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Although relativistic physics tends to omit nondynamical “absolute objects”
such as a flat metric tensor or a preferred time foliation, there exist interesting
questions related to such entities, such as worries about the “flow” of time in special
relativity, and the apparent disappearance of time altogether in canonical general
relativity. This latter problem is related to the lack of a fixed causal structure with
respect to which one might posit “equal-time” commutation relations, for example.

In view of these issues, we consider whether including a flat background
metric, and perhaps a preferred foliation, is physically worthwhile. We show how a
derivation of Einstein’s equations from flat spacetime can be generalized to include a
preferred foliation, the possible significance of which we discuss, though ultimately
we suggest why such a foliation might be present in metaphysics and yet absent
from physics. We also derive a new “slightly bimetric” class of theories using the
flat spacetime approach.

However, such derivations are only formally special relativistic, because they

give no heed to the flat metric’s causal structure, which the curved effective metric

vi



might well violate. After reviewing the history of this problem, we introduce new
variables to give a kinematic description of the relation between the two null cones.
Then we propose a method to enforce special relativistic causality by using the
gauge freedom to restrict the configuration space suitably. Consequences for exact
solutions, such as the Schwarzschild solution and its ‘singularity’, are discussed.
Advantages and difficulties regarding adding a mass term to the theory are

discussed briefly.
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Chapter 1

Introduction

While relativistic physics tends to omit nondynamical “absolute objects” such as
a flat metric tensor or a preferred time foliation®, there exist interesting questions
related to such entities. Concerning general relativity, the lack of an a priori fixed
causal structure is merely technically demanding at the classical level, but it con-
stitutes a real puzzle at the quantum level, for one no longer knows how to write
equal-time commutation relations, for example, because one needs to know the met-
ric in order to determine equal times, but the metric is itself quantized: a chicken-
and-the-egg problem. This is an aspect of the problem of time in quantum gravity.
Furthermore, one wonders whether gravity need be formulated in a way that differs
so drastically from the other forces; can it not be treated as a force in flat space-
time? In chapter 2 we therefore review the flat spacetime approach to Einstein’s
equations, presenting a derivation based on universal coupling and gauge invariance,
which then serves as the model for various generalizations. This work will appear
in the near future in General Relativity and Gravitation in a paper cowritten with
W. C. Schieve, and is used with the permission of Kluwer Academic Publishing.

Concerning special relativity, the relativity of distant simultaneity fits poorly

! Absolute objects have been discussed in ([1-3]).



with intuitive notions of the “flow” of time. With that issue in mind, in the third
chapter we generalize the previous derivation to consider how a preferred folia-
tion might manifest itself in the flat spacetime approach to gravitation in either a
4 + 1-dimensional “parametrized” theory with an invariant global time 7, or in a
3 + 1-dimensional preferred-frame theory. The functional forms that the actions for
such theories might take are suggested. The relevance of these theories to the actual
world, however, is not so obvious, given the remarkable empirical adequacy of both
special relativity and Einstein’s theory. In the 4 + 1-dimensional case, experiments
suggest that the 7-dependence of the world must be rather slow. Otherwise, light
dispersion should be observed due to the modified dispersion relation. In the 3 + 1-
dimensional case, in view of the constructive role of Lorentz invariance in theoretical
physics, and the limited (though perhaps nonzero) physical evidence for difficulties
with Lorentz invariance, one is reluctant to give up that symmetry needlessly. How-
ever, there are philosophical arguments that might motivate one to posit a preferred
foliation. Can one then suggest that physics is Lorentz-invariant but metaphysics is
not? Such a suggestion has been thought to run afoul of Einstein’s maxim “Subtle
is the Lord, but not malicious.” On the contrary, we attempt to suggest why such
a suggestion need not imply a perverse world, based on the very utility of Lorentz
invariance. This work will appear (jointly written with W. C. Schieve) in the near
future in an issue of Foundations of Physics devoted to a conference proceedings
edited by L. P. Horwitz, and is used with the permission of Kluwer Academic Pub-
lishing.

Having perhaps reconciled the flow of time with special relativity, we turn
back to gravitation in special relativity in chapter 4. Flat spacetime derivations
of general relativity have been known for almost half a century, so merely present-
ing another would seem a bit sterile. It is natural to ask whether any interesting

generalizations of this procedure can be found. The answer is “yes.” We find that



restricting the gauge invariance and requiring only the traceless part of the stress
tensor to be coupled to gravity yields a larger family of “slightly bimetric” theo-
ries, in which the determinant of the flat background metric appears. Such theories
have an arbitrary cosmological constant and can have a third degree of freedom
per space point. This work will appear in the near future in the above-mentioned
General Relativity and Gravitation paper cowritten with W. C. Schieve.

Such derivations of general relativity and slightly bimetric theories, however,
are only formally special relativistic, because the curved null cone might not respect
the flat one. This difficulty afflicts not merely our derivation, but in fact all deriva-
tions in this tradition, and implies that the alleged resemblance of Einstein’s theory
to other field theories in this approach is merely formal. In chapter 5 we survey in
some detail the treatment of this fundamental question over the last six decades.
As it happens, this issue has in general been ignored, explained away, postponed
with the hope that it would go away, or mishandled in one of several ways, although
there have been positive signs in recent years. We critique claims that the problem
is insoluble and claims that it has already been solved, and conclude that the issue
remains quite open.

In chapter 6 we undertake to solve the problem. The kinematic issue of the
relationship between the two null cones is handled using the work of G. S. Hall and
collaborators on the Segré classification of symmetric rank 2 tensors with respect to
a Lorentzian metric. For our purposes, we classify the curved metric with respect
to the flat one, and find necessary and sufficient conditions for a suitable relation-
ship. Requiring that flat spacetime causality not be violated, and not be arbitrarily
close to being violated, a condition that we call “stable n-causality”, implies that
all suitable curved metrics have a complete set of generalized eigenvectors with re-
spect to the flat metric, and that the causality conditions take the form of strict

inequalities. Given strict inequalities, one is in a position to solve such conditions,



which are somewhat analogous to the “positivity conditions” of canonical gravity,
which have been discussed by J. Klauder, F. Klotz, and J. Goldberg. In these new
variables, stable 7-causality holds identically, because the configuration space has
been reduced. This reduction implies the need for reconsidering the gauge freedom
of the theory. It turns out that gauge transformations no longer form a group, be-
cause multiplication is not defined between some elements. A portion of the work
in chapters 5 and 6 will appear in the Proceedings of the 20th Texas Symposium on
Relativistic Astrophysics[117] in a paper cowritten with W. C. Schieve. This portion
is used by permission of the American Institute of Physics.

Given the need to respect the flat metric’s null cone and reduction in gauge
freedom, the usual treatment of the Schwarzschild ‘singularity’ is called into ques-
tion, but the resolution is not yet clear, we find in chapter 6. While a causally
acceptable solution containing a region of small r from which not even light can
escape is known, the relevance of this solution to objects formed from gravitational
collapse needs to be explored. Moreover, making the curved metric respect the flat
null cone ensures that the resulting spacetime is globally hyperbolic. Global hyper-
bolicity implies that any regions of no escape lack some of the typical properties
of black holes in the geometrical formulation. Given that global hyperbolicity ap-
parently pulls the fangs from the Hawking black hole information loss paradox, it
appears that this paradox does not afflict the special relativistic approach to gravi-
tation.

Finally, we discuss some noteworthy exact solutions and contemplate the
possibility that a rest mass term should be added to the theory. “Caustic plane
wave” exact solutions of Einstein’s equations appear to be an embarrassment for
our program of taking the flat metric seriously, because these solutions seem to
imply severe n-null cone violation. We suggest, however, that one can make a gauge

transformation to alter parts of these solutions to an acceptable form, while the



rest is excluded from spacetime as unphysical. As in the case of the Schwarzschild
singularity, long-standing (and resolved) coordinate singularities in the geometrical
theory might imply true singularities in our approach. The field of an infinite plate
is also discussed. It turns out that such a plate must be repulsive, a result which
is not so surprising in view of an analogy to the Schwarzschild solution. If one
gives gravitation a finite range using the Maheshwari-Logunov mass term, then
an attractive plate is possible. In view of the many desirable features of massive
general relativity from the bimetric point of view (such as that the flat metric
becomes observable, that energy and momentum are localized, and that the theory
in a sense lacks constraint equations), it is disappointing the massive theory’s lack
of gauge freedom prevents the use of our approach to ensuring null cone consistency.
Suggestions for restoring enough gauge freedom to use our procedure are made, but

they face difficulties of a physical or at least technical nature.



Chapter 2

Flat Spacetime and Einstein’s

Equations

2.1 Previous Use of a Flat Background Metric in Grav-
itation

A number of authors have discussed the utility of a flat background metric 7,, in
general relativity or the possibility of deriving that theory, approximately or exactly,
from a flat spacetime theory [4-73,75-114]. Some have permitted the background
metric to be curved [69, 82,94, 95,118-122], but our interest is in flat backgrounds
only, because they are uniquely plausible as nondynamical entities. The use of a
flat background metric enables one to formulate a gravitational stress-energy tensor
[93], not merely a pseudotensor, so gravitational energy and momentum are lo-
calized in a coordinate-independent (but gauge-variant) way. It also enables one to
derive general relativity and other generally covariant theories from plausible special-
relativistic postulates, rather than postulating them. (We call a theory “generally
covariant” if no nondynamical fields appear in the Euler-Lagrange equations, even

if some do appear in the action.) As W. Thirring observed, it is not clear a priori



why Riemannian geometry is to be preferred over all the other sorts of geometry
that exist, so a derivation of effective Riemannian geometry is attractive [29]. It
also seems appealing to try to cast gravitation in the same form as the other forces
[29]. Furthermore, a non-geometrical form of gravitation can facilitate introduction
of supersymmetry [83]. We will also find that this approach avoids the difficulty of

the lack of an a priori causal structure for defining dynamics in quantum gravity.

2.2 Generally Covariant Theories from Universal Cou-

pling and Infinitesimal Free Field Gauge Invariance

To such a derivation of generally covariant theories we now turn. Our derivation
combines elements familiar from the work of Kraichnan [20,21] and Deser [65], but
it has improvements as well. It is based upon universal coupling and an assumed
initial infinitesimal invariance (up to a boundary term) of the free gravitational
action. This derivation will also serve as the model for the new derivation of slightly
bimetric theories and theories with a preferred foliation. The assumption of gauge
invariance requires that the field be massless. However, it can easily be modified to

produce massive theories, too.!

2.3 Free Field Action

Let Sy be the action for a free symmetric tensor field +,, (of density weight 0) in
Minkowski spacetime with metric tensor 7, in arbitrary coordinates. The torsion-
free n-compatible covariant derivative is denoted by J,. The field v, will turn out
to be the gravitational potential. We require that S; change only by a boundary

term under the infinitesimal gauge transformation v,, — v + 67yu, Wwhere

57uu = 3;161/ + 81/5;17 (2.1)

1J. B. Pitts, in preparation.



&, being an arbitrary covector field. In the special case that the Lagrangian density
is a linear combination of terms quadratic in first derivatives of the 7,,, and free
of algebraic and higher-derivative dependence on +,,, the requirement of gauge
invariance uniquely fixes coefficients of the terms in the free field action up to a
boundary term, giving linearized vacuum general relativity [304].2

For any S; invariant in this sense under (2.1), the free field equation is
identically divergenceless, as we now show. With arbitrary divergences e#,, and

f*,, permitted, the action changes by

(sz :/d‘lw |:(;$Sf (8V§/1+6/1§V)+e”’11:| :/d‘le”’u‘ (22)
Yuv

The explicit forms of the boundary terms are not needed for our purposes. Integrat-
ing by parts, letting £# have compact support to annihilate the boundary terms (as
we shall do throughout this dissertation), and making use of the arbitrariness of £,
we obtain the identity

88y
Vv

8L — 0. (2.3)

2.4 Metric Stress-Energy Tensor

If the energy-momentum tensor is to be the source for the field v,,, consistency
requires that the total stress tensor be used, including gravitational energy and mo-
mentum, not merely the nongravitational (“matter”) sort, for only the total stress
tensor is divergenceless in the sense of 9, [65], or, equivalently, in the sense of a
Cartesian coordinate divergence. To obtain a global conservation law, one needs a
vanishing coordinate divergence for the 4-current. In general relativity in its geomet-
rical form, one must choose between tensorial expressions and global conservation
laws. If one employs only tensors (or tensor densities), one can write V,/ 74>, = 0 for

the matter stress tensor (where V, is the usual torsion-free g-compatible covariant

*For related work, one might see Wald [128] and Heiderich and Unruh [129].



derivative). But this equation typically does not yield a global conservation law
[152], because in general it cannot be written as a coordinate divergence. (From the
flat spacetime viewpoint, this equation is best regarded as a force law, not a conser-
vation equation.) If coordinate-dependent expressions are admitted, then one can
write 7#”,, = 0, where 7#" is some nontensorial complex that includes gravitational
as well as matter stress [208,209]. But these objects behave oddly under coordinate
transformations [1,210-213, 215, 216]. A flat background metric, in contrast, yields
tensorial global conservation laws, as Rosen has emphasized [216,217]. However,
the gravitational energy and momentum localization is now gauge-dependent.

An expression for the total stress tensor can be derived from S using the met-
ric recipe [1,20, 21, 93] in the following way. The action depends on the flat metric
Nuv, the gravitational potential 7,,, and “bosonic” matter fields u. Here u represents
an arbitrary collection of dynamical tensor (density) fields of arbitrary rank, index
position, and weight. Under an arbitrary infinitesimal coordinate transformation

described by a vector field £#, the action changes by the amount

) 6S 4S
- 4 it - o). 24
(SS /d $(57”V££7uu+ 5u£§u+5nﬂy££n/jl/ +g ,u) ( )
But S is a scalar, so S = 0. Letting the matter and gravitational field equations
hold gives
0S = /d4a:( 05 1Y) £enpw =0, (2.5)
0N
or
6S
=0. 2.
Qg1 =0 (26)

(The bar notation in %h emphasizes that the other independent variable is 7,,,
a fact that will become important shortly.)
This metric stress tensor density T#" = 26‘:’% agrees with the symmetrized

canonical tensor in the case of electromagnetism, up to a trivial factor (assuming



the electromagnetic potential to be a covector of vanishing density weight, i.e., a
1-form; otherwise, terms that vanish when the equations of motion hold also arise).
In more general cases, the relation between the metric and symmetrized canonical
results is more complicated, so some ambiguity in the term “stress tensor” exists;

one could try to resolve this ambiguity by introducing further criteria [1, 93, 218].

2.5 Choice of Dynamical Variables

Deser treated the gravitational potential and {ﬁﬂ} as independent variables, giv-
ing a first-order Lagrangian formalism [65]. This approach, which lacks Lagrange
multipliers to enforce the Levi-Civita character of the connection, can be made to
work if one is clever, but we prefer using only v,, as the independent variable, as
in Kraichnan’s second-order Lagrangian approach [20]. There are several reasons
for our preference. First, the second order approach seems more natural [219] and
physical because it avoids unnecessary variables (40 extra ones). In Deser’s deriva-
tion, the connection is just Levi-Civita’s on-shell, so its dynamics is not interesting.
Second, as Deser’s approach simply verifies that an assumed from is correct, it
requires either a lucky guess or knowledge of the answer in advance, whereas the
second-order recipe does not. Furthermore, the second-order approach is cleaner
and more elegant, for no messy calculations are required. Finally, this second-order
approach is more general in two respects. First, all generally covariant theories,
including those with higher derivatives, manifestly fall within its scope, rather than
remaining latent possibilities in the form of other lucky guesses. Second, the first-
order approach either fails if the matter action depends on the connection [220], as
it does for a perfect fluid [221], or requires the introduction of still more variables
(perhaps another 40) to serve as Lagrange multipliers. In contrast, the second or-
der approach always works using only 10 variables. For these reasons, we find a

second-order principle preferable.

10



2.6 Full Universally-Coupled Action

We seek an action S obeying the physical requirement that the Euler-Lagrange

equations be just the free field equations for Sy augmented by the total stress tensor:

65 _ 88 08 o
5’}’;11/ 5'7lu/ 57hw

where A\ = —v/327G. In this respect our derivation follows Deser’s more than
Kraichnan’s, for Kraichnan made no use of a free field action, but only of postulated
free field equations.

The basic variables in this approach are the gravitational potential ,, and
the flat metric n,,. But one is free to make a change of variables in S from +,, and

77/11/ to g/U/ and nlu/, Where

Juv = Nuv — )\’Y;w- (28)

Equating coefficients of the variations gives

6S i) 6S
577#1/ h/ 577/_41/ | 5.9/.&1/ ( )
and
05 ==X 05 . (2.10)
57/11/ 59;“/
Putting these two results together gives
éS ) 6S
A v = g— . 2.11
My | Oy | Vv ( )

Equation (2.11) splits the stress tensor into one piece that vanishes when gravity is
on-shell and one piece that does not. Using this result in (2.7) gives

65 | _ 95
577;11/ 57;11/’

(2.12)

11



which says that the free field Euler-Lagrange derivative must equal (up to a constant
factor) that part of the total stress tensor that does not vanish when the gravitational

field equations hold. Recalling (2.3), one derives

Bp%m =0, (2.13)
which says that the part of the stress tensor not proportional to the gravitational
field equations has identically vanishing divergence (on either index), i.e., is a (sym-
metric) “curl” [1]. This result concerning the splitting of the stress tensor will be
used in considering the gauge transformations of the full theory. It also ensures that
the gravitational field equations alone entail conservation of energy and momentum,
without any separate postulation of the matter equations. Previously the deriva-
tion of a conserved stress tensor required that gravity and matter obey their field
equations, as in (2.5). This is possible only if the gravitational potential encodes
considerable information about the matter fields through constraints. The Hamil-
tonian and momentum constraints imply this very fact [152], so one sees the origin
of constraints from another angle.

It is worth recalling a conclusion of E. R. Huggins [42], who was a student of
Feynman. Huggins found that the requirement that energy be a spin-two field cou-
pled to the stress-energy tensor does not lead to a unique theory, because of terms
of this curl form. Rather, “an additional restriction is necessary. For Feynman
this restriction was that the equations of motion be obtained from an action princi-
ple; Einstein required that the gravitational field have a geometrical interpretation.
Feynman showed these two restrictions to be equivalent.” [42] (p. 3) Because we
have built in the requirement of an action principle already, it is no surprise that
we will find Riemannian geometrical theories to be the unique result.

We observe that the quantity 62%|g, being symmetrical and having identi-

12



cally vanishing divergence on either index, is of the form
08

s

[152] (pp. 89, 429), where M#P?¥ is a tensor density of weight 1 and b is a constant.

1
lg = 58,,80(./\4[“"][‘”’} + M[Vﬂ][au]) + by/—mnH (2.14)

This result follows from the converse of Poincaré’s lemma in Minkowski spacetime.
(It is not strictly necessary to separate the b term out, but doing so is convenient,
because getting this term from MH#??Y would require that M#P?” depend on the
position 4-vector.) We gather all dependence on 7, (with g,, independent) into

one term, writing

S = Sl[guuau] + 52[.9/11/: nuu,u]- (2'15)

One easily verifies that if [20]

1
So = 5/d4a:Ruupa(77)M“"pa(77uu,guu,U)+/d4l‘a”au +2b/d4$ -1, (2.16)

then 5‘27%\ g has just the desired form, while Ss does not affect the Euler-Lagrange
equations. While Kraichnan’s derivation has the advantage of not needing the phys-
ical answer beforehand, it does require clever mathematical use of the flat space-
time Riemann tensor to obtain superpotential-like terms. This quantity tends to
be overlooked because it vanishes, but it is useful because its variation does not.
The boundary and 4-volume terms are novel and useful, though not essential. The
boundary term is necessary for showing that Rosen’s action (with no second deriva-
tives of the dynamical variables) [6] can be derived via universal coupling in flat
spacetime, not merely postulated.?> The 4-volume term can cancel the Oth order
term in the action, so that the action vanishes when there is no gravitational field.

Thus,

1
S = Silgu,u] + §/d4me,pa(n)M“"”” + 2b/d4x\/—n—l— /d4x3ua”. (2.17)

3Al‘chough such a derivation was never presented by Rosen, to our knowledge, he did indicate
that such a derivation would be desirable and intended to complete the project himself [6] (p. 153).
As he notes, deriving the theory from flat spacetime seems more appealing than merely grafting
the flat metric onto general relativity after the fact.

13



The boundary term is at our disposal. o is a weight 1 vector density, because we
require that S be a scalar. For Si, we choose the Hilbert action for general relativity

plus minimally coupled matter and a cosmological constant:

1= 167TG

/ d*z/—gR(g / d*zv/=g + Smat g, u- (2.18)
As is well-known, the Hilbert action is the simplest (scalar) action that can be con-
structed using only the metric tensor. If the gravitational field vanishes everywhere,

then the gravitational action ought to vanish also, so we set b = A/167G.

Rosen [6] noted that

Rﬂu(g) = Ruu(n) + Euu(g: 0), (2.19)

where E,, (g, 0) is identical in form to the Ricci tensor for g, , but with 7-covariant

derivatives 9, replacing partial derivatives. Thus one finds that

Eu(g,0) = 947, — A7, + A7 A7, — AJLAZ, (2.20)
where the field strength tensor Aﬁa is defined by
={8,}-T%4,. (2.21)

Here {ga} and I’ga are the Christoffel symbols for g,, and 7,,, respectively. Using
(2.19) in the Hilbert term and using the product rule on the second derivatives in
E (g, 9) leaves first derivatives of the gravitational field and a boundary term. The

boundary term is canceled if one chooses
16rGat = — AL g% + A7 gh, (2.22)

where g#? is the contravariant metric density of weight 1. Using another of Rosen’s
results concerning the bimetric formalism [6], one readily expresses the g-covariant
derivative of a tensor density in terms of the n-covariant derivative and terms in-

volving Af, in place of the partial derivative and terms involving {f}. A (1,1)
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tensor density of weight w is illustrative. For such a field, the n-covariant derivative

222] is
a“d)g = d)g’ll +¢g g/,t - d)grgu - w(:bg g;u (223)

and the g-covariant derivative V,¢3 is analogous, with connection {7,}. Recalling

equation (2.21), one writes Rosen’s result as
V,ud5 = 0udg + 95AG, — 95 AZ, — wPzAZ,. (2.24)
The action to date takes the form

1 1 vpo
§= W/d4xg“”Rup(n) + §/d4xRqua(77)M“ # (s> o> w)

1
e / dzg (AT A% — AT AC) + Smarlgun ], (2.25)

One can make R, ,,(n) disappear from S by setting
MHVPT = 9 gkl |87 G. (2.26)

The contravariant weight 1 metric density g#? distinguishes itself here. This quan-
tity has often appeared to be the preferred variable, not only in flat spacetime forms
of general relativity (e.g., [11,17]), but also in other contexts. The DeDonder gauge
condition, also known as the harmonic coordinate condition, prefers this variable
[223, 224]; the desirability of this gauge was strongly urged by Fock. More recently,
A. Anderson and J. York have found the “slicing density” [225], a weight —1 den-
sitized version of the ADM lapse, to be quite useful. The slicing density is simply
related to the 0-0 component of g*”, as York has noted. One reason that we do not
use gh¥ (or rather, w) as the gravitational potential is to make clear that

no preference for this variable is built in by hand.

The total action is therefore Rosen’s tensorial one with no second derivatives:

1
S = e /d‘*wg"”(AZaAﬁa — A7, A%,) + Smat[guv, ul- (2.27)
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This action should be compared to those available in geometrical general relativity,
where one chooses either to include second derivatives of the dynamical variables, or
to give up the scalar character of the action, at least if the metric is the dynamical
variable .

Babak and Grishchuk [93] have proposed a different principle for specifying
MHYP? wwith different results. Their proposal gives an attractive form to the metric
stress tensor, wiz., a tensorial relative of the Landau-Lifshitz pseudotensor [226],
which is the only symmetric pseudotensor with no second derivatives. This tensor
had been previously obtained in a conservation law for bimetric general relativity
by Rosen [6], but that derivation did not involve Noether’s theorem [227]. (Another
desirable stress tensor has been discussed by Petrov and Katz recently [94, 95].)

There are two key ingredients in the derivation of generally covariant theories
in this way, apart from the use of an action principle. One is universal coupling,
which says that the source for the field equations must be the total stress-energy ten-
sor. The other key ingredient can be either free field gauge invariance of the assumed
form or gravitation-induced conservation of energy and momentum. Gauge invari-
ance might be motivated, if in no other way, by a desire for Lorentz invariance and
positive energy. However, as unimodular general relativity and the slightly bimetric
theories with dynamical \/L:—f’ below show, this specific form of gauge invariance is
more restrictive than necessary for positive energy and Lorentz invariance. This fact
follows from the fact that slightly bimetric theories behave like scalar-tensor theo-
ries (as will be shown below), and at least some of the latter have positive energy
[228]. This condition is therefore weaker than that required by Fierz [4] and van
Nieuwenhuizen [75], who were interested in good behavior of free fields. This fact
has also been pointed out by G. Cavalleri and G. Spinelli [80]. However, below it
will appear that the full gauge invariance might be needed if the special relativistic

causal structure is to be upheld.
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2.7 Gauge Invariance and Gauge Fixing

It is instructive to determine what has become of the original free field gauge in-

variance. The scalar character of the action entails

6S 6S 6S
) = [ da][——£egu + —£ — )£ + hH ] = 2.2
Scoord / x[(sg;w &9u + Su eu + (57];w ‘g) &NMu + ,u] 0 ( 8)

under a coordinate transformation, where the form of h*,, is not important. (The
same will hold for the other boundary terms below.) But in a flat spacetime theory,
invariance under coordinate transformations is trivial. A gauge transformation,
on the other hand, would be a transformation that changes the action only by
a boundary term, but is not a coordinate transformation. Using the coordinate
transformation formula and noting that the terms involving the absolute objects
do not contribute more than a divergence, one easily verifies that a (pure) gauge
transformation is given by dgi” = £ g"", du = Leu, o9 = 0, with {# arbitrary.
(See also ([89]), but we do not impose any gauge condition a priori as Logunov et
al. do. If one does impose a gauge condition, it seems best to implement it in the

action principle.) Thus,

S .
5Sgauge = 0Scoord — /d4LL’[( n ‘g)£§7hu/ + Zuau]
v

)

dS .

0 [ o200l + ) (2.29)
Ny
Recalling from (2.13) above that
dS

9,—lg=0 2.30
Hdnuu |g ( )

identically, one sees that §Sgquge is indeed merely a boundary term, so our guessed
form of the gauge invariance is verified. In this case, gauge transformations change
(bosonic) dynamical fields in the same way that coordinate transformations do, but

leave the nondynamical object 7., unchanged. If one performs simultaneously a

17



gauge transformation and a coordinate transformation in the ‘opposite direction,’
then the dynamical variables are unchanged, but the absolute object 7,, is altered.

Given that coordinate-independent localization of gravitational energy and
momentum is one of the attractive features of the bimetric approach to general
relativity, it must be emphasized that the tensorial character has not removed the
original arbitrariness, but merely transformed it into the gauge-variance of the grav-
itational stress-energy tensor [83,85]. However, several authors, including Rosen
and Papapetrou, have suggested that the bimetric approach ought to be gauge-
fixed [6,11,108]. Still, such gauge fixing might not lead to complete localization
[83,85,130,131]. Full discussion of the gauge freedom, however, will require con-
sideration of the meaning of the formalism and the relation between the null cone
structures of the two metrics, an important but largely neglected issue that will be

taken up below.
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Chapter 3

A Preferred Foliation in Flat

Spacetime Gravitation?

3.1 Introduction

As we have seen, general relativity can be formally derived as a flat spacetime
theory. Here we introduce on an n-dimensional space a preferred temporal foliation
0,0 along side the n-dimensional flat metric 7,,(z) (in arbitrary coordinates) as
nondynamical objects. While the dimension n is not specified, we expect that n = 4
with metric signature —+-++ and n = 5 with signature —+-++— [132-149] will be of
the greatest interest. (If n = 4, then Greek indices run from 0 to 3 and § = z° = ¢ for
some preferred inertial frame in the natural coordinates. If n = 5, then Greek indices
run over 0,1,2,3,5 with § = z° = 7 in natural coordinates, 7 being an invariant
supertime.) The foliation 0,6 obeys (0,0)n** 0,6 = —1 and 0, 0,0 = 0. We define the
unit normal covector by n, = —8,6. Its n-raised counterpart n” = n,n*" is future-
pointing [151]. The metric and foliation induce a projection tensor h,, = 7y, +nun,.
If we agree to refer to 6 as “time” (perhaps meaning 7) and the remaining dimensions

as “space” (perhaps having signature — + ++) for convenience, then the projection
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tensor serves as the “spatial” metric. The symmetric gravitational potential is y*¥
(of density weight 0), and bosonic matter fields are denoted by u (with all indices
suppressed). One could take v to be either a contravariant density of any weight
(except %) or a covariant density of any weight (except —3). (These weights are
special because the resulting inverse metric tensor density or metric tensor density,
respectively, has a determinant of —1, so there is one fewer independent component.
Thus, invertibility issues arise.) In the massless case, this choice makes no difference.
If it were desired to add a gauge-symmetry-breaking mass term, the choice of index

position and weight would affect the results.

3.2 Spatial Gauge Invariance and Universal Momentum
Coupling

This derivation is an improved version of previous work of ours on this subject
[145], based on the derivation of general relativity given above. Unlike our previous
parametrized derivation [145], this one does not assume that n,n,y*” = 0, so one
can retain the lapse function N of an ADM split [151] as a nontrivial quantity, as
opposed to requiring N = 1 a priori and thus not varying it. The assumption of
gauge invariance requires that the field be massless, except for the time-time part
n,ny,yH”, which can be massive. One can show this fact directly by writing the most
general algebraic quantity that is quadratic in the gravitational potentials. (As in
the case without a preferred foliation [260], there is no mathematical objection to
adding a mass term that breaks the gauge invariance. A possible physical difficulty
with negative energy will be noted below. Including both mass terms would imply
that the time-time part of the field had a different rest mass from the rest of the
field.)

Let Sy be the action for a free gravitational field (in the sense that the
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gravitational coupling constant vanishes). We require that Sy change only by a

boundary term under the infinitesimal gauge transformation
Y = A+ 047 4 07EH, (3.1)

£” being a vector field obeying {"n, = 0.
For any Sy invariant in this sense under (3.1), the free field equations’ diver-
gence is purely temporal, for its spatial projection vanishes, as we now show. The

action changes by

o5y = [l L+ 0e) + en) = [ dapt. (3:2)
The forms of the boundary terms e#,, and f#,, are not needed. Integrating by
parts, letting £# have compact support to annihilate the boundary terms (as we
shall do throughout the paper), and recalling the purely spatial character of £, we

obtain the identity

5S;

v gp
Rt

= 0. (3.3)

An expression for the total energy-momentum tensor can be derived from
S using the metric recipe [1,20,93] in the following way, making allowances for
the presence of another absolute object. The action depends on the flat metric
Nuv, the foliation n,, the gravitational potential v#¥, and bosonic matter fields u,
the last representing any number of tensor densities of arbitrary weights and index
positions. Under an arbitrary infinitesimal coordinate transformation described by

a vector field ¥*, the action changes by the amount

S 6S S
0S = /d" 5 W.fd,’y"”—i-(s—,f,/,u—l—(s #V£¢77“”+5—£¢n“+g ) (34)

where £ is the Lie derivative with respect to ¥* and g#,, is another boundary
term of no present interest. But S is a scalar, so S = 0. Letting the matter and

gravitational field equations hold gives

8S . 4S
55 = / (G o + 5o Eymi) =0, (3.5)
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or, upon rewriting the Lie derivatives in terms of the covariant derivative compatible

with the flat metric [152],

05 1n 0 05 = 0. (3.6)

7 _ Bt
vy =
onkv 2 ony

— %n,,nuaa‘;—i as the energy-momentum tensor. Its asymmetry

One can identify af’f,,

reflects the preferred character of n,. If we take the spatial projection of this

v _4S
a S -

quantity, we obtain the tensor of momentum density and its flux h
For the full theory, we postulate that the spatial projection of the Euler-
Lagrange equations should be just the spatial projection of the free field equations

for Sy augmented by the momentum tensor (including gravitational momentum):

v S _ .08 ., 38

a (57#“’ e 6»‘}//1” @ 57}:‘“’ ’

(3.7)

where A is a coupling constant. If n = 4 and the theory in question is general
relativity, then A = —+/327G; for other theories, the Newtonian limit would need
consideration. If n = 5, then A has different dimensions from Newton’s constant G,
with an additional length entering [144]. Horwitz et al. have previously noted the
entrance of an additional length in their parametrized electromagnetism [141].

