
PHYS 555B: Computational Physics
Homework 2 (Version 5.0, homework now complete!)

Due: Thursday, April 5, 2007, 9:30 AM
(Report bugs etc. to choptuik@phas.ubc.ca)

Important: This assignment requires that you write three f77 programs which involve the solution of time-
dependent PDEs using finite difference approximations (FDAs).

In all cases you will ultimately be constructing programs that approximately solve initial-boundary value
problems using prescribed solution domains, FDAs, initial conditions and boundary conditions. As you
develop your codes to satisfy the specific homework requirements, you are free to construct and use related
codes that, for example, solve the given PDE using different initial conditions than those that are to be used
for the hand-in per se. In other words, do not feel overconstrained by the specific details—including command-
line arguments to programs—given below, in the development of your solutions. Rather, experiment as you
wish, and as needed.

That said, once you have finished with any such experimentation, please ensure that your homework does
include programs with the correct names, command line arguments etc., and which function in the requested
manner, including output to appropriately named .sdf files in all cases. As usual, this requirement of
attention to details on your part is partly to ease in grading of the homework, but also because programming
to precise specifications is a useful skill!

Note: Recall that the graphics-based programs, xvs and DV, which can greatly expedite the analysis of finite
difference solutions of PDEs in 1 space dimension and time (xvs), or 2 and 3 space dimensions and time
(DV), are available for your use on the lnx machines, and that data from .sdf files can be sent to those
programs using the sdftoxvs and sdftodv commands, respectively. See the documentation available via the
Course Related Sofware web page for additional information, and feel free to contact me should you have any
questions about the use of xvs, DV, sdftoxvs, sdftodv, generation of .sdf files etc.

You should find xvs useful in the solution of the first two problems, and DV similarly useful for the third.

Problem 1:

Note: This is a perfect example of “this hurts me more than it hurts you” exercise, so please do not be
intimidated or put-off by the length of the problem specification, which includes discussion of the cvtestsdf

utility (used to compute convergence factors as defined in class), and other things that are not specific to
this particular problem. In short, the code, wave1d.f, that you must write to solve this problem need not be
very long! Further, apart from wave1d.f itself, the only additional files required to complete the question are
described in section 1a) below.

Consider the 1+1 wave equation for a scalar function, u ≡ u(x, t), as discussed in class,

utt = uxx . (1)

In this exercise, you will solve the above PDE as an initial-boundary value problem on the domain 0 ≤ x ≤ 1,
0 ≤ t ≤ tmax, subject to homogeneous Dirichlet boundary conditions,

u(0, t) = u(1, t) = 0 . (2)

The issue of initial conditions will be deferred for the moment. The FDA you are to use to solve (1) is
the “standard O(h2) approximation” discussed in class. That is, introduce a uniform finite difference mesh,
given by

xj = (j − 1)△x ≡ (j − 1)h , j = 1 . . . nx , (3)

tn = n△t ≡ nλh , n = 0 . . . nt , (4)

u
n

j
≡ u(xj , t

n) . (5)

1

where the number of spatial grid points, nx, is given by nx = h−1 + 1, and the number of time steps (minus
1), nt, is given by

nt =
tmax

△t
, (6)

where it is assumed that tmax is precisely divisable by △t .

The “standard” second order discretization of (1-2) is then given by

u
n+1

j
= 2u

n

j
− u

n−1

j
+ λ2

(

u
n

j+1
− 2u

n

j
+ u

n

j−1

)

, j = 2, 3, · · · , nx − 1 , n+ 1 = 2, . . . nt , (7)

u
n+1

1
= u

n+1

nx

= 0 n+ 1 = 0, . . . nt . (8)

As was emphasized in class, in order to initialize the scheme, we need to specify u0
j and u1

j , 2 ≤ j ≤ nx − 1,
which is equivalent (in the limit h → 0) to specifying u(x, 0) and ut(x, 0). These in turn are the initial
conditions nominally required for the solution of (1).

Your chief task in this problem is the investigation of the convergence behaviour of the finite difference
approximation for two different initialization schemes, which differ in the accuracy to which the values of u1

j

are specified.

To that end, assume that u(x, 0) and ut(x, 0) are known, and then consider the following two initialization
schemes (both based of Taylor series expansion):

1. Second-order initialization:

u
0

j
= u(xj , 0) ,

u
1

j
= u(xj , 0) + △t ut(xj , 0) . (9)

2. Third order initialization

u
0

j
= u(xj , 0) ,

u
1

j
= u(xj , 0) + △t ut(xj , 0) +

1

2
△t 2utt(xj , 0) . (10)

Note that in the first initialization, the advanced values u1
j are computed to second order accuracy—i.e. the

leading order error term is O(△t 2)—whereas in the second initialization, the leading order error term in
the u1

j is O(△t 3).

