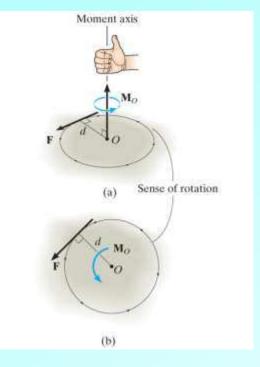
PHYS 170 Section 101 Lecture 9 September 24, 2018

Lecture Outline/Learning Goals

- General Definition of Moment (Scalar Formulation)
- Cross Product
- Moment of a Force: Vector Formulation
- Principle of Moments
- Moment of a Force about a Specified Axis

Moment of Force: General Case



• Magnitude

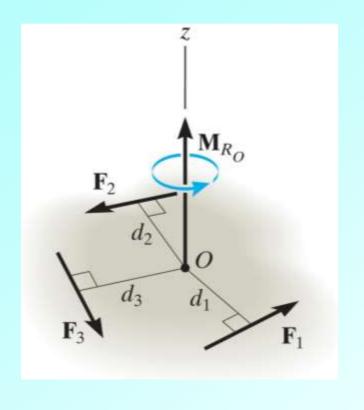
$$M_o = Fd$$

- *d* is known as the moment arm: again note that it is the perpendicular distance to the axis
- SI units of moments: $N \cdot m$

• Direction

- Another "right hand rule"
- Curl fingers of right hand so that they follow sense of rotation (if rotation were possible)
- Thumb then points in direction of moment (& with correct sense)

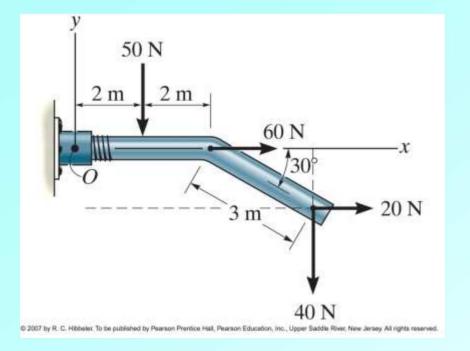
Resultant Moment of System of Coplanar Forces



- If system of forces is confined to *xy* plane, all moments about point *O* in that plane will be directed along *z* axis
- Thus all moments are collinear and can be added algebraically

 $\searrow + (M_R)_O = \Sigma F d$

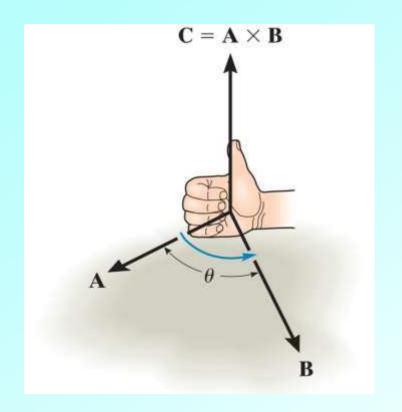
 Note: \sqrts is a facsimile of the "counterclockwise curl" used in the text and indicates the scalar sign convention: moments directed in +z direction are positive, those directed in -z direction are negative



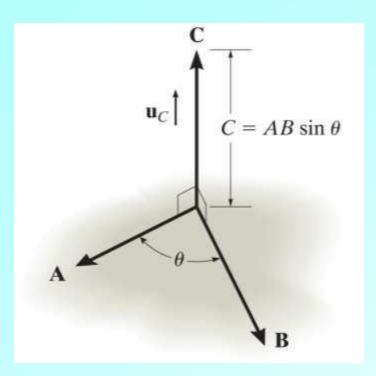
- Example: Determine the resultant moment of the four forces acting on the rod about point *O*.
- Scalar sign convention: positive moments act in +z direction (out of plane of figure, counterclockwise)
- Note: in order to deduce moment arms, often useful to extend lines of action of forces (dotted lines)

 $> + (M_R)_o = ΣFd$ $(M_R)_o = -50N(2m) + 60N(0) + 20N(3sin 30°m)$ - 40N(4m + 3cos 30°m)= -334N⋅m = 334N⋅m ∠ (clockwise)

