
Notes on Fortran 77 Arrays

• Recall array declarations:

real*8 a1d(100)

real*8 a2d(100,200)

real*8 a3d(100,200,300)

(Standard Fortran 77 allows up to 7 dimensions, or rank-7 arrays)

• Fortran 77 array storage

– Fortran 77 arrays are always stored in contiguous memory locations.

– For 1-d (rank-1) arrays, memory layout is obvious:

real*8 v(5)

v(1) v(2) v(3) v(4) v(5)

– For multidimensional arrays, storage is “linearized” (“one-dimensionalized”) using “column-
major” order–1st subscript varies most rapidly, then 2nd, then 3rd, etc.

– 2-d (rank-2) example:

real*8 a(3,2)

a(1,1) a(2,1) a(3,1) a(1,2) a(2,2) a(3,2)

– 3-d (rank-3) example:

real*8 b(2,2,2)

b(1,1,1) b(2,1,1) b(1,2,1) b(2,2,1) b(1,1,2) b(2,1,2) b(1,2,2) b(2,2,2)

• It is relatively easy to write Fortran 77 programs which can handle “run-time dimensioned”
arrays provided all array manipulation is performed by subroutines or functions.

1

• Computing “effective 1-d index” of multidimensional array element:

– 1-d (rank-1)

real*8 a1d(d1)

a1d(i) ---> v1d(i)

– 2-d (rank-2)

real*8 a2d(d1,d2)

a2d(i,j) ---> v1d((j-1)*d1 + i)

– 3-d (rank-3)

real*8 a3d(d1,d2,d3)

a3d(i,j,k) ---> v1d((k-1)*d1*d2 + (j-1)*d1 + i)

This “linearization” (index, or offset, computation) is essentially how Fortran 77 han-
dles all array expressions.

• Consequences of Fortran 77 index computation

– Index computation makes it apparent why array bounds must be passed to a subroutine

along with the array.

– From the point of view of storage (memory layout), arrays of any dimension are indis-

tinguishable, provided that they have the same total number of elements. Example:

real*8 c1d(64)

real*8 c2d(8,8)

real*8 c3d(4,4,4)

2

