges is one eighth of the radius of the cylinder.
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With a solid understanding of the limitations of the masses measured from

the computational data, we can now explore the dependency of the mass on the

“level of distortion” of the black hole. Each distortion is controlled through dimen-

sionless quantity which is specific to the parameterisation of the curve; the quantity

is generally unphysical as it can be changed by reparameterisation. However, the

general behaviour of certain families of initial data can be described for a given

parameterisation.

One must keep in mind all the sources of error that occur in the computation.

When derivatives are involved in post processing, the error in the post processed

quantities will generally not converge to zero at second order in the number of ver-

tices. For the mass estimate derived from the area of the marginally trapped surface,

uncertainty arises because the ∆s used in the approximation to the integral is only

an approximation of the actual change in arc length between the two points and the

error is roughly proportional to the stepsize. The accuracy of this approximation

depends on the critical angle used in the polygonization procedure. Intrinsic to

PLTMG is the possibility that the initial unstructured mesh will form triangles tiny

in area but possessing large edge sizes; this seems to be correlated with a highly

sampled marginally trapped surface. When these triangles occur, an unphysical

ridge occurs along the long edges, linear behavior where is should be curved. Fi-

nally, changing any parameter of the simulation will alter the entire mesh in an

unpredictable fashion, producing these errors in a similarly unpredictable fashion,

demonstrating a statistical dispersion about the true values of order h for any small

change in a given parameter.
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Figure 4.2: Convergence of masses with domain size for collision-like data for r1 =
0.2, r2 = 0.4, z1 = 0.25, z2 = −0.5, and w = 2.2.
The ADM mass and the horizon mass (MADM and MAH respectively) calculated
from head on collision-like initial data (see Sec. 4.2.2) and plotted against the radius
at which the computational domain was truncated. The initial data used is meant
to represent the post-collision state of two black holes, with a mass ratio of 2:1, after
a common apparent horizon has formed.
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Figure 4.3: Convergence of ADM mass with decreasing grid size for χ = 2−3, r =
0.13 andρ = 1.0 rounded cylinder initial data.
The ADM mass plotted versus 1/

√
Nh, the inverse of the square root of the total

number of vertices, which is a measure of the average grid spacing. The initial data
was the rounded cylinder initial data (see Sec. 4.2.4) with χ = 2−3, where χ is a
parameter controlling how sharp the edges of the cylinder are. The data is fit using
a least squares regression showing the first order dependence of the average edge
length of the mass. The equation of the line is MADM = (−3.69±0.05)/

√
Nh+(1.03)

with negligible error in the intercept at these significant figures.
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Figure 4.4: Convergence of horizon mass with gridsize for χ = 2−3, r = 0.13, and
ρ = 1.0 rounded cylinder initial data.
Same as Fig. 4.3 excep here the horizon mass is plotted versus 1/

√
Nt. The equation

of this line is Mhorz = (−1.04 ± 0.01)/
√
Nh + (0.41079 ± 0.00005).
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4.2.1 Ellipsoidal marginally trapped surfaces

A simple, yet interesting class of initial data is created by choosing the ap-

parent horizon to have the shape of an axisymmetric ellipsoid. This is represented

in the computational region by half an ellipse and is generated from the parametric

curve,

γ(t) = (r sin t, l cos t) = r

(

sin t,
l

r
cos t

)

. (4.24)

Increasing r for a fixed value of l/r will increase the overall mass in a linear fashion

and is equivalent to a coordinate rescaling. A convenient way to investigate the

effects of distortion is to fix r and vary the dimensionless parameter l/r. The mass

estimates for this family of initial data are plotted in Fig. 4.5. Plotted as well

are least square fits for the ADM mass and the marginally trapped surface mass

following the models

MADM = aADM +
l

r
bADM +

r

l
cADM, (4.25)

