
PHYS 170  Section 101

Lecture 17

October 17, 2018



Lecture Outline/Learning Goals

� Wedge problem

� END OF STATICS

� START DYNAMICS

� Rectilinear Kinematics: Continuous Motion (12.2)

� General Curvilinear Motion (12.4)



Problem 8-67 (page 417, 12th edition) 

(1) Determine the smallest horizontal force  required to lift the 100 kg cylinder.

The coefficients of static friction at  and  and between the wedge and the ground 
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(1) Formulate Cartesian component equations of equilibrium, determining number of 

unknowns and equations

(2) Supplement these equations with sufficient additional ones,

Solution s

 based on 

trategy

assumption

of impending motion at some points, to have a solvable system

(3) Solve, check that remaining restrictions hold, repeat (2)-(3) as necessary
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(Note:  Can transform this set to 4 equations in 4 unknowns ( , , , ), by making 

the substitutions 

Ex

,  and  (from (5)) in equations 

(1)-(4).

Solution to equations (1) to (7)
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Exercise:  Describe what happens to the

 horizontal force required to lift the 

 cylinder, i.e. what is its motion once

cylinder is 857 N

it starts to move?
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Exercise: solve the sys
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END OF STATICS!!



Chapter 12: Kinematics of a Particle





Recall from Lecture 1: Branches of Mechanics

Statics Dynamics

Rigid Bodies

(Things that do not change shape)

Deformable Bodies

(Things that do change shape)

Incompressible Compressible

Fluids

Mechanics

� Remainder of course will deal with dynamics, i.e. with the motion of 

bodies that are not in equilibrium, i.e. with accelerated motion of bodies

� Will generally restrict attention to particles, or systems of particles (i.e. 

size of bodies will not be important and/or considered) 

� Dynamics itself will be considered in two parts

� Kinematics: Considers only the geometric aspects of accelerated 

motion

� Kinetics: Analysis of forces causing accelerated motion, as well as 

motion per se



Approach and Tools for Remainder of Course

� PROBLEM SOLVING

± Should continue to be the key focus of your efforts to master the material 

± Dynamics is generally viewed as more involved than statics due to the 

need to take into account the motion of bodies in addition to the forces 

acting on them

� MATHEMATICAL TOOLS

± Many applications will now require calculus in addition to vector 

analysis, algebra and trigonometry

± Will be working problems in different coordinate systems, e.g. polar [2D] 

and cylindrical [3D] coordinates in addition to Cartesian coordinates

� BASIC PHYSICS CONCEPTS ARE IMPORTANT AS WELL!!



12.2 Rectilinear Kinematics:  Continuous Motion

� Here we restrict attention to straight line motion of a particle (has mass, but 

negligible size, shape unimportant)

� For bodies with finite size, approximation as a particle requires that center of 

mass be used for description of motion, and that rotational effects be ignored

� RECTILINEAR KINEMATICS��6SHFLILHG�E\�JLYLQJ�SDUWLFOH¶V�position, 

velocity and acceleration as a function of time



DISPLACEMENT

� Definition: Change in position

� Note: Displacement is a vectorial

quantity; must be distinguished from 

distance traveled, which is a positive 

scalar quantity
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POSITION

� Use single coordinate axis, s, with origin 

at O

� Position vector, r, is always along this 

axis, so can represent the particle position 

with an algebraic (signed) scalar, s

� 7\SLFDO�XQLWV��P��IW��«



Average velocity

� If the displacement of the particle is        over a time interval      ,  then

Instantaneous velocity (velocity)

� If the particle displacement is a continuous function of time (assumption in this 

section), then the instantaneous velocity, v,  is defined by

or

VELOCITY 

� Definition: Rate of change of position 

with respect to time
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Instantaneous velocity (velocity) ± scalar form

� The sense of v is the same as that of ds (    )± the text uses an arrow notation to 

HPSKDVL]H�WKH�VHQVH��ZH�ZRQ¶W�DGRSW�WKLV�QRWDWLRQ�LQ�WKHVH�QRWHV

Speed

� Definition: Magnitude of velocity (text denotes this by vsp since v as defined 

above is a signed quantity)

