
LCS Scheme: Transfer Operators

• Need to discuss details of grid-to-grid transfer operators (i.e. the prolongation
and restriction operators)

• Proper construction of Ī`
`+1, I`

`+1, and I`+1
` extremely important for any

multi-grid algorithm, can’t treat in depth here (see references)

• Important: multi-grid technique (i.e. the V -cycle) induces non-trivial
interactions between transfer operators and relaxation (smoothing) scheme

• Thus, for example, prolongation and restriction operators that work well with
red-black Gauss-Seidel relaxation do not necessarily work well with
lexicographic Gauss-Seidel

• Now describe specific implementations for transfer operators that work well for
problems such as our model equation—as well as similar systems in two and
three dimensions—in conjunction with red-black Gauss-Seidel smoothing.

65



LCS Scheme: Half-weighted Injection

(i,j)

(I,J)

• Illustration of stencil used for the operation of half-weighted restriction.

• Small filled and large open circles represent fine and coarse grid locations
respectively

• Task of restriction operator is to define all of the coarse grid values from the
fine grid unknowns.

• Dotted line indicates the 5-pt stencil that is used in the half-weighted transfer

66



LCS Scheme: Half-weighted Injection

• Half-weighted restriction in two dimensions then defined by

u`
I,J =

1
2
u`−1

i,j +
1
8

(
u`−1

i−1,j + u`−1
i+1,j + u`−1

i,j+1 + u`−1
i,j−1

)
(99)

• The term “half-weighting” comes from fact that fine-grid unknown located at
the same physical location as target coarse-grid unknown has a weight of 1/2 in
the transfer

• Half-weighted restriction operator may be analogously defined in 1 and 3
dimensions, where factor of 1/8 is replaced by 1/4 and 1/12, respectively, and
sum is over central fine-grid unknown, and its 2 and 6 nearest neighbors
respectively.

• Note: “obvious” restriction formula

u`
I,J = u`−1

i,j (100)

which is called injection, fails miserably when used with red-black Gauss-Seidel
relaxation, although it tends to work well when lexicographically-ordered GS is
the smoother

67



LCS Scheme: Bi-linear Interpolation

j

J

j−1 j+1

J+1

• Now consider prolongation operator, I`
`−1 (Ih

2h)

• LCS uses this to transfer the coarse grid correction back to the fine grid

• In current case, bilinear interpolation is found to work well

• First consider one dimensional problem: interpolation from a mesh Ωh to Ω2h

• Fine-grid values u`
j−1 and u`

j+1 are trivially interpolated as “copies” of
corresponding coarse-grid unknowns

u`
j−1 = u`−1

J (101)

u`
j+1 = u`−1

J+1 (102)

68



LCS Scheme: Bi-linear Interpolation

• Intuitively, other half of the fine-grid quantities can be linearly interpolated by
“averaging” the neighboring values: assuming u`

j−1, u`
j+1 have been defined as

above, u`
j is given by

u`
j =

1
2

(
u`

j−1 + u`
j+1

)
(103)

• Easy to show (Taylor series) that this is accurate to O(h2)

• Moreover, note that (103) is the unique formula for linear interpolation of u`
j

from nearest neighbors u`
j−1 and u`

j+1.

69



LCS Scheme: Bi-linear Interpolation

• Figure shows portion of coarse mesh (large open circles) and fine mesh (small
circles), in two dimensions

• Three distinct types of fine grid points

1. Copies of coarse grid unknowns (small open circles)
2. Points whose values can be computed using 1-d interpolation in either the x

or y direction (small black circles)
3. Points whose values require genuine 2-d interpolation (light blue circles).

70



LCS Scheme: Bi-linear Interpolation

• Third class of points have precisely 4 nearest neighbors in the coarse grid

• As can be verified via Taylor series (as well as elementary geometry—how many
distinct, non-colinear points are needed to define a plane?), only 3 of these are
needed to produce a linear interpolant.

• Thus in 2-d case (as well as in higher dimensions) there is no unique formula
for linear interpolation from Ω2h to Ωh.

• Figure shows two of the (infinite number of) possible schemes
71



LCS Scheme: Bi-linear Interpolation

• Would hope that the precise details of the interpolation would not matter

• Experience shows that this is the case

• Are thus free to implement the linear interpolation operator more or less as we
please,

• Figure shows an approach with is particularly convenient to implement, and
which extends to more dimensions, and to higher order interpolation

72



LCS Scheme: Transfer Operators

• Last transfer operator to consider is prolongation operator, Ĩ`
`−1

• Used in multi-level solution process to initialize fine-grid unknown from
coarse-grid solution coarse grid problem.

• Old rule of thumb due to Brandt suggests using bi-cubic interpolation: leading
order error term would be O(h4).

• However, empirically find that bi-linear interpolation actually provides better
overall performance, again in the context of model problem being smoothed
with red-black Gauss-Seidel, and with the other transfer operators defined as
above

• Thus, in current case, have
Ĩ`
`−1 ≡ I`

`−1 (104)

73



Computational Cost of Multi-Grid

• But (again, in two dimensions)

w`−1 ∼
1
4
w` (139)

so

W` ∼ (p + σq) w`

(
1 +

1
4
σ +

1
16

σ2 + · · ·+
(σ

4

)`−2
)

+ σ`−1W1 (140)

where W1 is work needed to solve coarsest-grid problem L1u1 = s1.

• So long as the number of CGCs, σ, required to solve any fine grid problem,
satisfies σ < 4, have

1 +
1
4
σ +

1
16

σ2 + · · ·+
(σ

4

)`−2

<
(
1− σ

4

)−1

(141)

• Thus

W` ≤ w`

(
p + σq

1− σ/4

)
+ σ`−1W1 (142)

91



Computational Cost of Multi-Grid

• But
w` ∼ cN` (143)

where c is some constant, and from assumption that σ < 4, we have

σ`−1 < 4`−1 ∼ N`−1

N1
(144)

where N1 is the number of points on the coarsest grid (another constant).

• Putting these results together, have

W` ≤ N`

(
c (p + σq)
1− σ/4

+
W1

N1

)
= O(N`) (145)

• Thus, as previously claimed, multi-grid can solve the N algebraic equations
resulting from the discretization of elliptic PDEs in O(N) time.

92




