LCS Scheme: Transfer Operators

- Need to discuss details of grid-to-grid transfer operators (i.e. the prolongation and restriction operators)
- Proper construction of $\bar{I}_{\ell+1}^{\ell}, I_{\ell+1}^{\ell}$, and $I_{\ell}^{\ell+1}$ extremely important for any multi-grid algorithm, can't treat in depth here (see references)
- Important: multi-grid technique (i.e. the V-cycle) induces non-trivial interactions between transfer operators and relaxation (smoothing) scheme
- Thus, for example, prolongation and restriction operators that work well with red-black Gauss-Seidel relaxation do not necessarily work well with lexicographic Gauss-Seidel
- Now describe specific implementations for transfer operators that work well for problems such as our model equation-as well as similar systems in two and three dimensions-in conjunction with red-black Gauss-Seidel smoothing.

LCS Scheme: Half-weighted Injection

- Illustration of stencil used for the operation of half-weighted restriction.
- Small filled and large open circles represent fine and coarse grid locations respectively
- Task of restriction operator is to define all of the coarse grid values from the fine grid unknowns.
- Dotted line indicates the 5-pt stencil that is used in the half-weighted transfer

LCS Scheme: Half-weighted Injection

- Half-weighted restriction in two dimensions then defined by

$$
\begin{equation*}
u_{I, J}^{\ell}=\frac{1}{2} u_{i, j}^{\ell-1}+\frac{1}{8}\left(u_{i-1, j}^{\ell-1}+u_{i+1, j}^{\ell-1}+u_{i, j+1}^{\ell-1}+u_{i, j-1}^{\ell-1}\right) \tag{99}
\end{equation*}
$$

- The term "half-weighting" comes from fact that fine-grid unknown located at the same physical location as target coarse-grid unknown has a weight of $1 / 2$ in the transfer
- Half-weighted restriction operator may be analogously defined in 1 and 3 dimensions, where factor of $1 / 8$ is replaced by $1 / 4$ and $1 / 12$, respectively, and sum is over central fine-grid unknown, and its 2 and 6 nearest neighbors respectively.
- Note: "obvious" restriction formula

$$
\begin{equation*}
u_{I, J}^{\ell}=u_{i, j}^{\ell-1} \tag{100}
\end{equation*}
$$

which is called injection, fails miserably when used with red-black Gauss-Seidel relaxation, although it tends to work well when lexicographically-ordered GS is the smoother

LCS Scheme: Bi-linear Interpolation

- Now consider prolongation operator, $I_{\ell-1}^{\ell}\left(I_{2 h}^{h}\right)$
- LCS uses this to transfer the coarse grid correction back to the fine grid
- In current case, bilinear interpolation is found to work well
- First consider one dimensional problem: interpolation from a mesh Ω^{h} to $\Omega^{2 h}$
- Fine-grid values u_{j-1}^{ℓ} and u_{j+1}^{ℓ} are trivially interpolated as "copies" of corresponding coarse-grid unknowns

$$
\begin{align*}
u_{j-1}^{\ell} & =u_{J}^{\ell-1} \tag{101}\\
u_{j+1}^{\ell} & =u_{J+1}^{\ell-1} \tag{102}
\end{align*}
$$

LCS Scheme: Bi-linear Interpolation

- Intuitively, other half of the fine-grid quantities can be linearly interpolated by "averaging" the neighboring values: assuming $u_{j-1}^{\ell}, u_{j+1}^{\ell}$ have been defined as above, u_{j}^{ℓ} is given by

$$
\begin{equation*}
u_{j}^{\ell}=\frac{1}{2}\left(u_{j-1}^{\ell}+u_{j+1}^{\ell}\right) \tag{103}
\end{equation*}
$$

- Easy to show (Taylor series) that this is accurate to $O\left(h^{2}\right)$
- Moreover, note that (103) is the unique formula for linear interpolation of u_{j}^{ℓ} from nearest neighbors u_{j-1}^{ℓ} and u_{j+1}^{ℓ}.