MAH = aAH +
l

r
bAH +

r

l
cAH, (4.26)

where aADM, bADM, ..., cAH are coefficients whose estimated values are given in

Table 4.2. Should these formulae remain valid as l/r → 0 and l/r → ∞ then the

maximum radiation loss can be extrapolated to extreme values:

lim
l/r→0

∆M ≈ 1 − cAH

cADM
= (5.6 ± 0.3),% (4.27)

lim
l/r→∞

∆M ≈ 1 − bAH

bADM
= (4.4 ± 0.1).% (4.28)

From the plot of the mass of the ellipsoids versus the l/r ratio, there is

a minimum to the mass when the ratio of the semimajor axis to semiminor axis

is about l/r = 0.56. As the ratio is decreased from unity the total volume of the

surface decreases and this effect initially dominates the energy content, but after the
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Mi ai bi ci
MADM 0.32 ± 0.02 0.52 ± 0.01 0.14 ± 0.01
Mmts 0.34 ± 0.01 0.49 ± 0.01 0.14 ± 0.01

Table 4.2: Coefficients of r = 0.5 ellipsoid mass model as a function of l/r.
The results of a two dimensional linear regression to fit MADM and Mmts for ini-
tial data with ellipsoidal marginally trapped surface. The error terms bound the
calculated coefficients in a statistical 95% confidence interval.

critical value the energy required to form such a distorted marginally trapped surface

increases the energy over the decrease in volume. From the contour map of the

conformal factor of this initial data, Fig. 4.6, it is probable that the conformal factor

of the initial data has its maximum forming off the z-axis at some (rmax, 0), and

since a marginally trapped surface always contain now or in the future a singularity

it may be that this maximum represents, in the continuum limit, a singularity with

non-pointlike topology or a forming singularity which may maintain a non-pointlike

topology. This is further corroborated by the contour map of the magnitude of the

gradient of the conformal factor,

Ψ = |∇ψ| = |∇iψ∇iψ|, (4.29)

see Fig. 4.7. The contours of the gradient show a local minimum along the marginally

trapped surface at the axis, indicating the formation of a local saddle point at this

intersection. One may speculate that the central singularity associated with near-

spherically-symmetric initial data has vanished. This phenomenon is even more

evident from the contour plots for initial data with l/r = 0.21, where the gradient is

actually decreasing in magnitude along the axis as it meets the marginally trapped

surface (see Fig. 4.8 and Fig. 4.10).

Fig. 4.9 illustrates typical initial data from the other region of parameter
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space where the marginally trapped surface is an oblate ellipsoid characterized by

l/r > 1. In this case, because of the behaviour of Ψ one may hypothesise the

existence of two coaxial point-like singularities.

To summarize the ellipsoidal initial data, it has been shown that a highly

distorted marginally trapped surface can increase the energy in the spacetime rela-

tive to an apparent horizon with constant curvature (a sphere) in the conformally

flat spacetime. The behaviour of the two masses shows that the greatest increase in

MAH relative to MADM occurs for increasing l/r; however, a study holding MADM

constant and varying l/r would be a more stringent demonstration of this. The

total gravitational energy that could possibly be emitted has been estimated to be

bounded to a small fraction of the total energy. Evidence is seen that indicates the

possibility of richer singularity structure in spacetimes with distorted marginally

trapped surfaces; this method is, however, because the singular region is not part

of the computational domain, this work is unable to prove this point.
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Figure 4.5: Mass measurements of r = 0.5 ellipsoids with varying l/r.
This plot shows the ADM mass and the mass measurement of the marginally trapped
surface plotted versus the axial to radial diameter ratio. The lines represent the least
square fit to equations 4.25 and 4.26, there is no guarantee that these models are
accurate representations of the true functions. Some radiation is estimated by these
calculations even for l/r = 1 due to the use of a finite computational domain as well
as intrinsic variability due to the truncation error.
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Figure 4.6: Contour plot of l/r = 0.56, r = 0.5 ellipsoidal initial data.
This initial data represents the minimum of the mass curve shown in figure 4.5. The
peak in the conformal factor at the edge of the disc becomes increasingly prominent
for smaller values of l/r, the extra energy which is stored in this region of the
gravitational field begins to dominate the mass as the l/r ratio is decreased.