In ∼hw2/a1 on your lnx account, create an executable wave1d (corresponding f77 source in wave1d.f) with
usage

usage: wave1d <tmax> <lev> <olev> <lambda> <initord>

where the types and meanings of the various command line arguments are as follows:

• <tmax> (real*8): Final integration time, tmax

• <lev> (integer): Discretization level: nx = 2<lev> + 1, △x = h = 2−<lev>

• <olev> (integer): Output level; controls frequency of output. Must be greater than 1 and less than
or equal to <lev>. .sdf output is performed every 2<lev>−<olev> time steps

• <lambda> (real*8): Courant number, λ ≡ △t /△x

• <initord> (integer): Initialization order, with valid values as follows:

1. <initord> .eq. 2: Initialize u1
j using (9)

2. <initord> .eq. 3: Initialize u1
j using (10)

2

As mentioned in the preamble, you are free to experiment with whatever initial data you please as you
develop wave1d. However, the final version of wave1d must use the following instructor supplied functions
to perform the initializations (9) and (10):

real*8 function u0(x)

real*8 x

real*8 function ut0(x)

real*8 x

real*8 function utt0(x)

real*8 x

These three functions return the values u(x, 0), ut(x, 0) and utt(x, 0), respectively, for a specific (yet suitably
generic) choice of initial data. You should ensure that the value of x supplied to any of these routines is con-
strained by 0 ≤ x ≤ 1 in all cases. The functions are defined in the f77 source file, ∼/wave1d/wave1d util.f,
which should be copied into your solution directory, then compiled and linked with your own code in wave1d.f

to produce the executable. As usual your directory should contain a [Mm]akefile to aid in the executable-
generating process, clean up of executables and .o files, etc.

Additionally, for the purposes of testing (and in lieu of implementation of an independent residual evaluator),
wave1d util.f contains an additional function

real*8 function uexact(x,t)

real*8 x, t

that, for the initial data defined via u0 and ut0 only, and for 0 ≤ t ≤ 0.25, will return a good approximation
to the exact solution, u(x, t).

You will probably find it most convenient to use the Fortran callable routine, xvs (not to be confused with
the related xvs visualization utility),

subroutine xvs(name,time,x,y,nx)

character*(*) name ! dataset name

real*8 time ! dataset time (scalar)

integer nx ! length of dataset

real*8 x(nx), y(nx) ! x, y values of dataset (vectors)

to generate the required .sdf output, which, for the final version of wave1d, is the single grid function un
j ,

at discrete times tn defined by <tmax>, <lambda>, <lev> and <olev>. Observe that executables that invoke
xvs must link to some additional libraries. Specifically,

-lsvs -lbbhutil -lsv

must be included in the linking command that creates wave1d. Note that on the lnx machines the en-
vironment variable LIBXVS should evaluate to the above library specification string, enabling you to use
$(LIBXVS) in your [Mm]akefile to link against the appropriate archives.

For any invocation of wave1d, the name of the .sdf file generated should be of the form

u-<initord>-<lev>.sdf

Thus, the invocation

% wave1d 0.5 9 8 0.5 2

should generate

u-2-9.sdf

3

while

% wave1d 0.5 11 8 0.5 3

should generate

u-3-11.sdf

Files with such names can be easily produced using the utility character function, itoc, that is defined in
the libp410f library, and that can be used as illustrated by the following code fragment:

character*2 itoc

real*8 x(10000), u(10000)

real*8 t

integer lev, initord, nx

.

.

.

initord = 3

lev = 9

call xvs(’u-’//itoc(initord)//’-’//itoc(lev),t,x,u,nx)

.

.

.

The call to xvs in the above will result in the creation of u-3-9.sdf. Note how itoc is declared, i.e. as type
character*2, so that, irrespective of how many digits there are in the integer supplied as an argument to
itoc, a length-2 character string will be returned, right-padded with spaces as necessary. Also note that in
generating a filename from its first argument, xvs discards any characters, including white space, that are
not alphanumeric, underscore, or minus sign.

Be cautious in your handling of command line arguments, the derivation of quantities, such as nt, that
depend the value of these arguments, and the output of data via calls to xvs at discrete time intervals
controlled by <lev> and <olev>. In particular, a series of invocations such as

% wave1d 1.0 8 8 0.5 3

% wave1d 1.0 9 8 0.5 3

% wave1d 1.0 10 8 0.5 3

should result in three .sdf files containing the same number of datasets, defined at the name set of discrete
times, tn, including the initial and final times, t = 0.0 and t = 1.0, respectively.

The cvtestsdf utility
Recall from our in-class discussion of the convergence of finite difference approximations of time-dependent
PDEs, that given finite difference solutions generated from the same initial conditions, but using discretiza-
tion scales in a 1 : 2 : 4 ratio, we can define a convergence factor, Q(t)

Q(tn) ≡
‖u4h − u2h‖2(t

n)

‖u2h − uh‖2(tn)
(11)

where ‖ · ‖ is the discrete ℓ2 norm, the subtractions between grid functions are to be understood to be
made on the set of grid points common between the two discrete domains, and the 3 grid functions must all
be defined at the same discrete set of times, tn. In the limit h → 0, the convergence factor, Q(t), should
asymptote to 2p for a p-th order accurate scheme.

Given three .sdf files, each of which contains one of u4h, u2h or uh, cvtestsdf computes Q(tn) as defined
by (11) and then outputs tn and Q(tn) to standard output, two numbers per line.

4

You will use this utility to complete the current problem, and will likely find it convenient in investigating
the convergence of the codes that you will write in the other two parts of the homework.

You can see an example of how cvtestsdf works, and what sort of output it produces, via the files in
∼phys410/cvtestsdf on the lnx machines. Here’s a session trace which shows the “demo” being executed
as matt@lnx1.physics.ubc.ca.

% mkdir /tmp/demo

% cd /tmp/demo

% cp -a ~phys410/cvtestsdf .