4.2 Cross Product



- In order to compute moments for general 3D cases, need to consider second type of vector multiplication: cross product
- Cross product of two vectors
 A and B is another vector C
- Notation



• Magnitude of **C**

 $C = AB\sin\theta \qquad (0^\circ \le \theta \le 180^\circ)$

- Direction of **C**
 - Perpendicular to plane containing **A** and **B**
 - Given by yet another right hand rule with fingers of right hand rotating A into B

Thus can write

 $\mathbf{C} = (AB\sin\theta)\mathbf{u}_c$

where \mathbf{u}_{c} is the unit vector in the direction of **C**

Cross Product: Laws of Operation

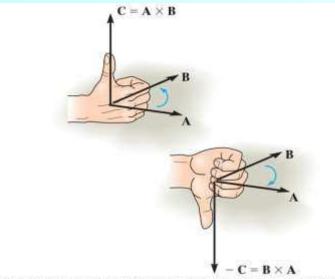
1. NOT commutative!!

 $\mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A}$

Instead

$\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$

2. Multiplication by scalar



© 2007 by H. C. Hibbens: To be published by Peerson Prentice Hall, Pearson Education, Inc., Upper Dadule River, New Jersey, All rights reserved.

 $a(\mathbf{A} \times \mathbf{B}) = (a\mathbf{A}) \times \mathbf{B} = \mathbf{A} \times (a\mathbf{B}) = (\mathbf{A} \times \mathbf{B})a$

3. Distributive law

$$\mathbf{A} \times (\mathbf{B} + \mathbf{D}) = (\mathbf{A} \times \mathbf{B}) + (\mathbf{A} \times \mathbf{D})$$

Cross Product: Cartesian Vector Formulation

 Consider cross product of unit vectors i and j. Magnitude of cross product is

$$|\mathbf{i} \times \mathbf{j}| = |\mathbf{i}| |\mathbf{j}| \sin \theta = (1)(1) \sin(90) = 1$$

By the right hand rule, direction is +**k**

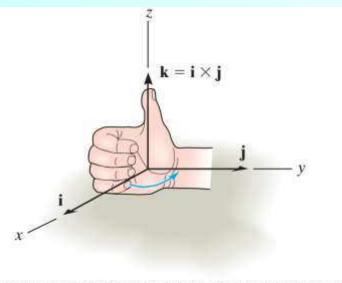
• Thus

 $\mathbf{i} \times \mathbf{j} = \mathbf{k}$

• Can repeat this for all possible combinations using the three unit vectors **i**, **j** and **k** to find:

$$i \times j = k \quad i \times k = -j \quad i \times i = 0$$
$$j \times k = i \quad j \times i = -k \quad j \times j = 0$$
$$k \times i = j \quad k \times j = -i \quad k \times k = 0$$

O 2007 by K. C. Initiation: To be contracted to Pleasure Proving that Research Education, Inc., House Earth River Man, Array J.



© 2007 by R. C. Hibbeau. To be published by Pearson Prentice Hall. Pearson Education, Inc., Upper Saddle Hive, New Jersey All rights reserved

• Can now work out cross product for general vectors **A** and **B** given in Cartesian form

$$\mathbf{A} \times \mathbf{B} = (A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}) \times (B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k})$$

$$= A_x B_x (\mathbf{i} \times \mathbf{i}) + A_x B_y (\mathbf{i} \times \mathbf{j}) + A_x B_z (\mathbf{i} \times \mathbf{k})$$

$$+ A_y B_x (\mathbf{j} \times \mathbf{i}) + A_y B_y (\mathbf{j} \times \mathbf{j}) + A_y B_z (\mathbf{j} \times \mathbf{k})$$

$$+ A_z B_x (\mathbf{k} \times \mathbf{i}) + A_z B_y (\mathbf{k} \times \mathbf{j}) + A_z B_z (\mathbf{k} \times \mathbf{k})$$

$$= (A_y B_z - A_z B_y) \mathbf{i} - (A_x B_z - A_z B_x) \mathbf{j} + (A_x B_y - A_y B_x) \mathbf{k}$$

$$= (A_y B_z - A_z B_y) \mathbf{i} - (A_x B_z - A_z B_x) \mathbf{j} + (A_x B_y - A_y B_x) \mathbf{k}$$

