
PHYS 410/555 Computational Physics

Solving Two-Point Boundary Value Problems Using “Shooting”

A Toy Model for the Deuteron

Recall that, by definition, two-point boundary value problems (BVPs),

are ODE’s for which boundary conditions are supplied at two distinct

points—typically the end points of the solution domain—rather than

at some single point, as in the case of initial value problems (IVPs).

In addition, we observe that two-point BVPs are often (but not always)

eigenvalue problems, that is, BVPs are often characterized by one or

more parameters such that only for specific parameter values (eigen-

values of the problem) will solutions satisfying the boundary conditions

exist.

1

In such a case, the solution of the BVP also becomes a problem in

search—in general we will not be able to construct an algorithm which

in “one go” results in the eigenvalue and the associated eigenfunction.

Rather, we will have to provide some initial estimate (guess) of the

eigenvalue, and then successively refine it according to some crite-

rion, until we have computed the eigensolution to some acceptable

accuracy. Also, solutions of eigenvalue problems are generally not

unique; typically an eigenvalue problem admits a countable infinity of

eigenfunctions, each with an associated eigenvalue (the eigenvalues

are often, but not always, distinct).

2

The technique we will briefly consider here is known as shooting.

Shooting is based on the observation that any two-point BVP can

also be solved as an IVP. Consider, for example, a BVP of the form:

u′′(x) = f(u, u′, x) 0 ≤ x ≤ 1 (1)

subject to the boundary conditions

u(0) = u0 (2)

u(1) = u1 (3)

where u0 and u1 are specified constants. Assume that we have some-

how determined a function U(x) which satisfies (1), (2) and (3). We

then note that if we now consider the initial value problem defined

by (1) subject to the initial conditions:

u(0) = U(0) = u0 (4)

u′(0) = U ′(0) (5)

then its solution must also be U(x). That is, we can solve the BVP

as an IVP, by “guessing” what value of U ′ we must specify at x = 0

so that when we are done integrating from x = 0 to x = 1, we have

u(1) = u1.

3

The term “shooting” comes from analogy with the problem of setting

the elevation, θ, of an artillery gun (i.e. θ is the angle the gun’s barrel

makes with the horizontal), so that the shell hits a target at some

given range. Assuming that θ < π/4, if the elevation if too low/high,

the shell will fall short/long of the target respectively. The gunner can

use information about where his/her current shot lands to adjust θ so

that the next shot comes closer to the target.

Similarly, when integrating a BVP such as (1) via shooting, we will

typically find that if we specify u′(0) > U ′(0) then we will have u(1) >

u1, while if we choose u′(0) < U ′(0), then we will find u(1) < u1

(equally as likely is that u′(0) > U ′(0) −→ u(1) < u1 and u′(0) <

U ′(0) −→ u(1) > u1). As long as we can find an initial pair of

“bracketing” values, [u′−(0), u′+(0)], such that separate integrations

of (1) with these two values leads to values of u(1) which similarly

bracket the desired boundary value, u1, then we can narrow the bracket

using, for example, the technique of bisection search described below,

to determine U ′(0), and hence the solution of the BVP, to whatever

precision is desired.

4

We note that it is not always an initial value per se which we tune in

a shooting problem. For some second order BVPs (such as the one

considered below), we can deduce a second initial value at one of the

boundary points (in addition to the one given by the boundary condi-

tions) from mathematical or physical considerations, but, as discussed

above, there is a parameter, λ, in the specification of the BVP which

must have certain values in order that the boundary condition at the

other boundary is satisfied. The idea is still the same; we look for

an initial bracket [λ−, λ+] such that separate integration with the two

parameter values gives end-point solution values which are too small

and too large respectively. We can then refine the bracket until we

determine the eigenvalue and eigenfunction to the required precision.

5

We now illustrate this technique by using it to solve the toy model for

a deuteron which is discussed in Chapter 9 of Mathematical Methods

for Physicists by Arfken. A deuteron, as most of you probably know, is

a bound state of a proton and a neutron (the nucleus of deuterium, an

isotope of hydrogen). The model is highly idealized; we assume that

the deuteron wave function, ψ(~r), is a spherically symmetric solution of

the time-independent Schrödinger equation, with the proton-neutron

interaction described by a square wave potential.

6

Thus we wish to solve

− h̄2

2M
∇2ψ(~r) + V (~r)ψ(~r) = Eψ(~r) (6)

whereM is the deuteron “mass”, and E is the energy eigenvalue which

will shortly become the “shooting parameter” in our BVP solution of

the model.

From the assumption of spherical symmetry, we have

ψ(~r) → ψ(r) (7)

and

∇2ψ(r) =
1

r2

d

dr



r2dψ

dr



 (8)

Further, defining

u(r) ≡ rψ(r) (9)

we have (as you should verify)

∇2ψ(r) → 1

r

d2u(r)

dr2
(10)

7

Thus, (6) can be rewritten:

d2u(r)

dr2
+

2M

h̄2
(E − V (r))u(r) = 0 (11)

As noted above, we will model the proton-neutron interaction as a

finite-range square potential. Thus, we take

V (r) = V0 0 ≤ r ≤ a (12)

V (r) = 0 r > a (13)

where V0 is a negative constant, so |V0| is the depth of the potential

well, while a is its width.

As is the case for any solution of the Schrödinger equation, we must

demand that our solution of (6) be normalizable, i.e. that

∫

ψψ∗dV = 1 (14)

so that there is unit probability that our deuteron is found somewhere

in the universe. In the current spherically symmetric case this means

that we must have

4π
∫ ∞
0
r2ψ(r)2dr = 4π

∫ ∞
0
u(r)2dr = 1 (15)

8

Clearly, a necessary condition for normalizability is that

lim
r→∞u(r) = 0 (16)

and this, in fact, is one of the boundary conditions for our ODE.

