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Lecture Outline/Learning Goals

12.5 Curvilinear motion: rectangular components
12.6 Motion of a projectile
Worked projectile problem

12.7 Curvilinear motion: normal and tangential components



What happens at A when the wedge first starts sliding at
B and C?
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12.5 Curvilinear Motion: Rectangular Components

* Here we assume that the particle path is specified in a fixed Cartesian
coordinate system (x,y,2)

POSITION

* Assume at some instant, z, that the particle 1s at
point P=P(x,y,z) along the path

* The particle position is then defined by the
position vector, r

Position

r=xi+yj+zk

* As usual, the magnitude, r, of the position vector is given by

r:\/x2+y2+z2

while the direction can be specified in terms of the unit vector w, =r/r



VELOCITY
®) P
\ * The particle velocity is the first time derivative
of the position vector

v=ui+uj+ vk

.\.

dr d d d
de_d o oodooood
V= = @i (2k)

Velocity

To evaluate this, we must apply the product rule for differentiation: for example

d, .. dx. di
—(x1) =—i+x—
dt dt dt

Now, assuming that the coordinate system remains fixed, i is a constant vector, so
di
dt

and introducing an “overdot” notation to denote differentiation with respect to

time, we have
ix dx

(xi)=—i=xi=v,i X=—

dt dt

0



VELOCITY (continued)

* Treating the j and k components of the previous expression for v in a similar
fashion we have

V_E_V i+v j+v. k
d y IV
where
dx . dy dz
VX:X:— v :y:— VZ:Z:—
dt 4 dt dt

* Magnitude of velocity (speed)

2 2 2
V—\/VX +v, +v,

* Direction of velocity: Given by components of unit vector u, =v/v

* As discussed previously, this direction is always tangent to the particle path



ACCELERATION

I)

Q
s \ e The particle acceleration is the first time
e RN derivative of the velocity vector, or the second
/ | — time derivative of the position vector

X
Acceleration

* Using a development paralleling that used to derive the velocity, we have

dv . .

a:E:aX1+ay]+azk
where

.. d’x  dv,

aX:VX:X: > =
dt dt
... d’y dv,

a =V = = =
= =Y dt* dt
. d’z dv,

a =V =7 = =

L dt dt



ACCELERATION (continued)

* Magnitude of acceleration

_ 2 2 2
a= \/ a,+a,+a;
* Direction of accleration: Given by components of unit vector w, =a/a

* As discussed previously, this direction will not, in general, be tangent to the
particle path. Rather, it will be tangent to the hodograph



12.6 Motion of a Projectile

« PROJECTILE MOTION: Motion of a particle in the Earth’s gravitational
field (and remaining close to the surface of the Earth) — as discussed here,
assumes no other forces act on particle (e.g. effects of air resistance
neglected)

* Motion unfolds in a plane, so can be analyzed as a special case of
curvilinear motion via rectangular components

— Two dimensional (2D): Adopt (x,y) coordinates with x, y axes oriented
horizontally and vertically, respectively

— No acceleration in x-direction

a =0

X

— Constant acceleration in negative y-direction

a,=—g g =9.81 m/s’ g =322 ft/s’



l PROJECTILE MOTION (continued)

w0 WN, * Particle motion (trajectory) is determined
(vol r by initial conditions

Initial position: r=x,i+y,j

L —— Initial velocity: v =(v,),i+(,),]

s

* Using results from rectilinear motion with constant acceleration separately in

each of the two coordinate directions, we find the following =

. 1]

HORIZONTAL MOTION (a, =a_=0) N
v=y,+ar: v, =), ; ==E==
X=X, +v0t+%act2 ; X=x,+,). !t . .II'.
- 1
vi=v, +2a,(s—s,): v, =(v), [SINN{E

* Note that the 1%t and 3" equations tell us the same thing, namely that the
horizontal velocity component remains constant during the motion



VERTICAL MOTION(a. =a, =—-g)

v=v,+at: v, =), — gt

1, L
y=y0+v0t+5act : )’:)’o+(Vo)yt_5gt
2 _ .2 : 2 _ e
V=2 +2a (s—s5,): v, =(v); —28(y =)

