PHYS 170 Section 101 Lecture 14 October 5, 2018

# OCT 5—ANNOUNCEMENTS

- This week's homework assignment (the one that will be released this evening) is due Monday, October 15, 11:59 PM
- Reminder: Review sessions, next Tuesday, October 9, at regular tutorial times, regular tutorial locations

# Lecture Outline/Learning Goals

- Sample three-dimensional equilibrium problem #2
- What happens if there are fewer than 6 unknowns in a threedimensional equilibrium problem?
- Sample three-dimensional equilibrium problem #3

### Problem 5-76 (page 255, 12<sup>th</sup> edition)

The member is supported by a pin at A and a cable BC. The load at D is 300 lb.

(1) Determine the x, y, z components of reaction at A and the tension in the cable BC.





Note that moment components are developed by the pin on the rod to prevent rotation about the y and z axes.



## Free Body Diagram of Member



### Coordinates (suppressing units)

A(0, 0, 0)B(-4, 6, 0)C(-1, 0, 2)D(-2, 6, 0)



Forces and couple moment (suppressing units)

Note that there are 6 unknown reaction components, which, again, is the maximum for which we can solve using the equations of equilibrium.

 $\vec{F}_{A} = A_{x} \vec{i} + A_{y} \vec{j} + A_{z} \vec{k}$   $\vec{M}_{A} = M_{y} \vec{j} + M_{z} \vec{k}$   $\vec{F}_{BC} = (3\vec{i} - 6\vec{j} + 2\vec{k})X \qquad X = F_{BC} / \sqrt{3^{2} + 6^{2} + 2^{2}}$  $\vec{F}_{D} = -300 \vec{k}$ 

### Cartesian component force equations of equilibrium

$$\sum F_{x} = 0: \qquad A_{x} + 3X = 0$$
  

$$\sum F_{y} = 0: \qquad A_{y} - 6X = 0$$
  

$$\sum F_{z} = 0: \qquad A_{z} + 2X - 300 = 0$$

where 
$$X = F_{BC} / \sqrt{3^2 + 6^2 + 2^2}$$

Vector moment equation of equilibrium at point *A* (force components  $A_x$ ,  $A_y$ ,  $A_z$  do not contribute)

$$(\vec{M}_{R})_{A} = \sum \vec{M} + \sum (\vec{r} \times \vec{F}) = \vec{M}_{A} + \vec{r}_{AC} \times \vec{F}_{BC} + \vec{r}_{AD} \times \vec{F}_{D}$$
$$= M_{y} \vec{j} + M_{z} \vec{k} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 0 & 2 \\ 3 & -6 & 2 \end{vmatrix} X + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 6 & 0 \\ 0 & 0 & -300 \end{vmatrix}$$

Cartesian component moment equations of equilibrium

$$\sum M_{x} = 0: 12X - 1800 = 0$$
  

$$\sum M_{y} = 0: M_{y} + 8X - 600 = 0$$
  

$$\sum M_{z} = 0: M_{z} + 6X = 0$$

Cartesian component equations of equilibrium

$$A_x + 3X = 0$$
$$A_y - 6X = 0$$
$$A_z + 2X = 300$$
$$12X = 1800$$
$$M_y + 8X = 600$$
$$M_z + 6X = 0$$

Solve by substitution (e.g. solve in succession X, then other 5 unknowns in any order), use  $F_{BC} = \sqrt{3^2 + 6^2 + 2^2} X = 7X$  and restore units (1 kip = 1000 lb)

 $A_x = -450 \text{ lb}$   $A_y = 900 \text{ lb}$   $A_z = 0$   $M_y = -600 \text{ lb ft}$   $M_z = -900 \text{ lb ft}$  $F_{BC} = 1.05 \text{ kip}$ 

The negative signs indicate that the forces are directed in the sense opposite to what was assumed, that is, along the negative coordinate axes.

## What Happens if there are Fewer than 6 Unknowns?

• In instances where there are fewer than 6 unknowns in a free body diagram for a three dimensional problem there may still be a solution of the equations of equilibrium

### • EXAMPLES

- Could have 5 unknowns, all of which are force components, and all of which have lines of action that intersect, or are parallel to, one of the coordinate axes: in this case, the corresponding scalar moment equation governing moments about that axis will be automatically satisfied, leaving 5 equations to constrain the 5 unknowns (next Homework)
- Similarly, could have 4 unknowns, all of which are force components, but geometry of setup could be such that two of the moment equations are automatically satisfied. Would then have 4 equations left to constrain the 4 unknowns

## What Happens if there are Fewer than 6 Unknowns?

- You can generally expect to be given problems that *will* have a solution (i.e. with same number of unknowns as equations that are not automatically satisfied)
- Should note that real life will not always be as kind!!
- See Sec. 5.7 (self study) for a discussion of additional issues that arise when the number of equations and unknowns are mismatched, or when there are the right number of unknowns, but the body is **improperly constrained** 
  - Improperly constrained rigid bodies can often develop instabilities (small departures from equilibrium "run away" rather than being "damped out")

### Problem 5-78 (page 267, 14<sup>th</sup> edition)

The bent rod is supported at *A*, *B*, and *C* by smooth journal bearings. The bearings are in proper alignment and only exert force reactions on the rod. The rod is subjected to forces as shown where  $F_1 = 300$  lb and  $F_2 = 250$  lb. The weight of the rod may be neglected.

(1) Determine the x, y, z components of reaction at the bearings.