One is free to make a change of variables in S from the flat metric ** and

gravitational potential v#¥ to n*¥ and g*¥, where
g/-”/ = 77/“/ + A'Yl“/- (38)

Equating coefficients of the variations gives

08 05 05
é‘nuy |fy - Jnuy ‘g + 59#” (39)
and
08 08
= ; 1
S = o (3.10)
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Putting these two results together gives

05 08 08

)\577/11/ h/ = )\5771111 |g + 57111/ :

(3.11)

Equation (3.11) splits the energy-momentum tensor into one piece that vanishes
when the gravitational Euler-Lagrange equations hold and one piece that does not.
Using this result in (3.7) gives

8 |\ _ v 95

)\hy |g - ad'_yl“/’

(o7 677"“}

(3.12)

which says that the spatial projection of the free field Euler-Lagrange derivative
must equal (up to a constant factor) that part of the momentum tensor that does

not vanish when the gravitational field equations hold. Recalling (3.3), one derives

éS
dnpkv

Rk 22 |g =, (3.13)

which says that the part of the momentum tensor not proportional to the gravita-
tional field equations has identically vanishing divergence. This result concerning
the splitting of the momentum tensor will be used in considering the gauge trans-
formations of the full theory. It also ensures that the gravitational field equations
alone entail conservation of momentum, without any separate postulation of the
matter equations, though the conservation of energy still depends upon the matter
field equations.

Expanding the projection tensor gives

lg + n"nyd* 05

6S
L
0 P

dnpe

g =0. (3.14)

Let us divide the action into 3 pieces: a piece S; independent of #*¥ (the other
variable being g#”, not v#"), a piece Sz that contributes a symmetric curl (i.e., a
quantity with identically vanishing divergence on either index) to the stress tensor,

and another piece S3. We therefore write
S:Sl[g,u,n]-l-sz[g,u,n,n] +53[9,U:77an]a (315)
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suppressing all indices in the arguments. Given the assumed property of Sz, one

can write

e 557,5633 g = %apag( Mello] | pleellonly g /= (3.16)

[152] (pp. 89, 429), where M#P?" is a tensor density of weight 1 and b is a constant.

This result follows from the converse of Poincaré’s lemma in flat spacetime. One

easily verifies that if [20]

1

S2 = 5/danl-Ll/PO'(n)Mﬂupa(g?uanvn) +/dn$/¥uw +2b/dn‘r -n (317>

then 5‘577%2,, |g has just the desired form, while Se does not affect the Euler-Lagrange
equations because its value is 0. X* is a weight 1 vector density, because we require
that S be a scalar. For convenience we deposit all boundary terms into Sa.

One can also show that if

S3 = —2/d”xaﬂtpaﬂ(g,u,n,n)naﬁpn”, (3.18)

then (3.14) is satisfied. Now both terms of that equation are used, not just one as
for Sy. Here ¥*8(g,u,n,n) is any (2,0) weight 1 tensor density constructed from all

the fields, dynamical and nondynamical. It turns out that

0S3
onptv

= —n”nanwagapzﬁaﬂ + 2nan(,,8u)3ﬂ¢°‘ﬂ. (3.19)
Combining these 3 terms gives the total action
1
S = Sl [gl“/’ u, nu] + 5 /danul/pa' (n)M,qucr(g’ u, 1, n) + 2b/ dnw V |7’| +
-2 / dn$8ﬂ¢aﬁ (ga u, 1, n)naalinu + /an:X”(ga u, 1, n)au . (320)

One sees that S; can contain mass and self-interaction terms for the time-time
component of the gravitational potential, using /—g to the first power and any

suitable function of g"“n,n, + 1. With this action, one could write down a number
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of theories, including (of course) general relativity. One would still need to verify
that any given theory made sense theoretically (such as by having adequate positive
energy properties) and empirically, for the universal coupling principle does not
address such questions fully.

It is instructive to determine what has become of the original free field gauge
invariance. The scalar character of the action S[g, u,7, n] implies that the variation

of the action under a coordinate transformations vanishes:

08 08 08
08 = /dnw(éguu Lyg™ + E"Ed’u + Snhv lg£yn™” + h*,u) = 0. (3:21)

But as we saw above in a flat spacetime theory, invariance under coordinate trans-
formations is trivial, so a gauge transformation must differ somehow. Using the
coordinate transformation formula and noting that the terms involving the absolute
objects do not contribute more than a divergence, one easily verifies that a (pure)
gauge transformation is given by dgi” = L g"”, du = Leu, dn* = 0, on, = 0,
where {#n, = 0, but £ is otherwise arbitrary. In showing that the term for the flat

metric does not contribute nontrivially, one must recall from (3.13) above that

éS
onkv

hLOR 22 |g =0 (3.22)

identically. The term for the foliation does not contribute at all because £¢n, =0
on account of the constancy of n, and the assumption that {#n, = 0. Thus, gauge
transformations change (bosonic) dynamical fields in the same way that ‘spatial’
coordinate transformations do, but leave the nondynamical objects unchanged.
Taking the independent variables to be those in S[g"”,u,n*”,n,], one can
easily derive the Bianchi identities. Letting the Euler-Lagrange equations hold,
one finds an additional equation that holds as a consequence. This phenomenon is
not unprecedented: in unimodular general relativity (which also has a nondynamical
object present, namely, a volume element), this additional equation restores the trace

of the Einstein equations (up to an arbitrary cosmological constant) that failed to

25



appear in the Euler-Lagrange equations [239]. So a constraint not admitted through
the front door might still reenter through the back door, if this extra equation is
nontrivial.

From a Hamiltonian point of view, one says that dynamical preservation of
the momentum constraints (roughly, the time-space Einstein equations) implies the
Hamiltonian constraint (roughly, the time-time component of the Einstein equa-
tions), up to an arbitrary constant, in the unimodular theory. On the other hand,
we find that in the theory obtained from the Hamiltonian for general relativity
but with N = 1 a priori (so the Hamiltonian constraint does not follow from the
variation of the Hamiltonian), no further constraint, including any portion of the
Hamiltonian constraint, is required to preserve the momentum constraints. At least
that is the case in the vacuum theory; we expect that minimally coupled matter
would behave similarly. (Also see ([153]).) But it would appear that this theory
would have trouble with the negative energy degree of freedom constituted by the
determinant of the curved spatial metric, so it does not seem physically viable.

We return now to the Lagrangian formulation for theories with a flat back-
ground metric and a preferred foliation. Making a coordinate transformation, letting
the matter and gravitational field equations hold, discarding the boundary terms,

and using the arbitrariness of the coordinate transformation yields the relation

gudS 1 .38

9 anuBs =
dnpHv 2 " ony,

0. (3.23)

On account of (3.13), the spatial projection of this equation already holds identically.

The remainder, the temporal component, takes the form

08 08

When the action is expanded as using S = S1 + S2 + Ss, as in (3.15), several terms

vanish, namely, 667;Sul” lg, O* 651;‘?42” lg, and gnii. After showing that gniﬁ = 20Fn,059%%P,

one finds that the contributions from S5 cancel each other. The final result takes
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the rather simple form

0 i5

= 0. 2
Ozt ony, 0 (3.25)

The physical meaning of this equation will depend on the precise form of 5.

3.3 Interpretation of the — + + + — Formalism

In 5-dimensional form this work suggests itself as a route to a theory of “parametrized”
gravitation, the extra dimension being the invariant supertime 7. If the extra
time dimension is to be interesting, it is necessary that physical fields be per-
mitted to depend on 7 [141]. But then one faces the question of relating a 5-
dimensional description to the observed 4 dimensions. One common approach in
an electromagnetic context has been “concatenation,” in which the 7-dependent
vector potential is integrated over all 7 (from eternity past to eternity future) to
give standard Maxwell potentials, the latter supposedly being tied to experiments
(133,134,136, 138,139,141, 142]. We have previously argued that concatenation is
unsatisfactory [144], pace ([141]). One reason is that it makes essential use of the
linearity of the field equations, but this linearity does not hold generically; in par-
ticular, it is violated by any reasonable theory of gravity [144]. It is doubtful that
any variant of concatenation of a nonlinear parametrized theory would give a plau-
sible nonlinear nonparametrized theory. Even Yang-Mills theories, though formally
similar to electromagnetism, cannot be concatenated. Another reason is that ob-
servations are said to be influenced by all values of 7, including future ones, yet 7
is thought to be related to the process/flowing aspect of time [141]. The latter fact
implies that experiments performed by real people in ordinary life ought to occur
at some definite moment (or finite interval) of 7. So concatenation introduces the
paradox of backwards causation in 7 [144]. It also introduces a curious distinction

between measurement and evolution, like certain versions of quantum mechanics,
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rather than regarding measurement as a specific kind of evolution.

Motivated by these criticisms, we previously suggested that omitting concate-
nation and interpreting all experiences as involving a convective derivative with re-
spect to 7 along a worldline might yield an adequate interpretation of the parametrized
formalism [144]. However, the non-concatenated view has a drawback of its own, for
such a theory generically agrees with standard well-confirmed 4-dimensional elec-
tromagnetism (e.g., light speed measurements) only if the dependence on 7 is quite
weak ! This limit is similar to the zero mode limit considered by Frastai and Hor-
witz [143], who have been aware of some of the difficulties with concatenation.?
They observed that the zero mode limit is a sufficient condition for agreement of
the parametrized theory with experiment. But our suggestion is that approaching
the zero mode limit is a mecessary condition. For example, the lack of observed
dispersion in light propagation indicates that the 7 derivatives are much smaller
than the ¢ derivatives in such contexts. If 7 were to be associated with temporal
becoming only, with no physical content (cf. ([147]), then perhaps a more attractive
and economical solution exists in the n = 4 context, as we will explain below.

A recent development in membrane theory might possibly be of interest here.
Recently the somewhat analogous question “Can there be ‘large’ extra dimensions?”
has received a surprising positive answer. The Randall-Sundrum scenario [150] ap-
pears to permit higher-dimensional theories to have large extra dimensions while
giving empirically reasonable results. Perhaps one can imagine a parametrized ana-
log of this move.

In conclusion, it is clear that the parametrized formalism still faces funda-

mental interpretive questions.

!We thank Profs. R. Matzner and M. Choptuik for making this point and Prof. D. Salisbury
for related thoughts.
*We thank Prof. Horwitz for a discussion of this matter.
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3.4 Interpretation of the — + ++ Formalism

In a 4-dimensional context this formalism corresponds to the existence of a preferred
reference frame. It is generally assumed that no such thing exists, though the subject
has received some attention [154-156], especially from W.-T. Ni [244] and H. B.
Nielsen and collaborators [157-159]. It is also striking that Dirac, on seeing how the
Hamiltonian formalism for general relativity could be simplified (in the simplification
of the primary constraints to the vanishing of four momenta, which permits one to
eliminate the conjugate parts of the metric from the formalism) by the addition of
a non-Lorentz-invariant divergence to the Lagrangian density, could write, “This is
a substantial simplification, but it can be obtained only at the expense of giving up
four-dimensional symmetry. I am inclined to believe from this that four-dimensional
symmetry is not a fundamental property of the physical world.” [160] (emphasis in
the original) This remark is especially striking given that the resulting Lagrangian
density was still within a divergence of Lorentz invariance, so the violation does not
even appear in the Euler-Lagrange equations.

While it might complicate canonical formalisms, the presumed nonexistence
of a preferred frame is in many important respects quite helpful, because of the
resulting tight restrictions on the number of theories that can be conceived. With
a very few possible exceptions, all known physical processes are consistent with the
orthodox relativistic view that there is no preferred foliation (and that backwards-
in-time causation does not occur). In view of the apparently limited gains and
substantial losses realized by giving up Lorentz invariance, one might wonder what
is the purpose of considering a preferred foliation in physics. It would seem that a
rather good argument is needed to justify such work. We now consider whether such
an argument is available. We warn the reader that the remainder of this chapter
will be rather philosophical.

One apparent difficulty for standard Lorentz-invariant physics is the remark-
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able behavior seen in certain quantum mechanical experiments, such as by Aspect
et al., in which 2 particles in an entangled superposed state seem to be able to ‘com-
municate’ superluminally. Much of the physics community seems to believe that
locality is doomed, and has given up on it, at least when its mind is on quantum
mechanics. However, this would be a tremendous loss, and so it ought not to be
accepted unnecessarily [161].

What can be said in defense of locality? We do not claim to give a compre-
hensive review, but only provide two suggestions. Evidently the detector efficiency
loophole is still open [162,163]. Szab6 and Fine’s model even works for experiments
testing the GHZ scenario [162], a more recent and perhaps more potent threat to
local hidden variables than Bell’s theorem. Detector efficiencies are still too low
to close this loophole [163]. Other sources of deviation from the ideal experiment
might also be considered [164]. One also knows that the experiments violating the
Bell inequalities are compatible with the orthodox relativity if one is prepared to
embrace “superdeterminism” [165—-168], which violates the inequalities by introduc-
ing correlations between the hidden variables and the detector settings. By positing
a common cause for these correlations, one can preserve orthodox relativity, the
Aspect experiments notwithstanding. Because the GHZ theorem involves similar
locality assumptions to those involved in Bell’s theorem [169], we suspect that it
can be subverted analogously. However, this view’s demanding philosophical un-
derpinnings, such as its denial of (libertarian) free will®> and evident need for an
all-determining Agent to correlate the initial conditions of the world, might limit

its appeal (see, e.g., Bell’s attitude [170] (pp. 100-103, 110, 154)).* The detector

3Free will faces a potent long-standing conceptual objection that an action that isn’t fully caused
is to that extent merely random and thus un-free [171-173], so the denial of free will might be
inevitable on other grounds. If so, then the entrance fee for superdeterminism will decrease.

“On the other hand, the 3 major near-Eastern monotheistic traditions all have (or had) strands
that affirm theological determinism: Pharisaic Judaism [174], Reformed/Calvinist Christianity, and
Islam. That there might be a natural affinity here is suggested by the language (e.g., ([166]) about
events being “already ‘written in a book’.” The resemblance to Psalm 139:16 (NASB) cannot be
accidental:
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efficiency loophole has also seemed unappealing to some, such as Bell [170] (p. 109).
However, it is at least worthwhile to show that these strategies exist, because they
show that even in this peculiar aspect of quantum mechanics, nothing is presently
known with certainty that requires a preferred frame.

Another trouble spot for the usual relativistic view of time is quantum grav-
ity’s “problem of time” [175], which consists in the prima facie disappearance of
time from quantum versions of general relativity. However, it seems that the prob-
lem lies not in the lack of a particular preferred frame, a feature shared with special
relativity—the success of standard field theory in other contexts suggests that this
feature is not at fault-but in the lack of a preferred class of inertial frames peculiar
to the form of gauge invariance of general relativity. Because plausibly the ‘fault’
lies in how general relativity differs from special relativity (general covariance, i.e.,
lack of nondynamical objects), so one needn’t add structures unknown to special rel-
ativity to address the issue. One expects that the problem of time would disappear
if one suitably introduced a nondynamical background metric into the equations
of motion. Adding a small rest mass to the theory would be an obvious way to
implement this procedure (and thereby obtain a nonvanishing Hamiltonian), if the
traditional negative-energy objection to massive gravity [234] (appendix on “ghost”
theories) can be overcome. M. Visser has recently suggested that this worry has
been somewhat overstated [235]. One might also prefer that the curved metric re-
spect the flat background’s null cone structure, a nontrivial condition that, to our
knowledge, has not been successfully imposed in an attractive way.

Recently another suggested habitat for the violation of Lorentz invariance

has appeared. T. Jacobson and D. Mattingly have suggested that there is “reason

Thine eyes have seen my unformed substance;
And in Thy book they were all written,

The days that were ordained for me,

When as yet there was not one of them.
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to doubt exact Lorentz invariance: it leads to divergences in quantum field theory
associated with states of arbitrarily high energy and momentum. This problem can
be cured with a short distance cutoff which, however, breaks Lorentz invariance”
[176]. They then introduce an “aether” consisting of a dynamical unit timelike
vector (or covector) field. Their aether, being dynamical and failing in general to
define a preferred foliation (because the covector typically is not a gradient), differs
essentially from what we consider. Their divergence argument might give a good
reason to consider a preferred foliation, such as we have considered here. But it
seems premature to put too much reliance on this proposal.

If these areas of physics do not provide sufficiently strong evidence for the
existence of an observable preferred foliation in physics, then one might ask if there
are extra-physical reasons for considering a preferred temporal foliation in physics.
It so happens that in the 20th century’s central debate in the philosophy of time
[177], one of the two views, if established, would show that a preferred foliation
exists at the most fundamental level. (Below we will find authors arguing that if a
preferred foliation exists, then presumably it manifests itself in physics.) This is the
debate about the objectivity or otherwise of temporal becoming, that is, the ‘low’
of time [178,179]. Some physicists and philosophers, based to a large degree on the
influence of relativity [179], incline toward the “block universe” view that regards
all moments of time as ultimately equal in status; the notions of past, present, and
future are regarded as illusory or mind-dependent. If the block view (also known
as “stasis,” “B-theory,” or “tenseless”) is correct, then all facts can in principle
be displayed on a (single) spacetime diagram.® On the other hand, if a spacetime
diagram (perhaps augmented by timeless mathematical and logical truths) cannot

display all facts, because some facts have temporal properties inconsistent with

SIf one is reluctant to make statements such as “2 + 2 = 4 in 1980,” one can admit a class of
timeless truths also, but that seems unnecessary [180]. Facts such as “I am John Perry” [181], if
they are nontrivial, might not fit on a spacetime diagram, but since their temporal properties are
not the problem, we can set them aside.
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such a representation, then the “process” (“A-theory,” “tensed”) view that affirms
objective becoming will be established.
The process view of time receives some unexpected assistance from stasis

advocate D. H. Mellor, who wrote [182] (pp. 4-5):

The tenseless camp often offers only weak inducements to join it: the
relative simplicity of tenseless logic, for example, or its consonance with
relativity’s unification of space and time. But tenseless time needs a
stronger sales pitch than that. Tense is so striking an aspect of reality
that only the most compelling argument justifies denying it: namely, that

the tensed view of time is self-contradictory and so cannot be true.”

Mellor claims to find this needed contradiction in McTaggart’s paradox, but this
claim is not generally accepted and indeed appears to be false [183]. If McTaggart’s
paradox fails to demonstrate a contradiction, but Mellor’s judgement is otherwise
to be trusted, then the process view of time wins already. But some will require a
more compelling case, which we believe can be made.

There is an argument [184-186] that appears to disprove the block view by
showing that it cannot accommodate certain facts [189,190]. In order to make
one’s appointments on time, one frequently needs to know what time it is now. For
example, if one wants to pay taxes to the American government in a timely way,
one might want to know that “It is now April 2.” Otherwise, one might file many
weeks or even years late, because one just would not know when to file [181]. This
sort of fact, along with more general facts about what is occurring now, cannot be
represented tenselessly [191,192], such as on a spacetime diagram, or known by a
timeless being (even a divine one, as Kretzmann had in mind) [193], i.e., one lacking
temporal location and duration. Let us see why this is the case. On such a diagram,
one might make a mark at “April 2” on the time axis, but this mark will soon be

outdated, so it will no longer represent “now.” Trying to keep the “now” mark
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current would require continually erasing and drawing on the spacetime diagram,
which is of course illegal, for one then has a succession of diagrams (a movie), not
a single one. Neither will the fact “It is April 2 on April 2” be of any use, both
because it is a tautology [177] and thus cannot inspire any action at all, and because
it is always true [194] and thus cannot motivate action at any special moment. If
one finds the use of a date label such as April 2 troubling (as if a substantivalist
view of time might be to blame), one could substitute some ordinary occurrence: “A
rooster is crowing now” would serve, provided that the rooster only crows shortly
before tax day. So “now” points to one or more facts that the block universe cannot

accommodate. We must therefore reject the following claim by H. Reichenbach [195]

(pp. 16,17):

There is no other way to solve the problem of time than the way through
physics ...If time is objective the physicist must have discovered that
fact, if [sic] there is Becoming the physicist must know it ...It is a
hopeless enterprise to search for the nature of time without studying
physics. If there is a solution to the philosophical problem of time, it is

written down in the equations of mathematical physics.

We must further differ from Reichenbach, who asserted that determinism would
exclude becoming [195], for irreducibly tensed facts provide a ground for an objective
flow of time, even if determinism is true. (Interestingly, Reichenbach concluded that
physics in fact does ground time flow.) Thus, we conclude that a preferred foliation
generated by the “moving now” exists.

It seems natural to assume that if a preferred foliation exists, it ought to

manifest itself in physics fairly readily.® Such an intuition indicates that Reichen-

5In the positivist era of the 20th century, the question in the title of this subsection might have
received the answer “of course,” because the verificationist criterion for meaning would have said
that it was meaningless to talk about entities that are unobservable in principle. But such replies
need not detain us today.
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bach’s claim, though too strong, was not wholly misguided. In contemplating the

notion of “beables” for quantum field theory, J. S. Bell wrote:

As with relativity before Einstein, there is then a preferred frame in the
formulation of the theory ...but it is experimentally indistinguishable.

It seems an eccentric way to make a world.

[170] (p. 180, ellipses in the original; see also p. 155). (This seems to have been Bell’s
a priori judgement of the idea. While he thought it somewhat odd, he nevertheless
thought it worthwhile to consider as “the cheapest resolution” of what he saw a
posteriori to be a real difficulty posed by the Aspect experiments [168].) Philosopher
T. Maudlin, in attempting to make sense of quantum mechanics and reconcile it to
relativity, suggests that backwards causation or a preferred reference frame might
be the least unacceptable ways of doing so [197]. Concerning the possibility of a
preferred frame in making sense of quantum mechanics, Maudlin, perhaps having

in view Einstein’s line that God is subtle but not malicious, writes:

One way or another, God has played us a nasty trick. The voice of Nature
has always been faint, but in this case it speaks in riddles and mumbles
as well. Quantum theory and Relativity seem not to directly contradict
each other, but neither can they easily be reconciled. Something has to
give: either Relativity or some foundational element of our world-picture
must be modified . .. the real challenge falls to the theologians of physics,
who must justify the ways of a deity who is, if not evil, at least extremely

mischievous.[197] (p. 242)

W. L. Craig has also suggested that “the deep-seated conviction that comes to
expression in Einstein’s aphorism” is “[p|robably at the root of many physicists’
rejection of a neo-Lorentzian approach to relativity theory” [187] (p. 184).

So if one is persuaded that the flow of time is objective and that a preferred
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foliation ought to show itself readily in physics, then one might consider the formal-
ism above for gravitation with n = 4, or perhaps some other way of including the
foliation in physics. D. Bohm’s nonlocal deterministic version of quantum mechan-
ics is perhaps presently the most vibrant work that assumes a preferred foliation of
4-dimensional spacetime; the theory is presently being applied to quantum gravity
and quantum cosmology [199,200]. (But its nonlocality is not easy to embrace,
even if one can tolerate a preferred frame.) However, as Butterfield and Isham note,
“[m]ost general relativists feel [that] this response is too radical to countenance:
they regard foliation independence as an undeniable insight of relativity” [201].7
We suggest that the following explanatory strategy might relieve this tension
between the philosophical support for objective becoming and the dearth of physical
support for a preferred foliation, at least if theism is plausible. That is, let us take
Einstein’s remark about God as a theological truth claim and evaluate it.®
Maudlin has framed the issue as a problem of evil. The “theologians of
physics” might therefore naturally review the usual types of answers to problems
of evil, and hit upon a greater-good defense. We suggest the following as one such
attempt: Rather than regarding the inclusion of a physically invisible (or nearly
so) preferred foliation as an “eccentric” [170] or “if not evil, at least extremely mis-
chievous” [197] way to make a world, one might suggest that the Maker rendered the
preferred foliation physically invisible as an act of benevolence to physicists. To put
it more plainly, the world was made Lorentz-invariant to make physics easier. As we
noted above, the requirement of Lorentz invariance so restricts the possible theories
that the principle of Lorentz invariance answers a vast number of questions that
would otherwise require laborious experimentation to settle. Writing down, e.g., all

possible terms in linearized gravity, first given Lorentz invariance, and then given a

"We thank Prof. C. Rovelli for stimulating correspondence on this issue.

8Einstein’s “God” was that of Spinoza [198], so we are perhaps taking Einstein more literally
than he intended. However, theism is a common idea whose explanatory powers are widely thought
to be worth discussing, so we proceed.
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preferred foliation, would give one a clear sense of the economy afforded by Lorentz
invariance. (Perhaps other symmetries are amenable to a similar interpretation.)
We will content ourselves with the simpler scalar and vector field cases. Viewed
from a spacetime perspective, rendering the foliation invisible amounts to keeping
the foliation from appearing nontrivially in the action, with only the flat metric
present. Viewed from the perspective of space-at-a-time, it means that the foliation
only appears in concert with the spatial metric, in such a way that, along with
a fundamental constant with dimensions of velocity, neither the foliation nor the
spatial metric appears alone, but only the two combined into an effective spacetime
metric.

We will now write down all possible terms that could appear in the La-
grangian density for a real scalar field ¢, restricting the equations of motion to be
linear and to have (at most) second derivatives. The existence of fundamental con-
stants with dimensions of velocity (c¢) and angular momentum (%) will be assumed,
although we choose units in which these constants have unit value. Because the
equations of motion, which are perhaps more important than the Lagrangian den-
sity, are unchanged by the addition of a divergence, we will regard terms that are
equal up to a divergence as equivalent to avoid overcounting, and will drop terms
that are themselves divergences. For brevity, we use a vertical bar to denote the flat
metric’s covariant derivative. We also use the overdot notation to indicate the time
derivative n#d,. The possible terms lacking n, are ¢, ”¢|/‘ and ¢?. The first term
is so basic that we will assume that it must always be present, even if the foliation
appears in the theory. The values of all other coefficients are relative to this one,
which depends on the normalization only. (Our results thus are not inflated, but
rather perhaps a bit pessimistic.) If n, is also present, then d)z is also available.
Thus there are 2 unspecified constants in the case with a preferred foliation observ-

able, but there is only 1 with it absent, in the case of a scalar field. This is a savings
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already, though a modest one. The vector case will be more compelling.

In the case of a vector field, the possible terms in the Lorentz-invariant
case, taking into account the restrictions above are these: Aﬁ/ Alf, A"L Tw ArA,,
and e* aﬁAm,,Aaw, leaving 3 unspecified coefficients. If Lorentz invariance is not
required, then there appear in addition A/‘A”n”n,,, Af;A”‘”n”n,,, A”AM, A”Aryn”,

AFA Ny, A"L A¥n,, and B Ayl Aang, giving 10 unspecified coeflicients without
Lorentz invariance. The economy afforded by Lorentz invariance is thus considerable
in the case of a vector field. One expects that it would be substantial for higher-rank
fields as well. We have not considered complex fields or fermionic matter, but we
imagine that Lorentz invariance provides a respectable simplification in those cases
as well. Complex fields have an interesting property not shared by a single real scalar
field, viz., they admit first-order-in-time equations of motion such as the Schrodinger
equation. (For a single real field, the most similar term in the Lagrangian density,
¢<f>, is merely a divergence.) So the investigation of these other types of fields, and
of sets of real fields with internal symmetry groups, might be of interest.

In view of these simplifications, it is not too implausible to think that tem-
poral becoming is objective, and yet physics is exactly Lorentz invariant, if the
existence of a benevolent God who supports the enterprise of physics is plausible.
Such a divine motivation does fit naturally within traditional monotheistic religion.
According to the traditional story (Genesis 1:28), God tells the human race to re-
produce and to fill the earth and subdue it, and to rule over other creatures. This
command, which has been dubbed the “cultural mandate,” has been seen as en-
couraging the scientific study of natural phenomena. If this conclusion is correct,
then physicists and philosophers can pursue their respective visions of time with-
out mutual interference. The approach outlined above, if successful, permits one to
take an antirealist attitude toward relativity in metaphysics, while remaining quite

comfortable with the 4-dimensionalist picture urged by Minkowski and so useful
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in physics. One might find this resolution of the tension physically preferable to
Craig’s approach [187], which will send one looking for “physical explanations” of
relativistic effects, a search which, as we suggested above, has not obviously been
fruitful, and which leaves one suspicious of Lorentz invariance and all its benefits.
With a plausibility argument in hand for antirealism about any metaphysical claims
for relativity, but contentment with relativity as a piece of physics—one might call
this a gentle and sympathetic antirealism—one can perhaps say that the great gulf
that Stapp [202] and Horwitz et al. [141] have found between “Einstein time” and
“process time” is not so fixed. The need for a preferred foliation in physics would
need to be shown on grounds other than the flow of time, if at all. The preferred
foliation would be an “irrelevant variable” in the terminology of ([2]).

This suggestion just made also answers an objection against the idea that
God is temporal, i.e., has a location and a duration in time [203-206]. A temporal
God’s knowledge of which events are objectively simultaneous defines a preferred
foliation. But we have already addressed the relativistic objection to a preferred fo-
liation. But if a metaphysically preferred foliation plausibly needn’t have physically
observable effects, then one can regard God as temporal without embarrassment
about relativity.

We close by concluding that even if one is persuaded of the existence of
a metaphysically preferred foliation of spacetime, there presently seems to be no
compelling reason for rejecting standard Lorentz-invariant physics. However, there
are some reasons strong enough to make consideration of the violation of Lorentz
invariance an interesting pursuit. With an eye to our discussion of the relation
between the flat and curved metrics’ null cones below, it seems proper to point
out how a preferred foliation might be included, assuming that backward causation
(with respect to the preferred time) is to be avoided. If physics is Lorentz invariant

but a metaphysically preferred foliation exists, the dynamical null cone of the curved
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metric is still threatens backward causation. The reason is that if the curved metric’s
null cone violates the flat metric’s null cone in some reference frame, this violation
could just as easily occur in the preferred frame as any other. Thus, the null cone
discussion below will apply unchanged even if a physically unobservable preferred

foliation is present.

40



Chapter 4

Slightly Bimetric Theories of
Gravity

4.1 Slightly Bimetric Theories Derived using Traceless
Universal Coupling and Restricted Free Field In-

variance

The possibility of deriving general relativity in flat spacetime is fairly well-known,
though we believe the above derivation to be especially clear. One naturally asks,
can anything new, something besides general relativity and other generally covariant
theories (with higher derivatives), be obtained from a procedure along these lines?
In fact, other theories can be derived. We will now show a larger family of theories
that can be obtained by making two modifications. One relaxes universal coupling
to apply only to the traceless part of the stress tensor, while the other restricts the
free field gauge invariance to divergenceless vector fields.

Under conformal transformations, a metric tensor factors into two pieces.

One is the conformally invariant part, the densitized metric 7, of weight —%, which
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has determinant 7 = —1. This quantity determines the flat metric’s null cone
structure. Its inverse, the weight % density #*¥, also has determinant —1. Using the

matrix relation & det(A) = (det A)T'r(A~'§A), one sees that 7, and consequently

48
0w

are traceless. The other, conformally variant factor is /—n %, where 7 is the
determinant of 7,,. (We shall work with \/—7 rather than its square root, but
nothing important depends on this choice.) Recalling the derivation of the metric
stress tensor above, one sees that (apart from trivial factors) the traceless part of
the stress tensor comes from 7),, and the trace comes from /—n. As was just
shown, universal coupling to the total stress tensor yields an effectively Riemannian
theory. It is known that in massless scalar gravity, universal coupling to the trace
of the stress tensor yields a conformally flat Riemannian theory: the determinant
of the flat metric is completely “clothed” by the gravitational field [20, 236, 237].
Thus, one suspects that treating the traceless and trace parts of the stress tensor
differently might yield interesting results. Anticipating some of our results, we
observe the pattern that whatever part of the stress tensor (the whole, the trace, or
the traceless part) is universally coupled to gravity, the corresponding part of the flat
metric (the whole, the determinant, or the conformally invariant part, respectively)
is entirely “clothed” by the gravitational field and rendered unobservable (if the field
is massless).

We therefore write a general action for a gravitational field and bosonic
matter as S[fu, /=7, Yuv, ], with the gravitational field v,, taken as a density of
weight —% to match 7),,. The Lie derivative of tensor densities requires care. For a

(1, 1) density of weight w, the form is [222]

Ledf = E"0Fu —dpE% el 5 TwdgEs, . (4.1)

The form for any tensor density is readily generalized from this expression.

The metric stress tensor can be split up into traceless and trace parts by
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reworking the earlier derivation. One has

S éS S 08 —

ou 5,/—77

Letting the matter and gravitational field equations hold gives
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Local energy-momentum conservation takes the form
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It is convenient to introduce the following change of variables:

0u(2 v—ni*) =0.

