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• Second-order systems in GR

• Definitions of hyperbolicity

• Finite differencing
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Gauge, constraints, and different

formulations

Each gauge freedom generates one constraint.

Ingredients of a formulation of the Einstein

equations:

• Well-posedness depends on the gauge choice.

• It can be achieved by adding constraints

• . . . and introducing redundant variables and

their definition constraints.

Historical confusion between introducing some

redundant variables to obtain hyperbolicity, and

reducing to first order to prove it.
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Some formulations

ADM: 2nd order, 12 variables γij and Kij

KST: 1st order, 18 auxiliary variables

dkij ≡ γij,k

NOR: 2nd order, 3 redundant variables

fi ≡ γjkγij,k

BSSN: 2nd order, Kij → (K, Ãij), γij → (φ, γ̃ij),

plus Γ̃i ∼ fi.

“BSSN-C”: BSSN with algebraic constraints

trÃij = 0 and det γ̃ij = 1 imposed continu-

ously: equivalent in the principal part to a vari-

ant of NOR.

Z4: 2nd order, redundant variables Zµ ∼ �xµ.
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Reduction to first order

CG & Martin-Garcia

Matrix notation: u is a vector of variables. Not
all variables have second space derivatives:

u ≡ (v, w), u̇ = ∂∂v + ∂w +lower order terms

Reduction di ≡ v,i is possible only for

v̇ = Ai
1v,i + A2w + l.o.

ẇ = B
ij
1 v,ij + Bi

2w,i + l.o.

(Counterexample v̇ = v′′.)

Parameterise all ambiguities v,i or di, and di,j

or dj,i. Hyperbolicity of the second-order sys-
tem should be defined independently of these
reduction parameters.

Evolution of auxiliary constraints v,i − di and
di,j−dj,i closes ⇒ we can restrict to the second
order system.
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Strong hyperbolicity

Definition: Second order system strongly hy-

perbolic ⇔ there is a reduction that is strongly

hyperbolic.

Theorem: ⇔

A ≡
(

Bn
2 Bnn

1
A2 An

1

)
is uniformly diagonalisable for all ni, where An

1 ≡
Ai

1ni etc.

Lemma: ⇔ second order system has a com-

plete set of characteristic variables of the form

w + ∂v.

Lemma: ⇔ pseudo-differential reduction strongly

hyperbolic
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Idea of proof

A particular choice of reduction parameters gives

the principal part

v̇ ' 0

ẇ ' B
ij
1 dk,i + Bi

2w,i

ḋj '
(
δj

iAk
1 + iµεj

ik
)

dk,i + A2w,i

With di ≡ (dn, dA), the principal part neglecting

transverse derivatives is

ẇ ' Bnn
1 dn,in + Bn

2w,n + BnB
1 dB,n

ḋn ' An
1dn,n + A2w,n + AB

1 dB,n

ẇA ' iµεA
nBdB,n

The lower diagonal block is diagonalisable with

eigenvalues ±µ. Then the entire matrix is di-

agonalisable if (and in fact only if) the upper

diagonal block A is diagonalisable. (We choose

µ large enough so that ±µ are not eigenvalues

of A.)
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Symmetric hyperbolicity

Definition: Second order system symmetric

hyperbolic ⇔ there is a reduction that is sym-

metric hyperbolic.

Theorem: ⇔ (1)

(HA)† = HA

for all ni, and (2)

H > 0

where

H ≡
(

K Ln

L†n Mnn

)
, H ≡

(
K Li

L†j M ij

)
,

Theorem: ⇔ second order system admits a

conserved energy ε quadratic in (w, v,i) and

conserved in the sense that

ε̇ = φi
,i
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Idea of proof

Step 1:

(HA)† = HA

is necessary for

(HP i)† = HP i

for any first-order reduction (with principal part

P i).

Step 2: We can find reduction parameters,

which depend on H, such that this condition

is also sufficient.

Step 3: The energy for the second-order sys-

tem is also the energy for the reduction (with

v,i ↔ di).
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Constraint evolution

Theorem: Vector of constraints

c ≡ C
ij
1 v,ij + Ci

2w,i + l.o. = 0

compatible with the evolution equations, and

main system strongly hyperbolic ⇒

Constraint system strongly hyperbolic, and char-

acteristic variables in the direction ni given by

c ' ∂nu + ∂A . . .

where the u are some of the characteristic vari-

ables of the main system (and c and u have the

same speed).
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Finite differencing

• Interior: Semidiscrete version of some sym-

metric hyperbolic systems is unstable when

using standard centered differences: shifted

wave equation with β > 1 using (φ̇, φ) but

not (Π, φ). Z4 but not NOR/BSSN.

• Boundaries: Summation by parts operators

do not give a conserved semi-discrete en-

ergy even for the shifted wave equation in

(Π, φ) form (too many separate summa-

tions by part required).

• Ad-hoc finite differencing methods give sta-

ble excision and timelike boundaries for the

shifted wave equation with 2nd and 4th or-

der accuracy (Calabrese & CG, in progress).
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First order or second order?

• Astrophysics simulations so far only in BSSN.

• In testbeds, first-order formulations seem

to require fine-tuning of parameters.

• First order allows “standard” finite differ-

encing treatment of excision, outer, and

multipatch boundaries, using summation by

parts and projection methods.

• Second order simpler and probably more

accurate (phase error, error growth from

non-principal terms) but require

– stable heuristic boundary treatments,

– stable overlapping multipatch schemes.
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