A short tutorial on parallel
molecular dynamics

Joerg Rottler

* [ntroduction

* Basic principles and 1deas of molecular dynamics

* Numerical integration (velocity verlet)

 Parallelization strategy (domain decomposition)
and implementation using MPI

e Parallel scalability for MD
* An example parallel MD program

Introduction

* Molecular dynamics (MD) 1s a very versatile research tool
with crossdisciplinary applications in:

* Condensed matter physics

* Chemistry and chemical engineering
* Biophysics

* Materials science

* Basic 1dea: study the evolution of many particle systems based
on classical or quantum mechanical equations of motion in or
out of equilibrium

* Conceptually straightforward, but computationally very
demanding

* Can study complex systems with few assumptions, but get
relatively short trajectories (< microseconds).

Application 1: Biophysics

314,000-atom protein simulation

PN o putational Biophysics Group
Beckman Institute
aivelsity of lllinois at Urbana-Champaign

Application 2: deformation of metals

Dislocation dynamics with a billion copper atoms

http://www.lInl.gov/largevis/atoms/ductile-failure/

Application 3: polymer fracture

A
v

]: 5 s R

Deformation of glassy polymers
into a dense network of fibrils
near crack tip.

~ 250,000 atoms

MD basics

e Particle positions r.,
velocities v=dr/dt
accelerations a=dv /dt
e Equation of motion: Newton's 2™ law F=ma
e Initial value problem: given positions and velocities at time t,

compute trajectories of interacting particles at later times.
o Forces F. on particle 1 arise from interactions with other

particles j
* An MD simulation consists of
(a) compute all particle interactions efficiently
(b) propagate the particles by numerical integration of the
equation of motion
(c) interate ...

Interaction potentials

* All the physics 1s 1n the force law

* Can come from classical potentials (as in examples) or
quantum mechanics (ab-1initio or Car-Parinello)

* Simple molecular potential: 6-12 Lennard Jones (noble gases)

Vir)=4e[(alr)’=(alr)] e

Very popular, well behaved, models vanderWaals interactions
Short-ranged due to 1/1° tail, can be truncated without artefacts
* Other interactions: chemical (covalent) bonds
bending forces (for polymers)
coulombic forces (if charges present)
* For metals, use “embedded atom™ potentials, mimicks atom
core 1n electron sea

Integrating the eqgs. of motion (EOM)

* Want to predict r(t+At), v(t+At) from r(t), v(t)
* [dea: Taylor-expand the EOM

r(t+A)=r(t)+v(t) A+ A’ F2m+...
r(t=A)=r(t)—=v(t) A+ A’ F2m+...
and add: #(t+A)=2r(¢)—r(t—=A)+A>FIm+0 (A"
* Verlet scheme: given r(t-At) and r(t), compute forces F(t),

predict r(t+A) and iterate
also compute velocities: v(¢)=(r(t+A)—r(t=A))I2A+0(A?)

* Problem: cannot calculate v(t) until r(t+At) 1s known

Velocity Verlet

* Alternative but equivalent integration scheme

v(t+AI2)=v(t)+A(F(¢))/2m
r(t+A)=r()+v() A+ A F(t)2m=r(t)+v(t +AI2) A
p(t+A)=v(£)+A(F () +F (t+A))/2m

This 1s called “velocity-verlet” or leapfrog scheme
* First advance velocities to midpoint
Then advance positions by full timestep
(knowing the midstep velocities)
Finally complete velocity move
“velocities leap over positions”
* Can prove that fully equivalent to Verlet scheme
* Currently most popular algorithm 1n large scale packages

Computational expenses

* Integrator 1s relatively cheap, simple O(N) loop

* Force computation: fairly easy if forces are short ranged as in
Lennard Jones. For O(N) algorithm, need to construct
“neighbor list” that contains only particles within “cutoff
radius” of a given particle, otherwise force loop becomes too
expensive

* Several well established methods available (linked lists)

* In dense systems, neighbor list construction can be as
expensive as force computation

* [f forces are long-ranged (eg. Coulombic, Gravitational),
neighbor lists don't help. Need other tricks and a separate
lecture for those.

Periodic boundary conditions

* Eliminate surface and boundary effects and simulate bulk solid

7 |

O O

O

O

O O

O O

iy
o

o YLlo Alo A

L
E.
E.
ot
E.