S[ﬁum‘v_ :'Yuuau] = S[ﬁuua‘v_ aguuau]:

where

Juv = MNuw — )"Ylw-

(4.2)

(4.4)

(4.5)

(4.6)

The reason for taking the gravitational field to be (0,2) weight —% is now clear: doing

so makes it easy to add the gravitational potential to the conformally invariant part

of the flat metric. (Plainly a (2,0) weight 1 field would work equally well, mutatis

mutandis.) Taking care with the trace, one finds that

S 6S 6S
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is the traceless symmetric projection tensor with respect to 7,,. Combining these

two results gives

il ly=A o5 lg — 95 pu (4.10)

A
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which splits the traceless part of the stress tensor into a part that vanishes on-shell
and another that depends on how much of the conformally invariant part of the flat
metric remains after the change of variables.
We now introduce the physical postulate of traceless universal coupling:
éS pv 0S¢ S

02 pur _ 92f pur_ y O
57&6 ap J’Yaﬁ of 577/11/

v (4.11)

in words, the traceless part of the full field equations equals the traceless part of
the free field equations coupled to the traceless part of the stress temsor. This
postulate will let us explore what theories, besides Riemannian and conformally flat
Riemannian theories, can be obtained from a slightly relaxed version of universal
coupling. Combining equations (4.10) and (4.11) gives

§S 35St
—|g = ——Plg.
577;;11 | 57043 of

(4.12)

The traceless part of the free field equations must equal a term derived from how
the flat metric remains in the action after the change to the bimetric variables.

This result suggests that it would be useful to have a result concerning

38y

“WPSE derived from an infinitesimal invariance. In order that only the traceless

part of the free field equations be involved, the variation of the gravitational field
ought itself to be traceless. We require that S; change at most by a boundary term
under the infinitesimal transformation y,, — Y., + 6vu, where 6y, = 0,& + 0,6y,

but with £, restricted so that
0u# =0. (4.13)

Now &, is a density of weight —%. Others using a similarly restricted invariance have

restricted v,,7*” to vanish[238-242], but we leave it arbitrary, anticipating that
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another degree of freedom might appear. This gauge invariance is consistent with a
non-zero mass and self-interaction potential for the trace part of the gravitational
field. Given the various reasons for which scalar fields are presently postulated,
such as inflation and dark matter, it would be welcome to find an extra scalar field
without postulating it ad hoc. If these uses require that the new degree of freedom
be massive, then it is easier to see why the three classical tests of general relativity
have not detected it, whereas a massless scalar ought to have yielded incorrect light
bending properties. That is because the scalar would attract (or perhaps repel, if the
‘wrong’ sign could be tolerated, though that seems doubtful) slow-moving objects,
but would not bend light [20] If such a scalar exists, perhaps tests of gravity at short
range would find more (or less) attraction than expected.

One can write
=0, FH, (4.14)

with F#¥ an arbitrary antisymmetric field of suitable weight. Repeated integration

by parts and the arbitrariness of F#¥ entail that
— =0, (4.15)

which means that the divergence of the traceless part of the free field equations
equals the gradient of some function. Recalling equation (4.12), one shows that
(9”5‘;]%| g is a gradient. If one splits the full action S into S7 and S», then Sy can take
the same form as above for general relativity. S; can have the form S1[g,.,/—n,u],
with the 7, absent. We have not found any other solutions to equation (4.12).

It is useful to make a further change of variables from a densitized curved
metric to an ordinary one by

1

Guv = G/ —12- (4.16)

8s 48 3

G = 3 VN We conclude

The Euler-Lagrange equations change trivially:
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that the general action is

1 Vpo
S = Sl[g/u/a v=n,u] + ) /d4wRuupa(7luu)M# P (nuuaguuau)

+ / d*z (9, + 2by/—7). (4.17)

We call this form “slightly bimetric”: “slightly” because only the determinant of
Nu enters the Euler-Lagrange equations essentially, not the whole flat metric, and
“bimetric” because the whole of 7, is present somewhere in the theory, viz., in the
action, in the definition of the stress tensor, and in the definition of ideal lengths and
times for objects unaffected by gravity (of which there are none). The restriction
of the initial invariance has the consequence that the gravitational field equations
alone no longer suffice to yield conservation of energy-momentum; the matter fields
u must also obey their equations of motion, at least in part. This last result bears a
resemblance to the result of Lee et. al. [243] that the “matter response equations”
VTt = 0 follow from the gravitational field equations if and only if no absolute
objects are present in the field equations. These equations still follow, of course,
from the matter field equations, assuming that matter couples only to a curved

metric [152].

4.2 Gauge Invariance

We now turn to consider the gauge invariance of slightly bimetric theories. Going
through the same procedure as for generally covariant theories, we guess that a
gauge transformation is given by 69, = £egu, du = Leu, dny, = 0, but with &¥

obeying some restriction. Here ¢# has vanishing weight. Thus,

S .
SSpauge = 0Sama = [ da(5 gLt + %)
Nuv
68 .
=0- /d490(—2€a77au3u5—|g + ]”au ) (4-18)
Nuv
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Recalling that

88
By |g = 0 4.19
u577/u/ |9 (0 ( )

for some scalar density 1, one sees that dSgqyge is indeed a boundary term if and
only if 8,6# = 0 (unless ¢ vanishes, in which case the theory is really generally
covariant). Thus, our assumed form of the invariance is verified, and the restriction
on &# is known. The same restriction holds for the full nonlinear theory as held
for the linear theory. In this slightly bimetric case, gauge transformations change
(bosonic) dynamical fields in the same way that 7,,-volume-preserving coordinate

transformations do, but leave the absolute object 7,, unchanged.

4.3 Slightly Bimetric Theories Are Equivalent to Gen-

erally Covariant Theories plus a Scalar Field

Having proposed the addition of a flat background metric to general relativity and
noted the possibility of constructing alternative theories with this extra ingredient,
Rosen himself subsequently devoted considerable energy to a particular bimetric
theory of gravity (e.g., [207]), hoping to avoid singularities, which afflict general rel-
ativity, and to give simpler partial differential equations than Einstein’s. Although
Rosen’s theory passes a considerable number of empirical tests, it has difficulty with
the binary pulsar [244]. More generally, theories into which the flat metric enters
the action nontrivially will display various effects which can be tested against ex-
periment. Concerning the matter action, experiment strongly restricts how the flat
metric can enter [244], so it makes sense to let matter see only a curved metric,
with the unclothed conformally invariant part of the flat metric absent, apart from
a term containing the flat metric’s Riemann tensor; such a term merely alters the
stress tensor by a curl, and does not affect the field equations. (But see [246-248] for

recent interest in nonminimal coupling to scalar fields. The assumption of minimal
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coupling will not be used.) Requiring that the matter stress tensor appear on the
right side of the gravitational Euler-Lagrange equations substantially imposes the
same condition [65]. The gravitational action has more room for a flat metric to
enter, but one expects that theories with more exposed background geometry will
have more trouble agreeing with experiment. If only the determinant of the flat
metric /—n appears in the action nontrivially, then the effects should be testable,
but not as constrained as if the whole metric appears. Slightly bimetric theories
therefore are perhaps the best chance for empirically viable continuation of Rosen’s
bimetric program. However, they do not satisfy Rosen’s desire for simpler partial
differential equations. Whether slightly bimetric theories help to avoid singularities
is tied to the success of scalar-tensor theories in doing the same. On this point,
reports are mixed [246,249]. It is known that a suitably nonminimally coupled
scalar field can violate all the standard energy conditions, up to and including the
averaged null energy condition, which is tied to the possibility of traversable worm-
holes [235,341]. Given that slightly bimetric theories permit any desired coupling
for the ‘extra scalar’ (although the relevance of wormholes to a bimetric approach
to gravity is questionable, as we will remark below), it follows that slightly bimetric
theories can be chosen so as to violate such energy conditions, the satisfaction of
which plays a role in the singularity theorems [152]. On the other hand, such scalar
fields can permit large negative energy fluxes, which raise the question of violating
the generalized second law of thermodynamics [342] and suggest the lack of a stable
ground state [261].

It is convenient to split the action into effectual and ineffectual pieces, so we

write

S = Se[g/u/a % —U,u] + Si[gm/anullu’]a (420)

both terms being scalars. The effectual terms are those that affect the Euler-

Lagrange equations. All terms that do not affect the (gravitational or matter)
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Euler-Lagrange equations and that contribute at most a curl to 7%, viz., diver-

gences, flat space 4-volume terms, and terms involving R, s (), are gathered
into the ineffectual term .S;.

Making use of the properties of the action under coordinate transformations,
one can derive generalized Bianchi identities [243]. Under an arbitrary infinitesimal

coordinate transformation described by a vector field £#, the action changes by the

amount
08, 0S; 0,
JS:/d4x S Legu + —— Legu + ———=£ev/—1
(59#'/ e9uv 59#'/ ¢9uv o/ =1 I3 n
—4F —f —£eu) =0. 4.21
+577/w My + Su Eu + Su Eu) ( )
By construction 6‘;‘?;/ and % vanish identically, so the second and sixth terms do
not contribute. One observes that fni i is a curl, so the fourth term contributes only
a boundary term. Letting the matter field equations ‘;—5 = 0 and the gravitational
field equations 5‘;% = 0 hold annihilates the first and third terms, so only the second

remains:

68 = / d*z 55/%_77,5@/— = 0. (4.22)

Thus, upon integration, one obtains

8. _
NI

where J is a constant of integration.

(4.23)

This last equation is sufficiently similar in appearance to an Euler-Lagrange
equation that one can consider another theory with a dynamical metric, matter
fields, and a dynamical weight 1 density 1, with v replacing \/—n, plus an additional

term:

S'[Guw, w, Y] = Selguw, u, Y] — / d*zJp. (4.24)
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The Euler-Lagrange equations for this action are

6‘ !
S =0, (4.25)

0Guv

65’

— =0 4.26

5” ? ( )
and

5s'

= 0. 4.2

5 =0 (427)
The metric and matter equations are identical to those for the original action Se.

dSe

The equation for 1 is equivalent to the integrated on-shell identity ; = J above.
The theories differ in substance, for one has an absolute (i.e., nondynamical) object,
and J is an integration constant, while the other has no absolute objects, and J is
a parameter in the action. But they do not differ in the forms and solutions of
the equations: they are empirically indistinguishable. Thus, scalar density-tensor
theories are equivalent to slightly bimetric theories in this sense. We emphasize
that the coupling of the scalar field to the curved metric is of arbitrary form, not
necessarily minimal.

Ordinarily one considers theories with a scalar field, not a scalar density field.
In fact the scalar density-tensor theories above can be recast as theories with a scalar
field. This recasting involves a change of variables ¢ = 1//—g. Reexpressing the

action S’ in the new variables gives

S”[gluhu'a(ﬁ] = Sl[gMV7u7¢]' (428)

The matter field equations are untouched by this transformation. Under a variation

of g, and v, one obtains

3s’ 3s’ as" 3s"
—0gu + —0Y = —dg,, + —0¢. 4.29
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Using ¥ = ¢/—¢ and equating coefficients of g and of ¢ gives

55' 5s' 55"
|¢ + —g" v/ —g/2 = ¢ (4.30)
¢ g;u/
and
ds' 4S"

One sees that the scalar-tensor equations are just linear combinations of the scalar
density-tensor equations. Thus every slightly bimetric theory has a scalar-tensor

“win” and wvice versa.

4.4 General Form for a Slightly Bimetric Theory

If one prohibits derivatives higher than second order (and permits those only lin-
early) in the Lagrangian density, then the most general slightly bimetric action is

of the form

— 15 | 28 IWTIR() + kW0 Aol + <)/ =g
+%/d4xRWPU(7qu)MWPJ(77W7glu/’“) + /d4x<9ua” + Smat[gum\/__na u]. (4.32)

The term 2b,/—n has been absorbed into e(x)+/—g, while the possible term
c(k)V—=99""V VK (4.33)

has been absorbed by redefinition of f(x) and o”. Employing Rosen’s results as
above, one can rewrite this action in a Rosen-style form with no second derivatives

of either dynamical or absolute variables:
1 da da
~ oG [ e la()ALag, — (a3t ) A3 A% + (00 +r G ) AT AL

1 4
+W d*ze(k)v/—g| + Smat[guv, V-1, ul.
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In writing this form, we have set

167Got = —a(k)AL, 77 + a(k)A7, """ (4.34)

and
MHPT = —a(k)n"? g /87G. (4.35)

Using (4.32) one finds the Euler-Lagrange equations of motion to be

167G 4S8
vV —g 59;“/

= —aG" + ga'g’“’R + VAVYq — g"*'V2a

~Vo(fg" A%g®?) — fAL,AL g g
167G 6Smat
v —9 ngu/

One can split S into S, and S; as before. Employing the machinery used above

!
1
+ (f +2f FV) A% DG,9°P 9" + 5" (e + k) + =0.  (436)

in finding the generalized Bianchi identities and using the matter and gravitational

equations of motion, one obtains

4Se
— =0 4.37
5 ﬁ7n ’ ( )
or, upon integration,
=J, (4.38)
N
. . . . . 5S. -
where J is a constant of integration. The explicit form of ; T s

0Se  6Smat n 1
5/—m 6/—m 167G

By making a conformal transformation to the Einstein frame, one can typi-

(—a'K®R+ 8,(2fVYEK) — f'g" K,y ki —€'K%).  (4.39)

cally set a = 1. One reason not to do so at this stage is because the above action
contains degenerate cases related to unimodular general relativity [238-242, 250],
which involve a = y/k. In these cases, the Ricci scalar term pertains to a curved

metric whose determinant is just that of the flat metric and thus nondynamical; in
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searching for new theories, one wants not to lose sight of any special cases. Also,
nongravitational experiments are governed by the metric which is conformally cou-
pled to matter (as will be discussed below), if one exists; typically that is not the

Einstein frame’s metric. Otherwise, setting a = 1 is convenient.

4.5 Some Special Cases and Empirical Consequences

Slightly bimetric theories, or their scalar-tensor twins, split into a number of cases,
among which are (theories equivalent to) generalized Brans-Dicke [244,245] theo-
ries, general relativity without or with a scalar field, unimodular general relativity
[238-242, 250], and some others, including an interesting scalar-tensor theory with
no explicit kinetic term for the scalar field [252]. General relativity itself is of course
a trivial example of a slightly bimetric theory. An attractive example of general
relativity with a scalar field was briefly considered by Avakian and Grigorian [251];
however, their refutation of the theory, which corresponds to an unspecified constant
as in their notation, cannot be accepted because the theory manifestly includes gen-
eral relativity, and thus every solution of the Einstein field equations, as a special
case. This theory is very similar to the “restricted gravity” of Dragon and Kreuzer,
who find a massive “dilaton” in the metric [233]. Unimodular general relativity
sets v/—g = \/—n a priori, so the traceless part of the Einstein equations are the
Euler-Lagrange equations. The Bianchi identities restore the trace of the Einstein
equations, up to an integration constant. It is interesting to note that in consid-
ering the “most general linear theory of gravitation”, Nachtmann, Schmidle, and
Sex] omitted the case in which matter is coupled only to the traceless part of the
gravitational field [35,36]. Such a case corresponds to coupling to a covariantly
unimodular matter metric in the nonlinear theory.

One readily sees that some slightly bimetric theories contain general relativity

(perhaps with the covariantly unimodular condition x = 1) as a special case. Full
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consideration of the empirical properties of the theories requires dividing the family
of theories into natural cases; the theories do not even all have the same number
of degrees of freedom. Various equivalence principles are satisfied, or violated, as
the case may be, for particular slightly bimetric theories, so different versions might
provide tests of various equivalence principles. Theories in which matter is not
universally coupled will tend to violate the weak equivalence principle [2]. Because
some slightly bimetric theories reduce to general relativity in a suitable limit, these
versions ought to remain viable as long as general relativity’s outstanding track
record persists, at least if the general relativistic limit is stable. Full consideration
of these matters awaits another time.

The bimetric scalar tensor theory of the Armenian school (for example, [253])
is not slightly bimetric. This fact is clear because the field equations contain the

tensor A%

v, and not merely its contraction Aly.

4.6 A Built-in ‘Scalar Field’ and Cosmological Prob-

lems

The scalar degree of freedom present in some slightly bimetric theories could perhaps
be detected once gravitational wave astronomy is well under way [254]. In any case,
there exists monopole radiation in general in such theories. The issue of gravitational
radiation for scalar tensor theories has been investigated. by R. V. Wagoner [255].
In addition, it might facilitate inflationary cosmological models, because it can be
nonminimally coupled [256]. Or it might serve as a form of dark matter. There have
been a number of studies of scalar field dark matter recently [257]. For minimally
coupled matter, the scalar field acts as “noninteracting dark matter,” which interacts
only with itself and gravity. This form of dark matter has recently been considered

by Peebles and Vilenkin [258].
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Using the scalar-tensor twin of a slightly bimetric theory should permit car-
rying over many results from scalar-tensor theories to slightly bimetric theories, such
as issues of positive scalar field energy [228].

Concerning the cosmological constant, theorists have been interested in ex-
plaining the difference between its quantum-mechanically predicted large value and
its observed small value—this is the “cosmological constant problem” [259]. (At
least, this is the “old cosmological constant problem”; recently new cosmological
constant problems have arisen [250].) One approach that has attracted attention is
unimodular general relativity [238-241, 250], because the cosmological constant is in
that case not a coupling constant in the action, but a datum in the initial conditions.
Other slightly bimetric theories behave in the same fashion, the integration constant
J being related to an effective cosmological constant, so they retain this advantage
in addressing this problem. Based on recent supernova measurements, it might be
necessary to include an effective cosmological constant [229,230]. Receiving it as a
constant of integration is much more appealing than the traditional way by putting
a term linear in the gravitational field into the action, for such an action defines a
theory in which the field about a point source grows with distance, behavior which
is difficult to accept [260]. Finally, we observe that A. N. Petrov has considered in
a rather general fashion the possibility of obtaining the cosmological constant as a
constant of integration [267].

Recently, some variable speed-of-light (VSL) theories have been proposed
[231]. One type fixes the gravitational ‘light’ speed, while allowing the electromag-
netic light speed to vary, there being two different curved metrics in the theory [231].

One could define an electromagnetic metric using a scalar field y by the equation

[gem]aﬂ = Ggap — K(vaX)vﬂX7 (4'40)

K being constant. As we have seen above, slightly bimetric theories can mimic the

presence of a scalar field, so it is not surprising that VSL theories can also be slightly
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bimetric. If one replaces x by In \/% , then one gets an electromagnetic metric of the

form [gem]ag = gop — K Aalg, where AL, = A,.

4.7 Classical Local Empirical Aspects of Bimetric The-

ories

It might be useful to explain why the bimetric/field approach to general relativity is
empirically equivalent to the geometrical form, at least locally and at the classical
level. (This issue has also been addressed by Thirring [29], Freund et al. [260],
and Zel’dovich and Grishchuk [83]. But we will argue that the theories are in fact
distinct, so the qualifications “at least locally and at the classical level” will be
important.) Questions might arise due to the fact that measurements of times and
lengths in the geometrical theory are assumed to be governed by g,.,, there being
no other metric tensor to choose; but if 7, is also present, then other choices might
seem possible. This discussion will also help to give the empirical interpretation of
slightly bimetric theories.

If one considers what an ‘ideal’ rod or clock might be, the geometrical view
says that it is one governed by g, [151], whereas the bimetric approach says that it
is one that is unaffected by gravity and thus governed by 7,,. But it is real rods and
clocks, not ideal ones, that are used in experiments. J. L. Anderson has recently
argued that a metric in general relativity is unnecessary, because the behavior of
rods and clocks can be determined via the Einstein-Infeld-Hoffmann procedure [271].
Even if such a procedure were impossible in practice, it would remain true that the
behavior of real rods and clocks would be completely determined (classically) by the
partial differential equations obeyed by all the fields, for, in light of modern field
theory, real rods and clocks are just congealed field excitations. Conceptually, there

is no room for a separate postulate of the behavior of length and time measurements.
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Because the bimetric and geometrical approaches to general relativity yield identical
partial differential equations for g,, and matter fields u, it follows that the two
approaches are empirically equivalent. Thus, once the obsolete dualism between
matter and field is removed, it becomes clear that these two approaches to general
relativity are equivalent empirically, at least locally and classically.

In the case of slightly bimetric theories, it is no longer the case that the flat
background metric is entirely clothed. So how does one interpret measurements?
Here the existence of a scalar-tensor “twin” for each slightly bimetric theory is use-
ful. Assuming that the usual postulated relation between measurements in general
relativity and the partial differential equations of general relativity is consistent, the
same results can be carried over to slightly bimetric theories via their scalar-tensor
twins. Scalar-tensor theories are specific examples of general relativity coupled to
a scalar field. In some theories, there exists a “Jordan frame” in which matter is
minimally coupled, as in general relativity. General relativity assumes nongravita-
tional experiments to be described by the metric minimally coupled to matter. The
scalar field should not make any difference, for one could regard it as merely another
matter field. So the relevant metric for typical experiments is the one minimally
coupled to matter, if such a thing exists.

This claim, it should be noted, does not entail any claim about the contro-
versy regarding which of the conformally related metrics is “the physical metric.”
This question has been reviewed recently [261] by V. Faraoni et al., who cite worries
about negative energy in the Jordan frame as one reason to believe that, as they
conclude, the Jordan conformal ‘frame’ is unacceptable. If this argument is sound,
then the number of viable scalar-tensor theories might be rather limited. These
authors state that the issue of the empirical viability of scalar-tensor theories needs
to be reconsidered in view of the result that the Einstein frame is the physical one.

However, we find the concept of energy in a nonminimally coupled theory
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without a flat background metric to be unclear. For example, the vanishing of
the covariant divergence of the matter stress tensor is repeatedly described as a
conservation law by Faraoni et al., without any hesitation, but we saw above that
this equation typically fails to describe the global conservation of anything. Further,
the heritage of the geometrical form of gravitation is that non-gravitational energy
density is well-defined, but gravitational energy density is not. Scalar-tensor theories
bring about a situation in which the scalar field is neither clearly gravity, nor clearly
matter, and conformal transformations tend to shift its status one way or the other.
Thus, such arguments about scalar field energy densities as Faraoni et al. cite might
be unreliable. We suggest that a field formulation of scalar-tensor theories on a flat
background might illuminate this issue. As the variable transformation g,, = 1, —
MYy in our derivation of general relativity showed, a field redefinition involving the
flat background metric should change the stress tensor only by terms proportional
to the equations of motion, if the flat metric itself is untouched; clearly redefinitions
not involving the flat metric will not change the stress tensor at all. Given that
gauge transformations with a flat background metric resemble diffeomorphisms in
some respects, as we have seen, but conformal transformations generally do not
[152], one need not worry that the conformally transformation will lead to ambiguity
regarding the flat metric. In this way can define a stress-energy tensor including
gravity and the scalar field, and whatever other fields might be present. Such a
tensor will of course be gauge-variant, as in general relativity, but the integrals of
motion have proven adequately gauge-invariant for Einstein’s theory. The results
will be independent of all notions of which curved metric is “the physical one”, so the
possibility of determining which metric is physical based on positive energy issues
will not arise, pace Varaoni et al. Some results on energy-momentum complexes or
scalar field stress tensors have been found [228, 262-264], which results presumably

will have field formulation analogs.
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Chapter 5

Bimetric General Relativity and
Null Cone Consistency: A
History Since 1939

As we have seen, the use of a flat metric tensor 7,, in gravitation has received a
fair amount of attention over the last six decades or so. However, the interpreta-
tion of the resulting bimetric or field formulation of general relativity has not been
adequately clarified, due to an ambiguous notion of causality: the effective curved
metric which determines matter propagation is not obviously consistent with the
flat background causal structure. Having a consistent relationship is clearly a nec-
essary condition for a true special-relativistic theory. Examples of consistent and
inconsistent relationships are given in figure 5.1. Whether it is sufficient is unclear,
because the propagation of gravity itself, or of matter fields coupled in a nonstan-
dard way, can lead to more subtle behavior [231, 265]. However, this question of null
cone consistency clearly is important. This issue holds for slightly bimetric theories,
also, although our proposed solution is less plausible for slightly bimetric theories

than for generally covariant ones.
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We will attempt to sketch the history of the issue from roughly the late 1930s
till the present. We do not consider the period between 1905 and the late 1930s,
though doubtless that would be an interesting project, which would consider the time
after special relativity had solidified and include the invention of Einstein’s theory of
gravitation. (L. P. Grishchuk mentions a bit of the history in works of Poincaré and
Einstein [85]. Fang and Fronsdal sketch the history of the flat spacetime approach
up to 1979 [79], but neglect to consider the null cone issue.) Rather, we start with
the rebirth of the flat spacetime approach to gravity, with works by Fierz, Rosen
et al. While the importance of the problem perhaps seems evident in retrospect,
the neglect of it in the literature suggests that it in practice was not so obvious, or
that philosophical considerations disposed some to disregard it. One can crudely
divide the issue’s history into three periods (though at times we will disregard the
historical boundaries to be able to discuss an author’s whole work in a unified way).
For the first 20 years (1939-1959), the problem seems not to have been recognized
or mentioned, at least not in print (to our knowledge). For the next 20 years (1959-
1979), it was sometimes mentioned, but either resolved incorrectly, dismissed as
unimportant, or postponed with the hope that it would disappear. More recently
(1979-2001), it has been recognized more often, and occasionally regarded as worthy
of sustained attention. A few authors have attempted either to solve it or to prove
it insoluble. However, we disagree that either of these goals has been achieved.

One should perhaps distinguish between two null cone problems. The first is:
given that one regards Einstein’s equations as describing the evolution of an effective
curved metric in Minkowski spacetime, what does one make of the potential violation
of Minkowski causality by matter responding to the curved metric? The second is:
given that one chooses to quantize the geometrical (single-metric) theory, what does
one make of causality without a metric to define equal-time commutation relations?

However, these problems are related, and we believe that the SRA as presented here
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solves them both, so we will treat them together.

5.1 The Years 1939 to 1959: the Null Cone Consistency

Problem Ignored

Around 1940, in his seminal papers on the bimetric description of general relativity,
N. Rosen suggested that there ought to be some (gauge-fixing) relation between the
flat and curved metrics, because one expects that the two coincide if the gravitational
field vanishes [6] (p. 149). While this paper did not consider the meaning of the
bimetric formalism in detail, its companion paper (p. 150) considered interpretive

issues. Rosen wrote (apart from a change in notation to match ours),

[flrom the standpoint of the general theory of relativity, one must look
upon 7, as a fiction introduced for mathematical convenience. However,
the question arises whether it may not be possible to adopt a different
point of view, one in which the metric tensor 7,, is given a real physical
significance as describing the geometrical properties of space, which is
therefore taken to be flat, whereas the tensor g,, is to be regarded as

describing the gravitational field. [6] (p. 150).

Rosen recognized that the flat spacetime view implies that the speed of light (mea-
sured with ideal rods and clocks, which are not distorted by gravity) will tend to
differ from unity [6] (p. 153), but he seems not to have addressed the possibility that
it might ezceed 1. Finally, while his approach merely postulated bimetric general
relativity, he did suggest that it would be desirable to derive it independently [6]
(p- 153). His intention to carry out this procedure himself [6] (p. 153) seems not to
have been realized, but many others have done it since that time, as did we in an

earlier chapter.

61



During the 1940s, with some war-time inconvenience in Greece, A. Papa-
petrou was able to express general relativity in an attractive form resembling elec-
tromagnetism, with the theories being expressed in the tensorial DeDonder and
Lorentz gauges, respectively [11]. He emphasized the improved nature of the con-
servation laws, especially for angular momentum, and found that certain attractive
relations that have no invariant meaning in the geometrical view become perspicuous
given the flat spacetime interpretation. Papapetrou held that for the flat spacetime
approach, gauge-fixing to tie together the two metrics was “indispensable” (p. 20),
because the energy-momentum and angular momentum localization would suggest
physically distinct systems given different relations between the two metrics. He
was aware of Rosen’s result that the flat spacetime interpretation implies a varying
speed of light (using unrenormalized instruments), but seems also to have failed to
entertain the possibility that the gravitational field might make light travel faster
than in special relativity.

The neglect of the null cone issue continued well into the 1950s in the impor-
tant works of S. N. Gupta [16-19] and R. H. Kraichnan [20,21]. At this stage the
derivation of the exact nonlinearities of general relativity, which Rosen had desired,
was achieved. Concerning the special-relativistic nature of the theory, both authors
seem to have regarded the Lorentz covariance of the theory as sufficient for special
relativity. If the theory’s gauge invariance and the unobservability of the flat met-
ric are mentioned, the idea that the observable effective curved metric might well
conflict with the flat metric is not. This is an important distinction that will also
be overlooked repeatedly by later authors. One could imagine that the flat metric
might fail to appear in the equations of motion, but still have its null cone serve as
a bound on the curved metric’s null cone, so this distinction is not trivial.

F. J. Belinfante, interested in the work of Papapetrou and Gupta and in

particular in the solidifying covariant perturbation approach to quantizing gravity,
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contemplated the use of a flat metric in “Einstein’s curved universe”, which evidently
meant the geometrical theory of gravity [22]. Working in the context of the static
Schwarzschild solution (in which it is difficult to get the relation between the two
null cones wrong, at least outside the Schwarzschild radius, unless one tries to do
s0), Belinfante only had occasion to consider the null cone relationship incidentally.
But the fact that r becomes g-temporal and ¢ becomes g-spatial for very small
radii, juxtaposed with the a prior: fixed character of these quantities with respect
to the flat metric, does give him occasion for thought. Belinfante gives indications
(including in the paper’s title) that he does not believe deeply in the flat spacetime
approach, so perhaps the null cone issue would not have interested him. While he
is prepared to suggest that the “Swiss-cheese”-like behavior of the Schwarzschild
solution in the bimetric context might help eliminate field theory’s divergences, it
is clear from review papers on quantum gravity [25,26] that the flat metric is just
a tool-perhaps a useful one, but more likely not—for Belinfante. It is thus not
too surprising that the null cone issue is ignored. The “[r|eal problem” is not to
be found in “[t|heories, usually in flat space, which seek to be approximations to
Einstein’s theory, or a perturbation-theoretical treatment of Einstein’s theory”, but
in “[qJuantization of Einstein’s theory itself.” (pp. 198, 192) [25]. For Belinfante,
spacetime might have a Swiss cheese structure, contain worm holes, or have a closed
spatial topology [26]. Some of Belinfante’s work with Swihart on linear gravity also

neglects to discuss the null cone issue [23, 24].

5.2 The Years 1959-1979: the Problem Dismissed or

Postponed

The null cone consistency issue is perhaps first discussed in print by W. Thirring

in 1959 [28-30], but then dismissed with a resolution that does not permit a true
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special relativistic interpretation. Thirring clearly recognizes the apparent conflict
between the two null cones [29], writing, “Another feature of the equations of mo-
tion ...we want to point out is that the velocity |dx/dt| is not required to be < 1
... Thus [assuming the curved metric to be diagonal] there is a limiting velocity ¢
but it is space dependent and may exceed unity.” (pp. 100, 101) A bit later, he
writes “Since c is also gauge dependent and will exceed unity in some gauge systems
[the matter equation of motion] even admits an apparently acausal behavior.” (p.
101) However, Thirring thinks that this acausal behavior is only apparent, for he is
satisfied with the fact that the “renormalized” velocity (measured physically using
real clocks, which are distorted by the gravitational field) is not greater than unity:
“However, we shall see shortly that ¢ also corresponds to the velocity of light and
that it becomes unity when measured with real measuring rods and clocks since
they all are affected by the [gravitational] field.” (p. 101) Evidently the unobserv-
able nature of the intervals governed by 7, satisfies Thirring that the apparently
acausal behavior is not a problem: “The real metric [interval corresponding to g,.]
is gauge invariant whereas [the interval corresponding to 7,,] is not and therefore
has no physical significance. Space-time measured with real objects will show a Rie-
mannian structure whereas there are no measuring rods which could measure the
original pseudoeuclidean space.” (p. 103) Thirring’s argument is doubtful because
the same distinction that was neglected by Gupta and Kraichnan is also neglected
here: the non-measurability of the flat metric does not entail that it lacks physical
significance. Generally one considers causality to be an important physical concept.
At the risk of stating the obvious, we recall that in special relativity, the relevant
speed for causality is not the speed at which electromagnetic radiation actually
propagates, but the value of the universal velocity constant (ordinary called “the
speed of light” and written as ¢, but to do so here would invite confusion) which

appears in Lorentz transformations, that is essential. As is well-known, to permit
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propagation faster than that speed in one frame is to admit backward causation in
another frame, and generally one rejects backward causation. Given the violation
of the flat spacetime null cone, it is not clear what is supposed to be the meaning of
this field theoretic approach. Yet, according to Thirring, the field theoretic approach
gives “a theory following the pattern of well understood field theories, in particular
electrodynamics.” (p. 116) Thus, Thirring’s list of advantages and disadvantages of
the field and geometric approaches to gravity (pp. 116, 117) is notably incomplete,
because the obvious notion of causality for the field approach has been discarded.
Thirring comes very close to noticing the problem of null cone inconsistency, but
then stops short, apparently due to a prejudice against unobservable entities.

