PHYS 170 Section 101 Lecture 34
November 30, 2018

Lecture Outline/Learning Goals

- Worked example using conservation of angular momentum

Angular momentum: Scalar Formulation

- Consider a particle P, moving on a curve in the $x-y$ plane, with linear momentum $m \mathbf{v}$, as shown in the figure
- Then the magnitude of the particle's angular momentum about O is given by

$$
\left(H_{o}\right)_{z}=(d)(m v)
$$

where d is the moment arm (perpendicular distance) from O to the line of action of $m \mathbf{v}$

- The direction of the particle's angular momentum is perpendicular to the $x-y$ plane (i.e. along the z-axis), with a sense given by the right hand rule, where the fingers of the right hand curl in the direction of the rotation of $m \mathbf{v}$ about the z-axis

Problem 15-109 (Page 275, $13^{\text {th }}$ edition)

The 150 lb car of an amusement park ride is connected to a rotating telescopic boom. When $r=15 \mathrm{ft}$, the car is moving on a horizontal circular path at $30 \mathrm{ft} / \mathrm{s}$
(1) The boom is shortened by $3 \mathrm{ft} / \mathrm{s}$.

Determine the speed of the car when
$r=10 \mathrm{ft}$
(2) Determine the work done by the force
\vec{F} when the boom is shortened from
15 ft to 10 ft

Solution strategy

Work in polar coordinates since there are velocity components in both the radial and transverse directions.

Radial component of linear momentum does not contribute to angular momentum about z axis (passing through O).

Use conservation of angular momentum about z axis with transverse momentum to compute transverse velocity component of shortened boom.

Compute speed of car when $r=10 \mathrm{ft}$ from radial and transverse components of velocity.

Use energy balance equation to compute work done by force \vec{F} in shortening boom.

$$
\begin{aligned}
& \text { Data } \\
& W=m g=150 \mathrm{lb} \quad g=32.2 \mathrm{ft} / \mathrm{s}^{2} \\
& \vec{F}=-F \vec{u}_{r}
\end{aligned}
$$

Kinematics

$$
\vec{r}=r \vec{u}_{r}
$$

$$
\vec{v}=v_{r} \vec{u}_{r}+v_{\theta} \vec{u}_{\theta}
$$

$$
v_{r}=\dot{r} \quad v_{\theta}=r \dot{\theta} \quad v=\sqrt{v_{r}^{2}+v_{\theta}^{2}}
$$

Original circular path

$$
r_{1}=15 \mathrm{ft} \quad v_{1 r}=0 \quad v_{1 \theta}=30 \mathrm{ft} / \mathrm{s}
$$

After boom is shortened

$$
r_{2}=10 \mathrm{ft} \quad v_{2 r}=-3 \mathrm{ft} / \mathrm{s} \quad v_{2 \theta}=? ?
$$

Conservation of angular momentum (only transverse component of velocity contributes, mass is constant so drops out of equation)

$$
\begin{aligned}
& r_{2} v_{2 \theta}=r_{1} v_{1 \theta} \\
& v_{2 \theta}=\frac{r_{1} v_{1 \theta}}{r_{2}}=\frac{15(30)}{10}=45 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Speed of car when $r=10 \mathrm{ft}$

$$
v_{2}=\sqrt{{v_{2 r}{ }^{2}+v_{2 \theta}{ }^{2}}^{2}=\sqrt{(-3)^{2}+45^{2}}=45.1 \mathrm{ft} / \mathrm{s} . \mathrm{s} .}
$$

Work done by \vec{F} : Energy balance equation

$$
\frac{1}{2} m v_{1}^{2}+U_{1-2}=\frac{1}{2} m v_{2}^{2}
$$

$$
U_{1-2}=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}
$$

$$
=\frac{1}{2}\left(\frac{150}{32.2}\right)\left(45.1^{2}-30^{2}\right) \mathrm{lb} \cdot \mathrm{ft}=2.64 \mathrm{kip} \cdot \mathrm{ft}
$$

