LCS Scheme: Transfer Operators

Need to discuss details of grid-to-grid transfer operators (i.e. the prolongation
and restriction operators)
Proper construction of I; ;, I, and extremely important for any
multi-grid algorithm, can't treat in depth here (see references)
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Important: multi-grid technique (i.e. the V-cycle) induces non-trivial
interactions between transfer operators and relaxation (smoothing) scheme

Thus, for example, prolongation and restriction operators that work well with
red-black Gauss-Seidel relaxation do not necessarily work well with
lexicographic Gauss-Seidel

Now describe specific implementations for transfer operators that work well for
problems such as our model equation—as well as similar systems in two and
three dimensions—in conjunction with red-black Gauss-Seidel smoothing.
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LCS Scheme: Half-weighted Injection
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lllustration of stencil used for the operation of half-weighted restriction.

Small filled and large open circles represent fine and coarse grid locations
respectively

Task of restriction operator is to define all of the coarse grid values from the
fine grid unknowns.

Dotted line indicates the 5-pt stencil that is used in the half-weighted transfer
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LCS Scheme: Half-weighted Injection

Half-weighted restriction in two dimensions then defined by
(-1 —1 (—1 (-1
(ui 1,7 T Wit T %5401 T ui,j—l) (99)

The term “half-weighting” comes from fact that fine-grid unknown located at
the same physical location as target coarse-grid unknown has a weight of 1/2 in
the transfer

Half-weighted restriction operator may be analogously defined in 1 and 3
dimensions, where factor of 1/8 is replaced by 1/4 and 1/12, respectively, and
sum is over central fine-grid unknown, and its 2 and 6 nearest neighbors
respectively.

Note: “obvious’ restriction formula

u?J = uf}l (100)
which is called injection, fails miserably when used with red-black Gauss-Seidel
relaxation, although it tends to work well when lexicographically-ordered GS is

the smoother .



LCS Scheme: Bi-linear Interpolation
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Now consider prolongation operator, If_l (Igh)

LCS uses this to transfer the coarse grid correction back to the fine grid

In current case, bilinear interpolation is found to work well

First consider one dimensional problem: interpolation from a mesh Q" to Q2"
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and w4 are trivially interpolated as
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LCS Scheme: Bi-linear Interpolation

e Intuitively, other half of the fine-grid quantities can be linearly interpolated by

“averaging’ the neighboring values: assuming uﬁ_l, u§+1 have been defined as
above, uﬁ is given by 1
¢ ¢ ‘
uj = 5 (W1 + Uj4a) (103)

e Easy to show (Taylor series) that this is accurate to O(h?)

e Moreover, note that ((103)) is the unique formula for linear interpolation of uﬁ
- ¢
from nearest neighbors w;_, and ;.
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LCS Scheme: Bi-linear Interpolation
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e Figure shows portion of coarse mesh (large open circles) and fine mesh (small
circles), in two dimensions

e Three distinct types of fine grid points

1. Copies of coarse grid unknowns (small open circles)

2. Points whose values can be computed using 1-d interpolation in either the x
or y direction (small black circles)

3. Points whose values require genuine 2-d interpolation (light blue circles).
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LCS Scheme: Bi-linear Interpolation
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Third class of points have precisely 4 nearest neighbors in the coarse grid

As can be verified via Taylor series (as well as elementary geometry—how many
distinct, non-colinear points are needed to define a plane?), only 3 of these are
needed to produce a linear interpolant.

Thus in 2-d case (as well as in higher dimensions) there is no unique formula
for linear interpolation from Q2" to Q".

Figure shows two of the (infinite number of) possible schemes
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LCS Scheme: Bi-linear Interpolation
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Would hope that the precise details of the interpolation would not matter

Experience shows that this is the case

Are thus free to implement the linear interpolation operator more or less as we

please,

Figure shows an approach with is particularly convenient to implement, and
which extends to more dimensions, and to higher order interpolation
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LCS Scheme: Transfer Operators

Last transfer operator to consider is prolongation operator, ff_l

Used in multi-level solution process to initialize fine-grid unknown from
coarse-grid solution coarse grid problem.

Old rule of thumb due to Brandt suggests using bi-cubic interpolation: leading
order error term would be O(h?).

However, empirically find that bi-/inear interpolation actually provides better
overall performance, again in the context of model problem being smoothed
with red-black Gauss-Seidel, and with the other transfer operators defined as
above

Thus, in current case, have .
=1t (104)

73



Computational Cost of Multi-Grid

But (again, in two dimensions)

Wyp—_1 ~ Wy (139)

SO

11 (-2
Wy~ (p+0q) wy (1 + 1° + EOQ + -t (%) ) + o7 (140)

where W is work needed to solve coarsest-grid problem Liu! = s'.

So long as the number of CGCs, o, required to solve any fine grid problem,
satisfies o < 4, have

1 1 -2 —1
1+ZJ+1_602+"'+<E> <(1—3) (141)

Thus

W < wyp (p 99 > + oW, (142)
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Computational Cost of Multi-Grid

e But
Wy ~~ CNg (143)

where ¢ is some constant, and from assumption that ¢ < 4, we have

No_1

/—1 /—1
o < 4 ~
N

(144)

where N7 is the number of points on the coarsest grid (another constant).

e Putting these results together, have

c(p+0q) +W1
1—0'/4 N1

we < N ) = o (145)

e Thus, as previously claimed, multi-grid can solve the /N algebraic equations
resulting from the discretization of elliptic PDEs in O(N) time.
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