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Abstract

This work details the solution to a two component reaction-diffusion equa-

tion known as the classical Gierer-Meinhardt model in (2+1) dimensions

using Crank-Nicholson and nonlinear multigrid methods. Stripe initial con-

ditions are examined in one of two distinct interaction regimes, the weak

interaction regime, which display breakup instabilities for certain parame-

ter spaces.
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Chapter 1

Introduction

1.1 Biological Development and Pattern

Formation

The field of biology has traditionally obtained most of its knowledge of devel-

opmental control by experiment. For instance, the effect of transplantation

of tissue into unnatural places during development of an embryo may be very

well documented, but no underlying mechanism for predicting the changes

is provided [4]. Whereas in other fields of science such as physics, mathe-

matically formulated theories are used extensively which yield quantitative

solutions that sometimes precede experimental discovery.

Biological development proceeds using genetic material as a recipe of

sorts, but this does not explain differentiation in tissue because the genetic

material is the same in most cells of an organism. Embryos of certain species

can be split after their first division to form two independent embryos. So

the full structure of the adult organism cannot be contained in the original

cell and the final form must be generated from less complex tissue through an

internal regulatory process [4]. New features in an organism can be formed

by a number of possible mechanisms termed by Meinhardt as organizing
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Chapter 1. Introduction

centres, inhibitory fields, polarity, and prepatterns. In this case, we will

examine so-called “morphogenic” fields where localized high concentrations

of a morphogen are formed that then provide a blueprint for the development

of these new biological features.

In 1952, Turing [5] discovered (mathematically) that an interaction of

two chemical morphogens with different diffusion rates in a reaction-diffusion

model could create patterns of high and low concentration. He was forced

to use the linearized equations because of difficulty in solving the full non-

linear case, but suggested a digital computer would be useful in that pro-

cess. His solutions to the linearized case turned out to be unstable, but it

was later shown that his nonlinear equations returned steady-state, periodic

distributions [3]. Intuitively one expects that diffusion would spread both

components into ultimately uniform concentrations. Instead we find local-

ized autocatalysis and cross catalysis occurring amidst long-range inhibition.

This suggests that a dynamical, stable relationship can exist between two

chemicals and cause patterned growth in biological systems.

A pattern is formed when spatial differencing occurs in a roughly uniform

field. The question is how does this pattern arise from seemingly little

information? There are many non-living processes in nature that feedback

on themselves such as the creation of sand dunes or the winding of a river

through a valley. Only small deviations are needed to initiate growth into

much larger phenomena. There must also be a competing effect in order to

create a pattern. If sand is deposited on a dune or the inside curve of a river

then it must be eroding from the surroundings. The pattern is dictated by

the relative strength of the these two forces at every point in the field and

2



1.2. Activator-Inhibitor Systems

furthermore the growth of the pattern depends on its present state. Thus

we can envision a model represented by a system of differential equations.

1.2 Activator-Inhibitor Systems

The model examined here is a hypothetical biochemical reaction assumed

to take place in a developing organism. Let there be two components, one

called an activator with concentration a and the other an inhibitor with

concentration h. The activator’s duty is to initiate some other biochemical

process needed for development of the organism. The activator undergoes

autocatalysis to effect local growth of small deviations, but is also consumed

by the inhibitor. The reaction kinetics are such that the activator will out-

pace the inhibitor growth given a high enough concentration ratio of the two,

but the inhibitor will suppress the activator in the outlying regions where

there is little activator. The inhibitor is designed with a faster diffusivity.

This maintains global stability of the entire system by spreading it uniformly

over the domain and allows the activator to form regions of relatively high

and low concentrations. The diffusion of the activator ultimately keeps it

from growing out of control, leading to a steady-state pattern. This provides

the organism with positional information An example is as follows.

∂a

∂t
= Da

∂2a

∂x2
− µa +

a2

h
(1.1)

∂h

∂t
= Dh

∂2h

∂x2
− νh + a2 (1.2)

The linear reaction terms are a simple assumption that the rate that molecules

escape from the system depends linearly on how many are present. Turing
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Chapter 1. Introduction

[5] found that this type of system can organize itself into a field of regu-

larly spaced spots whose qualitative features depended little on the initial

conditions.

