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Overview

• Relativistic hydrodynamics: equations of motion for ideal fluids

• Shocks and how to deal with them
◦Artificial viscosity
◦High resolution shock capturing schemes

• Applications
◦Collapse of rotating stars
◦ Evolution and coalescence of binary neutron stars
◦Tidal disruption of neutron star by black hole companion

• Beyond ideal fluids
◦Viscosity
◦Magnetohydrodynamics
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Relativistic Hydrodynamics

For ideal fluid
T ab = ρ0huaub + Pgab

where
h = 1 + ε + P/ρ0

Conservation of energy-momentum
∇bT

ab = 0

Conservation of baryons
∇a(ρ0u

a) = 0

Also need equation of state (EOS). Often use “gamma-law” equation of state

P = (Γ− 1)ρ0ε

For isentropic flow this equivalent to polytropic EOS

P = KρΓ
0 Γ = 1 + 1/n
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Wilson

Let
W ≡ −nau

a = αut

be Lorentz factor between normal and fluid observers and define

D ≡ ρ0W E ≡ ρ0εW Sa ≡ ρhWua

Then equations of motion become continuity equation

∂t(γ
1/2D) + ∂j(γ

1/2Dvj) = 0

energy equation

∂t(γ
1/2E) + ∂j(γ

1/2Evj) = −P
(
∂t(γ

1/2W ) + ∂i(γ
1/2Wvi)

)
and relativistic Euler equation

∂t(γ
1/2Si) + ∂j(γ

1/2Siv
j) = −αγ1/2

(
∂iP +

SaSb

2αSt
∂ig

ab

)
Have to be solved together with Einstein’s equations

[Wilson, 1972; Hawley, Smarr & Wilson, 1984]
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Numerical Implementations

Can adopt several different numerical techniques:

◦ finite differencing

◦ smoothed particle hydrodynamics (SPH)

◦ spectral methods

But...
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Shocks

Generic initial data lead to formation of shock discontinuities

• E. g. relativistic Riemann problem - so-
lution known analytically [Mart́i & Müller,
1991]

• fluid satisfies Rankine-Hugoniot jump
conditions

• conversion of macroscopic kinetic energy
into microscopic kinetic energy: heat

• straight-forward numerical implementa-
tions cannot mimick this process

=⇒ need additional feature
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Artificial Viscosity

• Add artificial viscosity term Pvis to pres-
sure when fluid is compressed

Pvis =

{
Cvisρ0(δv)2 for δv < 0
0 otherwise

[von Neuman & Richtmyer, 1950]

• easy to implement

• works well for Newtonian fluids, less so
for strongly relativistic shocks

• adequate in the absence of strong shocks
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High Resolution Shock Capturing (HRSC) schemes

• Write equations in conservation form

∂tU + ∂iF i = S

• solve Riemann problem (approximately) at each grid interface [Godunov, 1959]
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Existing Codes

• All the ones that I forgot...

• Finite differencing
◦ Shibata et.al., Illinois, Valencia/AEI/SISSA/WashU/LSU
◦ use HRSC techniques
◦ use BSSN formulation for gravitational fields

• SPH
◦Oechslin et.al., Faber et.al.
◦ use artificial viscosity
◦ use conformal flatness approximation

• spectral methods
◦Meudon group
◦ difficult to deal with discontinuities
◦ only used in spherical symmetry?
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Applications

• Collapse of rotating stars

• Evolution and coalescence of binary neutron stars

• Tidal disruption of neutron stars in black hole-neutron star binaries
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Collapse of Rotating Stars

• Study collapse of rotating equilibrium polytropes to black hole
[Shibata, 2003; Duez et.al., 2004; Baiotti et.al., 2005]
◦ can use 3D code or 2D “cartoon” method [Alcubierre et.al., 2001]
◦ use excision for gravitational fields and fluids
◦ induce collapse by pressure depletion

• Can study various properties of collapse, including difference between “subKerr”
(with J/M 2 < 1) and “supraKerr” (J/M 2 > 1) collapse [Duez et.al., 2004]
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Collapse of “subKerr” Star

Differentially rotating polytrope with J/M 2 = 0.91

=⇒ black hole formation

[Duez et.al., 2004]
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Collapse of “supraKerr” Star

Differentially rotating polytrope with J/M 2 = 1.18

=⇒ no black hole formation

[Duez et.al., 2004]
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Fragmentation of torus

[Duez et.al., 2004]
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Evolution of binary neutron stars

• Initial data: corotating or irrotational binary models in quasi-equilibrium

• Evolve binaries at varying separations to distinguish stable from unstable orbits
=⇒ dynamically locate “ISCO”
[Marronetti et.al., 2004]

• Study binary coalescence
[Shibata, 2000 ...; Oechslin et.al., 2002; Faber et.al., 2004]
◦ latest update: nuclear EOS instead of polytrope [Shibata et.al., 2005]
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Coalescence of binary neutron stars

Example: irrotational binary, SLy EOS, rest masses of 1.25 and 1.35 M�, sum exceeds
maximum allowed rest mass by about 20 % [Shibata et.al., 2005]
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Hypermassive neutron stars

• Surprising result: remnant does not
collapse to black hole

• Supported by virtue of differential rotation
=⇒ “hypermassive” neutron stars [Baum-
garte et.al., 2000; Morrison et.al., 2004]

[Shibata et.al., 2005]
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Gravitational Wave Signal

Compute gravitational wave signal from quadrupolar Moncrief variables

[Shibata et.al., 2005]
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Tidal disruption of neutron star

• Initial data: quasiequilibrium model of
black hole-neutron star binary [Baumgarte
et.al., 2004]

• assume MBH � MNS

=⇒ can remove black hole from computa-
tional grid

• n = 1 polytrope
=⇒ stable accretion onto black hole

• evolve with SPH code (compare with semi-
analytic predictions)

[Faber et.al., in prep]
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Beyond perfect fluids: viscosity

Include viscosity term
Tab = ρ0huaub + Pgab − 2ησab,

where η is coefficient of viscosity and σab is shear.

Application: study evolution of hypermassive stars:

• viscosity reduces degree of differential rotation

• decreases rotation at core
=⇒ collapse

• increases rotation at equator
=⇒ expansion

[Duez et.al., 2004]
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Beyond perfect fluids: Magnetohydrodynamics (MHD)

• Additional stress-energy tensor includes

T ab
em =

1

4π

(
F acF b

c −
1

4
gabFcdF

cd

)
,

express in terms of Ea and Ba

• Ideal MHD condition Ea
(u) = 0 yields

∂tBi + ∂j(v
jBi − viBj) = 0

where Bi =
√

γBi

• Evolve together with hydrodynamics and gravitational fields

[Duez et.al., 2005a]
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Gravitational Wave-Induced MHD Waves

• Example of relativistic MHD solution in dynamical background

• Solution analytic to linear order [Duez et.al., 2005b]

[Duez et.al., 2005a]
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Summary

• Neutron star simulations in pretty good shape

• Can perform simulations of astrophysical interest

• Lots of room for improvements, but no show-stopper
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