PHYS 170 Section 101
Final Exam Review November 26, 2018

Announcements

- Modification of overall grading scheme:

If your mark on the final exam is greater than your course mark computed using the original grading scheme, then your final grade will be equal to your mark on the final exam.

- Text sections referenced in syllabus, but not covered in class, and for which there will be no evaluation on final:
$5.7,12.3,14.4$

WARNING / DISCLAIMER

The instructor does not guarantee that the following review is complete. In particular, concepts and/or equations pertinent to the final exam may have been omitted below.

CHAPTER 5
 EQUILIBRIUM OF A RIGID BODY

Conditions for Rigid Body Equilibrium

$$
\begin{gathered}
\mathbf{F}_{R}=\sum \mathbf{F}=\mathbf{0} \\
\left(\mathbf{M}_{R}\right)_{o}=\sum \mathbf{M}_{o}=\mathbf{0}
\end{gathered}
$$

- A body is in equilibrium if the sum of the external forces acting on it vanishes and the sum of the moments about some point due to those forces added to all the couple moments also vanishes.
(b)

Free Body Diagrams \& Support Reactions

A force is developed by a support that restricts the translation of its attached member

A couple moment is developed when rotation of the attached member is prevented

Will not be told which reactions are developed by which supports, so may want to include details of at least some of them on your information sheet, but also study available problems (lectures, homework, old exams, for other examples)

TABLE 5-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems

Types of Connection Reaction Number of Unknowns
(1)

cable

One unknown. The reaction is a force which acts away from the member in the known direction of the cable.

One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.
(3)

One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.

TABLE 5-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems
Types of Connection Reaction Number of Unknowns
(5)

ball and socket

single journal bearing

Three unknowns. The reactions are three rectangular force components.

Four unknowns. The reactions are two force and two couple-moment components which act perpendicular to the shaft. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.
Types of Connection Number of Unknowns
(7)

single thrust bearing
(8)

single smooth pin

Five unknowns. The reactions are two force and three couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

Five unknowns. The reactions are three force and two couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

Five unknowns. The reactions are three force and two couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

TABLE 5-2 Continued

Types of Connection Reaction Number of Unknowns
(9)

Five unknowns. The reactions are three force and two couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

Six unknowns. The reactions are three force and three couple-moment components.

Equations of Equilibrium

Vector equations of equilibrium

The vector conditions for equilibrium of a rigid body are

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& \sum \vec{M}_{O}=0
\end{aligned}
$$

where $\sum \vec{F}$ is the vector sum of all the forces acting on the body and $\sum \vec{M}_{o}$ is the sum of any couple moments and the moments of all the forces about any point O.

Scalar equations of equilibrium

In Cartesian vector form, the equations of equilibrium become

$$
\begin{gathered}
\sum \vec{F}=\sum F_{x} \vec{i}+\sum F_{y} \vec{j}+\sum F_{z} \vec{k}=0 \\
\sum M_{O}=\sum M_{x} \vec{i}+\sum M_{y} \vec{j}+\sum M_{z} \vec{k}=0
\end{gathered}
$$

The \vec{i}, \vec{j}, and \vec{k} components are independent of one another, so these are equivalent to the six scalar equations:

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

These equations can be used to solve for at most six unknowns shown on the free body diagram.

CHAPTER 13
 KINETICS OF A PARTICLE: FORCE AND ACCELERATION

- Worked in different coordinate systems
- Rectangular (Cartesian) coordinates
- Normal / tangential coordinates
- Cylindrical (polar) coordinates
- Restricted our problem solving to two dimensional problems
- Fundamental equation: Newton's $2^{\text {nd }}$ law for a particle of mass m

$$
\sum \mathbf{F}=m \mathbf{a}
$$

Equations of Motion: Rectangular Coordinates

$$
\begin{aligned}
& \Sigma F_{x}=m a_{x} \\
& \Sigma F_{y}=m a_{y} \\
& \Sigma F_{z}=m a_{z}
\end{aligned}
$$

Absolute Dependent Motion

$$
a_{B}=3 a_{A}
$$

PROB13_027.jpg

Relative-Motion of Two Particles Using Translating Axes

Position

\[\)| $\vec{r}_{B / A}=\vec{r}_{B}-\vec{r}_{A}$ |
| ---: |
| $\vec{r}_{B}=\vec{r}_{A}+\vec{r}_{B / A}$ |
| Velocity |
| $\vec{v}_{B / A}=\vec{v}_{B}-\vec{v}_{A}$ |
| $\vec{v}_{B}=\vec{v}_{A}+\vec{v}_{B / A}$ |
| Acceleration |
| $\vec{a}_{B / A}=\vec{a}_{B}-\vec{a}_{A}$ |
| $\vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A}$ |

\]

PROB13_061.1pp
Coppright O 2010 Peason Prentice Hall, inc.

