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Motivation Singularity excision

* Need to have non-regular geometries, but simple enough that a Outer boundary

semi-structured approach can be followed.

e Some examples: black hole excision (Choptuik's talk), outer
spherical boundaries (e.g., compactified approach, Friedrich's talk), ~
co-rotating coordinates.

e Break the domain into subdomains that are topologically cubes and

— Inner bounda
glue them together. Y

e Numerical energy estimates through difference operators of
arbitrary high order satisfying summation by parts (SBP) and penalty

terms for the interfaces.

e As an extra, one gets some kind of (non nested) fixed adaptivity




Matching technique and numerical stability: energy estimates for
symmetric systems through penalty terms [Carpenter, Nordstrom and Gottlieb '98]

Say you want to discretize the advection equation u, = cu,, in two domains. The Left one
covers (...0], and the Right one [0,...)
up
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We use two fields to describe u, u, and ug. At x=0 the two fields are defined, and the
solution is multivalued.
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And use any operator D satisfying the summation by
parts proper

u,%v)Z +(v,Du)y = %uv‘;

(u,v)ax = AxZ< u;, Hv, >0,
ij



Define the energy E = (u,u)s + (u,u),
O oo
(u,v)é = hz OV, (u,v)§ = hz OU;v,
oo 0
Take its time derivative and use the SBP property to get
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—E = (c=28") ()" = (e +28")(ug)" +2(S" + S gy

If c>0, choosing St = c+§, SR = § gives diE =—(uy —uy )’ (c+26)
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And the energy estimate %E <0 follows if 6 >=-A/2

Using 6=—A/2 results in a “non-disipative” scheme, E=constant.
Using 6 >-A/2 “dissipates”, but only the difference between u, and ug at x=0.

Using &>0 any mismatch asymptotically decays to zero.

Can do the same for any linear, variable coefficients symmetric hyperbolic system.



Very high order difference operators satisfying SBP, and associated
dissipations [Kreiss and Scherer '74, Strand '94, Mattsson, Svard and Nordstrom 2004]

(u,v)ar = Ax2< u;, Hv, >0,
i.j

e Diagonal and full restricted norms.

The norm is diagonal if 0, = 0,0, , full restricted if ~ 0y, =0 for i#0

In the diagonal (full restricted) case, the order of the derivative is 2n in the interior and n
(2n-1) at and close to boundaries.

e There are some issues in the non-diagonal case.

e Derivatives with minimum bandwith are not necessarily the optimal ones, as they might
have a large spectral radius associated -> severe restrictions on the Courant limit.

e Inventory of high order derivatives we have analyzed/whose spectral radius we have
“minimized” (notation: order in the interior — order at and close to boundaries):

* 2-1, 4-2, 6-3, 8-4 (diagonal case)
* 4-3, 6-5, 8-7 (full restricted case)

o Dissipations: need to be non-positive definite with respect to the SBP scalar product.
Mattsson's solution: a prescription for all norms.



% Computational infrastructure HEW!

Parallel, modular infrastructure for the CACTUS framework (www.cactuscode.org)
Uses Erik Schnetter's parallel driver for CACTUS CARPET (www.carpetcode.org).
SBP thorns with all the derivatives and dissipations just described.

Modular infrastructure: derivatives, geometries and equations being solved are
completely independent of each other. Can choose at runtime different geometries, -
derivatives, etc.

If you have a CACTUS code for a first order hyperbolic system, you can use the
multipatch infrastructure essentially out of the box.

Because of its modular nature, this infrastructure has opened the door to many
applications (described below).

The infrastructure allows for overlapping patches, but we haven't exploited it so far.



Examples

Global convergence arder = —Q.6781 o
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Going beyond proof of concept

Single distorted black hole simulations with fixed shift (Nis Dorband et al)

Incorporating and coding better "driver" shift conditions into the Z4 system (Carlos
Palenzuela et al) and into our current symmetric hyperbolic system for binary black
hole evolutions.

Accretion processes (Burkhard Zink et al)

Revisiting Cauchy-perturbative matching
(Enrique Pazos et al)

High order multigrid elliptic solver, possibly for multi-block
scenarios (Mark Miller et al).

In the meantime using parallel, adaptative finite element
solver to provide initial data (Matt Andersson et al)

Visualization for multiple patches (Werner Benger et al).

Do mesh refinement on each block/patch (Schnetter et al).

-0.15



Other efforts I: Spectral Einstein Code (SpEC)

Lawrence Kidder (Cornell), Harald Pfeiffer (Caltech), and Mark Scheel (Caltech)

Multidomain pseudospectral method. Standalone parallel infrastructure.

Domains can be overlapping or touching.Each individual domain mapped to cube or
spherical shell.

Basis functions are tensor products of Chebyshev, Fourier (for periodic dimensions) or
spherical harmonics (for spheres).

Uses first order strongly hyperbolic systems.

Outgoing characteristic fields provide boundary conditions on incoming fields of
neighboring domains. Use spherical excision boundaries and outer boundaries.

Excision boundary is outflow boundary (no bc needed). Outer boundary use constraint-
preserving boundary conditions.



Other efforts II: high order
methods, high resolution shock
capturing methods and
overlapping patches

Jonathan Thornburg and Ian Hawke
(Albert Einstein Institute)

Cactus code. Also uses Carpet as
underlying parallel driver.

Overlapping patches communicated
through interpolation.

Can therefore in principle handle first
or second order formulations.

Fourth order vacuum code.

Uses BSSN formulation of the
Einstein’s equations.

HRSC code for fluid part.



Other efforts III: high order methods and overlapping, moving patches

e Gioel Calabrese (Southampton University) and
Dave Neilsen (BYU).

e Wave equation in an axisymmetric boosted
rotating black hole background.

e Fourth order code.

e Data between patches communicated via n-th
order Lagrangian interpolation for all fields.
Outer boundary conditions imposed through
Olsson’s orthogonal projections. A pinch of
artificial dissipation gives (experimental) stability.




High order numerical schemes:

Let’s consider diagonal metrics: O i O 1.51./.

In the absence of boundaries standard centered operators of order 2n satisfy SBP.

In the presence of boundaries these operators have to be modified at and near
boundaries in order to satisfy SBP.

The modification at the boundary can be shown to be, necessarily, of order n.

Second and fourth order cases (n=1, n=2): there is a unique modification near
boundaries.

Sixth order case (n=3): mono-parametric family of modifications.
Eighth order case (n=4): three-parametric familly.

The standard choice is to pick up a preferred operator by choosing the one that has
the minimum bandwith.



The spectral radius of the evolution equation and the region of absolute
stability of the time integrator

d

For an ordinary differential equation ju =cCu
t

the region of stability in complex space is the set of c¢’s for which no exponential growth occurs.

0 0

For a differential equation, say —u=A

—u
ot 0x

the maximum eigenvalue of A has to be inside this region of absolute stability, otherwise the
scheme is numerically unstable.

0
Let’s take a look at the spectrum for a toy model: aiu =—u

t ox

in a periodic domain, divided by an interaface,
with penalties used for the matching.



Second order case. Maximum = 1.414
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The spectrum is purely imaginary, as it should be.
The maximum eigenvalue, 1.414, is associated

with the operator near the boundary.
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Adds a negative real part to the spectrum, but the
maximum in the imaginary axis remains essentially
unchanged.



Fourth and sixth order cases
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Eight-th order case
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