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Motivation

• Need to have non-regular geometries, but simple enough that a 
semi-structured approach can be followed.  

• Some examples: black hole excision (Choptuik's talk), outer 
spherical boundaries (e.g., compactified approach, Friedrich's talk), 
co-rotating coordinates.  

• Break the domain into subdomains that are topologically cubes and 
glue them together.       

• Numerical energy estimates through difference operators of 
arbitrary high order satisfying summation by parts (SBP) and penalty 
terms for the interfaces.

• As an extra, one gets some kind of (non nested) fixed adaptivity

Outer boundary

Inner boundary

Singularity excision



Matching technique and numerical stability: energy estimates for
symmetric systems through penalty terms [Carpenter, Nordstrom and Gottlieb '98]

• Say you want to discretize the advection equation ut = cux, in two domains. The Left one 
covers (…,0], and the Right one [0,…)

• We use two fields to describe u, uL and uR. At x=0 the two fields are defined, and the 
solution is multivalued.

• Now discretize using 
penalty terms:

• And use any operator D satisfying the summation by 
parts property:
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• Define the energy

Take its time derivative and  use the SBP property to get

• If c>0, choosing SL = c+δ, SR = δ gives

• And the energy estimate                            follows if δ >=-λ/2

• Using δ=−λ/2 results in a “non-disipative” scheme, E=constant.

Using δ >-λ/2 “dissipates”, but only the difference between uL and uR at x=0. 

Using  δ>0 any mismatch asymptotically decays to zero.

• Can do the same for any linear, variable coefficients symmetric hyperbolic system. 
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Very high order difference operators satisfying SBP, and associated 
dissipations [Kreiss and Scherer '74, Strand '94, Mattsson, Svard and Nordstrom 2004]

• Diagonal and full restricted norms. 

The norm is diagonal if                      , full restricted if 
•

In the diagonal (full restricted) case, the order of the derivative is 2n in the interior and n 
(2n-1) at and close to boundaries.

• There are some issues in the non-diagonal case. 

• Derivatives with minimum bandwith are not necessarily the optimal ones, as they might 
have a large spectral radius associated -> severe restrictions on the Courant limit.   

• Inventory of high order derivatives we have analyzed/whose spectral radius we have 
“minimized” (notation: order in the interior – order at and close to boundaries):

* 2-1, 4-2, 6-3, 8-4 (diagonal case)    
* 4-3, 6-5, 8-7 (full restricted case) 

• Dissipations: need to be non-positive definite with respect to the SBP scalar product. 
Mattsson's solution: a prescription for all norms.

ijiij δσσ =

ij
ji

jix Hvuxvu σ∑ ><∆=∆

,

,),(

0      00 ≠= iforiσ



Computational infrastructure

• Parallel, modular infrastructure for the CACTUS framework (www.cactuscode.org)

• Uses Erik Schnetter's parallel driver for CACTUS CARPET (www.carpetcode.org).

• SBP thorns with all the derivatives and dissipations just described.   

• Modular infrastructure: derivatives, geometries and equations being solved are 
completely independent of each other. Can choose at runtime different geometries,  -
derivatives, etc.   

• If you have a CACTUS code for a first order hyperbolic system, you can use the 
multipatch infrastructure essentially out of the box.   

• Because of its modular nature, this infrastructure has opened the door to many
applications (described below). 

• The infrastructure allows for overlapping patches, but we haven’t exploited it so far. 



Examples









Going beyond proof of concept

• Single distorted black hole simulations with fixed shift (Nis Dorband et al)

• Incorporating and coding better "driver" shift conditions into the Z4 system (Carlos
Palenzuela et al) and into our current symmetric hyperbolic system for binary black 
hole evolutions.

• Accretion processes (Burkhard Zink et al)

• Revisiting Cauchy-perturbative matching 
(Enrique Pazos et al)

• High order multigrid elliptic solver, possibly for multi-block 
scenarios (Mark Miller et al).

• In the meantime using parallel, adaptative finite element 
solver to provide initial data (Matt Andersson et al)

• Visualization for multiple patches (Werner Benger et al).

• Do mesh refinement on each block/patch (Schnetter et al).



Other efforts I: Spectral Einstein Code (SpEC)

• Lawrence Kidder (Cornell), Harald Pfeiffer (Caltech), and Mark Scheel (Caltech)

• Multidomain pseudospectral method. Standalone parallel infrastructure.

• Domains can be overlapping or touching.Each individual domain mapped to cube or 
spherical shell.

• Basis functions are tensor products of Chebyshev, Fourier (for periodic dimensions) or 
spherical harmonics (for spheres).

• Uses first order strongly hyperbolic systems.

• Outgoing characteristic fields provide boundary conditions on incoming fields of 
neighboring domains. Use spherical excision boundaries and outer boundaries.

• Excision boundary is outflow boundary (no bc needed). Outer boundary use constraint-
preserving boundary conditions.



• Overlapping patches communicated 
through interpolation.

• Can therefore in principle handle first 
or second order formulations.

• Fourth order vacuum code. 
• Uses BSSN formulation of the 

Einstein’s equations.
• HRSC code for fluid part.

Other efforts II: high order 
methods, high resolution shock 

capturing methods and 
overlapping patches

• Jonathan Thornburg and Ian Hawke 
(Albert Einstein Institute)

• Cactus code. Also uses Carpet as 
underlying parallel driver.



Other efforts III: high order methods and overlapping, moving patches

• Gioel Calabrese (Southampton University) and 
Dave Neilsen (BYU).

• Wave equation in an axisymmetric boosted 
rotating black hole background.

• Fourth order code. 
• Data between patches communicated via n-th

order Lagrangian interpolation for all fields. 
Outer boundary conditions imposed through 
Olsson’s orthogonal projections. A pinch of 
artificial dissipation gives (experimental) stability. 



High order numerical schemes:

• Let’s consider diagonal metrics: 

• In the absence of boundaries standard centered operators of order 2n satisfy SBP.

• In the presence of boundaries these operators have to be modified at and near
boundaries in order to satisfy SBP.

• The modification at the boundary can be shown to be, necessarily, of order n.

• Second and fourth order cases (n=1, n=2): there is a unique modification near 
boundaries.

• Sixth order case (n=3): mono-parametric family of modifications.
• Eighth order case (n=4): three-parametric familly.

• The standard choice is to pick up a preferred operator by choosing the one that has 
the minimum bandwith. 
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The spectral radius of the evolution equation and the region of absolute 
stability of the time integrator

• For an ordinary differential equation

the region of stability in complex space is the set of c’s for which no exponential growth occurs.

• For a differential equation, say 

the maximum eigenvalue of A has to be inside this region of absolute stability, otherwise the 
scheme is numerically unstable.

• Let’s take a look at the spectrum for a toy model: 

in a periodic domain, divided by an interaface, 
with penalties used for the matching.
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Second order case. Maximum = 1.414

The spectrum is purely imaginary, as it should be.
The maximum eigenvalue, 1.414, is associated 
with the operator near the boundary.

Adds a negative real part to the spectrum, but the 
maximum in the imaginary axis remains essentially 
unchanged.



Fourth and sixth order cases

Minimum bandwith operator
Maximum 2.129

Maximum 1.936



Eight-th order case

Optimized operator:

Maximum 2.242

Minimum bandwith operator:

Maximum 16.04!
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