
BBHUTIL(1L) RNPL COMPATIBLE I/O ROUTINES BBHUTIL(1L)NAMEget ivec param, get int param, get real param, get str param,get param, get param nc, sget param, do ivec, �xup ivec,gft set single, gft set multi,gft out, gft out brief, gft out bbox, gft out full, gft out set bbox,gft outm, gft outm brief, gft outm bbox, gft outm full,gft read brief, gft read full, gft read shape, gft read rank, gft read name,gft close, gft close all,gft read id gf, gft read id int, gft read id
oat, gft read id str,gft write id gf, gft write id int, gft write id
oat, gft write id str,gft read id str p, gft read id int p, gft read id
oat p,gft read 2idata, gft read 1idata, gft read idata,gft write id str p, gft write id int p, gft write id
oat p,gft write 2idata, gft write 1idata, gft write idataRNPL I/O routinesSYNOPSIS#include <bbhutil.h>int get_ivec_param(const char *p_file, const char *name,int *p, int size);int get_int_param(const char *p_file, const char *name,int *p, int size);int get_real_param(const char *p_file, const char *name,double *p, int size);int get_str_param(const char *p_file, const char *name,char **p, int size);int sget_ivec_param(const char *string, const char *name,int *p, int size);int sget_int_param(const char *string, const char *name,int *p, int size);int sget_real_param(const char *string, const char *name,double *p, int size);int sget_str_param(const char *string, const char *name,char **p, int size);int get_param(const char *p_file, const char *name,char *type, int size, void *p);int get_param_nc(const char *p_file, const char *name, int def,char *type, int size, void *p);int sget_param(char *string, const char *name,char *type, int size, void *p, int cs);int do_ivec(const int it, const int niter, int *ivec);void fixup_ivec(const int min, const int max, const int lev, int *ivec);void gft_set_single(const char *nm);Version: 1.0 Last change: August 1997 1

BBHUTIL(1L) RNPL COMPATIBLE I/O ROUTINES BBHUTIL(1L)void gft_set_multi(void);int gft_out(const char *func_name, double time, int *shape, int rank,double *data);int gft_out_brief(const char *func_name, double time, int *shape, int rank,double *data);int gft_out_bbox(const char *func_name, double time, int *shape, int rank,double *coords, double *data);int gft_out_full(const char *func_name, double time, int *shape, char *cnames,int rank, double *coords, double *data);int gft_out_set_bbox(double *coords, int rank);int gft_outm(const char *func_name, double *time, int *shape, const int nt,int *rank, double *data);int gft_outm_brief(const char *func_name, double *time, int *shape, const int nt,int *rank, double *data);int gft_outm_bbox(const char *func_name, double *time, int *shape, const int nt,int *rank, double *coords, double *data);int gft_outm_full(const char *func_name, double *time, int *shape, char **cnames,const int nt, int *rank, double *coords, double *data);int gft_read_brief(const char *gf_name, int level, double *data);int gft_read_full(const char *gf_name, int level, int *shape, char *cnames,int rank, double *time, double *coords, double *data);int gft_read_shape(const char *gf_name, const int level, int *shape);int gft_read_rank(const char *gf_name, const int level, int *rank);int gft_read_name(const char *file_name, const int n, char *name);int gft_close(const char *nm);int gft_close_all(void);int gft_read_id_gf(const char *gfname, int *shape, int *rank, double *data);int gft_read_id_int(const char *pname, int *param, int nparam);int gft_read_id_float(const char *pname, double *param, int nparam);int gft_read_id_str(const char *pname, char **param, int nparam);int gft_write_id_gf(char *gfname, int *shape, int rank, double *data);int gft_write_id_int(char *pname, int *param, int nparam);int gft_write_id_float(char *pname, double *param, int nparam);int gft_write_id_str(char *pname, char **param, int nparam);int gft_read_id_str_p(const char *file_name, const char *param_name,char **param, int nparam);int gft_read_id_int_p(const char *file_name, const char *param_name,int *param, int nparam);int gft_read_id_float_p(const char *file_name, const char *param_name,int *param, int nparam);int gft_read_2idata(const char *file_name, const char *func_name,int *shape, int rank, double *datanm1, double *datan);int gft_read_1idata(const char *file_name, const char *func_name,int *shape, int rank, double *datan);Version: 1.0 Last change: August 1997 2