58



Figure 4.7: Contour plot of Ψ = |∇ψ| for l/r = 0.56, r = 0.5 ellipsoidal initial data.
This initial data represents the minimum of the mass curve shown in figure 4.5.
The peak in the conformal factor at the edge of the ellipsoid becomes increasingly
prominent for smaller values of l/r. The value of the conformal factor in this region
of the domain begins to increasingly dominate the mass measurement as the l/r
ratio is decreased.
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Figure 4.8: Contour plot of l/r = 0.21, r = 0.5 ellipsoidal initial data.
The circular contours near the edge of the disc suggest that there may be a singular-
ity near there if the initial data was continued into the marginally trapped surface’s
interior. From this data alone it is impossible to tell.
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Figure 4.9: Contour plot of l/r = 1.96, r = 0.5 ellipsoidal initial data.
This initial data set represent a contour plot of the conformal factor for the greatest
value of l/r plotted on the mass plot, figure 4.5.
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Figure 4.10: Contour plot of Ψ = |∇ψ| for l/r = 0.21, r = 0.5 ellipsoidal initial
data.
The circular contours near the edge of the disc suggest that there may be a singular-
ity near there if the initial data was continued into the marginally trapped surface’s
interior.
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4.2.2 Head-on-collision-like data

We now consider a family of initial data meant to superficially look like a

collision of two black holes at some time after a single apparent horizon associated

with with final black hole has formed. As before, we assume that the initial data

correspond to a moment of time symmetry. We first discuss how the marginally

trapped surface is constructed.

Adopting conformally flat, cylindrical coordinates (r, z), one finds that the

conformal factor for the Schwarzschild metric is

ψS = 1 +
m

2
√
r2 + z2

. (4.30)

Since the radius of the event horizon is related to the mass as RBH = m/2, this can

also be expressed as

ψCS = 1 +
RBH√
r2 + z2

. (4.31)

One then defines a function by summing two of these conformal factors with distinct

coaxial centres z = z1 and z = z2:

ω(r, z) =

(

1

2
+

R1
√

r2 + (z − z1)2

)

+

(

1

2
+

R2
√

r2 + (z − z2)2

)

. (4.32)

The function ω has various level sets, that is collections of points (r, z) where

ω(r, z) = w for some constant w called the weight. Because of the smoothness of ω,

the level sets form a one parameter family of planar curves, that can be specified to

be maginally trapped surfaces. The factors of 1/2 are included in ω so that when

z1 = z2 then ω becomes the conformal factor for a single Schwarzschild black hole

with RBH = R1 +R2. The level sets of this function are used to produce marginally

trapped surfaces because of the limiting behaviour as the distance decreases and

because one might expect the apparent horizons to slowly merge without creases as

would happen by superimposing two spheres.
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In order to keep the data somwhat centred, instead of choosing both z1 and

z2, one may choose z1 and then solve for z2 by computing the Newtonian centre

of mass associated with two point masses and having this centre of mass lie on the

origin. That is, we choose z1 and z2 is given by the relation

z1R1 + z2R2 = 0. (4.33)

If the separation of the centers, d = |z1 − z2| for a given weight is too large,

then the level set will be two disjoint curves. There is also a level set before separa-

tion where a point lying on the axis of symmetry has a discontinuous tangent. This

point has a singular Gaussian curvature, and consequently the boundary condition

is singular there. This level set, where the gaussian curvature becomes singular, is

avoided to prevent computational difficulties.

In Fig. 4.11 a contour plot of a member of this family of initial data is shown,

its parameters are described in its caption. The mass measurements are plotted in

Fig. 4.12.

The study of this family of initial data is hampered by the fact that the curve

is only known implicitly which introduces further numerical errors into the solution

process. This is seen in Fig. 4.12. Much like the ellipsoidal marginally trapped sur-

face, this family of initial data points to the possibility of richer singularity structure.

