

A short tutorial on parallel
molecular dynamics

Joerg RottlerJoerg RottlerJoerg RottlerJoerg Rottler

● Introduction
● Basic principles and ideas of molecular dynamics
● Numerical integration (velocity verlet)
● Parallelization strategy (domain decomposition)
 and implementation using MPI
● Parallel scalability for MD
● An example parallel MD program

Introduction
● Molecular dynamics (MD) is a very versatile research tool
 with crossdisciplinary applications in:

● Condensed matter physics
● Chemistry and chemical engineering
● Biophysics
● Materials science

● Basic idea: study the evolution of many particle systems based
 on classical or quantum mechanical equations of motion in or
 out of equilibrium
● Conceptually straightforward, but computationally very
 demanding
● Can study complex systems with few assumptions, but get
 relatively short trajectories (< microseconds).

Application 1: Biophysics

314,000-atom protein simulation

Application 2: deformation of metals
Dislocation dynamics with a billion copper atoms

http://www.llnl.gov/largevis/atoms/ductile-failure/

Application 3: polymer fracture

Deformation of glassy polymers
into a dense network of fibrils
near crack tip.

~ 250,000 atoms

MD basics
● Particle positions r

i
,

 velocities v
i
=dr

i
/dt

 accelerations a
i
=dv

i
/dt

● Equation of motion: Newton's 2nd law F
i
=ma

i

●

Initial value problem: given positions and velocities at time t,

 compute trajectories of interacting particles at later times.
● Forces F

i
 on particle i arise from interactions with other

 particles j
● An MD simulation consists of
 (a) compute all particle interactions efficiently
 (b) propagate the particles by numerical integration of the
 equation of motion
 (c) interate ...

Interaction potentials
● All the physics is in the force law
● Can come from classical potentials (as in examples) or
 quantum mechanics (ab-initio or Car-Parinello MD)
● Simple molecular potential: 6-12 Lennard Jones (noble gases)

 Very popular, well behaved, models vanderWaals interactions
 Short-ranged due to 1/r6 tail, can be truncated without artefacts
● Other interactions: chemical (covalent) bonds
 bending forces (for polymers)
 coulombic forces (if charges present)
● For metals, use “embedded atom” potentials, mimicks atom
 core in electron sea

V r=4[ /r 12−/r 6]

Integrating the eqs. of motion (EOM)
● Want to predict r(t+∆t), v(t+∆t) from r(t), v(t)
● Idea: Taylor-expand the EOM

 and add:
● Verlet scheme: given r(t-∆t) and r(t), compute forces F(t),
 predict r(t+∆) and iterate
 also compute velocities:

● Problem: cannot calculate v(t) until r(t+∆t) is known

r t=r t v t 2 F /2m...
r t−=r t −v t 2 F /2m...
r t=2r t −r t−2 F /mO 4

v t =r t−r t−/2O 2

Velocity Verlet
● Alternative but equivalent integration scheme

 This is called “velocity-verlet” or leapfrog scheme
● First advance velocities to midpoint
 Then advance positions by full timestep
 (knowing the midstep velocities)
 Finally complete velocity move
 “velocities leap over positions”
● Can prove that fully equivalent to Verlet scheme
● Currently most popular algorithm in large scale MD packages

r t=r t v t 2F t /2m=r t v t/2
v t=v t F t F t/2m

v t/2=v t F t /2m

Computational expenses
● Integrator is relatively cheap, simple O(N) loop
● Force computation: fairly easy if forces are short ranged as in
 Lennard Jones. For O(N) algorithm, need to construct
 “neighbor list” that contains only particles within “cutoff
 radius” of a given particle, otherwise force loop becomes too
 expensive
● Several well established methods available (linked lists)
● In dense systems, neighbor list construction can be as
 expensive as force computation
● If forces are long-ranged (eg. Coulombic, Gravitational),
 neighbor lists don't help. Need other tricks and a separate
 lecture for those.