BBHUTIL(1L) RNPL COMPATIBLE I/O ROUTINES BBHUTIL(1L)int gft_read_idata(const char *file_name, const char *func_name,int *shape, int rank, double *data);int gft_write_id_str_p(const char *file_name, const char *param_name,char **param, int nparam);int gft_write_id_int_p(const char *file_name, const char *param_name,int *param, int nparam);int gft_write_id_float_p(const char *file_name, const char *param_name,double *param, int nparam);int gft_write_2idata(const char *file_name, const char *func_name,int *shape, int rank, double *datanm1, double *datan);int gft_write_1idata(const char *file_name, const char *func_name,int *shape, int rank, double *datan);int gft_write_idata(const char *file_name, const char *func_name,int *shape, int rank, double *data);ENVIRONMENTSome of the BBHUtil routines make use of environment variables. The important variables are:BBHHOST, JSERHOST, ISOHOST, BBHHDF, BBHSDF, and BBHSV. BBHHDF, BBHSDF, andBBHSV are simply set or unset. BBHHOST is set to the IP address (or name) of a machine which isrunning a server which accepts SDF data. JSERHOST is set to the IP address or name of a machinerunning the scivis visualization server. ISOHOST is set to the machine running the iso-surfacegenerator for visualizing 3D data with scivis.By default, all routines (except parameter fetching) use SDF �les. To use HDF �les instead, setBBHHDF. As noted below, this has no e�ect on the initial data reading and writing routines. Also,the outm routines do not support HDF.If you wish to send data to a visualization server, set BBHHOST. If you also wish to send data toan SDF server, set BBHSDF. If instead, you wish to send to scivis BBHSV.DESCRIPTIONBBHUtil provides a set of C and FORTRAN callable functions which read and write the data �leswhich are read and written by rnpl generated programs. These include parameter �les, initial data�les, and evolution data �les.Parameter FilesA parameter �le is an ASCII �le containing arbitrary text along with lines of the form name :=value, where name is the name of a parameter and value is the parameter's value. There are fourtypes of parameters, integer,
oating point, string, and ivec.Integer,
oating point, and string parameters are all straightforward. Here are some examples ofhow they would appear in a parameter �le:intp := 10intv := [1 2 3 6 7]floatp := 1floatp2 := 10.1floatv := [1 2.3 5.0 7.2]stringp := "name.sdf"stringv := ["string1" "string 2" "string3_"]Version: 1.0 Last change: August 1997 3

BBHUTIL(1L) RNPL COMPATIBLE I/O ROUTINES BBHUTIL(1L)The routines for fetching these types of parameters are get int param, get real param, and get str param.The �rst argument is the name of the parameter �le. The second is the name of the parameter.The fourth parameter is an array of ints, doubles, or strings, and the last is the number of elementsin the array. If the parameter in the �le has fewer elements than the routine asks for, an error willresult.An ivec is an index vector. One use of an ivec is for output control. In a parameter �le, an ivecwould appear as:ivec1 := *ivec2 := *-*/10ivec3 := 1,7,9,10-17/2,18-27,30-*/10An ivec looks like v or v-v or v-v/n, where v is either an integer or * and n is an integer. An ivec canalso be any comma-separated sequence of such. The way an ivec is interpreted, depends on how theivec is being used. In the examples above, if we were using the ivecs for output control, the wouldbe interpreted as follows:ivec1 says to output at every time step. ivec2 says to output every tenth time step starting at the�rst time and continuing to the last. ivec3 says to output at time steps 1, 7, and 9, then every othertime step from 10 to 17, every time step from 18 to 27, and every tenth time step from 30 to thelast time step.Internally, an ivec is represented by an integer array. The routine for fetching ivecs is get ivec param.The size parameter tells the length of this array. If it is too short to handle the ivec in the parameter�le, an error will result.Once an ivec is fetched, there are two routines for manipulating it: �xup ivec and do ivec. Thearguments to �xup ivec are the smallest value the ivec can hold, the largest value, the convergencelevel, and the ivec itself. The min and max values are used for replacing the *'s (if any) in the ivec.In the examples above, these would be the �rst and last iteration. The convergence level is usefulfor allowing the same ivec to be interpreted di�erently at di�erent resolutions. For instance, the ivecoutput := *-10/4,21would remain unchanged for convergence level 0, and would becomeoutput := *-20/8,42for convergence level 1. Basically, all numbers get multiplied by 2lev.The routines sget str param, sget int param, sget real param, and sget ivec param, work the sameas those described above, except they read from a string instead of a �le. The �rst argument is astring of the form name := value, not a �le name.The remaining parameter routines are not callable from FORTRAN. get param and get param nctake the same arguments. These are the name of the parameter �le, the name of the parameter,Version: 1.0 Last change: August 1997 4