1.3 Gierer-Meinhardt Model

The above system can be generalized to different exponent sets (p, q, r, s) in

the Gierer-Meinhardt model written here in non-dimensionalized form

∂a

∂t
= ǫ0

2∇2a − a +
ap

hq
(1.3)

τ
∂h

∂t
= D∇2h − h +

ar

ǫ0hs
. (1.4)

This system will be solved on a rectangular domain

X = {(t,X, Y ) : t ≥ 0,−1 ≤ X ≤ 1, 0 ≤ Y ≤ d0} (1.5)

with Neumann conditions ∂na = ∂nh = 0 on the boundary. The exponent

set (p, q, r, s) satisfies

qr

p − 1
− (s + 1) > 0, p > 1, q > 0, r > 1, s ≥ 0. (1.6)

1.4 Stripe Solutions and their Stability

The initial conditions examined herein are equilibrium stripe solutions with

small perturbations. For certain parameter ranges the stripe is unstable to

these perturbations and subsequently displays two distinct (although often

co-existing) phenomena: spot formation and zigzag formation.

There are two interaction regimes defined by the relative diffusivities of

the two components. In the semi-strong regime, ǫ0 ≪ 1 and D = O(1),

4



1.4. Stripe Solutions and their Stability

making the ratio of diffusivities asymptotically large. In such case, one of

the solution components becomes localized, while the other spreads over the

whole domain very quickly. In the weak interaction regime, ǫ0 ≪ 1 and

D = D0ǫ0
2 ≪ 1. Here, both components become localized and interact

negligibly with the domain boundaries and neighbouring stripes.

This work details the code for the numerical simulations of (1.3) and

will compare the outcome expected from the stability analysis in the weak

interaction regime with those simulations.
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Chapter 2

Stability Analysis

To initialize our solutions in the weak interaction regime as was done in

[2], we need homoclinic equilibrium solutions to (1.3). We set the time

derivitives to zero and re-scale a, h, and X = x/l, D = D0ǫ0
2 to get the

system

∂2a

∂x2
− a +

ap

hq
= 0, D0

∂2h

∂x2
− h +

ar

hs
= 0 (2.1)

The solutions to this are 1-dimensional stripe cross-sections. This was done

using the DE solver dsolve with method BVP in Maple 8 on a domain

l = 15.0. Figure 2.1 plots the central maximum a(0) of these solutions

versus D0.

Let these solutions be labelled ae and he. We can then write the ansatz

a = ae(x/ǫ0) + Φ(x/ǫ0)e
λt cos(my),

h = he(x/ǫ0) + N(x/ǫ0)e
λt cos(my),

(2.2)

to determine the stability along the branch in figure 2.1. Substituting (2.2)

into (1.3) returns an eigenvalue problem,

Φzz − (1 + µ)Φ +
pae

p−1

he
q Φ −

qae
p

he
q+1 N = λΦ,

D0Nzz − (1 + D0µ)N +
rae

r−1

he
s Φ −

sae
r

he
s+1 N = τλN,

(2.3)

where z = x/ǫ0 and µ = ǫ0
2m2. From this, one can numerically determine

the range of µ and D0 that contain real, positive eigenvalues λ. The type
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Figure 2.1: Upper branch of bifurcation diagram of central maximum a(0)

versus D0 for the solution to (2.1) with exponents (p, q, r, s) = (2, 1, 2, 0).

of instability depends on the form of the eigenfunctions Φ and N . Breakup

instabilities occur for even eigenfunctions and zigzag instabilities for odd

eigenfunctions.
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Chapter 3

Numerics

Most systems of nonlinear PDEs have no closed-form solutions that can be

found by hand. Rather, we need a numerical approximation of the solution.

Finite-difference techniques are implemented here that approximate the do-

main and the solution with a set of grid points. A good numerical scheme

will converge to the exact solution of the system in the limit that the spacing

between the points h → 0.

