
PHYS 170  Section 101

Lecture 30

November 21, 2018



Pseudo-announcementvNov 21

� Do you want final review sessions next Tuesday, in lieu of tutorials?



Lecture Outline/Learning Goals

� Worked example using conservation of linear momentum

� 15.4  Impact



Conservation of Linear Momentum





The free-rolling smooth ramp weighs 120 lb.  The 80 lb crate slides 15 ft down the

ramp to  from rest at .

(1) Determine the speed of the 

ramp when the crate reaches 

(2) Determine the velocity of 

the

B A

B

 crate when it reaches .

Express the velocity as a 

Cartesian vector in terms of the

crate's speed and the angle the 

velocity makes with the horizontal

(3) Determine the kinetic energies

of the ramp and t

B

he crate when the 

crate reaches B

Problem 15-47 (Page 246, 12th edition)





Write down equations for:

(1)  Conservation of energy

(2)  Conservation of total linear 

momentum in the hori
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Square the last two results and sum them
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Now substitute (6) in (1)
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Note that the crate slides down the ramp at an angle  to the horizontal. This is 

steeper than the plane angle  because the ramp rolls to the right while the 

crate slides to the left a
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15.4 Impact

� IMPACT (defn):  Collision (interaction) of two bodies that takes place over a 

very short time, and which involves relatively large (impulsive) forces 

(examples: collisions of billiard balls, hammer hitting a nail, baseball bat 
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� Central impact: Direction of motion of 

centers of mass (geometric centers 

assuming constant density) of particles is 

along a line that passes through both centers 

(this line is called the line of impact)

� Oblique impact: Direction of motion of 

one or both of the particle centers of mass is 

at an angle with the line of impact 

� Also note the identification of the plane of 

contact in the figures, which is always 

perpendicular to the line of impact



Central Impact

� In order to better understand the basics physics underlying impact, as well as to 

motivate the equations that we will use in its analysis, it is useful to consider the 

following 5 phases of the central impact of two smooth particles 

1. Before impact: Here, the particles have initial 

momenta as shown.  In order 

for a collision to occur, we must have  

2. Deformation impulse: During the actual collision, 

the particles must be viewed as being deformable or 

non-rigid.  This phase is characterized by a period of 

deformation in which the particles exert equal but 

opposite deformation impulses           on each other 

3. Maximum deformation: At the instant when the 

particles are maximally deformed (and only at this 

instant in general), the particles will be moving with 

the same velocity, v
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Central Impact (continued)

4. Restitution impulse: This is a period of restitution, 

wherein the bodies will either regain their original 

shapes, or remain permanently deformed.  As with 

the deformation stage, during this phase the particles 

exert equal and opposite restitution impulses

on each other, and these impulses tend to push the 

bodies apart.  In any real collision one finds that the 

deformation impulse exceeds the restitution impulse, 

i.e. that                      .  In the idealized case that the 

deformation and restitution impulses are identical, 

the collision is called elastic

5. After impact: Assuming that the particles do

separate after the collision (i.e. that they do not stick 

together), then just after separation they will have 

final momenta ,  and the 

particle velocities will satisfy
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Central Impact (continued)

� The typical problem involving impact is to find the final velocities

of the particles given the initial velocities                          and other problem 

parameters

� Treating the two particles as a system, and observing that the deformation and 

restitution impulses are internal (and thus must cancel ± i.e. must be equal and 

opposite as already noted), we know that one equation that we will have at our 

disposal will be conservation of linear momentum for the system: 

� Since we have two unknowns in general (observe that each velocity for central 

impact reduces to a single [scalar] quantity), we need another equation 

� It is clear that this equation should have something to do with the nature of the 

collision ± and in particular, on the relative strengths of the deformation and 

restitution impulses 
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Central Impact (continued)

� We are thus led to consider the ratio of the restitution impulse to the 

deformation impulse in an impact ± a quantity known as the coefficient of 

restitution, denoted by e, and defined by

� From the point of view of problem solving, the importance of the coefficient of 

restitution is that it provides a relation between the initial and final velocities of 

the particles as follows

(We will not derive this formula here ± see the text if you are interested in the 

derivation)
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