BBHUTIL(1L) RNPL COMPATIBLE I/O ROUTINES BBHUTIL(1L)a string representing the parameter type (�long�, �double�, �string�, or �ivec�), the number of elementsexpected in the parameter, and a pointer to the parameter. The di�erence between these routinesis that get param is case-sensitive and get param nc is not. Note that when getting an ivec, thecurrent size of the ivec should be passed to the routine, not the number of elements expected.sget param works the same as these routines except it looks for the parameter in a string instead ofa �le. Hence the �rst argument is a string instead of a �le name. Also, sget param takes an extrainteger argument at the end. If this is 1, the routine is case-sensitive, if it is 0, the routine is not.All routines return 0 if there is some sort of syntax error with the input or a memory error. Theyreturn -1 if the desired parameter wasn't found in the �le or string, and 1 if the parameter wascorrectly read.Below are some example calls. Especially note how the strings are passed. Also, the ivec must bedynamically allocated, not allocated from the stack.int i1,*i2,ret;double f1,*f2;char *s1,**s2;int *iv;/* must allocate memory for arrays */ret=get_param("p_file","nx","long",1,(void *)&i1);ret=get_param("p_file","bl","long",5,(void *)i2);ret=get_param("p_file","m","double",1,(void *)&f1);ret=get_param("p_file","v","double",1,(void *)f2);ret=get_param("p_file","tag","string",1,(void *)&s1);ret=get_param("p_file","coms","string",1,(void *)s2);ret=get_param("p_file","output","ivec",5,iv);Data FilesThe I/O routines have multiple targets. The targets come in two basic types and are chosen withenvironment varibles (see above). The �rst type of target is direct-to-server. Data is sent usingTCP/IP to a server which is running either locally or on a remote machine. Currently, three serversare supported: scivis, vs, and explorer. The second type of target is a data �le. Grid function datais written to or read from a disk �le. Most of the routines support both HDF and SDF �les (seebelow), while a few only support SDF. File I/O is done in two modes: single �le and multi �le. Insingle �le mode, all data is written to or read from a single �le. This �le can have an arbitraryname, i.e. the name passed into the function is used unchanged. To enter single �le mode, callgft set single and pass the name of the �le. To enter multi �le mode, call gft set multi.Most of the I/O routines take the grid function name as a parameter. In multi �le mode, one �leis created for each grid function. The �le names are derived from the grid function name in thefollowing way: alphanumeric characters, , _, and / are kept and all other characters are killed. The�le name will be given the extension .hdf if BBHHDF is set, or .sdf otherwise. If the grid functionname already has the appropriate extension, another will not be added.gft out, gft out brief will output the grid function named func name. Time gives the time at whichVersion: 1.0 Last change: August 1997 5

BBHUTIL(1L) RNPL COMPATIBLE I/O ROUTINES BBHUTIL(1L)the grid function had the values given in data. The rank and shape provide the size of the gridfunction. The coordinates will be named x,y,z and the coordinates are given a default bounding box[�1:0; 1:0].gft out bbox performs the same function as gft out. In addition, the coordinate values are takenfrom the bounding box coords. Coords is a one dimensional array the �rst two values of whichprovide the min and max for the �rst coordinate, the next two values provide the min and max forthe second coordinate, etc. In general, the minimum for the nth coordinate is stored in position2(n� 1) and the maximum is in position 2(n� 1) + 1.gft out full works as the above except the coordinate names are given explicitly in cnames and thecoordinate values are given explicitly in coords. The �rst shape[0] values of coords are the values ofthe �rst coordinate, the next shape[1] values are for the second coordinate, etc. cnames is a stringwhich contains the coordinate names separated by a 'j'. For a 3D grid function, cnames would besomething like "xjyjz".gft outm, gft outm brief, gft outm bbox, and gft outm full are for outputting multiple data sets withone call. This is not terribly useful when output is directed to a �le, but is very useful when sendingto a visualization server because it greatly reduces handshaking and thus speeds transmission. Theparameter nt speci�es the number of data sets being sent in the call. The time parameter is a vectorof length nt which contains the time of each data set. Rank is a vector of length nt which holds therank of each data set. The shape parameter has length equal to the sum of the elements of rank.The �rst rank[0] elements of shape are the shape of the �rst data set, the next rank[1] elements arthe shape of the second data set, etc. That is, shape is the concatenation of all the individual shapes.Similarly, coords is the concatenation of the bounding boxes for gft outm bbox and the coordinatesfor gft outm full. Cnames is an array of strings with the names of the coordinates of the �rst dataset followed by the names of the coordinates of the second data set, etc. The data parameter is justthe concatenation of all the data sets. Note: these routines do not support HDF.The default bounding box (for gft out, gft outm, gft out brief, and gft outm brief) can be set bycalling gft out set bbox.gft read brief returns the grid function named gf name. Level runs from 1 to the number of timelevels stored in the �le.gft read full takes the grid function name, desired time level, and rank and returns complete infor-mation including the grid function, time, shape, coordinate names, and coordinate values. Storagefor the returned values must be preallocated. The coordinate names are packed (see gft out fullabove). Note: these read routines may not behave as expected in single �le mode.gft read shape reads the shape of the levelth data set in the �le containing the grid function gf name.gft read rank reads the rank of the levelth data set in the �le containing the grid function gf name.gft read name reads the name of the nth data set in the �le �le name.gft close closes the data �le whose name is passed as a parameter.gft close all closes all open data �les. Note: if using HDF �les, this routine must be called.gft read id int, gft read id
oat, and gft read id str are for reading parameters from SDF initialVersion: 1.0 Last change: August 1997 6

