PHYS 170 Section 101
Final Exam Review
November 26, 2018



Announcements

Modification of overall grading scheme:
If your mark on the final exam is greater than your course

mark computed using the original grading scheme, then your
final grade will be equal to your mark on the final exam.

Text sections referenced in syllabus, but not covered in class,
and for which there will be no evaluation on final:

5.7,12.3,14.4



WARNING / DISCLAIMER

The instructor does not guarantee that the
following review 1s complete. In particular,
concepts and/or equations pertinent to the final
exam may have been omitted below.



CHAPTER 5
EQUILIBRIUM OF A RIGID BODY



Conditions for Rigid Body Equilibrium

(Mg)p =0

Frp=10

0

(b)

F, =) F=0
M,), =2 M, =0

A body is in equilibrium if the sum of the
external forces acting on it vanishes and the
sum of the moments about some point due
to those forces added to all the couple
moments also vanishes.



Free Body Diagrams & Support Reactions

A force 1s developed by a support that restricts the translation of its
attached member

A couple moment is developed when rotation of the attached
member 1s prevented

Will not be told which reactions are developed by which supports, so may
want to include details of at least some of them on your information
sheet, but also study available problems (lectures, homework, old exams,
for other examples)



Types of Connection Reaction Number of Unknowns

(1)

One unknown. The reaction is a force which acts away
from the member in the known direction of the cable.

(2)

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

smooth surface support

/ l One unknown. The reaction is a force which acts
- perpendicular to the surface at the point of contact.

—
-

roller
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Types of Connection Reaction Number of Unknowns

(4)

Three unknowns. The reactions are three rectangular
force components.

ball and socket

5

A &5 szj; Four unknowns. The reactions are two force and two
- : couple-moment components which act perpendicular to
"-'33"__L_H f F. the shaft. Note: The couple moments are generally not
Y e applied if the body is supported elsewhere. See the

M > K examples.

single journal bearing
confinued
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continued on next slide



Types of Connection Reaction Number of Unknowns
(6) M.
o
fF' Five unknowns. The reactions are two force and three
" <y a1 couple-moment components. Note: The couple moments
M,y 4 ﬂ& 4 are generally not applied if the body is supported
single journal bearing ‘ga F, elsewhere. See the examples.

with square shaft

(7) M.
-
-~ F . ’
4:‘ F, Five unknowns. The reactions are three force and two
M A& couple-moment components. Note: The couple moments
% F, =~ are generally not applied if the body is supported

. . elsewhere. See the examples.
single thrust bearing

(8)

Five unknowns. The reactions are three force and two
couple-moment components. Note: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.

single smooth pin
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Types of Connection Reaction Number of Unknowns

(9)
& 4 Five unknowns. The reactions are three force and two
— couple-moment components. Note: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.
single hinge
(10)
Six unknowns. The reactions are three force and three
couple-moment components.
fixed support
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Equations of Equilibrium

Vector equations of equilibrium

The vector conditions for equilibrium of a rigid body are

YE=0
> M, =0

where Z F is the vector sum of all the forces acting on the body and 21\7[ o 1s the

sum of any couple moments and the moments of all the forces about any point O.



Scalar equations of equilibrium

In Cartesian vector form, the equations of equilibrium become
»E=3Fi+YFj+» Fk=0
S>My=>Mi+YMj+> Mk=0

The i, j, and k components are independent of one another, so these are equivalent

to the six scalar equations:

> F =0 > F, =0 Y F, =0
> M, =0 >M, =0 > M, =0

These equations can be used to solve for at most six unknowns shown on the free

body diagram.



CHAPTER 13
KINETICS OF A PARTICLE:
FORCE AND ACCELERATION



* Worked in different coordinate systems
— Rectangular (Cartesian) coordinates
— Normal / tangential coordinates
— Cylindrical (polar) coordinates
* Restricted our problem solving to two dimensional problems

e Fundamental equation: Newton’s 2"d law for a particle of mass m

ZF:ma



Equations of Motion: Rectangular Coordinates

2F =ma,

P ZFy =ma,

@;4 2F, =ma,
F

Absolute Dependent Motion

a, =3a,

(Example only!!)
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Relative-Motion of Two Particles Using Translating Axes

Position
Fgia =1 — Ty
I'g =Ty T 14
Velocity
B/A = Ve Vi
Vg =V 1+ Vg4
Acceleration
dg,p =dg —d,
dg =d, +dg,

/ Translating
observer

B

Fixed
observer




Equations of Motion: Normal and Tangential Coordinates

b .
ZE =ma, = mv

A 2Fpuy, V>
ZFn =ma, =m-—

Jo,
> F, =0

/ Inertial coordinate

system
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Equations of Motion: Cylindrical Coordinates

RECALL: Ch 12 — Polar components: Planar Motion (2D)

POSITION

Position

VELOCITY

v=ru, +rou,

Velocity

Note that, in general,
r, @ coordinates of
particle will be functions
of time, i.e.

r=r(t)

0 =06(t)



Polar components: Planar Motion (2D) [continued]

ACCELERATION

a=(i—rf)u_+(rf+2rl)u,

Acceleration



EQUATIONS OF MOTION in cylindrical coordinates

LFu.