The large statistical variance in mass measurements could possibly be solved with a

smoother interpolation algorithms since these problems do not occur for the curves

without numerical error.
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Figure 4.11: Contour map of collision like initial data with r1 = 0.2, r2 = 0.4,
z1 = 2.7 × 10−2, and z2 = r1z1/r2 .
This figure shows a zoom in onto the marginally trapped surface formed from the
level set of two confomal factors. The position of the second conformal factor is
chosen to place the Newtonian centre of mass at the origin. and the masses have
a 2 : 1 ratio, with the largest mass being 0.4 (m). The conformal factor achieves a
global maximum on the surface near the smaller conformal factor’s origin.
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Figure 4.12: Mass esitimates of pseudo-collisional surfaces with r1 = 0.2, r2 = 0.4,
z1 = 0.25, z2 = z1 − d and w = 2.2.
The parameter d represents the separation between the centers of the two conformal
factors d = |z1 − z2|. The initial data used is meant to represent the post-collision
state of two black holes, with a mass ratio of 2:1, after a common apparent horizon
has formed. As the seperation parameter approaches the value at which the level
set will split, the mass sharply increases due to the increasing Gaussian curvature
of the marginally trapped surface. One sees the O(h) dispersion with small changes
of the parameter in this plot.
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4.2.3 Hemispherical shells

This section uses hemispherical shells as marginally trapped surfaces: hemi-

spheres whose interiors have been removed. They are studied merely as an object of

curiosity. The surfaces are characterized by an external radius, r0 and a thickness

ratio χ; the edge of the shell is rounded off by a torus of diameter equal to the

thickness of the shell. We first define two different curves parameterized by t ∈ [0, 1]

γ0(r, t) = r (sin (π/2t) ,− cos (π/2t)) , (4.34)

γ1(r, χ, t) = r (1 − (1 − χ)/2, 0) + r(1 − χ)/2 (cos (πt) , sin (πt)) . (4.35)

Note that γ0(r, 1) = γ1(r, χ, 0) and γ0(χr, 1) = γ1(r, χ, 1). The curve γ0 will be used

to form both the inside (radius r) and outside (radius χr) of the shell, the curve γ1

is used to round the edge of the shell (radius (1 − χ)/2r). The arclength of each

curve is

S[γ0](r) = r
π

2
, (4.36)

S[γ1](r, χ) = r
1 − χ

2
π, (4.37)

and the total arclength of each curve is

ST = S[γ0](r) + S[γ1](r, χ) + S[γ0](χr) = rπ. (4.38)

Thus, the following curve is parameterized by arclength,

γ(r, χ, tST ) =























γ0

(

r, tST

S[γ0](r)

)

for 0 ≤ tST < S[γ0](r)

γ1

(

r, χ, tST −S[γ0](r)
S[γ1](r,χ)

)

forS[γ0](r) ≤ t < S[γ0](r) + S[γ1](r, χ)

γ1

(

χr, ST (1−t)
S[γ0](χr)

)

forST − S[γ0](χr) ≤ tST ≤ ST

(4.39)
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and is a continuous curve that begins and ends on the r = 0 axis. This curve

generates the hemispherical shell marginally trapped surfaces studied in this section

and displayed in Fig 4.13.

Figure 4.13: The generating function of the hemispherical shell.
The hemispherical shell generating curve: two concentric hemicircles capped by a
semicircle.

The outer radius, r can be factored out of the equations with a coordinate

rescaling and has no impact on the physics and non-trivial variations in physics must

be induced via changes in dimensionless parameters. The thickness parameter χ is

the parameter of interest here. There are two singular values of this parameter when

the radius of the various circles vanishes and the Gaussian curvature (1/r) blows

up: when the thickness (1 − χ)r approaches zero the shell becomes infinitesimally

thin and the radius of the circle at the end of the curve goes to zero, and as (1− χ)
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approaches unity the radius of the interior circle goes to zero. Mass estimates for

hemispherical shells with 0 < χ < 1 are plotted in Fig. 4.14.