-
L

* Atoms leaving the simulation box on one side reenter on the
other so that the box “looks” infinite
* All coordinates between 0 and L

Minimum image convention

* Make simulation box large enough so that each atom interacts
only with the nearest image of another atom

\ —~
T I::x Y I:::I P e
W . .
R
|. it ilil,.a,l y
%%e: Y0 ©
O | ;.séléélééj -
l it e
e ——
L P
Y [::] [::' — W ~ ',
-

Energy, temperature, etc

E=Eu+E,,=). mvf/2+zi<j v (r,)

* Energy 1s conserved up to the accuracy of the integrator
* Typical timestep for Lennard Jones systems A=0.005

* Temperature T 1s computed from equipartition:

312Nk, T=1/2), m,v;

* Typical run:
choose 1nitial conditions, set external conditions (T, P,V),
1iterate
monitor key parameters (T,E,P,V)
periodically write out quantities of interest and analyse

Parallelization

* How can we speed up the calculation by using many CPUs in
parallel?

* Answer: partition the big simulation cell into many smaller ones
and give each CPU a small piece to work on simultaneously.

* This 1s called domain decomposition

* Each CPU deals only with its
local subregion

* Must exchange information at
boudaries via MPI

* Works well for short range
interactions that are local

What do we need?

* Each subsystem must know its neighboring domains. For a
cubic lattice each box has 26 neighboring boxes

* Atom caching: each domain must not only know about its own
atoms, but also about all atoms within interaction range from
the boundary to compute the forces

-1,10), 0,1.0) (1.10)
O © o
o
o
o o, ol,
o . . -
o —> This < | o
© E subsystem:
ol b :
o 0 0 0 o

(-1-10) (0-10) (1-10)

What do we need?

* Atom migration: once atoms cross the boundary of the
subsystem, they must be removed from 1t and placed 1nto the
neighboring subsystem.

(-1,10) (0,1.0) (1.1

ud
g

© This :

:subsystem :

0&\

(-1.00) (1.00)

(-1-1,0) (0-10) (1-1.0)
* This step does not arise 1n lattice problems; there one only needs
the caching of a few grid points beyond the boundary

Flow of a parallel MD program

* Update velocities to v(t+At/2)
* Update coordinates to r(t+At)

* Migrate moved-out atoms to the neighbor processors
* Copy the surface atoms within some distance from the
neighbors

* Compute new forces F(t+At) and accelerations, including
the cached atoms

* Update velocites to v(t+At)

--> We need two subroutines that handle migration and
atom copying, and MPI to for the communication

General structure of main.c

int main(int argc, char **argv) {

MPI Init(&argc,&argv); /* Initialize the MPI environment */
MPI Comm rank(MPI COMM_ WORLD, &sid); /* My processor ID */

init_params(); /* simulation parameters */

set topology(); /* domain decomposition/processor grid */
init_conf(); /* setup simulation */

atom_copy(); /* first communication of boundary atoms */
compute accel(); /* Computes 1nitial forces/accelerations */

for (stepCount=1; stepCount<=StepLimit; stepCount++) single step();

MPI Finalize(); /* Clean up the MPI environment */

integrate.c

void single step() {

L e e e e e e e e e e e
r & rv are propagated by DeltaT using the velocity-Verlet scheme
__ * /

int 1,a;

half kick(); /* First half kick to obtain v(t+Dt/2) */

for (1=0; i<n; 1++) /* Update atomic coordinates to r(t+Dt) */
for (a=0; a<3; a++) r[i1][a] = r[1][a] + DeltaT*rv[1][a];

atom_move();

atom_copy();

compute accel(); /* Computes new accelerations, a(t+Dt) */

half kick(); /* Second half kick to obtain v(t+Dt) */

Domain decomposition

e 3D Mesh, processors P_ P , P , total # of procs P= PXPsz
e Each processor has unique ID. p=p xPP +p xP +p
e Vector 1D p=(px, P PZ)

* Each face-sharing neighbor can be reached via &:

Neighbor ID. x 6=1(8,8,.9) A= (A A, A)
0 (east) (-1,0.0) (-L,.0,0)
1 (west) (1.0,0) (L,. 0, 0)
2 (north) (0, -1, 0) (0, -L,, 0)
3 (south) (0, 1. O) (0. L,. 0)
4 (up) (0.0.-1) (0.0, -L.)
5 (down) (0,0, 1) (0,0,L)

* Processor ID can be obtained by MPI Comm Rank()