% cd cvtestsdf

Generate ’cvtestsdf’ usage message

% cvtestsdf

usage: cvtestsdf <file 1> <file 2> <file 3> [<dstem> <base level>]

Computes and outputs to standard output the time, t, and

the three-level convergence factor, Q(t), defined by

||u^4h - u^2h||_2 (t)

Q(t) = ---------------------

||u^2h - u^h||_2 (t)

As h-> 0, Q(t) should asymptote to 2^p for a pth order accurate scheme.

Specify .sdf files containing single grid function (u) from coarsest to

finest resolution. Grid resolutions must be in the ratio 4:2:1.

All files must contain grid functions defined at

the same output times.

Supply <dstem> for pointwise-difference output to

2 RNPL-style .sdf files with names of the form

<dstem><l><l+1>.sdf

<dstem><l+1><l+2>.sdf

where <l> defaults to 0, but will be set to <base level>

if that argument is supplied.

Run ’wave1d’ at levels 8, 9, 10, and with ’intord=3’ ...

% wave1d 0.5 8 8 0.5 3

% wave1d 0.5 9 8 0.5 3

% wave1d 0.5 10 8 0.5 3

% ls *sdf

u-3-10.sdf u-3-8.sdf u-3-9.sdf

... and compute resulting convergence factor using ’cvtestsdf’

% cvtestsdf u-3-8 u-3-9 u-3-10

0 0

0.00195312 3.92482

0.00390625 3.90415

0.00585938 3.88856

0.0078125 3.87815

5

.

.

.

0.492188 3.94048

0.494141 3.95249

0.496094 3.96272

0.498047 3.9714

0.5 3.97876

Note that at tn = 0, cvtestsdf computes Q(tn) = 0. You will frequently see this behaviour, which should be
viewed as anomalous: because a closed-form prescription of the initial data is used by wave1d, equation (11)
for Q(t) evaluates to 0/0, which cvtestsdf arbitrarily replaces with 0.

Problem 1a) Once you are satisfied that your version of wave1d has been implemented correctly, accord-
ing to the specifications above, copy the script wave1d-script from ∼/phys410/cvtestsdf to the solution
directory for this question, and then execute it. If you have implemented wave1d correctly, this will run
calculations for both second and third order initializations, and for discretization levels 8 through 12 respec-
tively. In addition, cvtestsdf will be invoked to compute Q(tn) for levels 8, 9, 10, levels 9, 10, 11 and levels
10, 11, 12, and for both orders of initialization. The output from the six invocations of cvtestsdf will be
captured in files

cvt-2-10-11-12 cvt-2-8-9-10 cvt-2-9-10-11 cvt-3-10-11-12 cvt-3-8-9-10 cvt-3-9-10-11

where the filename-encoding of the initialization order and the discretization levels used in the computation
of Q(tn) should be self-explanatory.

Using the above 6 files make a single postscript file, cvt23.ps, which shows Q(tn) versus tn from all 6
invocations of cvtestsdf on a single plot. Your plot should use a y-range (i.e. range of Q(tn)) of 1.5 to
4.5. Briefly summarize what you conclude about the convergence of your code for the two different values
of intord in a README file in the solution directory.

I will also test your implementation of wave1d using invocations other than those performed by wave1d-script.

6

Problem 2: The 1-d Time-dependent Schrodinger equation

Note: This problem requires that you use f77’s built in facilities for handling complex quantities. See the
code democomplex.f, available via the “Miscellaneous” section of the Course Related Sotware web page for
a brief demonstration of the use of the complex*16 data type in f77, including basic arithmetic operations,
as well as some of the more important intrinsic (built-in) functions that are available to manipulate complex
values.

Consider the non-dimensionalized form of the 1-d time-dependent Schrödinger equation for the complex
(wave) function, ψ ≡ ψ(t, x), as discussed in class,

iψt = −ψxx + V (x)ψ , (12)

where V (x) is a specified potential function.

In this exercise, you will solve the above PDE on the domain 0 ≤ x ≤ 1, 0 ≤ t ≤ tmax, subject to
homogeneous Dirichlet boundary conditions,

ψ(0, t) = ψ(1, t) = 0 , (13)

corresponding to infinite potential barriers at x = 0 and x = 1.

Again, the issue of initial conditions will be deferred for the time being.

Equation (12) is to be solved using the O(h2) Crank-Nicholson approximation also discussed in class. Intro-
duce the exact same finite difference mesh used in the previous problem:

xj = (j − 1)△x ≡ (j − 1)h , j = 1 . . . nx , (14)

tn = n△t ≡ nλh , n = 0 . . . nt , (15)

ψ
n

j
≡ ψ(xj , t

n) . (16)

where nx and nt are defined as previously.

Define the standard O(h2) approximation to the second spatial derivative via the difference operator, Dxx:

Dxx ψ
n

j
≡
ψ

n

j+1
− 2ψ

n

j
+ ψ

n

j−1

△x 2
. (17)

The Crank-Nicholson differencing of (12-13) is then given by

i
ψ

n+1

j
− ψ

n

j

△t
= −

1

2
Dxx

(

ψ
n+1

j
+ ψ

n

j

)

+
1

2
Vj

(

ψ
n+1

j
+ ψ

n

j

)

(18)

j = 2, 3, · · · , nx − 1 , n+ 1 = 1, . . . nt ,

ψ
n+1

1
= ψ

n+1

nx

= 0 n+ 1 = 1, . . . nt . (19)

Note that (18-19) constitute a complex tridiagonal linear system for the nx advanced time unknowns, ψn+1

j .

