310, MR. L. F. RICHARDSON : APPROXIMATE ARITHMETICAL SOLUTION

which there is a value of ¢ which enters into the system of body-equations by way of
the boundary-conditions will be called a boundary-povnt.

The values of any function of position at these two classes of points will be
distinguished as body values and boundary values, or synonymously as body-numbers
and boundary-numbers.

Problems are divided into two main classes according as the integral can or cannot
be stepped out from a part of the boundary. They are discussed in §2 and §3
respectively. ' _ ’

§ 1-2. Errors due to Finite Differences.—Having solved an equation using the
simple expressions of §1°1 for the differential coefficients, it remains to enquire how
much in error the integral may be. A rule of apparently universal application is to
take smaller co-ordinate differences and repeat the integration ; and, if necessary,
extrapolate in the manner explained below.

It is known* that when central differences are used, the expansions of the differential
coefficients of a function in terms of its differences contain only alternate powers of
the co-ordinate difference h. The same is true for partial differential coefficients and
for products of differential coefficients. Consequently the error of the representation
of any differential expression by central differences is of the form h?F, (x, y, 2)
+h'F,(, y, z)+ terms in higher powers of A’ where F,, F,, &c., are independent of h.1

Next, as to the error of the finite-difference-integral ¢. This is the infinitesimal
integral of a differential equation having the error K2F, (x, ¥, 2) + R Fa (2, 9, 2)+, &e.
Let ¢ be the integral of the correct differential equation. Then, if we write

(&, 9, 2) = (¥, 2) s (2, 9, 2) +ms (@, 9, 2)+ permms

in higher powers of m, it follows that a differential expression of any order and degree

for ¢ differs from the corresponding one for ¢ by
m x (a function of the differential coefficients of ¢ and of y,)+ terms in m2, m?, &e.,

provided only that m is independent of the co-ordinates. Now, identifying m with A%
it follows that : the errors of the integral and of any differential expressions derived
from it, due to using the simple central differences of § 111 instead of differential
coefficients, are of the form ' ,

Kfi(z, y, 2)+hY(x, v, 2)+ R (2, 9, 2)+, &e.

Consequently, if the equation be integrated for several different values of
extrapolation on the supposition that the error is of this form will give numbers very
close to the infinitesimal integral. When h is small enough the error is simply

* VW. F. SuEPPARD, * Central-Difference Formule,” ¢ Proc. Lond. Math. Soc.,’ vol. xxxi. (1899).
[t Note added January 21, 1910.—It is assumed that the co-ordinate axes in the tables which are.
compared are parallel, for the error at a fixed point and for a fixed value of & may depend on the direction

of the axes.]
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proportional to A% Peculiarities present themselves on the boundary, but it is easy
to see that errors will be of the form A%f,+h'fi+, &c., provided that in passing from
one table to another each part is either kept infinitesimally correct, or else is worked
by differences whose size in the one table bears a constant ratio to that in the other.

An extrapolation can only be made where the tabular points of the several tables
coincide with one another. It is conceivable that in the future some method
will be found of defining a continuous function in terms of the discrete body and
boundary values, so that this continuous function shall have an error of the form
B, (x, y, 2)+hf.(x, 9, 2)+, &e., everywhere. Extrapolation would then be possible
everywhere.

An excellent illustration is afforded by Lord RAYLEIGH'S account of the vibration of
a stretched string of beads (‘Sound,’ vol L, §121). He gives the frequency of the
fundamental for the same mass per unit length concentrated in various numbers
of beads. This is reproduced below in the table. The co-ordinate difference A is
inversely as one plus the number of beads, not counting beads at the fixed ends.

Number of free beads + one . . 2 3 4 5 10 20 40 ®

Ratio of frequency to that of ]| .q . . . : i : i
. continuous string . o 9003 | -9549 | -9745 | 9836 | ‘9959 | -9990 9997 | umity

Error in representation of con- ' )
-0997 | -0451 | -02565 | -0164 | -0041 | -0010 | -0003 | -0000

tinuous string by string of
beads . %5 B w3

co-ordinate difference x a p{ :3988 | -4059 ;4080 <4091 | -4107 | -4111 | 4112 | -4112

Ratio of error to square of
constant .

The degree of constancy of the last line shows that if we found the frequency for
one bead and for three, then extrapolation, on the assumption that the error is
proportional to %, would give us the frequency for the continuous string to about one
part in 1000 ; which is as near as we could get by twenty beads and no extrapolation.
While extrapolation from the exact solutions for four beads and for nine would leave
an error of only one in 50,000. Other examples of extrapolation will be found in §3-1.

§ 2. Procedure when the Conditions allow the Integral to be Marched out from a
Part of the Boundary.

§20. Historical.—Step-by-step arithmetical methods of solving ordinary difference equations have long
been employed for the calculation of interest and annuities. Recently - their application to differential
equations has been very greatly improved by the introduction of rules allied to those for approximate
quadrature. The papers referred to are:—

Runcg, “Uber die numerische Auflésung von Diﬂ'erenﬁialgleichung-en,” ¢ Math. Amn.,” Bd. 46.
Leipzig, 1895, B -
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Again, from the size and distribution of ¢ combined with a knowledge of various
integrals of ©'¢ = f(x, y), a rough estimate of the errors in ¢ can frequently be made.
Again for certain equations* the method of contour integration applied to a circle
affords a check on the value of ¢ at its centre. This method is very rapid, and it is
particularly advantageous when applied to a circle enclosing many body values, for
then a repetition of the approximation process would be correspondingly tedious.

§ 3:2'5. Routine of Approximation.—Time and Cost.—To anyone setting out on a
problem I offer the following experience as a guide in forming estimates :—It was
found convenient to enter certain stages on a table with
large squares, each divided into compartments. Thus for TanLE.

B, o B9 8
ot 'Sa;’%gf By
the annexed table. All the quantities in it refer to the
central point of the square. The intermediate stages are
done on rough paper and thrown away. So far I have

= 0, one of the squares is shown in s P P
$ P P

¢s &e.

paid piece rates for the eperation 8.2+, of about %

pence per co-ordinate point, n being the number of digits. The chief trouble to the
computers has been the intermixture of plus and minus signs. As to the rate of
working, one of the quickest boys averaged 2,000 operations %.’+%,’ per week, for
numbers of three digits, those done wrong being discounted.

§3'3. Relative Merits of Simultaneous Equations and of Successive Approxi-
mation.—The method of simultaneous equations may be applied to differential
equations of any order and degree. It gives results which are exact for finite
differences. It is necessary in discussions as to the existence and properties of the
integrals of difference equations. But for actually calculating the integrals the
labour becomes very great as the number of unknowns increases, and is of a sort
which a clerk will not easily do. Large numbers of digits have to be dealt with, and
a single mistake generally throws the result a.ltogether out.

The successive approximation methods of § 32 have only been applied to a limited
class of linear equations. The results are not exact even for finite differences. But
the bulk of the work can be done by clerks who need not understand algebra or
caleulus. Small and infrequent mistakes, or taking only a small number of digits, do
not prevent one arriving at a fairly correct result. Nevertheless, it has been found
best to have everything worked in duplicate.

The method of successive approximation to the surface z = ¢, = f (2, y) reminds
one of the manufacture of plane metallic surfaces. The initial form of the surface is
arbitrary in both cases. The essential things in both cases are a method of testing
the work at any stage, a tool with which to alter the surface and judgment in using
it. Methods of testing the arithmetic have been described in § 824 above. Our

* These include V2¢ = 0, Vy*p = 0. See a paper by BoaeIo, * Jahrb, Fortschritte Math.,’ 1900, p. 740