Atom caching

* n: # of local atoms, nb: # of copied surface atoms

* r[0:n-1]: coords of local atoms, r[n:n+nb-1]: coords of cached
atoms

* Need function to determine 1f atom is near boundary

* Coords of boundary atoms are then sent to 6 face sharing
neighbors, copies to non-face sharing neighbors are forwarded

:'.“I.'F')

Algorithm

* Reset # of received cache atoms nbnew=0
* Loop over x,y,z directions
* Make boundary atom lists for lower and upper directions
Loop over lower and upper directions
Send/Receive # of boundary atoms to/from neighbor
Send/Receive boundary atoms to/from neighbor
Increment nbnew
End for
End for

Three phase message passing:
* Message buffering: coordinates --> dbuf

* Message passing: dbuf --> dbufr (send dbuf, receive dbufr)
* Messsage storing: coordinates <-- dbufr (append after local)

Deadlock avoidance

e Cannot send 1n circular fashion: sender blocks until receiver
clears its buffer, but cannot receive until send 1s complete:

1 3 5

Even Ok

- 4 —»= 2 4w 4 —1 g

* Classify procs into |
EVEN/ODD and only have
those send/receive pairs:

Phase 2

Communication algorithm

/* Message buffering */
for (1i=1; 1<=nsd; 1++)
for (a=0; a<3; a++) /* Shift the coordinate origin */
dbuf[3*(1-1)+a] = r[Isb[ku][1]][a]-sv[ku][a];

/* Even node: send & recv */
if (myparity[kd] == 0) {
MPI Send(dbuf,3*nsd, MPI DOUBLE,inode,20,MPI COMM WORLD);
MPI Recv(dbufr,3*nrc, MPI DOUBLE,MPI ANY SOURCE,20,
MPI_ COMM_WORLD,&status);
|

/* Odd node: recv & send */
else if (myparity[kd] == 1) {
MPI Recv(dbufr,3*nrc, MPI DOUBLE,MPI ANY SOURCE,20,
MPI COMM_ WORLD,&status);
MPI_Send(dbuf,3*nsd, MPI DOUBLE,inode,20,MPI COMM_ WORLD);

b

Atom migration

* Similar to atom cache: 6 step loop over face-sharing neighbors
* Need function to identify migrating atoms

* Variable newim keeps track of new atoms 1n cell

* New atoms are appended to r[1], v[1]; moved-out atoms are

deleted and array 1s compressed at end of loop
@ [g
® 6 @ @
® Q[
1 lol1l2la3lals
e
n lMigrata
A a kAl sl 6] 718
ol 718
newim l Compress

[~J
-
Lh
o
-~
oo

0

Updated n

Algorithm

* Newim=0

* Loop over X,y,z

* Make moving atom lists for lower and upper directions

* Loop over lower and upper directions

* Send/receive # of moving atoms

* Send/receive moving atom coords and velocities

* Mark moved out atoms

* End for

* End for

* Compress coordinate and velocity arrays to eliminate moved
out atoms

Scalability metrics

* Problem size W, T(W,P) = execution time on P procs
* Speed S=W/T(W,P)
e Speedup Sp=S(W,P)/ S(W,1)

e Parallel efficiency: Ep=Sp/P

Constant problem size speedup:
. SPZS(W,P)/ S(W,1)=T(W,1)/T(W,P)

. Ep=Sp/P=T(W,1)/(P T(W,P))="1deal time/actual time”

* Amdahl's law: fraction f 1s sequential, cannot be parallelized:
Sp=T(W,1)/T (W.,P)=1/(f+(1-H)P) --> 1/f

Isogranular speedup: keep w=W/P const. (work per proc)
. SPZS(P w,P)/S(w,1)=P T(w,1)/T(P w,P)

. Ep=T(W,1)/T(P w,P)

Efficiency of parallel MD

eT =aN/P T _=b“area”™b(N/P)” T _=clogP

comp comm gl

«T =aN/P+ b(N/P)” +clogP

tota

» Speedup S =T(N,1)/T(N,P)=aN/(aN/P + b (N/P)** + ¢ log P)

* Efficiency: E = . = / !
P 1+é(£)1 4 plogl
a N a 5 N
decreases with increasing P
* [sogranular speedup: granularity n=N/P
T(n,1) 1
S = TP P b c
’ 1—|——n_1/3—|——10gP
a an

larger for larger n, weakly decreasing with P due to log P