Wave function normalization and auxiliary quantities

Recall the physical interpretation of

|ψ(x, t)|
2
dx ≡ ψ(x, t)ψ∗(x, t) dx , (20)

as being the probability of finding the particle described by the Schrödinger equation (12) in the interval
(x, x + dx) at time t. Thus, ψ(t, x) is to be normalized so that

∫ 1

0

|ψ(x, t)|
2
dx = 1 . (21)

7

Note that if (21) is satisfied at the initial time, t = 0, then evolution of ψ via (12) guarantees that the wave
function remains normalized at future and past times. Of course, this a statement concerning the continuum
solution, and can not necessarily be expected to hold precisely in the discrete case.

The specific types of initial data (and in one instance, the exact solution) that you are to implement, as
described below, will generally produce unnormalized wave functions. For your convenience, the source file
∼phys410/util/sch1d/sch1d util.f defines a routine, psi normalize

subroutine psi_normalize(psi,x,nx)

implicit none

integer nx

complex*16 psi(nx)

real*8 x(nx)

which will unit-normalize an arbitrary discrete wave function using an O(h2) approximation to (21). Specif-
ically, the complex*16 grid function psi is both an input and output argument. On input, it should contain
values corresponding to an arbitrary unnormalized wave function: on output, it will then contain values that
are unit-normalized with respect to the aforementioned second order approximation to (21).

As is frequently the case in computational physics, the fundamental solution, ψ(x, t), is not the most conve-
nient quantity for interpretation of results, visualization etc. (although the discrete solution ψn

j is certainly
the quantity on which one should focus until convergence of the implementation has been established). In
the current case, “auxiliary” or “derived” quantities that are of specific interest include: |ψ(x, t)|2, the
cumulative probability function, P (x, t), defined via

P (x, t) ≡

∫ x

0

|ψ(x̃, t)|
2
dx̃ , (22)

as well as the time expectation value, 〈P (x, t)〉 of P (x, t):

〈P (x, t)〉 ≡

∫ t

0
P (x, t̃)dt̃
∫ t

0
dt̃

. (23)

Note that the spatial derivative of 〈P (x, t)〉 is the time expectation value of the probability distribution:

∂

∂x
〈P (x, t)〉 =

〈

|ψ(x, t)|
2
〉

, (24)

and is also of interest for the purposes of analysis of the numerical results.

As a further aid to the development of your programs to solve (18-19), the following routine (as well as
supporting code) is also defined in the source file ∼phys410/util/sch1d/sch1d util.f:

subroutine psi_aux(psi,psire,psiim,psimodsq,pcum,pcumtexp,

& x,t,dt,nx)

implicit none

integer nx

complex*16 psi(nx)

real*8 psire(nx), psiim(nx), psimodsq(nx), pcum(nx),

& pcumtexp(nx), x(nx)

real*8 t, dt

In this routine, the grid function psi (ψn
j) is the primary input—from it, the routine computes auxiliary

grid functions as follows:

psire ≡ Re
(

ψ
n

j

)

, (25)

8

psiim ≡ Im
(

ψ
n

j

)

, (26)

psimodsq ≡
∣

∣

∣
ψ

n

j

∣

∣

∣

2

, (27)

pcum ≡ P
n

j
, (28)

pcumtexp ≡ 〈P 〉
n

j
. (29)

Note that x is the vector of spatial coordinates, while t and dt are the corresponding integration time,
tn, and time step, △t , respectively. Further note that pcumtexp is both an input and output argument.
On input, and for any discrete time other than the initial one (i.e. for tn 6= 0), pcumtexp should contain
〈P 〉n−1

j —on output pcumtexp will contain 〈P 〉nj . When psi aux is invoked at the initial time (i.e. with

t = 0), pcumtexp will be initialized to P 0
j . Finally, as can be seen from inspection of the source code for

psi aux, the computations of Pn
j and 〈P 〉nj are performed using O(h2) approximations, consistent with the

truncation error of the basic scheme (18-19).

To complete this problem, you are to write two separate codes, each of which solves (18-19) for a particular
combination of initial data type and potential. Specifically, the two codes will treat the following cases

1. Evolution of an eigenstate for vanishing potential (free particle in a box)

Here the potential is given by

V (x) = 0 0 < x < 1 , (30)

V (x) = ∞ x = 0, x = 1 , (31)

and the (exact) eigenstates are given by

ψ(x, t) = exp
(

−i (mπ)
2
t
)

sin(mπx) m = 1, 2, · · · (32)

where m is the “principal quantum number”. (Kudos, Robert Kehoe, 2007, for catching the −i → i
sign error. Clearly the instructor didn’t test his exact solution implementation except at the initial
time!)

Important note: As intimated previously, the initial data prescriptions (32) and (37) define unnor-
malized wave functions. Thus, each time you use one of these expressions (in a routine that computes
the exact solution, e.g.), then you must normalize the function. Again, this can be done with a single
call to the instructor-supplied routine, psi normalize.

For specfied m (which will be treated as an adjustable parameter), the initial data is to be given
by (32) evaluated at t = 0, that is

ψ(x, 0) = sin(mπx) . (33)

(Note that the initial wave function is purely real.)

