PHYS 170 Section 101 Lecture 9
September 24, 2018

Lecture Outline/Learning Goals

- General Definition of Moment (Scalar Formulation)
- Cross Product
- Moment of a Force: Vector Formulation
- Principle of Moments
- Moment of a Force about a Specified Axis

Moment of Force: General Case

(b)

- Magnitude

$$
M_{o}=F d
$$

- d is known as the moment arm: again note that it is the perpendicular distance to the axis
- SI units of moments: $\mathrm{N} \cdot \mathrm{m}$
- Direction
- Another "right hand rule"
- Curl fingers of right hand so that they follow sense of rotation (if rotation were possible)
- Thumb then points in direction of moment (\& with correct sense)

Resultant Moment of System of Coplanar Forces

- If system of forces is confined to $x y$ plane, all moments about point O in that plane will be directed along z axis
- Thus all moments are collinear and can be added algebraically

$$
\searrow+\left(M_{R}\right)_{O}=\Sigma F d
$$

- Note: \searrow is a facsimile of the "counterclockwise curl" used in the text and indicates the scalar sign convention: moments directed in $+z$ direction are positive, those directed in $-z$ direction are negative

- Example: Determine the resultant moment of the four forces acting on the rod about point O.
- Scalar sign convention: positive moments act in $+z$ direction (out of plane of figure, counterclockwise)
- Note: in order to deduce moment arms, often useful to extend lines of action of forces (dotted lines)

$$
\begin{aligned}
\searrow+\left(M_{R}\right)_{O} & =\Sigma F d \\
\left(M_{R}\right)_{O}= & -50 \mathrm{~N}(2 \mathrm{~m})+60 \mathrm{~N}(0)+20 \mathrm{~N}\left(3 \sin 30^{\circ} \mathrm{m}\right) \\
& -40 \mathrm{~N}\left(4 \mathrm{~m}+3 \cos 30^{\circ} \mathrm{m}\right) \\
= & -334 \mathrm{~N} \cdot \mathrm{~m}=334 \mathrm{~N} \cdot \mathrm{~m} \swarrow \quad \text { (clockwise })
\end{aligned}
$$

4.2 Cross Product

- In order to compute moments for general 3D cases, need to consider second type of vector multiplication: cross product
- Cross product of two vectors \mathbf{A} and \mathbf{B} is another vector \mathbf{C}
- Notation

$$
\mathbf{C}=\mathbf{A} \times \mathbf{B}
$$

- Magnitude of \mathbf{C}

$$
C=A B \sin \theta \quad\left(0^{\circ} \leq \theta \leq 180^{\circ}\right)
$$

- Direction of \mathbf{C}
- Perpendicular to plane containing A and B
- Given by yet another right hand rule with fingers of right hand rotating \mathbf{A} into \mathbf{B}

Thus can write

$$
\mathbf{C}=(A B \sin \theta) \mathbf{u}_{c}
$$

where \mathbf{u}_{c} is the unit vector in the direction of \mathbf{C}

Cross Product: Laws of Operation

1. NOT commutative!!

$$
\mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A}
$$

Instead

$$
\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}
$$

2. Multiplication by scalar

$$
a(\mathbf{A} \times \mathbf{B})=(a \mathbf{A}) \times \mathbf{B}=\mathbf{A} \times(a \mathbf{B})=(\mathbf{A} \times \mathbf{B}) a
$$

3. Distributive law

$$
\mathbf{A} \times(\mathbf{B}+\mathbf{D})=(\mathbf{A} \times \mathbf{B})+(\mathbf{A} \times \mathbf{D})
$$

Cross Product: Cartesian Vector Formulation

- Consider cross product of unit vectors \mathbf{i} and \mathbf{j}. Magnitude of cross product is $|\mathbf{i} \times \mathbf{j}|=|\mathbf{i}||\mathbf{j}| \sin \theta=(1)(1) \sin (90)=1$

By the right hand rule, direction is $\mathbf{+} \mathbf{k}$

- Thus

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}
$$

- Can repeat this for all possible combinations using the three unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} to find:

$$
\begin{array}{lll}
\mathbf{i} \times \mathbf{j}=\mathbf{k} & \mathbf{i} \times \mathbf{k}=-\mathbf{j} & \mathbf{i} \times \mathbf{i}=\mathbf{0} \\
\mathbf{j} \times \mathbf{k}=\mathbf{i} & \mathbf{j} \times \mathbf{i}=-\mathbf{k} & \mathbf{j} \times \mathbf{j}=\mathbf{0} \\
\mathbf{k} \times \mathbf{i}=\mathbf{j} & \mathbf{k} \times \mathbf{j}=-\mathbf{i} & \mathbf{k} \times \mathbf{k}=\mathbf{0}
\end{array}
$$

- Can now work out cross product for general vectors \mathbf{A} and \mathbf{B} given in Cartesian form

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right) \times\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right) \\
& =A_{x} B_{x}(\mathbf{i} \times \mathbf{i})+A_{x} B_{y}(\mathbf{i} \times \mathbf{j})+A_{x} B_{z}(\mathbf{i} \times \mathbf{k}) \\
& +A_{y} B_{x}(\mathbf{j} \times \mathbf{i})+A_{y} B_{y}(\mathbf{j} \times \mathbf{j})+A_{y} B_{z}(\mathbf{j} \times \mathbf{k}) \\
& +A_{z} B_{x}(\mathbf{k} \times \mathbf{i})+A_{z} B_{y}(\mathbf{k} \times \mathbf{j})+A_{z} B_{z}(\mathbf{k} \times \mathbf{k}) \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \mathbf{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k} \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \mathbf{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k}
\end{aligned}
$$

