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Lecture Outline/Learning Goals

� 12.5 Curvilinear motion: rectangular components

� 12.6 Motion of a projectile

� Worked projectile problem

� 12.7 Curvilinear motion: normal and tangential components



What happens at A when the wedge first starts sliding at 

B and C?



12.5 Curvilinear Motion: Rectangular Components

POSITION

� Assume at some instant, t, that the particle is at 

point P=P(x,y,z) along the path

� The particle position is then defined by the 

position vector, r

� Here we assume that the particle path is specified in a fixed Cartesian 

coordinate system (x,y,z)

x y z � �r i j k

� As usual, the magnitude, r, of the position vector is given by

while the direction can be specified in terms of the unit vector
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ACCELERATION (continued)

� Magnitude of acceleration

� Direction of accleration: Given by components of unit vector

� As discussed previously, this direction will not, in general, be tangent to the 

particle path.  Rather, it will be tangent to the hodograph
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12.6  Motion of a Projectile

� PROJECTILE MOTION:0RWLRQ�RI�D�SDUWLFOH�LQ�WKH�(DUWK¶V�JUDYLWDWLRQDO�

field (and remaining close to the surface of the Earth) ± as discussed here, 

assumes no other forces act on particle (e.g. effects of air resistance 

neglected)

� Motion unfolds in a plane, so can be analyzed as a special case of 

curvilinear motion via rectangular components

± Two dimensional (2D): Adopt (x,y) coordinates with x, y axes oriented 

horizontally and vertically, respectively

± No acceleration in x-direction

± Constant acceleration in negative y-direction 
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� Using results from rectilinear motion with constant acceleration separately in 

each of the two coordinate directions, we find the following

HORIZONTAL MOTION

� Note that the 1st and 3rd equations tell us the same thing, namely that the 

horizontal velocity component remains constant during the motion 

PROJECTILE MOTION (continued)

� Particle motion (trajectory) is determined 

by initial conditions
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VERTICAL  MOTION

� Note that there are only 2 independent equations in the above set

� Thus there are a total of 3 independent equations for projectile motion (1 for 

horizontal motion, 2 for vertical motion), which means that in problems 

involving such motion, a maximum of 3 unknown quantities can be determined
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The trajectory equation

Now substitute the right hand side of (3) for  in (2).

It is easy to show (EXERCISE) that the result can be 

written as
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The above equation is known as the  and can be used to 

solve trajectory problems in which the time and final velocity of the projectile

do not explicitly appear.
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Problem 12-92 (page 48, 12th edition)

Water is discharged from the hose with a speed of 40 ft/s.

(1) Determine the two possible angles  the firefighter can hold the hose so that the 

water strikes the building at . Take 20 ft.B s
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Use trajectory equation.  Will get a nonlinear

equation f  which can be solved using

 function 
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12.7 Curvilinear Motion: Normal & Tangential Components

MOTIVATION

� Have previously discussed curvilinear motion in rectangular components; i.e. 

using a Cartesian coordinate system whose orientation and origin remains fixed 

as the particle moves along a path

� In particular, the Cartesian unit vectors, i, j and k do not vary with time

� We now proceed to discuss curvilinear motion using two different types of 

coordinate systems (tangential/normal and polar) whose origins and 

orientations are generally not fixed, but rather vary with time (and with the 

motion of the particle)

� In particular, the unit vectors associated with these coordinates will generally 

depend on time, and this fact must be taken into account in the description of 

the motion.



MOTIVATION (continued)

� The resulting formulas for velocity and acceleration are more complicated that 

for the Cartesian case, but the analysis of many problems is nonetheless 

simplified by the use of such coordinates

� The first case we will consider are tangential/normal coordinates which are 

especially convenient when the path along which a particle is moving is known 

(e.g. car moving along a curved road)

� We will restrict our attention to the case of 2D, or planar, motion (refer to the 

text for the brief discussion of the extension to 3D)

� As should now be familiar, we approach the kinematics of a particle in 

tangential/normal components by discussing the particle position, velocity and 

acceleration in turn



POSITION

� Consider a particle moving along a path as 

shown in Fig (a), such that at some instant of 

time it is located at point P, which is at 

position s along the path relative to an origin 

O, also on the path

� At this instant we construct a coordinate 

system (t,n) (for tangential, normal), which 

has an (instantaneous) origin at the particle 

position,  P

� The t axis is tangent to the curve, and has positive sense in the direction of 

increasing s

� Associated with this direction is a unit vector 

� The n axis is perpendicular to the t axis, and has positive sense towards the 

center of curvature, 2¶, of the path at point P

� Associated  with this direction is a unit vector 
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DIGRESSION: RADIUS OF CURVATURE

CENTER OF CURVATURE

� We can view the curved particle path as being 

comprised of differential arc segments ds, 

each of which can be identified as an arc of a 

circle with radius,    , known as the radius of 

curvature, and with a center,      , known as 

the center of curvature, as shown in Fig. (b)

� NOTE:

� For a precisely circular path with radius, R, we have

� In the limit of a straight path, we have  

� In 2D it is often convenient and/or possible to express the particle path as 

y = f(x).  In such a case, the radius of curvature is given by
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POSITION (cont)

� Thus, n axis is always positive on the concave

side of the path

� Crucial to observe that as the particle moves 

along the path, the (t,n) coordinate origin 

follows the particle, and the coordinate axes 

rotate so that t and n always coincide with 

the tangent and normal directions (as defined 

above)

� Since the coordinate system moves with the particle, there is no need to write 

down expressions for the position vector which in effect is always the 0-vector!

� +RZHYHU��EHDU�LQ�PLQG�WKDW�WKH�SDUWLFOH¶V�SRVLWLRQ�DORQJ�WKH�FXUYH��L�H��DUF�OHQJWK�

position) is always given by

which we are assuming here to be a given function of time (and GRQ¶W�FRQIXVH�WLPH�

t, with tangential coordinate, t !)
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