PHYS 170 Section 101 Lecture 3
September 10, 2017

## SEP 10—ANNOUNCEMENTS

- Tutorials start tomorrow
- Mastering Engineering:
- Introductory assignment due Friday at 11:59 PM
- First assignment due next Monday at 11:59 PM


## Lecture Outline/Learning Goals

- Sample problems: coplanar force systems
- Cartesian vectors (3 dimensions or 3D)
- Right handed coordinate systems, rectangular components, unit vectors
- Cartesian vector representation, magnitude of Cartesian vector
- Cartesian vector: direction, coordinate direction angles, direction cosines
- Addition and subtraction of Cartesian vectors


## COPLANAR FORCE RESULTANTS

- We now wish to consider summing an arbitrary number of vectors in the $x y$ plane. For example:

$$
\mathbf{F}_{R}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}
$$


(a)

## COPLANAR FORCE RESULTANTS

- General case (arbitrary number of forces)

$$
\begin{aligned}
& F_{R x}=\Sigma F_{x} \\
& F_{R y}=\Sigma F_{y}
\end{aligned}
$$

## REPRESENTATION AS MAGNITUDE \& DIRECTION



$$
F_{R}=\sqrt{F_{R x}^{2}+F_{R y}^{2}}
$$

$$
\theta=\tan ^{-1}\left|\frac{F_{R y}}{F_{R x}}\right|
$$

(c)
0.2007 by R. C. Hibbeler. To be publighed by Pearson Prentice Hall, Pearson Education, inc., Upper Saddle River, New Jersey. All rights reserved.

## Problem 2-51 (page 41, $13^{\text {th }}$ edition)

Determine the magnitude and direction measured counterclockwise from the positive $x$-axis of the resultant force of the three forces acting on the ring $A$.

Take $F_{1}=500 \mathrm{~N}$ and $\theta=20^{\circ}$.


## Problem 2-51 (page 41, $13^{\text {th }}$ edition)



PROB02_039-040.jpg
Copyright © 2010 Pearson Prentice Hall, Inc.

Determine the magnitude and direction of $\vec{F}_{R}=\sum \vec{F}$ Cartesian Vector Method (suppressing units)

$$
\vec{F}_{R}=F_{R x} \vec{i}+F_{R y} \vec{j}=F_{R}(\cos \phi \vec{i}+\sin \phi \vec{j})
$$



$$
F_{R x}=\sum F_{x}=400 \cos 30^{\circ}+500 \sin 20^{\circ}-600\left(\frac{4}{5}\right)=37.42=A
$$

$$
F_{R y}=\sum F_{y}=400 \sin 30^{\circ}+500 \cos 20^{\circ}+600\left(\frac{3}{5}\right)=1030=B
$$

## Answers

> | $\begin{array}{l}\text { Store in } \\ \text { calculator } \\ \text { memory "A" }\end{array}$ |
| :--- |
| $\begin{array}{l}\text { Store in } \\ \text { calculator } \\ \text { memory "B" }\end{array}$ |

$$
F_{R}=\sqrt{F_{R x}^{2}+F_{R y}^{2}}=\sqrt{A^{2}+B^{2}}=1.03 \mathrm{kN}
$$

Does this answer make sense?
$\phi=\tan ^{-1}\left(F_{R y} / F_{R x}\right)=\tan ^{-1}(B / A)=87.9^{\circ}$

## Problem 2-44 (page 41, $13^{\text {th }}$ edition)

The magnitude of the resultant force acting on the bracket is 400 N . Determine the magnitude of $\vec{F}_{1}$. Take $\phi=30^{\circ}$. Disregard the $u$ axis.


Figure: 02_P044-045-046



Figure: 02_P044-045-046


- Determine $F_{1}$ so that $F_{R}=400 \mathrm{~N}: \vec{F}_{R}=\sum \vec{F}$
- Cartesian Vector Method (suppressing units)

$$
\begin{aligned}
& \vec{F}_{R}=F_{R x} \vec{i}+F_{R y} \vec{j} \\
& F_{R x}=\sum F_{x}=-650\left(\frac{3}{5}\right)+F_{1} \cos 30^{\circ}+500 \cos 45^{\circ} \\
& F_{R y}=\sum F_{y}=650\left(\frac{4}{5}\right)+F_{1} \sin 30^{\circ}-500 \sin 45^{\circ}
\end{aligned}
$$


$F_{R}=\sqrt{F_{R x}^{2}+F_{R y}^{2}}$
$400=\sqrt{\left(-390+F_{1} \cos 30^{\circ}+500 \cos 45^{\circ}\right)^{2}+\left(520+F_{1} \sin 30^{\circ}-500 \sin 45^{\circ}\right)^{2}}$

$$
400=\sqrt{\left(-390+F_{1} \cos 30^{\circ}+500 \cos 45^{\circ}\right)^{2}+\left(520+F_{1} \sin 30^{\circ}-500 \sin 45^{\circ}\right)^{2}}
$$

- This is a nonlinear equation in the single unknown $F_{1}$ which we could solve by squaring both sides and solving the resulting quadratic equation (leave as an exercise)
- Alternatively, we can use the solver function on a TI graphing calculator to get

$$
F_{1}=314 \mathrm{~N} \quad \text { or } \quad F_{1}=-417 \mathrm{~N}
$$

- Note that the negative sign tells us that for that answer $\vec{F}_{1}$ must be in the direction opposite to that shown in the figure. Also, to get the two distinct roots from solver, I used a large positive number as a guess in the first instance (1000), and a large (in magnitude) negative number in the second (-1000)


## 2.5-2.6: CARTESIAN VECTORS (3 DIMENSIONS or 3D)

- TRICKY TO MASTER FOR MANY STUDENTS
- PRACTICE WILL HELP!!
- Work through examples/problems in text, and additional problems online (Canvas)
- Discussion applies to vectors in general, but will have specific application of force vectors in mind


## RIGHT HANDED COORDINATE SYSTEM



- Also note that by convention will orient axes so that positive direction is upwards


## RECTANGULAR COMPONENTS OF A VECTOR



$$
\mathbf{A}=\mathbf{A}_{x}+\mathbf{A}_{y}+\mathbf{A}_{z}
$$

## UNIT VECTOR



Q 2007 by R. C. Hibbeler. To be published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey All rights reserved.

## CARTESIAN UNIT VECTORS



## CARTESIAN VECTOR REPRESENTATION \& MAGNITUDE OF A CARTESIAN VECTOR



$$
\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}
$$

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

02_025
Note that despite what the text might imply (if not state explicitly), components $A_{x}, A_{y}$ and $A_{z}$ can have either sign in general.