• Can write this in a more compact form as the determinant of a 3 x 3 matrix:

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Review: Calculating Determinants

 2×2 case • $\begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} = A_{11}A_{22} - A_{12}A_{21}$ Note "-" sign!! 3 x 3 case ٠ For element **j**: $A_x A_y A_z = -\mathbf{j}(A_x B_z - A_z B_x)$ $\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$ $= (A_{y}B_{z} - A_{z}B_{y})\mathbf{i} - (A_{x}B_{z} - A_{z}B_{y})\mathbf{j} + (A_{x}B_{y} - A_{y}B_{x})\mathbf{k}$

Sample calculation of a cross product

Take

$$\vec{A} = -\vec{i} + 5\vec{j} + 3\vec{k}$$
$$\vec{B} = 10\vec{i} - 20\vec{j} + 5\vec{k}$$

Compute $\vec{A} \times \vec{B}$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 5 & 3 \\ 10 & -20 & 5 \end{vmatrix}$$
$$= (25 - (-60))\vec{i} - (-5 - 30)\vec{j} + (20 - 50)\vec{k}$$
$$= 85\vec{i} + 35\vec{j} - 30\vec{k}$$

Exercise: Show that

$$(\vec{A} \times \vec{B}) \cdot \vec{A} = 0$$

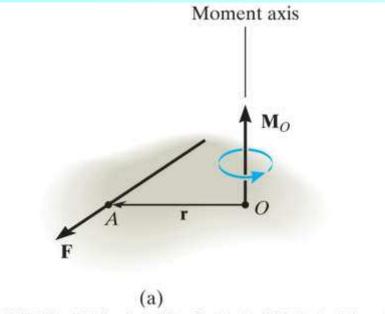
 $(\vec{A} \times \vec{B}) \cdot \vec{B} = 0$

Interpretation?

What do you get if you cross a mosquito and a mountain climber?

No one knows. You can't cross a vector with a scalar.

4.3 Moment of a Force – Vector Formulation



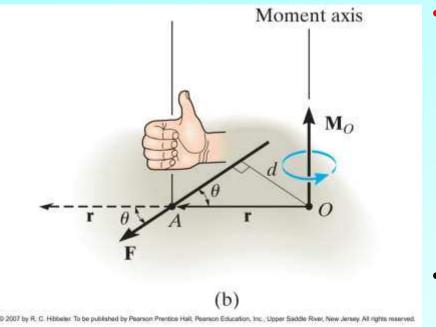
© 2007 by R. C. Hibbeler. To be published by Peerson Prentice Halt, Peerson Education, Inc., Upper Saddle River, New Jersey, All rights reserved.

• Moment of force **F** about moment axis passing through *O* and perpendicular to plane containing *O* and **F** is given by

 $\mathbf{M}_{O} = \mathbf{r} \times \mathbf{F}$

Note: r is a position vector drawn from
 O to any point lying on the line of action of F

Moment of a Force: Magnitude & Direction



Magnitude: Treat r as a "sliding vector" to move it to line of action of F so that angle θ is determined properly

From definition of magnitude of cross product, magnitude of moment is

 $M_o = rF\sin\theta$

But this can be written as

 $M_o = F(r\sin\theta) = Fd$

where d is the moment arm, which agrees with our original definition

Direction: Again, apply right hand rule, rotating r (sliding r as needed so that its tail intersects line of action of F) into F with fingers of right hand. Thumb points in direction of moment, which is perpendicular to both r and F (and thus to the plane that contains both r and F)