BBHUTIL(1L) RNPL COMPATIBLE I/O ROUTINES BBHUTIL(1L)data �les. The routines take the parameter name (pname), preallocated storage for the parameter(param), and the number of elements in param (nparam). The value(s) of the parameter are returnedin param.gft read id gf reads a grid function from an SDF initial data �le. It takes the grid function name(gfname) and returns the shape, rank, and values (data) of the grid function.gft write id int, gft write id
oat, gft write id str, and gft write id gf work like their read counter-parts.Note: gft set single must be called with the initial data �le name before the above initial dataroutines are used. Also, the routines are sequential, so the values must be read in the order in whichthey were written.The following routines support reading and writing to HDF initial data �les. RNPL generatedprograms now exclusively use SDF initial data �les. It is strongly suggested that these routines notbe used, however, they are supported for historical reasons.gft read id str p, gft read id int p, and gft read id
oat p are for reading parameters from HDFinitial data �les. The routines take the �le name, parameter name, and number of parameters(array size) and return the parameter values. Su�cient storage must be preallocated and passed in.gft read 2idata reads two time levels of initial data from an HDF initial data �le. File name is thename of the initial data �le. Func name is the name of the grid function. Shape and rank containthe size of the data sets. Datan is the data set with the later time, and datanm1 is the data set atthe earlier time. Storage must be preallocated.gft read 1idata works the same way except for grid functions with only one time level of initial data.gft read idata will read one time level of data from an HDF initial data �le for a function with anynumber of time levels. Func name must carry the time level information as well as the functionname. For instance if the grid function name is \Phi" then the �rst time level (earliest) would berequested with a func name of \Phi[0]" while the next would be \Phi[1]" and so on.gft write id str p, gft write id int p, and gft write id
oat p work like their read counter parts, ex-cept they write data to an HDF initial data �le.gft write 2idata, gft write 1idata, and gft write idata work like their read counter parts, except theywrite data to an HDF initial data �le.All (non void) functions return 1 upon success and 0 on failure. Error messages are sent to stderr.The routines take care of opening or creating �les as necessary.SDF Description and FormatSDF is a new �le format for storing grid function data. SDF �les have the following properties:portability{�les written on one machine can be read on another, speed{ SDF I/O is very fast, smallmemory requirements, compactness{there is little overhead beyond the grid data, and
exibility{SDF�les can store uniform and non-uniform grid data, as well as output from adaptive mesh re�nementcodes. Further, SDF �les can be concatenated to produce a valid SDF �le, making them good forparallel I/O.Version: 1.0 Last change: August 1997 7

BBHUTIL(1L) RNPL COMPATIBLE I/O ROUTINES BBHUTIL(1L)Note: the following �le format description is subject to change. Please do not attempt to read andwrite SDF �les directly. Use the library routines.Each SDF �le consists of a series of data sets. All data is either an 8 bit character, or a 64 bit IEEE
oating point number. Data is stored in network (big-endian) order. On machines which don't useIEEE
oating point (some Crays for instance), the data must be converted to IEEE before writingand after reading (this is done automatically by the library). On little-endian machines (Intel), the
oating point numbers must be byte-swapped (this is done automatically by the library).Each data set is divided into a header and a body. The header consists of all the �xed length data.It is de�ned as:typedef struct sdfh {double time;double version;double rank;double dsize;double csize;double pnlen;double cnlen;double tglen;} bbh_sdf_header;The body contains all the variable length data and is de�ned as:typedef struct sdfb {char *pname;char *cnames;double *bbox;double *shape;char *tag;double *c;double *d;} bbh_sdf_body;The sizes for each of the body �elds are provided in the header.FILES bbhutil.h Header �le for BBHUtil routines.libbbhutil.a Library �le.SEE ALSOrnpl(1)The RNPL Reference ManualThe RNPL User's Guide
Version: 1.0 Last change: August 1997 8