Equations of Motion: Normal and Tangential Coordinates

$$
\begin{aligned}
& \sum F_{t}=m a_{t}=m \dot{v} \\
& \sum F_{n}=m a_{n}=m \frac{v^{2}}{\rho} \\
& \sum F_{b}=0
\end{aligned}
$$

54.jpg
on Prentice Hall, Inc.

Equations of Motion: Cylindrical Coordinates

RECALL: Ch 12 - Polar components: Planar Motion (2D)

POSITION

$$
\mathbf{r}=r \mathbf{u}_{r}
$$

Note that, in general, r, θ coordinates of particle will be functions of time, i.e.

$$
\begin{aligned}
& r=r(t) \\
& \theta=\theta(t)
\end{aligned}
$$

VELOCITY

$$
\mathbf{v}=\dot{r} \mathbf{u}_{r}+r \dot{\theta} \mathbf{u}_{\theta}
$$

Velocity

Polar components: Planar Motion (2D) [continued]

Acceleration

ACCELERATION

$$
\mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{u}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbf{u}_{\theta}
$$

EQUATIONS OF MOTION in cylindrical coordinates

$$
\begin{aligned}
& \Sigma F_{r}=m a_{r} \\
& \Sigma F_{\theta}=m a_{\theta} \\
& \Sigma F_{z}=m a_{z}
\end{aligned}
$$

Inertial coordinate system

- Only dealt with problems in which the motion was restricted to 2 D , i.e. to the $r-\theta$ plane. In this case, only the first two of the above equations apply

Many of the problems in this part of the course have the following features

- They are natural to treat in polar coordinates
- The path of the particle is specified (constrained motion)
- Some of the forces on the particle act in the normal or tangential directions

- We thus need to be able to determine the orientation of the (t, n) coordinate system with respect to the (r, θ) system
- As shown in the figure, the tangent to the particle path will form an angle ψ with the extended radial line

TANGENTIAL AND NORMAL FORCES (continued)

- Showed that

$$
\begin{aligned}
\tan \psi & =\frac{r \dot{\theta}}{\dot{r}} \\
\tan \psi & =\frac{r}{d r / d \theta}
\end{aligned}
$$

Figure: 13_P104

CHAPTER 14 KINETICS OF A PARTICLE: WORK AND ENERGY

WORK OF A VARIABLE FORCE

$$
U_{1-2}=\int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{s_{1}}^{s_{2}} F \cos \theta d s
$$

WORK OF A CONSTANT FORCE ALONG A STRAIGHT LINE

$$
U_{1-2}=F_{c} \cos \theta\left(s_{2}-s_{1}\right)
$$

WORK OF A WEIGHT

$$
U_{1-2}=-W \Delta y
$$

WORK OF A SPRING FORCE

Work done by the spring force on the particle

$$
U_{1-2}=-\left(\frac{1}{2} k s_{2}^{2}-\frac{1}{2} k s_{1}^{2}\right)
$$

WORK OF FRICTION CAUSED BY SLIDING

$$
U_{1-2}=-\mu_{k} N s
$$

PRINCIPLE OF WORK \& ENERGY

$$
\begin{gathered}
\Sigma U_{1-2}=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2} \\
T_{1}+\Sigma U_{1-2}=T_{2}
\end{gathered}
$$

Applies to a system of particles as well as a single particle. For a system, there are implicit sums over all the particles in the various terms of the equations.

Conservative Forces and Potential Energy

CONSERVATIVE FORCE

- Definition: A force is called conservative if the work that it does on a particle as the particle moves from one point to another is independent of the path that the particle travels (i.e. the work done depends only on the location of the initial and final points)
- Examples of conservative forces
- Weight
- (Elastic) Spring force

GRAVITATIONAL POTENTIAL ENERGY

- Assuming that y is positive, the gravitational potential energy, V_{g}, of a particle of weight W is

$$
V_{g}=m g y
$$

ELASTIC POTENTIAL ENERGY

- An elastic (ideal) spring that is compressed or elongated a distance s from its equilibrium position has an elastic potential energy, V_{s}, given by

$$
V_{s}=+\frac{1}{2} k s^{2}
$$

POTENTIAL FUNCTION (TOTAL POTENTIAL ENERGY)