## Free Body Diagram of Rod





### Solution strategy

Write down coordinates of key points

Write down vector forces, then determine Cartesian component force equations of equilibrium

Compute vector moment equation of equilibrium at point *O* 

Determine Cartesian component moment of equations of equilibrium

Assemble equations and solve them (6 equations in 6 unknowns)

Unknowns:  $A_x$ ,  $A_y$ ,  $B_x$ ,  $B_z$ ,  $C_y$ ,  $C_z$ 

#### Coordinates

A(0, -5, 4)B(0, -3, 0)C(-5, 0, 0)D(0, -5, 5)

Forces (suppressing units)

 $\vec{F}_{A} = A_{x} \vec{i} + A_{y} \vec{j}$   $\vec{F}_{B} = B_{x} \vec{i} + B_{z} \vec{k}$   $\vec{F}_{C} = C_{y} \vec{j} + C_{z} \vec{k}$   $\vec{F}_{1} = 300 \left( -\cos 45^{\circ} \vec{j} - \sin 45^{\circ} \vec{k} \right)$   $\vec{F}_{2} = 250 \left( \cos 45^{\circ} \sin 30^{\circ} \vec{i} + \cos 45^{\circ} \cos 30^{\circ} \vec{j} - \sin 45^{\circ} \vec{k} \right)$ 

### Cartesian component force equations of equilibrium

$$\sum F_{x} = 0: \qquad A_{x} + B_{x} + 250\cos 45^{\circ}\sin 30^{\circ} = 0$$
  
$$\sum F_{y} = 0: \qquad A_{y} + C_{y} - 300\cos 45^{\circ} + 250\cos 45^{\circ}\cos 30^{\circ} = 0$$
  
$$\sum F_{z} = 0: \qquad B_{z} + C_{z} - 300\sin 45^{\circ} - 250\sin 45^{\circ} = 0$$

Vector moment equation of equilibrium at point *O* ( $\vec{F}_2$  does not contribute)

$$(\vec{M}_{R})_{O} = \sum \vec{M} + \sum \vec{r} \times \vec{F} = 0 + \vec{r}_{OA} \times \vec{F}_{A} + \vec{r}_{OB} \times \vec{F}_{B} + \vec{r}_{OC} \times \vec{F}_{C} + \vec{r}_{OD} \times \vec{F}_{1}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & -5 & 4 \\ A_{x} & A_{y} & 0 \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & -3 & 0 \\ B_{x} & 0 & B_{z} \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -5 & 0 & 0 \\ 0 & C_{y} & C_{z} \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & C_{y} & C_{z} \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{i} & \vec{j} & \vec{k} \\ 0 & -5 & 5 \\ 0 & -300\cos 45^{\circ} & -300\sin 45^{\circ} \end{vmatrix} = 0$$

Cartesian component moment equations of equilibrium (Exercise: Verify these equations)

$$\sum M_{x} = 0: \qquad -4A_{y} - 3B_{z} + 1500 \sin 45^{\circ} + 1500 \cos 45^{\circ} = 0$$
  
$$\sum M_{y} = 0: \qquad 4A_{x} + 5C_{z} = 0$$
  
$$\sum M_{z} = 0: \qquad 5A_{x} + 3B_{x} - 5C_{y} = 0$$

Cartesian component equations of equilibrium

$$A_{x} + B_{x} = -250 \cos 45^{\circ} \sin 30^{\circ}$$

$$A_{y} + C_{y} = \cos 45^{\circ} (300 - 250 \cos 30^{\circ})$$

$$B_{z} + C_{z} = 550 \sin 45^{\circ}$$

$$4A_{y} + 3B_{z} = 1500(\sin 45^{\circ} + \cos 45^{\circ})$$

$$4A_{x} + 5C_{z} = 0$$

$$5A_{x} + 3B_{x} - 5C_{y} = 0$$

#### Solution of the system of equations

 $A_x = 633 \text{ lb}$   $A_y = -141 \text{ lb}$   $B_x = -721 \text{ lb}$   $B_z = 895 \text{ lb}$   $C_y = 200 \text{ lb}$  $C_z = -506 \text{ lb}$  Solving the system using the reduced row echelon form program rref([M]) on a TI graphing calculator, where [M] is the  $6 \times 7$  matrix

$$[M] = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & -250\cos 45^{\circ} \sin 30^{\circ} \\ 0 & 1 & 0 & 0 & 1 & 0 & \cos 45^{\circ} (300 - 250\cos 30^{\circ}) \\ 0 & 0 & 0 & 1 & 0 & 1 & 550\sin 45^{\circ} \\ 0 & 4 & 0 & 3 & 0 & 0 & 1500(\sin 45^{\circ} + \cos 45^{\circ}) \\ 4 & 0 & 0 & 0 & 5 & 0 \\ 5 & 0 & 3 & 0 & -5 & 0 & 0 \end{bmatrix}$$

$$\operatorname{rref}[M] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & A_x = 632.9 \\ 0 & 1 & 0 & 0 & 0 & 0 & A_y = -141.1 \\ 0 & 0 & 1 & 0 & 0 & 0 & B_x = -721.3 \\ 0 & 0 & 0 & 1 & 0 & 0 & B_z = 895.2 \\ 0 & 0 & 0 & 0 & 1 & 0 & C_y = 200.1 \\ 0 & 0 & 0 & 0 & 0 & 1 & C_z = -506.3 \end{bmatrix}$$