One might hope that Thirring’s almost-recognition of the problem would
have inspired his successors to recognize the seriousness of the problem. That,
however, did not occur. In particular, although L. Halpern made a rather minute
study of Thirring’s paper [40], the light cone issue receives only a single sentence (p.
388), one sufficiently noncommittal that no discomfort with Thirring’s purported
resolution of the causality issue is obvious. Halpern was not an advocate of the
flat spacetime approach to gravitation [39], so it is the more remarkable that he
overlooked a potentially serious difficulty. R. Sexl also was aware of the Thirring’s
work and even presented it at a conference [33], yet he also accepted Thirring’s
ostensible resolution of the null cone conflict [33, 34].

The covariant perturbation program for quantizing general relativity yielded
a large number of works based on expanding the curved metric into a background
part and a dynamical part. Thus, one might expect the question of the relation of
the two metrics to be considered in some way. Commonly the background metric
was flat, leading to equations at least formally special relativistic.

A notable exception is the work of B. S. DeWitt, who made great use of non-

flat background metrics and found various benefits in doing so [119]. While DeWitt
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could make use of a background metric, to him it was always at most a tool, not
a deep part of nature. In an article entitled “The Quantization of Geometry,” he

wrote:

The problem of [quantizing the gravitational field] may be approached
from either of two viewpoints, loosely described as the “flat space-time
approach” and “the geometrical approach.” In the flat spacetime ap-
proach, which has been investigated by several authors ...the gravi-
tational field is regarded as just one of several known physical fields,
describable within the Lorentz-invariant framework of a flat space-time.
Its couplings with other fields ...lead to a contraction or elongation
of “rigid” rods and a retardation or advancement of “standard” clocks

. Both the geometrical and flat space-time points of view have the
same 71eal physical content. However, it has been argued that the flat
space-time approach provides more immediate access to the concepts of
conventional quantum field theory and allows the techniques of the latter
to be directly applied to gravitation. While there is merit in this argu-
ment, too strong an insistence upon it would constitute a failure to have
learned the lessons which special relativity itself has already taught. Just
as it is now universally recognized as inconvenient (although possible) to
regard the Lorentz-Fitzgerald contraction from relativistic modifications
in the force law between atoms, so it will almost certainly prove in-
convenient at some stage to approach space-time geometry, even in the
quantum domain, in terms of fluctuations of standard intervals which
are the same for all physical devices and hence unobservable. [118] (pp.

267,268).

Concerning the question of a well-defined causal structure, which his approach ap-

peared to lack, he suggested, “Critics of the program to quantize gravity frequency
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[sic] ask, ‘What can this mean?’ A good answer to this question does not yet exist.
However, there are some indications where the answer may lie.” [119]. DeWitt’s
vision for the program, which he was prepared to call “covariant quantum geometro-
dynamics” in a volume honoring J. A. Wheeler (the title itself suggesting sympathy
for a geometrical view of gravitation, much as “The Quantization of Geometry” did),
included that it “should be able to handle any topology which may be imposed on
3-space”[120] (p. 437). Of the covariant perturbation formalism, he wrote that the
“most serious present defect of the covariant formalism is its foundation in scatter-
ing theory, with spacetime being assumed asymptotically flat. The method of the
background field, which we have introduced, indicates a way in which this defect
may be removed” [120] (p. 437). It seems very likely that the null cone issue, as we
have formulated it, would not be important to DeWitt, given that the background
metric was merely a tool for investigating a truly geometrical theory.

Other authors, especially in the particle physics tradition, seem at least some-
what more content with a flat background metric. In his lectures on gravitation,
R. Feynman shows himself ambivalent about the interpretation of gravitation. Af-
ter deriving Einstein’s equations from a flat spacetime field theory, he concluded
from the unobservability of the flat metric that the latter was not essential. Using
an analogy with curiously intelligent insects walking on a tiled floor, he says that
“[t]here is no need to think of processes as occurring in a space which is truly Eu-
clidean, since there is nothing physical which can ever be measured in this fictional
space. The tiles represent simply a labelling of coordinates, and any other labelling
would have done just as well” [43] (p. 101). Concerning the “assumption that space
is truly flat,” he concludes that “[iJt may be convenient in order to write a theory in
the beginning to assume that measurements are made in a space that is in principle
Galilean, but after we get through predicting real effects, we see that the Galilean

space has no significance” (p. 112), but serves only as a “bookkeeping device” (p.
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113). Concerning the “relations between different approaches to gravity theory,”

[ijt is one of the peculiar aspects of the theory of gravitation, that it
has both a field interpretation and a geometrical interpretation .. .these
are truly two aspects of the same theory ...the fact is that a spin-two
field has this geometrical interpretation; this is not something readily
explainable-it is just marvelous. The geometric interpretation is not
really necessary or essential to physics. It might be that the whole
coincidence might be understood as representing some kind of gauge
invariance. It might be that the relationship between these two points
of view about gravity might be transparent after we discuss a third point

of view .... ( p. 113)

Feynman seems to feel free to switch between the two views as he sees fit. Questions
about nontrivial topologies or the desire to have a transparent notion of causality
seem not to have occupied him. Had they, he might have hesitated in proclaim-
ing them to be “the same theory”, given the competition between causality and
gauge invariance. Later, in developing the covariant perturbation theory, Feynman
did not address these issues, but wrote as if no conceptual difficulties existed. He
wrote: “The questions about making a ‘quantum theory of geometry’ or other con-
ceptual questions are all evaded by considering the gravitational field as just a spin-2
field nonlinearly coupled to matter and itself (one way, for example, is expanding
9uv = Ouy+hy, and considering hy,, as the field variable) and attempting to quantize
this by following the prescription of quantum field theory, as one expects to do with
any other field. The central difficulty springs from the fact that the Lagrangian is
invariant under a gauge group,” but this issue, he finds, can be resolved by adding
a gauge-fixing term, the result being “completely satisfactory” at the level of tree
diagrams (which correspond to the classical theory) [45]; see also ([44]). If the main

difficulty is gauge invariance—which in fact competes with special relativistic causal-
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ity, as Thirring nearly realized—and if the gauge-fixing terms lead to a “completely
satisfactory” result without regard to the light cone relationship, then, unless we
are to charge Feynman with oversight, clearly the flat metric is merely a useful tool
for him. However, the claim to have avoided all conceptual questions cannot be
sustained, because the light cone issue is just such a question, and the meaning of
parts of Lorentz-covariant field theory remains obscure if the problem is ignored.
Huggins, a student of Feynman, also neglects to consider the null cones issue [42].
S. Mandelstam presented a critique of the flat-space covariant perturbation
program as Gupta had developed it [37]. Gupta had imposed the DeDonder coor-
dinate (gauge) condition. Let us see how close Mandelstam comes to identifying
the null cones issue. He writes: “Quantization in flat space can only be regarded as
a provisional solution of the problem for several reasons,” such as its approximate
(at least at that stage of development) character, the use of an indefinite metric,
and the presence of unphysical states. “But the main objection to this method of
quantization lies surely in the physical sacrifices it makes by going to flat space.
The variable specifying the coordinates are numbers without physical significance
which can be chosen in an infinite variety of ways. On the other hand, distances in
space-time, which are physically significant entities, are related to the coordinates
in a manner which has not been elucidated when the metric is quantized.” However,
perhaps these objections can be met: “It may be possible to add to the theory a
prescription for interpreting its results physically. If it could then be shown that the
predictions of the theory were independent of the coordinate conditions used, and
that they tended to the predictions of the unquantized theory in the classical limit,
we would have a satisfactory theory. Some progress has actually been made in this
direction by Thirring”, which “indicates the connection of the Gupta variables to the
metric,” though “the basic difficulties of the ‘flat space’ approach remain.” Clearly

one of Mandelstam’s worries is the question of gauge invariance in a procedure that
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makes use of coordinate conditions. It is difficult to tease out a clear statement of
worry about rival null cones from these remarks, though the issue might have been
intended among the “the basic difficulties of the ‘flat space’ approach” that remain.

A moment of considerable clarity occurred in 1962 with the appearance of
a paper by J. R. Klauder [41], whose abstract opens with the statement, “[ijn any
quantum theory, in which the metric tensor of Einstein’s gravitational theory is also
quantized, it becomes meaningless to ask for an initial space-like surface on which

to specify the conventional field commutators.” Klauder elaborates:

In so far as [certain] formalisms [for quantizing gravity] are transcriptions
of techniques successful in a flat Lorentz space-time, they ignore a unique
problem peculiar to general relativity. Conventional field theories deal,
in particular, with commutation rules, which, when employed for the
fields separated by a space-like interval, have an especially simple form.
Whether two nearby points are or are not space-like is a metric question
that can be asked (and in principle answered) not only in flat space but
also in any space with a preassigned curved metric as well. However as
soon as the space-time metric g,, (z) becomes a dynamical variable-as
in Einstein’s theory—then an initial space-like surface on which to specify

commutators of any two fields becomes a meaningless concept.

Klauder’s approach to handling this problem was to propose an alternative formal-
ism in which fields can fail to commute at most only at the same event. Unfortu-
nately, Klauder’s acute awareness of the null cone issue did not spread too widely
immediately.

S. Weinberg did considerable work on gravitation considered as a Lorentz-
invariant theory [48-56]. Concerning the geometric interpretation of general rel-
ativity, Weinberg could write that “the geometric interpretation of the theory of

gravitation has dwindled to a mere analogy, which lingers in our language ...but
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is not otherwise very useful. The important thing is to be able to make predic-
tions about images on photographic plates, frequencies of spectral lines, and so on,
and it simply doesn’t matter whether we ascribe these predictions to the physical
effect of gravitational fields or to a curvature of space and time.” [55] (p. 147)
This ambivalence about the meaning of the theory perhaps helps to explain why the
null cone consistency issue appears to be ignored in Weinberg’s writings. However,
the meaning of concepts used in Lorentz-invariant field theory in which Weinberg’s
work is rooted, or at least its relation to an underlying classical theory, does seem
somewhat obscure if this issue is neglected. Somewhat more recently, R. Penrose re-
ported that Weinberg was “no longer convinced that the anti-geometrical viewpoint
is necessarily the most fruitful” [57], on account of some impossibility theorems [56].
In recent personal communication with us, Weinberg stated that he is no longer a
strong advocate of any view on the subject, though it is quite interesting that the
flat spacetime approach reproduces general relativity.

Based on the “spin limitation principle,” which requires that only definite
angular momenta be exchanged, V. I. Ogievetsky and I. V. Polubarinov have derived
Einstein’s equations and a family of massive relatives thereof in flat spacetime [60—
62]. While this principle is quite attractive, it fails to pay any heed to whether
the resulting theories yield propagation consistent with the causal structure of the
flat metric. Given that some of their theories are massive and thus make the 7,,
observable, this shortcoming seems fairly serious, given the intent of deriving these
theories from flat spacetime. While we can find no mention of the null cone issue in
the work of Ogievetksy and Polubarinov, it would be interesting to see if the spin
limitation principle could be generalized in such a way as to yield consistency of the
null cones.

A large amount of work related to the field approach has been done by S.

Deser, sometimes with collaborators such as D. G. Boulware, R. Nepomechie, A.
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Waldron or others. In the course of papers which derived general relativity via self-
interaction in flat spacetime [65] or curved [69], or general relativity from quantum
gravity [66,67], or supergravity from self-interaction [68], or which study bimetric
theories for a festschrift for N. Rosen [72], we can find no mention of the issue
of the null cone consistency issue. In particular, Deser finds the main issues for
bimetric theories to be essentially the same problems that he and Boulware found
in massive variants of general relativity [234], viz., empirically falsified light bending
properties, negative energy disasters, or both [72]. Unlike some authors who have a
strong preference, Deser (after a rather pro-geometrical paper early on [266]) seems
to admire both the geometric and field formulations: “The beautiful geometrical
significance of general relativity is complemented by its alternate formulation as the
unique consistent self-coupled theory arising from flat-space free gravitons, without
appeal to general covariance.” [69] However, depending on how one reads the flat
spacetime approach, one might obtain some different features, as we will observe
below, so one might prefer to see the meaning of the field formalism addressed.
Deser and R. Nepomechie have studied a somewhat related issue related to
the anomalous propagation of gauge fields in some conformally flat spacetimes, com-
pared to a flat background [70, 71] with the same null cone structure. In particular,
backscattering off the geometry causes the propagation to lie not merely on the null
cone, but inside it. However, “while our results are surprising, they do not imply
any consistency problems” [70], as they would if the propagation were outside the
null cone. Another related issue is work on massive spin % electrodynamics [73]. We
thank Prof. Deser for drawing our attention to these papers. The spin % propaga-
tion issue was identified some time ago by G. Velo and D. Zwanziger as a problem.
They found that the “main lesson to be drawn from our analysis is that special rela-
tivity is not automatically satisfied by writing equations that transform covariantly.

In addition, the solutions must not propagate faster than light” [74], a lesson that
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needed, as it happens, application in altered form to gravitation (spin 2) as well.

During the 1970s, the relation between the two null cones continued to be
neglected in practice in the context of the covariant perturbation approach to quan-
tizing general relativity. However, quantum gravity review talks drew attention to
this problem from time to time.

This service was performed with special clarity in a 1973 review by A.
Ashtekar and R. Geroch [125]. They find that much of the difficulty in quantiz-
ing the theory arises from the fact that “the distinction between the arena and
the phenomenon, characteristic of other physical theories, is simply not available in
general relativity: the metric plays both roles.” [125] (p. 1214) In discussing field

theoretic approaches, they write that

[i]t is normally the case in quantum field theory . .. that two distinct fields
come into play—a kinematical background field (the metric of Minkowski
space) and a dynamical field .... One can certainly regard general rel-
ativity as a field theory, but in this case there is only a single field, the
metric g, of spacetime, which must play both these roles. But the ap-
plication of the techniques of quantum field theory apparently requires
a non-dynamical background field. In quantum electrodynamics, for ex-
ample, the causality of the Feynman propagators and the asymptotic
states, in terms of which the S-matrix is defined, refer directly to the
metric of Minkowski space. Thus, one does not expect to be able to
carry over directly to general relativity, regarded as a classical field the-
ory, the procedure which led for example from classical Maxwell theory
to quantum electrodynamics. In order to apply the techniques of quan-
tum field theory one must, apparently, either modify these techniques or
reformulate the interpretation of general relativity as a field theory. (p.

1229)
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This latter suggestion of reinterpreting general relativity does not strike us as be-
ing unimaginable or even excessively difficult, especially given that Kraichnan had
presented a simple and clean derivation already in 1955 [20]. However, Ashtekar
and Geroch do present some objections to this general line of attack. “It turns
out, however, that this perturbation approach to obtaining a quantum theory of
the gravitational field suffers from a number of difficulties. There exist, [126] for
example, four-dimensional manifolds M on which there are metrics g,; of Lorentz
signature, but on which there are no flat metrics.” (p. 1232) However, it is not clear
why such examples must be regarded as physically admissible. If it could be shown
that some exact solutions of obvious physical utility admit no flat metric, then the
argument would be persuasive, but that argument seems not to have been made.
Thus, it seems that this argument against the perturbation approach will be highly
persuasive only if one is already committed to a geometrical view of Einstein’s equa-
tions at the classical level. But one would exaggerate only slightly to say that that
is the point at issue. The idea of requiring that the curved null cone be consistent
with the flat one seems not to have been entertained, but Ashtekar and Geroch have
shown powerfully, if reluctantly, why such an approach merits consideration.

The null cone consistency issue was also mentioned several times by C. J.
Isham at the first Oxford quantum gravity symposium [285]. We quote from pp.
20, 21:

One natural approach perhaps is to separate out the Minkowski metric
N and write gy, () = Ny + huw(z) where by, (z) describes the devia-
tion of the geometry from flatness ... [which approach has some advan-
tages.| However, there are a number of objections to this point of view.
For example: (i) The actual background manifold may not be remotely
Minkowskian in either its topological or metrical properties, in which

case the separation [above] ...is completely inappropriate. (ii) Even if
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[the equation above] is justified (from the point of view of i)) [sic] the
procedure is still dubious because the lightcone structure of the physical
spacetime is different from that of Minkowski space. For example, if
the field QAS has some sort of microcausality property with respect to the
metric g,, then this is not equivalent to microcausality with respect to

the fictitious Minkowski background.

Once again a prior commitment to a geometrical view of general relativity is mani-
fest. Isham seems not to entertain the idea of requiring that the spacetime be com-
patible with the flat background, but at least the consistency issue is clearly stated.
At the second Oxford symposium, Isham observed that “one of the ambitions of the
Riemannian programme is to free quantum gravity from perturbation theory based
on the expansion g,, = gy, + \/@hw. Expansions of this type are known to be bad
in classical general relativity and they clearly misrepresent the global topological
and lightcone structures of the pair (M, g,,)” [286] (p. 14). Isham has continued
to mention this issue in more recent talks in the context of the problem of causality
and time [201,292]. The problem of time shows up in the light cone issue for the
covariant perturbation approach to quantum gravity, but related difficulties show

up elsewhere [292]. Still more recently, Isham has expressed the issue as follows:

The problem of time The background metric 7 provides a fixed causal
structure with the associated family of Lorentzian inertial frames. Thus,
at this level, there is no problem of time. The causal structure also allows
a notion of microcausality, thereby permitting a conventional type of

relativistic quantum field theory to be applied to the field hqg.

However, many people object strongly to an expansion [of the curved
metric into a flat one plus a dynamical part] since it is unclear how this
background causal structure is to be related to the physical one; or, in-

deed, what the latter really means ... it is not clear what happens to the
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microcausal commutativity conditions in such circumstances; or, indeed,
what is meant in general by ‘causality’ and ‘time’ in a system whose light

cones are themselves the subject of quantum fluctuations.[201] (p. 58)

Another significant mention of the null cone consistency issue in a quantum
gravity review talk comes from P. van Nieuwenhuizen at the first Marcel Grossmann
meeting. After showing keen awareness of the problem, van Nieuwenhuizen shelves

1t. He writes:

According to the particle physics approach, gravitons are treated on
exactly the same basis as other particles such as photons and electrons.
In particular, particles (including gravitons) are always in flat Minkowski
space and move as if they followed their geodesics in curved spacetime
because of the dynamics of multiple graviton exchange. This particle
physics approach is entirely equivalent to the usual geometric approach.
Pure relativists often become somewhat uneasy at this point because of

the following two aspects entirely peculiar to gravitation:

e In canonical quantization one must decide before quantization which
points are spacelike separated and which are timelike separated, in
order to define the basic commutation relations. However, it is only
after quantization that the fully quantized metric field can tell us
this spacetime structure. It follows that the concept of space-like
or time-like separation has to be preserved under quantization, and
it is not clear whether this is the case. (One might wonder whether
the causal structure of spacetime need be the same in covariant

quantization as in canonical quantization.)

e Suppose one wanted to quantize the fluctuations (for example of

a scalar field, or even of the gravitational field itself) about a
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given curved classical background instead of about flat Minkowski
spacetime. In order to write the field operators corresponding to
these fluctuations in second-quantized form, one needs positive and
negative frequency (annihilation and creation) solutions. In non-
stationary spacetimes it is not clear whether one can define such
solutions. (It may help to think of non-stationary space-time as

giving rise to a time-dependent Hamiltonian.)

The strategy of particle physicists has been to ignore these two problems
for the time being, in the hope that they will ultimately be resolved in the

final theory. Consequently we will not discuss them any further.[76, 77]

While quantization is not our immediate concern, a similar worry to the first of
these two exists at the classical level if one wishes to take the flat metric seriously:
there is no reason to expect that the dynamics will yield automatically a physical

causal structure consistent with the a priori special-relativistic one.

5.3 The Years 1979-2001: the Problem Increasingly At-

tended and the Development of Three Views

More recently, the question of null cone consistency has come to be recognized as
interesting somewhat more often. While a fair number continue to neglect the issue,
those who have addressed it can be found to have one of three attitudes toward the
flat metric: that it is a useful fiction, that it is a useless fiction, or that it is the
truth. These views will be considered in turn. First we note some recent signs of
the growing awareness of the problem.

In the 1984, the subject made its way into a standard text [152]. R. Wald
writes: “The breakup of the metric into a background metric which is treated classi-

cally and a dynamical field 7,3, which is quantized, is unnatural from the viewpoint
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of classical general relativity. Furthermore, the perturbation theory one obtains
from this approach will, in each order, satisfy causality conditions with respect to
the background metric 74 rather than the true metric g,5. Although the summed
series (if it were to converge) still could satisfy appropriate causality conditions, the
covariant perturbation approach would provide a very awkward way of displaying
the role of the spacetime metric in causal structure.” [152] (p. 384). Once again,
a prior commitment to a geometrical understanding of classical gravity is evident.
Some of Wald’s negative attitude toward the “breakup” of g, results from assuming
that the curved metric is fundamental, not derived. But given how easy it is to de-
rive Einstein’s equations from a flat spacetime theory [20], as we even showed above,
why should one not regard the curved metric as derived? Be that as it may, one is
pleased that the light cone issue is emerging from the neglect that it once suffered.
It is intriguing that Wald suggests that the whole series might be gq3-causal even
though each term is ng-causal. An easy way for such to occur would be for the
curved metric’s null cone in fact to be confined on or within the flat one’s. If that
is the case, then it seems that Wald is almost suggesting (albeit reluctantly) what
we will do below.

The recent contemplation of “naive quantum gravity” by S. Weinstein also
has called attention to the lack of a fixed causal structure in quantum gravity [287].
If one is interested in full quantum gravity, as opposed to semiclassical work, then
“we would expect that the metric itself is subject to quantum fluctuations . ..But if
the metric is [subject to quantum fluctuations], then it is by no means clear that it
will be meaningful to talk about whether x and y are spacelike separated, unless the
metric fluctuations somehow leave the causal (i.e. conformal) structure alone.” (pp.
96-7) There appear to be two things that this last suggestion might mean. First, it
might mean that the metric is conformally flat, so that the causal structure is just

that of flat spacetime, while gravity is described by a scalar field. However, it is
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well-known that scalar gravity is empirically falsified by the classical tests of general
relativity [20]. Second, it might mean that, although the full metric is allowed to
vary, its variations are bounded so that the null cone of the nondynamical (and
presumably flat) metric is respected. That is what we propose here. Weinstein does
indeed consider “whether it is at all possible to construe gravitation as a universal
interaction that nonetheless propagates in flat, Minkowski spacetime.” (p. 91) He

concludes that

the short answer is, ‘No,” for three reasons. First, the ‘invisibility’ of
the flat spacetime means that there is no privileged way to decompose
a given curved spacetime into a flat background and a curved pertur-
bation about that background. Though this non-uniqueness is not par-
ticularly problematical for the classical theory, it is quite problematical
for the quantum theory, because different ways of decomposing the ge-
ometry (and thus retrieving a flat background geometry) yield different
quantum theories. Second, not all topologies admit a flat metric, and
therefore spacetimes formulated on such topologies do not admit a de-
composition into flat metric and curved perturbation. Third, it is not
clear a prior: that, in seeking to make a decomposition into background
and perturbations about the background, the background should be flat.

For example, why not use a background of constant curvature? (p. 92)

However, these arguments seem less than compelling. Concerning the first argument,
Weinstein provides neither argument nor citation. It appears to be a claim that a
suitably gauge-invariant theory cannot be constructed. Supposing that this claim
is true, which is not obvious, it might be cause for “gauge-fixing” the theory at a
fundamental level, a proposal which has in fact already been endorsed at the classical
level by N. Rosen [6], A. Papapetrou [11], A. A. Logunov and collaborators such
as A. A. Vlasov (for example, [105]), and H. Nikoli¢ [108], or perhaps for adding

79



mass term to the theory, if the negative energy and causality worries discussed
elsewhere can be handled. Concerning the second objection, which resembles that
of Ashtekar and Geroch, the advocate of flat spacetime will ask “why are nontrivial
topologies necessary?” There are no facts or even good arguments that require
them at present. In the absence of such, the insistence that nontrivial topologies are
theoretically necessary is close to question-begging. Concerning the last objection, it
seems clear that a flat background is the default choice because it is simpler than any
other choice. While any other choice requires some argument for making that choice
instead of the others and strongly suggests the question “why does spacetime have
this geometry?” flat spacetime does not. Weinstein’s specific alternative suggestion
of a constant curvature spacetime, for example, suggests the question “why does
the curvature take this value, as opposed to some other value?” We can agree with
Weinstein that in “allowing metric fluctuations to affect causal structure, one is
clearly at some remove from ordinary field-theoretic quantization schemes.” (p. 97)
But it seems unclear, pace Weinstein, that there is any need to renounce the use of
a flat background causal structure.

We now discuss three major attitudes toward a flat metric that one finds.

5.4 Field Formulation: the Flat Metric as a Useful Fic-
tion

Some authors have explicitly stated that the flat metric is merely an auxiliary object,
formally useful but not tied to the causal structure of the theory [83-85, 102, 103].
The reasons given include the gauge-variance of the relationship between the null
cones and the unobservability of the flat metric. The fact that the flat metric’s
null cone is sometimes violated using otherwise-convenient gauges appears to be

another reason: it does not appear possible to fix the gauge to be, say, tensorial
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DeDonder and have the null cone relationship be automatically satisfactory. L. P.
Grishchuk has written that “the mutual disposition of the light cones of the g,, and
Nuw can be of interest only in the case when the attempt is made to interpret the
metric relations of the world as observable,” which efforts are of course bound to
fail [85]. Unfortunately, Grishchuk has overlooked the same distinction that Gupta,
Kraichnan, Thirring, Feynman, and probably many others missed, and has failed to
recognize that, if the null cones can be made consistent, then a conceptual difficulty
posed by quantization would be eliminated. A. N. Petrov describes the same view

(though we have taken the liberty of spelling out with words the abbreviations used):

However, the background in the field formulation of general relativity
is not observed. The movement of test particles and light rays is not
connected with the geometry of the background spacetime. The light
velocity in the background spacetime can approach an infinite value.
In contrast, in the geometrical formulation of general relativity the test
particles and the light rays define the geodesics in real physical space-
time. Thus, the background spacetime in the field formulation of general
relativity is an auxiliary and nonphysical (fictitious) concept which is

necessary for the description of true physical fields [103] (pp. 452, 453).

We admit inability to understand how a fictitious entity could be “necessary for the
description of true physical fields”. It would appear that if the object in question
is necessary for the description of true physical fields, then it is real; but if it is not
real, then it is not necessary for the description of true physical fields. But let us

continue with Petrov:

We stress that the field formulation of general relativity and the geo-
metrical formulation of general relativity are two different formalisms
for a description of the same physical reality and they lead to the same

physical conclusions . . . there are no obstacles in treating any solution to
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general relativity (spacetime) in the framework of the field formulation
of general relativity. However, it is clear that a manifold which sup-
ports a physical metric will not coincide in general with a “manifold”
which supports an auxiliary metric. As a result, in the field configuration

” “membranes,”

on the auxiliary nonphysical background, “singularities,
“absolute voids,” and others can appear. This leads to cumbersome
and confused interpretations and explanations. Thus, the whole spirit
of general relativity itself requires the investigation of many problems
with the help of the geometrical formulation technique. However, there

exists problems [sic] for an investigation in which the field formulation

technique is more convenient [103] (p. 453).

Thus, the field formulation is seen as a tool that sometimes is helpful, but sometimes
not so convenient, and in any case not to be trusted in addressing deep issues. If the
flat metric tensor is to be praised so faintly, one might wonder if it is worth using.

A similar attitude has been taken by D. E. Burlankov [86], who did some
early work using a flat background metric as a convenient fiction [38]. Burlankov
objects to the fundamental status of Minkowski spacetime because of the gauge-
variance of the null cone relation, and also because the curved null cone differs from
the flat null cone [86]. The former argument will be addressed in due time. The
latter argument, in Burlankov’s hands, is said to imply that only curved metrics
conformally related to the flat background would be acceptable. But this objection
is just unpersuasive. It is not worrisome if the gravitational field slows light down
below the universal velocity constant, as long as gravity does not speed light up.
Burlankov’s position [86] is fairly similar to that of Zel’dovich and Grishchuk, but
a few points deserve special notice. Burlankov is sympathetic to idea (asserted by
Logunov et al.) that general relativity has difficulties, noting “the collapse problem,

the singularity problem, strong gauge invariance, and the absence of a ‘natural’
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energy-momentum complex” (p. 176). However, Burlankov finds that the “solution
of the amazing problems in gravity does not lie” in the bimetric formalism (p. 177):

Minkowski space cannot be taken as fundamental because of the null cone difficulties.

5.5 Geometrical Formulation: the Flat Metric as a Use-

less Fiction

Other authors have taken the view that the flat metric is a blemish on the pure
geometric beauty of general relativity, and thus is to be avoided in general. Such a
description would seem to fit R. Penrose [81], J. Bi¢dk [279], and L. Shepley'. This
negative attitude toward the flat metric seems to have motivated Penrose to note
that the null cone issue really must be handled if the Lorentz-covariant approach
(which he associates with Weinberg) is to be considered satisfactory. Penrose, recog-
nizing the connection between scattering theory and the Lorentz-covariant perturba-
tion approach to gravity, poses a dilemma for the latter. Using global techniques, he
shows that either the curved null cone locally violates the flat one, or the scattering
properties become inconvenient because the geodesics for the two metrics continue
to diverge even far away from a localized source. He concludes that a “satisfactory”
relationship between the two null cones cannot be found. Concerning the horns of
Penrose’s dilemma, we simply accept the second one. It is known that long-range
fields have inconvenient scattering properties [284]. We find that the root of the
divergence between the geodesics is merely the long-range % character of the po-
tential in the conformally invariant part of the curved metric. If the fall-off were a
power law of the form 1_1%, € > 0, then no difficulty would arise. So this objection is
basically a reflection of the fact that a long-range symmetric tensor potential exists.

But why is that a fundamental problem?

!We thank Prof. Shepley for discussing this issue.

83



5.6 Special Relativistic Approach: the Flat Metric as
the Truth

Besides the field-in-fictitious flat spacetime and geometrical approaches, there is
another attitude that one might take toward the flat metric approach, wviz., that
special relativity is correct in its usual strict sense (global Lorentz invariance, trivial
spacetime topology, and no violation of 7-causality), and thus that the gravitational
field must be made to respect the flat metric’s causal structure. This view is more
conservative than the other views [43] (p. 101), and is sufficiently obvious and at-
tractive an idea that one might expect it to have been explored thoroughly, probably
decades ago, and either sorted out or refuted. But as a matter of fact, we do not
find that to be the case. Demonstrating this surprising fact was one purpose of the
substantial review of the history of the subject above. Some authors have claimed
to have sorted it out, and some to have refuted it, but we disagree on both points,
as will appear below.

For the sake of convenience, this approach needs a name. We will use the
term “special relativistic approach” (SRA). We have resisted calling this approach
a “formulation” to match Petrov’s “field formulation” and “geometric formulation,”
because it will appear below that the SRA is in fact physically distinct, though
in a rather subtle and recondite way, from the geometrical approach. Some have
objected to regarding a theory based on the Einstein equations as something other
than general relativity [83-85]. Others, such as L. Shepley, have insisted that the
SRA is distinct from general relativity?. Perhaps the common usage of the term
“general relativity” is simply too vague to provide a resolution to this difficulty. If
nothing else were at stake, one would avoid pretentious claims of a new theory. But
as will appear below, there might in fact be a physical difference, which it would be

logically possible to test, between the two approaches. In particular, the phenomena

*We thank Prof. Shepley for discussing this issue.
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of collapse to form black holes seem to be altered somewhat in the SRA, not least
because the SRA implies global hyperbolicity.

