PHYS 170 Section 101 Lecture 6
September 17, 2018

SEPTEMBER 17—ANNOUNCEMENTS

- Homework Assignment 1 due today, 11:59 PM
- Reminder that my office hour is Tuesday, 11:00 AM—noon, in Hennings 403 (see directions on Canvas)
- You can also make an appointment to see me in my office via email

Lecture Outline/Learning Goals

- Finish concurrent force system from last day
- Dot product
- Laws of operation, Cartesian vector formulation, applications
- Sample problem using dot product
- Start Chapter 3
- Quick review of Newton's laws of motion
- Define and discuss equations of equilibrium for coplanar and three dimensional equilibria
- Introduce concept of FREE BODY DIAGRAM for a particle

Problem 2-109 (page 68, $13^{\text {th }}$ edition)

The magnitude of the resultant force is 1300 N and acts along the axis of the strut from A towards O

Determine the magnitude of each of the three forces acting on the strut.

Set $x=0$ and $z=5.5 \mathrm{~m}$

Figure: 02_P108-109

Figure: 02_P108-109

- Coordinates

$$
A(0,6,2.5) \mathrm{m}
$$

$$
B(-3,0,4.5) \mathrm{m}
$$

$$
C(2,0,4) \mathrm{m}
$$

- Force example (suppressing units)

$$
\begin{aligned}
\vec{F}_{B} & =F_{B} \vec{u}_{A B}=F_{B}\left(\frac{\vec{r}_{A B}}{r_{A B}}\right)=\vec{r}_{A B} X \quad \text { where } \quad X=\frac{F_{B}}{r_{A B}} \\
& =((-3-0) \vec{i}+(0-6) \vec{j}+(4.5-2.5) \vec{k}) X \\
& =(-3 \vec{i}-6 \vec{j}+2 \vec{k}) X \quad \text { where } \quad X=F_{B} / r_{A B}=F_{B} / \sqrt{3^{2}+6^{2}+2^{2}}
\end{aligned}
$$

- Forces (suppressing units)

$$
\begin{array}{ll}
\vec{F}_{B}=(-3 \vec{i}-6 \vec{j}+2 \vec{k}) X & X=F_{B} / \sqrt{3^{2}+6^{2}+2^{2}} \\
\vec{F}_{C}=(2 \vec{i}-6 \vec{j}+1.5 \vec{k}) Y & Y=F_{C} / \sqrt{2^{2}+6^{2}+1.5^{2}} \\
\vec{F}_{D}=(-6 \vec{j}-8 \vec{k}) Z & Z=F_{D} / \sqrt{6^{2}+8^{2}} \\
\vec{F}_{R}=(-6 \vec{j}-2.5 \vec{k}) A & A=1300 / \sqrt{6^{2}+2.5^{2}}
\end{array}
$$

- Resultant force (suppressing units)
$\vec{F}_{R}=F_{R x} \vec{i}+F_{R y} \vec{j}+F_{R z} \vec{k}$
$\sum F_{x}=F_{R x}:$

$$
-3 X+2 Y=0
$$

$\sum F_{y}=F_{R y}:$

$$
-6 X-6 Y-6 Z=-6 A
$$

$\sum F_{z}=F_{R z}:$
$2 X+1.5 Y-8 Z=-2.5 A$

- Solving: $X=45.36$

$$
Y=68.04
$$

$$
Z=86.60
$$

$$
\begin{aligned}
\text { Then } & F_{B}=\left(\sqrt{3^{2}+6^{2}+2^{2}}\right) X=318 \mathrm{~N} \\
& F_{C}=\left(\sqrt{2^{2}+6^{2}+1.5^{2}}\right) Y=442 \mathrm{~N} \\
& F_{D}=\left(\sqrt{6^{2}+8^{2}}\right) Z=866 \mathrm{~N}
\end{aligned}
$$