3.1 Finite-difference Approxmiations and

Numerical Analysis

We begin by discretizing the domain

X = {(t, x, y) : t ≥ 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. (3.1)

Let there be N = 2l + 1 points along the x and y axes, where l ∈ Z
+,

for a total of N2 spatial points. The distance h = 1/(N − 1) between these

points is called the mesh spacing. The spacing in the time dimension ∆t is

defined by the Courant number λ where ∆t = λh. Typically this number

is constrained to 0 < λ < 1. If we index the points by the integers (i, j, n),

9



Chapter 3. Numerics

then we can write the discrete domain as

Xh = {(tn, xi, yj) : tn = n∆t, xi = (i − 1)h, yj = (j − 1)h}. (3.2)

3.1.1 Error Analysis

Let the exact, continuous solution be u = u(t, x, y). The numerical solution

is

û = un
i,j = u(tn, xi, yj) + ê (3.3)

where ê is the solution error.

What is left now is to discretize the system of equations we want to solve.

Let the continuum system be represented as

L(u) = 0 (3.4)

and the discrete system be represented as

L̂(û) = 0. (3.5)

The truncation error is defined as

τ̂ ≡ L̂(û) − L̂(u). (3.6)

It can be shown that O(ê) = O(τ̂), placing bounds on the solution error

for a given truncation error. As an example from [1], consider the simple

system

d

dx
u(x) = u(x) (3.7)

whose solution is u(x) = ex. Let us apply the scheme

ui+1 − ui

h
=

ui+1 + ui

2
(3.8)

10



3.1. Finite-difference Approxmiations and Numerical Analysis

which uses the difference operators

∆xui =
ui+1 − ui

h
,

µxui =
ui+1 + ui

2
.

(3.9)

This scheme is very similar to the Crank-Nicholson scheme discussed below

and is “naturally centred” about the point i + 1/2. So consider the Taylor

expansions of the solutions about the point i + 1/2.

ui+1/2 = ū = u(xi + h/2) (3.10)

ui+1 = ū +

(

h

2

)

ū′ +
1

2

(

h

2

)2

ū′′ +
1

6

(

h

2

)3

ū′′′ + O(h4) (3.11)

ui = ū −

(

h

2

)

ū′ +
1

2

(

h

2

)2

ū′′ −
1

6

(

h

2

)3

ū′′′ + O(h4) (3.12)

Substituting these into (3.9), we get the error associated with the operators,

∆xui =
ui+1 − ui

h
= ū′ +

h2

24
ū′′′ + O(h4),

µxui =
ui+1 + ui

2
= ū +

h2

8
ū′′ + O(h4).

(3.13)

The operators themselves can be written as power series in h.

∆x =
d

dx
+

h2

24

d3

dx3
+ O(h4)

µx = 1 +
h2

8

d2

dx2
+ O(h4)

(3.14)

11



Chapter 3. Numerics

We can now compute the above definition (3.6) of truncation error,

L =
d

dx
− 1 (3.15)

L̂ = ∆x − µx (3.16)

τ̂ = L̂(û) − L̂(u)

= 0 − L̂(u)

=

(

1 +
h2

8

d2

dx2
−

d

dx
−

h2

24

d3

dx3

)

u

=

(

1 −
d

dx

)

u + h2

(

1

8

d2

dx2
−

1

24

d3

dx3

)

u (3.17)

τ̂ = O(h2). (3.18)

Now assume the numerical solution has error representable as an even

power series in h, a so-called Richardson expansion. This is reasonable if

the scheme is centred.

û = u + e2h
2 + e4h

4 + O(h6) (3.19)

Recall equation (3.5). Substituting the Taylor expanded scheme (3.14) and

the expansion (3.19) results in

[(

d

dx
− 1

)

+ h2

(

1

24

d3

dx3
−

1

8

d2

dx2

)

+ O(h4)

]

[

u + e2h
2 + O(h4)

]

= 0.

(3.20)

Expanding this returns

(

d

dx
− 1

)

u + h2

(

d

dx
− 1

)

e2 + h2

(

1

24

d3

dx3
−

1

8

d2

dx2

)

u + O(h4). (3.21)

We already know that u′ = u and assume that h4 ≈ 0 for our purposes.