Some terminology will be helpful. Let us agree to refer to lengths and times
measured using ordinary rods and clocks, which respond to g, , as “physical” lengths
and times, but lengths and times measured using ideal rods and clocks, which are not
affected by gravity and thus respond to 7,,, “metaphysical” lengths and times. Let
us also write ds? for the g-interval and do? for the n-interval. The terms “physical”
and “metaphysical” are parallel to the more traditional terms “renormalized” and
“unrenormalized,” but we find our terms more descriptive of our viewpoint. Suppose
that one wants to carry a wristwatch around in a gravitational field in order to know
what time it is and interact with others. It is not obvious simply from the terms used
that one wants a “renormalized” watch, but it is obvious that one wants a “physical”
watch in order to live successfully in the physical world. On the other hand, suppose
that one wants to know whether to take seriously the infinite character of ¢ = co in
naive coordinates for the Schwarzschild solution in the SRA. It is not obvious that
one would trust a “unrenormalized” clock, and indeed many authors have heaped
insults on the readings of such ethereal clocks. But it is indeed obvious that a
“metaphysical” clock is to be trusted about co in preference to a merely “physical”
clock. Our terminology is thus well-suited to a program of taking the taking the flat
metric, including its causal structure, seriously, a goal perhaps not shared by some
authors who have trafficked in “renormalized” and “unrenormalized” measurements.
It should be clear that while both the field formulation and the special relativistic
approach use a flat background metric and share many mathematical results, the
SRA takes a realist attitude toward the flat metric, whereas the field formulation
takes an antirealist attitude.

The SRA has the advantage of simple and fixed notion of causality at the

classical level, because the flat null cone serves as a bound on the curved one. In this
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view, one becomes less dependent on the study of topology, global techniques, careful
definitions of causality of various sorts, and the like, such as modern texts contain
[127,152]. The SRA is therefore simpler in an obvious way than the alternatives.
There seems to be no difficulty in extending this nondynamical causal structure
into the quantum regime, so there should be no problem in writing down equal-
time commutation relations, etc. in the usual way, which question worried Isham
above [292]. Thus, the worries expressed by Ashtekar and Geroch, Isham, van
Nieuwenhuizen, Wald and Weinstein above are resolved.

While the special relativistic approach to Einstein’s equations is locally and
classically equivalent to the usual theory, as we saw earlier, there might be differ-
ent global or quantum properties. For example, though flat spacetime with trivial
topology is stable in general relativity [289], closed flat space is unstable [290], so it
appears that the usual topology is more than just a simple and convenient choice
for the SRA. Also, it will turn out below that some regions of spacetime in complete
exact solutions of the geometrical theory simply do not exist in the SRA. Moreover,
the SRA of general relativity has less gauge freedom than the geometrical and field
formulations, because any gauge choice that leads to an improper null cone rela-
tionship must be prohibited. (The use of a new set of variables, in which only the
null-cone respecting field configurations are possible, would be a way to prohibit
them. We propose such a set below.) For that reason, some old and settled issues
in the geometrical framework would have to be reconsidered in view of the differ-
ent postulates. In particular, given that the gauge freedom is traditionally used to
dispose of the ‘singularity’ at the Schwarzschild radius, and also that there is no
possibility in the SRA of adding more spacetime ‘past infinity’, it is clear that the
Schwarzschild radius will need careful consideration. Below we begin to consider
that issue.

The attitude of regarding the flat spacetime as fundamental has been most
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visibly promoted by A. A. Logunov and colleagues [89-91] (to name a few).® To
distinguish their view clearly from any geometrical notions, they have given the name
“relativistic theory of gravitation” (RTG) to the work. The nature of the RT'G has
evolved slightly over the years. For some time it consisted in Rosen’s tensorial I'T'
action for general relativity and his tensorial DeDonder condition [6] postulated as
necessary, presumably with specification of trivial topology for spacetime. There
is also attached a “causality principle” that requires that the curved null cone not
violate the flat one [89,281,282]. This causality principle, which seems to have
appeared following criticisms by Zel’dovich and Grishchuk [84, 85], is the feature
most relevant to our purposes.4

Logunov et al., being committed to the flat spacetime view, regard the ques-
tion of compatible null cones as worthy of solution. Furthermore, they believe it
to be solved already by their causality principle, which we shall call the Logunov
Causality Principle (LCP). The LCP states that field configurations that make the
curved metric’s null cone open wider than the flat metric’s are physically meaning-
less [89,281,282]. As they observe, satisfaction is not guaranteed (even with their
gauge conditions, notes Grishchuk [85]), which means that the set of partial differ-
ential equations is not enough to define the theory. The LCP is therefore enforced
“by hand.” Some causality principle is indeed needed, but the LCP strikes us as
somewhat arbitrary and ad hoc. One would desire three improvements. First, one
would prefer that the causality principle be tied somehow to the Lagrangian den-

sity, not separately appended [85]. Second, one wants a guarantee that there exist

3This school has also produced an energetic critique of geometrical general relativity as lacking
physical meaning, in the sense of lacking conservation laws and failing to make definite predictions.
One need not accept this critique to be partial to flat spacetime.

*More recently, the RTG has sometimes featured acquired a mass term, which makes the action
that of Freund, Maheshwari, and Schonberg’s massive general relativity [260], from which the tenso-
rial DeDonder condition follows automatically from the gravitational (and matter) field equations,
much as the Lorentz condition follows in Proca’s massive electromagnetism. As Logunov et al. note,
the promise of gravitational energy localization and like benefits of the flat spacetime formalism
are best realized only if the gauge invariance is broken. However, we are interested especially in
the massless version, and it will appear below that massive versions faces major difficulties.
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enough solutions obeying the principle to cover all physically relevant situations.
Third, one would prefer a more convenient set of variables to describe the physics.
We begin to address these matters below.

Concerning the first shortcoming, it might be suggested [91] that the Logunov
causality principle is analogous to the energy conditions [152] that one typically
imposes. However, this analogy strikes us as weak. The dissimilarity is in how
the two conditions accept or reject solutions. The energy conditions are used to
exclude or include whole classes of matter fields, so any configuration with one sort
of matter field—perhaps a minimally coupled massless scalar field with the correct
sign in the Lagrangian density— is permitted, whereas any configuration with another
sort of matter field—perhaps the scalar field with the wrong sign— is prohibited as
unphysical. This criterion expresses the idea that some sorts of matter are physically
reasonable, but others are not. Furthermore, there is no worry that a permissible
sort of matter could evolve into a forbidden sort in accord with the field equations.
On the other hand, the LCP cannot give (or at least has not given) a similarly
general explanation for why it rejects some solutions of the field equations. A more
serious problem is that it cannot give any assurance that it permits a sufficiently
large number of solutions to cover all physical situations that arise.

Let us focus our attention on the second difficulty, the possible shortage of
solutions, which is potentially very serious. A priori there is no reason to believe
that one can (partially) fix the gauge, and then still reject some solutions in the
appropriate gauge as unphysical. A posteriori there seems to be good evidence
that this worry is serious. We will employ a somewhat homely example because of
its obvious physical relevance. Suppose that a young man named Nicholas has a
drum set and a pair of sticks. If Nicholas is a skilled drummer, then the motion
of his sticks will be quite under his control, but nevertheless the position of his

sticks as a function of time will be rather wild and violent from a kinematical point
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of view. In particular, we can have great confidence that the motion of his sticks
(and arms) will be such that their quadrupole moment will have a nonvanishing
second time derivative, in general. We can also be confident that the traceless part
of this second time derivative, contracted with itself, tends not to vanish. But that
means that Nicholas emits gravitational radiation, for this is just the formula for
the average power radiated in general relativity, under suitable assumptions such
as a slowly varying source [152]. There will be anisotropic but roughly spherical
waves of gravitational radiation diverging from Nicholas. Far away from him, these
waves will look approximately like plane waves obeying linearized gravity with the
tensorial Hilbert gauge condition (or approach such waves for high frequencies, in
the massive case). The behavior of plane monochromatic single-polarization waves
in linearized general relativity is well-known [304]. In this gauge, the two energy-
carrying polarizations both consist of alternately shrinking one transverse direction
and stretching the other, while the time (lapse) and spatial propagation directions
are unaffected [304]. (Below we will analyze this linear solution using a generalized
eigenvalue-eigenvector formalism.) But the shrinking of one spatial eigenvalue while
leaving the time lapse unaltered implies a violation of the flat metric’s null cone.
In short, it appears that, if the exact behavior of the plane waves is anything like
the linearized behavior, then monochromatic gravitational radiation satisfying the
tensorial DeDonder condition generically violates the Logunov causality principle.
While monochromatic radiation is a rather idealized case, and thus perhaps need
not obey n-causality by itself for a satisfactory theory, it is not at all obvious that
the superposition of monochromatic waves which all individually violate n-causality
yields a sufficiently generous set of realistic waves that satisfy that condition. Thus,
there is reason to worry that the Logunov causality principle cannot be implemented
in worlds in which Nicholas plays drums.

Evidently, arranging for wave solutions to obey the causality principle is
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rather more difficult than addressing most of the solutions that Logunov and col-
laborators have addressed to date.® Regarding standard homogeneous and isotropic
cosmological solutions, perhaps one could learn to accept a requirement that the
scale factor just could not take certain values [280]. Concerning the Kerr-Newman
solution [281], the exterior causes no problem, and the physical significance of the
vacuum interior is open to question—especially given a mass term or the reduction of
the gauge freedom, as the RT'G requires. As far as Kasner solutions are concerned
[282], the world looks little like a Kasner solution; maybe somehow it just couldn’t
have looked like a Kasner solution—it’s hard to say. Perhaps one could accept these
requirements. But no one will accept the idea that Nicholas is unable to play his
drums, because he does it every day. It is therefore rather likely that the Logunov
causality principle does not admit enough solutions to account for manifestly physi-
cally relevant situations, such as Nicholas’s drumming. Thus, some way of enforcing
null cone consistency without excluding necessary solutions of the field equations
must be sought.

The lesson that we draw from the apparent shortcomings of the RTG in its
present and past forms is not, pace some authors [83-85], that the flat metric must
be considered merely a useful fiction. Rather, if the SRA is to be maintained, then a
more fundamental approach to securing consistency between the null cones must be
sought. One will want to use the gauge freedom of general relativity to secure null
cone consistency. In that way, one can be confident that a sufficiently large number
of solutions exist, because one member from each equivalence class of solutions will
be included.

We pause to note that some related matters pertaining to the light cone in

string theory have been considered by E. Martinec [123].

®Recently, I. P. Denisova has investigated the effective metric of a plane polarized electromagnetic
wave, but this solution applies only to the massive version of the RTG. We discuss it below.
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5.7 The Role of Positivism in the Neglect of the Null

Cone Consistency Issue

It is interesting to compare the slowly increasing attention given this problem from
1939 to 2001 to the slowly decreasing influence of positivist and other radical em-
piricist philosophies, which laid great emphasis on observability and denigrated un-
observable entities. Such philosophies were very influential on physicists in the first
half of the 20th century, in no small part due to Mach, Einstein (at least in the era
of special and general relativity), Bohr, and Heisenberg, and persist to some extent
even today in physics, especially in the “modern” physics that they helped to found,
relativity and quantum mechanics [187,188]. This remains the case though strict
positivism has fallen on hard times among philosophers [187]. One conspicuous
example has been noted by W. L. Craig, a marginal note in Misner, Thorne, and
Wheeler’s standard text on gravitation: “Newton’s absolute space is unobservable,
nonexistent.” [151] (p. 19) [187] (p. 120). Our aim is not to defend Newton’s ab-
solute space, but merely to note the facility with which this highly influential text
feels able to deduce the nonexistence of an entity from its unobservability, a sign of
positivist influence.

These issues carry over rather plainly into remarks made below in the history
of the null cone consistency issue. As was shown above, it has often been concluded
that if the flat metric is not observable, then it does not matter, or even does not
really exist, being at most a convenient fiction. The role of positivist philosophy in
diverting attention from the null cone consistency issue is in fact explicitly supported
in the work of N. Straumann [88,124]. Straumann, appealing to Einstein in part,
cites a positivistic motivation for discounting the flat metric sometimes used to

derive general relativity [124]. He writes about theories of gravity in flat space-time:

In spite of these arguments [such as how the bending of light shows that
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the effective spacetime is not conformally flat] one may ask, as many
have done, how far one gets with a theory of gravity in Minkowski space,
along the lines of electrodynamics, admitting the nonobservability of a
flat metric. Such attempts have shown that a consequent development
finally allows the elimination of the flat metric leading to a description
in terms of a “curved” metric which has a direct physical interpretation.
The originally postulated Poincaré invariance turns out to be physically

meaningless and plays no useful role.® We may summarize as follows:

In the presence of gravitational fields, Minkowski space can no longer
be physically realized. If one requires from the theory that the defining
concepts have an empirically verifiable meaning, then it is more sensible
to relate its assertions to the orbits of point masses or light rays, rather

than to an unobservable Minkowski space. (p. 87)

Alas, Straumann has made the same error as others above in identifying physical
significance with appearance in the field equations, because the flat metric could
perhaps still be physically significant by providing an a prior: fixed causal structure
which bounds the dynamical causal structure. But our present concern is not so
much whether his statement is correct, as whether it reflects positivist philosophy.
In case the clause about an “empirically verifiable meaning” is not enough to show
positivist influence, Straumann, though affirming some other thought currents as
having some role, concludes, “[ijn the previous sections we have, for the most part,
taken a positivistic attitude” [124] (p. 87).

As the status of positivism has plummeted in the last few decades among
philosophers [187], it seems appropriate to reconsider its legacy in other fields. Thus,
it is quite fitting that the null cone issue receive increased attention nowadays,

though much work remains to be done.

8Straumann’s reference here appears to be misnumbered as 21, for the obvious relevant reference
is S. Deser’s 1970 paper, which he lists as 23.
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Chapter 6

Describing and Enforcing the
Proper Null Cone Relationship

6.1 Consistent Null Cones by Suitable Gauge Restric-

tions?

As several authors above pointed out, the local relation between the two null cones
is indeed gauge-dependent in general relativity [81,85]. One might therefore hope
to design a set of gauge-fixing conditions that yield the desired behavior, or at least
to impose restrictions on the variables that exclude unsuitable gauge choices while
permitting suitable ones. Rather than putting the conditions in arbitrarily by hand,
one prefers to implement them in the action principle somehow.

It might be hoped that the ADM split of the metric [151, 152], which is quite
useful in applications and in identifying the true degrees of freedom, would be a good
language for discussing the null cone consistency issue. Let us see if that is the case.
For convenience we choose Cartesian coordinates, so that 1, = diag(—1,1,1,1). We
therefore make an ADM split of Logunov’s 4-dimensional analysis of the causality

principle. In considering whether all the vectors V# lying on 7’s null cone are g-
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timelike, g-null, or g-spacelike, it suffices to consider future-pointing vectors with
unit time component; thus V# = (1, V*), where VV* = 1 (the sum running from 1
to 3). The causality principle can be written h;;(3* + V)(87 + V7) — N? > 0 for
all spatial unit vectors V?. Here the spatial metric is hi;, the lapse is IV, and the
shift is 4*. One could visualize this equation as the requirement that an ellipsoid
(not centered at the origin if the shift 5 is nonzero) not protrude from the closed
unit ball. Unfortunately, the “all” in “for all spatial unit vectors” is not too easy to
handle, so we will in fact look for a better language than an ADM split for discussing
null cone consistency.

If there to be any is hope for restricting the gauge freedom so as to ensure
that the curved null cone stays consistent with the flat one, then there must be
“enough” gauge freedom to transform any physically significant solution into a form
that satisfies n-causality. Here we argue that gauges satisfying the causality prin-
ciple likely do exist, so there is enough gauge freedom. Given a flat background
metric and a Cartesian coordinate system for it, one can readily draw the flat and
curved metrics’ light cones on the tangent space at some event (apart from obvi-
ous difficulties with higher-dimensional pictures). One wants the curved cone to be
located on or within the flat one. The flat cone has the usual ideal conical shape,
whereas the curved one is distorted and tilted, in general. In a bimetric context, it
is basically the case that the curved spatial metric controls the width of the light
cone, while the shift vector determines its tilt from the vertical (future) direction
and the lapse function determines its length. (Given that only the conformal part
of the metric affects the null cone, the ADM description is a bit redundant.) For
generally covariant theories such as general relativity, the spatial metric contains
the physical degrees of freedom; the lapse and shift represent the gauge freedom,
so they can be chosen arbitrarily, at least over some region. (For slightly bimetric

theories, one has one fewer arbitrary function to choose, so the argument is consid-
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erably less plausible.) By analogy with conditions typically imposed in geometrical
general relativity to avoid causality difficulties [152], one would prefer, if possible,
that the curved light cone be strictly inside the flat light cone (i.e., be n-timelike),
not tangent to it, because tangency indicates that the field is on the verge of 7-
causality violation. Under quantization, one might expect fluctuations to push the
borderline case into the unacceptable realm, so it seems best to provide a cushion
to avoid the problem, if possible. This requirement we call “stable n-causality,” by
analogy to the usual condition of stable causality [152]. One might worry that this
requirement would exclude all curved metrics conformally related to the flat one,
and even the presumed “vacuum” g,, = 7, itself. This worry is justified, but if
one takes the message of gauge invariance seriously, then there is no fundamental
basis for preferring g,, = 7m,, over having the curved metric agree up to a gauge
transformation with the flat metric. With this relaxed criterion, one can avoid the
troubles with the folded surface discussed below.

Let the desired relation between the null cones hold at some initial moment.
Also let the curved spatial metric and shift be such at some event in that moment
that they tend to make the curved cone violate the flat one a bit later. By suitably
reducing the lapse, one can lengthen the curved cone until it once again is safely
inside the flat cone. By so choosing the lapse at all times and places, one should be
able to satisfy the causality principle at every event, if no global difficulties arise. In
a rough sense, one might use up % of the gauge freedom of general relativity, while
leaving the remainder.

Generally it is assumed that the reason that the gravitational Hilbert action is
gauge-invariant is because such gauge invariance reflects a deep feature of the world.
However, as we saw above, one can give a somewhat more humble explanation: it is
known from the flat spacetime approach that eliminating the time-space components

of the field is essential for positive energy properties in Lorentz-invariant theories
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[4, 75], though in fact the time-time component need not be [80]. We might suggest
that the gauging away of the time-time component is necessary rather to respect

n-causality.

6.2 The Causality Principle and Loose Inequalities

As should be clear from the worries about conformally flat curved metrics, the de-
sired relationship between the two null cones takes the form of some loose inequalities
a < b. Such relations have been called “unilateral” [305-309] or “one-sided” [310-
312], typical examples being nonpenetration conditions. Such constraints are rather
more difficult to handle than the standard “bilateral” or “two-sided” constraint
equations that most treatments of constraints in physics discuss. Loose inequalities
are also more difficult to handle than strict inequalities a < b, such as the pos-
itivity conditions in canonical general relativity [313,314, 332-334], which require
that the “spatial” metric be spatial. One might eliminate the positivity conditions
by a change of variables [314] that satisfies the inequalities identically, such as an
exponential function h = e¥, as Klotz contemplates. While that is possible, it does
not come for free: the “ground state” in which the curved metric equals the flat
one is not permitted for any finite value of the argument. However, given the gauge
freedom, this objection does not seem compelling, even if it complicates lineariza-
tion. (Using an even function such as cosh to solve the inequality would seem to
introduce even greater difficulties, so we prefer the exponential form.)

If one does leave causality constraints in the theory, rather than solving them
as was suggested in the previous paragraph, then one must worry about impulsive
constraint forces. That would be the case if one lets the curved metric evolve
freely until it “hits” the flat null cone, at which point it might “bounce off,” or
perhaps become deformed like a face against a window, neither of which seems like

an appealing prospect. To avoid such blemishes, which seem difficult to accept in
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an ostensibly fundamental classical field theory, one prefers to make the constraint
“ineffective”, so the constraint force vanishes on account of the constraint itself [319].
Better yet, let us change the configuration space of the theory so that the problem

is avoided altogether.

6.3 New Variables and the Segré Classification of the
Curved Metric with Respect to the Flat

Previous formulations of the causality principle, which have used the metric [89, 90,
281, 282] or ADM variables as above, have been sufficiently inconvenient to render
progress difficult. This was our third complaint about Logunov’s formulation of
n-causality. One could achieve a slight savings by using the conformally invariant
weight —% densitized part of the metric g,“,(—g)’i. Then nine numbers at each
event are required (the determinant being —1), which is a bit better than the 10 of
the full metric, but still too many.

One would like to diagonalize g,, and 7,, simultaneously by solving the

generalized eigenvalue problem

g;qu = AUWV“, (6'1)

or perhaps the related problem using g,,(—g) i However, in general that is im-
possible, because there is not a complete set of eigenvectors, due to the Lorentzian
nature of the metric [320-324] (and references in ([324]). There are four Segré types
for a real symmetric rank 2 tensor with respect to a Lorentzian metric, the several
types having different numbers and sorts of eigenvectors [320-323].

To our knowledge, the only previous work to consider a generalized eigenvec-

tor decomposition of a curved Lorentzian metric with respect to a flat one! was done

!There is also a literature on choosing coordinates to diagonalize a curved metric [326]. According
to K. P. Tod, “there is very little change for Lorentzian metrics” compared to Riemannian ones
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by I. Goldman [325], in the context of Rosen’s bimetric theory of gravity, which does
not use Einstein’s field equations and is a quite distinct theory. Goldman’s work
was tied essentially to Rosen’s theory, so it does not address our concerns much.
The lack of gauge freedom in Rosen’s theory also ensured that the curved null cone
was not subject to adjustment, unlike the situation in general relativity with a flat
metric. As it happens, in Rosen’s theory, for static spherically symmetric geome-
tries, the causality principle is always violated?, so that theory does not qualify for
a SRA. However, Einstein’s theory does evidently have enough gauge freedom to
make a special relativistic approach possible.

An eigenvalue-eigenvector decomposition for the spatial metric was briefly
contemplated by Klotz and Goldberg [313, 314]. For space, as opposed to spacetime,
one has a positive definite background (identity) matrix, so the usual theorems
apply. But Klotz and Goldberg, who did not assume a flat metric to exist, found
little use for the eigenvector decomposition because of the nontensorial nature of
the 3 x 3 identity matrix. Such a decomposition, even given a flat metric tensor, is
still somewhat complicated if the ADM shift is nonvanishing (gg; # 0), as it usually
is. Diagonalization has been quite useful in the study of spatially homogeneous
cosmologies [318], but our interest is not in specific solutions only, but the general
case. However, one expects that studying such models would be instructive.

Let us now proceed with the diagonalization project. Given that a complete
set of generalized eigenvectors might fail to exist, it is necessary to consider how
many eigenvectors do exist and under which conditions. This problem has been
substantially addressed in a different context by G. S. Hall and collaborators [320—
323], who were interested in classifying the stress-energy or Ricci tensors with respect

to the (curved) metric in (geometrical) general relativity. Such problems have in fact

[326]. But there is a large change for the eigenvalue problem of interest to us in changing from a
Riemannian to a Lorentzian background metric, so the connection between these problems must
be somewhat loose.

*Prof. Goldman has kindly provided this information from his dissertation in Hebrew.
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been studied over quite a long period of time [324] (and references therein), but we
find the work of Hall et al. to be especially convenient for our purposes. There exist
four cases, corresponding to the four possible Segré types (apart from degeneracies)
for the classified tensor. The case {1,111} has a complete set of eigenvectors (1
timelike, 3 spacelike with respect to 7), and is thus the most convenient case. The
case {211} has two spacelike eigenvectors and one null eigenvector (with respect to
n), whereas the {31} case has one spacelike eigenvector and one null one. The last
case, {zz11} has 2 (real) spacelike eigenvectors and 2 complex eigenvectors.

We now consider the conditions under which metrics of each of these Segré
classes obey 7-causality. To give a preview of our results, we state that the {1,111}
and {211} cases sometimes do obey it, although the {211} metrics appear to be
dispensable. But no metric of type {31} or {z 211} obeys the causality principle, so
these types can be excluded from consideration for the SRA.

Hall et al. introduce a real null tetrad of vectors L*, N*, X# Y# with vanish-
ing inner products, apart from the relations 7,, L*N" = n,, X* X" =, YY" =1,
so L* and N* are null, while X# and Y* are spacelike. (The signature is —+ ++.)
Expanding an arbitrary vector V# as V¥ = VLIt + VNNH 4 VXXH 4+ VYYH
and taking the n-inner product with each vector of the null tetrad reveals that
VE =, VENY, VN =, VHLY, VX = 9, VXY and VY = 5, VHY". Thus,
the Kronecker delta tensor can be written as 65 = LXN, + L,N* + X*X, + Y*Y,,

indices being lowered here using 7),,. For some purposes it is also convenient to

u — LP4NH
Z VR

We employ the results of Hall et al. [320-323], who find that the four possible

define the timelike vector T# = L“hN £ and the spacelike vector

Segré types (ignoring degeneracies) for a (real) symmetric rank 2 tensor in a four-
dimensional spacetime with a Lorentzian metric can be written in the following

ways, using a well-chosen null tetrad. The type {1,111} can be written as

Juv = 2POL(pNu) +p1 (LuLV + NuNV) + p2XpXV + P3YuYu; (62)
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or equivalently
Juv = _(pO - pl)TuTu + (,00 + pl)Z}LZI/ + p2XuXV + p3YuYu- (63)

As usual, the parentheses around indices mean that the symmetric part should be

taken [152]. The type {211} can be written as
9w = 2p1 L, Nyy + ALy Ly + p2 X, Xy + p3Y),Y,, (6.4)
with A # 0, the null eigenvector being L¥. The type {31} can be written as
9w = 201L(u Ny + 2L, Xy + ;1 X Xy + p2Y, Y, (6.5)
the null eigenvector again being L#. The final type, {z Z11}, can be written as
Guv = 2p0L(uNyy + p1(LuLy, — NyN,) + p2 X X, + p3Y,Y,, (6.6)

with p; # 0. The requirements to be imposed upon the curved metric for the moment
are the following: all n-null vectors must be g-null or g-spacelike, all n-spacelike
eigenvectors must be g-spacelike, g, must be Lorentzian (which amounts to having
a negative determinant), and g,, must be connected to 7,, by a succession of small
changes which respect n-causality and the Lorentzian signature. It convenient to
employ a slightly redundant form that admits all four types in order to treat them

simultaneously. Thus, we write

9w = 2AL Ny + BL,Ly, + CNyN, + DX, X, + EY,)Y, + 2F L, X,y.  (6.7)
Using this form for g,,, one readily finds the squared length of a vector V# to be
g VFVY = 24VEVY - BV Y2 + o(VE)?2 + D(V*)2 + B(VY)? + 2FVXV N (6.8)

It is not clear a priori how to express sufficient conditions for the causality
principle in a convenient way. Obviously it is sufficient that every g-timelike vector

be n-timelike and every g-null vector be 7-null or 7-timelike. One could alternatively
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say that every n-spacelike vector must be g-spacelike and every n-null vector be g-
null or g-spacelike. However, timelike and spacelike vectors are not very convenient
to use because of the inequalities inherent in the word “every”. But it will turn out
that in four dimensions, the necessary conditions that we can readily impose are

also sufficient.

6.4 Necessary Conditions for Respecting the Flat Met-

ric’s Null Cone

The causality principle requires that the n-null vectors L* and N# be g-null or g-
spacelike, so B > 0,C > 0. These conditions already exclude the type {z z11},
because the form above requires that B and C differ in sign. It must also be the
case that the n-spacelike vectors X* and Y*# are g-spacelike, so D > 0 and E > 0.
Not merely L* and N¥, but all #-null vectors must be g-null or g-spacelike.

This requirement quickly implies that £ > A, and also requires that
B(VN? +2FVXVYN + (D — A)(V¥)? > 0. (6.9)

Here there are two cases to consider: F = 1 for type {31}, and F = 0 for types
{1,111} and {211}. Let us consider F' = 1. The {31} has B = 0, so the equation
reduces to 2FVXVYN 4+ (D — A)(VX)2 > 0, which implies that either VX = 0 or,
failing that, 2FVN + (D — A)VX > 0. Clearly one could also consider a null vector
with the opposite value of VX, yielding the inequality 2FVN — (D — A)VX > 0.
Adding these two inequalities gives 4V > 0, which simply cannot be made to hold
for all values of V. Thus, the F = 1 case yields no 7-causality-obeying curved
metrics, and the {31} type is eliminated. It remains to consider F = 0 for the
{1,111} and {211} types. The resulting inequality is B(V™)2 + (D — A)(VX)2 > 0.
Because B > 0 has already been imposed, it follows only that D > A.

Let us summarize the results so far. The inequalities B > 0 and C > 0 have
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excluded the type {zz11}. We also have D > 0, D > A, E > 0, E > A. Finally,
F = 0 excludes the type {31}, so only {1,111} and {211} remain.

We now impose the requirement of Lorentzian signature. At a given event,
there can be no objection to finding a coordinate z such that (3—‘1)“ = z* and
(flipping the sign of y* if needed for the orientation) a coordinate y such that
(3%)“ = y*; these two coordinates can be regarded as Cartesian. Then the null
vectors L* and V¥ lie in the ¢t — z plane of this sort of Cartesian system. The curved
metric has a block diagonal part in the & — y plane with positive determinant, so
imposing a Lorentzian signature means ensuring a negative determinant for the
2 X 2 t — z part. The vectors L* and N* in one of these coordinate systems take
the form L* = (L% 0,0,L3) and N* = (N° 0,0, N3). Given the Cartesian form
Nuw = diag(—1,1,1,1) and the nullity of these two vectors, it follows that |L%| = |L3|
and |N°| = |N3|. Therefore the relevant parts of the curved metric can be written

in such a coordinate basis as

goo = 2AL°N° + B(L°)* + C(N®)?,
gos = g3o = —A(N°L? + L°N3) — BL°L3 — CNON3,

gs3 = 2AL*N? + B(L*)? + C(N?)2 (6.10)

Taking the determinant using Mathematica(©® and recalling that |L°| = |L®| and
|[N% = |N3|, one finds that the condition for a negative determinant is 2(A? —
BCO)|L3?|N32(sign(L°L3NON3) — 1) < 0. The linear independence of L* and N*
implies that sign(L°L3NON3) = —1, so the determinant condition is A2 — BC > 0.
Because B and C are both nonnegative, A2 — BC > 0 implies that A # 0. But the
requirement that the curved metric be smoothly deformable through a sequence of
signature-preserving steps means that the curved metric’s value of A cannot “jump”
from one sign of A to another, but must agree with the flat metric’s positive sign.

It follows that 4 > 0.

8 Mathematica is produced by Wolfram Research, www.wolfram.com.
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We now summarize the necessary conditions imposed:

A>0, A?2>BC, B>0,
C>0, D>A, E>A,

F=0. (6.11)

6.5 Sufficient Conditions for Respecting the Flat Met-

ric’s Null Cone

Thus far, we have shown nothing of the sufficiency of these necessary conditions.
We now prove that these conditions are in fact sufficient. It is helpful to consider
the two types, {1,111} and {211}, separately.

For the type {1,111}, the conditions on the coefficients A, B, etc. reduce to

A>0, A>B, B>0,

C=B, D>A, E>A. (6.12)
For this form the following relations between variables hold:

A:PO, B =p1, D =py,

E = ps. (6.13)
It follows that this type can be expressed as
9w =—(A-B)T,T,+(A+B)Z,Z, + DX, X, + EY,Y,. (6.14)

Writing the eigenvalues for T#, X#  Y* and Z* as DY, D!, D2, and D3, respectively,
g g 0> M1 M2 3

one has

DY=A-B, DI=A+B, D3=D,

D3 =E. (6.15)
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One sees that the inequalities imply that the eigenvalue for the timelike eigenvec-
tor TH (briefly, the “timelike eigenvalue”) is no larger than any of the spacelike

eigenvalues:
D§ <D}, Dj<Dj Dj<D; (6.16)

and that all the (generalized) eigenvalues are positive. Let us now see that these
conditions are sufficient. Writing an arbitrary vector V¥ as V¥ = VITH + VX XK +
VYYH+VZZE, one sees that its n-length (squared) is 7, VFVY = —(VT)2+(VX)2+
(VY)2 + (VZ)2. Clearly this length is never more positive than Elgg#,,V“V” =
—(VT)2 + g—él)l)(VX)2 + g—g(VY)2 + g—g(VZ)2, so the necessary conditions are indeed
sufficient for type {1,111}.