0.2 0.4 0.6 0.8

1

1.2

1.4

1.6

Figure 4.14: Mass estimates for r = 0.53 hemispherical shells with varying χ.
The domain represents the thickness of the shell in terms of the fraction of the total
external radius. The MTS mass quickly overtakes the ADM surface, indicating the
presence of an external apparent horizon and signaling the unfeasibility of black
holes with this particular shape.

Plots of the conformal factor, Fig. 4.17 and Fig. 4.18 show that a local

and sometimes global minimum of the conformal factor forms on the interior of the

shell. However, the plots of the maximum radiation loss show that at χ = 0.8 the

mass estimated from the marginally trapped surface is greater than the ADM mass,
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indicating that there is another marginally trapped surface enveloping the striking

features of this initial data, which has not been searched for in this thesis.
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Figure 4.15: The maximum radiation loss of r = 0.53 hemispherical shells with
varying χ.
The rapid drop of the maximum radiation loss (∆E = (MADM −MAH)/MADM) to
negative values is indicative of the formation of an external apparent horizon which
forms as the curvature on the inside of the hemispherical shell becomes singular.
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Figure 4.16: A closeup of ∆E of r = 0.53 hemispherical shells.
The domain here is truncated to show the range in which ∆E can be accurately
computed before the formation of the seperate apparent horizon. It can be seen
that hemispherical shells can produce a few percent of the total mass of the system
in gravitational radiation.
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Figure 4.17: Contour plot of χ = 0.05, r = 0.53 hemispherical shell initial data
This initial data set represent a contour plot of the conformal factor for the smallest
value of χ plotted on the mass plot, figure 4.14.
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Figure 4.18: Contour plot of χ = 0.8, r = 0.53 hemispherical shell initial data.
This initial data set represents a contour plot of the conformal factor for the largest
value of χ plotted on the mass plot, Fig. 4.14. The negative value of the maximum
radiation loss shows that another marginally trapped surface exists in this initial
data set, so the interior region of this data will not necessarily be visible to observers
at infinity.
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4.2.4 Cylindrical marginally trapped surfaces

A special class of marginally trapped surfaces pose a special challenge: marginally

trapped surfaces with kinked surfaces. In particular, we consider here two families

of marginally trapped surfaces that both limit to a cylinder, i.e. to a curve that

contains right angles in the computational domain. The first family is generated

from the rotation of the superellipse

γSE(t) = r(sin (πt)| sin (πt)|p−1, cos (πt)| cos (πt)|p−1), (4.40)

for t ∈ [0, 1]. The parameter p controls the shape of the marginally trapped surface

and creates a sphere when p = 1 and a cylinder when p = 0: for intermediate

values superellipses are generated. The second class of marginally trapped surfaces

is generated by a piecewise function which represents a cylinder of radius, r, whose

edges have been rounded with a radius of curvature χr, with χ ∈ (0, 1]. When χ = 1

the marginally trapped surface is a sphere and when χ = 0 it is a cylinder.

The masses for the superellipses and rounded cylinder family are plotted in

Fig. 4.19 and Fig. 4.20 respectively.

As the edges become sharper, a second marginally trapped surface forms

outside the one used as the boundary. This marginally trapped surface is the true