This leaves

h2

(

1 −
d

dx

)

e2 = h2

(

1

24

d3

dx3
−

1

8

d2

dx2

)

u, (3.22)

12



3.1. Finite-difference Approxmiations and Numerical Analysis

and given that u = ex, e2 = −xex/12. Thus our solution error is

ê =
h2

12
xex = O(h2). (3.23)

3.1.2 Convergence

We usually choose to solve differential equations numerically becuase we

don’t know the closed-form solution if it exists at all. So how can we be

sure our scheme actually provides the correct answer? There are two tests

one can perform. The first is a test of the convergence rate by generating at

least 3 solutions using a proposed scheme with a truncation error of O(hp).

Let uh, u2h, and u4h be solutions with mesh size denoted by their subscripts.

If

u4h − u2h

u2h − uh
→ 2p as h → 0, (3.24)

then the scheme is said to be convergent to O(hp) as predicted. The Crank-

Nicholson scheme used here has O(h2) truncation error and this is confirmed

in figure 3.1. But this only confirms that it converges to the continuum

solution of a system that isn’t necessarily identical to the one intended.

The second test is called an independent residual test in which one builds a

different scheme for the same system. If the two schemes generate the same

solution within truncation error, then one can be confident the true solution

has been computed.

13



Chapter 3. Numerics

 0
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 0  0.05  0.1  0.15  0.2

l 2
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(a
4h
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(a
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t

Figure 3.1: Convergence test on domain [−0.25, 0.25] × [0, 0.50] with 128×

128, 256×256, and 512×512, points for their repsective grids. The scheme is

O(h2) convergent only up to t = 0.16. Then the convergence rate essentially

diverges which is not strictly speaking a loss of convergence, but it is unclear

how reliable the scheme is beyond this.
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3.2. Building Discrete Systems

3.2 Building Discrete Systems

3.2.1 Taylor Series Approximations

Next we need a method for finding a consistent and stable discrete system of

equations. The basic procedure is to approximate the differential operators

in the equations by difference operators using Taylor series. For example,

the first derivitive is approximated by the slope between two neighbouring

points. This comes about by solving a truncated Taylor series for u′(x).

u(x + h) = u(x) + hu′(x) +
h2

2
u′′(x) + O(h3) (3.25)

u′(x) =
u(x + h) − u(x)

∆t
−

h

2
u′′(x) + O(h2) (3.26)

∆F
x(ui) =

ui+1 − ui

∆t
(3.27)

We choose only use the leftmost terms in the solution scheme. The remaining

ones are dropped, hence they sum to what is called the truncation error τ̂ .

The operator ∆F
x(ui) is called a forward difference operator because it uses

the ith and (i + 1)st points. Its truncation error is O(h) as indicated by the

leading-order error term in (3.26).

As another example, we get the centered second derivitive whose leading

error term is O(h2) by using two Taylor series as follows.

u(x + h) = u(x) + hu′(x) +
h2

2
u′′(x) + O(h3) (3.28)

u(x − h) = u(x) − hu′(x) +
h2

2
u′′(x) − O(h3) (3.29)

Adding these equations, u′(x) disappears and we are left with

u′′(x) =
u(x − h) − 2u(x) + u(x + h)

h2
+ O(h2), (3.30)

∆C
xx(ui) =

ui−1 − 2ui + ui+1

h2
. (3.31)

15



Chapter 3. Numerics

The boundary conditions are defined with the same method and have

first-order accuracy. All solutions in this work are computed with Neumann

conditions,
∂u

∂x
(−l, y) = 0 →

u2,j − u1,j

∆x
= 0

∂u

∂x
(l, y) = 0 →

uN,j − uN−1,j

∆x
= 0

∂u

∂y
(x, 0) = 0 →

ui,2 − ui,1

∆y
= 0

∂u

∂y
(x, d) = 0 →

ui,N − ui,N−1

∆y
= 0

(3.32)

The domain here is [−l, l] × [0, d] discretized on a N × N grid.