For the type {211}, the conditions on the coefficients A, B, etc. reduce to

A>0, B>0, C=0,

D>A, E>A, F=0. (6.17)

One can write the curved metric in terms of T#, Z#, X*# and Y*#, though T# and

Z# are not eigenvectors. One then has
1 1
9w = —(A — §B)TuTv +(A+ §B)ZuZV +BZ,T,) + DX, X, + EY,Y,. (6.18)

Writing an arbitrary n-spacelike vector field V¥ as V¥ = GTHF+ HZF 4+ T X+ JY*,
with H? + I2 + J? > G2, one readily finds the form of g,, V#V”. Employing the
relevant inequalities and shuffling coefficients, one obtains the manifestly positive
result g, VFVY = A(H2 + 1>+ J2 - G?)+ {B(G— H)?+ (D — A)I* + (E — A)J%
This positivity result says that all n-spacelike vectors are g-spacelike. Earlier the
requirement that all »-null vectors be g-null or g-spacelike was imposed. These two
conditions together comprise the causality principle, so we have obtained sufficient

conditions for the {211} type also.
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The {211} type, which has with one null and two spacelike eigenvectors, is a
borderline case in which the curved metric’s null cone is tangent to the flat metric’s
cone along a single direction [327]. Clearly such borderline cases of {211} metrics
obeying the causality principle form in some sense a measure 0 set of all causal-
ity principle-satisfying metrics. Given that they are so scarce, one might consider
neglecting them. Furthermore, they are arbitrarily close to violating the causality
principle. We recall the criterion of stable causality in geometrical general rela-
tivity [152] (where the issue is closed timelike curves, without regard to any flat
metric’s null cone), which frowns upon metrics which satisfy causality, but would
fail to do so if perturbed by an arbitrarily small amount. One could imagine that
quantum fluctuations might push such a marginal metric over the edge, and thus
prefers to exclude such metrics as unphysical. By analogy, one might impose sta-
ble n-causality, which excludes curved metrics that are arbitrarily close to violating
the flat null cone’s notion of causality, though we saw that such a condition would
exclude conformally flat metrics, also. Perhaps a better reason for neglecting type
{211} metrics is that they are both technically inconvenient and physically unneces-
sary. Because n-causality-respecting {211} metrics are arbitrarily close to {1,111}
metrics, one could merely make a gauge transformation? to shrink the lapse a bit
more and obtain a {1,111} metric instead. Thus, every curved metric that respects
n-causality either is of type {1,111}, or is arbitrarily close to being of type {1,111}
and deformable thereto by a small gauge transformation reducing the lapse.

It follows that there is no loss of generality in restricting the configuration
space to type {1,111} curved metrics, for which the two metrics are simultaneously
diagonalizable. As a result, there exists a close relationship between the traditional

orthonormal tetrad formalism and this eigenvector decomposition. In particular,

“Here we refer to gauge transformations in the field formulation, where the flat metric’s null
cone is ignored. It will become evident that the notion of a gauge transformation in the special
relativistic approach, which respects 7-causality, is more restrictive.
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one can build a g-orthonormal tetrad field e/, simply by choosing the normalization
of the eigenvectors. This choice removes the local Lorentz freedom of the tetrad
(except when eigenvalues are degenerate). One might enforce this choice using an

ineffective constraint by including a term in the action of the form
/d4nuuelze%7lape%’ePEAABCE- (6.19)

Here A4BCF i5 a Lagrange multiplier which vanishes when A = B or when C = E
and which is symmetric on its first pair of indices, on its second pair of indices, and
under interchange of the first pair with the second pair.

Rewriting the generalized eigenvector equation for the case in which a com-
plete set exists, one can write gﬂ,,ei = nﬂye%Df , with the four eigenvalues being
the elements of the diagonal matrix D4. It is sometimes convenient to raise or lower
the indices of this matrix using the matrix nap = diag(—1,1,1,1). The tetrad field
has {e/;} has inverse { f;f}. We recall the standard relations g,, = f;?nAB fE and
guve's€% = nap. It is not difficult to show the how the tetrad lengths are related to
the eigenvalues: 7, €€l = D;Uls., and equivalently, n#¥ f;? fB = DAB_1t follows that
A= nyae%DAB, which says that a given leg of the cotetrad f can be expressed
solely in terms of the corresponding leg of the tetrad e/y, through a stretching, an
index lowering, and possibly a sign change, without reference to the other legs. Si-
multaneous diagonalization implies that the tetrad vectors are orthogonal to each
other with respect to both metrics.

It might be interesting to use these eigenvectors as the tetrad field in C.
Mgller’s tetrad formalism. Concerning localization of gravitational energy, Mgller
concluded that a satisfactory solution within Riemannian geometry does not exist,
but that one does exist in a tetrad form of general relativity, apart from the question
of finding six extra equations to fix the freedom under local Lorentz transformations,
because the localization does not depend on the world coordinate choice or the

global Lorentz frame [211-215]. Recent work with teleparallel gravity, a modernized
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form of Mgller’s work, reaches similar conclusions about these invariances or their
absence [335]. In the case of the present eigenvector formalism, the additional six
equations require the several eigenvectors to be n-orthogonal to each other. Given a
flat background metric tensor, one expects that world coordinate invariance might
go over to invariance under gravitational gauge transformations, yielding a bimetric
tetrad energy localization that depends only on the local Lorentz transformations,
while imposing n-orthogonality of the tetrad would remove even the local Lorentz
freedom (except in the case of degeneracies). Perhaps we have found a way to
complete Mgller’s program. However, one might note that for Mgller, the use of an
unobservable flat background metric, at least as it appeared in the work of F. H.
J. Cornish [47], “does not seem to me quite satisfactory” [215] (p. 10). Thus, we
cannot be confident that Mgller himself would have approved of our suggestion. On
the other hand, given that our null cone formalism proves that the flat metric can
be physically significant even without being directly observed in the field equations,
perhaps Mgller’s doubts would have been allayed. In any case, the use of an 7-
orthogonal tetrad in gravitational energy localization deserves study.

As we have previously noted [111], one can also use the flat metric to find a
symmetric tensorial ‘square root’ of the (curved) metric, which can be used in place
of a tetrad to couple gravity to fermions.? This procedure was implemented by Hug-
gins [42], and similar work was done a bit later by Ogievetskii and Polubarinov [274].
The quantities used take the form of an infinite series in the gravitational potential,
which is defined as something like the difference between the curved and flat metrics.
(There are various possible definitions, either contravariant or covariant, and with
varying density weights.) Being symmetric, such entities have only 10 components,

which number seems preferable to the larger number (16) of a tetrad field. But

*The existence of this formalism suggests attempting to include fermions in the above universal
coupling derivation, though the fact that the desired result is not expressed using the curved metric
alone suggests some complication.
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this advantage diminishes when the square root is compared to the “eigenvierbein”
formalism described above, which tends to have 10 components also. Moreover, the
infinite series is not too convenient for making gauge transformations. Finally, the
square root of the metric is not known to have any close connection to the null cone
issue in general, whereas the eigenvierbein is. But that relationship is a fundamental
issue for the SRA, so the eigenvierbein is to be preferred over the square root of the

curved metric in the SRA.

6.6 Linearized Plane Waves a Difficulty for the Logunov
Causality Principle

As was stated in connection with Nicholas’s drumming, monochromatic plane grav-
itational waves satisfying the linearization of the Einstein equations and the Hilbert
(linearized DeDonder) gauge appear to violate n-causality in general. We will now
show that in more detail, using Ohanian and Ruffini [304] as our guide, while mak-
ing use of the eigenvalue technology introduced above. These results will also hold
approximately for the Maheshwari-Logunov massive theory for large frequencies and
weak fields.

31"y (with 4f = v) and

Defining a trace-reversed potential ¢F = v —
imposing the Hilbert gauge 9,¢*” = 0, one puts the linearized Einstein equa-
tions in the form 02¢*” = (. Because we desire plane wave solutions, let Ap*’ =
He! cos(kqx®+1)), where €#” is a constant polarization tensor, k% a constant polar-
ization vector, and H is a small number fixing the amplitude. We let the waves travel
in the z-direction, so k* = w(1,0,0,1). We also define the vectors €| = (0,1,0,0)
and €5 = (0,0,1,0).

The gauge condition implies that the polarization tensor is orthogonal to the

propagation vector: e*”k, = 0, leaving six independent solutions. One can take
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the six independent polarization tensors (with both indices lowered using the flat

metric) to be:

(00 0 0]
01 00
€lur = €1p€ly — €2u€2y — y (620)
0 0 -1 0
| 0 0 00 ]
(000 0]
0 010
€2uy = €1u€2 + €24€1, = ) (621>
0100
i 0 0 0O ]
[ 0 -1 0 0]
1 1 -1 0 01
€3ury = flpaku + 61”;"“# = , (622)
0 00O
0 100
[ 00 -1 0]
1 1 00 0
€apy = 62;45191/ + 621/5"’“ = ’ (623)
-1 0 01
00 10]
[ 100 -1]
0 00
€5y = kuku = , (624)
0 0O 0
100 1|
[0 0 0 0]
0100
€6uy = €1u€ly + €2,€2) = (625)
0 010
(000 0]
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The first two, which are transverse-transverse and traceless, are the physical
(energy-carrying) polarizations in the massless theory. One can show that they
induce effective curved metrics of type {1111}, but, partly due to the oscillations
of the cosine function, they violate 7-causality, as the behavior of the eigenvalues
shows. Let us be rather explicit and find an #-null vector that is on occasion g-
timelike for the first polarization. The polarization tensor being traceless, one has
G = N — M = diag(—1,1,1,1) — H cos(kqz® + 1)diag(0,1, —1,0). The vector
U* = (1,1,0,0) is np-null, but is g-timelike during every other half-period of the
cosine function. Thus, this physical polarization violates 7-causality.

A reply to a previous but less explicit version of this claim on our part has
recently been made by Logunov and M. A. Mestvirishvili [369]. In addition to
providing the above counterexample, we wish to explain why we do not accept their
reply. In particular, their argument for equation (42) is invalid. The argument in
question is that the Hilbert (linearized tensorial DeDonder) condition implies that
the 4-velocity of a test particle is orthogonal to the gravitational potential. While the
wave vector k#* = (1,0,0,1) is indeed orthogonal to the gravitational potential, no
such relation holds for all #-null vectors, such as (1, 1,0, 0). The worry is not that the
gravitational wave itself will propagate outside the flat metric’s null cone, but that
another massless test body-let it be a photon—in the vicinity, moving perpendicular
to the gravitational wave propagation direction (in the z direction in this case),
will violate the flat metric’s null cone.® We recall from Logunov’s formulation of
the causality principle that all n-null vectors must be g-null or g-spacelike [89], but
that condition fails here. The error in their equation (42) propagates into equation
(43), from which they erroneously concluded that n-causality is satisfied for this
solution. Thus, this gravitational wave polarization indeed violates n-causality, in

the sense that any photon moving in the z-direction through this gravitational wave

5We thank Prof. Logunov for corresponding about this matter.
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will propagate faster than ¢ (using metaphysical rods and clocks), in contradiction
of special relativistic causality.

Perhaps at this stage one could hope that the gauge waves will be more
friendly toward 7-causality, and that by including enough of the gauge waves, one
could tame the bad properties of the physical waves. The polarizations €3, and €4,,,
which are transverse-longitudinal and traceless, however, will probably not help,
because the resulting metrics are of type {31}, and thus violate n-causality. The fifth
polarization k,k,, which is longitudinal-longitudinal and traceless’, is of type {211},
and thus could satisfy n-causality, but the fluctuating cosine implies that if causality
is respected during one half-period, then it is violated during the next. So it does
not help much either. The last polarization €1,€1, + €2,€2, is transverse-transverse
but not traceless. This wave is of type {1111}, but the oscillating eigenvalues once
again violate n-causality.

Thus, all six polarizations of plane wave admitted by the linearized Ein-
stein equations in the Hilbert (linearized DeDonder) gauge individually violate 7-
causality. It would be surprising if it is possible to make sufficiently general (for
Nicholas’s drumming, for example) superpositions of these waves that respect 7-
causality, given that each one violates it individually. Let us consider this question
more explicitly. One can consider a general superposition

6

)\’Y;w = Z HAeA;w COS(ka:L'a + T/JA) - nuuH6 COS(ka:L'a + ¢6)a (626)
A=1

where 14 are real phases. The characteristic polynomial |g,, — Anu,| = 0 can be

simplified by defining By = H g cos(kqz® + ¥ 4) (with no summation over A). The

"The solution presented by I. P. Denisova, to be discussed below, resembles this form, except
that her function W is strictly negative, so n-causality is preserved, whereas our cosine function
fluctuates in sign.
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result is

1+ Bs+Bs— A — B, — By —Bs
—Bs —1+ By +A B, Bs o
—By B, ~1-B; +A By
—Bs Bs By 1+ Bs—Bg+A
(6.27)

It looks difficult to get practical results from this equation in the general case, it
being a messy quartic polynomial. However, the third and fourth polarizations,
affecting the only shift and an off-diagonal spatial component each, look rather
unlikely to help satisfy n-causality, but probably would harm it. It seems fair to
set Bs = B4 = 0. The characteristic polynomial then becomes block diagonal, with
roots A = 1+ y/B? + B? and (repeated) A = 1 + Bg. If Bs # 0, then A = 1+ Bg
corresponds to the null eigenvector (1,0,0,1), yielding a {211} metric (which at
best only just satisfies causality), but setting Bs = 0 gives another eigenvector and
hence a {1111} metric, which can satisfy stable causality, so we choose the latter.
However, it is clear that one of the other two eigenvalues will at almost every moment
be less than unity if a physical wave is present, while 1 + Bg will be greater than
unity half the time. Thus, plausibly, a general superposition of gauge and physical
polarizations will not rescue n-causality.

Clearly this argument is not a mathematical proof. It does not even use
exact solutions of Einstein’s equations. However, this argument does make it seem
likely that plane wave-like solutions, which are necessary near the future light cone
of Nicholas’s drum set, violate n-causality. If that conclusion is correct, then the

RTG’s approach to causality indeed must be modified, as we urged above.
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6.7 Dynamics of the Causality Principle

It is one thing to know the kinematic inequalities to describe the causality principle,
but another to enforce them. A difficulty comes from trying to mate the causality

principle with the condition that, as the gravitational field gets very weak,

Guv — Muw (6.28)

which seems like a natural requirement on a flat spacetime theory of gravity. (How-
ever, it is not gauge-invariant.) Given that the derivation of general relativity in-
volves a defining relation of the form g,, = 14, — Ay [111] or the like for the curved
metric in terms of the flat and the gravitational potential v,,, clearly g., = 1, is
expected to be the state of no gravity (apart from gauge transformations).

The causality principle inequalities can be written as
Dy < Di, DY<D2 D)<D} (6.29)
One can abbreviate this set of inequalities by
DY < min(Di, D2, D3). (6.30)

In three spacetime dimensions one can readily plot the function DY < min(D], D3)
using Mathematica. The result is seen in two spatial dimensions in figure 6.1. The
greatest allowed values of the timelike eigenvalue lie on the folded surface shown.
In three spatial dimensions, a similar (but more complicated) situation arises.
Perhaps motivated by the suggestion that bimetric theories ought to be
gauge-fixed, one might attempt to enforce the causality principle by (partial) gauge-
fixing, perhaps setting the timelike eigenvalue equal to some function of the space-
like eigenvalues only. This would be an algebraic or “ultralocal” gauge fixing. One
might want to choose a specific function DJ = f(D}, D2, D3) to fix the gauge. If

f(D}, D% D3) = min(D}, D2, D3), then the curved null cone is always on the verge
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of violating the flat cone, but never quite does so. By analogy with the requirement
of stable causality in the standard causal analysis of geometrical general relativity,
one would prefer that the metric not be arbitrarily close to unacceptable behavior,
because a quantization might lead to fluctuations that push it over the edge [152].

A more attractive choice is therefore

102 Dl D2 D3)
D!, p2, p3) — i (D1, D2, Dy 6.31
f( 1>+2» 3) maX(D%,D%,Dg)’ ( )

which provides a cushion except when the curved metric equals the flat one. This
choice also corresponds to the usual form of the Schwarzschild solution, while being
consistent with the explicitly conformally flat form of the flat Robertson-Walker
cosmological model [152].

If one were to write these functions explicitly, they would contain Heaviside
step functions. Thus they are merely continuous, which is a rather weak level of
differentiability. This difficulty is in fact inevitable. If the selected gauge at all
permits the DY to take its maximum value along the fold, then the gauge can
be continuous, but clearly is not twice continuously differentiable, as one would
wish. Because the lapse is closely related to Dg, a merely continuous timelike
eigenvalue implies a merely continuous lapse. The lapse being gauge freedom, one
might hope that continuity is enough for the lapse. Unfortunately, the Einstein
equations (in Hamiltonian form) contain second spatial derivatives of the lapse [152].
Two derivatives of a merely continuous function will yield a Dirac delta function in
the 7T;1b equation. So the momentum will evolve discontinuously if DY ever touches
the fold. Such behavior seems physically unreasonable, so the fold must be avoided
if a sensible result is to emerge. Avoiding the fold under all circumstances means
that a flat spacetime theory of gravity does not have g,, = 7., as a solution, which
seems surprising at first, but the gauge-variance of g, = n,, implies that this loss
is not too worrisome.

In any case, if one wishes to fix the gauge, there is no need to restrict at-
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tention to such wltralocal forms as Dg = f(Di, D3, Dg), with no derivatives present.
Why not a merely local gauge fixing, with a finite number of derivatives? Anal-
ogously, in geometrical general relativity, one considers not only Gaussian normal
coordinates g%® = —1,¢% = 0, but also harmonic coordinates, and in electromag-
netism, one considers not only the temporal gauge Ay = 0 [328], but also the Lorentz
gauge. However, even given this enlarged set of gauge-fixing choices, it is not clear
that there exists any way to include the solution (g, = 7u,) without encountering
discontinuous evolution, which seems unacceptable.

It seems best to avoid these difficulties altogether at the theoretical level by
abstaining from fizing the gauge (and instead merely restrict the gauge to respect
n-causality), and to take the gauge freedom seriously enough to give up the solu-
tion g,, = 7, as inessential. One might even aim to satisfy the causality-related
restrictions on the gauge identically using a new set of variables adapted to this

purpose.

6.8 Satisfying n-causality Identically Using New Vari-

ables

If one imposes stable 7-causality, which excludes all metrics that satisfy n-causality
but which are arbitrarily close to violating it, along with all that violate it, then
the loose inequalities of the causality principle are changed to strict inequalities.
These inequalities are then susceptible to being solved and eliminated, as Klotz
proposed to do with the positivity conditions of canonical gravity [313,314]. Let
us see how this goal can be achieved. For generality, let us work in d spacetime
dimensions, where d = 2, d = 3, and d = 4 are perhaps of the most interest, unless
one is considering Kaluza-Klein theory. (For d # 4, one might want to verify that

nothing disturbing happens regarding the eigenvector formalism happens, although
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that seems unlikely.) Given stable 7-causality, there always exists a complete set of
generalized eigenvectors with real eigenvalues and eigenvectors, as we proved earlier.
Some time ago J. A. Schouten cryptically wrote, “The theorems of principal axes
and of principal blades do not hold if the fundamental tensor is indefinite because
in this case a real symmetric tensor or bivector may possibly have a special position
with respect to the real nullcone. But if the symmetric tensor or bivector does not
have any such special position the theorems remain valid.” [288] (p. 47) Evidently
stable n-causality prevents g,, from having a “special position” with respect to the
fundamental tensor 7, .

It is clear that the determinant of the effective curved metric, as long as
it remains negative, is irrelevant to the relation between the two null cones. One
could then split the curved metric into the (conformally invariant) unimodular part
9uv/&/—g and the determinant g. However, it is no worse in Cartesian coordinates,
and perhaps more convenient in non-Cartesian coordinates, to use the covariantly
unimodular metric §u, = guv/ ‘\i/% and the coordinate scalar Kk = \/% .

Let us consider the generalized eigenvector problem in terms of the covari-
antly unimodular metric:

Guut = nﬂyu“f&. (6.32)

Given that we have already required that the curved metric have a complete set of
eigenvectors with respect to the flat, we can multiply the relation g,,u% = n,us DB
(where the diagonal matrix lA)ff has unit determinant, rendering ﬁg dependent on
the other components) by the inverse matrix U~ of the matrix U of unnormalized

eigenvectors u’y. The result is
Gpv = Nuug DEu 4. (6.33)

If this equation is twice contracted with the eigenvalue matrix U, giving

A~

g(UA,UC) = n(uBauC)DEa (634)
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then the freedom to normalize the eigenvectors can be put to work. It is useful to
make uffl be n-unit vectors.?

Let us now specialize to Cartesian coordinates and write ui, if necessary,
to remind ourselves of that fact. The normalization relation nﬂyuiu% = naB, if
expressed in Cartesian coordinates, is nothing other than the condition [344] for U
to be in the complete Lorentz group O(1,3) if d = 4. It is clear on physical grounds
that the gravitational field ought not to reverse time or space, so only the subgroup
S0(1,3) 1, the proper orthochronous Lorentz group with |U| = 1 and uf > 0, is
relevant. This subgroup being connected to the identity, any of its matrices ug can
be obtained by exponentiating a matrix in the Lie algebra of the Lorentz group,
that is, the algebra of real matrices W such that nca W is antisymmetric [344].

Given this n-unit normalization convention and the use of Cartesian coordinates,

we can use the relations

Ul=eW (6.35)

to eliminate the eigenvectors in favor of a matrix W describing how the eigenvec-
tors are boosted or rotated relative to the coordinate basis. The orthogonality of
the eigenvectors is satisfied identically using this construction. If one wishes, it is
possible to write W in terms of a standard representation of the infinitesimal gener-
ators of the Lorentz group with known commutation relations [345] (pp. 538-541).
Setting d # 4 would of course require using the Lorentz group in the appropriate
dimensions. Recently progress with this sort of expression has been made [336].
Let us consider the eigenvalues ﬁg. We saw above that the timelike eigen-

value for the covariantly unimodular metric is dependent upon the spacelike eigen-

8Earlier we saw that g-unit normalization was convenient for tying the eigenvectors to the
standard orthonormal tetrad formalism. These two different normalizations are adapted to different
purposes.
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values. One can define reduced eigenvalues

~a_Di _Dp
DB—A—O F,
Dy 0

(6.36)

clearly DY = 1. It is interesting that now only three numbers (compared to nine
components of g,,) are needed to describe the null cone relationship sufficiently to
show whether 7n-causality is respected. Let us now eliminate ﬁé in favor of the
reduced eigenvalues using the relation f)g = —L__ At this stage, one can write the

{/|D|

(covariantly) unimodular metric in matrix form as
. e*WDeWn
§=—=
VD

While one could represent W by a 2-form [336] if one wished, which would permit

(6.37)

the use of an arbitrary coordinate system, this eigenvalue formalism requires the
introduction of a set of Cartesian coordinates for the eigenvalue matrix.

Imposing stable 5-causality gives the strict inequalities
Di >1,D3 >1,D3 > 1. (6.38)

But strict inequalities can be solved, as Klotz suggested [313,314], and then the
causality constraints would be eliminated. This goal is achieved by setting, for
example,

D= +1,D} =P +1,D} = ¢ +1, (6.39)

for the case d = 4, with obvious changes for other dimensions. Formally defining
a matrix M¥ = diag(—oco,, 8,7) lets one write D = I + eM. The covariantly

_ (I+e=WeMeW)

n 25
e One can also set k@ = €. The full

unimodular metric is now §
metric can then be written as
(I +e WeMeW)y
g =
VI + eM|

We let the lower index indicate the row and the upper, the column.

(6.40)
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If d = 2, it is not difficult to write out this form of the curved metric explicitly.
(In higher dimensions, the noncommutativity of the various rotations and boosts in
W presents more difficulty, although some simplification has been achieved [336].)

The matrix W can be put in the form
W = . (6.41)

One quickly finds that

coshe sinhe

sinhe coshe

-1 coshe —sinhe (6.42)
—sinhe coshe ‘ .

Finishing the elementary algebra gives

ed —1+ e%sinh?e¢ —e®coshesinhe

g=— (6.43)
VI+e* | _eacoshesinhe 1+ e®cosh?e

With all three (or ten or @) components of the curved metric expressed
in a form along these lines, the following highly desirable properties of the curved

metric are satisfied automatically:
1. the curved metric satisfies stable n-causality;
2. the curved metric has Lorentzian signature;
3. the gravitational field has not reversed time or space;
4. the curved metric respects global hyperbolicity.

It would seem that these are all the properties that one would desire from an effective
curved metric in the SRA. The matrix W (apart from the near-antisymmetry) and

a, B, v, and & can be any real numbers. Thus, as long as a curved metric can be
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written in terms of these variables, then it is satisfactory for the SRA, and wvice
versa. These variables are evidently well-suited for the SRA applied to a metric
theory of gravity.

If it were not for the frightful amount of calculation involved, and probably
the inconveniently long and complicated results of the calculations, it might be in-
teresting to rewrite the entirety of gravitation in the SRA in these variables. One
example of the difficulty is what becomes of the primary constraints in the canon-
ical form of the theory, which show that not all 10 components of the metric have
canonical momenta of the usual sort suited to Legendre transformations from the
Lagrangian density [315]. Until Dirac [316] and J. L. Anderson [317] showed in 1958
how to reduce the primary constraints to the vanishing of some canonical momenta,
the presence of primary constraints was a significant issue in canonical general rela-
tivity. However, the use of n-causality-adapted variables perhaps prevents reducing
the primary constraints to the vanishing of some momenta, so this issue might be
reopened.

The issue can be illustrated in a tractable form using a model theory suited

to Kasner solutions [313, 314], in which the ansatz

g (t, @) = diag(go(t), g1(t), 92(t), g3 (t)) (6.44)

is made before varying the action. The resulting equations in fact reproduce the
Einstein equations. In this model theory, the primary constraint is that 7%, the
momentum conjugate to gg, vanish. In the n-causality variables, this diagonal form
of the metric is realized by setting W = 0 and letting the remaining fields depend

on t only. One then obtains for (gg, 91,92, 93),

—ed
(i‘/(l+ea)(1+eﬂ)(1+e7)’
e (1 + e®)

V(A +e)(1+ef)(1+er)
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(1 +¢€P)
V(A +e)(1+eP)(1+er)

66(1 + e'y)
{1/(1+ea)(1+e/3)(1+e“r)) ) (6.45)

Given how the causality variables mix together the coordinates (go, g1, 92, 93), one
expects the momenta to be comparably mixed, which means that the primary con-
straint will also mix momenta together.

This model theory might be a good test bed for ascertaining what ezxplicitly
is the gauge freedom of the SRA. In other words, which vector fields £&# generate
gauge transformations that respect stable n-causality? With the Lagrangian density
rewritten in terms of these n-causality-adapted variables, only this set of vector fields
would be admitted as gauge transformations, while any others would be regarded
as merely mathematical transformations. One fact that is already clear is that
the set of admissible vector fields depends upon the field configuration prior to the
transformation, because a vector field that preserves n-causality given one initial
field configuration might violate it given another. This situation is rather different
from the usual situation (in the geometrical or field formulation), in which just any
(reasonable) vector field generates a gauge transformation.

With the requirement of 7-causality imposed—perhaps stable n-causality us-
ing the causality variables—it follows that any “SRA spacetime” (R4,77,“,,gu,,) is
globally hyperbolic in the sense of Wald [152]. How so? It follows from 7-causality
that the future domain of dependence of an 7-spacelike slice is in fact the whole of
R*. But global hyperbolicity just is the possession of a Cauchy surface [152], so any
n-causal SRA spacetime (R*, 7,,,9,,) is globally hyperbolic.

One could further ask whether the SRA has a well posed initial value formu-
lation. The use of harmonic coordinates has been a common technique for answering
this question in the geometrical formulation [152], in which the choice of harmonic

coordinates constitutes a gauge-fixing. Given that the SRA has restricted gauge
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freedom, and that the tensorial DeDonder gauge condition (which makes the coor-
dinate g-harmonic when 7-Cartesian) has causal difficulties for plane wave solutions,
one might fear that the proofs of a well posed initial value formulation fail for the
SRA. However, such a fear is groundless, as we see if we resist the temptation to
use 7-Cartesian coordinates, for which we have no need. The SRA has both coordi-
nate freedom and gauge freedom. The choice of g-harmonic coordinates, if nothing
is said about the functional form of the flat metric, is merely a coordinate choice,
not a gauge choice. The eigenvalues, which express the relation between the two
null cones, are coordinate scalars, and so are indifferent to the choice of g-harmonic
coordinates (and possibly messy form for the flat metric). The gauge freedom has
not been used at all, and thus is fully available for deforming the curved metric until
it becomes consistent with the flat one. Therefore traditional harmonic coordinate
approach to demonstrating a well posed initial value problem experiences no ob-
stacles from the SRA. Recent work that permits coordinate freedom [346], though
interesting, will not be essential for the SRA.

Some time ago D. Finkelstein and C. Misner noticed the existence of “homo-
topic” conservation laws in nonlinear field theories such as general relativity [347].
For general relativity, the conserved quantity is the “metric twist,” which indicates
how many times the null cone is ineliminably twisted around. However, given that
“[i]t is readily seen that a metric twist necessarily contains regions in which the
direction of time and causality are anomalous” [347] (p. 239), it is evident that the

curved metric has vanishing twist for the SRA.
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6.9 Infinitesimal Gauge Transformations and the Eigen-

vector Formalism

It will be interesting to know how the generalized eigenvalues and eigenvectors of
9w With respect to 7., change under an infinitesimal gauge transformation dg,, =
Leguvs 0w = 0. Then g, V# = An,, V# becomes (g, + 6gu)(VH + 6VH) =
(A + M) (V# + 6VH#). The Oth order terms vanish by assumption. (We now
install the index A, over which we do not sum, to distinguish the several eigenvalues

and their eigenvectors.) The result is
(9w — AA’/]M,,)(SV: + V/’f(éguy — NuwdAa) = 0. (6.46)

For fixed A, one can find the equation governing the variation in the eigenvalue by
contracting the previous equation with V¥, and thus obtain V{V¥ (89, —nu6A4) =
0. Using the result g, ViVy = Aan,V4iV} which follows obviously from the
original eigenvalue equation, one finds that

SAa  VEVYégu
AA vazgﬂy ’

(6.47)

where no choice of normalization has been employed, but the fact that all the eigen-
values are nonzero and all the eigenvectors nonnull has been used. Using the result
for A4 in (6.46) and contracting with V yields

V]S(gu,, - AAWW)JVZ = VEVX <5guu - guumﬁ;&gw) . (6-48)

ViVa9os

If there is degeneracy among the eigenvalues, then use of this equation is more diffi-
cult than for the nondegenerate case. The causality principle will limit or forbid (if
stable n-causality is required) the degeneracy between the timelike and the space-
like eigenvalues, but degeneracy among the spacelike eigenvalues will still be rather

common, as in the Schwarzschild and Robertson-Walker cosmological solutions. For
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convenience, we henceforth confine our attention to the case with no degeneracy. It
follows that
NuwVE (A — Aa)SVE = ViVESguw, (6.49)

which gives three equations for §V} for a given value of A. The fourth equation for
§V¥ results from one’s choice of normalization of the eigenvectors.

The quantities most directly relevant to the causality principle are the “re-
duced” eigenvalues Ay = 1}\—*3, of which obviously only the values A = 1,2,3 are
interesting. We therefore replace the index A, which generally runs over 0,1, 2, 3,
with the index j, which runs over 1,2, 3. One wishes for all the reduced eigenvalues

to be no smaller than unit value. The reduced eigenvalues change under infinitesimal

gauge transformations of the metric by

| vtV pyv
5Aj:Aj< i Yo Vo )dgﬂy. (6.50)

Vjanpgap %avopgap
If one wishes to enforce the causality principle in a deep way, it seems natural to

distinguish between ostensible gauge transformations that violate the causality prin-

ciple and those that do not, as we saw above using the causality-adapted variables.

6.10 Finite Gauge Transformations and an Orthonor-

mal Tetrad

The form of a finite gauge transformation for the densitized inverse metric tensor
in the field formulation is known from the work of Grishchuk, Petrov, and A. D.

Popova [82] to have the form

£e

g7 > e ¢g’? u — efﬁu,mw = N (6.51)

in terms of the convenient variable g°” = /—gg°”, the flat metric tensor, and matter

fields u described by some tensor densities (with indices suppressed).
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We recall the bimetric form of the action above for a generally covariant

theory, with the metric here expressed in terms of the weight 1 inverse metric:

S = S1[gh, u] + %/d4:1/:Rm,pa(77)./\/1’“’"‘7 + 2b/d4x\/—n + /d4x8“a“. (6.52)

Clearly the terms other than S; either do not change under the assumed field

transformation, or do so at most by a boundary term, so our attention turns to
Sy = [d*zLy.

