PHYS 170 Section 101 Lecture 3 September 10, 2017

SEP 10—ANNOUNCEMENTS

- Tutorials start tomorrow
- Mastering Engineering:
 - Introductory assignment due Friday at 11:59 PM
 - First assignment due next Monday at 11:59 PM

Lecture Outline/Learning Goals

- Sample problems: coplanar force systems
- Cartesian vectors (3 dimensions or 3D)
 - Right handed coordinate systems, rectangular components, unit vectors
 - Cartesian vector representation, magnitude of Cartesian vector
 - Cartesian vector: direction, coordinate direction angles, direction cosines
 - Addition and subtraction of Cartesian vectors

COPLANAR FORCE RESULTANTS

• We now wish to consider summing an arbitrary number of vectors in the *xy* plane. For example: $\mathbf{F}_{R} = \mathbf{F}_{1} + \mathbf{F}_{2} + \mathbf{F}_{3}$

© 2007 by R. C. Hibbeler. To be published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey. All rights reserved.

COPLANAR FORCE RESULTANTS

General case (arbitrary number of forces)

$$F_{Rx} = \Sigma F_x$$
$$F_{Ry} = \Sigma F_y$$

REPRESENTATION AS MAGNITUDE & DIRECTION

Problem 2-51 (page 41, 13th edition)

Determine the magnitude and direction measured counterclockwise from the positive *x*-axis of the resultant force of the three forces acting on the ring *A*.

Take $F_1 = 500$ N and $\theta = 20^{\circ}$.

PROB02_039-040.jpg Copyright © 2010 Pearson Prentice Hall, Inc.

Problem 2-51 (page 41, 13th edition)

PROB02_039-040.jpg Copyright © 2010 Pearson Prentice Hall, Inc.

Problem 2-44 (page 41, 13th edition)

The magnitude of the resultant force acting on the bracket is 400 N. Determine the magnitude of $\vec{F_1}$. Take $\phi = 30^\circ$. Disregard the *u* axis.

- Determine F_1 so that $F_R = 400$ N: $\vec{F}_R = \sum \vec{F}$
- **Cartesian Vector Method** (suppressing units)

$$F_{Rx} = \sum F_{x} = -650 \left(\frac{3}{5}\right) + F_{1} \cos 30^{\circ} + 500 \cos 45^{\circ}$$

$$F_{Ry} = \sum F_y = 650 \left(\frac{4}{5}\right) + F_1 \sin 30^\circ - 500 \sin 45^\circ$$

$$F_{R} = \sqrt{F_{Rx}^2 + F_{Ry}^2}$$

 $\vec{F}_R = F_{Rx}\vec{i} + F_{Ry}\vec{j}$

 $400 = \sqrt{\left(-390 + F_1 \cos 30^\circ + 500 \cos 45^\circ\right)^2 + \left(520 + F_1 \sin 30^\circ - 500 \sin 45^\circ\right)^2}$

$$400 = \sqrt{\left(-390 + F_1 \cos 30^\circ + 500 \cos 45^\circ\right)^2 + \left(520 + F_1 \sin 30^\circ - 500 \sin 45^\circ\right)^2}$$

- This is a nonlinear equation in the single unknown *F*₁ which we could solve by squaring both sides and solving the resulting quadratic equation (leave as an exercise)
- Alternatively, we can use the **solver** function on a TI graphing calculator to get

$$F_1 = 314$$
 N or $F_1 = -417$ N

Note that the negative sign tells us that for that answer *F*₁ must be in the direction opposite to that shown in the figure. Also, to get the two distinct roots from **solver**, I used a large positive number as a guess in the first instance (1000), and a large (in magnitude) negative number in the second (-1000)

2.5-2.6: CARTESIAN VECTORS (3 DIMENSIONS or 3D)

- TRICKY TO MASTER FOR MANY STUDENTS
- PRACTICE WILL HELP!!
- Work through examples/problems in text, and additional problems online (Canvas)
- Discussion applies to vectors in general, but will have specific application of force vectors in mind

RIGHT HANDED COORDINATE SYSTEM

"Squeeze" (rotate) x axis into y axis with fingers of right hand—thumb then points in direction of z axis

Also note that by convention will orient axes so that positive direction is upwards

RECTANGULAR COMPONENTS OF A VECTOR

UNIT VECTOR

© 2007 by R. C. Hibbeler. To be published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey. All rights reserved.

CARTESIAN UNIT VECTORS

CARTESIAN VECTOR REPRESENTATION & MAGNITUDE OF A CARTESIAN VECTOR

$$\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$$

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Note that despite what the text might imply (if not state explicitly), components A_x , A_y and A_z can have either sign in general.