Furthermore, we assert that for fixed values of the parameters of the

model (a, M and V0), a normalizable solution will only exist for certain

discrete values of E—the eigenvalues of our Schrödinger equation.

Before we consider the solution of (11) using shooting, we rewrite the

equation in an equivalent form in which the minimum number of free

parameters (which, if desired, can be made explicitly dimensionless)

becomes evident. To this end, we define a rescaled radial coordinate,

x

x ≡
√

2Mr (17)

so that, among other things, we have

d2u

dr2
→ 2M

d2u

dx2
(18)

Further, we choose units such that h̄ = 1 and V0 = −1 (you should

establish that this is always possible if it isn’t immediately obvious to

you).

9

With these choices, we are left with one free parameter—the width, a,

of the potential well. Given that we have adopted the rescaled radial

coordinate x, it is more convenient to use x0, defined by

x0 ≡
√

2Ma (19)

as the free parameter.

Thus, our Schrödinger equation (11) becomes

d2u(x)

dx2
+ (E − V (x))u(x) = 0 (20)

where

V (x) = −1 0 ≤ x ≤ x0 (21)

V (x) = 0 x > x0 (22)

and where we again note that E = E(x0) is an eigenvalue of (20);

i.e., for a given value of x0, only for discrete values of E will we have

a normalizable wave function.

10

The boundary conditions for (20) are derived from the demands that

1. ψ(r) be regular (analytic) at r = 0.

2. limr→∞ u(r) = 0.

The regularity condition at r = 0 means that ψ(r) admits an expansion

lim
r→0

ψ(r) = ψ0 + r2ψ2 +O(r4) (23)

where the ψi are constants (the power series expansion cannot have

terms which are odd in r, since ψ(r) would not have a well-defined

derivative at r = 0 in that case). From this, it follows that u(r) has

an expansion

lim
r→0

u(r) = rψ(r) = rψ0 + r3ψ2 +O(r5) (24)

Thus, we have

u(0) = 0 (25)

du

dr
(0) = ψ0 (26)

11

We now observe that (6) (like all Schrödinger equations) is linear;

given any solution, ψ(r) we have that cψ(r), where c is an arbitrary

positive constant, is also a solution. The particular solution we seek is

fixed by the normalization condition:

∫

ψψ∗dV = 1 (27)

Operationally, this means that we can choose ψ(0) arbitrarily (say

ψ(0) = 1 for convenience), then, for specified x0, vary E until we find

a solution which satisfies

lim
r→∞u(r) = lim

r→∞ rψ(r) = 0 (28)

(In other words, the eigenvalue is independent of the normalization of

the eigenfunction).

12

In preparation for a solution of our problem using LSODA we rewrite (20)

in canonical first order form by introducing

w(x) ≡ du(x)

dx
(29)

We then have

du(x)

dx
= w(x) (30)

dw(x)

dx
= (V (x) − E)u(x) (31)

subject to

u(0) = 0 (32)

w(0) = 1 (33)

and with E to be determined so that

lim
x→∞ u(x) = 0 (34)

13

We will now assume that for any given value of x0, we are able to

determine values E− and E+ (perhaps by trial-and-error) such that

lim
x→∞u(x;E−) = −∞ (35)

lim
x→∞u(x;E+) = +∞ (36)

where the notation u(x;Ei) means the trial solution u(x) computed

using eigenvalue estimate Ei. We further assume that properties (35)

and (36) hold for any values EHI and ELO that bracket the desired

eigenvalue, namely:

lim
x→∞ u(x;ELO) = −∞ (37)

lim
x→∞u(x;EHI) = +∞ (38)

with either

ELO < E < EHI (39)

or

EHI < E < ELO (40)

14

Given the initial bracket [E−, E+], then, we can compute the desired

eigenvalue, E, accurate to some desired tolerance δ, using a bisection

search (also known as a binary search). Here is a typical implementa-

tion of a bisection search written in pseudo-code:

ELO := E−

EHI := E+

while |EHI − ELO| > δ do

EMID := (EHI + ELO)/2

if u(x;EMID) → +∞ as x→ ∞ then

EHI := EMID

else

ELO := EMID

end if

end while

E := EMID

15

We note that the convergence rate of the bisection search is completely

pre-determined; the size of the bracketing interval after n bisections is

1

2n
(E+ − E−) (41)

The solution of equations (30)-(33) using LSODA is implemented as

the program deut.f; the bisection search for the eigenvalues E(x0)

is implemented via the shell-script Shoot-deut, which itself uses the

following collection of scripts which can be used to implement shell-

level bisection searches:

bsnew <lo> <hi> # Initializes a new search

bscurr # Returns the current (mid) value

for the search

bslo # Replaces the low bracket value

with ‘bscurr‘

bshi # Replaces the high bracket value

with ‘bscurr‘

bsdone [<tol>] # Returns completion code 0 if search

bracket has been narrowed to a

relative precision <tol> (which

defaults to 10(-14), returns

completion code 1 otherwise

bsnotdone [<tol>] # Logical negation of bsdone.

16

In practice, of course, we do not (can not!) integrate all the way to

x = ∞, instead, we integrate to some finite x = xmax where xmax is

chosen sufficiently large so that, for the specfied convergence criterion

δ, we can determine for all possible E whether the solution u(x;E) is

diverging to +∞ or to −∞ at x = xmax.

Finally, as with many of the problems we have discussed in this course,

the toy deuteron problem can be solved “analytically”—however, as in

the cases of those other exactly soluble problems we have discussed,

the numerical technique which we use to approximately solve this BVP

can be extended very easily to solve entire classes of problems which

are not amenable to exact solution.

17