We now derive a useful formula. Writing out ef¢A as a series efé4 =

o %.ﬁ EA for some tensor density A will put us in a position to derive a useful

‘product’ rule for the exponential of Lie differentiation. One could write a similar

series for another tensor density B. Multiplying the series and using the Cauchy

product formula [343]

n=0 k=0

(o¢] ] e} ) (o¢] n
Z a;z' Z bjz) = Z Z apbn_ 2" (6.53)
i=0 j=0
and the n-fold iterated Leibniz rule [343]
Fgl® =3 — g (6.54)
k'(n — k)! ’ )
k=0
one recognizes the result as the series expansion of e£¢(AB), so one has the result
(et A)(e*¢B) = ¢ (AB) (6.55)

In view of the matrix relationships among the various metric quantities, one
has by definition that (g* + dg*”)(gpw + dgp) = 5 and various other relations.
In that way, one can derive the form of dg,,, dg, dgp., and the like. Let us show
this fact explicitly for g, using g7? + 6g°? = ef¢g?. One knows from mathemat-
ics that a determinant is given by |g7?| = e(a,uup)dgdidiéggaﬁ g*Xg"¥gP?  where
e(auvp) is the totally antisymmetric symbol with €(0123) = 1. Because this form
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for the determinant holds in any coordinate system, e(auup)525>1<53)5; is a scalar, so

efe (e(auup)dg@l(éidg) = e(aul/p)égdiéidg. We therefore have

le£e 7| = e(apvp)d36LaL 63 (efeg™ ) (efe g™ ) (efeg™ ) (P g"%)

= efe|gor|. (6.56)

Using g?? = ¢g°?/—g, one finds that [g??| = |gs,|, so
g+ 6g = efég. (6.57)
The relation —g— g = (/—g+9+/—g)? defines §,/—g, so one quickly also finds that
V=g +8/—g = eft\/ g, (6.58)

with which one readily finds the result for g°” and so on. Again the transformed
field is just the exponentiated Lie derivative of the original.

Grishchuk, Petrov, and Popova have exhibited a straightforward relationship
between finite gauge transformations (with the exponentiated Lie differentiation)
and the tensor transformation law [99,100]. Evidently the former is fundamental,
the latter derived. One can define a vector field €% using the fact that under a
gauge transformation, g*¥ changes in accord with the tensor transformation law,
while the flat metric stays fixed. Let us follow them and define £% in terms of the

finite coordinate transformation
a
¢'* = e 5am 1, (6.59)

Then the tensor transformation law, which is fairly easy to use, gives the finite gauge
transformation formula, which is difficult to use. One can therefore hope to avoid
using the latter at all, and work only with the tensor transformation law, which will
tend to be simpler and will relate to known results in the geometrical theory.

In case the form for a finite gauge transformation for a tetrad field has not

appeared previously, we provide one here. One can ‘derive’ this formula using a
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Baker-Hausdorf-Campbell-type trick [348] by neglecting some of the non-commuting
quantities, and then verifying that the resulting form, taken as a “lucky guess,” has
the desired properties. It is not difficult to verify that the following form preserves
both the completeness relation to the inverse metric g*¥ = effmABe% and the or-

thonormality relation g,, €€l = nap:

- —£
¢4 + dett = efe(efe (Fme R Con (6.60)

The expression involving £ gl should be understood as a shorthand for a series, this
factor simply reducing the number of Lie differentiations by one. The outer set of
parentheses indicates that the Lie differentiation in the second factor does not act
outside the parentheses, although the Lie differentiation in the first factor acts on
everything to its right. F' is a matrix field which, when an index is moved using nap
or 4B is antisymmetric: F{ = —napFEnBC. The expression £g1(F — e feF)
should be compared to some similar expressions in Lie group theory [344] (p. 179),
[349] (p. 20), [350] (p. 80). This relation, it should be noted, is not tied to the
presence of a flat background metric tensor or the interpretation of €’y as generalized
eigenvectors.

Let us now verify the completeness relation gt” = efflnAB ey, by showing
that this relation with the gauge-transformed tetrad yields the gauge-transformed
curved metric. The equations £,74® = 0 and the (e¥¢ A)(e¢ B) = e¢(AB) will be
used in simplification. One has by definition of a variation A induced by this tetrad

transformation,

g+ Bg™ = (€ + ae ) P (el + det)
= [efe(ee TG el

= efe](efe PTGk pAB (oL (e E gy ) (6.61)

1o £
ABe£§(e£§ (F—e F))ge%

Acting with e~ £¢ gives

_ _£ - )
ef.t',’g (g/w + Aguu) _ (€£§ 1(F—e §F))gegnAB(e£§1(F—e §F))ge% (662)
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Let us define the matrix field HS = £§_1(F — e £¢F)C. Clearly H inherits near-
antisymmetry from F: HY = —ngsHLnPC. One then has
e e (g" + Agh) = el (™) Gn B (e ) Bk

et (eGnAB(IE + HE + HYHY, + .. )eY, (6.63)

where the one factor is expanded as a series. Continuing by moving the Lorentz

metric into strategic locations gives

et (eGP + " BHEngp + n*BHinsxn™  HEngp +...)e"”

=k (eMG(IF — Hf + HEHE — .. )", (6.64)

where the near-antisymmetry of H has been employed. Reverting to the exponential

form gives

= g", (6.65)

leading to the expected conclusion g + Aght = g* + g = efegh. Thus, com-
pleteness holds, and the tetrad-induced variation A of the inverse curved metric
agrees with the gauge transformation variation §. By similar maneuvers, one estab-

lishes the orthonormality relation for this tetrad variation:
(e“egu) (e + d¢) (el + delp) = P (6.66)
Finally, the inverse tetrad transforms as
f[:1 + 5f;4 = ef&(e’gﬁ_l(_F%_EgF))éff, (6.67)

which looks much like the tetrad form, save for the sign of F'.
It turns out that the proofs of orthogonality and completeness depend only

on the near-antisymmetry of the exponentiated matrix containing F, not on its
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detailed form, which in the expression above is rather involved. If the form above
could be derived properly in the Baker-Hausdorf-Campbell fashion, perhaps it would
be shown to be equivalent to e £¢+F )% e’é. Such a form would seem natural because
of its symmetrical treatment of the Lie and local Lorentz terms. The nonuniqueness
of the tetrad gauge transformation form seems to imply that a given vector field £#
and matrix F' with one tetrad gauge transformation formula correspond to the same
&# but a different F' using a different transformation formula.

In these relations, we have retained the full local Lorentz freedom. But
in the eigenvierbein formalism in the SRA, the vectors, in addition to being g-
orthonormal, will be n-orthogonal: 7,,e/ie% = 0, A # B. This orthogonality can
be ensured using the term [ d4xnﬂ,,effle%nape%egAABCE described above. This set
of six orthogonality equations will typically render the tetrad unique, and thus
determine the local Lorentz transformation matrix F for a gauge transformation £
(although solving for F' does not look easy). There might be some complication when
there is degeneracy among the eigenvalues, as one expects in the Schwarzschild and
Robertson-Walker field configurations (barring a perverse gauge choice). Degeneracy
between the temporal eigenvalue and a spatial one would mean that the curved
metric is arbitrarily close to violating causality, which we prefer to avoid by requiring
stable n-causality. Given stable 7-causality, the timelike eigenvector never suffers
degeneracy-induced ambiguity, unlike the spacelike eigenvectors in some cases, such

as those named.

6.11 Gauge Transformations Not a Group

If one is not interested in taking 7-causality seriously, then any suitably smooth
vector field will generate a gauge transformation. However, in the SRA, respecting
n-causality—indeed, preferably stable n-causality—is essential. This fact entails that

only a subset of all vector fields generates gauge transformations in the SRA.
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Let us be more precise in defining gauge transformations in the SRA, re-
quiring stable n-causality. A gauge transformation in the SRA is a mathematical
transformation generated by a vector field in the form described above, but which
also has both the untransformed and transformed curved metrics respect stable -
causality. It is evident that a vector field that generates a gauge transformation
given one curved metric and a flat metric, might not generate a gauge transfor-
mation given another curved metric (and the same flat metric), because in the
second case, the transformation might move the curved metric out of the stable
n-causality-respecting configuration space, which is only a subset of the naive con-
figuration space. It follows that one cannot identify gauge transformations with
generating vector fields alone; rather, one must also specify the field configuration
(curved metric) assumed prior to the transformation. For thoroughness, one can also
use the flat metric (which is not transformed) as a label, to ensure that the trivial
coordinate freedom is not confused with the physically significant gauge freedom.

Let us therefore provisionally write a gauge transformation as an ordered triple

(" (@), M (2), g (), (6.68)

where both g, (x) and e®¢g,, (z) satisfy stable causality with respect to 7,, (). The
former restriction limits the configuration space for the curved metric, whereas the
latter restricts the vector field. (At this point we drop the indices and the spacetime
position argument for brevity.)

One wants to compose two gauge transformations to get a third gauge trans-
formation. At this point, the fact that a gauge transformation is not labelled merely
by the vector field, but also by the curved metric (and the flat), has important con-
sequences. Clearly the two gauge transformations to be composed must have the
second one start with the curved metric with which the first one stops. We also
want the flat metrics to be compatible. Thus, the ‘group’ multiplication operation

is defined only in certain cases, meaning the gauge transformations in the SRA do
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not form a group, despite the inheritance of the mathematical form of exponentiat-
ing the Lie differentiation operator from the field formulation’s gauge transformation
group. Two gauge transformations (1,72, g2) and (£,71, g1) can be composed to give
a new gauge transformation (1,72, g2) o (€,71,91) only if g = efég; and 7y = ;.
Because the multiplication operation is not always defined between two gauge trans-
formations, the closure property of groups fails to hold.

The failure of closure implies modifications of associativity. Associativity
does not hold in the usual way, because composition is not always meaningful.
However, whenever the composition of SRA gauge transformations is meaningful,
associativity holds, due to inheritance from the field formulation gauge group.

The failure of closure also modifies the existence of the identity, at least given
the definition of a gauge transformation as an ordered triple. Whereas a group has
a single element that acts as the identity on all elements and from either side, gauge
SRA transformations do not have any single element that can be multiplied with all
other elements, so in particular there is no identity element. There are, rather, many
“little identity elements”, which all have vanishing vector field, but which differ in
their curved (or flat) metric labels. However, this complication can be removed if
one gerrymanders the definition of a gauge transformation in the following way: let
a gauge transformation be an ordered triple of the sort described above if and only
if its vector field is nonvanishing, but let there also be a trivial transformation that
maps any gauge transformation to itself, never mind any curved or flat metric labels.
We therefore identify all transformations (0,74, gp) and write them as (0).

The inverse property is essentially untouched by the failure of closure. The
left inverse of (£,7m1,91) is (—€,m1,e%ég1), yielding (=€, m1,efég1) o (§,m,91) =
(0,71, 91), an identity transformation. The right inverse is also (—¢, 71, e%¢g1), yield-
ing (&,m1,91) o (—&,7m1,ef¢g1) = (0,71, ef¢gy), which is also an identity transforma-

tion, or rather, the identity transformation (0), given our gerrymandered definition
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of the identity. Thus, every SRA gauge transformation has a two-sided inverse.

In summary, of the group properties of closure, associativity, the existence
of an identity element for all elements, and the existence of a two-sided inverse for
each element [328], SRA gauge transformations, with the gerrymandered identity
transformation, have an identity element for all elements, a two-sided inverse for
each element, and associativity in those cases where multiplication is defined, but

not closure, because multiplication is not defined for every ordered pair of elements.

6.12 Canonical Quantization in the SRA

The relevance of the special relativistic approach to Einstein’s equations to canonical
quantum gravity deserves some consideration. The primary patrons of the flat metric
in the context of Einstein’s equations have been the particle physicists in the context
of the old covariant perturbation program of quantization. However, this program
famously proved to be nonrenormalizable, even (probably) with the addition of
carefully chosen matter fields in the later supergravity era [351]. Therefore, the
covariant perturbation program has largely been abandoned.’

With the strongest advocates of the flat metric having diverted their atten-
tion to strings, membranes, and the like, one might form the belief that the use of
a flat background metric has nothing further to contribute to quantum gravity, and
in particular, to canonical quantum gravity. Isham writes of the null cone issue in
the covariant perturbation program: “This very non-trivial problem is one of the
reasons why the canonical approach to quantum gravity has been so popular.” [351]
(p- 12) And again, “One of the main aspirations of the canonical approach to quan-

tum gravity has always been to build a formalism with no background spatial, or

9An exception is some recent work by G. Scharf and collaborators such as I. Schorn, N. Grillo,
and M. Wellmann (for example, [113,116]). Their use of “causal” methods helps to achieve finite
results. Another possibility, suggested some time ago by Weinberg, is that 4-dimensionally nonper-
turbatively renormalizable. Recently O. Lauscher and M. Reuter have argued that this situation
likely is realized [337].
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spacetime, metric.” [351] (p. 18) The use of a flat background in canonical gravity
indeed seems to be rather rare, apart from some work in the field formulation by
Grishchuk and Petrov [100], which does not consider the flat metric’s null cone.
(We do not see any reason that the formal use of a flat background in the field
formulation requires one to give up the spatial metric components as the canonical
coordinates, as they do.)

However, it would be a mistake to conclude that the canonical formalism is
immune to similar worries, worries which a flat background’s null cone structure

could address. Isham continues:

However, a causal problem arises here [in the canonical approach]| too.
For example, in the Wheeler-DeWitt approach, the configuration vari-
able of the system is the Riemannian metric g,5(x) on a three-manifold

3, and the canonical commutation relations invariably include the set
[Gab(), eala’)] = 0 (6.69)

for all points z and z’ in 3. In normal canonical quantum field theory
such a relation arises because X is a space-like subset of spacetime, and
hence the fields at « and z/ should be simultaneously measurable. But
how can such a relation be justified in a theory that has no fixed causal
structure? The problem is rarely mentioned but it means that, in this
respect, the canonical approach to quantum gravity is no better than

the covariant one. It is another aspect of the ‘problem of time’ .... [351]

(p. 12)

Evidently introducing a flat metric can help:

The background metric n provides a fixed causal structure with the usual
family of Lorentzian inertial frames. Thus, at this level, there is no prob-

lem of time. The causal structure also allows a notion of microcausality,
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thereby permitting a conventional type of relativistic quantum field the-
ory ...It is clear that many of the prima facie issues discussed earlier
are resolved in an approach of this type by virtue of its heavy use of

background structure. [351] (p. 17)
What then is the difficulty?

However, many classical relativists object violently ..., not least because
the background causal structure cannot generally be identified with the
physical one. Also, one is restricted to a specific background topology,
and so a scheme of this type is not well adapted for addressing many of
the most interesting questions in quantum gravity: black hole phenom-

ena, quantum cosmology, phase changes etc. [351] (p. 17)

However, above we have presented a formalism which, if adopted, plausibly does
ensure that the physical causal structure is consistent with the background one by
construction. Thus, this first objection is largely answered. The second objection is
strong only if one already knows that gravitation is geometrical at the classical level.
But there is no necessity in taking such a view, not least because it is so easy to
derive Einstein’s equations for the geometry of an effectively curved spacetime within
truly flat spacetime, as we saw above. We conclude that it would be interesting
to investigate the canonical quantization of Einstein’s equations within the special
relativistic approach, because serious conceptual problems with standard approaches
would evidently be resolved, whereas no serious problems would be generated, at
least at the conceptual level.

On the other hand, the special relativistic approach might perhaps compli-
cate certain technical issues in canonical quantum gravity. First, as we saw above,
the use of the 7-causality variables suggests that the primary constraints of the
theory would be non-trivialized. Second, the fact that some vector fields do not

generate gauge transformations in the SRA suggests that the custom of splitting
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spatial and temporal diffeomorphisms and treating them independently might be
threatened. In the field formulation, with merely formal use of the flat metric, could
at least make sense of spatial gauge transformations as those generated by solutions
€% of the equation z'* = et aam g given the restriction that 2'® = z°. But it is not
clear that such a separation is even possible if the flat metric’s null cone structure is
to be respected, as in the SRA. The reason is that whether a vector field generates
a gauge transformation in the SRA depends on both the temporal and spatial parts

of the vector field, because both influence the curved null cone.
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Figure 6.1: Bounding Surface for Temporal Eigenvalue as Function of Spatial Eigen-
values in 2 Dimensions
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Chapter 7

The Schwarzschild Radius in
the SRA

While everyone knows that the Schwarzschild radius harbors merely a pseudosin-
gularity in geometrical general relativity, it is not so obvious what happens in the
SRA. One reason is that the gauge freedom is restricted by the need to secure null
cone consistency. Another is that there is no way of extending Minkowski spacetime
by adding points ‘past infinity’, because the flat metric ensures that one knows in
advance that one’s naive coordinate system (such as Cartesian or spherical polar)
covers the whole spacetime adequately. (For our non-geometrical purposes, it is

permissible for a coordinate system not to cover regions of measure 0 well.)

7.1 Eddington-Finkelstein and Painlevé-Gullstrand Co-

ordinates and Gauge Fixing

Here we will make two efforts to use the gauge freedom of the SRA to remove the
apparent singularity in the curved metric, one based on Eddington-Finkelstein coor-

dinates, and one based on Painlevé-Gullstrand coordinates, both of which introduce
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apparent time-reversal variance. Both of them will violate n-causality and thus fail
to remove the Schwarzschild singularity in the SRA. In fact, they violate causality
everywhere outside the Schwarzschild radius. While the failure of these two plausible
efforts does not prove that all such efforts would fail, it does suggest that the usual
geometrical approach to the Schwarzschild ‘singularity’ cannot be readily carried
into the SRA.

Let us turn to the Eddington-Finkelstein form of the Schwarzschild metric.
Our treatment will be based on Penrose’s discussion of the subject in the context
of the geometrical theory [352], apart from a change of signature to —+ + + . In
coordinates z* = (t,7,6, ¢), the curved line element takes the form

2
L 2m

. )dt? + (1 — 2—m)

ds? = —( “tdr? 4 r2(d6? + sin® 0d?). (7.1)

Let us choose the flat metric to have the standard line element
do® = —dt* + dr? + r*(d6? + sin® 0d¢?). (7.2)

Having specified both metrics, we have fixed the gauge.

Supposing that one makes a transformation to the Eddington-Finkelstein
coordinates z# = (v,7,0,$), where v = t + r + 2mIn(r — 2m), it is simple to use
the tensor transformation law to find the metrics in the new coordinates. One finds

the curved line element to take the form

2
L 2m

ds® = —( . )dv? + 2dvdr + 0dr® + r2(d6> + sin? 0d¢?), (7.3)

which famously is nonsingular at » = 2m. In these coordinates, the flat line element
takes the form

2r dmr — 4m?2 .
do? = —dv? + mdydr S Sy ey dr? + r?(d6? + sin? 8d¢?). (7.4)

Letting r approach 2m from without, one finds the flat line element to take the form
do? = —dv? + codvdr — codr? + r2(d6? + sin® 0d¢?), (7.5)
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which is of course singular. This is just as expected: any coordinate transformation
that removes the Schwarzschild singularity from the curved metric must be singular
[353], and thus that transformation in a bimetric context merely throws the sin-
gularity onto the flat background metric [115]. In our terminology, this coordinate
transformation avoids detecting the singularity only by adopting a set of physical
rods and clocks that are infinitely distorted relative to metaphysical rods and clocks,
which is to say, broken.

To make a nontrivial effort to remove the singularity, we must make a gauge
transformation, which looks like a coordinate transformation on the curved metric
and the (bosonic) matter fields, but does not touch the flat metric. One can consider
an “Eddington-Finkelstein gauge” in which the curved metric ends in the form

L _2m

§° = — t* + 2dtdr + 0dr® +r + sin , .
ds? dt? + 2dtdr + 0dr? + r%(d#?* + sin® 6d¢? 7.6
T

which is the same form as the Eddington-Finkelstein metric above, save that the

letter v has been replaced by the letter ¢. The flat metric is still
do? = —dt* + dr? + r?(d6* + sin® d¢?), (7.7)

and the coordinates are (¢, 7,0, ¢). We have thus found a gauge that leaves both the
curved and flat metrics nonsingular.

Have we therefore eliminated the singularity? We have not if the result vi-
olates n-causality. We must therefore solve the generalized eigenvalue problem for
the eigenvalues. As we saw above, every field configuration obeying the causal-
ity principle has all real eigenvalues and at least 3 independent eigenvectors. The

characteristic polynomial easily yields the solutions

1—2m 4 J(r=2m)2 4
A=1,A=1A= - 5 - . (7.8)

The eigenvalues must all be real for there to be any hope of satisfying causality, but

is plain that this curved metric in fact violates the causality principle everywhere
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outside the Schwarzschild radius, and even somewhat within it. Because causality
is violated at least somewhere, this Eddington-Finkelstein gauge is forbidden in the
SRA. Thus, the singularity has not been shown to be removable.

One could consider instead the Painlevé-Gullstrand coordinate system [354,
355], another coordinate system that renders the curved metric nonsingular at r =

2m. In coordinates (T, r,0, ¢), the Schwarzschild solution takes the form
2 2
ds® = —(1 — Z2)dT? + dr? + 24/ “2dTdr + r*(d6? + sin® 0dg?), (7.9)
r r

which is also nonsingular at the Schwarzschild radius. This coordinate 7' can be

expressed in terms of r and ¢ via

dr
r—2m’

dT = dt + V2mr (7.10)

which is of course singular at the Schwarzschild radius. (We do not need the inte-
grated form, though it is known [355].) The flat metric, assumed to have the form
do? = —dt? + dr? 4 r2(d6? + sin? 6d¢?) in the (t,r,0,¢) coordinates, naturally is
singular at 7 = 2m in the (T, 7,6, ¢) system.

Making a gauge transformation such that the curved metric takes the Painlevé-
Gullstrand form ds? = —(1 — 22)dt? + dr? + 24/ 22 dtdr + r?(d6? + sin® d¢?), but
the flat metric still takes the form do? = —dt? + dr? + r?(d6? + sin? 8d¢?), one finds
both metrics to be nonsingular. But n-causality must still be considered. Finding

the generalized eigenvalues gives

M om M2
A=LA=1A=1-"=F4/-2 4= (7.11)
T T

Reality of the eigenvalues, a necessary condition for good causal properties, is vio-
lated unless M > 2r, which is to say, everywhere outside the Schwarzschild radius
and part of the region inside it. Thus, the Painlevé-Gullstrand gauge transformation

also fails to remove the Schwarzschild singularity in the SRA.
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While the failure of these two efforts to remove the singularity while re-
specting n-causality does not imply that it cannot be removed, such failure at least
suggests that the prima facie staticity of the solution—its independence of ¢ and

t-reversal invariance-might possibly be genuine in the SRA.

7.2 Schwarzschild Problem in Tensorial DeDonder Gauge

In view of the status of the (tensorial) DeDonder gauge as the prince of gauge
conditions (apart from our argument that plane waves show it SRA-inadmissible)
and its role in the RTG, it is interesting to consider the Schwarzschild radius in
the t-independent Schwarzschild problem. This was done some time ago by F. J.
Belinfante [22] along with J. C. Garrison [27] in the field formulation, and more
recently by Yu. P. Viblyi [270] in the context of the RTG.

Belinfante finds a constant of integration besides the mass in the solution,
but argues that it must vanish to give physically acceptable behavior, and obtains
the form also given by V. Fock [223]. In this form, expressed in the naive set of
spherical coordinates on flat spacetime, the horizon occurs at r = M. Belinfante and
Garrison, contemplating the uniqueness of Fock’s harmonic coordinates, again find
that this constant should vanish, and find even stronger grounds than Belinfante
had earlier.

For the RTG, however, Viblyi reports that this constant of integration is
physically significant and that the solutions with different values are physically dis-
tinct: “In the RTG and general relativity the equations are specified in general on
different ranges of variation of the same variables, and therefore the number of har-
monic solutions of general relativity that have physical meaning need not be equal
to the number of corresponding solutions of the RT'G. Thus, the unique harmonic
solution of general relativity for a static centrally symmetric field (Fock’s solution)

is only a particular solution of the RT'G equations, namely, a particular solution of”
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the tensorial DeDonder condition [270]. Viblyi finds that all values of this constant
of integration imply that sources of finite size must be considered. The constant
is determined by fitting to some interior solution. Thus, the external field depends
on the structure of the source, unlike both Newtonian gravity and the geometrical
theory [270]. One should note that the second minus sign in Viblyi’s equation (7)
should be a plus sign (cf. [22]).

At one time A. A. Vlasov and A. A. Logunov argued that the RTG excludes
black holes because a particle reaches the horizon only at infinite metaphysical time
(if the reader will pardon our ascribing our term “metaphysical” to them) [303].
Later it happened that a nonstatic Schwarzschild form that satisfies the tensorial
DeDonder condition (almost everywhere [98]) was discovered by Yu. M. Loskutov
[98], Vlasov [96] and A. N. Petrov [97]. This form makes the solution nonstatic and
makes the curved metric nonsingular at the horizon. Vlasov took this solution to
show that his earlier conclusions with Logunov, which had claimed to show that
black holes can never exist in the RT'G, were ill-founded, due to failure to consider

all possible cases. He writes:

Therefore, in the absence within the RT'G ideology of any statement
about the uniqueness of the spherically symmetric solution (including
the case of a rotating charged source) the solution of the collapse prob-
lem in the RT'G essentially depends on the form of the spherically sym-
metric solution used, i.e., on both the model of the matter considered
and on the initial, boundary, asymptotic, etc., conditions specified in the
original Minkowski-space coordinates. Here in the RTG it is possible to
have solutions which do not have singularities on spherical surfaces and
do not violate the requirements on the [signatures of the curved and flat
metrics|. Therefore, in the RTG it is impossible to speak of the absence

of catastrophic collapse and the appearance of singularities on the cor-
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responding spherical surfaces, and also to draw conclusions solely on the
basis of the simplest form (in the Minkowski-space coordinates) of the

spherically symmetric solutions. [96]

The phrase “In the absence ...” leaves open the possibility that the original conclu-
sion would eventually be verified (which Loskutov argued has occurred [98]). Petrov
drew a similar conclusion to Vlasov’s, but stronger, that “the Einstein equations
with the supplementary harmonic conditions, and the structure of a flat background
space-time, do not exclude black holes” [97] (p. 196).

Let us consider this new coordinate system, which, when mated with a
Minkowski metric of the usual form, yields a new gauge.

For reference, we recall that the usual static harmonic form is Fock’s (and

Belinfante’s)

T—Mdt2+r+M

ds® = —
s r+ M r—M

dr? + (r + a)?(dé? + sin® 8d¢?), (7.12)

where ¢ = G = 1, though it is in fact the Cartesian-like coordinates = 7 sin 6 cos ¢,
etc. that are harmonic [97]. This metric obeys the tensorial DeDonder condition in

terms of the usual spherical coordinates in which a flat metric 7, is given by
do? = —dt® + dr? + r%(d6? + sin® 0d¢?). (7.13)

The new Loskutov-Vlasov-Petrov time-reversal-variant form of g,,, nonsin-

gular at the horizon, is

ds® =

M M2
re My, 8 2drdr+(1—|-

oM oM ., 2M )\
- 0 d
r+ M T r+ M) >> "

r+M+(r+M) (7‘—I—M
+(r + a)*(d8? + sin” 0d¢?),

along with the flat metric of the usual form

do? = —dr? + dr® + r2(d6? + sin? 0d¢?). (7.14)
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Given the assumption of the fundamental nature of flat spacetime, the coordinate
r ranges over [0,00). (The fact that the central singularity r = —M is excluded
will not matter if our doubts about the behavior of this gauge at the Schwarzschild
radius are borne out.)

Given our experience with the Eddington-Finkelstein and Painlevé-Gullstrand
gauges, our first order of business is to see if this gauge respects n-causality. In fact,

one easily sees that the radial g-null geodesics [97] (p. 198)

dr B r2 4+ 2Mr + 5M?

dr— r2-M2 (7.15)
dr  r+3M
ar _ _rron 1
dr r+ M (7.16)

satisfy n-causality. It is not difficult to show that the two non-angular eigenvalues
are real and positive, and (with the help of Mathematica) that the larger one has
a spacelike eigenvector, while the smaller has a timelike one. Thus, this non-static
form of the Schwarzschild solution does satisfy 7-causality, unlike the efforts above.!

One might worry, in sympathy with Rosen [359], that it seems unreason-
able to destroy the staticity of the problem to remove the Schwarzschild singular-
ity, because the physics gives one no reason at all to doubt staticity. This new
solution is merely stationary, which is to say, constant in time, but not time-
reversal invariant. Petrov observes that his system, which is defined on the co-
ordinate ranges r € [0,00),7 € (—00,00), only covers half the Schwarzschild ge-
ometry (p. 198), so presumably the other half that he envisions would restore
the time-reversal invariance. (However, from the perspective of the SRA (includ-
ing the RTG), the region covered by r € [0,00),7 € (—o00,00), with flat metric
do? = —dr%dr? + r%(d8? + sin® 8d¢?), just is the whole of Minkowski spacetime,

!One should note that the curved metric makes sense down to » = —M, so the limitation to
r > 0 is made only to accomodate flat spacetime. If one does not require the tensorial DeDonder
condition, then it is easy to choose a new flat metric n;“, with line element do'? = —dr? + dr? +
(r + M)2(d#? + sin? 0d$?) which lets r have the range > —M, and n-causality is respected over
the entire range » > — M. The true singularity lying at » = —M [97], this altered form evidently is
a better candidate for satisfying the SRA analog of g-geodesic completeness than is Petrov’s form.
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and thus does not admit augmentation.) This Rosen-like objection, though it might
count against the new form as the field of a point mass sitting sempiternally at
the origin, will not prevent this form from arising in the context of a gravitational
collapse process. Thus, for all that has been said so far, this new solution might
in fact show that catastrophic collapse is possible in the SRA. At a minimum, it
shows that spherically symmetric strong-gravity solutions with regions of no escape
exist in the SRA. One can express Petrov’s solution using the 7-causality variables
exhibited above.

However, it seems to us that some doubt attaches to the mathematics of
Petrov’s gauge transformation relating the static form to his nonstatic form. We
recall the work above [99, 100] relating finite gauge transformations (with the expo-
nentiated Lie differentiation) to the tensor transformation law. If the exponentiated
form is fundamental, then results derived using the tensor transformation formula
are valid only if there exists the relevant vector field £% that generates the gauge
transformation. The coordinate transformation that Petrov uses to get the new
form of the curved metric is given on p. 204 as

r— M

=t+2M1
T + nr—I—M

,T=T. (7.17)

For large r, this coordinate transformation is small, but it grows as r shrinks. In
fact, it diverges at r = M, which is the horizon in the static form. Without that
divergence, this coordinate transformation would fail to bring the point ¢ = oo to
a finite value of 7, and his argument against Vlasov, Logunov and Mestvirishvili
would collapse. But given the formula z'® = " 395 2@ that defines the vector
field generating the gauge transformation, it is not obvious that this coordinate
transformation is allowed, because there must exist a reasonable solution £* defined

onr € [0,00),t € (—o00,0) to the equations

r— M

t+2MIn

n ‘ zegua%“t,r:egu%i“r,ezeguﬁiﬂe,¢:e£”%¢, (7.18)
r
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even with the divergence of the first equation at » = M. If this doubt proves war-
ranted, then Petrov’s gauge transformation will be unacceptable. Without this
gauge transformation, the nonstatic solution will in fact be a physically distinct so-
lution from the static one. Which solution is more relevant to gravitational collapse
is unclear.

Loskutov argues that the problem can only be studied successfully when the
interior is considered [98]. He asserts that the vacuum solution can only hold for
r > M, lest the Logunov causality principle be violated. (However, as we have
seen, this procedure of accepting or rejecting solutions “by hand” is questionable.)
Loskutov then argues, using the gauge condition and the need to match the exterior
solution to an interior solution at some r > M (supposedly shown using the Logunov
causality principle), that if the curved metric is stationary,? then the shift vector go;
vanishes, which vanishing excludes this nonstatic form of the Schwarzschild metric.
Loskutov therefore reaffirms the original conclusion of Vlasov and Logunov that
catastrophic collapse is impossible because the Schwarzschild radius is unreachable.

It seems that our worries about the Logunov causality principle propagate
into Loskutov’s argument. Earlier we were not persuaded by Petrov’s argument that
the Schwarzschild is reachable, either. It would appear that a complete resolution of
this issue might require a more adequate procedure for respecting n-causality while
ensuring a “complete” set of solutions of the field equations. In any case, the fact
that the SRA implies global hyperbolicity constrains the properties of the region of

no escape in this nonstatic Schwarzschild solution.

2The translated paper says “static,” but this cannot have been a proper use of “static” as a
technical term, or else the problem is trivialized.
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7.3 Existence of Schwarzschild ‘Singularity’ and Inte-
rior Dependent on Constant of Integration in Co-

variantly Unimodular Gauge

We turn now to study an interesting property of the static Schwarzschild solution in
the covariantly unimodular gauge \/@—f]. It might be the case that the Schwarzschild
singularity is truly singular in the SRA. However, as we will find, it need not be a
singular sphere at a finite radius, with an inscrutable interior. In fact, it plausibly
need not have an interior at all.