LCS Scheme: Bi-linear Interpolation

- Figure shows portion of coarse mesh (large open circles) and fine mesh (small circles), in two dimensions
- Three distinct types of fine grid points

1. Copies of coarse grid unknowns (small open circles)
2. Points whose values can be computed using 1-d interpolation in either the x or y direction (small black circles)
3. Points whose values require genuine 2-d interpolation (light blue circles).

LCS Scheme: Bi-linear Interpolation

- Third class of points have precisely 4 nearest neighbors in the coarse grid
- As can be verified via Taylor series (as well as elementary geometry-how many distinct, non-colinear points are needed to define a plane?), only 3 of these are needed to produce a linear interpolant.
- Thus in 2-d case (as well as in higher dimensions) there is no unique formula for linear interpolation from $\Omega^{2 h}$ to Ω^{h}.
- Figure shows two of the (infinite number of) possible schemes

LCS Scheme: Bi-linear Interpolation

- Would hope that the precise details of the interpolation would not matter
- Experience shows that this is the case
- Are thus free to implement the linear interpolation operator more or less as we please,
- Figure shows an approach with is particularly convenient to implement, and which extends to more dimensions, and to higher order interpolation

LCS Scheme: Transfer Operators

- Last transfer operator to consider is prolongation operator, $\tilde{I}_{\ell-1}^{\ell}$
- Used in multi-level solution process to initialize fine-grid unknown from coarse-grid solution coarse grid problem.
- Old rule of thumb due to Brandt suggests using bi-cubic interpolation: leading order error term would be $O\left(h^{4}\right)$.
- However, empirically find that bi-linear interpolation actually provides better overall performance, again in the context of model problem being smoothed with red-black Gauss-Seidel, and with the other transfer operators defined as above
- Thus, in current case, have

$$
\begin{equation*}
\tilde{I}_{\ell-1}^{\ell} \equiv I_{\ell-1}^{\ell} \tag{104}
\end{equation*}
$$

Computational Cost of Multi-Grid

- But (again, in two dimensions)

$$
\begin{equation*}
w_{\ell-1} \sim \frac{1}{4} w_{\ell} \tag{139}
\end{equation*}
$$

SO

$$
\begin{equation*}
W_{\ell} \sim(p+\sigma q) w_{\ell}\left(1+\frac{1}{4} \sigma+\frac{1}{16} \sigma^{2}+\cdots+\left(\frac{\sigma}{4}\right)^{\ell-2}\right)+\sigma^{\ell-1} W_{1} \tag{140}
\end{equation*}
$$

where W_{1} is work needed to solve coarsest-grid problem $L^{1} u^{1}=s^{1}$.

- So long as the number of CGCs, σ, required to solve any fine grid problem, satisfies $\sigma<4$, have

$$
\begin{equation*}
1+\frac{1}{4} \sigma+\frac{1}{16} \sigma^{2}+\cdots+\left(\frac{\sigma}{4}\right)^{\ell-2}<\left(1-\frac{\sigma}{4}\right)^{-1} \tag{141}
\end{equation*}
$$

- Thus

$$
\begin{equation*}
W_{\ell} \leq w_{\ell}\left(\frac{p+\sigma q}{1-\sigma / 4}\right)+\sigma^{\ell-1} W_{1} \tag{142}
\end{equation*}
$$

Computational Cost of Multi-Grid

- But

$$
\begin{equation*}
w_{\ell} \sim c N_{\ell} \tag{143}
\end{equation*}
$$

where c is some constant, and from assumption that $\sigma<4$, we have

$$
\begin{equation*}
\sigma^{\ell-1}<4^{\ell-1} \sim \frac{N_{\ell-1}}{N_{1}} \tag{144}
\end{equation*}
$$

where N_{1} is the number of points on the coarsest grid (another constant).

- Putting these results together, have

$$
\begin{equation*}
W_{\ell} \leq N_{\ell}\left(\frac{c(p+\sigma q)}{1-\sigma / 4}+\frac{W_{1}}{N_{1}}\right)=O\left(N_{\ell}\right) \tag{145}
\end{equation*}
$$

- Thus, as previously claimed, multi-grid can solve the N algebraic equations resulting from the discretization of elliptic PDEs in $O(N)$ time.