Periodic boundary conditions
● Eliminate surface and boundary effects and simulate bulk solid

● Atoms leaving the simulation box on one side reenter on the
 other so that the box “looks” infinite
● All coordinates between 0 and L

Minimum image convention
● Make simulation box large enough so that each atom interacts
 only with the nearest image of another atom

Energy, temperature, etc

● Energy is conserved up to the accuracy of the integrator
● Typical timestep for Lennard Jones systems ∆=0.005

● Temperature T is computed from equipartition:

● Typical MD run:
 choose initial conditions, set external conditions (T, P,V),
 iterate
 monitor key parameters (T,E,P,V)
 periodically write out quantities of interest and analyse

E=E kinE pot=∑i
mvi

2/2∑i j
V ri

3 /2Nk BT=1/2∑i
mi v i

2

Parallelization
● How can we speed up the calculation by using many CPUs in
 parallel?
● Answer: partition the big simulation cell into many smaller ones
 and give each CPU a small piece to work on simultaneously.
● This is called domain decomposition

● Each CPU deals only with its
 local subregion
● Must exchange information at
 boudaries via MPI
● Works well for short range
 interactions that are local

What do we need?
● Each subsystem must know its neighboring domains. For a
 cubic lattice each box has 26 neighboring boxes
● Atom caching: each domain must not only know about its own
 atoms, but also about all atoms within interaction range from
 the boundary to compute the forces

What do we need?
● Atom migration: once atoms cross the boundary of the
 subsystem, they must be removed from it and placed into the
 neighboring subsystem.

● This step does not arise in lattice problems; there one only needs
 the caching of a few grid points beyond the boundary

Flow of a parallel MD program
● Update velocities to v(t+∆t/2)
● Update coordinates to r(t+∆t)
● Migrate moved-out atoms to the neighbor processors
● Copy the surface atoms within some distance from the
 neighbors
● Compute new forces F(t+∆t) and accelerations, including
 the cached atoms
● Update velocites to v(t+∆t)

--> We need two subroutines that handle migration and
atom copying, and MPI to for the communication

General structure of main.c
int main(int argc, char **argv) {

 MPI_Init(&argc,&argv); /* Initialize the MPI environment */
 MPI_Comm_rank(MPI_COMM_WORLD, &sid); /* My processor ID */

 init_params(); /* simulation parameters */
 set_topology(); /* domain decomposition/processor grid */
 init_conf(); /* setup simulation */
 atom_copy(); /* first communication of boundary atoms */
 compute_accel(); /* Computes initial forces/accelerations */

 for (stepCount=1; stepCount<=StepLimit; stepCount++) single_step();

 MPI_Finalize(); /* Clean up the MPI environment */
}

integrate.c
 void single_step() {
/*--
r & rv are propagated by DeltaT using the velocity-Verlet scheme.
--*/
 int i,a;

 half_kick(); /* First half kick to obtain v(t+Dt/2) */
 for (i=0; i<n; i++) /* Update atomic coordinates to r(t+Dt) */
 for (a=0; a<3; a++) r[i][a] = r[i][a] + DeltaT*rv[i][a];
 atom_move();
 atom_copy();
 compute_accel(); /* Computes new accelerations, a(t+Dt) */
 half_kick(); /* Second half kick to obtain v(t+Dt) */
}

Domain decomposition
● 3D Mesh, processors P

x
, P

y
, P

z
, total # of procs P=P

x
P

y
P

z

●

Each processor has unique ID: p=p

x
x P

y
P

z
+ p

y
x P

z
+ p

z

●

Vector ID p=(p

x
, p

y
, p

z
)

● Each face-sharing neighbor can be reached via δ:

● Processor ID can be obtained by MPI_Comm_Rank()