We review and build upon the work of Ya. I. Pugachev and V. D. Gun’ko
[101, 356, 357], who found that one can eliminate the interior of the Schwarzschild
radius entirely by a suitable choice of a constant of integration, at least in the co-
variantly unimodular gauge \/Q:—f’ = 1. Their results are sufficiently important, at
least given our SRA reinterpretation, and yet sufficiently unknown, that a recapitu-
lation will be worthwhile. We will alter their signature to — 4+ +4-. Eventually our
approach will diverge slightly from theirs.

Using the usual spherical coordinates for flat spacetime to give
do? = —dt? + dr? + r?(d6? + sin® 6d¢?) (7.19)

for the metaphysical interval, Pugachev and Gun’ko consider the physical interval

of the form
ds? = —e’Mdt? + N dr? 4 e#)r2(d9% + sin? 0dp?), (7.20)

where the very general form of the angular metric is the most interesting part of this
equation. Given this metric, the field equations take the following form (which we

have verified using GRTensor II, but have corrected a typographical error in their

paper):

!

!
2
V= N+ %(u’ + X +24") + TV =0, (7.21)
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4’ ! 1
2;1,”—I-V"+i—%(V'—F)\'—{-Zu')—{-5(1/'24—)\/24-2;1,/2)=0, (7.22)
r
2,1 2,0 — M 1 '
et 1+r(u’—>\’)+r2” +r'u(#2 )+§(1+%)(u’+)\’+2p’)
2,12
—Tg =1, (7.23)

where a prime denotes differentiation with respect to . They find these equations

to be solved by the two relations

Atv

c
ez =(re le—b

),e" =1+ —e 2. (7.24)
T

Sl

Hoping to find a unique and physically meaningful result, they impose the
gauge condition A}, = 0, which implies that \/QI—Z is a constant everywhere and
always.® One naturally chooses the constant to be unity for give the expected
properties at large r. Given the symmetries, only the r condition is nontrivial, leaving

N + v + 2y = 0, which explains why such expressions were isolated in the field

equations. They manage to solve the field equations in this gauge to get

C1

& — 14 , (7.25)
(r3 + cz)%
4
e = T _ (7.26)
(r3 + co)[e1 + (r3 + ¢2)3]
Ca.2
e = (1+ 33, (7.27)

which GRTensor II confirms to have vanishing Ricci tensor.

The constants of integration ¢; and ¢z must now be determined. The New-
tonian limit for large r quickly yields ¢; = —2G M. For cg, we part with their work
for the moment, though not greatly. It is interesting to see if one can choose co
in such a way that the solution is well-behaved all the way to » = 0. Given our

interest in the flat metric’s null cone, good behavior for us will imply satisfying the

3We cannot accept their claim that this is a Lorentz-like gauge, however.
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causality principle, too. To keep all metric components well-behaved, clearly one
needs ¢y > 0. One also needs r3 + ¢y > 8G3M3; making this hold down to r = 0
gives ca > 8G3M3. What does the causality principle demand? All eigenvalues must
be positive, and the timelike one must be at least as small as the others. Given the
assumptions so far about cg, the timelike eigenvalue is less than unity everywhere,
whereas the spacelike ones are greater than unity everywhere. Thus, any value of co
such that c; > 8G3M? eliminates the usual behavior of vanishing lapse, diverging
radial metric, etc., in favor of good behavior all the way down to (but not includ-
ing) r = 0, as in electromagnetism and Newtonian gravity for a point source. (The
typical form of the Schwarzschild metric is given by ¢; = 0.) If with Pugachev and
Gun’ko we require that the source be characterized by only one parameter while
retaining good behavior (a requirement that makes sense in the absence of sources),
then the value co = 8G3M? is uniquely selected. With this choice, one finds some
potentials diverging as r — 0, which is just what Newtonian and Maxwellian intu-
itions lead one to expect. In that case, the Schwarzschild singularity corresponds to
r = 0, merely a point, but the interior corresponds to nothing at all. Below we will
recall some comparable results of others.

What these results show is that, given this attractive partial gauge fixing,
the event horizon can be created or destroyed by the choice of the parameter co. It
should be pointed out that the work is done by gauge-fixing in terms of the radius,
not the time, as in the cases above. It should also be observed that adjusting the
gauge fixing is vastly more natural in this context than is adjusting the temporal
gauge. How so? The Schwarzschild problem is well-behaved for all ¢ and static in
t in the most obvious form, so there is nothing to suggest adjusting ¢; it is at some
values of 7, rather, that the solution appears to go bad, so adjusting the radial field
seems like the natural approach, in sympathy with Rosen’s intuitions.

In addition to the integration-constant dependence of the existence of the
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Schwarzschild ‘singularity’, Pugachev and Gun’ko report that other gauge choices
lead to physically distinct behaviors. It seems odd that physical behavior can be
affected by the choice of gauge, so something must give.

The usual geometric reply, provided in this case by M. E. Gertsenshtein
and M. Yu. Konstantinov [356], is that the above analysis fails to cover the whole
spacetime. Why? It is largely because it fails to recognize that several coordinate
systems are needed to cover the full solution, fails to reckon with its topology, and
fails to extend the g geodesics until either they attain infinite g-affine length or they
hit a singularity. If we were interested in the geometric approach to gravitation,
these criticisms would be relevant, but they are irrelevant to the SRA.# Given that
the spacetime is just Minkowski’s, we know in advance that it has trivial topology,
that it can be covered in single coordinate system, and that curves are complete
if they have infinite metaphysical length. We can therefore discount this geometric
reply, at least in letter.®

However, there might be some relevance to the spirit of their reply, because
we must still reckon with the gauge-variance of physical results. One approach, taken
by Pugachev and Gun’ko, is to argue that the bimetric formalism requires some sort
of gauge fixing. The need to fix the gauge has been argued by Rosen [6], Papapetrou
[11], Logunov and Vlasov (for example, [105]), and H. Nikoli¢ [108]. It seems quite

possible that different gauge fixings would give inequivalent theories.® Another

“Pugachev and Gun’ko did not make any clear statement of commitment to the flat spacetime
approach, but perhaps believed themselves merely to be studying Einstein’s theory and using the
flat metric as a convenient tool to find physically reasonable solutions. Thus, it is understandable
that such objections as these by Gertsenshtein and Konstantinov would arise to their work, though
not to ours.

®The work of Z. Zakir [358] is somewhat similar to that of Pugachev and Gun’ko in finding
the existence of the Schwarzschild singularity to depend on an additional constant. However, as
Zakir works within a geometrical approach to gravitation, the objection that his solution is not
geodesically complete seems unavoidable. We thank Dr. L. Lehner for comments on this subject.

5This outcome would perhaps suggests that the terms “gauge” and “gauge fixing” are inappro-
priate, but we will continue to use them until these issues have been sorted out. Fixing the gauge
using ineffective constraints imposed by Lagrange multipliers seems like a natural approach. For
the Logunov-Vlasov tensorial DeDonder gauge fixing, a term such as [ d*zA,, Ak, g™ Ag, g°°, with
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option might be our proposal that admissible gauges must ‘extend’ the solution
as far as possible, rather than gratuitously omit parts of it, but still respect 7-
causality. Thus, a good gauge fixing would have the vacuum Schwarzschild solution
have a potential that diverges as % at the center, rather than diverging at finite r
or not diverging at all.

Given this charming property of the covariantly unimodular gauge, one could
ask how this gauge condition relates to the null cone issue. Does this gauge supply
all of our desiderata? We recall that this condition (or the unimodular condition
v/—9) has been coupled with 2 of the tensorial (or ordinary) DeDonder condition
from time to time as an attractive gauge fixing [6,233], so it is already known to
have some appealing properties. However, it looks as if the condition of covariant
unimodularity typically fails to ensure null cone consistency, for it implies that if the
determinant of the spatial metric (say, in Cartesian coordinates) falls below unity,
then the lapse increases above unity. Such a situation might arise in a Robertson-
Walker cosmological context, where it would imply 7-causality violation. So the
ultimate significance of these results about removing the Schwarzschild radius and
its interior by choosing a constant of integration, in light of the unacceptability of
this gauge condition, remains unclear. Clearly the issue is subtle. However, one
might suggest that any good gauge ought to behave as the covariantly unimodular
gauge behaves at the Schwarzschild radius, so such behavior might be a criterion

for finding a good gauge.

7.4 The Schwarzschild Radius as a Point?

For a well-motivated value of the constant of integration in the covariantly unimod-
ular gauge, we have seen that the Schwarzschild singularity can be merely the point

r = 0. In fact, other authors, such as L. Bel [360] and A. I. Janis, E. T. Newman, and

Lagrange multipliers A,,, might be suitable.
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J. Winicour [361] and Rosen [359] discussed that result somewhat earlier apart from
any bimetric formalism. (See also ([362]).) It would seem that, from a flat space-
time point of view, this is the most desirable result, because it satisfies 7-causality,
conforms to intuitions about point sources from Newtonian gravity and electromag-
netism, manifests all the expected symmetries (including staticity), and ‘extends’
the Schwarzschild solution as far as possible without hitting a singularity—for surely
n-causality violation constitutes a singularity in the SRA.

Rosen, commenting on the work of Janis, Newman, and Winicour approv-
ingly, finds that “the interior of the Schwarzschild singularity has been excluded
from the physical space.” [359] (p. 233) He continues:

There seem to be two ways of dealing with this non-physical space. One
can simply exclude it from the physical space by requiring that the
boundary given by r = 2m be an impassible barrier for light or mat-
ter, or one can go over to a coordinate system which has been chosen
so as to exclude the non-physical region without leaving any boundary.

359] (p. 233)

This latter approach will be employed below.

7.5 Finding a Relation Between Two Coordinate Sys-
tems to Fix the Gauge

Next we outline a procedure for implicit partial gauge-fixing via the use of two
coordinate systems, one in which an interesting solution of Einstein’s equations is
given, and one which is known to cover the entire Minkowski spacetime and to
give the Minkowski metric a simple known form. Imposing 7-causality yields a
highly nonlinear partial differential equation relating the two coordinate systems.

By making use of the symmetries of the problem, one can hope to reduce the partial
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differential equation to a manageable form, so that some relationship between the
two coordinate systems can be found such that the gravitational potential is well-
behaved. Good behavior includes satisfying n-causality, of course. Probably there
will be many satisfactory answers if there is one, because 7-causality only imposes
inequalities, not equations, on the eigenvalues. We perform this procedure for the
Schwarzschild solution and find a simple solution, which illustrates in a different way
how it is that the interior of the Schwarzschild radius is excluded by the relation
between the two radial coordinates. It also becomes clear how one could make other
choices, which seem physically less desirable, that exclude even part of the exterior
of the Schwarzschild solution.

Given the matrix of coordinate basis components of a curved metric in some
coordinate system, one can look for a coordinate transformation between the co-
ordinates z* used and some simple coordinate system (perhaps Cartesian; here a
ranges from 0 to 3) y® that covers all of spacetime, gives the flat metric a simple
form, and respects 7n-causality. Thus, we want to solve the generalized eigenvalue
problem with characteristic polynomial

ox# Ox”

dEt(Anab - g/wa—ya B—yb)

=0, (7.28)

and then impose certain conditions on the eigenvalue roots.

Unfortunately, this equation looks rather difficult to solve in general. How-
ever, in the case of the Schwarzschild solution, we have spherical symmetry and
evidently staticity as well. It seems reasonable to investigate the case with y° =
20 =t,y% = 22 = 0, y3 = 2% = ¢, while the relationship between y! = R and z! = r
is to be determined.

The characteristic polynomial yields the eigenvalues

2
Aop=1- Tm (7.29)

A= (1- 27”’)*1, (7.30)
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7‘2

A2 = A3 = o5 (7.31)

We of course assume that M > 0. It is worth noting that the range of the coordi-
nate 7 is not known a priori. While there are presumably many solutions r(R) of
this equation-the work above with the covariant unimodularity condition is another
example—we choose for simplicity to consider solutions of the form r = R+ C. It is
clear that setting C' > 2M is necessary for 7-respecting behavior of the eigenvalues,
but choosing C' > 2M, though also respecting 7-causality, would gratuitously ex-
clude part of the Schwarzschild solution. We therefore take r = R+2M. The system
y* = (t,R,0,¢) is just the usual spherical coordinate system on flat spacetime, so
R ranges over [0, 00), implying that r ranges over [2M, c0). Thus, the value r = 2M
of the ‘Schwarzschild singularity’ is actually merely the point source at the origin

R =0, and the interior 7 < 2M just does not exist, as was suggested above.

7.6 Gravitational Collapse and the Black Hole Informa-

tion Loss Paradox

As we have seen, the SRA, which requires that the flat null cone be respected,
implies that all SRA spacetimes are globally hyperbolic. While Petrov’s nonstatic
Schwarzschild solution shows that regions of no escape are permitted within the
SRA, some of the more exotic properties of the black holes present in the geometrical
formulation will not appear in the SRA.

It has been argued that global hyperbolicity renders the Hawking black hole
information loss paradox innocuous [293]. That is because “the spacetime can be
foliated by a family of Cauchy surfaces in such a way that there is no time at which
the Lemma [proved therein] forces the state of the universe to be mixed” [293]
(p- 204). Thus, there is no evolution from a pure state to a mixed state, and so

no information is lost. If global hyperbolicity solves the problem, then so does the
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SRA. It would be pleasant if so small an investment as accepting a special relativistic
understanding of the Einstein equations were to yield such large dividends.

If the presence of black holes in the SRA is unclear, one might wonder what
becomes of the work on black hole entropy. As J. Oppenheim has evidently shown
recently [296], the proportionality of black hole entropy to area does not depend on
the existence of an event horizon, but merely occurs in the limit as a gravitating
system approaches its gravitational radius. Inclusion of the gravitational field in
thermodynamics yields a correction term that violates entropy extensivity; in the
limit as the radius approaches the Schwarzschild radius, the entropy is proportional

to area rather than volume.
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Chapter 8

Plane Wave and Infinite Plate
Solutions and Finite Range

Gravitation

Two further exact solutions in the SRA merit investigation. The plane wave solution
appears inconsistent with the SRA in its usual form, though we suggest how it
might be accommodated serviceably. An infinite plate in the SRA, it turns out,
must be repulsive, which is perhaps not too surprising, given its connection to the
Schwarzschild solution at close ranges. If the gravitational field is given a finite
range through a graviton rest mass of the Maheshwari-Logunov form, an attractive
infinite plate is possible. However, difficulties in producing an acceptable massive
theory of gravity in the SRA are noted. Such difficulties might suggest that the

massless theory is to be preferred even in the SRA.
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8.1 Caustic Plane Waves?

As we saw above while Nicholas was playing drums, plane wave solutions appear to
violate the n-causality in the tensorial DeDonder gauge. Given the RT'G, one would
have to reject such solutions as unphysical, but that seems like too high a price to
pay, because we would expect such solutions to be physical, and thus we conclude
that the RTG should be modified. We have argued above that a better approach
would be to use the gauge freedom to try to recast the solution into a form that
is consistent with the flat null cone, though that works only if gauge freedom is
present.

The suggestion of reducing the lapse to keep the curved null cone in check
faces an obstacle, if one intended to preserve this entire spacetime. It is not merely
the case local violations of causality occur, though that is bad enough. Rather, a
global violation occurs in the form of caustic plane waves [297, 302, 331]. Bondi and

Pirani write,

We call a plane gravitational wave caustic if it is capable of inducing
accelerations of test particles so strong that two particles, initially at
rest in flat spacetime and aligned suitably with respect to the wave, but
arbitrarily far apart, will collide, within a finite time interval that is
independent of their initial separation, after being struck by the wave.
We shall show that all plane sandwich waves with fixed polarization are
caustic, and describe some unusual optical properties of such waves ....

(p. 395).

We recall that a sandwich wave is one having a limited duration, so the wave is
‘sandwiched’ between two regions of flat spacetime. As Bondi and Pirani observe, a
special case of this caustic phenomenon is found in W. Rindler’s text [331] (pp. 166-

174), while Penrose called attention to this issue in 1965 [297]. Such a phenomenon is
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obviously inconsistent with the SRA, and thus constitutes a singularity of n-causality
violation.

In a set of coordinates that one rather naturally chooses, there exists a co-
ordinate singularity in this solution [331]. We recall the early (1937) worries of N.
Rosen [300,301] that plane waves in general relativity do not exist, because the
metric becomes singular. Later it was shown by I. Robinson and by H. Bondi that
there exists a coordinate transformation that removes Rosen’s singularity, so in the
geometrical theory, such waves are in fact nonsingular and acceptable [298,299].
The evident violation of 7-causality in this solution suggests that this apparent sin-
gularity is most likely genuine in the SRA. As a result, the only part of the plane
wave solution that exists anywhere in Minkowski spacetime is the part before the
apparent singularity. It would be interesting to see if there is a tendency for coordi-
nate singularities of the geometrical theory to indicate physical singularities in the
SRA, especially given that any solution in the SRA can be given in one coordinate
chart.

Whatever the status of the ostensible singularity, the collision of particles
initially arbitrarily far apart in a finite amount of physical time is not permissible in
the SRA. To avoid this disaster, it seems that one must choose the lapse such that
this collision ‘event’, though finitely removed in physical time, is infinitely distant
in metaphysical time. This gravitational time dilation would be analogous to the
behavior of a particle falling towards a very compact static spherically symmetric
mass, and somewhat like attempts to avoid the Big Bang singularity by removing
it to t = —oo [338-340]. With this choice of lapse, the test particles never col-
lide. Rather, the world gradually slows to a halt, with the time dilation becoming
arbitrarily large, so that a given interval of metaphysical time corresponds to ever-
smaller intervals of physical time. As t — +o00, the particles become arbitrarily

close to each other, but at no moment do they actually collide. Thus, part of the
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sandwich wave spacetime described by Bondi and Pirani and by Rindler just does
not exist in the SRA.

We also note a midisuperspace (quantized) model of pure gravitational plane
waves suggesting classically nontrivial behavior near the region where null cones are
focused by the wave [329]. In particular, the quantum fluctuations in that region
become significant, and coherent quantum states fail to approximate the classical
spacetime well. Given that the classical limit is presumably an approximation to be
derived from a fully quantum theory of gravity—which does not perhaps yet exist,
but the symmetries of this model permit one to avoid some of the major problems
involved—this result suggests that the classical geometric results are unreliable in this
region. It is intriguing that a canonical quantization of Einstein’s theory—which has
no trace of a flat background metric—should suggest the breakdown of the classical

limit in the same regime that the SRA finds a singularity.

8.2 The Gravitational Field of an Infinite Plate

It seems worthwhile to consider the gravitational field outside an infinite plate in
the SRA. It turns out that the causality principle requires that gravity be repulsive,
at least in the usual class of solutions. While repulsion might seem surprising, there
might be some analogy to the gravitational force just outside the Schwarzschild
radius in the spherically symmetric static case; one expects that as one approaches
the Schwarzschild radius from the outside, the field would start to resemble that of an
infinite plate. The repulsion is rooted in the choice of the non-affine parametrization
of the geodesic equation, which implies that the 4-force is not uniquely defined in
the direction of the 4-velocity. Our discussion of the plate solution is based on that
of P. A. Amundsen and @. Grgn [363], apart from a change of signature and an
interest in the SRA. One might also see F. Rohrlich’s work [364].
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The curved metric is assumed to have the form
ds® = —E(2)dt* + G(z2)(dz? + dy?) + F(z)d2?, (8.1)

while these coordinates are Cartesian with respect to the flat metric. Although there
are two classes of solutions that one could consider [363], we restrict ourselves to
the case with G = 1, which (apart from the conclusion of repulsion) behaves much
as one would expect based on analogy to electrostatics. The field equations reduce

to ,
1
— 4§TE (8.2)
where g is some constant. It remains to choose a gauge and to satisfy the causality
principle. One natural choice is £ = F, though we postpone a description of its
merits. The field equation then becomes trivial to solve, yielding E(z) = Eget297,
the constant g being positive without loss of generality.
Now let us recall the demands of flat spacetime causality: the timelike eigen-
value must be at least as small as the three spacelike eigenvalues. We can therefore
discard the growing solution in favor of the decaying one. If we further choose (as

do Amundsen and Grgn) to normalize the solution so that g, takes the Minkowski

form (—1,1,1,1) at the plate z = 0, then the curved metric is
ds? = —e 294de? + da? + dy? + e 29121422 (8.3)

One readily shows that the physical length of a line of constant ¢, z, and y is
just %, though its metaphysical length is of course infinite. Evidently the (repulsive)
gravitational field has caused physical rods to grow arbitrarily large far from the
plate, because it only takes a finite number of them to cover a metaphysically infinite
distance. It is clear from this example that the geometric criterion of geodesic
completeness for nonsingularity, that every g-geodesic extend to infinite g-length

[152], is inappropriate for the SRA.
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It is not difficult to find explicitly some of the geodesics of g, the worldlines
of test particles subject only to the gravitational force. We use the g-geodesic

equation in non-affinely parametrized form [152]

dz_‘va+ a}di”deJr (x)dia_o
d\? 2 dX dA dx

(8.4)

It seems convenient to choose the parameter A be ¢, the metaphysical time in the
rest frame. The time component of the geodesic equation gives K = 2g%. The x
equation gives ‘573’ + 293—‘;‘2—% =0, and the y equation is analogous. The z equation,
which is of the most interest, gives % —g+ g(%)2 = 0. Consistency with flat
spacetime causality has thus yielded an anti-Newtonian limit for slow velocities.
However, particles with u = 1 are neither repelled nor attracted. It is not difficult
to integrate the z equation.

Above it was suggested that repulsion could be made plausible by analogy to
the Schwarzschild solution. We recall that a particle takes infinite metaphysical time
to fall to the Schwarzschild singularity, at least in a static gauge, so the gravitational
force, suitably defined, must be repulsive at short ranges, as indeed one can show.
This repulsion follows from the choice of the non-affine parametrization of the g-
geodesic equation, which permits adding a ‘force’ parallel to the 4-velocity with a
fairly arbitrary coefficient. The repulsion is not confined to short ranges, but can
occur at longer ranges given a large radial velocity. Using the standard forms for
the Schwarzschild metric (and the flat metric), and parametrizing the motion of a
radially-moving particle by ¢, the metaphysical time in the rest frame, the g-geodesic
equation reduces to % = W[—(r — 2m)? + 3r?(%)2]. This form shows that
repulsion can occur either for large radial velocities or for small distances from the
Schwarzschild radius.

While the Schwarzschild analogy might reconcile one to the repulsive force of

the plate, one might wonder if the plate result is gauge-variant, perhaps due merely

to the choice £ = F. In fact, given the natural assumptions that one wants to make
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(including G = 1), that is true for every gauge, as we now show. In order to achieve
attraction for a the particle at rest, one needs % > (0. One would expect the plate
to be attractive for all z, so this derivative must be positive for all z > 0. Given the
assumption that G = 1, causality requires that £ < 1. Thus, it must be the case
that 0 < £ < 1 (although one could perhaps permit E = 0 at z = 0), and that F is
a strictly increasing function of z for all positive z. Obviously it follows that £/ — 0
as z — 0o. But then the field equation F' = ﬁ;% implies that ' — 0, in violation
of causality for large z. Thus, at least given G = 1, there is no way of securing an
attractive infinite plate in the SRA, at least not as the sole content of the universe.
Given that the behavior of the curved metric at arbitrarily large values of z played a
role in this argument, it might turn out that including other objects in the universe
(apart from test bodies) would make an attractive infinite plate possible.

It is interesting that domain walls involve repulsive infinite-plate-like solu-

tions [366].

8.3 Infinite Plate in Finite-Range Gravitation

We find it interesting that if one gives gravitation a mass term of the form employed
by Freund, Maheshwari, and Schonberg [260] and by Logunov et al., then, at least
to linear order, the problem of the impossibility of an attractive infinite plate (alone
in the universe) disappears. (We suspect that it holds in the nonlinear theory also,
but have not solved the nonlinear ODE). This removal of the difficulty is not too
surprising, because the rest mass gives gravitation a finite range, implying that
most of the infinite plate has negligible effect on the gravitational potential at a
given point. The plate thus acts something like a finite patch only.

Retaining G = 1 but using the massive field equations, we observe that
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necessarily E = F'; the remaining equation is
12

E" - - T m?*(E — E?) =0, (8.5)

where the speed of light and the reduced Planck constant have both been set to
unit value. This equation is not easy to solve!, so we linearize by setting E = 1 + ¢,
where |e| < 1. The resulting field equation is just €’ — m2e = 0. Given that G = 1,
causality will exclude an exponentially growing solution (not to mention its violating

the assumption of linearization), so we set
€= —ae ™. (8.6)

The equation of motion for a test body at rest is ‘flsz +{4} = 0. Using {3} = &
and the form of €, one gets (at linear order) ‘575 + M = 0. Clearly a massive
theory will have the curved metric approximate the flat one as z — oo, so we cannot
impose that requirement at the plate. Instead, we require the Newtonian limit to
hold at the plate, and obtain a = %g. Given that 0 < a < 1, it follows that for
fixed Newtonian acceleration g, there is a minimum ‘graviton’ rest mass: m > 2g.
Taking the limit as the mass vanishes therefore makes g vanish, too, so we can see
why no infinite-range attractive plate solution exists. The linearization is a good

approximation when a is small, which is to say, when m > g. It appears, then, that

an attractive flat plate requires gravitational rest mass, indeed, a suitably large one.

8.4 Causality in Finite-Range Gravitation

While numerical solution of the differential equation for this massive theory above
would be possible, such effort seems unwarranted given the problems that the theory
faces. More generally, if massive relatives of Einstein’s theories are to be accepted,

then two difficulties must be overcome. The first is the negative-energy worry about

!Given that this theory faces both causality and ghost worries, solving the equations numerically
does not seem worth the trouble.
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massive “ghost” theories [234], which has been with us for the last three decades.
The second is the null cone consistency issue, at least if one wishes to interpret the
theory in accord with the SRA. Given the observability of flat spacetime in a massive
theory, such an interpretation is very natural, so its absence would be somewhat em-
barrassing to a massive theory. While the negative energy question was raised some
time ago, more recently M. Visser has doubted that this worry is quite so conclusive
[235]. Also, Loskutov has made calculations indicating the positive-definiteness of
the gravitational radiation intensity in the Maheshwari-Logunov theory [368] (and
earlier work). However, the above-mentioned causality worries for linearized plane
waves obeying the tensorial DeDonder condition apply to the Maheshwari-Logunov
massive theory, because in the high-frequency limit, the rest mass will not affect the
dispersion relation. As a result, it is not clear what to make of Loskutov’s work in
the SRA.

Recently I. P. Denisova has found an interesting electrovac plane wave solu-
tion for the massive RT'G. (Solutions in the massive theory are more difficult to find
than for Einstein’s equations, in part because the field equations are all independent
in the massive case.) The electromagnetic source gives rise to a gravitational “wave”
that merely makes the curved metric represent a noninertial frame of reference as the
wave passes by. As Denisova notes, this solution obeys 7n-causality. One difference
between this solution and the linearized vacuum plane monochromatic wave that
violates n-causality is that the former is longitudinal, whereas the vacuum waves
are transverse: an electromagnetic wave moving along the z-axis affects only the
t —t,t— 2z and z — z components of the effective curved metric. (However, it is
quite unclear that the massive RT'G has enough solutions obeying n-causality, so the
presence of one wave that does will not touch that fundamental issue.) Denisova’s
solution because singular in the massless limit, so apparently it has no analog in the

massless case. Using the eigenvector technology developed above, one can show that
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this solution is of Segré type {211}, the class of metrics that can just barely satisfy
n-causality, and that our necessary and sufficient conditions for 7-causality indeed
hold. However, if our proposal for securing enough solutions by exploiting gauge
freedom is accepted, then this solution would not be acceptable in its {211} present
form, but rather would require gauge-transforming to make it a {1111} solution.
The reader will perhaps be puzzled by the call for a gauge transformation in
the RT'G, inasmuch as the theory has no nontrivial gauge freedom. However, some
time ago Stueckelberg showed how to turn Proca’s massive electromagnetism into
a gauge theory by introducing a suitably-coupled scalar field [294,295]. It would
be interesting to see if a similar move can be made using a massive version of gen-
eral relativity (such as the Maheshwari-Logunov theory) in order to secure enough
gauge freedom to fix the null cone relationship. One might try a substituting a
finitely-gauged transformed curved metric and matter fields, a procedure analogous
to one that yields Stueckelberg’s gauge-invariant version of Proca’s massive elec-
tromagnetism. Probably a single arbitrary function would provide enough gauge
freedom to yield consistency by adjusting the lapse, so it is not necessary to restore
the full amount of gauge freedom to the massive theory—which would undo some of
the benefit of adding the mass term. One might let the vector field(s) generating
the transformation(s) be parallel to the relevant eigenvector(s) €y, or be the (con-
travariant) gradient of some scalar field(s). However, the resulting theories might
tend to have higher derivatives, indeed, an infinite number of derivatives, appearing
in the erstwhile graviton mass term, and thus be nonlocal in most gauges. One
might also consider using the Batalin-Fradkin-Tyutin (BFT) procedure [370-372]
(or some relative thereof) for converting second-class constraints (such as in mas-
sive electromagnetism and massive gravity in their simplest forms) into first-class
constraints via the introduction of additional fields, though such an undertaking

would not be technically trivial.
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While a graviton mass would have profound theoretical consequences, its
experimental effect, at least in many situations [235], would be limited by known

bounds on the graviton mass [367].
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Chapter 9

Conclusion

In this work we have contemplated the role that nondynamical or “absolute” objects—
in particular, a flat metric and perhaps a preferred time foliation—ought to play in
gravitation. We have found no excellent reason to include an invariant time folia-
tion in physics, but good reasons to include one in metaphysics. While one might
be disturbed that physics and metaphysics would differ so, we have suggested that
there could be good reasons for this distinction to exist.

Concerning a flat metric, we have found another clean derivation of the
Hilbert action of general relativity from a gauge-invariant free field theory which
gets universally coupled to the stress tensor. We have also found that including the
determinant of the flat metric in the field equations permits one to write slightly
bimetric theories of gravity, which are phenomenologically similar to very general
scalar-tensor theories. However, despite appearances, neither these theories nor
general relativity derived from flat spacetime is manifestly consistent with special
relativity, because they give no assurance that the flat metric’s causal structure will
be respected. We then reviewed the history of the discussion of this issue since 1939,
identifying a number of stances and diagnosing them as unsatisfactory, or at least

not in line with our interests.
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We then undertook to solve the problem ourselves, and largely succeeded.
The kinematic issues were resolved using a generalized eigenvector formalism, which
we showed to exist in the relevant cases. The dynamical issue of enforcing stable
n-causality can be solved by using specially-adapted variables in which it holds
identically, a procedure inspired by Klotz’s approach to the positivity conditions
of canonical quantum gravity. This procedure reduces the configuration space for
the curved metric so that only good configurations are possible. Given that a gauge
transformation should connect one physically acceptable configuration with another,
the SRA has rather restricted gauge freedom. Gauge transformations could not be
identified merely with their generating vector fields, but also depend essentially on
the curved metric configuration assumed prior to transformation. As a result, gauge
transformations in the SRA do not form a group, because the multiplication opera-
tion is not always defined. Studying simple cases, such as homogeneous cosmological
models, might give insight into the explicit form of the SRA gauge transformations.

Given the restricted gauge freedom and the need to respect stable 7-causality,
the issue of gauge ws. physical singularities had to be reconsidered. For the
Schwarzschild solution, the jury is still out. But the SRA implies global hyper-
bolicity, which implies that any regions of no escape will not be as exotic as are
the black holes of the geometrical theory. Furthermore, global hyperbolicity proba-
bly resolves the gravitational information loss paradox. Caustic plane waves, which
seemed incompatible with the SRA and lack a Cauchy surface, in fact likely can be
handled by reducing the lapse enough to postpone the unacceptable region forever
and thus excluding it from the physical spacetime in the SRA.

For infinite plate masses, the SRA to Einstein’s equations implied a repulsive
plate, although adding a mass term permitted an attractive plate. While massive
gravity seems very natural from a flat spacetime perspective, as Logunov has ob-

served, we find a difficulty: the appealing properties are rooted in destroying the
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gauge freedom, whereas respecting 7-causality (and ensuring a ‘complete set’ of so-
lutions) appears to require some gauge freedom. Furthermore, it was not clear how
to produce a satisfactory massive theory with gauge freedom. If this latter difficulty
cannot be resolved, then it might follow that the massless theory is in fact preferable

even in the SRA.
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