Solving the equations using the reduced row echelon form method

- Equations for X, Y and Z :

$$
\begin{align*}
-3 X+2 Y & =0 \tag{1}\\
X+Y+Z & =A \tag{2}\\
2 X+1.5 Y-8 Z & =-2.5 A \tag{3}
\end{align*}
$$

where $A=1300 / \sqrt{6^{2}+2.5^{2}}=200$

- Solve (1) to (3) using the reduced echelon form matrix program $\operatorname{rref}([M])$ on a TI graphing calculator, where $[M]$ is the 3×4 matrix

$$
[M]=\left[\begin{array}{cccc}
-3 & 2 & 0 & 0 \\
1 & 1 & 1 & 200 \\
2 & 1.5 & -8 & -500
\end{array}\right]
$$

This yields

$$
\left[\begin{array}{llll}
1 & 0 & 0 & X \\
0 & 1 & 0 & Y \\
0 & 0 & 1 & Z
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 45.36 \\
0 & 1 & 0 & 68.04 \\
0 & 0 & 1 & 86.60
\end{array}\right]
$$

from which we read the solution

$$
X=45.36 \quad Y=68.04 \quad Z=86.60
$$

- There's a worked example of solving a 3×3 system using rref on Canvas in the file "TI-3x3-solve-example.pdf" in "Course information -> Guidebooks and examples for TI Calculators"

2.9 DOT PRODUCT

- One of two vector "multiplication" operations that we will consider
- DOT PRODUCT: Takes two vectors, produces a scalar (hence also sometimes called scalar product)
- CROSS PRODUCT: Takes two vectors, produces another vector
- Both have many important applications in mechanics (and other areas that use vector analysis)

DOT PRODUCT

- DEFINITION: Dot product of A and B is the product of the magnitudes of A and B and the cosine of the angle θ between their tails (the least angle between the vectors)

$\mathbf{A} \cdot \mathbf{B}=A B \cos \theta$

Dot product is a scalar

DOT PRODUCTS: LAWS OF OPERATION

- Commutative law

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}
$$

- Multiplication by a scalar, a

$$
a(\mathbf{A} \cdot \mathbf{B})=(a \mathbf{A}) \cdot \mathbf{B}=\mathbf{A} \cdot(a \mathbf{B})=(\mathbf{A} \cdot \mathbf{B}) a
$$

- Distributive law

$$
\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=(\mathbf{A} \cdot \mathbf{B})+(\mathbf{A} \cdot \mathbf{C})
$$

CARTESIAN VECTOR FORMULATION

- Consider dot product applied to Cartesian unit vectors
- Examples:

$$
\begin{aligned}
\mathbf{i} \cdot \mathbf{i} & =\mathbf{i} \| \mathbf{i} \mid \cos 0^{\circ} \\
& =(1)(1)(1)=1 \\
\mathbf{i} \cdot \mathbf{j} & =\mathbf{i} \| \mathbf{j} \mid \cos 90^{\circ} \\
& =(1)(1)(0)=0
\end{aligned}
$$

CARTESIAN VECTOR FORMULATION

- Considering all possible combinations of unit vectors, we have

$$
\begin{array}{lll}
\mathbf{i} \cdot \mathbf{i}=1 & \mathbf{j} \cdot \mathbf{j}=1 & \mathbf{k} \cdot \mathbf{k}=1 \\
\mathbf{i} \cdot \mathbf{j}=0 & \mathbf{i} \cdot \mathbf{k}=0 & \mathbf{j} \cdot \mathbf{k}=0
\end{array}
$$

- Can now use above results to work out dot product in Cartesian vector form. Recall that we have

$$
\begin{aligned}
& \mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k} \\
& \mathbf{B}=B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}
\end{aligned}
$$