� 7\SLFDO�XQLWV�IRU�YHORFLW\�RU�VSHHG��P�V��IW�V��«�

Average speed

� Definition: Positive scalar given by total distance, sT , traveled in a given time 

interval 
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Average acceleration

� If the change in velocity of a particle is       over a time interval     , then 

Instantaneous acceleration (acceleration)

� If the particle velocity is a continuous function of time (assumption in this 

section), then the instantaneous velocity, a, is defined by

or

ACCELERATION

� Definition: Rate of change of velocity 

with respect to time
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Instantaneous acceleration (acceleration) ± scalar form

� Typical units for acceleration: m/s2, ft/s2��«

� Since v=ds/dt, we have 

� Note:

� a is a signed quantity: if a < 0, then particle is slowing down or decelerating

� If a = 0, then velocity, v, is constant

a
dv
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� Now, start from a = dv/dt , and multiply both sides by ds (note that treatment of 

differential quantities, such as ds, dt, dv��«�DV�DOJHEUDLF�YDOXHV�FDQ�EH�ULJRURXVO\�

justified)

or

� This last equation is useful in determining the velocity of a particle when the 

acceleration is given as a function of position

dv ds
ds ds dv vdv
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Constant acceleration

� We now consider the important special case where the acceleration, a, is a 

constant, ac

� In this case, we can integrate various equations from above to get formulae 

relating ac , v, s and t.

Velocity as a function of time
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Position as a function of time
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Velocity as function of position

� IMPORTANT: The above formulae are valid only for the case where the 

acceleration is constant, such as for a freely falling body close to the surface of 

the Earth

0 0

2 2

0

0

0

22

0
0

0

Start from  and

 for the position and velocity, r

 and integrate, using the initial values 

Thus,

( )
2 2

or

2 ( )          constant acceler

espectiv

atio

:

n

ely

c
v s

c

s

c

v

v v

v dv a ds s

v

v dv a ds

vv
a s s

a s s

 

 

�

�

�

 

 

�

³ ³



12.4 General Curvilinear Motion



DISPLACEMENT

� Change in position of particle over some 

time interval      , during which the 

particle traverses a distance       along the 

path 

� Note that the magnitude of the 

displacement,       , can be viewed as a 

straight-line distance that approximates 

POSITION

� Particle moves along path defined 

(parameterized) by path function, s

� Relative to point O (typically origin of 

coordinate system), location of particle is 

given by the position vector, r
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Instantaneous velocity (velocity)

� Take the limit               in the above, so that the direction of       approaches the 

tangent to the curve at P

� Then the instantaneous velocity is given by

or 

VELOCITY

Average velocity

� Over the time interval , the average velocity is 

given by
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Instantaneous velocity (continued)

� NOTE: dr is tangent to the curve at P, so the 

direction of v is also tangent to the curve

� The magnitude of v, which is again called the 

speed,  can be determined by considering the 

magnitude of dr in the limit that 

� In this limit we have

so the speed, v, is given by

or

� Note that this means that we can determine the speed of the particle by 

differentiating the path function, s(t), with respect to time
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ACCELERATION

Average acceleration

� Suppose the particle has velocity v at time t, and

� Then the average acceleration over the time 

interval is 

� We can study this time rate of change by 

translating the velocity vectors so that their tails 

coincide at some (arbitrary) fixed point 2¶

� Velocity arrowheads then touch points on a curve 

known as a hodograph, which is analogous to the 

particle path for the position vector
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Instantaneous acceleration (acceleration)

� Again, we can take the limit               in the expression for the average 

acceleration, and this gives the instantaneous acceleration, or simply the 

acceleration, a, of the particle
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(Instantaneous) Acceleration (continued)

� NOTE: The direction of a (and dv) is always 

tangent to the hodograph and not, in general, 

tangent to the particle path

� In particular, note that a must account for the 

change in direction of v as well as the change in 

magnitude of v

� In order for particle to follow path, a must 
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path as shown in the figure at the left


