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● Introduction
● Basic principles and ideas of molecular dynamics
● Numerical integration (velocity verlet)
● Parallelization strategy (domain decomposition)
   and implementation using MPI
● Parallel scalability for MD
● An example parallel MD program



  

Introduction
● Molecular dynamics (MD) is a very versatile research tool 
   with crossdisciplinary applications in:

● Condensed matter physics
● Chemistry and chemical engineering
● Biophysics
● Materials science

● Basic idea: study the evolution of many particle systems based 
  on classical or quantum mechanical equations of motion in or 
  out of equilibrium 
● Conceptually straightforward, but computationally very 
  demanding
● Can study complex systems with few assumptions, but get 
  relatively short trajectories (< microseconds). 



  

Application 1: Biophysics

314,000-atom protein simulation



  

Application 2: deformation of metals
Dislocation dynamics with a billion copper atoms

http://www.llnl.gov/largevis/atoms/ductile-failure/



  

Application 3: polymer fracture

Deformation of glassy polymers 
into a dense network of fibrils 
near crack tip. 

~ 250,000 atoms



  

MD basics
● Particle positions r

i
, 

               velocities v
i
=dr

i
/dt

               accelerations a
i
=dv

i
/dt

● Equation of motion: Newton's 2nd law F
i
=ma

i

●
 
Initial value problem: given positions and velocities at time t, 

  compute trajectories of interacting particles at later times.
● Forces F

i 
 on particle i arise from interactions with other 

  particles j
● An MD simulation consists of
  (a)  compute all particle interactions efficiently
  (b)  propagate the particles by numerical integration of the 
        equation of motion
  (c) interate ...



  

Interaction potentials
● All the physics is in the force law
● Can come from classical potentials (as in examples) or 
  quantum mechanics (ab-initio or Car-Parinello  MD)
● Simple molecular potential: 6-12 Lennard Jones (noble gases)

  Very popular, well behaved, models vanderWaals interactions
  Short-ranged due to 1/r6 tail, can be truncated without artefacts
● Other interactions: chemical (covalent) bonds
                                  bending forces (for polymers)
                                  coulombic forces (if charges present)
● For metals, use “embedded atom” potentials, mimicks atom 
  core in electron sea  
                                               

V r=4[ /r 12−/r 6]



  

Integrating the eqs. of motion (EOM)
● Want to predict r(t+∆t), v(t+∆t) from r(t), v(t)
● Idea: Taylor-expand the EOM

   and add:
● Verlet scheme: given  r(t-∆t) and r(t), compute forces F(t), 
  predict r(t+∆) and iterate
  also compute velocities:
 
● Problem: cannot calculate v(t) until r(t+∆t) is known 
  

r t=r t v t 2 F /2m...
r t−=r t −v t 2 F /2m...
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Velocity Verlet
● Alternative but equivalent integration scheme

   This is called “velocity-verlet” or leapfrog scheme
●  First advance velocities to midpoint
   Then advance positions by full timestep 
   (knowing the midstep velocities)
   Finally complete velocity move
   “velocities leap over positions”
● Can prove that fully equivalent to Verlet scheme
● Currently most popular algorithm in large scale MD packages

r t=r t v t 2F t /2m=r t v t/2
v t=v t F t F t/2m

v t/2=v t F t /2m



  

Computational expenses
● Integrator is relatively cheap, simple O(N) loop
● Force computation: fairly easy if forces are short ranged as in 
  Lennard Jones. For O(N) algorithm, need to construct  
  “neighbor list” that contains only particles within “cutoff 
  radius” of a given particle, otherwise force loop becomes too 
  expensive
● Several well established methods available (linked lists)
● In dense systems, neighbor list construction can be as 
  expensive as force computation 
● If forces are long-ranged (eg. Coulombic, Gravitational), 
  neighbor lists don't help. Need other tricks and a separate 
  lecture for those.



  

Periodic boundary conditions
● Eliminate surface and boundary effects and simulate bulk solid

● Atoms leaving the simulation box on one side reenter on the 
  other so that the box “looks” infinite
● All coordinates between 0 and L 



  

Minimum image convention
● Make simulation box large enough so that each atom interacts 
  only with the nearest image of another atom



  

Energy, temperature, etc

● Energy is conserved up to the accuracy of the integrator
● Typical timestep for Lennard Jones systems ∆=0.005

● Temperature T is computed from equipartition:

● Typical MD run: 
   choose initial conditions, set external conditions (T, P,V), 
   iterate
   monitor key parameters (T,E,P,V)
   periodically write out quantities of interest and analyse
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Parallelization
● How can we speed up the calculation by using many CPUs in 
  parallel?
● Answer: partition the big simulation cell into many smaller ones 
  and give each CPU a small piece to work on simultaneously.
● This is called domain decomposition

● Each CPU deals only with its
  local subregion
● Must exchange information at
  boudaries via MPI
● Works well for short range
  interactions that are local



  

What do we need?
● Each subsystem must know its neighboring domains. For a 
   cubic lattice each box has 26 neighboring boxes
● Atom caching: each domain must not only know about its own 
   atoms, but also about all atoms within interaction range from 
   the boundary to compute the forces 



  

What do we need?
● Atom migration: once atoms cross the boundary of the 
   subsystem, they must be removed from it and placed into the 
   neighboring subsystem.