apparent horizon which would also have a lower area than the one specified as

the inner boundary, subsequently the horizon mass computed from the boundary

marginally trapped surface overtakes the ADM mass and the maximum radiation

loss estimate becomes negative. This is evidenced in Figs. 4.21-4.22.
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Figure 4.19: Mass estimates for r = 0.53 superellipsoids
The domain represents the power p parameterising the superellipsoids as in
Eq. (4.40) The mass increases at a fairly slow rate until the marginally trapped
surface is nearly cylindrical, the mass then increases more rapidly.
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Figure 4.20: Mass estimates for r = 0.53 cylinders with rounded corners.
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Figure 4.21: The maximum radiation loss of r = 0.53 superellipsoids.
The maximum radiation loss reaches a peak at a value of about 4.9% of the total
mass of the system, and then the mass estimated from the marginally trapped
surface drops as presumably an apparent horizon forms elsewhere.
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Figure 4.22: The maximum radiation loss for r = 0.53 cylinders with rounded
corners.
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Figure 4.23: Contour plot of χ = 0.15, r = 0.53 rounded cylinder initial data.
This initial data set represents a contour plot of the conformal factor of cylinder
whose edges are rounded by a torus of radius χ = 0.15 the radius of the cylinder.
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Figure 4.24: Contour plot of χ = 0.15, r = 0.53 rounded cylinder initial data
gradient
This initial data set represents a contour plot of the magnitude of the gradient of
the conformal factor of a cylinder whose edges are rounded by a torus of radius
χ = 0.15 the radius of the cylinder.
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Figure 4.25: Contour plot of p = 0.15, r = 0.53 superelliptical initial data
This initial data set represents a contour plot of the conformal factor of a p = 0.15
superellipse.
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Figure 4.26: The circles creating the initial sphere-del-torus.
The sphere-del-torus generating curve begins as these circles with the shown dimen-
sions: an outer circle of radius r1 an inner circle of radius r2 located a distance r3
away from the axis of rotation.

4.2.5 The sphere-del-torus

A final example of a non-spherical marginally trapped surface is the sphere

with a torus removed from it. One begins with a semi-circle of radius r1 centered

at the orgin and a circle of radius r2 laying at (r3, 0) in the r > 0 halfplane. This

is diagrammed in Fig. 4.26. One chooses angles t1 and t2; measuring from the r-

axis towards the z-axis with origin laying at the center of the respective circles, one

removes the arc from t1 to −t1 from the circle with radius r2 and arc from t2 to −t2

from the circle with radius r1; this is diagrammed in Fig. 4.27. One then connects

these two broken circles with a Bezier polynomial whose extra control points are

located a distance r = r1 − r2 − r3 along the tangent to the circles at the endpoints,

this is diagrammed in Fig. 4.28. The sphere-del-torus is the volume of revolution of

this curve.

Initial data generated from this curve has the unfortunate property of con-
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Figure 4.27: The arcs removed from the sphere-del-torus.
The arcs have been removed from the two circles for the second step in constructing
the sphere-del-torus generating curve. An arc of 2t1 is removed from the outer circle
and an arc of 2t2 is removed from the inner circle.

Figure 4.28: The bezier curves completing the sphere-del-torus.
The two circles are complete by Bezier curves so that the entire sphere-del-torus
curve is continuous and differentiable.
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taining negative values of the conformal factor. This occurs because the inner circle

of the sphere-del-torus curve has a negative divergence of its normal vector. This

negative divergence forces the slope of the conformal factor to be positive in the or-

thogonal direction to the marginally trapped surface and the conformal factor must

decrease as one approaches the marginally trapped surface. Calculations show that

the marginally trapped surface mass estimate is greater than the ADM mass; as

discussed previously, this indicates that this marginallly trapped surface is not an

apparent horizon. For these reasons, physical analysis of this family of initial data is

not reported here and this section is included only to describe the non-trivial family

of initial data used to compute the independent residuals discussed in Sec. 4.1.1;
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Chapter 5

Discussion

5.1 Conclusions

Use of the marginally trappped surface equation as an inner boundary con-

dition makes it possible to study a large class of initial data. The finite element

method can be used to cope with the curved geometries of arbitrary marginally

trapped surfaces with arbitrary coordinate shapes as has been shown.

Axisymmetric initial data representing single black hole spacetimes has been

created such that a few percent of the total energy of the system is conceivably

available for radiation. Because the physical energy available for radiation is always

related to the scale of the system, the total energy can be increased by increasing

the overall size of the system. The relative energy available for radiation for a

given mass must be related to dimensionless parameters and this behavior has been

studied for various families of initial data. For one case where the behaviour of the

mass function was modelled - the ellipsoidal initial data - the extrapolations to the

extreme values suggested that still only a few percent of the total energy would be
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available for radiation, comparable with previous initial data families [3].