3.2.2 Crank-Nicholson Scheme

The system is

da

dt
= ǫ∇2a − a +

ap

hq
(3.33)

1

τ

dh

dt
= ∇2h − h +

1

ǫ2

ar

hs
. (3.34)

A Crank-Nicholson scheme will provide second-order accuracy in the mesh

size. Since the equations are nearly identical, only one will be shown.

an+1
i,j − an

i,j

∆t
=

1

2

(

∇2an+1
i,j + ∇2an

i,j + f(an+1
i,j , hn+1

i,j ) + f(an
i,j, h

n
i,j)

)

(3.35)

where f(a, h) = −a + ap/hq. The Laplacians are written as

∇2an
i,j =

1

∆x

(

an
i−1,j − 2an

i,j + an
i+1,j

)

+
1

∆y

(

an
i,j−1 − 2an

i,j + an
i,j+1

)

(3.36)

with the mesh spacings written as ∆x and ∆y to avoid confusion with h

here. The (n + 1) terms and (n) terms are isolated on either side,

an+1
i,j −

∆t

2

(

∇2an+1
i,j + f(an+1

i,j , hn+1
i,j )

)

= an
i,j +

∆t

2

(

∇2an+1
i,j + f(an+1

i,j , hn+1
i,j )

)

,

(3.37)
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3.3. Multigrid

and what is left is an elliptic equation to be solved using multigrid (MG)

techniques. The MG method is run at each time step using the solution at

the previous time step as an initial guess for the next.

3.2.3 Leapfrog Scheme

An alternative to the Crank-Nicholson scheme is the Leapfrog scheme. Un-

like CN schemes it is only conditionally stable, but is has the advantage that

it is an explicit scheme and doesn’t require multiple iterations of an elliptic

solver within each time step. It has its name for its basic structure:

∂u

∂t
= f(u, t) →

un+1 − un−1

2∆t
= f(un, tn). (3.38)

The time derivitive is defined by the solution at the past and future time-

steps rather than the present.

Applying this scheme to our equations here, we get

un+1 − un−1

∆t
= ∇2an − an +

(an)p

(hn)q
. (3.39)

One can solve for an+1 explicitly to determine the next time step.

3.3 Multigrid

Multigrid came into popular use in the early 80s as a means of solving

elliptic equations. Traditionally they are solved by successive applications

of a relaxation formula until convergence to the correct solution is achieved.

This is a slow process because the convergence rate is inversely proportional

to the number of points N in the domain. The advantage of multigrid is

that its convergence rate is independent of N .

17



Chapter 3. Numerics

Figure 3.2: Schematic of multigrid routines. The arrows represent grid

transfers and the values in the circles are the mesh sizes. The relaxation

scheme is run only a few times at on each grid except for the lowest one

where most of the convergence takes place.

The strategy is to transfer the temporary solution to a series of coarser

grids and relaxing the solution to convergence (solving) on the coarsest grid

and then to transfer it back to the original fine grid. A few relaxation

sweeps (smoothing) are necessary on the intermediate grids to keep the

residual (which adds “jaggedness” to the solution) relatively small. The

simplest arrangement of these steps is called a V-cycle in which the solution

is transfered successively to the coarsest grid, solved, and back to the fine

grid. Alternatively, one can implement more than one V-cycle or a W-cycle

as in figure 3.2.

There are three operations used to accomplish this:

Restriction Operator R Transfers the temporary solution to the next

coarsest grid of mesh size twice the current one. Rather than simply

18



3.3. Multigrid

leaving out every second point, a weighted sum of the surrounding

points is used.
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(3.40)

Prolongation Operator P Transfers the temporary solution to the next

finest grid using a bilinear interpolation.
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(3.41)

P is the adjoint operator to R.

Relaxation Scheme The scheme we choose depends on the type of system

we are solving. Here we need a nonlinear relaxation scheme such as

the Newton Gauss-Seidel method. Let u be a D-dimensional vector

function of some set of space-time variables and L(u) = f represent a

systems of D equations. We discretize this system on a domain of N

grid points, giving us a total of DN unknowns.

The goal here is to iterate this scheme on a single point in the domain

until the local residual r → 0. We do this for the D unknowns at that

point simultaneously. We begin with the solution at time step n and

compute the residual r = L(un) − f(un). As r → 0, un → un+1 and

our numerical system L(un+1) = f(un) is satisfied. A 1-dimensional

example is shown in figure 3.3. To do this we generate the D × D
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Jacobian matrix J whose elements are

Jij =
∂Fi

∂uj
. (3.42)

The adjustment δu(k) to the temporary solution u(k) is the solution to

the linear system

J δu(k) = r. (3.43)

The next iteration of the temporary solution is

u(k+1) = u(k) − δu(k). (3.44)