A
f.-"ll. L Fyuy
J’<: 2k, =ma,
S L o 1, _
J.f_d_d___———__ EF.' r ZFG —_— mae
/
LF =ma,
i
r\

Inertial coordinate system

* Only dealt with problems in which the motion was restricted to 2D, i.e. to the
r—6 plane. In this case, only the first two of the above equations apply



TANGENTIAL AND NORMAL FORCES

r=fig)

Y Tangent
)

r=1(e

Y Tangent
Voo

Many of the problems in this part of the course
have the following features

* They are natural to treat in polar coordinates

* The path of the particle 1s specified
(constrained motion)

* Some of the forces on the particle act in the
normal or tangential directions

We thus need to be able to determine the
orientation of the (z,n) coordinate system with
respect to the (r,0) system

As shown in the figure, the tangent to the particle
path will form an angle ¥ with the extended
radial line



TANGENTIAL AND NORMAL FORCES (continued)

 Showed that

ré

tangu:—.

I

tanw = r
Y = de

A Ji,
o r e _é—
&€y
'l 0=5radfs, 6=2rad/s "
TR
A 9 =900
o
W

Figure: 13_P104
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CHAPTER 14
KINETICS OF A PARTICLE:
WORK AND ENERGY



WORK OF A VARIABLE FORCE

U,, =]%F-dr =]%Fcost9ds

WORK OF A CONSTANT FORCE ALONG A STRAIGHT LINE

’/ﬂ U, _,=F . cosO(s,—s,)
.




WORK OF A WEIGHT

.H,

5 U1_2 = _WAy

WORK OF A SPRING FORCE

Unstretched
position, s = 0

Work done by the spring force on the particle

1 1
U1—2 = —(E kS22 — Ekslzj

Force on
Particle




WORK OF FRICTION CAUSED BY SLIDING




PRINCIPLE OF WORK & ENERGY

EF_”‘_- 2 FH = E-F
n
¥
Inertial coordinate system T{ + ZUI—Z = T2

Applies to a system of particles as well as a single particle. For
a system, there are implicit sums over all the particles in the
various terms of the equations.



Conservative Forces and Potential Energy

CONSERVATIVE FORCE

* Definition: A force is called conservative if the work that it does on a
particle as the particle moves from one point to another is independent of
the path that the particle travels (i.e. the work done depends only on the
location of the initial and final points)

 Examples of conservative forces
— Weight

— (Elastic) Spring force



VY =+Wy GRAVITATIONAL POTENTIAL ENERGY

* Assuming that y is positive, the gravitational
potential energy, V, , of a particle of weight
“ Datum W 1s

+y

V, =mgy

Gravitational potential energy

ELASTIC POTENTIAL ENERGY

Cnfioshal * An elastic (1deal) spring that is compressed or
H . e elongated a distance s from its equilibrium
; position has an elastic potential energy, V_,

given by

e

Wﬂ [Vo=+tas
i

F&mmo Vem+pks

Elastic potential energy

Vo =+—ks’



POTENTIAL FUNCTION
(TOTAL POTENTIAL ENERGY)

Datum Potential function, V

V=V +V

Relation to work




Conservation of Energy

* For a particle acted on only by conservative forces, the sum of the particle’s
kinetic and potential energy is constant during the motion of the particle

T +V, =T, +V,

* For a system of particles acted on only by conservative forces we have

2T +2V, =2T, +XV,



CHAPTER 15
KINETICS OF A PARTICLE:
IMPULSE AND MOMENTUM



Linear Momentum (defn): For a particle with mass, m, and velocity, v (as
measured in an inertial frame), the linear momentum, L, of the particle is

L =mv

Impulse (defn): For a generally time-dependent force and a time interval
t, <t <t, over which the force acts, the linear impulse over that interval is

I= ]{F(t) dt

Principle of Impulse and Momentum (single particle)

z
mv, + Z I :th =mv,
1



Principle of Impulse and Momentum (system of particles)

xm, (V,), +EJE dt =2m;(v,),

4
Conservation of Linear Momentum for a System of Particles

* If no external impulses act on a system of particles (no external forces, for
example), then linear momentum for the system is conserved

>m,(v,), =2m/(V,),

* Scalar form (can apply conservation in one or more coordinate directions when
there are no external impulses in that direction

xm, (v, ), =Zm, (v, ),
xm, (vl.y ), = Zm, (vl.y ),

zm, (v,), =2m;(v,.),



Impact

Plane of contact

V| A -
¥a “ ¥ Line of impact
—_— -

} Central impact |

Coefficient of restitution

. (vg), —(v,),  relative velocity after impact

(v,), —(vy), relative velocity before impact

Plane of contact

Line of impact

¥a

IDh!ique impact|



Obligue Impact

t  [Establish n axis (normal axis)
(Va)s (vg)) along the line .of irr.lpa.ct and ¢ axis

>\ A B /( (transverse axis) within plane of
6 - | by . i

.  Line of impact contact
+ i n
g . ‘\{bi * Impulsive forces of deformation

(v4) (V) z?’i Z?isot;tution act only in the n

Plane of contact

* Momentum is conserved along the line of impact, so that
Z mvln = Z van

* Along the r axis, perpendicular to the line of impact, the momenta of
particles A and B are individually conserved since no impulses act on
either of them in this direction



Equations for Oblique Impact

(m, —emy)v, +m,(1+e)v,,

vAZn —
m, +m,
VAZt — vAlt
3 (my, —em,)v,, +m,(1+e),,
VBZn —

mg +m,

Ve = Vpir



Angular Momentum

(H,), = (d)(mv)




Principle of Angular Impulse and Momentum

angular impulse = I M, dt

4

(H0)1+sz0 dr=(H,),

4
Conservation of Angular Momentum

When the vector sum of angular impulses acting on a particle during a time interval
vanishes (no angular impulse act on the particle, for example), then angular momentum of
the particle is conserved

(Ho )1 — (Ho )2

More generally, angular momentum about some axis is conserved when there are no
angular impulses acting about that axis