● This step does not arise in lattice problems; there one only needs 
   the caching of a few grid points beyond the boundary



  

Flow of a parallel MD program
● Update velocities to v(t+∆t/2)
● Update coordinates to r(t+∆t)
● Migrate moved-out atoms to the neighbor processors
● Copy the surface atoms within some distance from the 
   neighbors
● Compute new forces F(t+∆t) and accelerations, including 
   the cached atoms
● Update velocites to v(t+∆t)

--> We need two subroutines that handle migration and 
atom copying, and MPI to for the communication



  

General structure of main.c
int main(int argc, char **argv) {

  MPI_Init(&argc,&argv); /* Initialize the MPI environment */
  MPI_Comm_rank(MPI_COMM_WORLD, &sid);  /* My processor ID */
  
  init_params(); /* simulation parameters */
  set_topology(); /* domain decomposition/processor grid */
  init_conf();   /* setup simulation */
  atom_copy(); /* first communication of boundary atoms */
  compute_accel(); /* Computes initial forces/accelerations */ 

  for (stepCount=1; stepCount<=StepLimit; stepCount++) single_step(); 
    
  MPI_Finalize(); /* Clean up the MPI environment */
}



  

integrate.c
 void single_step() {
/*----------------------------------------------------------------------
r & rv are propagated by DeltaT using the velocity-Verlet scheme.
----------------------------------------------------------------------*/
  int i,a;

  half_kick(); /* First half kick to obtain v(t+Dt/2) */
  for (i=0; i<n; i++) /* Update atomic coordinates to r(t+Dt) */
    for (a=0; a<3; a++) r[i][a] = r[i][a] + DeltaT*rv[i][a];
  atom_move();
  atom_copy();
  compute_accel(); /* Computes new accelerations, a(t+Dt) */
  half_kick(); /* Second half kick to obtain v(t+Dt) */
}



  

Domain decomposition
● 3D Mesh, processors P
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● Each face-sharing neighbor can be reached via δ:

● Processor ID can be obtained by MPI_Comm_Rank()



  

Atom caching
● n: # of local atoms, nb: # of copied surface atoms
● r[0:n-1]: coords of local atoms, r[n:n+nb-1]: coords of cached 
atoms 
● Need function to determine if atom is near boundary
● Coords of boundary atoms are then sent to 6 face sharing 
neighbors, copies to non-face sharing neighbors are forwarded 



  

Algorithm
● Reset # of received cache atoms nbnew=0
● Loop over x,y,z directions
●    Make boundary atom lists for lower and upper directions
●    Loop over lower and upper directions
●       Send/Receive # of boundary atoms to/from neighbor
●       Send/Receive boundary atoms to/from neighbor
●       Increment nbnew
●    End for
● End for

 Three phase message passing:
● Message buffering: coordinates --> dbuf
● Message passing: dbuf --> dbufr (send dbuf, receive dbufr)
● Messsage storing: coordinates <-- dbufr (append after local)



  

Deadlock avoidance
● Cannot send in circular fashion: sender blocks until receiver 
clears its buffer, but cannot receive until send is complete:

● Classify procs into 
  EVEN/ODD and only have
  those send/receive pairs:



  

Communication algorithm
  /* Message buffering */
      for (i=1; i<=nsd; i++)
        for (a=0; a<3; a++) /* Shift the coordinate origin */
          dbuf[3*(i-1)+a] = r[lsb[ku][i]][a]-sv[ku][a]; 

      /* Even node: send & recv */
      if (myparity[kd] == 0) {
        MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,20,MPI_COMM_WORLD);
        MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,20,
                 MPI_COMM_WORLD,&status);
      }

      /* Odd node: recv & send */
      else if (myparity[kd] == 1) {
        MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,20,
                 MPI_COMM_WORLD,&status);
        MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,20,MPI_COMM_WORLD);
      }



  

Atom migration
● Similar to atom cache: 6 step loop over face-sharing neighbors
● Need function to identify migrating atoms
● Variable newim keeps track of new atoms in cell
● New atoms are appended to r[i], v[i]; moved-out atoms are 
  deleted and array is compressed at end of loop



  

Algorithm
● Newim=0
● Loop over x,y,z
●    Make moving atom lists for lower and upper directions
●    Loop over lower and upper directions
●       Send/receive # of moving atoms
●       Send/receive moving atom coords and velocities
●       Mark moved out atoms
●    End for
● End for
● Compress coordinate and velocity arrays to eliminate moved 
  out atoms 



  

Scalability metrics
● Problem size W, T(W,P) = execution time on P procs
● Speed S=W/T(W,P)
● Speedup S

p
=S(W,P)/S(W,1)

● Parallel efficiency: E
p
=S

p
/P 

 
Constant problem size speedup:

● S
p
=S(W,P)/S(W,1)=T(W,1)/T(W,P)

● E
p
=S

p
/P=T(W,1)/(P T(W,P))=”ideal time/actual time”

● Amdahl's law: fraction f is sequential, cannot be parallelized:
          S

p
=T(W,1)/T(W,P)= 1/(f+(1-f)P) --> 1/f

Isogranular speedup: keep w=W/P const.  (work per proc)
● S

p
=S(P w,P)/S(w,1)= P T(w,1)/T(P w,P)

● E
p
=T(w,1)/T(P w,P)



  

Efficiency of parallel MD
● T

comp
=a N/P    T

comm
=b “area”= b (N/P)2/3    T

global
=c log P

● T
total

= a N/P +  b (N/P)2/3  + c log P
● Speedup  S

p
=T(N,1)/T(N,P)= aN/(a N/P +  b (N/P)2/3  + c log P)

● Efficiency:
   
  
  decreases with increasing P
● Isogranular speedup:  granularity n=N/P

   larger for larger n, weakly decreasing with P due to log P 
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