2. Evolution of a gaussian wave-packet, possibly boosted, with a single square well, or square barrier
potential

In this case the potential is given by three parameters, xmin, xmax and V0, as follows

V (x) = V0 xmin ≤ x ≤ xmax , (34)

V (x) = ∞ x = 0, x = 1 , (35)

V (x) = 0 otherwise. (36)

For V0 positive (negative), this corresponds to a single square barrier (well) of height (depth) |V0|
spanning the interval xmin ≤ x ≤ xmax. The initial data is a gaussian wave packet, possibly boosted
(i.e. given some linear momentum), and is also a function of three parameters xc, xw (the center and
width of the packet) and p (the momentum). Specifically

ψ(x, 0) = exp (ipx) exp
(

− ((x− xc) /xw)
2
)

. (37)

9

In the solution directory for this assignment, ∼/hw2/a2, you are to create executables sch1d eig and
sch1d square (with corresponding source files containing the main programs sch1d eig.f and sch1d square.f,
respectively) that have usages as follows

1. sch1d eig

usage: sch1d_eig <tmax> <lev> <olev> <lambda> <m>

where the types and meanings of the various command line arguments are as follows

• <tmax> (real*8): Final integration time, tmax

• <lev> (integer): Discretization level: nx = 2<lev> + 1, △x = h = 2−<lev>

• <olev> (integer): Output level; controls frequency of output. Must be greater than 1 and less
than or equal to <lev>. .sdf output is performed every 2<lev>−<olev> time steps

• <lambda> (real*8): Courant number, λ ≡ △t /△x

• <m> (integer): Principal quantum number. Must be positive definite.

2. sch1d square

usage: sch1d_square <tmax> <lev> <olev> <lambda> <xc> <xw> <p> <xmin> <xmax> <V0>

where the types and meanings of the various command line arguments are as follows

• <tmax> (real*8): As above.

• <lev> (integer): As above.

• <olev> (integer): As above.

• <lambda> (real*8): As above.

• <xc> (real*8): Center, xc, of initial gaussian pulse.

• <xw> (real*8): Width, xw, of initial gaussian pulse.

• <p> (real*8): Momentum, p, of initial pulse.

• <xmin> (real*8): Spatial location, xmin, of start of potential barrier/well.

• <xmax> (real*8): Spatial location, xmax, of end of potential barrier/well.

• <V0> (real*8): Value, V0, of potential in barrier/well.

The two programs that you construct may (should?) share considerable code, and must adhere to the
following:

1. Solution of the FDA

The Crank-Nicholson FDA for the Schrödinger equation is to be solved using the LAPACK routine ZGTSV,
which solves a complex*16 tridiagonal linear system. The calling sequence for ZGTSV is precisely the
same as for DGTSV, except that ZGTSV expects a complex*16 array everywhere that DGTSV expects a
real*8 one:

SUBROUTINE ZGTSV(N, NRHS, DL, D, DU, B, LDB, INFO)

*

* -- LAPACK routine (version 3.0) --

* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

* Courant Institute, Argonne National Lab, and Rice University

* September 30, 1994

*

* .. Scalar Arguments ..

INTEGER INFO, LDB, N, NRHS

* ..

* .. Array Arguments ..

COMPLEX*16 B(LDB, *), D(*), DL(*), DU(*)

* ..

10

2. Scaled independent residual evaluation

Scaled independent residuals, rn+1

j , are to be computed and output (see below) using the following
first order (i.e. O(h) truncation error) discretization of (12)

r
n+1

j
≡ 2ℓ

∣

∣

∣

∣

∣

i
ψ

n+1

j
− ψ

n

j

△t
+Dxx ψ

n+1

j
− V

j
ψ

n+1

j

∣

∣

∣

∣

∣

, (38)

j = 2, 3, · · · , nx − 1 , n+ 1 = 2, . . . nt , ,

r
n+1

1
= 0 , (39)

r
n+1

nx

= 0 . (40)

Note the prefactor of 2ℓ in the definition of rn+1

j , where ℓ is the discretization level (i.e. ℓ = 〈lev〉)

Since the independent discretization is O(h) accurate, multiplication of the bare residual by 2ℓ should
produce a quantity that is roughly discretization-level-independent, in the limit h → 0. Observe that
the independent residual is undefined at the initial time, and thus should not be computed or output
for n = 0.

3. Incorporation of instructor-supplied utility routines

Make a copy of ∼phys410/util/sch1d/sch1d util.f in your solution directory, and incorporate the
code contained therein into your executables so that the routines psi normalize and psi aux can be
used in your implementations, as described above.

4. Program output: .sdf files

The following six real-valued grid functions should be output to .sdf files using calls to xvs, and at a
frequency controlled by the command-line arguments lev and olev, as for the wave1d problem:

(a) Re
(

ψ
n

j

)

: Real part of wave function

(b) Im
(

ψ
n

j

)

: Imaginary part of wave function

(c) |ψ
n

j
|2: Squared-modulus of wave function

(d) Pn
j : Cumulative probability distribution

(e) 〈P 〉
n

j
: Time expectation value of cumulative prob. distribution

(f) r
n

j
: Independent residual

5. Names of .sdf files

The type of evolution, the discretization level, <lev>, and, in the case of sch1d eig, the principal
quantum number <m>, should be encoded in the .sdf filenames as follows:

(a) Program sch1d eig

.sdf files should be named as follows

psire-eig-<m>-<lev>.sdf

psiim-eig-<m>-<lev>.sdf

psimodsq-eig-<m>-<lev>.sdf

pcum-eig-<m>-<lev>.sdf

pcumtexp-eig-<m>-<lev>.sdf

irmod-eig-<m>-<lev>.sdf

corresponding to Re
(

ψ
n

j

)

, Im
(

ψ
n

j

)

, |ψ
n

j
|, Pn

j , 〈P 〉
n

j
and r

n

j
, respectively. For example, the

invocation

% sch1d_eig 0.1 10 6 0.05 3

11

should produce the files

psire-eig-3-10.sdf

psiim-eig-3-10.sdf

psimodsq-eig-3-10.sdf

pcum-eig-3-10.sdf

pcumtexp-eig-3-10.sdf

irmod-eig-3-10.sdf

(b) Program sch1d square

.sdf files should be named as follows

psire-square-<lev>.sdf

psiim-square-<lev>.sdf

psimodsq-square-<lev>.sdf

pcum-square-<lev>.sdf

pcumtexp-square-<lev>.sdf

irmod-square-<lev>.sdf

corresponding to Re
(

ψ
n

j

)

, Im
(

ψ
n

j

)

, |ψ
n

j
|,Pn

j , 〈P 〉
n

j
and r

n

j
, respectively. For example, the

invocation

% sch1d_square 0.1 11 5 0.05 0.5 0.075 0.0 0.6 0.8 -1000

should produce the files

psire-square-10.sdf

psiim-square-10.sdf

psimodsq-square-10.sdf

pcum-square-10.sdf

pcumtexp-square-10.sdf

irmod-square-10.sdf

Note that the character function itoc, described in the first problem, can be used here as well to
encode <lev> and <m> into the .sdf names.

Code testing

It is up to you to convergence test your codes using one or more of

1. xvs’s convergence test facility

2. cvtestsdf

3. independent residual study

4. the exact solution, where available

in order to verify that your implementations are correct.

Problem 2a)

Once you are satisfied that your implementation of sch1d square is correct, perform 4 runs of the program
with <V0>= -10000.0, -12000.0, -13000.0 and -15750.0, respectively, and with the values of all other command-
line arguments fixed as follows: <tmax> = 0.05, <lev> = 12, <olev> = 8, <lambda> = 0.05, <xc> = 0.25,
<xw> = 0.075, <p> = 5.0, <xmin> = 0.60 and <xmax> = 0.80.

Use the results from these runs to prepare 4 plots that graph
〈

|ψ(x, 0.05)|
2
〉

versus x, for the 4 different

values of <V0>; i.e. the plots are to display the time expectation value of the probability distribution at
the final integration time, t = 0.05. Your plots should be saved in postscript files named V0-10000.ps,
V0-12000.ps, V0-13000.ps and V0-15750.ps, respectively.

12

Provide some brief comments concerning what you observe in, and deduce from, these plots in a README file
in the solution directory.

Course software usage hints:

1. You can use the xvs visualization utility to (a) compute

〈

|ψ(x, t)|
2
〉

=
∂

∂x
〈P (x, t)〉 (41)

from 〈P (x, t)〉, via numerical differentiation, and, (b) then save
〈

|ψ(x, t)|
2
〉

in an .sdf file.

2. You can use the sdfdump utility in conjunction with the instructor supplied script, nth, to generate
ASCII data suitable for plotting with gnuplot or other plotting packages. Specifically, if the file f.sdf,
storing the grid function, fn

j , contains (for example), 15 datasets, then the pipeline

sdfdump -i 15 f.sdf | nth 2 3

will produce on standard output

x
1

f
15

1

x
2

f
15

2

·

·

·

x
nx

f
15

nx

Both sdfdump and nth are available on the lnx machines. Contact the instructor should you wish to install
these utilities on your own system(s) and/or should you have any questions about their use.

13

Problem 3: Solution of the 2D diffusion equation using the ADI FDA.

Consider the non-dimensionalized 2+1 diffusion equation for the scalar function u ≡ u(x, y, t) as discussed
in class,

ut = uxx + uyy , (42)

with unit-square domain
0 ≤ x, y ≤ 1 , (43)

subject to the initial conditions
u(x, y, 0) = u0(x, y) , (44)

where u0(x, y) is a specified function, and boundary conditions

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0 . (45)

Introduce a standard, uniform finite difference mesh:

xi = (i− 1)△x ≡ (i− 1)h , i = 1 . . . nx (46)

yj = (j − 1)△y ≡ (j − 1)h , j = 1 . . . ny (47)

tn = n△t ≡ nλh , n = 0 . . . nt (48)

u
n

i,j
≡ u(xi, yj, t

n) (49)

Note that nx = ny = h−1 + 1, and that hereafter we will denote either of nx or ny by ns.