In terms of the analysis presented in this thesis, the main drawback in using

the finite element method with a non- uniform mesh arises when the solution data

is numerically differentiated during postprocessing, especially when the curve is not

smooth. In this case the second derivatives will in general have an O(1) statistical

dispersion for small parameter changes. A smoothing method needs to be developed

in order to reduce this source of error in post-processing: although high order inter-

polation somewhat decreases the variance of the error in numerical differentiation, it

does not completely eliminate it. This was observed while studying the independent

residuals, because the lower order interpolations yielded residuals consistent with

noise, they were not displayed.

As first mentioned in Sec. 4.2, due to the theorem by Jang [18] the initial data

created in this thesis must have Mmts < MADM for Mmts measured on the apparent

horizon. As the Gaussian curvature of a maginally trapped suface approaches a

singular value, the measured value of Mmts surpasses MADM indicating another

marginally trapped surface, the actual apparent horizon, forms outside the first.

These apparent horizons were not searched for since the goal of this thesis was to

study the range of spacetimes where the apparent horizon could be specified. This

behaviour is independent of the family of curves which limits to the singular surface.

This was seen in the two families of surfaces with cylindrical limits as well as the

hemispherical shell initial data. It was not seen for the ellipsoidal data but smaller

values of l/r could show this phenomenon.

This thesis has used the apparent horizon boundary condition to create black

hole spacetimes which contain a marginally trapped surface with a chosen geometry

at a given snapshot of time. It has been shown that this method gives only limited
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control over specifying the spacetime as sometimes an outer marginally trapped sur-

face will exist; one cannot use this method and guarantee that the apparent horizon

will have a specific geometry. Initial data representing various shapes have been cre-

ated and analysed. This thesis has demonstrated the first usage of the marginally

trapped surface condition to generate initial data for black hole spacetimes from

generic axisymmetric surfaces.

5.2 Future directions

Using the quasiequilibrium framework for blackhole spacetimes [11] or exci-

sion boundary conditions[12] this work could be extended to include rotating space-

times. New software would be necessary to solve the momentum constraint in addi-

tion to the Hamiltonian constraint solved here because PLTMG is unable to solve

systems of equations. In addition, the basic idea used here could be extended to

more general deformations of the marginally trapped surface if a three dimensional

finite element solver was available.

If the generating curve of the marginally trapped surface was expressed in

terms of the axisymmetric spherical harmonics, the exact form of those basis func-

tions could be used to yield exact boundary conditions on the marginally trapped

surface as opposed to the approximate finite difference curvatures used here. One

could also use a spectral decomposition of the boundary in terms of the spherical

harmonics if the exact expression for the curve was not known. This would elim-

inate any error coming from the implementation of the boundary condition which

currently is controlled by a parameter independent of the discretization level.

It is always possible to transform a distorted object into a sphere, so long as

the topology is the same. Therefore, for conformally flat initial data with a given
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shaped apparent horizon, there would always be a coordinate system where the

same initial data on the same hypersurface would have the apparent horizon of a

sphere. The difference would arise in the derivative operators due to the conformal

metric no longer being flat. The necessity of using the finite element method would

be eliminated and high accuracy spectral type methods could be used in that case.

The resulting equations would be much more complicated in this approach. The

resulting spacetimes would be the same however; indeed, the only real difference

that can be made in the choice of the conformal metric is by making a suitable

choice to eliminate “junk” radiation.

Finally, if the spacetimes were evolved, the amount of gravitational radiation

and its form could be studied. Furthermore, by studying the lightlike geodesics of

the system originating from behind the black hole and propagating forward to an

observer, one could study the effect of distortion on visible matter. Evolving the

spacetime would need a dynamic finite element program or a better analysis of

the error associated with applying finite difference formulae to the finite element

solution. It is possible to using PLTMG, to introduce an error function based on

the finite difference residual discussed in Sec 4.1.1. Using this error function PLTMG

could adapt its mesh to minimize this residual[21], in a more sophisticated fashion.
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