- Can write this in a more compact form as the determinant of a 3×3 matrix:

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Review: Calculating Determinants

- 2×2 case

$$
\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right|=A_{11} A_{22}-A_{12} A_{21}
$$

- 3×3 case

Sample calculation of a cross product

Take

$$
\begin{aligned}
& \vec{A}=-\vec{i}+5 \vec{j}+3 \vec{k} \\
& \vec{B}=10 \vec{i}-20 \vec{j}+5 \vec{k}
\end{aligned}
$$

Compute $\vec{A} \times \vec{B}$

$$
\begin{aligned}
\vec{A} \times \vec{B} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-1 & 5 & 3 \\
10 & -20 & 5
\end{array}\right| \\
& =(25-(-60)) \vec{i}-(-5-30) \vec{j}+(20-50) \vec{k} \\
& =85 \vec{i}+35 \vec{j}-30 \vec{k}
\end{aligned}
$$

Exercise: Show that
$(\vec{A} \times \vec{B}) \cdot \vec{A}=0$
$(\vec{A} \times \vec{B}) \cdot \vec{B}=0$

Interpretation?

What do you get if you cross a mosquito and a mountain climber?

No one knows. You can't cross a vector with a scalar.

4.3 Moment of a Force - Vector Formulation

(a)

- Moment of force \mathbf{F} about moment axis passing through O and perpendicular to plane containing O and \mathbf{F} is given by

$$
\mathbf{M}_{o}=\mathbf{r} \times \mathbf{F}
$$

- Note: \mathbf{r} is a position vector drawn from O to any point lying on the line of action of \mathbf{F}

Moment of a Force: Magnitude \& Direction

(b)

- Magnitude: Treat \mathbf{r} as a "sliding vector" to move it to line of action of \mathbf{F} so that angle θ is determined properly

From definition of magnitude of cross product, magnitude of moment is

$$
M_{o}=r F \sin \theta
$$

- But this can be written as

$$
M_{o}=F(r \sin \theta)=F d
$$

where d is the moment arm, which agrees with our original definition

- Direction: Again, apply right hand rule, rotating \mathbf{r} (sliding \mathbf{r} as needed so that its tail intersects line of action of \mathbf{F}) into \mathbf{F} with fingers of right hand. Thumb points in direction of moment, which is perpendicular to both \mathbf{r} and \mathbf{F} (and thus to the plane that contains both \mathbf{r} and \mathbf{F})

Cartesian Vector Formulation

- Establishing a right-handed x, y, z coordinate system we have

$$
\begin{aligned}
\mathbf{M}_{O} & =\mathbf{r} \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right| \\
& =\left(r_{y} F_{z}-r_{z} F_{y}\right) \mathbf{i}-\left(r_{x} F_{z}-r_{z} F_{x}\right) \mathbf{j}+\left(r_{x} F_{y}-r_{y} F_{x}\right) \mathbf{k}
\end{aligned}
$$

where
$r_{x}, r_{y}, r_{z}:$ are the components of a position vector from
O to any point on the line of action of the force
$F_{x}, F_{y}, F_{z}:$ are the components of the force

- Use of above expression is recommended practice when working with general 3D forces and position vectors

Principle of Transmissibility

- In equation for moment about O due to force \mathbf{F}

$$
\mathbf{M}_{o}=\mathbf{r} \times \mathbf{F}
$$

position vector \mathbf{r} can join O and any point on the line of action of \mathbf{F}

- Thus,

$$
\mathbf{M}_{O}=\mathbf{r}_{A} \times \mathbf{F}=\mathbf{r}_{B} \times \mathbf{F}=\mathbf{r}_{C} \times \mathbf{F} \quad \text { etc } .
$$

- Therefore, when being used to compute a moment, a force can be treated as a sliding vector and can be relocated so that its tail is at an arbitrary point on its line of action
- This is known as the principle of transmissibility and will be used in our future discussion of equivalent systems

Resultant Moment of System of Forces

- When more than one force acts on a body, resultant moment of the forces about a point O is determined by a vector sum of the individual moments about O due to the individual forces, i.e.

$$
\left(\mathbf{M}_{\mathbf{R}}\right)_{O}=\Sigma(\mathbf{r} \times \mathbf{F})
$$

- So in the example pictured above, we have

$$
\left(\mathbf{M}_{R}\right)_{O}=\mathbf{r}_{1} \times \mathbf{F}_{1}+\mathbf{r}_{2} \times \mathbf{F}_{2}+\mathbf{r}_{3} \times \mathbf{F}_{3}
$$

- Note that in this general case the resultant moment will not necessarily be perpendicular to any of the forces or position vectors!

4.4 Principle of Moments

- Principle of Moments: Moment of a force about a point is equal to the (vector) sum of the moments of the force's components about the point
- Proof is a direct consequence of the distributive property of the cross product. Considering the figure, for example, we have

$$
\mathbf{M}_{o}=\mathbf{r} \times \mathbf{F}=\mathbf{r} \times\left(\mathbf{F}_{1}+\mathbf{F}_{2}\right)=\mathbf{r} \times \mathbf{F}_{1}+\mathbf{r} \times \mathbf{F}_{2}=\mathbf{M}_{1 O}+\mathbf{M}_{20}
$$

- Text notes that can often use this principle to make calculations of moments easier, especially when all of the forces and position vectors lie in a plane, and it is worth studying the text's worked examples to see this, as well as to try a few problems
- However, as was the case for force equilibria, we will be focusing attention on three-dimensional problems, where the Cartesian vector approach is almost always most straightforward