Define the usual centred, O(h2) difference operators, Dxx and Dyy, that approximate the continuum opera-
tors, ∂xx and ∂yy, respectively:

Dxxu
n

i,j
≡

u
n

i+1,j
− 2u

n

i,j
+ u

n

i−1,j

△x 2
, (50)

Dyyu
n

i,j
≡

u
n

i,j+1
− 2u

n

i,j
+ u

n

i,j−1

△y 2
. (51)

Define the Crank Nicholson approximation to (42-45) as follows:

Discretization of interior PDE

u
n+1

i,j
− u

n

i,j

△t
=

1

2
(Dxx +Dyy)

(

u
n+1

i,j
+ u

n

i,j

)

, i, j = 2 . . . ns − 1 , n = 0, 1, ...nt − 1 . (52)

Discretization of initial conditions

u
0

i,j
= u0(xi, yj, t

0) ≡ u0(xi, yj) , i, j = 2 . . . ns − 1 . (53)

Discretization of boundary conditions

u
n

1,j
= u

n

ns,j
= 0 , j = 1 . . . ns , n = 0 . . . nt , (54)

u
n

i,1
= u

n

i,ns

= 0 , i = 1 . . . ns , n = 0 . . . nt . (55)

Again, the specific form of the discrete initial and boundary conditions ensures (discrete) compatibility of
the initial conditions with the boundary conditions, and the usual caveat concerning the need to ensure that
effects due to small numerical inconsistencies are sub-truncation error, holds.

As discussed in class, the ADI approximation to (42), written in the form

(

1 −
1

2
△tDxx

)(

1 −
1

2
△tDyy

)

u
n+1

i,j
=

(

1 +
1

2
△tDxx

)(

1 +
1

2
△tDyy

)

u
n

i,j
, (56)

14

has the same order of truncation error (i.e. O(h2)) as the Crank-Nicholson (CN) approximation (52), where
here and hereafter the discrete initial and boundary conditions are unchanged from the CN approximation,
as above.

Further, using an intermediary grid function, u
⋆

i,j
the solution of (56) can be split into two stages, as follows:

(

1 −
1

2
△tDxx

)

u
⋆

i,j
=

(

1 +
1

2
△tDyy

)

u
n

i,j
, i, j = 2 . . . ns − 1 , n = 0 . . . nt , (57)

(

1 −
1

2
△tDyy

)

u
n+1

i,j
=

(

1 +
1

2
△tDxx

)

u
⋆

i,j
, i, j = 2 . . . ns − 1 , n = 0 . . . nt . (58)

Equations (57-58) together with the initial conditions (53) and boundary conditions (54-55) define the
complete ADI FDA.

In the solution directory for this assignment, create the subdirectory a3, which is to contain an implementa-
tion of the ADI equations for the 2D diffusion equation, as described above. Specifically, you are to create
an executable, diff2dadi, with one or more corresponding f77 files, including diff2dadi.f, which should
contain the main program. diff2dadi has usage

usage: diff2dadi <tmax> <lev> <olev> <lambda>

where the types and meanings of the various command-line arguments are as follows:

• <tmax> (real*8): Final integration time, tmax

• <lev> (integer): Discretization level: nx = ny = ns = 2<lev> + 1, △x = △y = h = 2−<lev>

• <olev> (integer): Output level; controls frequency of output. Must be greater than 1 and less than
or equal to <lev>. .sdf output (see below) is performed every 2<lev>−<olev> time steps

• <lambda> (real*8): Courant number, λ ≡ △t /△x

Your program should adhere to the following:

• Solution of the FDA

Implement the ADI equations precisely as defined above, and use the LAPACK tridiagonal solver DGTSV
to solve all tridiagonal systems that arise in the ADI solution.

• Program output: .sdf files

Periodically, with a frequency controlled by the command-line arguments <lev> and <olev>, as in
previous questions, your program should use one of the following routines to output the computed
solution to an .sdf file named u-<lev>.sdf, where <lev> is to replaced with the actual integer value
of <lev> that is supplied on the command line:

subroutine gft_out_bbox(name,time,shape,rank,bbox,data)

character*(*) name ! dataset name

real*8 time ! dataset time

integer shape(2) ! shape of data: [nx ny]

integer rank ! dataset rank (number of dimensions), 2 in this instance

real*8 bbox(4) ! bounding box for data: [xmin xmax ymin ymax]

real*8 data(shape(1),shape(2)) ! 2D dataset

subroutine gft_out_brief(name,time,shape,rank,data)

character*(*) name ! dataset name

real*8 time ! dataset time

integer shape(2) ! shape of data: [nx ny]

integer rank ! dataset rank (number of dimensions), 2 in this instance

real*8 data(shape(1),shape(2)) ! 2D dataset

15

If you use the gft out brief routine, you should call gft out set bbox

subroutine gft_out_set_bbox(bbox,rank)

integer rank ! rank of datasets to be output

real*8 bbox(*) ! bounding box for data: [xmin xmax ymin ymax]

before any calls to gft out brief, in order to set the bounding box to [0.0 1.0 0.0 1.0]. (The default
for 2D data is to assume a domain defined by the bounding box [-1.0 1.0 -1.0 1.0].)

As usual, let the instructor know immediately should you have difficulty with these routines, or if
you have questions about their use and/or visualization of the contents of 2D .sdf files with the DV

application that was demoed over mid-term break.

• Initial data

As you develop your program, you are free to use initial data of your own choosing. However, the final
version of your code should “hard-code” the following specific initial conditions

u(x, y, 0) = u0(x, y) = exp

(

−

(

(

x− 0.6

0.05

)2

+

(

y − 0.7

0.10

)2
))

. (59)

Note, however, that the above expression is to be used only for the interior grid points at t = 0. The
boundary values at the initial time should be set to 0.0 per the discrete boundary conditions (54-55).