* Note that there are only 2 independent equations in the above set

* Thus there are a total of 3 independent equations for projectile motion (1 for
horizontal motion, 2 for vertical motion), which means that in problems
involving such motion, a maximum of 3 unknown quantities can be determined



The trajectory equation

Consider the trajectory of a projectile that is launched
with an initial velocity v, that makes an angle §, with
the horizontal. Then

(v,), =V, cosb,

(v,)y =V, sin g,

The x and y coordinates of the projectile at time ¢t are given by

X=X,+Vv,c080,t 1)
1
y:yo+vosilr16’0t—§gt2 (2)

Now, solve (1) for ¢:

o XX 3)

V, C0s 6,



The trajectory equation

Now substitute the right hand side of (3) for ¢ in (2).
It 1s easy to show (EXERCISE) that the result can be

| written as

y(x) = a(x—xo)2 +b(x—x,)+ Y,
_ 8

2v; cos’ 6,
b =tan0,

a =

The above equation is known as the trajectory equation and can be used to
solve trajectory problems in which the time and final velocity of the projectile

do not explicitly appear.

Note that the equation involves four unknowns: x,, x, v,, 6,. We need to
know three of these to determine the fourth. Also note that the equation is
quadratic in v, and 6,, so we can expect two solutions, in general, when

solving for those unknowns. (May not both be physical.)



Problem 12-92 (page 48, 12t" edition)

Water is discharged from the hose with a speed of 40 ft/s.

(1) Determine the two possible angles & the firefighter can hold the hose so that the
water strikes the building at B. Take s = 20 ft.
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Copyright © 2010 Pearson Prentice Hall, Inc,



Solution strategy:

Use trajectory equation. Will get a nonlinear

equation for & which can be solved using

#It golver function on TI graphing calculators.

PRORTZ_091-092 |pg
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Trajectory equation (6, = 0) B(20,9) It

w

y(x) :a(x—x0)2 +b(x—x,)+y,

g \/x\ 4D ft /s

a=-—
2 0
2v, cos” 0,

\ e
b =tan6,

Ao, 4) 44

Data: v, =40 ft/s  (x,,v,) =0, ft  (x,y)=(20,8) ft

_ 32.2(20)°
2(40)° cos” 6,

+20tan @, +4

Use solver (may have to experiment a little with 1nitial guess to get both solutions):

0=0,=23.8 0=0,=71.5
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12.7 Curvilinear Motion: Normal & Tangential Components

MOTIVATION

* Have previously discussed curvilinear motion in rectangular components; 1.e.
using a Cartesian coordinate system whose orientation and origin remains fixed
as the particle moves along a path

* In particular, the Cartesian unit vectors, 1, j and k do not vary with time

*  We now proceed to discuss curvilinear motion using two different types of
coordinate systems (tangential/normal and polar) whose origins and
orientations are generally not fixed, but rather vary with time (and with the
motion of the particle)

* In particular, the unit vectors associated with these coordinates will generally
depend on time, and this fact must be taken into account in the description of
the motion.



MOTIVATION (continued)

* The resulting formulas for velocity and acceleration are more complicated that
for the Cartesian case, but the analysis of many problems is nonetheless
simplified by the use of such coordinates

* The first case we will consider are tangential/normal coordinates which are
especially convenient when the path along which a particle 1s moving 1s known
(e.g. car moving along a curved road)

* We will restrict our attention to the case of 2D, or planar, motion (refer to the
text for the brief discussion of the extension to 3D)

* As should now be familiar, we approach the kinematics of a particle in
tangential/normal components by discussing the particle position, velocity and
acceleration in turn



center of curvature‘?{;i' POSITION

* Consider a particle moving along a path as
shown 1n Fig (a), such that at some instant of
time it 1s located at point P, which 1is at
position s along the path relative to an origin
O, also on the path

e At this instant we construct a coordinate
system (t,n) (for tangential, normal), which
has an (instantaneous) origin at the particle
position, P

Position

(a)

* The ¢ axis i1s tangent to the curve, and has positive sense in the direction of
increasing s

* Associated with this direction is a unit vector u,

* The n axis is perpendicular to the ¢ axis, and has positive sense towards the
center of curvature, O’, of the path at point P

