Second-order in space systems

Carsten Gundlach, University of Southampton

BIRS, April 2005

- Second-order systems in GR
- Definitions of hyperbolicity
- Finite differencing

Gauge, constraints, and different formulations

Each gauge freedom generates one constraint.

Ingredients of a formulation of the Einstein equations:

- Well-posedness depends on the gauge choice.
- It can be achieved by adding constraints
- . . . and introducing redundant variables and their definition constraints.

Historical confusion between introducing **some** redundant variables to obtain hyperbolicity, and reducing to first order to prove it.

Some formulations

ADM: 2nd order, 12 variables γ_{ij} and K_{ij} KST: 1st order, 18 auxiliary variables

$$d_{kij} \equiv \gamma_{ij,k}$$

NOR: 2nd order, 3 redundant variables

$$f_i \equiv \gamma^{jk} \gamma_{ij,k}$$

BSSN: 2nd order, $K_{ij} \rightarrow (K, \tilde{A}_{ij}), \gamma_{ij} \rightarrow (\phi, \tilde{\gamma}_{ij}),$ plus $\tilde{\Gamma}^i \sim f_i$.

"BSSN-C": BSSN with algebraic constraints $\operatorname{tr} \tilde{A}_{ij} = 0$ and $\operatorname{det} \tilde{\gamma}_{ij} = 1$ imposed continuously: equivalent in the principal part to a variant of NOR.

Z4: 2nd order, redundant variables $Z^{\mu} \sim \Box x^{\mu}$.

Reduction to first order

CG & Martin-Garcia

Matrix notation: u is a vector of variables. Not all variables have second space derivatives:

 $u \equiv (v, w), \quad \dot{u} = \partial \partial v + \partial w +$ lower order terms

Reduction $d_i \equiv v_{,i}$ is possible only for

$$\dot{v} = A_1^i v_{,i} + A_2 w + 1.0.$$

 $\dot{w} = B_1^{ij} v_{,ij} + B_2^i w_{,i} + 1.0$

(Counterexample $\dot{v} = v''$.)

Parameterise all ambiguities $v_{,i}$ or d_i , and $d_{i,j}$ or $d_{j,i}$. Hyperbolicity of the second-order system should be defined independently of these reduction parameters.

Evolution of auxiliary constraints $v_{,i} - d_i$ and $d_{i,j} - d_{j,i}$ closes \Rightarrow we can restrict to the second order system.

Strong hyperbolicity

Definition: Second order system strongly hyperbolic \Leftrightarrow there is a reduction that is strongly hyperbolic.

Theorem: ⇔

$$\mathcal{A} \equiv \left(\begin{array}{cc} B_2^n & B_1^{nn} \\ A_2 & A_1^n \end{array} \right)$$

is uniformly diagonalisable for all n_i , where $A_1^n \equiv A_1^i n_i$ etc.

Lemma: \Leftrightarrow second order system has a complete set of characteristic variables of the form $w + \partial v$.

Lemma: ⇔ pseudo-differential reduction strongly hyperbolic

Idea of proof

A particular choice of reduction parameters gives the principal part

$$\dot{v} \simeq 0 \dot{w} \simeq B_1^{ij} d_{k,i} + B_2^i w_{,i} \dot{d}_j \simeq \left(\delta_j^{\ i} A_1^k + i \mu \epsilon_j^{\ ik} \right) d_{k,i} + A_2 w_{,i}$$

With $d_i \equiv (d_n, d_A)$, the principal part neglecting transverse derivatives is

 $\dot{w} \simeq B_1^{nn} d_{n,in} + B_2^n w_{,n} + B_1^{nB} d_{B,n}$ $\dot{d}_n \simeq A_1^n d_{n,n} + A_2 w_{,n} + A_1^B d_{B,n}$ $\dot{w}_A \simeq i \mu \epsilon_A^{nB} d_{B,n}$

The lower diagonal block is diagonalisable with eigenvalues $\pm \mu$. Then the entire matrix is diagonalisable if (and in fact only if) the upper diagonal block \mathcal{A} is diagonalisable. (We choose μ large enough so that $\pm \mu$ are not eigenvalues of \mathcal{A} .)

6

Symmetric hyperbolicity

Definition: Second order system symmetric hyperbolic \Leftrightarrow there is a reduction that is symmetric hyperbolic.

Theorem: \Leftrightarrow (1)

$$(\mathcal{HA})^{\dagger} = \mathcal{HA}$$

for all n_i , and (2)

where

$$\mathcal{H} \equiv \left(\begin{array}{cc} K & L^n \\ L^{\dagger n} & M^{nn} \end{array} \right), \quad H \equiv \left(\begin{array}{cc} K & L^i \\ L^{\dagger j} & M^{ij} \end{array} \right),$$

Theorem: \Leftrightarrow second order system admits a conserved energy ϵ quadratic in $(w, v_{,i})$ and conserved in the sense that

$$\dot{\epsilon} = \phi^i_{,i}$$

7

Idea of proof

Step 1:

$$(\mathcal{HA})^{\dagger} = \mathcal{HA}$$

is necessary for

$$(HP^i)^{\dagger} = HP^i$$

for any first-order reduction (with principal part P^i).

Step 2: We can find reduction parameters, which depend on H, such that this condition is also sufficient.

Step 3: The energy for the second-order system is also the energy for the reduction (with $v_{,i} \leftrightarrow d_i$).

Constraint evolution

Theorem: Vector of constraints

$$c \equiv C_1^{ij} v_{,ij} + C_2^i w_{,i} + 1.0. = 0$$

compatible with the evolution equations, and main system strongly hyperbolic \Rightarrow

Constraint system strongly hyperbolic, and characteristic variables in the direction n_i given by

$$\mathbf{c} \simeq \partial_n \mathbf{u} + \partial_A \dots$$

where the \mathbf{u} are some of the characteristic variables of the main system (and \mathbf{c} and \mathbf{u} have the same speed).

Finite differencing

- Interior: Semidiscrete version of some symmetric hyperbolic systems is unstable when using standard centered differences: shifted wave equation with $\beta > 1$ using $(\dot{\phi}, \phi)$ but not (Π, ϕ) . Z4 but not NOR/BSSN.
- Boundaries: Summation by parts operators do not give a conserved semi-discrete energy even for the shifted wave equation in (Π, φ) form (too many separate summations by part required).
- Ad-hoc finite differencing methods give stable excision and timelike boundaries for the shifted wave equation with 2nd and 4th order accuracy (Calabrese & CG, in progress).

First order or second order?

- Astrophysics simulations so far only in BSSN.
- In testbeds, first-order formulations seem to require fine-tuning of parameters.
- First order allows "standard" finite differencing treatment of excision, outer, and multipatch boundaries, using summation by parts and projection methods.
- Second order simpler and probably more accurate (phase error, error growth from non-principal terms) but require
 - stable heuristic boundary treatments,
 - stable overlapping multipatch schemes.