Cartesian Vector Formulation

• Establishing a right-handed *x*, *y*, *z* coordinate system we have

$$\mathbf{M}_{O} = \mathbf{r} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix}$$
$$= (r_{y}F_{z} - r_{z}F_{y})\mathbf{i} - (r_{x}F_{z} - r_{z}F_{x})\mathbf{j} + (r_{x}F_{y} - r_{y}F_{x})\mathbf{k}$$

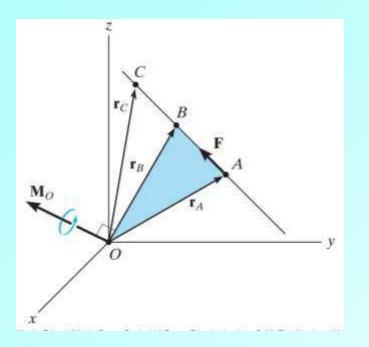
where

 r_x, r_y, r_z : are the components of a position vector from *O* to any point on the line of action of the force

 F_x, F_y, F_z : are the components of the force

• Use of above expression is recommended practice when working with general 3D forces and position vectors

Principle of Transmissibility



In equation for moment about O due to force F

$$\mathbf{M}_{O} = \mathbf{r} \times \mathbf{F}$$

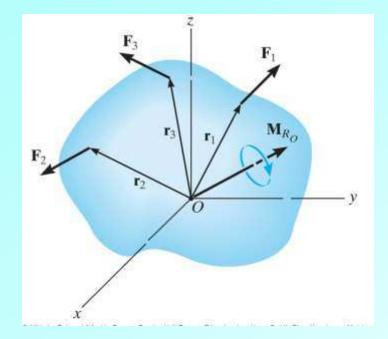
position vector \mathbf{r} can join O and any point on the line of action of \mathbf{F}

• Thus,

 $\mathbf{M}_{O} = \mathbf{r}_{A} \times \mathbf{F} = \mathbf{r}_{B} \times \mathbf{F} = \mathbf{r}_{C} \times \mathbf{F}$ etc.

- Therefore, when being used to compute a moment, a force can be treated as a sliding vector and can be relocated so that its tail is at an arbitrary point on its line of action
- This is known as the principle of transmissibility and will be used in our future discussion of equivalent systems

Resultant Moment of System of Forces



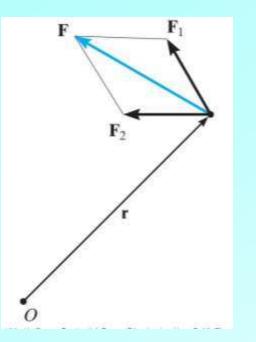
When more than one force acts on a body, resultant moment of the forces about a point *O* is determined by a vector sum of the individual moments about *O* due to the individual forces, i.e.

$$\left(\mathbf{M}_{\mathbf{R}}\right)_{O} = \Sigma(\mathbf{r} \times \mathbf{F})$$

• So in the example pictured above, we have

$$\left(\mathbf{M}_{R}\right)_{O} = \mathbf{r}_{1} \times \mathbf{F}_{1} + \mathbf{r}_{2} \times \mathbf{F}_{2} + \mathbf{r}_{3} \times \mathbf{F}_{3}$$

• Note that in this general case the resultant moment will not necessarily be perpendicular to any of the forces or position vectors!



4.4 Principle of Moments

- Principle of Moments: Moment of a force about a point is equal to the (vector) sum of the moments of the force's components about the point
- Proof is a direct consequence of the distributive property of the cross product. Considering the figure, for example, we have

$$\mathbf{M}_{O} = \mathbf{r} \times \mathbf{F} = \mathbf{r} \times (\mathbf{F}_{1} + \mathbf{F}_{2}) = \mathbf{r} \times \mathbf{F}_{1} + \mathbf{r} \times \mathbf{F}_{2} = \mathbf{M}_{1O} + \mathbf{M}_{2O}$$

- Text notes that can often use this principle to make calculations of moments easier, especially when all of the forces and position vectors lie in a plane, and it is worth studying the text's worked examples to see this, as well as to try a few problems
- However, as was the case for force equilibria, we will be focusing attention on three-dimensional problems, where the Cartesian vector approach is almost always most straightforward