• Independent residual evaluation and output

In this instance there is, of course, a very natural independent residual with which one can test the
implementation of the ADI scheme—namely that provided by the Crank-Nicholson discretization (52)
itself. Specifically, momentarily denoting the solution of the ADI FDA by ũn

j , then the Crank-Nicholson

residual, r
n+1/2

i,j , is given by

r
n+1/2

i,j
≡
ũ

n+1

i,j
− ũ

n

i,j

△t
−

[

1

2
(Dxx +Dyy)

(

ũ
n+1

i,j
+ ũ

n

i,j

)

]

. (60)

As discussed in class (in the general context of independent residual evaluation), viewing r as a function
defined on the continuum, we can expect the following asymptotic behaviour:

lim
h→0

r(t, x;h) = h2r2(t, x) + higher order , (61)

where r2 is some h-independent function.

Important note: Observe that the residual (60) is naturally defined at discrete times tn+1/2 ≡
tn + △t /2, n = 0, . . . nt − 1. From the point of view of the usual sort of convergence tests discussed
in the course, one consequence of this fact is that it will be generally impossible to directly compare
the residuals computed at different levels, ℓ, of discretization, with corresponding mesh spacings hℓ =
hℓ−1/2. That is, although the discrete times, tnℓ−1, on a coarse grid will be a subset of the fine grid

times, tnℓ , none of the values t
n+1/2

ℓ−1
, from the coarse grid will correspond to the “half time step”

values, t
n+1/2

ℓ on the fine grid. Thus, a direct comparison of independent residuals computed on
different levels would require interpolation in time of the residuals, and would constitute an overly
cumbersome procedure, given the purpose of the residual evaluation.

Given this observation, consider computing the spatial ℓ2 norm (RMS value), ‖r‖2, of r at each discrete
time step. Clearly, ‖r‖2 should also be an O(h2) quantity, so that if we compute a “level-scaled”
residual norm, r̂(t;h), defined by

r̂
(

tn+1/2;hℓ

)

≡ 4ℓ
∥

∥

∥
r

n+1/2

i,j

∥

∥

∥

2

, (62)

16

then we should find that r̂(t, h) is an approximately h-independent function. Further, it is extremely
improbable that ‖r‖ can be O(h2) without (61) being satisfied, so that we can essentially view the
constancy of r̂, as h → 0, as a sufficient as well as necessary condition for the implementation of the
ADI FDA to be correct.

Thus, for time steps, n = 0 . . . nt−1, your program should compute the scaled residual norm (62), and
output the base-10 logarithm of that quantity, along with the corresponding discrete time, tn+1/2, to
standard output. Specifically, assuming that the real*8 variable scnrm2rhat contains the scaled ℓ2
norm of r̂ defined by (62)—where the discretization level, ℓ, is to be identified with the command-line
argument, <lev>—and that the real*8 variables t and dt contain the discrete time, tn, and time
step, △t , respectively, your program should include an output statement such as

write(*,*) t + 0.5d0 * dt, log10(scnrm2rhat)

Note that the standard output from invocations of diff2dadi with varying discretization levels can
then be “overlaid” for comparison, with no further post-processing required, using, e.g., gnuplot or
xvs.

In order to facilitate computation of the scaled independent residuals, your implementation of diff2dadi
should make use of the instructor supplied routines for this problem that are defined in the source
file ∼phys410/util/diff2dadi/diff2dadi util.f. Specfically, you should copy this source file into
your solution directory for this problem, and incorporate it into your executable. You should then
ensure that the routine clcresidcn is called at each discrete time, tn, n = 0 . . . nt − 1. Note that
clcresidcn has the header

subroutine clcresidcn(r,unp1,un,nx,ny,dx,dy,dt)

implicit none

integer nx, ny

real*8 r(nx,ny), unp1(nx,ny), un(nx,ny)

real*8 dx, dy, dt

so that, in particular, storage must be passed in for an entire grid function’s worth of residuals,

r(nx,ny). Given the array inputs unp1 and un—which contain u
n+1

i,j
and u

n

i,j
, respectively—as well

as the self-explanatory scalar inputs, nx, ny, dx, dy and dt, clcresidcn will compute the unscaled
CN residuals as defined by (60), and return the values in the output array, r. Following the call to
clcresidcn, the ℓ2 norm of the residuals can be computed using the real*8 function dmnrm2

real*8 function dmnrm2(a,m,n)

implicit none

integer m, n

real*8 a(m,n)

which is also defined in diff2dadi util.f.

As in the previous problem, it is up to you to ensure that your implementation of diff2dadi is correct (i.e.
convergent) using independent residual evaluation as described above, as well as the cvtestsdf utility, and,
if necessary, other testing procedures of your own design.

Problem 3a) Once you are confident that your implementation of diff2dai is correct, execute the following
sequence of commands in your solution directory

% diff2dadi 0.0625 6 6 0.05 > cn-res-6

% diff2dadi 0.0625 7 6 0.05 > cn-res-7

% diff2dadi 0.0625 8 6 0.05 > cn-res-8

% diff2dadi 0.0625 9 6 0.05 > cn-res-9

17

Note that this should generate .sdf files u 6.sdf, u 7.sdf, u 8.sdf and u 9.sdf, and should capture the

standard output (discrete time and log10 of the scaled independent residuals) of the invocations in the ASCII

files cn-res-[6789]. Use gnuplot or another plotting package to make a postscript file named cnres6789.ps

that shows the data from cn-res-[6789] on a single plot. Important: Ensure that you have used initial

data of the form (59) for your final calculations and plot.

18