This continues until the l2-norm of the residual is within some toler-

ance near 0. For linear problems the residual can be driven to zero in

1 step.
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3.3. Multigrid

Figure 3.3: Schematic of 1-dimensional Newton Gauss-Seidel method. It

begins with an initial guess of the solution (the previous time-step) and the

residual r = L(u(k)) − f(un) is computed. Find the slope at this point and

calculate the next iteration of the solution u(k+1) until r it is sufficiently

close to zero.
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Chapter 4

Results

The equilibrium solutions from the system (2.1) can be approximated by

a(0, x, y) = ae(0)sech
2(x/ǫ0), h(0, x, y) = he(0)sech

2(x/ǫ0) (4.1)

allowing for any instability to take effect. Three examples that vary in the

parmeter D0 are detailed below.

For D0 = 15.0, it was shown in [2] that from the stability analysis that

there is an unstable breakup mode of ǫ0m = 0.623 with an eigenvalue λ0 =

0.186 on a domain [−1, 1] × [0, 2]. This predicts a pattern of N = m/ǫ0 ≈ 8

spots. The domain here is [−0.5, 0.5] × [0, 1] and the numerical simulation

in figure 4.1 shows 4 interior spots with half spots at the boundaries.

For D0 = 7.6, there is no breakup instability predicted but rather a

zigzag mode of ǫ0m = 0.315 with an eigenvalue λ0 = 0.035 on a domain

[−1, 1]× [0, 2]. Our numerical simulation in figure 4.2 shows 7 interior spots

with half spots at the boundaries. Noteably, the lesser diffusivity of the in-

hibitor compared to case 1 above allows the spots to exist in closer proximity

to each other.

For D0 = 6.8, there is no equilibrium stripe solution. The same be-

haviour as above dominates the simulation as shown in figure 4.3. The

trend towards greater density continues in this case.
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t = 0.00 t = 0.30

t = 0.40 t = 0.55

t = 0.80 t = 5.00

Figure 4.1: Simulation with homoclinic stripe initial conditions for D0 =

15.0, ǫ0 = 0.025, τ = 0.01, (p, q, r, s) = (2, 1, 2, 0), ae(0) = 2.3, and he(0) =

1.8. The stripe localizes along the y-axis and breaks up into spots. The

pattern seemingly becomes stable beyond this.
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t = 0.20 t = 0.30

t = 0.60 t = 1.00

Figure 4.2: Simulation with homoclinic stripe initial conditions for D0 = 7.6,

ǫ0 = 0.025, τ = 0.01, (p, q, r, s) = (2, 1, 2, 0), ae(0) = 1.69, and he(0) = 1.45.

The stripe localizes along the y-axis and breaks up into spots. A greater

number of spots form along the center line in comparison to the higher

diffusivity D0 = 15.0.

25



Chapter 4. Results

t = 0.20 t = 0.40

t = 0.70 t = 1.90

Figure 4.3: Simulation with homoclinic stripe initial conditions for D0 = 6.8,

ǫ0 = 0.025, τ = 0.01, (p, q, r, s) = (2, 1, 2, 0), ae(0) = 1.6, and he(0) = 1.4.

With a slightly lower diffusivity than the case in figure 4.2, an additional

spot begins to form at the center.
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Chapter 5

Discussion

A Crank-Nicholson, multigrid code was built to solve a two component

reaction-diffusion equation in (2+1) dimensions. Homoclinic stripe initial

conditions were analyzed for breakup and zigzag instabilities. No zigzag

instabilities were demonstrated in the numerical simulations, but breakup

patterns showed a spot density dependence on the relative diffusion rates of

the two components.

Necessary refinements to the analysis should first include parallization of

the code to be run on a cluster to facilitate higher resolution solutions. The

qualitative behaviour of the solutions was erratic at low-resolution and only

found to be convergent on domains of N ≥ 2562 points. Nonlinear systems

generally make such demands. Furthermore, a independent residual test

was not completed in this work which might display a significantly different

behaviour. If the two schemes are shown not to be consistent with each

other, the overall results of one or both are called into question.

Other possibilities for exploration of the code are different exponent sets

for the reaction kinetics, other initial conditions, or systems with three or

more components to model more realistic scenarios in nature.
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