Potential function, V

$$
V=V_{g}+V_{s}
$$

Relation to work

$$
U_{1-2}=V_{1}-V_{2}
$$

Conservation of Energy

- For a particle acted on only by conservative forces, the sum of the particle's kinetic and potential energy is constant during the motion of the particle

$$
T_{1}+V_{1}=T_{2}+V_{2}
$$

- For a system of particles acted on only by conservative forces we have

$$
\Sigma T_{1}+\Sigma V_{1}=\Sigma T_{2}+\Sigma V_{2}
$$

CHAPTER 15
 KINETICS OF A PARTICLE: IMPULSE AND MOMENTUM

Linear Momentum (defn): For a particle with mass, m, and velocity, \mathbf{v} (as measured in an inertial frame), the linear momentum, \mathbf{L}, of the particle is

$$
\mathbf{L}=m \mathbf{v}
$$

Impulse (defn): For a generally time-dependent force and a time interval $t_{1} \leq t \leq t_{2}$ over which the force acts, the linear impulse over that interval is

$$
\mathbf{I}=\int_{t_{1}}^{t_{2}} \mathbf{F}(t) d t
$$

Principle of Impulse and Momentum (single particle)

$$
m \mathbf{v}_{1}+\sum \int_{t_{1}}^{t_{1}} \mathbf{F} d t=m \mathbf{v}_{2}
$$

Principle of Impulse and Momentum (system of particles)

$$
\Sigma m_{i}\left(\mathbf{v}_{i}\right)_{1}+\Sigma \int_{t_{1}}^{t_{2}} \mathbf{F}_{i} d t=\Sigma m_{i}\left(\mathbf{v}_{i}\right)_{2}
$$

Conservation of Linear Momentum for a System of Particles

- If no external impulses act on a system of particles (no external forces, for example), then linear momentum for the system is conserved

$$
\Sigma m_{i}\left(\mathbf{v}_{i}\right)_{1}=\Sigma m_{i}\left(\mathbf{v}_{i}\right)_{2}
$$

- Scalar form (can apply conservation in one or more coordinate directions when there are no external impulses in that direction

$$
\begin{aligned}
& \sum m_{i}\left(v_{i x}\right)_{1}=\sum m_{i}\left(v_{i x}\right)_{2} \\
& \sum m_{i}\left(v_{i y}\right)_{1}=\sum m_{i}\left(v_{i y}\right)_{2} \\
& \sum m_{i}\left(v_{i z}\right)_{1}=\sum m_{i}\left(v_{i z}\right)_{2}
\end{aligned}
$$

Impact

Central impact

Coefficient of restitution

$$
e=\frac{\left(v_{B}\right)_{2}-\left(v_{A}\right)_{2}}{\left(v_{A}\right)_{1}-\left(v_{B}\right)_{1}}=\frac{\text { relative velocity after impact }}{\text { relative velocity before impact }}
$$

Oblique Impact

Plane of contact

- Establish n axis (normal axis) along the line of impact and t axis (transverse axis) within plane of contact
- Impulsive forces of deformation and restitution act only in the n direction
- Momentum is conserved along the line of impact, so that

$$
\sum m v_{1 n}=\sum m v_{2 n}
$$

- Along the t axis, perpendicular to the line of impact, the momenta of particles A and B are individually conserved since no impulses act on either of them in this direction

Equations for Oblique Impact

$$
\begin{gathered}
v_{A 2 n}=\frac{\left(m_{A}-e m_{B}\right) v_{A 1 n}+m_{B}(1+e) v_{B 1 n}}{m_{A}+m_{B}} \\
v_{A 2 t}=v_{A 1 t} \\
v_{B 2 n}=\frac{\left(m_{B}-e m_{A}\right) v_{B 1 n}+m_{A}(1+e) v_{A 1 n}}{m_{B}+m_{A}} \\
v_{B 2 t}=v_{B 1 t}
\end{gathered}
$$

Angular Momentum

$$
\left(H_{o}\right)_{z}=(d)(m v)
$$

Principle of Angular Impulse and Momentum

$$
\begin{aligned}
& \text { angular impulse }=\int_{t_{1}}^{t_{2}} \mathbf{M}_{o} d t \\
& \left(\mathbf{H}_{o}\right)_{1}+\sum \int_{t_{1}}^{t_{2}} \mathbf{M}_{o} d t=\left(\mathbf{H}_{o}\right)_{2}
\end{aligned}
$$

Conservation of Angular Momentum

When the vector sum of angular impulses acting on a particle during a time interval vanishes (no angular impulse act on the particle, for example), then angular momentum of the particle is conserved

$$
\left(\mathbf{H}_{o}\right)_{1}=\left(\mathbf{H}_{o}\right)_{2}
$$

More generally, angular momentum about some axis is conserved when there are no angular impulses acting about that axis