- Thus, we have

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} & =\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right) \cdot\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right) \\
& =A_{x} B_{x}(\mathbf{i} \cdot \mathbf{i})+A_{x} B_{y}(\mathbf{i} \cdot \mathbf{j})+A_{x} B_{z}(\mathbf{i} \cdot \mathbf{k}) \\
& +A_{y} B_{x}(\mathbf{j} \cdot \mathbf{i})+A_{y} B_{y}(\mathbf{j} \cdot \mathbf{j})+A_{y} B_{z}(\mathbf{j} \cdot \mathbf{k}) \\
& +A_{z} B_{x}(\mathbf{k} \cdot \mathbf{i})+A_{z} B_{y}(\mathbf{k} \cdot \mathbf{j})+A_{z} B_{z}(\mathbf{k} \cdot \mathbf{k})
\end{aligned}
$$

- Only the terms in red are non-zero, and so we find

$$
\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

DOT PRODUCT: APPLICATION 1

1. Angle formed between two vectors, or intersecting lines

[^0]
DOT PRODUCT: APPLICATION 1

- Start from definition

$\mathbf{A} \cdot \mathbf{B}=A B \cos \theta$

- so we have

$$
\cos \theta=\frac{\mathbf{A} \cdot \mathbf{B}}{A B}
$$

and

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{A B}\right)
$$

- Important special case:

$\mathbf{A} \cdot \mathbf{B}=0$

- Then have

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{A B}\right)=\cos ^{-1} 0=90^{\circ}
$$

so two non-vanishing vectors are perpendicular (orthogonal) if their dot product vanishes

DOT PRODUCT: APPLICATION 2

- Components of a vector parallel and perpendicular to a line, $a a^{\prime}$

- Note: Orientation of $a a^{\prime}$ is arbitrary, i.e. not necessarily horizontal, vertical, etc.

- Parallel component, $\mathbf{A}_{\| \mid}$(vector) has magnitude

$$
A_{\mid}=A \cos \theta
$$

- Unit vector in $a a^{\prime}$ direction is \mathbf{u}, therefore have

$$
\mathbf{A}_{\|}=A \cos \theta \mathbf{u}
$$

- Moreover, from definition of dot product have

$$
\mathbf{A} \cdot \mathbf{u}=A u \cos \theta=A \cos \theta
$$

so magnitude of parallel component is
and

$$
A_{1}=\mathbf{A} \cdot \mathbf{u}
$$

$$
\mathbf{A}_{\|}=(\mathbf{A} \cdot \mathbf{u}) \mathbf{u}
$$

- Perpendicular component, \mathbf{A}_{\perp}, (vector) can be computed indirectly by observing that
so

$$
\mathbf{A}=\mathbf{A}_{\|}+\mathbf{A}_{\perp}
$$

$$
\mathbf{A}_{\perp}=\mathbf{A}-\mathbf{A}_{\|}=\mathbf{A}-(\mathbf{A} \cdot \mathbf{u}) \mathbf{u}
$$

- Magnitude, A_{\perp}, can be computed in at least two ways

$$
A_{\perp}=A \sin \theta \quad \text { where } \theta=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{u}}{A}\right)
$$

$$
A_{\perp}=\sqrt{A^{2}-A_{\|}^{2}}
$$

Problems 2-120 and 2-121 (page 78, $14^{\text {th }}$ edition)

Two cables exert forces on the pipe as shown

2-120 Determine the projected component of \vec{F}_{1} along the line of action of \vec{F}_{2}

2-121 Determine the angle θ between the two cables

Copyright e2015 Pearson Education, All Roghss fleserved

Solution strategy:

(1) Express \vec{F}_{1} in Cartesian form from given geometry
(2) Express unit vector, \vec{u}, in direction of \vec{F}_{2} in Cartesian components from direction cosines
(3) Compute $\vec{F}_{1} \cdot \vec{u}$, the projected component of \vec{F}_{1} in the direction of \vec{F}_{2}
(4) Compute angle between two cables

(\vec{F}_{1} and \vec{F}_{2}) using fundamental definition of dot product

Solution continues in Lecture 7

[^0]: a 2007 by R. C. Hibbeter. To be published by Pearson Prentice Halk Pearson Education, inc, Upper Sadde Rivec New Jersey. All nghts reserved