* Associated with this direction is a unit vector u



DIGRESSION: RADIUS OF CURVATURE
CENTER OF CURVATURE

ds — * We can view the curved particle path as being
p comprised of differential arc segments ds,
PN each of which can be identified as an arc of a
75 o circle with radius, o, known as the radius of
curvature, and with a center, O', known as

Radius of curvature the center of curvature, as shown in Fig. (b)
(h)

 NOTE:

* For a precisely circular path with radius, R, we have p =R

* In the limit of a straight path, we have p —

* In 2D itis often convenient and/or possible to express the particle path as
y = f(x). In such a case, the radius of curvature is given by

[1+(dy/do? "
d*y 1 dx’|

p:



center of curvatureff;i' POSITION (cont)

* Thus, n axis 1s always positive on the concave
side of the path

* Crucial to observe that as the particle moves
along the path, the (z,n) coordinate origin
follows the particle, and the coordinate axes
rotate so that ¢ and n always coincide with
the tangent and normal directions (as defined
above)

Position

(a)

* Since the coordinate system moves with the particle, there 1s no need to write
down expressions for the position vector which in effect is always the 0-vector!

* However, bear in mind that the particle’s position along the curve (i.e. arc length
position) is always given by

s =s(1)

which we are assuming here to be a given function of time (and don’t confuse time
t, with tangential coordinate, 7 !)



o VELOCITY

* We have s =s(t), and we have previously
seen that the particle’s velocity vector, v, is
always tangent to the particle path

P < * We also know that the magnitude of the
v particle velocity, or the speed of the particle,
Velocity is given by
(C) ds .
Vv=—=35
dt
We thus have
V=vu,
where
ds .
v=—=35
dt

To emphasize, the particle velocity has no normal component, but only a
tangential component



ACCELERATION

* The acceleration is the first time derivative of
the velocity, so we have
_dv _d

a—E—E(vut)z\'/ut +vu,

, * As mentioned previously, and in contrast to
(d) the rectangular/Cartesian case, here we do not
have u, =0 in general, since the (t,n)
coordinates and associated unit vectors
translate and rotate as time passes and the
particle moves

However, we can compute u, by first noting that as the particle moves, u,
remains a unit vector (i.e. its length remains 1), but its direction changes, as
shown in Fig. (d)



ACCELERATION (continued)
* Over an infinitesimal time interval dt, we have a change in
u, of du, as shown in Fig. (e)

* We see from the Fig. (e)

u, Magnitude of du, : du, =(1) d6 =d6é

(d) Direction of du,: u

du,

n

(€)

Therefore we have

du, =d0Ou,
and we can now compute u,
7 du, _ d@u“ o
dt dt

We’re almost done with the derivation of the acceleration components in normal
coordinates; the last step involves rewriting @ in terms of v and p



ACCELERATION (continued)
* Referring back to Fig. (d), we see that

ds=pdf
SO
do ==
o,
el L A
dt pdt p p
 Recall that we had
dv d : .
a:—:—(vut):vut+vut
dt dt

so we have

a=vu, +v(du)

2
\'%

=vu, +—u,
Jo,



ACCELERATION (cont)

In summary, we can write the acceleration in the form

a=au, +au

where g, and a, are called the tangential and normal components of the

acceleration, respectively, and are given by NOTE: These are the

(differential) equations

a,=v or a,ds =vdv for rectilinear motion.
For the special case
and that v = constant , the
V2 equations for constant-
a, =— acceleration rectilinear

motion also apply

Since @, and a, are mutually perpendicular components, we have that the
magnitude, a, of the acceleration is given by



ACCELERATION (cont)
e [Itisinstructive to consider the following special cases

1. Straight-line motion: In this case p — o, so

and the magnitude of the acceleration is

a=a,=v

2. Motion at constant speed: In this case v =0, so the magnitude of the
acceleration is

and since a, =a u_ always acts towards the center of curvature, this
component is sometimes called the centripetal acceleration



ACCELERATION (cont)

* Finally, from the above special cases, as well as

a=v=vu, +vu,

2
\'%

=vu, +—u,
Jo,
=au, +au,

one can deduce that the tangential and normal acceleration components have the
following interpretations

Tangential component: a, =au, : Change in magnitude of velocity

Normal component: a =au_ : Change in direction of velocity

//
a=a,
Change in
direction of .
velocity
n

Increasing
speed -2~
7'/

Change in
magnitude of
velocity