Atom caching
● n: # of local atoms, nb: # of copied surface atoms
● r[0:n-1]: coords of local atoms, r[n:n+nb-1]: coords of cached
atoms
● Need function to determine if atom is near boundary
● Coords of boundary atoms are then sent to 6 face sharing
neighbors, copies to non-face sharing neighbors are forwarded

Algorithm
● Reset # of received cache atoms nbnew=0
● Loop over x,y,z directions
● Make boundary atom lists for lower and upper directions
● Loop over lower and upper directions
● Send/Receive # of boundary atoms to/from neighbor
● Send/Receive boundary atoms to/from neighbor
● Increment nbnew
● End for
● End for

 Three phase message passing:
● Message buffering: coordinates --> dbuf
● Message passing: dbuf --> dbufr (send dbuf, receive dbufr)
● Messsage storing: coordinates <-- dbufr (append after local)

Deadlock avoidance
● Cannot send in circular fashion: sender blocks until receiver
clears its buffer, but cannot receive until send is complete:

● Classify procs into
 EVEN/ODD and only have
 those send/receive pairs:

Communication algorithm
 /* Message buffering */
 for (i=1; i<=nsd; i++)
 for (a=0; a<3; a++) /* Shift the coordinate origin */
 dbuf[3*(i-1)+a] = r[lsb[ku][i]][a]-sv[ku][a];

 /* Even node: send & recv */
 if (myparity[kd] == 0) {
 MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,20,MPI_COMM_WORLD);
 MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,20,
 MPI_COMM_WORLD,&status);
 }

 /* Odd node: recv & send */
 else if (myparity[kd] == 1) {
 MPI_Recv(dbufr,3*nrc,MPI_DOUBLE,MPI_ANY_SOURCE,20,
 MPI_COMM_WORLD,&status);
 MPI_Send(dbuf,3*nsd,MPI_DOUBLE,inode,20,MPI_COMM_WORLD);
 }

Atom migration
● Similar to atom cache: 6 step loop over face-sharing neighbors
● Need function to identify migrating atoms
● Variable newim keeps track of new atoms in cell
● New atoms are appended to r[i], v[i]; moved-out atoms are
 deleted and array is compressed at end of loop

Algorithm
● Newim=0
● Loop over x,y,z
● Make moving atom lists for lower and upper directions
● Loop over lower and upper directions
● Send/receive # of moving atoms
● Send/receive moving atom coords and velocities
● Mark moved out atoms
● End for
● End for
● Compress coordinate and velocity arrays to eliminate moved
 out atoms

Scalability metrics
● Problem size W, T(W,P) = execution time on P procs
● Speed S=W/T(W,P)
● Speedup S

p
=S(W,P)/S(W,1)

● Parallel efficiency: E
p
=S

p
/P

Constant problem size speedup:

● S
p
=S(W,P)/S(W,1)=T(W,1)/T(W,P)

● E
p
=S

p
/P=T(W,1)/(P T(W,P))=”ideal time/actual time”

● Amdahl's law: fraction f is sequential, cannot be parallelized:
 S

p
=T(W,1)/T(W,P)= 1/(f+(1-f)P) --> 1/f

Isogranular speedup: keep w=W/P const. (work per proc)
● S

p
=S(P w,P)/S(w,1)= P T(w,1)/T(P w,P)

● E
p
=T(w,1)/T(P w,P)

Efficiency of parallel MD
● T

comp
=a N/P T

comm
=b “area”= b (N/P)2/3 T

global
=c log P

● T
total

= a N/P + b (N/P)2/3 + c log P
● Speedup S

p
=T(N,1)/T(N,P)= aN/(a N/P + b (N/P)2/3 + c log P)

● Efficiency:

 decreases with increasing P
● Isogranular speedup: granularity n=N/P

 larger for larger n, weakly decreasing with P due to log P

E p=
S p
P
= 1

1b
a
 P
N

1/3

 c
a
P log P

N

E p=
T n ,1
T nP , P 

= 1

1 b
a
n−1/3 c

an
log P

